1
|
Wang X, Li J, Nong J, Deng X, Chen Y, Han B, Zeng L, Huang X. MiR-518b Promotes the Tumorigenesis of Hepatocellular Carcinoma by Targeting EGR1 to Regulate PI3K/AKT/mTOR Signaling Pathway. Cell Biochem Biophys 2025:10.1007/s12013-025-01752-z. [PMID: 40221539 DOI: 10.1007/s12013-025-01752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignancy originating from hepatocytes and is characterized by high invasiveness and fatality. Dysregulation of microRNAs (miRNAs) is frequently observed during HCC progression. This study aimed to investigate the role of miR-518b in HCC cell malignancy and tumor growth. MiR-518b expression in HCC cells was measured by RT-qPCR. The proliferative, migratory and invasive capabilities of Hep3B and SNU-387 were assessed by colony formation, wound healing and transwell assays, respectively. RNA immunoprecipitation and luciferase reporter assays were utilized to verify the binding between miR-518b and its target gene, early growth response factor 1 (EGR1). Results revealed that miR-518b was highly expressed while EGR1 was downregulated in HCC cells. Knockdown of miR-518b significantly repressed cell proliferation, migration and invasion. Moreover, miR-518b bound to 3'untranslated region of EGR1 and negatively regulated its expression in HCC cells. EGR1 knockdown counteracted the inhibitory impact of miR-518b inhibition on malignant cell behaviors. In addition, the silencing of EGR1 activated the PI3K/AKT/mTOR signaling in HCC cells, while miR-518b depletion had the opposite effect. Importantly, the suppressive impact of miR-518b on the pathway was rescued by EGR1 knockdown. In vivo experiments demonstrated that inhibition of miR-518b suppressed HCC tumor growth, reduced EGR1 and Ki67 (a proliferation marker) expression, and inactivated the PI3K/AKT/mTOR signaling. In conclusion, miR-518b promotes HCC tumorigenesis by targeting EGR1 and regulating the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xinyuan Wang
- College of Zhuang Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Juan Li
- Department of pediatrics, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Jiao Nong
- College of Osteopathy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xin Deng
- School of basic medicine, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Yiping Chen
- Emergency department, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Bing Han
- Guangxi University of Chinese Medicine, Nanning, China
| | - Lin Zeng
- Guangxi University of Chinese Medicine, Nanning, China
| | - Xiabing Huang
- Emergency department, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
2
|
Kao WH, Chiu KY, Tsai SCS, Teng CLJ, Oner M, Lai CH, Hsieh JT, Lin CC, Wang HY, Chen MC, Lin H. PI3K/Akt inhibition promotes AR activity and prostate cancer cell proliferation through p35-CDK5 modulation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167568. [PMID: 39536992 DOI: 10.1016/j.bbadis.2024.167568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Aberrant PI3K/Akt activation is linked to prostate cancer (PCa) malignancy, while androgen receptor (AR) is critical in early-stage PCa development. Investigating the interaction between these pathways is crucial for PCa malignancy. Our previous study demonstrated that p35-CDK5 mediates post-translational modifications of AR, STAT3, and p21CIP1, eventually promoting PCa cell growth. This study revealed the role of p35-CDK5 in between PI3K/Akt and AR by utilizing LNCaP and 22Rv1 cells. Through the TCGA database analysis, we observed a positive correlation between PTEN and p35 expression, implying a potential negative correlation between PI3K/Akt activation and p35-CDK5. Inhibiting PI3K/Akt with LY294002, Capivasertib (AZD5363), or using an inactive Akt mutant significantly increased p35 expression and subsequently enhanced AR stability and activation in PCa cells. On the other hand, CDK5-knockdown reversed these effects. The involvement of the β-catenin/Egr1-axis was observed in regulating PI3K/Akt inhibition and p35-CDK5 activation, implying a possible mechanistic connection. Importantly, CDK5 knockdown further reduced PI3K/Akt-inhibition-induced AR and cell viability maintenance, suggesting a compensatory role for CDK5-AR in maintaining cell viability under Akt inhibition. In conclusion, PI3K/Akt inhibition could trigger p35-CDK5-dependent AR activation and cell viability, highlighting p35-CDK5 as a critical link connecting PI3K/Akt inhibition to AR activation and pivotal in PCa cell resistance to PI3K/Akt blockade.
Collapse
Affiliation(s)
- Wei-Hsiang Kao
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Translational Cell Therapy Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Stella Chin-Shaw Tsai
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Superintendent Office, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan; College of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chieh-Lin Jerry Teng
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 40227, Taiwan; Division of Hematology/Medical Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
| | - Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, TX75390, USA.
| | - Chi-Chien Lin
- Institute of Biomedical Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan.
| | - Mei-Chih Chen
- Translational Cell Therapy Center, China Medical University Hospital, Taichung 40447, Taiwan.
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
3
|
Wang N, Chai T, Wang XR, Zheng YD, Sang CY, Yang JL. Pin1: Advances in pancreatic cancer therapeutic potential and inhibitors research. Bioorg Chem 2024; 153:107869. [PMID: 39418844 DOI: 10.1016/j.bioorg.2024.107869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/18/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
The peptidyl-prolyl cis/trans isomerase NIMA-interaction 1 (Pin1) catalyzes the transition of the proline ring from the cis to trans conformation, resulting in conformational and functional changes in proteins that are regulated by proline-guided serine/threonine phosphorylation. In recent years, Pin1 has emerged as a novel molecular target for the diagnosis and treatment of various malignant tumors. Notably, it has been found that Pin1 is highly expressed in pancreatic cancer. This article focuses on the mechanisms by which Pin1 orchestrates multiple oncogenic functions in the development of pancreatic cancer. By exploring the intricate interactions between Pin1 and the pancreatic tumor microenvironment, we provide an overview of Pin1's role in modifying glycolytic metabolism, redox balance, and the hypoxic microenvironment of pancreatic cancer. Furthermore, we summarize the potential anticancer effects of Pin1 inhibitors, aiming to elucidate Pin1's promise as a potential anticancer agent, particularly in the context of pancreatic cancer.
Collapse
Affiliation(s)
- Nan Wang
- College of Pharmacy, Gansu University of Chinese Medicine; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Tian Chai
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Xing-Rong Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Yi-Dan Zheng
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Chun-Yan Sang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Jun-Li Yang
- College of Pharmacy, Gansu University of Chinese Medicine; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China.
| |
Collapse
|
4
|
Zhang N, Chi M, Pan W, Zhang C, Wang Y, Gao X, Bai C, Liu X. miR‑576‑3p/M‑phase phosphoprotein 8 axis regulates the malignant progression of hepatocellular carcinoma cells via the PI3K/Akt signaling pathway. Oncol Lett 2024; 28:327. [PMID: 38807669 PMCID: PMC11130756 DOI: 10.3892/ol.2024.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal digestive system cancer with unclear pathogenesis. M-phase phosphoprotein 8 (MPP8) has been shown to play a vital role in several cancer types, such as non-small cell lung cancer, gastric cancer and melanoma; however, there have been no studies into its role in HCC. The present study aimed to evaluate the role of MPP8 in regulating malignant phenotypes of liver cancer cells, and to further investigate the underlying mechanism. Bioinformatics analysis was performed to analyze related data from a public database, and to predict the potential microRNAs (miRNAs) that might target MPP8 mRNA; reverse transcription-quantitative PCR was used to measure the levels of mRNA and miRNA; western blotting was employed to detect protein levels; Cell Counting Kit-8 (CCK-8) and plate colony formation assays, wound healing assay and Transwell invasion assay were performed to evaluate the ability of cell proliferation, migration and invasion, respectively; dual-luciferase reporter gene assay was performed to identify the target association. The results showed that MPP8 was a risk factor for the survival of patients with HCC, and was up-regulated in HCC tissue samples and cell lines; MPP8 knockdown inhibited the proliferation, migration and invasion of liver cancer cells; MPP8 knockdown suppressed the PI3K/Akt pathway, and activation of this pathway reversed the inhibited liver cancer cell phenotypes by down-regulating MPP8; miR-576-3p, which was low in liver cancer cells, negatively regulated MPP8 expression by directly targeting its mRNA; up-regulating MPP8 expression reversed the inhibited signaling pathway and malignant phenotypes of liver cancer cells by miR-576-3p overexpression. In conclusion, the miR-576-3p/MPP8 axis regulates the proliferation, migration, and invasion of liver cancer cells through the PI3K/Akt signaling pathway. These findings lead novel insights into HCC progression, and propose MPP8 as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Nannan Zhang
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, School of Basic Medicine, Chifeng University, Chifeng, Inner Mongolia Autonomous Region 024000, P.R. China
- Department of Bioengineering, College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun, Jilin 130000, P.R. China
| | - Mengyi Chi
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, School of Basic Medicine, Chifeng University, Chifeng, Inner Mongolia Autonomous Region 024000, P.R. China
| | - Weili Pan
- Department of Cardiovascular Medicine, The Second Hospital of Chifeng, Chifeng, Inner Mongolia Autonomous Region 024000, P.R. China
| | - Congying Zhang
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, School of Basic Medicine, Chifeng University, Chifeng, Inner Mongolia Autonomous Region 024000, P.R. China
| | - Yali Wang
- Key Laboratory of Research on Human Genetic Diseases at Universities of Inner Mongolia Autonomous Region, School of Basic Medicine, Chifeng University, Chifeng, Inner Mongolia Autonomous Region 024000, P.R. China
| | - Xiaoyan Gao
- Key Laboratory of Mechanism and Evaluation of Traditional Chinese & Mongolian Medicine, School of Basic Medicine, Chifeng University, Chifeng, Inner Mongolia Autonomous Region 024000, P.R. China
| | - Chunying Bai
- Key Laboratory of Research on Human Genetic Diseases at Universities of Inner Mongolia Autonomous Region, School of Basic Medicine, Chifeng University, Chifeng, Inner Mongolia Autonomous Region 024000, P.R. China
| | - Xianjun Liu
- Department of Bioengineering, College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
5
|
Hui San S, Ching Ngai S. E-cadherin re-expression: Its potential in combating TRAIL resistance and reversing epithelial-to-mesenchymal transition. Gene 2024; 909:148293. [PMID: 38373660 DOI: 10.1016/j.gene.2024.148293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
The major limitation of conventional chemotherapy drugs is their lack of specificity for cancer cells. As a selective apoptosis-inducing agent, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has emerged as an attractive alternative. However, most of the cancer cells are found to be either intrinsically resistant to the TRAIL protein or may develop resistance after multiple treatments, and TRAIL resistance can induce epithelial-to-mesenchymal transition (EMT) at a later stage, promoting cancer invasion and migration. Interestingly, E-cadherin loss has been linked to TRAIL resistance and initiation of EMT, making E-cadherin re-expression a potential target to overcome these obstacles. Recent research suggests that re-expressing E-cadherin may reduce TRAIL resistance by enhancing TRAIL-induced apoptosis and preventing EMT by modulating EMT signalling factors. This reversal of EMT, can also aid in improving TRAIL-induced apoptosis. Therefore, this review provides remarkable insights into the mechanisms underlying E-cadherin re-expression, clinical implications, and potentiation, as well as the research gaps of E-cadherin re-expression in the current cancer treatment.
Collapse
Affiliation(s)
- Ser Hui San
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
6
|
Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol Int 2024; 48:87-127. [PMID: 37859532 DOI: 10.1002/cbin.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial-mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
7
|
Liu W, Fan X, Jian B, Wen D, Wang H, Liu Z, Li B. The signaling pathway of hypoxia inducible factor in regulating gut homeostasis. Front Microbiol 2023; 14:1289102. [PMID: 37965556 PMCID: PMC10641782 DOI: 10.3389/fmicb.2023.1289102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Hypoxia represent a condition in which an adequate amount of oxygen supply is missing in the body, and it could be caused by a variety of diseases, including gastrointestinal disorders. This review is focused on the role of hypoxia in the maintenance of the gut homeostasis and related treatment of gastrointestinal disorders. The effects of hypoxia on the gut microbiome and its role on the intestinal barrier functionality are also covered, together with the potential role of hypoxia in the development of gastrointestinal disorders, including inflammatory bowel disease and irritable bowel syndrome. Finally, we discussed the potential of hypoxia-targeted interventions as a novel therapeutic approach for gastrointestinal disorders. In this review, we highlighted the importance of hypoxia in the maintenance of the gut homeostasis and the potential implications for the treatment of gastrointestinal disorders.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xueni Fan
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Boshuo Jian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Dongxu Wen
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Hongzhuang Wang
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, China
| |
Collapse
|
8
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 424] [Impact Index Per Article: 212.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
9
|
Yin L, Zhang J, Sun Y. Early growth response-1 is a new substrate of the GSK3β-FBXW7 axis. Neoplasia 2022; 34:100839. [PMID: 36240645 PMCID: PMC9573921 DOI: 10.1016/j.neo.2022.100839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
EGR1, a short-lived transcription factor, regulates several biological processes, including cell proliferation and tumor progression. Whether and how EGR1 is regulated by Cullin-RING ligases (CRLs) remains elusive. Here, we report that MLN4924, a small molecule inhibitor of neddylation, causes EGR1 accumulation by inactivating SCFFBXW7 (CRL1), which is a new E3 ligase for EGR1. Specifically, FBXW7 binds to EGR1 via its consensus binding motif/degron, whereas cancer-derived FBXW7 mutants showed a much reduced EGR1 binding. SiRNA-mediated FBXW7 knockdown caused EGR1 accumulation, whereas FBXW7 overexpression reduced EGR1 levels. Likewise, FBXW7 knockdown significantly extended EGR1 protein half-life, while FBXW7 overexpression promotes polyubiquitylation of wild-type EGR1, but not EGR1-S2A mutant with the binding site abrogated. GSK3β kinase is required for the FBXW7-EGR1 binding, and for enhanced EGR1 degradation by wild type FBXW7, but not by FBXW7 mutants. Likewise, GSK3β knockdown or treatment with GSK3β inhibitor significantly increased the EGR1 levels and extended EGR1 protein half-life, while reducing EGR1 polyubiquitylation. Hypoxia exposure reduces the EGR1 levels via enhancing the FBXW7-EGR1 binding, and FBXW7-induced EGR1 polyubiquitylation. Biologically, EGR1 knockdown suppressed cancer cell growth, whereas growth stimulation by FBXW7 knockdown is partially rescued by EGR1 knockdown. Thus, EGR1 is a new substrate of the GSK3β-FBXW7 axis, and the FBXW7-EGR1 axis coordinately regulates growth of cancer cells.
Collapse
Affiliation(s)
- Lu Yin
- Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Jiagui Zhang
- Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
10
|
Xu Z, Xiang X, Su S, Zhu Y, Yan H, Guo S, Guo J, Shang EX, Qian D, Duan JA. Multi-omics analysis reveals the pathogenesis of db/db mice diabetic kidney disease and the treatment mechanisms of multi-bioactive compounds combination from Salvia miltiorrhiza. Front Pharmacol 2022; 13:987668. [PMID: 36249745 PMCID: PMC9557128 DOI: 10.3389/fphar.2022.987668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common diabetic complication. Salvia miltiorrhiza has significant therapeutic effects on diabetes complications, although the mechanism remains unclear. Here, biochemical indicators and pathological changes were used to screen out the optimal Salvia miltiorrhiza multi-bioactive compounds combination. Metabolomics, transcriptomics and proteomics were used to explore the pathogenesis of DKD. RT-PCR and parallel reaction monitoring targeted quantitative proteome analysis were utilized to investigate treatment mechanisms of the optimal Salvia miltiorrhiza multi-bioactive compounds combination. The db/db mice showed biochemical abnormalities and renal lesions. The possible metabolic pathways were steroid hormone biosynthesis and sphingolipid metabolism. The 727 differential genes found in transcriptomics were associated with biochemical indicators via gene network to finally screen 11 differential genes, which were mainly key genes of TGF-β/Smad and PI3K/Akt/FoxO signaling pathways. Salvia miltiorrhiza multi-bioactive compounds combination could significantly regulate the Egr1, Pik3r3 and Col1a1 genes. 11 differentially expressed proteins involved in the two pathways were selected, of which 9 were significantly altered in db/db mice compared to db/m mice. Salvia miltiorrhiza multi-bioactive compounds combination could callback Q9DBM2, S4R1W1, Q91Y97, P47738, A8DUK4, and A2ARV4. In summary, Salvia miltiorrhiza multi-bioactive compounds combination may ameliorate kidney injury in diabetes through regulation of TGF-β/Smad and PI3K/Akt/FoxO signaling pathways.
Collapse
Affiliation(s)
- Zhuo Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiang Xiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, CAS, Shanghai, China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Shulan Su, ; Jin-ao Duan,
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Shulan Su, ; Jin-ao Duan,
| |
Collapse
|
11
|
Hypoxia signaling in human health and diseases: implications and prospects for therapeutics. Signal Transduct Target Ther 2022; 7:218. [PMID: 35798726 PMCID: PMC9261907 DOI: 10.1038/s41392-022-01080-1] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/07/2023] Open
Abstract
Molecular oxygen (O2) is essential for most biological reactions in mammalian cells. When the intracellular oxygen content decreases, it is called hypoxia. The process of hypoxia is linked to several biological processes, including pathogenic microbe infection, metabolic adaptation, cancer, acute and chronic diseases, and other stress responses. The mechanism underlying cells respond to oxygen changes to mediate subsequent signal response is the central question during hypoxia. Hypoxia-inducible factors (HIFs) sense hypoxia to regulate the expressions of a series of downstream genes expression, which participate in multiple processes including cell metabolism, cell growth/death, cell proliferation, glycolysis, immune response, microbe infection, tumorigenesis, and metastasis. Importantly, hypoxia signaling also interacts with other cellular pathways, such as phosphoinositide 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) signaling, nuclear factor kappa-B (NF-κB) pathway, extracellular signal-regulated kinases (ERK) signaling, and endoplasmic reticulum (ER) stress. This paper systematically reviews the mechanisms of hypoxia signaling activation, the control of HIF signaling, and the function of HIF signaling in human health and diseases. In addition, the therapeutic targets involved in HIF signaling to balance health and diseases are summarized and highlighted, which would provide novel strategies for the design and development of therapeutic drugs.
Collapse
|
12
|
Strasenburg W, Jóźwicki J, Durślewicz J, Kuffel B, Kulczyk MP, Kowalewski A, Grzanka D, Drewa T, Adamowicz J. Tumor Cell-Induced Platelet Aggregation as an Emerging Therapeutic Target for Cancer Therapy. Front Oncol 2022; 12:909767. [PMID: 35814405 PMCID: PMC9259835 DOI: 10.3389/fonc.2022.909767] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor cells have the ability to induce platelet activation and aggregation. This has been documented to be involved in tumor progression in several types of cancers, such as lung, colon, breast, pancreatic, ovarian, and brain. During the process, platelets protect circulating tumor cells from the deleterious effects of shear forces, shield tumor cells from the immune system, and provide growth factors, facilitating metastatic spread and tumor growth at the original site as well as at the site of metastasis. Herein, we present a wider view on the induction of platelet aggregation by specific factors primarily developed by cancer, including coagulation factors, adhesion receptors, growth factors, cysteine proteases, matrix metalloproteinases, glycoproteins, soluble mediators, and selectins. These factors may be presented on the surface of tumor cells as well as in their microenvironment, and some may trigger more than just one simple receptor-ligand mechanism. For a better understanding, we briefly discuss the physiological role of the factors in the platelet activation process, and subsequently, we provide scientific evidence and discuss their potential role in the progression of specific cancers. Targeting tumor cell-induced platelet aggregation (TCIPA) by antiplatelet drugs may open ways to develop new treatment modalities. On the one hand, it may affect patients' prognosis by enhancing known therapies in advanced-stage tumors. On the other hand, the use of drugs that are mostly easily accessible and widely used in general practice may be an opportunity to propose an unparalleled antitumor prophylaxis. In this review, we present the recent discoveries of mechanisms by which cancer cells activate platelets, and discuss new platelet-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Wiktoria Strasenburg
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Jakub Jóźwicki
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Błażej Kuffel
- Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Martyna Parol Kulczyk
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Adam Kowalewski
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Drewa
- Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Jan Adamowicz
- Department of General and Oncological Urology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
13
|
Gangane N, Khan HR, Patil B. E-cadherin as a prognostic biomarker in oral squamous cell carcinoma: A pilot study at tertiary care hospital. MEDICAL JOURNAL OF DR. D.Y. PATIL VIDYAPEETH 2022. [DOI: 10.4103/mjdrdypu.mjdrdypu_240_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
The role of Hypoxia-Inducible Factor-1alpha and its signaling in melanoma. Biomed Pharmacother 2021; 141:111873. [PMID: 34225012 DOI: 10.1016/j.biopha.2021.111873] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Adaptation to the loss of O2 is regulated via the activity of hypoxia-inducible factors such as Hypoxia-Inducible Factor-1 (HIF-1). HIF-1 acts as a main transcriptional mediator in the tissue hypoxia response that regulates over 1000 genes related to low oxygen tension. The role of HIF-1α in oncogenic processes includes angiogenesis, tumor metabolism, cell proliferation, and metastasis, which has been examined in various malignancies, such as melanoma. Melanoma is accompanied by a high death rate and a cancer type whose incidence has risen over the last decades. The linkage between O2 loss and melanogenesis had extensively studied over decades. Recent studies revealed that HIF-1α contributes to melanoma progression via different signaling pathways such as PI3K/Akt/mTOR, RAS/RAF/MEK/ERK, JAK/STAT, Wnt/β-catenin, Notch, and NF-κB. Also, various microRNAs (miRs) are known to mediate the HIF-1α role in melanoma. Therefore, HIF-1α offers a diagnostic/prognostic biomarker and a candidate for targeted therapy in melanoma.
Collapse
|
15
|
Fibronectin 1: A Potential Biomarker for Ovarian Cancer. DISEASE MARKERS 2021; 2021:5561651. [PMID: 34093898 PMCID: PMC8164534 DOI: 10.1155/2021/5561651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022]
Abstract
Methods OVCAR3 and A2780 are the two common cell lines that are used for ovarian cancer studies. The different invasion and migration abilities were observed by scratch tests and transwell experiments in our preliminary study. Gene chip was used to screen the expression gene in these two different cell lines, and then, the differentially expressed genes (at least 2-fold difference, P value < 0.05) were analyzed using KEGG. Result Fibronectin 1 (FN1) was found to be the most strongly correlated with the invasion and migration abilities of the OVCAR3 cells. Real-time PCR and FN1 knockout cell line was conducted and confirmed this finding. Based on the Oncomine database analysis, comparing with normal people, ovarian cancer patients exhibited high levels of FN1 expression. Additionally, higher FN1 expression was found in patients with higher FIGO stages of cancer. Conclusion FN1 could be a new biomarker for ovarian cancer detection and progress indicator.
Collapse
|
16
|
He L, Araj E, Peng Y. HER2 Positive and HER2 Negative Classical Type Invasive Lobular Carcinomas: Comparison of Clinicopathologic Features. Curr Oncol 2021; 28:1608-1617. [PMID: 33923191 PMCID: PMC8161831 DOI: 10.3390/curroncol28030150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 11/30/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) positive (+) classical type invasive lobular carcinoma (cILC) of the breast is extremely rare and its clinicopathologic features have not been well characterized. We compared features of HER2(+) and HER2 negative (-) cILCs. A total of 29 cases were identified from the clinical database at our institution from 2011-2019; 9 were HER2(+) cILC tumors and 20 were HER2(-) cILC tumors. The results reveal that HER2(+) cILC group had significantly increased Ki-67 expression and reduced estrogen receptor (ER) expression compared to HER2(-) cILC group (both p < 0.05). In addition, HER2(+) cILCs tended to be diagnosed at a younger age and more common in the left breast, and appeared to have a higher frequency of nodal or distant metastases. These clinicopathologic features suggest HER2(+) cILC tumors may have more aggressive behavior than their HER2(-) counterpart although both groups of tumors showed similar morphologic features. Future directions of the study: (1) To conduct a multi-institutional study with a larger case series of HER2(+) cILC to further characterize its clinicopathologic features; (2) to compare molecular profiles by next generation sequencing (NGS) assay between HER2(+) cILC and HER2(-) cILC cases to better understand tumor biology of this rare subset of HER2(+) breast cancer; and (3) to compare molecular characteristics of HER2(+) cILC and HER2(+) high grade breast cancer in conjunction with status of tumor response to anti-HER2 therapy to provide insight to management of this special type of low grade breast cancer to avoid unnecessary treatment and related toxicity.
Collapse
Affiliation(s)
- Lin He
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (E.A.)
| | - Ellen Araj
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (E.A.)
| | - Yan Peng
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX 75235, USA; (L.H.); (E.A.)
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75235, USA
| |
Collapse
|
17
|
Yu Y, Singh H, Kwon K, Tsitrin T, Petrini J, Nelson KE, Pieper R. Protein signatures from blood plasma and urine suggest changes in vascular function and IL-12 signaling in elderly with a history of chronic diseases compared with an age-matched healthy cohort. GeroScience 2021. [PMID: 32974878 DOI: 10.1007/s11357-020-00269-y/figures/10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Key processes characterizing human aging are immunosenescence and inflammaging. The capacity of the immune system to adequately respond to external perturbations (e.g., pathogens, injuries, and biochemical irritants) and to repair somatic mutations that may cause cancers or cellular senescence declines. An important goal remains to identify genetic or biochemical, predictive biomarkers for healthy aging. We recruited two cohorts in the age range 70 to 82, one afflicted by chronic illnesses (non-healthy aging, NHA) and the other in good health (healthy aging, HA). NHA criteria included major cardiovascular, neurodegenerative, and chronic pulmonary diseases, diabetes, and cancers. Quantitative analysis of forty proinflammatory cytokines in blood plasma and more than 500 proteins in urine was performed to identify candidate biomarkers for and biological pathway implications of healthy aging. Nine cytokines revealed lower quantities in blood plasma for the NHA compared with the HA groups (fold change > 1.5; p value < 0.025) including IL-12p40 and IL-12p70. We note that, sampling at two timepoints, intra-individual cytokine abundance patterns clustered in 86% of all 60 cases, indicative of person-specific, highly controlled multi-cytokine signatures in blood plasma. Twenty-three urinary proteins were differentially abundant (HA versus NHA; fold change > 1.5; p value < 0.01). Among the proteins increased in abundance in the HA cohort were glycoprotein MUC18, ephrin type-B receptor 4, matrix remodeling-associated protein 8, angiopoietin-related protein 2, K-cadherin, and plasma protease C1 inhibitor. These proteins have been linked to the extracellular matrix, cell adhesion, and vascular remodeling and repair processes. In silico network analysis identified the regulation of coagulation, antimicrobial humoral immune responses, and the IL-12 signaling pathway as enriched GO terms. To validate links of these preliminary biomarkers and IL-12 signaling with healthy aging, clinical studies using larger cohorts and functional characterization of the genes/proteins in cellular models of aging need to be conducted.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Harinder Singh
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Keehwan Kwon
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Tamara Tsitrin
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Joann Petrini
- Western Connecticut Health Network, 24 Hospital Avenue, Danbury, CT, 06810, USA
| | - Karen E Nelson
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Rembert Pieper
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
18
|
Jiang K, Yang J, Song C, He F, Yang L, Li X. Enforced expression of miR-92b blunts E. coli lipopolysaccharide-mediated inflammatory injury by activating the PI3K/AKT/β-catenin pathway via targeting PTEN. Int J Biol Sci 2021; 17:1289-1301. [PMID: 33867846 PMCID: PMC8040465 DOI: 10.7150/ijbs.56933] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Endometritis is a reproductive disorder characterized by an inflammatory response in the endometrium, which causes significant economic losses to the dairy farming industry. MicroRNAs (miRNAs) are implicated in the inflammatory response and immune regulation following infection by pathogenic bacteria. Recent miRNA microarray analysis showed an altered expression of miR-92b in cows with endometritis. In the present study, we set out to investigate the regulatory mechanism of miR-92b in endometritis. Here, qPCR results first validated that miR-92b was down-regulated during endometritis. And then, bovine endometrial epithelial cells (BEND cells) stimulated by high concentration of lipopolysaccharide (LPS) were employed as an in vitro inflammatory injury model. Our data showed that overexpression of miR-92b significantly suppressed the activation of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF‐κB) in LPS-stimulated BEND cells, thereby reducing pro-inflammatory cytokines release and inhibiting cell apoptosis. Looking into the molecular mechanisms of regulation of inflammatory injury by miR-92b, we observed that overexpression of miR-92b restrained TLR4/NF‐κB by activating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/β-catenin pathway. Furthermore, the luciferase reporter assay suggested that miR-92b targeted inhibition of phosphatase and tensin homolog (PTEN), an inhibitor of the PI3K/AKT/β-catenin pathway. Importantly, in vivo experiments confirmed that up-regulation of miR-92b attenuated the pathological injury in an experimental murine model of LPS-induced endometritis. Collectively, these findings show that enforced expression of miR-92b alleviates LPS-induced inflammatory injury by activating the PI3K/AKT/β-catenin pathway via targeting PTEN, suggesting a potential application for miR-92b-based therapy to treat endometritis or other inflammatory diseases.
Collapse
Affiliation(s)
- Kangfeng Jiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Chunlian Song
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| | - Fengping He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| | - Liangyu Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| | - Xiaobing Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, Yunnan, People's Republic of China
| |
Collapse
|
19
|
Ranjan N, Pandey V, Panigrahi MK, Klumpp L, Naumann U, Babu PP. The Tumor Suppressor MTUS1/ATIP1 Modulates Tumor Promotion in Glioma: Association with Epigenetics and DNA Repair. Cancers (Basel) 2021; 13:cancers13061245. [PMID: 33809019 PMCID: PMC7999421 DOI: 10.3390/cancers13061245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Despite multidisciplinary treatments, survival remains poor in glioma patients. Although novel therapeutic approaches are being explored, no outstanding effects on the survival have been achieved so far, which substantiates the need to develop new therapeutic strategies. To understand the mechanisms responsible for its high malignancy and obligatory recurrence, we examined the impact of MTUS1, a tumor-suppressor gene (TSG), coding for ATIP1, in glioma malignancy as well as how its expression might influence glioma therapy. We confirmed that in glioma cells, elevated ATIP1 expression damps tumor progression by mitigating proliferation and motility. Additionally, MTUS1/ATIP1 can be used as a biological marker to predict therapy outcomes. In glioma cell lines, glioma sphere cultures (GSC), high-grade glioma (HGG) and especially in glioma recurrence, MTUS1/ATIP1 expression is downregulated, probably by promoter hypermethylation. However, in GBM, high ATIP1 expression might interfere with radiation-therapy since elevated expression of MTUS1/ATIP1 drives double-strand break (DSB) DNA repair. Abstract Glioblastoma (GBM) is a highly aggressive brain tumor. Resistance mechanisms in GBM present an array of challenges to understand its biology and to develop novel therapeutic strategies. We investigated the role of a TSG, MTUS1/ATIP1 in glioma. Glioma specimen, cells and low passage GBM sphere cultures (GSC) were analyzed for MTUS1/ATIP1 expression at the RNA and protein level. Methylation analyses were done by bisulfite sequencing (BSS). The consequence of chemotherapy and irradiation on ATIP1 expression and the influence of different cellular ATIP1 levels on survival was examined in vitro and in vivo. MTUS1/ATIP1 was downregulated in high-grade glioma (HGG), GSC and GBM cells and hypermethylation at the ATIP1 promoter region seems to be at least partially responsible for this downregulation. ATIP1 overexpression significantly reduced glioma progression by mitigating cell motility, proliferation and facilitate cell death. In glioma-bearing mice, elevated MTUS1/ATIP1 expression prolonged their survival. Chemotherapy, as well as irradiation, recovered ATIP1 expression both in vitro and in vivo. Surprisingly, ATIP1 overexpression increased irradiation-induced DNA-damage repair, resulting in radio-resistance. Our findings indicate that MTUS1/ATIP1 serves as TSG-regulating gliomagenesis, progression and therapy resistance. In HGG, higher MTUS1/ATIP1 expression might interfere with tumor irradiation therapy.
Collapse
Affiliation(s)
- Nikhil Ranjan
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Telangana 500046, India
- Laboratory of Molecular Neuro-Oncology, Department of General Neurology, Hertie-Institute for Clinical Brain Research and Center Neurology, University of Tuebingen, Otfried-Mueller-Str. 27, 72076 Tuebingen, Germany
| | - Vimal Pandey
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Telangana 500046, India
| | - Manas Kumar Panigrahi
- Department of Neurosurgery and Pathology, Krishna Institute of Medical Sciences (KIMS), Secunderabad, Telangana 500003, India
| | - Lukas Klumpp
- Department of Radiation Oncology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Ulrike Naumann
- Laboratory of Molecular Neuro-Oncology, Department of General Neurology, Hertie-Institute for Clinical Brain Research and Center Neurology, University of Tuebingen, Otfried-Mueller-Str. 27, 72076 Tuebingen, Germany
| | - Phanithi Prakash Babu
- Laboratory of Neuroscience, Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Telangana 500046, India
| |
Collapse
|
20
|
Wu Y, Rong W, Jiang Q, Wang R, Huang H. Downregulation of lncRNA GAS5 Alleviates Hippocampal Neuronal Damage in Mice with Depression-Like Behaviors Via Modulation of MicroRNA-26a/EGR1 Axis. J Stroke Cerebrovasc Dis 2021; 30:105550. [PMID: 33341564 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Accumulating evidences have demonstrated the roles of several long non-coding RNAs (lncRNAs) in depression. We aim to examine the capabilities of lncRNA growth arrest-specific transcript 5 (GAS5) on mice with depression-like behaviors and the mechanism of action. METHODS Fifty-six healthy mice were selected for model establishment. Morris water maze test and trapeze test were performed for evaluating learning and memory ability. The binding relationship between lncRNA GAS5 and microRNA-26a (miR-26a) and the target relationship between miR-26a and EGR1 were verified by dual-luciferase reporter gene assay. The apoptosis of neurons in the hippocampal CA1 region of mice was detected by TUNEL staining. The expression of inflammatory factors, lncRNA GAS5, miR-26a, early growth response gene 1 (EGR1), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway- and apoptosis-related factors in hippocampal tissues was tested by RT-qPCR and western blot analysis. RESULTS miR-26a expression was down-regulated while EGR1 and lncRNA GAS5 expression were up-regulated in hippocampal tissues of mice with depression-like behaviors. LncRNA GAS5 specifically bound to miR-26a and miR-26a targeted EGR1. Silencing of lncRNA GAS5 curtailed the release of inflammatory factors and the apoptosis of hippocampal neuron of mice with depression-like behaviors. EGR1 suppressed PI3K/AKT pathway activation to promote the release of inflammatory factors and the apoptosis of hippocampal neurons in mice with depression-like behaviors. CONCLUSION Our study provides evidence that silencing of lncRNA GAS5 could activate PI3K/AKT pathway to protect hippocampal neurons against damage in mice with depression-like behaviors by regulating the miR-26a/EGR1 axis.
Collapse
Affiliation(s)
- Yigao Wu
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Wei Rong
- Department of Clinical Medical Psychology, The Second People's Hospital of Wuhu, Wuhu 241001, Anhui, PR China.
| | - Qin Jiang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Ruiquan Wang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| | - Huilan Huang
- Department of Medical Psychology, The First Affiliated Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu 241001, Anhui, PR China.
| |
Collapse
|
21
|
Palbociclib Plus Fulvestrant or Everolimus Plus Exemestane for Pretreated Advanced Breast Cancer with Lobular Histotype in ER+/HER2- Patients: A Propensity Score-Matched Analysis of a Multicenter Retrospective Patient Series. J Pers Med 2020; 10:jpm10040291. [PMID: 33353132 PMCID: PMC7766166 DOI: 10.3390/jpm10040291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) show meaningful efficacy and tolerability in patients with metastatic breast cancer (MBC), but the optimal sequence of ET has not been established. It is not clear if patients with lobular breast carcinomas (LBC) derive the same benefits when receiving second line CDK4/6i. This retrospective study compared the efficacy of palbociclib plus fulvestrant (PALBO–FUL) with everolimus plus exemestane (EVE–EXE) as second-line ET for hormone-resistant metastatic LBC. From 2013 to 2018, patients with metastatic LBC positivity for estrogen and/or progesterone receptors and HER2/neu negativity, who had relapsed during adjuvant hormonal therapy or first-line hormonal treatment, were enrolled from six centers in Italy in this retrospective study. A total of 74 out of 376 patients (48 treated with PALBO–FUL and 26 with EVE–EXE) with metastatic LBC were eligible for inclusion. Progression-free survival (PFS) was longer in patients receiving EVE–EXE compared with PALBO–FUL (6.1 vs. 4.5 months, univariate HR 0.58, 95% CI 0.35–0.96; p = 0.025). On the propensity score (PS) analysis, PFS was confirmed to be significantly longer for patients treated with EVE–EXE compared to PALBO–FUL (6.0 vs. 4.6 months, p = 0.04). This retrospective analysis suggests that EVE–EXE is more effective than PALBO–FUL for second line ET of metastatic LBC, allowing us to speculate on the optimal therapeutic sequence.
Collapse
|
22
|
Wang S, Gao J, Li Q, Ming W, Fu Y, Song L, Qin J. Study on the regulatory mechanism and experimental verification of icariin for the treatment of ovarian cancer based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113189. [PMID: 32736044 DOI: 10.1016/j.jep.2020.113189] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herba Epimedii (Berberidaceae) has the advantages of "nourishing the kidney and reinforcing the Yang". Many species in this genus have long been used in traditional Chinese medicine (TCM) and have been used as anticancer drugs in traditional Chinese herbal medicine formulations. Icariin, a major flavonoid glycoside extracted from Epimedium brevicornum Maxim, has been widely proven to exert an inhibitory effect on ovarian cancer (OC), and icariin can induce apoptosis and inhibit invasion and migration. However, the underlying mechanism remains unclear, so further research is necessary to verify its traditional use. AIM OF THE STUDY This study aimed to explore the regulatory mechanism of icariin in the biological network and signalling pathway of OC through network pharmacology and cytological experiments. METHODS Public databases and R × 3.6.2 software were adopted to predict the potential targets, construct the protein-protein interaction (PPI) network, and perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. After the network pharmacological analysis, cytological experiments, real-time quantitative PCR (qPCR) and Western blot (WB) analyses were used to verify the key signalling pathway. RESULTS The targets related to treatment were TNF, MMP9, STAT3, PIK3CA, ERBB2, MTOR, IL2, PTGS2, KDR, and F2. GO and KEGG enrichment analyses indicated that various kinases and the PI3K/AKT signalling pathway were the most enriched molecules and pathways. Icariin inhibited OC SKOV3 cell proliferation, migration and invasion in vitro and promoted apoptosis by inhibiting the PI3K/AKT signalling pathway. CONCLUSION Icariin promotes apoptosis and suppresses SKOV3 cell activities through the PI3K-Akt signalling pathway. This research not only provides a theoretical and experimental basis for more in-depth studies but also offers an efficient method for the rational utilization of a series of icariin flavonoids as anti-tumour drugs.
Collapse
Affiliation(s)
| | | | - Qingyu Li
- Jinan University, Guangzhou, 510632, China
| | | | - Yanjin Fu
- Jinan University, Guangzhou, 510632, China
| | | | - Jiajia Qin
- Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
23
|
Yu Y, Singh H, Kwon K, Tsitrin T, Petrini J, Nelson KE, Pieper R. Protein signatures from blood plasma and urine suggest changes in vascular function and IL-12 signaling in elderly with a history of chronic diseases compared with an age-matched healthy cohort. GeroScience 2020; 43:593-606. [PMID: 32974878 PMCID: PMC8110643 DOI: 10.1007/s11357-020-00269-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/14/2020] [Indexed: 01/02/2023] Open
Abstract
Key processes characterizing human aging are immunosenescence and inflammaging. The capacity of the immune system to adequately respond to external perturbations (e.g., pathogens, injuries, and biochemical irritants) and to repair somatic mutations that may cause cancers or cellular senescence declines. An important goal remains to identify genetic or biochemical, predictive biomarkers for healthy aging. We recruited two cohorts in the age range 70 to 82, one afflicted by chronic illnesses (non-healthy aging, NHA) and the other in good health (healthy aging, HA). NHA criteria included major cardiovascular, neurodegenerative, and chronic pulmonary diseases, diabetes, and cancers. Quantitative analysis of forty proinflammatory cytokines in blood plasma and more than 500 proteins in urine was performed to identify candidate biomarkers for and biological pathway implications of healthy aging. Nine cytokines revealed lower quantities in blood plasma for the NHA compared with the HA groups (fold change > 1.5; p value < 0.025) including IL-12p40 and IL-12p70. We note that, sampling at two timepoints, intra-individual cytokine abundance patterns clustered in 86% of all 60 cases, indicative of person-specific, highly controlled multi-cytokine signatures in blood plasma. Twenty-three urinary proteins were differentially abundant (HA versus NHA; fold change > 1.5; p value < 0.01). Among the proteins increased in abundance in the HA cohort were glycoprotein MUC18, ephrin type-B receptor 4, matrix remodeling-associated protein 8, angiopoietin-related protein 2, K-cadherin, and plasma protease C1 inhibitor. These proteins have been linked to the extracellular matrix, cell adhesion, and vascular remodeling and repair processes. In silico network analysis identified the regulation of coagulation, antimicrobial humoral immune responses, and the IL-12 signaling pathway as enriched GO terms. To validate links of these preliminary biomarkers and IL-12 signaling with healthy aging, clinical studies using larger cohorts and functional characterization of the genes/proteins in cellular models of aging need to be conducted.
Collapse
Affiliation(s)
- Yanbao Yu
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Harinder Singh
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Keehwan Kwon
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Tamara Tsitrin
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA
| | - Joann Petrini
- Western Connecticut Health Network, 24 Hospital Avenue, Danbury, CT, 06810, USA
| | - Karen E Nelson
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA.,J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Rembert Pieper
- J. Craig Venter Institute, 9605 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
24
|
Zhao Y, He JY, Cui JZ, Meng ZQ, Zou YL, Guo XS, Chen X, Wang X, Yan LT, Han WX, Li C, Guo L, Bu H. Detection of genes mutations in cerebrospinal fluid circulating tumor DNA from neoplastic meningitis patients using next generation sequencing. BMC Cancer 2020; 20:690. [PMID: 32711494 PMCID: PMC7382072 DOI: 10.1186/s12885-020-07172-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 07/13/2020] [Indexed: 02/08/2023] Open
Abstract
Background This study profiled the somatic genes mutations and the copy number variations (CNVs) in cerebrospinal fluid (CSF)-circulating tumor DNA (ctDNA) from patients with neoplastic meningitis (NM). Methods A total of 62 CSF ctDNA samples were collected from 58 NM patients for the next generation sequencing. The data were bioinformatically analyzed by (Database for Annotation, Visualization and Integrated Discovery) DAVID software. Results The most common mutated gene was TP53 (54/62; 87.10%), followed by EGFR (44/62; 70.97%), PTEN (39/62; 62.90%), CDKN2A (32/62; 51.61%), APC (27/62: 43.55%), TET2 (27/62; 43.55%), GNAQ (18/62; 29.03%), NOTCH1 (17/62; 27.42%), VHL (17/62; 27.42%), FLT3 (16/62; 25.81%), PTCH1 (15/62; 24.19%), BRCA2 (13/62; 20.97%), KDR (10/62; 16.13%), KIT (9/62; 14.52%), MLH1 (9/62; 14.52%), ATM (8/62; 12.90%), CBL (8/62; 12.90%), and DNMT3A (7/62; 11.29%). The mutated genes were enriched in the PI3K-Akt signaling pathway by the KEGG pathway analysis. Furthermore, the CNVs of these genes were also identified in these 62 samples. The mutated genes in CSF samples receiving intrathecal chemotherapy and systemic therapy were enriched in the ERK1/2 signaling pathway. Conclusions This study identified genes mutations in all CSF ctDNA samples, indicating that these mutated genes may be acted as a kind of biomarker for diagnosis of NM, and these mutated genes may affect meningeal metastasis through PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Jun Ying He
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Jun Zhao Cui
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Zi-Qi Meng
- Wenzhou Medical University, Wenzhou, China
| | - Yue Li Zou
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Xiao Su Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Xin Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Xueliang Wang
- San Valley Biotechnology Incorporated, Beijing, China
| | - Li-Tian Yan
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Wei Xin Han
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Chunyan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China
| | - Hui Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, China.
| |
Collapse
|
25
|
Luveta J, Parks RM, Heery DM, Cheung KL, Johnston SJ. Invasive Lobular Breast Cancer as a Distinct Disease: Implications for Therapeutic Strategy. Oncol Ther 2020; 8:1-11. [PMID: 32700069 PMCID: PMC7359988 DOI: 10.1007/s40487-019-00105-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Invasive lobular carcinoma comprises 10-15% of all breast cancers and is increasingly recognised as a distinct and understudied disease compared with the predominant histological subtype, invasive ductal carcinoma. Hallmarks of invasive lobular carcinoma include E-cadherin loss, leading to discohesive morphology with cells proliferating in single-file strands and oestrogen receptor positivity, with favourable response to endocrine therapy. This review summarises the distinct histological and molecular features of invasive lobular carcinoma with focus on diagnostic challenges and the impact on surgical management and medical therapy. Emphasis is placed on recent advances in our understanding of the unique molecular biology of lobular breast cancer and how this is optimising our therapy approach in the clinic.
Collapse
Affiliation(s)
- Jocelyn Luveta
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Gene Regulation and RNA Biology, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Ruth M Parks
- Division of Medical Sciences and Graduate Entry Medicine, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - David M Heery
- Gene Regulation and RNA Biology, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Kwok-Leung Cheung
- Division of Medical Sciences and Graduate Entry Medicine, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Simon J Johnston
- Division of Cancer and Stem Cells, Nottingham Breast Cancer Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.
- Gene Regulation and RNA Biology, School of Pharmacy, University of Nottingham, Nottingham, UK.
| |
Collapse
|
26
|
Orlandi A, Aroldi F, Garutti M, Di Dio C, Garufi G, Iattoni E, Palazzo A, Indellicati G, Franceschini G, Cassano A, Bria E, Tortora G. Poor efficacy of palbociclib in second-line treatment of metastatic lobular breast cancer in a case series: Use before or never more? Breast J 2019; 26:1458-1460. [PMID: 31891985 DOI: 10.1111/tbj.13740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Armando Orlandi
- Unit of Clinical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Francesca Aroldi
- Unit of Clinical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Mattia Garutti
- Unit of Clinical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Carmela Di Dio
- Unit of Clinical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giovanna Garufi
- Unit of Clinical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Elena Iattoni
- Unit of Clinical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Antonella Palazzo
- Unit of Clinical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giulia Indellicati
- Unit of Clinical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | | | - Alessandra Cassano
- Unit of Clinical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Emilio Bria
- Unit of Clinical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Giampaolo Tortora
- Unit of Clinical Oncology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| |
Collapse
|
27
|
Chang H, Cai Z, Roberts TM. The Mechanisms Underlying PTEN Loss in Human Tumors Suggest Potential Therapeutic Opportunities. Biomolecules 2019; 9:biom9110713. [PMID: 31703360 PMCID: PMC6921025 DOI: 10.3390/biom9110713] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
In this review, we will first briefly describe the diverse molecular mechanisms associated with PTEN loss of function in cancer. We will then proceed to discuss the molecular mechanisms linking PTEN loss to PI3K activation and demonstrate how these mechanisms suggest possible therapeutic approaches for patients with PTEN-null tumors.
Collapse
Affiliation(s)
- Hyeyoun Chang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (H.C.); (Z.C.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- KIST-DFCI On-Site Lab, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhenying Cai
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (H.C.); (Z.C.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
| | - Thomas M. Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (H.C.); (Z.C.)
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: ; Tel.: +1-617-632-3049
| |
Collapse
|
28
|
López-Verdín S, Martínez-Fierro ML, Garza-Veloz I, Zamora-Perez A, Grajeda-Cruz J, González-González R, Molina-Frechero N, Arocena-Sutz M, Bologna-Molina R. E-Cadherin gene expression in oral cancer: Clinical and prospective data. Med Oral Patol Oral Cir Bucal 2019; 24:e444-e451. [PMID: 31256188 PMCID: PMC6667017 DOI: 10.4317/medoral.23029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/05/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Low protein expression of E-cadherin in oral squamous cell carcinoma (OSCC) has been associated with clinical and histopathological traits such as metastases, recurrence, low survival and poor tumor differentiation, and it is considered a high-risk marker of malignancy. However, it is still unknown whether low expression of E-cadherin is also present at the mRNA level in OSCC cases. OBJECTIVE The aim of this study was to compare E-cadherin mRNA expression in OSCC patients and controls and to correlate the expression with clinical and prospective characteristics. MATERIAL AND METHODS Forty patients and 40 controls were enrolled. E-cadherin mRNA expression was evaluated by quantitative real-time polymerase chain reaction using TaqMan probes. RESULTS E-cadherin mRNA expression was significantly decreased in OSCC patients compared to that of controls (p<0.001). Whereas no significant association between clinical parameters and E-cadherin expression levels was observed, we noted lower E-cadherin expression levels in patients with positive lymph node metastasis. CONCLUSIONS E-cadherin mRNA expression was markedly diminished in OSCC, in agreement with previous results that examined E-cadherin expression at the protein level. E-cadherin is downregulated in the early clinical stages of OSCC, and its mRNA levels do not change significantly in the advanced stages, suggesting that there is limited usefulness of this parameter for predicting disease progression.
Collapse
Affiliation(s)
- S López-Verdín
- Molecular Pathology, School of Dentistry Universidad de la República (UDELAR) Las Heras 1925, Montevideo, Uruguay
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang S, Liang C, Ai H, Yang M, Yi J, Liu L, Song Z, Bao Y, Li Y, Sun L, Zhao H. Hepatic miR-181b-5p Contributes to Glycogen Synthesis Through Targeting EGR1. Dig Dis Sci 2019; 64:1548-1559. [PMID: 30627917 DOI: 10.1007/s10620-018-5442-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM The miR-181 family plays an important role in the regulation of various cellular functions. However, whether miR-181b-5p mediates hepatic insulin resistance remains unknown. In this study, we investigated the effect of miR-181b-5p on the regulation of hepatic glycogen synthesis. METHODS The miR-181b-5p levels in the livers of diabetic mice were detected by real-time PCR. The glycogen levels and AKT/GSK pathway activation were examined in human hepatic L02 cells and HepG2 cells transfected with miR-181b-5p mimic or inhibitor. The potential target genes of miR-181b-5p were evaluated using a luciferase reporter assay and Western blot analysis. EGR1-specific siRNA and pCMV-EGR1 were used to further determine the role of miR-181b-5p in hepatic glycogen synthesis in vitro. Hepatic inhibition of miR-181b-5p in mice was performed using adeno-associated virus 8 (AAV8) vectors by tail intravenous injection. RESULTS The miR-181b-5p levels were significantly decreased in the serum and livers of diabetic mice as well as the serum of type 2 diabetes patients. Importantly, inhibition of miR-181b-5p expression impaired the AKT/GSK pathway and reduced glycogenesis in hepatocytes. Moreover, upregulation of miR-181b-5p reversed high-glucose-induced suppression of glycogenesis. Further analysis revealed that early growth response 1 (EGR1) was a downstream target of miR-181b-5p. Silencing of EGR1 expression rescued miR-181b-5p inhibition-reduced AKT/GSK pathway activation and glycogenesis in hepatocytes. Hepatic inhibition of miR-181b-5p led to insulin resistance in C57BL/6 J mice. CONCLUSION We demonstrated that miR-181b-5p contributes to glycogen synthesis by targeting EGR1, thereby regulating PTEN expression to mediate hepatic insulin resistance.
Collapse
Affiliation(s)
- Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Chen Liang
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Huihan Ai
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Meiting Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Jingwen Yi
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, School of Life Sciences, Northeast Normal University, No. 5268, Renmin Road, Changchun, 130024, China.
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Luguo Sun
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Huiying Zhao
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
30
|
Shields BD, Koss B, Taylor EM, Storey AJ, West KL, Byrum SD, Mackintosh SG, Edmondson R, Mahmoud F, Shalin SC, Tackett AJ. Loss of E-Cadherin Inhibits CD103 Antitumor Activity and Reduces Checkpoint Blockade Responsiveness in Melanoma. Cancer Res 2019; 79:1113-1123. [PMID: 30674537 PMCID: PMC6420873 DOI: 10.1158/0008-5472.can-18-1722] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/04/2018] [Accepted: 01/18/2019] [Indexed: 11/16/2022]
Abstract
Identifying controlling features of responsiveness to checkpoint blockade therapies is an urgent goal in oncology research. Our group and others have previously shown melanoma tumors resistant to checkpoint blockade display features of mesenchymal transition, including E-cadherin loss. Here, we present the first in vivo evidence that E-cadherin from tumor cells facilitate immune attack, using a B16F10 melanoma mouse model in which E-cadherin is exogenously expressed (B16.Ecad). We find, compared with vector control, B16.Ecad exhibits delayed tumor growth, reduced metastatic potential, and increased overall survival in vivo. Transplantation of B16.Ecad into Rag1-/- and CD103-/- mice abrogated the tumor growth delay. This indicates the anti-melanoma response against B16.Ecad is both immune and CD103+ mediated. Moreover, B16.Ecad showed increased responsiveness to combination immune checkpoint blockade (ICB) compared with vector control. This work establishes a rationale for ICB responses observed in high E-cadherin-expressing tumors and suggests therapeutic advancement through amplifying CD103+ immune cell subsets.Significance: These findings identify the mechanism behind checkpoint blockade resistance observed in melanoma that has undergone mesenchymal transition and suggest activation of CD103+ immune cells as a therapeutic strategy against other E-cadherin-expressing malignancies.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/6/1113/F1.large.jpg.
Collapse
Affiliation(s)
- Bradley D Shields
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Brian Koss
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Erin M Taylor
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kirk L West
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Rick Edmondson
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Fade Mahmoud
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sara C Shalin
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
- Arkansas Children's Research Institute, Little Rock, Arkansas
| |
Collapse
|
31
|
Su Y, Hopfinger NR, Nguyen TD, Pogash TJ, Santucci-Pereira J, Russo J. Epigenetic reprogramming of epithelial mesenchymal transition in triple negative breast cancer cells with DNA methyltransferase and histone deacetylase inhibitors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:314. [PMID: 30547810 PMCID: PMC6295063 DOI: 10.1186/s13046-018-0988-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/30/2018] [Indexed: 12/23/2022]
Abstract
Background Triple negative breast cancer (TNBC) is an aggressive neoplasia with no effective therapy. Our laboratory has developed a unique TNBC cell model presenting epithelial mesenchymal transition (EMT) a process known to be important for tumor progression and metastasis. There is increasing evidence showing that epigenetic mechanisms are involved in the activation of EMT. The objective of this study is to epigenetically reverse the process of EMT in TNBC by using DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi). Methods We evaluated the antitumor effect of three DNMTi and six HDACi using our TNBC cell model by MTT assay, migration and invasion assay, three dimensional culture, and colony formation assay. We then performed the combined treatment both in vitro and in vivo using the most potent DNMTi and HDACi, and tested the combined treatment in a panel of breast cancer cell lines. We investigated changes of EMT markers and potential signaling pathways associated with the antitumor effects. Results We showed that DNMTi and HDACi can reprogram highly aggressive TNBC cells that have undergone EMT to a less aggressive phenotype. SGI-110 and MS275 are superior to other seven compounds being tested. The combination of SGI with MS275 exerts a greater effect than single agent alone in inhibiting cell proliferation, motility, colony formation, and stemness of cancer cells. We also demonstrated that MS275 and the combination of SGI with MS275 exert in vivo antitumor effect. We revealed that the combined treatment synergistically reverses EMT through inhibiting EpCAM cleavage and WNT signaling, suppressing mutant p53, ZEB1, and EZH2, and inducing E-cadherin, apoptosis, as well as histone H3 tri-methylation. Conclusions Our study showed that DNMTi and HDACi exert antitumor activity in TNBC cells partially by epigenetically reprograming EMT. Our findings strongly suggest that TNBC is sensitive to epigenetic therapies. Therefore, we propose a new strategy to treat TNBC by using the combination of SGI-110 with MS275, which exerts superior antitumor effects by simultaneously targeting multiple pathways. Electronic supplementary material The online version of this article (10.1186/s13046-018-0988-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanrong Su
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA.
| | - Nathan R Hopfinger
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA
| | - Theresa D Nguyen
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA
| | - Thomas J Pogash
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA
| | - Julia Santucci-Pereira
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA
| | - Jose Russo
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center-Temple University Health System, Philadelphia, PA, 19111, USA.
| |
Collapse
|
32
|
Inoue K, Fry EA. Tumor suppression by the EGR1, DMP1, ARF, p53, and PTEN Network. Cancer Invest 2018; 36:520-536. [PMID: 30396285 PMCID: PMC6500763 DOI: 10.1080/07357907.2018.1533965] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 02/25/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023]
Abstract
Recent studies have indicated that EGR1 is a direct regulator of tumor suppressors including TGFβ1, PTEN, and p53. The Myb-like transcription factor Dmp1 is a physiological regulator of the Arf-p53 pathway through transactivation of the Arf promoter and physical interaction of p53. The Dmp1 promoter has binding sites for Egr proteins, and Egr1 is a target for Dmp1. Crosstalks between p53 and PTEN have been reported. The Egr1-Dmp1-Arf-p53-Pten pathway displays multiple modes of interaction with each other, suggesting the existence of a functional network of tumor suppressors that maintain normal cell growth and prevent the emergence of incipient cancer cells.
Collapse
Affiliation(s)
- Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences,
Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences,
Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
33
|
Zhou X, Wang J, Chen J, Qi Y, Di Nan, Jin L, Qian X, Wang X, Chen Q, Liu X, Xu Y. Optogenetic control of epithelial-mesenchymal transition in cancer cells. Sci Rep 2018; 8:14098. [PMID: 30237527 PMCID: PMC6147862 DOI: 10.1038/s41598-018-32539-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is one of the most important mechanisms in the initiation and promotion of cancer cell metastasis. The phosphoinositide 3-kinase (PI3K) signaling pathway has been demonstrated to be involved in TGF-β induced EMT, but the complicated TGF-β signaling network makes it challenging to dissect the important role of PI3K on regulation of EMT process. Here, we applied optogenetic controlled PI3K module (named ‘Opto-PI3K’), which based on CRY2 and the N-terminal of CIB1 (CIBN), to rapidly and reversibly control the endogenous PI3K activity in cancer cells with light. By precisely modulating the kinetics of PI3K activation, we found that E-cadherin is an important downstream target of PI3K signaling. Compared with TGF-β treatment, Opto-PI3K had more potent effect in down-regulation of E-cadherin expression, which was demonstrated to be regulated in a light dose-dependent manner. Surprisingly, sustained PI3K activation induced partial EMT state in A549 cells that is highly reversible. Furthermore, we demonstrated that Opto-PI3K only partially mimicked TGF-β effects on promotion of cell migration in vitro. These results reveal the importance of PI3K signaling in TGF-β induced EMT, suggesting other TGF-β regulated signaling pathways are necessary for the full and irreversible promotion of EMT in cancer cells. In addition, our study implicates the great promise of optogenetics in cancer research for mapping input-output relationships in oncogenic pathways.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Jian Wang
- Department of Respiratory Oncology, The 117th Hospital of PLA, Hangzhou, 310013, China
| | - Junye Chen
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China.,Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yuankai Qi
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Di Nan
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Luhong Jin
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Xiaohan Qian
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Xinyi Wang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China
| | - Qingyong Chen
- Department of Respiratory Oncology, The 117th Hospital of PLA, Hangzhou, 310013, China.
| | - Xu Liu
- Department of Optical Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, China. .,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
34
|
Azimian-Zavareh V, Hossein G, Ebrahimi M, Dehghani-Ghobadi Z. Wnt11 alters integrin and cadherin expression by ovarian cancer spheroids and inhibits tumorigenesis and metastasis. Exp Cell Res 2018; 369:90-104. [PMID: 29753625 DOI: 10.1016/j.yexcr.2018.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/20/2018] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
The present study investigated the role of Wnt11 in multicellular tumor spheroid-like structures (MCTS) ovarian cancer cell proliferation, migration and invasion in vitro and in vivo tumorigenesis and metastasis in xenograft nude mice model. Moreover, samples from human serous ovarian cancer (SOC) were used to assess the association of Wnt11 with integrins and cadherins. The data showed that Wnt11 overexpressing SKOV-3 cells became more compact accompanied by increased expression of E-and N-cadherin and lower expression of EpCAM and CD44. The α5, β2, β3 and β6 integrin subunits expression levels were significantly reduced in Wnt11 overexpressing cells accompanied with significantly reduced disaggregation of Wnt11 overexpressing SKOV-3 MCTS on ECM components. Moreover, Wnt11 overexpressing SKOV-3 MCTS showed decreased migration, invasion as well as no tumor growth and metastasis in vivo. We found that Wnt11 significantly and negatively correlated with ITGB2, ITGB6, and EpCAM and positively with CDH-1 in high-grade SOC specimens. Our results suggest that Wnt11 impedes MCTS attachment to ECM components and therefore can affect ovarian cancer progression.
Collapse
Affiliation(s)
- Vajihe Azimian-Zavareh
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ghamartaj Hossein
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Zeinab Dehghani-Ghobadi
- Department of Animal Physiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
35
|
Matsumoto Y, Furusawa Y, Uzawa A, Hirayama R, Koike S, Ando K, Tsuboi K, Sakurai H. Antimetastatic Effects of Carbon-Ion Beams on Malignant Melanomas. Radiat Res 2018; 190:412-423. [DOI: 10.1667/rr15075.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoshitaka Matsumoto
- Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Yoshiya Furusawa
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Akiko Uzawa
- Department of Charged Particle Therapy Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, Clinical Research Cluster, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Sachiko Koike
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Koichi Ando
- Medicine & Biology Division, Heavy Ion Medical Center, Gunma University, Gunma, 371-8511, Japan
| | - Koji Tsuboi
- Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Hideyuki Sakurai
- Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| |
Collapse
|
36
|
Zhang Y, Li D, Dai Y, Li R, Gao Y, Hu L. The Role of E-cadherin in Helicobacter pylori-Related Gastric Diseases. Curr Drug Metab 2018; 20:23-28. [PMID: 29938616 DOI: 10.2174/1389200219666180625113010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/09/2018] [Accepted: 04/17/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori)-related gastric diseases are a series of gastric mucosal disorders associated with H. pylori infection. Gastric cancer (GC) is widely believed to evolve from gastritis and gastric ulcer. As an important adhesion molecule of epithelial cells, E-cadherin plays a key role in the development of gastric diseases. In this review, we aim to seek the characteristic of E-cadherin expression at different stages of gastric diseases. METHODS We searched plenty of databases for research literature about E-cadherin expression in H. pylori-related gastric diseases, and reviewed the relationship of E-cadherin and H. pylori, and the role of E-cadherin at different stages of gastric diseases. RESULTS H. pylori was shown to decrease E-cadherin expression by various ways in vitro, while most of clinical studies have not found the relationship between H. pylori and E-cadherin expression. It is defined that poor outcome of GC is related to loss expression of E-cadherin, but it is still unclear when qualitative change of E-cadherin expression in gastric mucosa emerges. CONCLUSION Expression level of E-cadherin in gastric cells may be a consequence of injury factors and body's selfrepairing ability. More studies on E-cadherin expression in gastric mucosa with precancerous lesions need to be performed, which may be potential and useful for early detection, prevention and treatment of GC.
Collapse
Affiliation(s)
- Yunzhan Zhang
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Danyan Li
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yunkai Dai
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Ruliu Li
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Yong Gao
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Ling Hu
- Piwei Institute, Guangzhou University of Chinese Medicine, Guangdong, China
| |
Collapse
|
37
|
Cai Y, Wang W, Qiu Y, Yu M, Yin J, Yang H, Mei J. KGF inhibits hypoxia-induced intestinal epithelial cell apoptosis by upregulating AKT/ERK pathway-dependent E-cadherin expression. Biomed Pharmacother 2018; 105:1318-1324. [PMID: 30021369 DOI: 10.1016/j.biopha.2018.06.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Intestinal ischemia-reperfusion (I/R) causes direct cellular damage, and the potential injury to the mucosal structure and barrier function. Keratinocyte growth factor (KGF) is highly expressed in gastrointestinal tract and exerts beneficial effects for intestinal epithelial growth and maintenance. E-cadherin plays an important role in intestinal epithelium renewal. However, the regulatory role of KGF on E-cadherin levels and I/R-induced apoptosis remain to be explored. The present study aimed to identify the effect of KGF on E-cadherin expression and I/R-induced intestinal epithelial cell apoptosis. METHODS Caco2 cells were treated with KGF (100 ng/ml) for 0, 4, 8, 12, and 24 h under hypoxia or normoxia. An E-cadherin-knockdown model was successfully established by treatment with E-cadherin RNAi. Western blotting and immunofluorescence labeling were performed to assess E-cadherin expression. Levels of PI3K|[sol]|Akt/mitogen-activated protein kinases (MAPKs), phosphoinositide 3-kinase (PI3K|[sol]|Akt)/PI3K|[sol]|Akt pathway-related proteins, and apoptosis-related proteins were also detected by western blot. Finally, a rat model of acute intestinal I/R was established and treated with KGF. Hematoxylin-eosin (HE), terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), and immunofluorescence staining were performed to detect morphological changes in intestinal mucosal epithelium and Caco2 cell apoptosis. RESULTS KGF enhanced E-cadherin expression in differentiated intestinal epithelial cells under hypoxia via AKT/extracellular-regulated kinase (ERK) pathway regulation. In vitro, E-cadherin downregulation aggravates hypoxia-induced intestinal epithelial cell apoptosis. In the rat model, KGF increased E-cadherin expression, which was associated with the reduced apoptosis. CONCLUSIONS KGF exerts protective effects on intestinal epithelial cells under hypoxia by elevating E-cadherin levels or activating AKT/ERK signaling.
Collapse
Affiliation(s)
- Yujiao Cai
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Wensheng Wang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Min Yu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jiuheng Yin
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China.
| | - Jie Mei
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
38
|
Li S, Yang L, Wang J, Liang F, Chang B, Gu H, Wang H, Yang G, Chen Y. Analysis of the chemotherapeutic effects of a propadiene compound on malignant ovarian cancer cells. Oncotarget 2018; 7:57145-57159. [PMID: 27494891 PMCID: PMC5302979 DOI: 10.18632/oncotarget.11012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/19/2016] [Indexed: 12/31/2022] Open
Abstract
Epithelial ovarian cancer is most lethal in female reproductive carcinomas owing to the high chemoresistance and metastasis, so more efficient therapeutic agents are terribly needed. A propadiene compound: 1-phenylpropadienyl phosphine oxide (PHPO), was employed to test the chemotherapeutic efficacy against ovarian cancer cell lines. MTT assay showed that PHPO displayed a much lower IC50 than cisplatin and paclitaxel, while combination treatment of cells with PHPO + cisplatin induced more apoptosis than with PHPO + paclitaxel or with cisplatin + paclitaxel (p < 0.05). Animal assays demonstrated that subcutaneous tumor growth was highly inhibited by PHPO + cisplatin, compared with that inhibited by PHPO or by cisplatin treatment alone, indicating PHPO and cisplatin may have synergistic effects against ovarian cancer growth. We also found that PHPO induced few side effects on animals, compared with cisplatin. Mechanistic studies suggested that treatment of cells with PHPO or with PHPO + cisplatin differentially inhibited the PI3K/Akt, MAPK and ATM/Chk2 pathways, which consequently suppressed the anti-apoptotic factors Bcl-xL, Bcl-2 and XIAP, but activated the pro-apoptotic factors Bad, Bax, p53, caspase 9, caspase 8, caspase 7 and PARP. Taken together, PHPO may induce cell apoptosis through multiple signal pathways, especially when used along with cisplatin. Therefore, PHPO may be explored as a prospective agent to effectively treat ovarian cancer.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Lina Yang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Jingshu Wang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Fan Liang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Bin Chang
- Department of Pathology, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huafen Gu
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Honglin Wang
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Central laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| | - Yaping Chen
- Department of Obstetrics and Gynecology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai 200240, China
| |
Collapse
|
39
|
Li D, Lo W, Rudloff U. Merging perspectives: genotype-directed molecular therapy for hereditary diffuse gastric cancer (HDGC) and E-cadherin-EGFR crosstalk. Clin Transl Med 2018; 7:7. [PMID: 29468433 PMCID: PMC5821620 DOI: 10.1186/s40169-018-0184-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
Hereditary diffuse gastric cancer is a cancer predisposition syndrome associated with germline mutations of the E-cadherin gene (CDH1; NM_004360). Male CDH1 germline mutation carriers have by the age of 80 years an estimated 70% cumulative incidence of gastric cancer, females of 56% for gastric and of 42% for lobular breast cancer. Metastatic HDGC has a poor prognosis which is worse than for sporadic gastric cancer. To date, there have been no treatment options described tailored to this molecular subtype of gastric cancer. Here we review recent differential drug screening and gene expression results in c.1380del CDH1-mutant HDGC cells which identified drug classes targeting PI3K (phosphoinositide 3-kinase), MEK (mitogen-activated protein kinase), FAK (focal adhesion kinase), PKC (protein kinase C), and TOPO2 (topoisomerase II) as selectively more effective in cells with defective CDH1 function. ERK1-ERK2 (extracellular signal regulated kinase) signaling measured as top enriched network in c.1380delA CDH1-mutant cells. We compared these findings to synthetic lethality and pharmacological screening results in isogenic CDH1-/- MCF10A mammary epithelial cells with and without CDH1 expression and current knowledge of E-cadherin/catenin-EGFR cross-talk, and suggest different rationales how loss of E-cadherin function activates PI3K, mTOR, EGFR, or FAK signaling. These leads represent molecularly selected treatment options tailored to the treatment of CDH1-deficient familial gastric cancer.
Collapse
Affiliation(s)
- Dandan Li
- Thoracic & Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Winifred Lo
- Thoracic & Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, MD, USA
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Udo Rudloff
- Thoracic & Gastrointestinal Oncology Branch, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
40
|
Liao HD, Mao Y, Ying YG. The involvement of the laminin-integrin α7β1 signaling pathway in mechanical ventilation-induced pulmonary fibrosis. J Thorac Dis 2017; 9:3961-3972. [PMID: 29268407 DOI: 10.21037/jtd.2017.09.60] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Introduction The central objective of the study was to determine the possibility and potential mechanism by which the laminin-integrin α7β1 signaling pathway acts on mechanical ventilation (MV)-induced pulmonary fibrosis in a rat model. Methods Fibrosis rat models were established via the mechanical injury method. Ninety rats were recruited and divided into the normal, low tidal volume (LVT), huge VT (HVT), Arg-Gly-Asp-Ser (RGDS), LVT + RGDS and HVT + RGDS groups. On day 0, 3, and 7 after model establishment, the pulmonary hydroxyproline content was measured using alkaline hydrolysis and the pulmonary index was also calculated. All rats in each group were executed on day 0, 3 and 7. The histopathological changes detected in the left pulmonary tissues were observed using hematoxylin-eosin (HE) and Masson staining methods. Discussion The mRNA and protein expressions of Wnt-5A, β-catenin, E-cadherin and Collagen I in the Wnt/β-catenin signaling pathway were detected using both reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting methods. Immunohistochemistry was employed to detect the fibronectin (FN) expression in the pulmonary tissues on the 7th day. All indexes in the RGDS and LVT + RGDS groups indicated no explicit differences compared with the normal group. In the LVT, HVT, HVT + RGDS groups, the respective weights of the rats and the expression of E-cadherin on the 7th day exhibited decreases, however the pulmonary index, hydroxyproline, pulmonary alveolar inflammation, pulmonary fibrosis, FN expression, and protein expressions of Wnt-5A, β-catenin, and Collagen I all displayed increased levels (all P<0.05). The index changes detected in the HVT group were the most blatant results observed in the study. The rat pulmonary index on the 7th day, hydroxyproline (HYP), pulmonary alveolar inflammation, pulmonary fibrosis, FN expression, and protein expressions of Wnt-5A, β-catenin, and type I-collagen were all down-regulated, in contrast the expression of E-cadherin was up-regulated in the LVT + RGDS and HVT + RGDS groups in comparison with the LVT and HVT groups, respectively (all P<0.05). Conclusions The findings of the study suggested that RGDS could act to block the laminin-integrin α7β1-signaling pathway, ultimately contributing to the inhibition of the progression of MV-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Han-Di Liao
- Department of Intensive Care Unit, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Yong Mao
- Department of Intensive Care Unit, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - You-Guo Ying
- Department of Intensive Care Unit, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| |
Collapse
|
41
|
Bilyk O, Coatham M, Jewer M, Postovit LM. Epithelial-to-Mesenchymal Transition in the Female Reproductive Tract: From Normal Functioning to Disease Pathology. Front Oncol 2017; 7:145. [PMID: 28725636 PMCID: PMC5497565 DOI: 10.3389/fonc.2017.00145] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a physiological process that is vital throughout the human lifespan. In addition to contributing to the development of various tissues within the growing embryo, EMT is also responsible for wound healing and tissue regeneration later in adulthood. In this review, we highlight the importance of EMT in the development and normal functioning of the female reproductive organs (the ovaries and the uterus) and describe how dysregulation of EMT can lead to pathological conditions, such as endometriosis, adenomyosis, and carcinogenesis. We also summarize the current literature relating to EMT in the context of ovarian and endometrial carcinomas, with a particular focus on how molecular mechanisms and the tumor microenvironment can govern cancer cell plasticity, therapy resistance, and metastasis.
Collapse
Affiliation(s)
- Olena Bilyk
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Mackenzie Coatham
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Michael Jewer
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | | |
Collapse
|
42
|
Mathew A, Rajagopal PS, Villgran V, Sandhu GS, Jankowitz RC, Jacob M, Rosenzweig M, Oesterreich S, Brufsky A. Distinct Pattern of Metastases in Patients with Invasive Lobular Carcinoma of the Breast. Geburtshilfe Frauenheilkd 2017; 77:660-666. [PMID: 28757653 DOI: 10.1055/s-0043-109374] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Invasive lobular carcinoma (ILC) comprises around 10 - 15% of invasive breast cancers. Few prior studies have demonstrated a unique pattern of metastases between ILC and the more common invasive ductal carcinoma (IDC). To our knowledge, such data is limited to first sites of distant recurrence. We aimed to perform a comparison of the metastatic pattern of ILC and IDC at first distant recurrence as well as over the entire course of metastatic disease. METHODS We used a prospectively collated database of patients with metastatic breast cancer. Breast cancer recurrence or metastases were classified into various sites and a descriptive analysis was performed. RESULTS Among 761 patients, 88 (11.6%) were diagnosed with ILC and 673 (88.4%) with IDC. Patients with ILC showed more frequent metastases to the bone (56.8 vs. 37.7%, p = 0.001) and gastrointestinal (GI) tract (5.7 vs. 0.3%, p < 0.001) as first site of distant recurrence, and less to organs such as lung (5.7 vs. 24.2%, p < 0.001) and liver (4.6 vs. 11.4%, p = 0.049). Over the entire course of metastatic disease, more patients with ILC had ovarian (5.7 vs. 2.1%, p = 0.042) and GI tract metastases (8.0 vs. 0.6%, p < 0.001), also demonstrating reduced tendency to metastasize to the liver (20.5 vs. 49.0%, p < 0.001) and lung (23.9 vs. 51.9%, p < 0.001). All associations but bone held after sensitivity analysis on hormonal status. Although patients presenting with ILC were noted to have more advanced stage at presentation, recurrence-free survival in these patients was increased (4.8 years vs. 3.2 years, p = 0.017). However, overall survival was not (2.5 vs. 2.0 years, p = 0.75). CONCLUSION After accounting for hormone receptor status, patients with IDC had greater lung/pleura and liver involvement, while patients with ILC had a greater propensity to develop ovarian and GI metastases both at first site and overall. Clinicians can use this information to provide more directed screening for metastases; it also adds to the argument that these two variants of breast cancer should be managed as unique diseases.
Collapse
Affiliation(s)
- Aju Mathew
- University of Kentucky Markey Cancer Center, Lexington, KY, USA
| | - Padma S Rajagopal
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Gurprataap S Sandhu
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Mini Jacob
- Department of Physical Medicine & Rehabilitation, Harvard Medical School, Boston, MA, USA
| | | | | | - Adam Brufsky
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
43
|
Meng Y, Cai KQ, Moore R, Tao W, Tse JD, Smith ER, Xu XX. Pten facilitates epiblast epithelial polarization and proamniotic lumen formation in early mouse embryos. Dev Dyn 2017; 246:517-530. [PMID: 28387983 DOI: 10.1002/dvdy.24503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Phosphatase and tensin homologue on chromosome 10 (Pten), a lipid phosphatase originally identified as a tumor-suppressor gene, regulates the phosphoinositol 3 kinase signaling pathway and impacts cell death and proliferation. Pten mutant embryos die at early stages of development, although the particular developmental deficiency and the mechanisms are not yet fully understood. RESULTS We analyzed Pten mutant embryos in detail and found that the formation of the proamniotic cavity is impaired. Embryoid bodies derived from Pten-null embryonic stem cells failed to undergo cavitation, reproducing the embryonic phenotype in vitro. Analysis of embryoid bodies and embryos revealed a role of Pten in the initiation of the focal point of the epithelial rosette that develops into the proamniotic lumen, and in establishment of epithelial polarity to transform the amorphous epiblast cells into a polarized epithelium. CONCLUSIONS We conclude that Pten is required for proamniotic cavity formation by establishing polarity for epiblast cells to form a rosette that expands into the proamniotic lumen, rather than facilitating apoptosis to create the cavity. Developmental Dynamics 246:517-530, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue Meng
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Kathy Q Cai
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Robert Moore
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Wensi Tao
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeffrey D Tse
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Graduate Program in Molecular Cell and Developmental Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
44
|
The Effect of miR-200c Inhibition on Chemosensitivity (5- FluoroUracil) in Colorectal Cancer. Pathol Oncol Res 2017; 24:145-151. [DOI: 10.1007/s12253-017-0222-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/03/2017] [Indexed: 12/19/2022]
|
45
|
Zhang ZY, Chen LL, Xu W, Sigdel K, Jiang XT. Effects of silencing endothelin-1 on invasion and vascular formation in lung cancer. Oncol Lett 2017; 13:4390-4396. [PMID: 28599441 DOI: 10.3892/ol.2017.6027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/27/2017] [Indexed: 02/05/2023] Open
Abstract
Endothelin-1 (ET-1), which exists not only in the vascular endothelium but is also widely present in various tissues and cells, is an important cardiovascular regulatory factor that serves an important role in maintaining the basal vascular tone and homeostasis in the cardiovascular system. In the present study, the ET-1 gene was silenced by RNA interference, and the effects on lung cancer cell proliferation and tumor cell invasion were then detected by Cell Counting kit-8 and Transwell assays. In addition, the expression of apoptosis, growth and invasion-associated proteins, including RhoA/C, vascular endothelial growth factor, pigment epithelium-derived factor, AKT, E-cadherin and cyclooxygenase-2 was evaluated by western blotting upon silencing ET-1. In the present study, Endostar, a recombinant human endostatin injectable drug, was also used, and it was assessed whether the sensitivity of tumor cells to this drug could be increased by silencing ET-1. Both in vivo and in vivo tests were carried out in the present study. The experimental data indicated that ET-1 silencing can inhibit tumor cell proliferation and invasion, particularly in the presence of Endostar.
Collapse
Affiliation(s)
- Zhen-Yu Zhang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Li-Li Chen
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Wei Xu
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Keshavraj Sigdel
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Xing-Tang Jiang
- Department of Respiratory Medicine, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
46
|
Massihnia D, Avan A, Funel N, Maftouh M, van Krieken A, Granchi C, Raktoe R, Boggi U, Aicher B, Minutolo F, Russo A, Leon LG, Peters GJ, Giovannetti E. Phospho-Akt overexpression is prognostic and can be used to tailor the synergistic interaction of Akt inhibitors with gemcitabine in pancreatic cancer. J Hematol Oncol 2017; 10:9. [PMID: 28061880 PMCID: PMC5219723 DOI: 10.1186/s13045-016-0371-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND There is increasing evidence of a constitutive activation of Akt in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and chemoresistance. Therefore, we evaluated the expression of phospho-Akt in PDAC tissues and cells, and investigated molecular mechanisms influencing the therapeutic potential of Akt inhibition in combination with gemcitabine. METHODS Phospho-Akt expression was evaluated by immunohistochemistry in tissue microarrays (TMAs) with specimens tissue from radically-resected patients (n = 100). Data were analyzed by Fisher and log-rank test. In vitro studies were performed in 14 PDAC cells, including seven primary cultures, characterized for their Akt1 mRNA and phospho-Akt/Akt levels by quantitative-RT-PCR and immunocytochemistry. Growth inhibitory effects of Akt inhibitors and gemcitabine were evaluated by SRB assay, whereas modulation of Akt and phospho-Akt was investigated by Western blotting and ELISA. Cell cycle perturbation, apoptosis-induction, and anti-migratory behaviors were studied by flow cytometry, AnnexinV, membrane potential, and migration assay, while pharmacological interaction with gemcitabine was determined with combination index (CI) method. RESULTS Immunohistochemistry of TMAs revealed a correlation between phospho-Akt expression and worse outcome, particularly in patients with the highest phospho-Akt levels, who had significantly shorter overall and progression-free-survival. Similar expression levels were detected in LPC028 primary cells, while LPC006 were characterized by low phospho-Akt. Remarkably, Akt inhibitors reduced cancer cell growth in monolayers and spheroids and synergistically enhanced the antiproliferative activity of gemcitabine in LPC028, while this combination was antagonistic in LPC006 cells. The synergistic effect was paralleled by a reduced expression of ribonucleotide reductase, potentially facilitating gemcitabine cytotoxicity. Inhibition of Akt decreased cell migration and invasion, which was additionally reduced by the combination with gemcitabine. This combination significantly increased apoptosis, associated with induction of caspase-3/6/8/9, PARP and BAD, and inhibition of Bcl-2 and NF-kB in LPC028, but not in LPC006 cells. However, targeting the key glucose transporter Glut1 resulted in similar apoptosis induction in LPC006 cells. CONCLUSIONS These data support the analysis of phospho-Akt expression as both a prognostic and a predictive biomarker, for the rational development of new combination therapies targeting the Akt pathway in PDAC. Finally, inhibition of Glut1 might overcome resistance to these therapies and warrants further studies.
Collapse
Affiliation(s)
- Daniela Massihnia
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Amir Avan
- Metabolic syndrome Research center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niccola Funel
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Mina Maftouh
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Anne van Krieken
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | - Rajiv Raktoe
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ugo Boggi
- Department of Surgery, University of Pisa, Pisa, Italy
| | - Babette Aicher
- Æterna Zentaris GmbH, Frankfurt am Main, Frankfurt, Germany
| | | | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Leticia G Leon
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology VU University Medical Center, Cancer Center Amsterdam, CCA room 1.52, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy.
| |
Collapse
|
47
|
MiR-222 promotes drug-resistance of breast cancer cells to adriamycin via modulation of PTEN/Akt/FOXO1 pathway. Gene 2017; 596:110-118. [DOI: 10.1016/j.gene.2016.10.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022]
|
48
|
Wang B, Liu J, Xiong Y, Yan Y, Sun B, Zhao Q, Duan L, Li P, Huang Y, Chen W. Soluble E-cadherin as a serum biomarker in patients with HBV-related liver diseases. Clin Biochem 2016; 49:1232-1237. [DOI: 10.1016/j.clinbiochem.2016.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/03/2016] [Accepted: 07/17/2016] [Indexed: 12/13/2022]
|
49
|
MicroRNA-29a contributes to drug-resistance of breast cancer cells to adriamycin through PTEN/AKT/GSK3β signaling pathway. Gene 2016; 593:84-90. [DOI: 10.1016/j.gene.2016.08.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 11/19/2022]
|
50
|
de Araujo WM, Robbs BK, Bastos LG, de Souza WF, Vidal FCB, Viola JPB, Morgado-Diaz JA. PTEN Overexpression Cooperates With Lithium to Reduce the Malignancy and to Increase Cell Death by Apoptosis via PI3K/Akt Suppression in Colorectal Cancer Cells. J Cell Biochem 2016. [PMID: 26224641 DOI: 10.1002/jcb.25294] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lithium is a well-established non-competitive inhibitor of glycogen synthase kinase-3β (GSK-3β), a kinase that is involved in several cellular processes related to cancer progression. GSK-3β is regulated upstream by PI3K/Akt, which is negatively modulated by PTEN. The role that lithium plays in cancer is controversial because lithium can activate or inhibit survival signaling pathways depending on the cell type. In this study, we analyzed the mechanisms by which lithium can modulate events related to colorectal cancer (CRC) progression and evaluated the role that survival signaling pathways such as PI3K/Akt and PTEN play in this context. We show that the administration of lithium decreased the proliferative potential of CRC cells in a GSK-3β-independent manner but induced the accumulation of cells in G2/M phase. Furthermore, high doses of lithium increased apoptosis, which was accompanied by decreased proteins levels of Akt and PTEN. Then, cells that were induced to overexpress PTEN were treated with lithium; we observed that low doses of lithium strongly increased apoptosis. Additionally, PTEN overexpression reduced proliferation, but this effect was minor compared with that in cells treated with lithium alone. Furthermore, we demonstrated that PTEN overexpression and lithium treatment separately reduced cell migration, colony formation, and invasion, and these effects were enhanced when lithium treatment and PTEN overexpression were combined. In conclusion, our findings indicate that PTEN overexpression and lithium treatment cooperate to reduce the malignancy of CRC cells and highlight lithium and PTEN as potential candidates for studies to identify new therapeutic approaches for CRC treatment.
Collapse
Affiliation(s)
- Wallace Martins de Araujo
- Grupo de Biologia Estrutural, Divisão de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 5andar, Rio de Janeiro, Brasil
| | - Bruno Kaufmann Robbs
- Departamento de Ciências Básicas, Campus Universitário de Nova Friburgo, Universidade Federal Fluminense, UFF, Nova Friburgo, Rio de Janeiro, Brasil
| | - Lilian G Bastos
- Grupo de Biologia Estrutural, Divisão de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 5andar, Rio de Janeiro, Brasil
| | - Waldemir F de Souza
- Grupo de Biologia Estrutural, Divisão de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 5andar, Rio de Janeiro, Brasil
| | - Flávia C B Vidal
- Banco de Tumores e DNA do Maranhão, Universidade Federal do Maranhão, Rua Coelho Neto, 311, São Luís, MA, Brasil
| | - João P B Viola
- Grupo de Regulação Gênica, Programa de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 5andar, Rio de Janeiro, Brasil
| | - Jose A Morgado-Diaz
- Grupo de Biologia Estrutural, Divisão de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 5andar, Rio de Janeiro, Brasil
| |
Collapse
|