1
|
Chen W, Wang YJ. Multifaceted roles of OCT4 in tumor microenvironment: biology and therapeutic implications. Oncogene 2025; 44:1213-1229. [PMID: 40229384 DOI: 10.1038/s41388-025-03408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/28/2025] [Accepted: 04/04/2025] [Indexed: 04/16/2025]
Abstract
OCT4 (Octamer-binding transcription factor 4, encoded by the POU5F1 gene) is a master transcription factor for maintaining the self-renewal and pluripotency of pluripotent stem cells, as well as a pioneer factor regulating epigenetics-driven cell reprogramming and cell fate conversion. It is also detected in a variety of cancer tissues and particularly in a small subpopulation of cancer cells known as cancer stem cells (CSCs). Accumulating evidence has revealed that CSCs are a dynamic population, exhibiting shift between multipotency and differentiation states, or quiescence and proliferation states. Such cellular plasticity of CSCs is profoundly influenced by dynamic interplay between CSCs and the tumor microenvironment (TME). Here, we review recent evidence showing that OCT4 expressed in CSCs plays a multifaceted role in shaping the TME by interacting with the cellular TME components, including cancer-associated fibroblasts, tumor endothelial cells, tumor-infiltrating immune cells, as well as the non-cellular TME components, such as extracellular matrix (ECM), metabolites, soluble factors (e.g., growth factors, cytokines and chemokines), and intra-tumoral microbiota. Together, OCT4 regulates crucial processes encompassing ECM remodeling, epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and immune responses. The complex and bidirectional interactions between OCT4-expressing CSCs and the TME create a supportive niche for tumor growth, invasion, and resistance to therapy. Better understanding OCT4's roles in such interactions can provide deeper insights into potential therapeutic strategies and targets for disrupting the supportive environment of tumors. The emerging therapies targeting OCT4 in CSCs might hold promise to resensitize therapeutic-resistant cancer cells, and to eradicate all cancer cells when combined with other therapies targeting the bulk of differentiated cancer cells as well as the TME.
Collapse
Affiliation(s)
- Wenjie Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Mandal T, Shukla D, Khan MMA, Ganesan SK, Srivastava AK. The EXO1/Polη/Polι axis as a promising target for miR-3163-mediated attenuation of cancer stem-like cells in non-small cell lung carcinoma. Br J Cancer 2024; 131:1668-1682. [PMID: 39369054 PMCID: PMC11554650 DOI: 10.1038/s41416-024-02840-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Cancer stem-like cells (CSLCs) drive tumour progression and chemoresistance. The concerted efforts of EXO1 and TLS polymerases safeguard DNA integrity against chemotherapeutic drugs. In absence of potential drug targets, non-small cell lung carcinoma (NSCLC) patients have few therapeutic options. In current scenario, microRNAs offer a potential avenue for eradicating CSLCs. METHODS EXO1 downregulation impact on CSLCs expansion was assessed via flow cytometry. Co-localisation of EXO1, Polη and Polι was validated through co-immunoprecipitation and confocal-imaging. The effects of co-downregulation of Polη and Polι on CSLC survival, repair synthesis, and mutagenesis were evaluated using flow cytometry and immunohistochemistry in cell lines and xenografts. MicroRNA targeting EXO1 was studied for its role in CSLCs regulation. RESULTS EXO1 downregulation in NSCLC CSLCs induces DNA lesions, triggering apoptosis and enhances cisplatin sensitivity. It collaborates with Polη and Polι in DNA repair, contributing to cisplatin resistance in CSLCs. Absence of Polη and Polι impairs repair and reduces cisplatin-induced mutagenesis. Co-downregulation of Polη and Polι in xenografts reduces tumour proliferation significantly. MiR-3163 overexpression sensitises CSLCs to cisplatin via targeting EXO1/Polη/Polι axis, as shown in mechanistic studies. CONCLUSION This study unveils a novel regulatory pathway involving EXO1/Polη/Polι axis and miR-3163, providing insights into CSLCs regulation in NSCLC. EXO1/Polη/Polι axis targeted by miR-3163, resulting in the inhibition of cell growth and induction of apoptosis in NSCLC CSLCs.
Collapse
Affiliation(s)
- Tanima Mandal
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devendra Shukla
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Md Maqsood Ahamad Khan
- Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Senthil Kumar Ganesan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Tang Y, Chen F, Fang G, Zhang H, Zhang Y, Zhu H, Zhang X, Han Y, Cao Z, Guo F, Wang W, Ye D, Ju J, Tan L, Li C, Zhao Y, Zhou Z, An L, Jiao S. A cofactor-induced repressive type of transcription factor condensation can be induced by synthetic peptides to suppress tumorigenesis. EMBO J 2024; 43:5586-5612. [PMID: 39358623 PMCID: PMC11574045 DOI: 10.1038/s44318-024-00257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Transcriptional factors (TFs) act as key determinants of cell death and survival by differentially modulating gene expression. Here, we identified many TFs, including TEAD4, that form condensates in stressed cells. In contrast to YAP-induced transcription-activating condensates of TEAD4, we found that co-factors such as VGLL4 and RFXANK alternatively induced repressive TEAD4 condensates to trigger cell death upon glucose starvation. Focusing on VGLL4, we demonstrated that heterotypic interactions between TEAD4 and VGLL4 favor the oligomerization and assembly of large TEAD4 condensates with a nonclassical inhibitory function, i.e., causing DNA/chromatin to be aggregated and entangled, which eventually impede gene expression. Based on these findings, we engineered a peptide derived from the TEAD4-binding motif of VGLL4 to selectively induce TEAD4 repressive condensation. This "glue" peptide displayed a strong antitumor effect in genetic and xenograft mouse models of gastric cancer via inhibition of TEAD4-related gene transcription. This new type of repressive TF phase separation exemplifies how cofactors can orchestrate opposite functions of a given TF, and offers potential new antitumor strategies via artificial induction of repressive condensation.
Collapse
Grants
- 2020YFA0803200 MOST | National Key Research and Development Program of China (NKPs)
- 2023YFC2505903 MOST | National Key Research and Development Program of China (NKPs)
- 32270747,92168116, 22077002, 82222052 MOST | National Natural Science Foundation of China (NSFC)
- 32200567, 31930026, 82150112 MOST | National Natural Science Foundation of China (NSFC)
- 32070710, 82372613 MOST | National Natural Science Foundation of China (NSFC)
- 82361168638, 32170706, 82002493 MOST | National Natural Science Foundation of China (NSFC)
- 22ZR1448100, 22QA1407200, 23ZR1448900 STCSM | Natural Science Foundation of Shanghai Municipality ()
- 22QA1407300, 23ZR1480400, 23YF1432900 STCSM | Natural Science Foundation of Shanghai Municipality ()
- STCSM | Natural Science Foundation of Shanghai Municipality (上海市自然科学基金)
Collapse
Affiliation(s)
- Yang Tang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Gemin Fang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hui Zhang
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Yanni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Hanying Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Xinru Zhang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yi Han
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhifa Cao
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, 200040, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Dan Ye
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Junyi Ju
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lijie Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Chuanchuan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yun Zhao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Liwei An
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
4
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
5
|
Kim D, Lee J, Seok OH, Lee Y, Hwang CS. Cytosolic N-terminal formyl-methionine deformylation derives cancer stem cell features and tumor progression. Sci Rep 2024; 14:14900. [PMID: 38942903 PMCID: PMC11213908 DOI: 10.1038/s41598-024-65701-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
Eukaryotic cells can synthesize formyl-methionine (fMet)-containing proteins not only in mitochondria but also in the cytosol to some extent. Our previous study revealed substantial upregulation of N-terminal (Nt)-fMet-containing proteins in the cytosol of SW480 colorectal cancer cells. However, the functional and pathophysiological implications remain unclear. Here, we demonstrated that removal of the Nt-formyl moiety of Nt-fMet-containing proteins (via expressing Escherichia coli PDF peptide deformylase) resulted in a dramatic increase in the proliferation of SW480 colorectal cancer cells. This proliferation coincided with the acquisition of cancer stem cell features, including reduced cell size, enhanced self-renewal capacity, and elevated levels of the cancer stem cell surface marker CD24 and pluripotent transcription factor SOX2. Furthermore, deformylation of Nt-fMet-containing proteins promoted the tumorigenicity of SW480 colorectal cancer cells in an in vivo xenograft mouse model. Taken together, these findings suggest that cytosolic deformylation has a tumor-enhancing effect, highlighting its therapeutic potential for cancer treatment.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Ok-Hee Seok
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Cheol-Sang Hwang
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Gadwal A, Purohit P, Khokhar M, Vishnoi JR, Pareek P, Choudhary R, Elhence P, Banerjee M, Sharma P. GALNT6, GALNT14, and Gal-3 in association with GDF-15 promotes drug resistance and stemness of breast cancer via β-catenin axis. Growth Factors 2024; 42:84-100. [PMID: 38889447 DOI: 10.1080/08977194.2024.2368907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
N-acetylgalactosaminyltransferases (GALNTs) are a polypeptide responsible for aberrant glycosylation in breast cancer (BC), but the mechanism is unclear. In this study, expression levels of GALNT6, GALNT14, and Gal-3 were assessed in BC, and their association with GDF-15, β-catenin, stemness (SOX2 and OCT4), and drug resistance marker (ABCC5) was evaluated. Gene expression of GALNT6, GALNT14, Gal-3, GDF-15, OCT4, SOX2, ABCC5, and β-catenin in tumor and adjacent non-tumor tissues (n = 30) was determined. The same was compared with GEO-microarray datasets. A significant increase in the expression of candidate genes was observed in BC tumor compared to adjacent non-tumor tissue; and in pre-therapeutic patients compared to post-therapeutic. GALNT6, GALNT14, Gal-3, and GDF-15 showed positive association with β-catenin, SOX2, OCT4, and ABCC5 and were significantly associated with poor Overall Survival. Our findings were also validated via in silico analysis. Our study suggests that GALNT6, GALNT14, and Gal-3 in association with GDF-15 promote stemness and intrinsic drug resistance in BC, possibly by β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ashita Gadwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Jeewan Ram Vishnoi
- Department of Oncosurgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Puneet Pareek
- Department of Radiation Oncology, All India Institute of Medical Sciences, Jodhpur, India
| | - Ramkaran Choudhary
- Department of General Surgery, All India Institute of Medical Sciences, Jodhpur, India
| | - Poonam Elhence
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
7
|
Hauser M, Zirman A, Rak R, Nachman I. Challenges and opportunities in cell expansion for cultivated meat. Front Nutr 2024; 11:1315555. [PMID: 38385010 PMCID: PMC10879929 DOI: 10.3389/fnut.2024.1315555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The cultivation of meat using in vitro grown animal stem cells offers a promising solution to pressing global concerns around climate change, ethical considerations, and public health. However, cultivated meat introduces an unprecedented necessity: the generation of mass scales of cellular biomaterial, achieved by fostering cell proliferation within bioreactors. Existing methods for in vitro cell proliferation encounter substantial challenges in terms of both scalability and economic viability. Within this perspective, we discuss the current landscape of cell proliferation optimization, focusing on approaches pertinent to cellular agriculture. We examine the mechanisms governing proliferation rates, while also addressing intrinsic and conditional rate limitations. Furthermore, we expound upon prospective strategies that could lead to a significant enhancement of the overall scalability and cost-efficiency of the cell proliferation phase within the cultivated meat production process. By exploring knowledge from basic cell cycle studies, pathological contexts and tissue engineering, we may identify innovative solutions toward optimizing cell expansion.
Collapse
Affiliation(s)
- Michelle Hauser
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amit Zirman
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Institute for Animal Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Roni Rak
- Institute for Animal Research, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Iftach Nachman
- The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Ghazimoradi MH, Pakravan K, Khalafizadeh A, Babashah S. TET1 regulates stem cell properties and cell cycle of Cancer stem cells in triple-negative breast cancer via DNA demethylation. Biochem Pharmacol 2024; 219:115913. [PMID: 37995981 DOI: 10.1016/j.bcp.2023.115913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
The role of cancer stem cells in metastasis, recurrence, and resistance to conventional therapies is significant. Addressing these cells could potentially decrease cancer reoccurrences and mortality rates. TET1, a crucial gene involved in stem cell self-renewal and potency, may also play a part in cancer stem cells, which warrants further research. To explore the role of TET1 in cancer stem cells, we conducted experiments involving loss and gain. We then analyzed factors such as migration, invasion, cell cycle, cell viability, mammosphere formation, and the CD44+/CD24- subpopulation of cancer cells. We also investigate the influence of TET1 on CCNB1, CDK1, and OCT4. Our study reveals that TET1 can regulate the phenotype of cancer stem cells via OCT4. Additionally, it can control the cell cycle by increasing CDK1 and CCNB1 levels. These findings suggest that targeting DNA methylation and TET1 could be an effective strategy to overcome obstacles posed by Cancer stem cells. Our research also indicates that TET1 can influence the phenotype of cancer stem cells and the cell cycle of breast cancer cells potentially through OCT4, CCNB1, and CDK1. This highlights the importance of TET1 in breast cancer cases and suggests a potential therapeutic approach through DNA methylation and modulation of TET1.
Collapse
Affiliation(s)
- Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Ali Khalafizadeh
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
9
|
Yang W, Cui X, Sun D, Sun G, Yan Z, Wei M, Wang Z, Yu W. POU5F1 promotes the proliferation, migration, and invasion of gastric cancer cells by reducing the ubiquitination level of TRAF6. Cell Death Dis 2023; 14:802. [PMID: 38062041 PMCID: PMC10703809 DOI: 10.1038/s41419-023-06332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/15/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
POU5F1 plays an important role in maintaining the cancer stem cell (CSC) -like properties of gastric cancer (GC) cells. The impact of POU5F1 on the proliferation and metastasis of GC was examined, along with the potential of ATRA as a specific therapeutic agent for GC. The dysregulation of POU5F1 expression in GC tissues was analyzed using public databases and bioinformatics techniques, and the disparity in POU5F1 expression between normal gastric tissues and GC tissues was further assessed through western blot, RT-qPCR, and immunohistochemistry. The present study aimed to investigate the impact of POU5F1 on the proliferation, migration, and invasion of GC cells through both in vivo and in vitro experiments. Additionally, the effects of ATRA on the proliferation, migration, and invasion of GC cells were examined using in vivo and in vitro approaches. Our findings revealed a significant upregulation of POU5F1 in GC tissues, which was found to be associated with a poorer prognosis in patients with GC. Moreover, POU5F1 was observed to enhance the proliferation, migration, and invasion of GC cells in vitro, as well as promote subcutaneous tumor growth and lung metastasis of GC cells in vivo. The overexpression of POU5F1 mechanistically triggers the process of Epithelial-mesenchymal transition (EMT) by down-regulating E-Cadherin and up-regulating N-Cadherin and VIM. POU5F1 hinders the ubiquitination of TRAF6 through negative regulation of TRIM59, thereby facilitating the activation of the NF-κB pathway. Furthermore, the administration of ATRA effectively impedes the proliferation, migration, and invasion of GC cells by suppressing the expression of POU5F1. The upregulation of POU5F1 elicits EMT, fosters the initiation of the NF-κB signaling pathway in GC cells, and stimulates the proliferation, invasion, and metastasis of GC cells. All-trans retinoic acid (ATRA) can impede these POU5F1-induced effects, thereby potentially serving as an adjunctive therapeutic approach for GC.
Collapse
Affiliation(s)
- Wenshuo Yang
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Xiaohan Cui
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Danping Sun
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Guorui Sun
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Zhibo Yan
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Zuoyang Wang
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Wenbin Yu
- Department of General Surgery, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
10
|
Zeng Z, Fu M, Hu Y, Wei Y, Wei X, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer 2023; 22:172. [PMID: 37853437 PMCID: PMC10583419 DOI: 10.1186/s12943-023-01877-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem cells (CSCs), initially identified in leukemia in 1994, constitute a distinct subset of tumor cells characterized by surface markers such as CD133, CD44, and ALDH. Their behavior is regulated through a complex interplay of networks, including transcriptional, post-transcriptional, epigenetic, tumor microenvironment (TME), and epithelial-mesenchymal transition (EMT) factors. Numerous signaling pathways were found to be involved in the regulatory network of CSCs. The maintenance of CSC characteristics plays a pivotal role in driving CSC-associated tumor metastasis and conferring resistance to therapy. Consequently, CSCs have emerged as promising targets in cancer treatment. To date, researchers have developed several anticancer agents tailored to specifically target CSCs, with some of these treatment strategies currently undergoing preclinical or clinical trials. In this review, we outline the origin and biological characteristics of CSCs, explore the regulatory networks governing CSCs, discuss the signaling pathways implicated in these networks, and investigate the influential factors contributing to therapy resistance in CSCs. Finally, we offer insights into preclinical and clinical agents designed to eliminate CSCs.
Collapse
Affiliation(s)
- Zhen Zeng
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Min Luo
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
11
|
Deutscher K, Hillen T, Newby J. A computational model for the cancer field effect. Front Artif Intell 2023; 6:1060879. [PMID: 37469932 PMCID: PMC10352683 DOI: 10.3389/frai.2023.1060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction The Cancer Field Effect describes an area of pre-cancerous cells that results from continued exposure to carcinogens. Cells in the cancer field can easily develop into cancer. Removal of the main tumor mass might leave the cancer field behind, increasing risk of recurrence. Methods The model we propose for the cancer field effect is a hybrid cellular automaton (CA), which includes a multi-layer perceptron (MLP) to compute the effects of the carcinogens on the gene expression of the genes related to cancer development. We use carcinogen interactions that are typically associated with smoking and alcohol consumption and their effect on cancer fields of the tongue. Results Using simulations we support the understanding that tobacco smoking is a potent carcinogen, which can be reinforced by alcohol consumption. The effect of alcohol alone is significantly less than the effect of tobacco. We further observe that pairing tumor excision with field removal delays recurrence compared to tumor excision alone. We track cell lineages and find that, in most cases, a polyclonal field develops, where the number of distinct cell lineages decreases over time as some lineages become dominant over others. Finally, we find tumor masses rarely form via monoclonal origin.
Collapse
|
12
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
13
|
Tsydenova IA, Dolgasheva DS, Gaptulbarova KA, Ibragimova MK, Tsyganov MM, Kravtsova EA, Nushtaeva AA, Litviakov NV. WNT-Conditioned Mechanism of Exit from Postchemotherapy Shock of Differentiated Tumour Cells. Cancers (Basel) 2023; 15:2765. [PMID: 37345102 DOI: 10.3390/cancers15102765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND the present study aims to prove or disprove the hypothesis that the state of copy number aberration (CNA) activation of WNT signalling pathway genes accounts for the ability of differentiated tumour cells to emerge from postchemotherapy shock. METHODS In the first step, the CNA genetic landscape of breast cancer cell lines BT-474, BT-549, MDA-MB-231, MDA-MD-468, MCF7, SK-BR-3 and T47D, which were obtained from ATCC, was examined to rank cell cultures according to the degree of ectopic activation of the WNT signalling pathway. Then two lines of T47D with ectopic activation and BT-474 without activation were selected. The differentiated EpCAM+CD44-CD24-/+ cells of these lines were subjected to IL6 de-differentiation with formation of mammospheres on the background of cisplatin and WNT signalling inhibitor ICG-001. RESULTS it was found that T47D cells with ectopic WNT signalling activation after cisplatin exposure were dedifferentiated to form mammospheres while BT-474 cells without ectopic WNT-signalling activation did not form mammospheres. The dedifferentiation of T47D cells after cisplatin exposure was completely suppressed by the WNT signalling inhibitor ICG-001. Separately, ICG-001 reduced, but did not abolish, the ability to dedifferentiate in both cell lines. CONCLUSIONS these data support the hypothesis that the emergence of differentiated tumour cells from postchemotherapy shock after chemotherapy is due to ectopic activation of WNT signalling pathway genes.
Collapse
Affiliation(s)
- Irina A Tsydenova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 634050 Tomsk, Russia
| | - Daria S Dolgasheva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 634050 Tomsk, Russia
| | - Ksenia A Gaptulbarova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 634050 Tomsk, Russia
- Genetic Technology Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
| | - Marina K Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 634050 Tomsk, Russia
- Genetic Technology Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
| | - Matvei M Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
- Genetic Technology Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
| | - Ekaterina A Kravtsova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 634050 Tomsk, Russia
| | - Anna A Nushtaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikolai V Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 634050 Tomsk, Russia
- Genetic Technology Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
14
|
Martins-Neves SR, Sampaio-Ribeiro G, Gomes CMF. Self-Renewal and Pluripotency in Osteosarcoma Stem Cells' Chemoresistance: Notch, Hedgehog, and Wnt/β-Catenin Interplay with Embryonic Markers. Int J Mol Sci 2023; 24:8401. [PMID: 37176108 PMCID: PMC10179672 DOI: 10.3390/ijms24098401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Osteosarcoma is a highly malignant bone tumor derived from mesenchymal cells that contains self-renewing cancer stem cells (CSCs), which are responsible for tumor progression and chemotherapy resistance. Understanding the signaling pathways that regulate CSC self-renewal and survival is crucial for developing effective therapies. The Notch, Hedgehog, and Wnt/β-Catenin developmental pathways, which are essential for self-renewal and differentiation of normal stem cells, have been identified as important regulators of osteosarcoma CSCs and also in the resistance to anticancer therapies. Targeting these pathways and their interactions with embryonic markers and the tumor microenvironment may be a promising therapeutic strategy to overcome chemoresistance and improve the prognosis for osteosarcoma patients. This review focuses on the role of Notch, Hedgehog, and Wnt/β-Catenin signaling in regulating CSC self-renewal, pluripotency, and chemoresistance, and their potential as targets for anti-cancer therapies. We also discuss the relevance of embryonic markers, including SOX-2, Oct-4, NANOG, and KLF4, in osteosarcoma CSCs and their association with the aforementioned signaling pathways in overcoming drug resistance.
Collapse
Affiliation(s)
- Sara R. Martins-Neves
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gabriela Sampaio-Ribeiro
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Célia M. F. Gomes
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.R.M.-N.)
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| |
Collapse
|
15
|
HIF1α and HIF2α regulate non-small-cell lung cancer dedifferentiation via expression of Sox2 and Oct4 under hypoxic conditions. Gene 2023; 863:147288. [PMID: 36804853 DOI: 10.1016/j.gene.2023.147288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE To explore HIF1α and HIF2α regulate the dedifferentiation of lung cancer cells under hypoxic conditions through Sox2 and Oct4. MATERIALS AND METHODS HIF1α, HIF2α, Sox2 and Oct4 expression was analysed in lung cancer tissues. We analysed sphere formation by single-cell of differentiated lung cancer under hypoxia, and detected the expression of CD133, CD44, Sox2, Oct4, HIF1α and HIF2α. We knocked out HIF1α, HIF2α, Sox2 or Oct4 in cells, cultured the cells under hypoxic conditions and detected CD133 and CD44 using western blotting. We also detected the apoptosis rate of cells with HIF1α, HIF2α, Sox2 or Oct4 knockout. RESULTS There was more sphere formation of differentiated lung cancer cells under hypoxic conditions than of control cells under normoxic conditions. These newly formed spheres highly expressed CD133 and CD44. TCGA database showed high expression of HIF1α and HIF2α in lung cancer tissues. After knocking out HIF1α and HIF2α, the expression of Sox2, Oct4, CD133 and CD44 decreased significantly, and after knocking out Sox2 or Oct4, the expression of CD133 and CD44 decreased. CONCLUSION HIF1α and HIF2α regulate non-small-cell lung cancer dedifferentiation through Sox2 and Oct4 under hypoxic conditions.
Collapse
|
16
|
Mosaddeghi P, Farahmandnejad M, Zarshenas MM. The role of transposable elements in aging and cancer. Biogerontology 2023:10.1007/s10522-023-10028-z. [PMID: 37017895 DOI: 10.1007/s10522-023-10028-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/06/2023]
Abstract
Transposable elements (TEs) constitute a large portion of the human genome. Various mechanisms at the transcription and post-transcription levels developed to suppress TE activity in healthy conditions. However, a growing body of evidence suggests that TE dysregulation is involved in various human diseases, including age-related diseases and cancer. In this review, we explained how sensing TEs by the immune system could induce innate immune responses, chronic inflammation, and following age-related diseases. We also noted that inflammageing and exogenous carcinogens could trigger the upregulation of TEs in precancerous cells. Increased inflammation could enhance epigenetic plasticity and upregulation of early developmental TEs, which rewires the transcriptional networks and gift the survival advantage to the precancerous cells. In addition, upregulated TEs could induce genome instability, activation of oncogenes, or inhibition of tumor suppressors and consequent cancer initiation and progression. So, we suggest that TEs could be considered therapeutic targets in aging and cancer.
Collapse
Affiliation(s)
- Pouria Mosaddeghi
- Medicinal Plants Processing Research Center, School of Pharmacy, Shiraz University of Medical Science, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mitra Farahmandnejad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Quality Control of Drug Products Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M Zarshenas
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
17
|
Losada-García A, Salido-Guadarrama I, Cortes-Ramirez SA, Cruz-Burgos M, Morales-Pacheco M, Vazquez-Santillan K, Rodriguez-Martinez G, González-Ramírez I, Gonzalez-Covarrubias V, Perez-Plascencia C, Rodríguez-Dorantes M. SFRP1 induces a stem cell phenotype in prostate cancer cells. Front Cell Dev Biol 2023; 11:1096923. [PMID: 36968194 PMCID: PMC10033548 DOI: 10.3389/fcell.2023.1096923] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Prostate cancer (PCa) ranks second in incidence and sixth in deaths globally. The treatment of patients with castration-resistant prostate cancer (CRPC) continues to be a significant clinical problem. Emerging evidence suggests that prostate cancer progression toward castration resistance is associated with paracrine signals from the stroma. SFRP1 is one of the extracellular proteins that modulate the WNT pathway, and it has been identified as a mediator of stromal epithelium communication. The WNT pathway is involved in processes such as cell proliferation, differentiation, cell anchoring, apoptosis, and cell cycle regulation as well as the regulation of stem cell populations in the prostatic epithelium. In the present study, we explored the role of exogenous SFRP1 on the stem cell phenotype in prostate cancer. The results reveal that cancer stem cell markers are significantly increased by exogenous SFRP1 treatments, as well as the downstream target genes of the Wnt/-catenin pathway. The pluripotent transcription factors SOX2, NANOG, and OCT4 were also up-regulated. Furthermore, SFRP1 promoted prostate cancer stem cell (PCSC) properties in vitro, including tumorsphere formation, migration, bicalutamide resistance, and decreased apoptosis. Taken together, our results indicate that SFRP1 participates in the paracrine signaling of epithelial cells, influencing them and positively regulating the stem cell phenotype through deregulation of the WNT/β-catenin pathway, which could contribute to disease progression and therapeutic failure. This research increases our molecular understanding of how CRPC progresses, which could help us find new ways to diagnose and treat the disease.
Collapse
Affiliation(s)
- Alberto Losada-García
- Laboratorio de Oncogenomica, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - Iván Salido-Guadarrama
- Departamento de Bioinformatìca y Análisis Estadísticos, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | | | - Marian Cruz-Burgos
- Laboratorio de Oncogenomica, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | - Miguel Morales-Pacheco
- Laboratorio de Oncogenomica, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
| | | | | | - Imelda González-Ramírez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | | | - Carlos Perez-Plascencia
- Unidad de Genómica y Cáncer, Subdirección de Investigación Básica, INCan, SSA and Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mauricio Rodríguez-Dorantes
- Laboratorio de Oncogenomica, Instituto Nacional de Medicina Genomica, Mexico City, Mexico
- *Correspondence: Mauricio Rodríguez-Dorantes,
| |
Collapse
|
18
|
Association of NRF2 with HIF-2α-induced cancer stem cell phenotypes in chronic hypoxic condition. Redox Biol 2023; 60:102632. [PMID: 36791645 PMCID: PMC9950657 DOI: 10.1016/j.redox.2023.102632] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023] Open
Abstract
The acquisition of the cancer stem cell (CSC) properties is often mediated by the surrounding microenvironment, and tumor hypoxia is considered an important factor for CSC phenotype development. High levels of NRF2 (Nuclear Factor Erythroid 2-Like 2; NFE2L2), a transcription factor that maintains cellular redox balance, have been associated with facilitated tumor growth and therapy resistance. In this study, we investigated the role of NRF2 in hypoxia-induced CSC phenotypes in colorectal cancer cells. Chronic hypoxia for 72 h resulted in CSC phenotypes, including elevation of krupple-like factor 4 (KLF4) and octamer-binding transcription factor 4 (OCT4), and an increase in cancer migration and spheroid growth with concomitant hypoxia-inducible factor 2α (HIF-2α) accumulation. All these chronic hypoxia-induced CSC properties were attenuated following HIF-2α-specific silencing. In this chronic hypoxia model, NRF2 inhibition by shRNA-based silencing or brusatol treatment blocked HIF-2α accumulation, which consequently resulted in decreased CSC marker expression and inhibition of CSC properties such as spheroid growth. In contrast, NRF2 overactivation by genetic or chemical approach enhanced the chronic hypoxia-induced HIF-2α accumulation and cancer migration. As a molecular mechanism of the NRF2-inhibition-mediated HIF-2α dysregulation, we demonstrated that miR-181a-2-3p, whose expression is elevated in NRF2-silenced cells, targeted the HIF-2α 3'UTR and subsequently suppressed the chronic hypoxia-induced HIF-2α and CSC phenotypes. The miR-181a-2-3p inhibitor treatment in NRF2-silenced cells could restore the levels of HIF-2α and CSC markers, and increased cancer migration and sphere formation under chronic hypoxia. In line with this, the miR-181a-2-3p inhibitor transfection could increase tumorigenicity of NRF2-silenced colorectal cancer cells. Collectively, our study suggests the involvement of NRF2/miR181a-2-3p signaling in the development of HIF-2α-mediated CSC phenotypes in sustained hypoxic environments.
Collapse
|
19
|
Lin TC, Wang KH, Chuang KH, Kao AP, Kuo TC. Oct-4 induces cisplatin resistance and tumor stem cell-like properties in endometrial carcinoma cells. Taiwan J Obstet Gynecol 2023; 62:16-21. [PMID: 36720532 DOI: 10.1016/j.tjog.2022.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Research has suggested that tumor-initiating tumor stem cells are derived from normal stem cells and that tumor cells undergo progressive de-differentiation to achieve a stem cell-like state. Tumor stem cells are characterized by high proliferation ability, high plasticity, expression of multi-drug resistance proteins, and the ability to seed new tumors. Octamer-binding transcription factor 4 (Oct-4) and its activation targets are overexpressed in the tumor stem cells of various types of tumors, and this expression is associated with the pathogenesis, development, and poor prognosis of tumors. The primary objective of this study was to test if a stably transfected with Oct-4 gene cell line, RL95-2/Oct-4, has the characteristics of tumor stem cells. MATERIALS AND METHODS Human endometrial carcinoma cells (RL95-2) were transfected with a plasmid carrying genes for Oct-4 and green fluorescent protein (GFP). The stably transfected cells, RL95-2/Oct-4, were selected using G418 and observed to express the GFP reporter gene under the control of the Oct-4 promoter. GFP expression levels of RL95-2/Oct-4 cells were measured using flow cytometry. The proliferation potential of cells was determined according to cumulative population doubling and colony-formation efficiency. Gene expression was analyzed using reverse transcription-polymerase chain reaction. RESULTS RL95-2/Oct-4 cells not only exhibited increased expression of the three most important stem cell genes, Oct-4, Nanog, and Sox2, but also had increased expression of the endometrial tumor stem cell genes CD133 and ALDH1. Furthermore, enhanced expression of these genes in the RL95-2/Oct-4 cells was associated with higher colony-forming ability and growth rate than in parental RL95-2 cells. We also observed that cisplatin induced less cell death in RL95-2/Oct-4 cells than in RL95-2 cells, indicating that RL95-2/Oct-4 cells were more resistant to chemotherapeutic agents. CONCLUSION The study findings contribute to investigate the effects of Oct-4 on tumor stem cell origins.
Collapse
Affiliation(s)
- Ta-Chin Lin
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| | - Kai-Hung Wang
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan; Department of Laboratory Medicine, Kuo General Hospital, Tainan, Taiwan.
| | - Kuo-Hsiang Chuang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - An-Pei Kao
- Stemforce Biotechnology Co., Ltd, Chiayi, Taiwan
| | - Tsung-Cheng Kuo
- Department of Obstetrics and Gynecology, Kuo General Hospital, Tainan, Taiwan; Center for Reproductive Medicine, Kuo General Hospital, Tainan, Taiwan
| |
Collapse
|
20
|
Patil S, Islam F, Gopalan V. Diagnostic and Prognostic Implications of Cancer Stem Cell Transcription Factors. CANCER STEM CELLS: BASIC CONCEPT AND THERAPEUTIC IMPLICATIONS 2023:325-347. [DOI: 10.1007/978-981-99-3185-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Luo Y, Xiang S, Feng J. Protein Phase Separation: New Insights into Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235971. [PMID: 36497453 PMCID: PMC9740862 DOI: 10.3390/cancers14235971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Phase separation is now acknowledged as an essential biologic mechanism wherein distinct activated molecules assemble into a different phase from the surrounding constituents of a cell. Condensates formed by phase separation play an essential role in the life activities of various organisms under normal physiological conditions, including the advanced structure and regulation of chromatin, autophagic degradation of incorrectly folded or unneeded proteins, and regulation of the actin cytoskeleton. During malignant transformation, abnormally altered condensate assemblies are often associated with the abnormal activation of oncogenes or inactivation of tumor suppressors, resulting in the promotion of the carcinogenic process. Thus, understanding the role of phase separation in various biological evolutionary processes will provide new ideas for the development of drugs targeting specific condensates, which is expected to be an effective cancer therapy strategy. However, the relationship between phase separation and cancer has not been fully elucidated. In this review, we mainly summarize the main processes and characteristics of phase separation and the main methods for detecting phase separation. In addition, we summarize the cancer proteins and signaling pathways involved in phase separation and discuss their promising future applications in addressing the unmet clinical therapeutic needs of people with cancer. Finally, we explain the means of targeted phase separation and cancer treatment.
Collapse
|
22
|
Ervin EH, French R, Chang CH, Pauklin S. Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer. Semin Cancer Biol 2022; 87:48-83. [PMID: 36347438 DOI: 10.1016/j.semcancer.2022.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/07/2022]
Abstract
Cell identity is largely determined by its transcriptional profile. In tumour, deregulation of transcription factor expression and/or activity enables cancer cell to acquire a stem-like state characterised by capacity to self-renew, differentiate and form tumours in vivo. These stem-like cancer cells are highly metastatic and therapy resistant, thus warranting a more complete understanding of the molecular mechanisms downstream of the transcription factors that mediate the establishment of stemness state. Here, we review recent research findings that provide a mechanistic link between the commonly deregulated transcription factors and stemness in cancer. In particular, we describe the role of master transcription factors (SOX, OCT4, NANOG, KLF, BRACHYURY, SALL, HOX, FOX and RUNX), signalling-regulated transcription factors (SMAD, β-catenin, YAP, TAZ, AP-1, NOTCH, STAT, GLI, ETS and NF-κB) and unclassified transcription factors (c-MYC, HIF, EMT transcription factors and P53) across diverse tumour types, thereby yielding a comprehensive overview identifying shared downstream targets, highlighting unique mechanisms and discussing complexities.
Collapse
Affiliation(s)
- Egle-Helene Ervin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Chao-Hui Chang
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford, OX3 7LD, United Kingdom.
| |
Collapse
|
23
|
Ingavle G, Das M. Bench to Bedside: New Therapeutic Approaches with Extracellular Vesicles and Engineered Biomaterials for Targeting Therapeutic Resistance of Cancer Stem Cells. ACS Biomater Sci Eng 2022; 8:4673-4696. [PMID: 36194142 DOI: 10.1021/acsbiomaterials.2c00484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer has recently been the second leading cause of death worldwide, trailing only cardiovascular disease. Cancer stem cells (CSCs), represented as tumor-initiating cells (TICs), are mainly liable for chemoresistance and disease relapse due to their self-renewal capability and differentiating capacity into different types of tumor cells. The intricate molecular mechanism is necessary to elucidate CSC's chemoresistance properties and cancer recurrence. Establishing efficient strategies for CSC maintenance and enrichment is essential to elucidate the mechanisms and properties of CSCs and CSC-related therapeutic measures. Current approaches are insufficient to mimic the in vivo chemical and physical conditions for the maintenance and growth of CSC and yield unreliable research results. Biomaterials are now widely used for simulating the bone marrow microenvironment. Biomaterial-based three-dimensional (3D) approaches for the enrichment of CSC provide an excellent promise for future drug discovery and elucidation of molecular mechanisms. In the future, the biomaterial-based model will contribute to a more operative and predictive CSC model for cancer therapy. Design strategies for materials, physicochemical cues, and morphology will offer a new direction for future modification and new methods for studying the CSC microenvironment and its chemoresistance property. This review highlights the critical roles of the microenvironmental cues that regulate CSC function and endow them with drug resistance properties. This review also explores the latest advancement and challenges in biomaterial-based scaffold structure for therapeutic approaches against CSC chemoresistance. Since the recent entry of extracellular vesicles (EVs), cell-derived nanostructures, have opened new avenues of investigation into this field, which, together with other more conventionally studied signaling pathways, play an important role in cell-to-cell communication. Thus, this review further explores the subject of EVs in-depth. This review also discusses possible future biomaterial and biomaterial-EV-based models that could be used to study the tumor microenvironment (TME) and will provide possible therapeutic approaches. Finally, this review concludes with potential perspectives and conclusions in this area.
Collapse
Affiliation(s)
- Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| | - Madhurima Das
- Symbiosis Centre for Stem Cell Research (SCSCR) and Symbiosis School of Biological Sciences (SSBS), SIU, Lavale, Pune 412115, India
| |
Collapse
|
24
|
Ducos B, Bensimon D, Scerbo P. Vertebrate Cell Differentiation, Evolution, and Diseases: The Vertebrate-Specific Developmental Potential Guardians VENTX/ NANOG and POU5/ OCT4 Enter the Stage. Cells 2022; 11:cells11152299. [PMID: 35892595 PMCID: PMC9331430 DOI: 10.3390/cells11152299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 01/02/2023] Open
Abstract
During vertebrate development, embryonic cells pass through a continuum of transitory pluripotent states that precede multi-lineage commitment and morphogenesis. Such states are referred to as “refractory/naïve” and “competent/formative” pluripotency. The molecular mechanisms maintaining refractory pluripotency or driving the transition to competent pluripotency, as well as the cues regulating multi-lineage commitment, are evolutionarily conserved. Vertebrate-specific “Developmental Potential Guardians” (vsDPGs; i.e., VENTX/NANOG, POU5/OCT4), together with MEK1 (MAP2K1), coordinate the pluripotency continuum, competence for multi-lineage commitment and morphogenesis in vivo. During neurulation, vsDPGs empower ectodermal cells of the neuro-epithelial border (NEB) with multipotency and ectomesenchyme potential through an “endogenous reprogramming” process, giving rise to the neural crest cells (NCCs). Furthermore, vsDPGs are expressed in undifferentiated-bipotent neuro-mesodermal progenitor cells (NMPs), which participate in posterior axis elongation and growth. Finally, vsDPGs are involved in carcinogenesis, whereby they confer selective advantage to cancer stem cells (CSCs) and therapeutic resistance. Intriguingly, the heterogenous distribution of vsDPGs in these cell types impact on cellular potential and features. Here, we summarize the findings about the role of vsDPGs during vertebrate development and their selective advantage in evolution. Our aim to present a holistic view regarding vsDPGs as facilitators of both cell plasticity/adaptability and morphological innovation/variation. Moreover, vsDPGs may also be at the heart of carcinogenesis by allowing malignant cells to escape from physiological constraints and surveillance mechanisms.
Collapse
Affiliation(s)
- Bertrand Ducos
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- High Throughput qPCR Core Facility, ENS, PSL, 46 rue d’Ulm, 75005 Paris, France
- Correspondence: (B.D.); (D.B.); (P.S.)
| | - David Bensimon
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90094, USA
- Correspondence: (B.D.); (D.B.); (P.S.)
| | - Pierluigi Scerbo
- LPENS, PSL, CNRS, 24 rue Lhomond, 75005 Paris, France
- IBENS, PSL, CNRS, 46 rue d’Ulm, 75005 Paris, France
- Correspondence: (B.D.); (D.B.); (P.S.)
| |
Collapse
|
25
|
Hussen BM, Kheder RK, Abdullah ST, Hidayat HJ, Rahman HS, Salihi A, Taheri M, Ghafouri-Fard S. Functional interplay between long non-coding RNAs and Breast CSCs. Cancer Cell Int 2022; 22:233. [PMID: 35864503 PMCID: PMC9306174 DOI: 10.1186/s12935-022-02653-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are the two most common factors in a breast cancer patient's poor prognosis. Cancer stem cells (CSCs) are tumor cells that are able to self-renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long non-coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the ability to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer development and progression. Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self-renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for overcoming lncRNA's therapeutic resistance.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil , Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq.,Medical Laboratory Science, College of Science, University of Raparin, Rania, KGR, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Zhang H, Chen P, Yan H, Fu G, Luo F, Zhang J, Zhao S, Zhai B, Yu J, Chen L, Cui H, Chen J, Huang S, Zeng J, Xu W, Wang H, Liu J. Targeting mTORC2/HDAC3 Inhibits Stemness of Liver Cancer Cells Against Glutamine Starvation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103887. [PMID: 35187863 PMCID: PMC9284171 DOI: 10.1002/advs.202103887] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 01/27/2022] [Indexed: 06/12/2023]
Abstract
Cancer cells are addicted to glutamine. However, cancer cells often suffer from glutamine starvation, which largely results from the fast growth of cancer cells and the insufficient vascularization in the interior of cancer tissues. Herein, based on clinical samples, patient-derived cells (PDCs), and cell lines, it is found that liver cancer cells display stem-like characteristics upon glutamine shortage due to maintaining the stemness of tumor initiating cells (TICs) and even promoting transformation of non-TICs into stem-like cells by glutamine starvation. Increased expression of glutamine synthetase (GS) is essential for maintaining and promoting stem-like characteristics of liver cancer cells during glutamine starvation. Mechanistically, glutamine starvation activates Rictor/mTORC2 to induce HDAC3-mediated deacetylation and stabilization of GS. Rictor is significantly correlated with the expression of GS and stem marker OCT4 at tumor site, and closely correlates with poor prognosis of hepatocellular carcinomas. Inhibiting components of mTORC2-HDAC3-GS axis decrease TICs and promote xenografts regression upon glutamine-starvation therapy. Collectively, the data provides novel insights into the role of Rictor/mTORC2-HDAC3 in reprogramming glutamine metabolism to sustain stemness of cancer cells. Targeting Rictor/HDAC3 may enhance the efficacy of glutamine-starvation therapy and limit the rapid growth and malignant progression of tumors.
Collapse
Affiliation(s)
- Hui‐Lu Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Ping Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - He‐Xin Yan
- Renji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200120China
| | - Gong‐Bo Fu
- Department of Medical OncologyAffiliated Jinling HospitalMedical School of Nanjing UniversityNanjing210093China
| | - Fei‐Fei Luo
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Jun Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Shi‐Min Zhao
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Bo Zhai
- Renji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200120China
| | - Jiang‐Hong Yu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Lin Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Hao‐Shu Cui
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Jian Chen
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Shuai Huang
- Renji HospitalSchool of MedicineShanghai Jiaotong UniversityShanghai200120China
| | - Jun Zeng
- Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
| | - Wei Xu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| | - Hong‐Yang Wang
- Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghai200433China
- National Center for Liver CancerShanghai200433China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical SciencesFudan UniversityShanghai200040China
| |
Collapse
|
27
|
Therapeutic Efficacy of Pharmacological Ascorbate on Braf Inhibitor Resistant Melanoma Cells In Vitro and In Vivo. Cells 2022; 11:cells11071229. [PMID: 35406796 PMCID: PMC8997901 DOI: 10.3390/cells11071229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022] Open
Abstract
High-dose ascorbate paradoxically acts as a pro-oxidant causing the formation of hydrogen peroxide in an oxygen dependent manner. Tumor cells (in particular melanoma cells) show an increased vulnerability to ascorbate induced reactive oxygen species (ROS). Therefore, high-dose ascorbate is a promising pharmacological approach to treating refractory melanomas, e.g., with secondary resistance to targeted BRAF inhibitor therapy. BRAF mutated melanoma cells were treated with ascorbate alone or in combination with the BRAF inhibitor vemurafenib. Viability, cell cycle, ROS production, and the protein levels of phospho-ERK1/2, GLUT-1 and HIF-1α were analyzed. To investigate the treatment in vivo, C57BL/6NCrl mice were subcutaneously injected with D4M.3A (BrafV600E) melanoma cells and treated with intraperitoneal injections of ascorbate with or without vemurafenib. BRAF mutated melanoma cell lines either sensitive or resistant to vemurafenib were susceptible to the induction of cell death by pharmacological ascorbate. Treatment of BrafV600E melanoma bearing mice with ascorbate resulted in plasma levels in the pharmacologically active range and significantly improved the therapeutic effect of vemurafenib. We conclude that intravenous high-dose ascorbate will be beneficial for melanoma patients by interfering with the tumor’s energy metabolism and can be safely combined with standard melanoma therapies such as BRAF inhibitors without pharmacological interference.
Collapse
|
28
|
Suarez-Martinez E, Suazo-Sanchez I, Celis-Romero M, Carnero A. 3D and organoid culture in research: physiology, hereditary genetic diseases and cancer. Cell Biosci 2022; 12:39. [PMID: 35365227 PMCID: PMC8973959 DOI: 10.1186/s13578-022-00775-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/13/2022] [Indexed: 02/08/2023] Open
Abstract
In nature, cells reside in tissues subject to complex cell–cell interactions, signals from extracellular molecules and niche soluble and mechanical signaling. These microenvironment interactions are responsible for cellular phenotypes and functions, especially in normal settings. However, in 2D cultures, where interactions are limited to the horizontal plane, cells are exposed uniformly to factors or drugs; therefore, this model does not reconstitute the interactions of a natural microenvironment. 3D culture systems more closely resemble the architectural and functional properties of in vivo tissues. In these 3D cultures, the cells are exposed to different concentrations of nutrients, growth factors, oxygen or cytotoxic agents depending on their localization and communication. The 3D architecture also differentially alters the physiological, biochemical, and biomechanical properties that can affect cell growth, cell survival, differentiation and morphogenesis, cell migration and EMT properties, mechanical responses and therapy resistance. This latter point may, in part, explain the failure of current therapies and affect drug discovery research. Organoids are a promising 3D culture system between 2D cultures and in vivo models that allow the manipulation of signaling pathways and genome editing of cells in a body-like environment but lack the many disadvantages of a living system. In this review, we will focus on the role of stem cells in the establishment of organoids and the possible therapeutic applications of this model, especially in the field of cancer research.
Collapse
Affiliation(s)
- Elisa Suarez-Martinez
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Suazo-Sanchez
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Celis-Romero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain.,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Av Manuel Siurot sn, 41013, Sevilla, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
29
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
30
|
Yu C, Liu Q, Wang J. A physical mechanism of heterogeneity and micro-metastasis in stem cell, cancer and cancer stem cell. J Chem Phys 2022; 156:075103. [DOI: 10.1063/5.0078196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chong Yu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, China
| | - Qiong Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China
| | - Jin Wang
- Chemistry, Physics and Astronomy, Stony Brook University, United States of America
| |
Collapse
|
31
|
Wang P, Gong S, Liao B, Pan J, Wang J, Zou D, Zhao L, Xiong S, Deng Y, Yan Q, Wu N. HIF1α/HIF2α induces glioma cell dedifferentiation into cancer stem cells through Sox2 under hypoxic conditions. J Cancer 2022; 13:1-14. [PMID: 34976166 PMCID: PMC8692689 DOI: 10.7150/jca.54402] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/04/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Our previous study showed that glioma stem-like cells could be induced to undergo dedifferentiation under hypoxic conditions, but the mechanism requires further study. HIF1α and HIF2α are the main molecules involved in the response to hypoxia, and Sox2, as a retroelement, plays an important role in the formation of induced pluripotent stem cells, especially in hypoxic microenvironments. Therefore, we performed a series of experiments to verify whether HIF1α, HIF2α and Sox2 regulated glioma cell dedifferentiation under hypoxic conditions. Materials and methods: Sphere formation by single glioma cells was observed, and CD133 and CD15 expression was compared between the normoxic and hypoxic groups. HIF1α, HIF2α, and Sox2 expression was detected using the CGGA database, and the correlation among HIF1α, HIF2α and Sox2 levels was analyzed. We knocked out HIF1α, HIF2α and Sox2 in glioma cells and cultured them under hypoxic conditions to detect CD133 and CD15 expression. The above cells were implanted into mouse brains to analyze tumor volume and survival time. Results: New spheres were formed from single glioma cells in 1% O2, but no spheres were formed in 21% O2. The cells cultured in 1% O2 highly expressed CD133 and CD15 and had a lower apoptosis rate. The CGGA database showed HIF1α and HIF2α expression in glioma. Knocking out HIF1α or HIF2α led to a decrease in CD133 and CD15 expression and inhibited sphere formation under hypoxic conditions. Moreover, tumor volume and weight decreased after HIF1α or HIF2α knockout with the same temozolomide treatment. Sox2 was also highly expressed in glioma, and there was a positive correlation between the HIF1α/HIF2α and Sox2 expression levels. Sox2 was expressed at lower levels after HIF1α or HIF2α was knocked out. Then, Sox2 was knocked out, and we found that CD133 and CD15 expression was decreased. Moreover, a lower sphere formation rate, higher apoptosis rate, lower tumor formation rate and longer survival time after temozolomide treatment were detected in the Sox2 knockout cells. Conclusion: In a hypoxic microenvironment, the HIF1α/HIF2α-Sox2 network induced the formation of glioma stem cells through the dedifferentiation of differentiated glioma cells, thus promoting glioma cell chemoresistance. This study demonstrates that both HIF1α and HIF2α, as genes upstream of Sox2, regulate the malignant progression of glioma through dedifferentiation.
Collapse
Affiliation(s)
- Pan Wang
- Chongqing Medical University, Chongqing 400016, China.,Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Sheng Gong
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Bin Liao
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Jinyu Pan
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Junwei Wang
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Dewei Zou
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Lu Zhao
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Shuanglong Xiong
- Department of Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China Correspondence: Dr. Nan Wu, mailing address: No. 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, P. R. China. Tel. and E-mail:
| | - Yangmin Deng
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Qian Yan
- Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Nan Wu
- Chongqing Medical University, Chongqing 400016, China.,Department of Neurosurgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401147, China
| |
Collapse
|
32
|
Ji F, Wang S, Shao S, Sarkar P, Xue M. Real-Time Analysis of AKT Signaling Activities at Single-Cell Resolution Using Cyclic Peptide-Based Probes. Methods Mol Biol 2022; 2394:65-80. [PMID: 35094322 DOI: 10.1007/978-1-0716-1811-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here we present a protocol for interrogating AKT signaling activities in living single cells, using a pair of cyclic peptide-based fluorescent probes. These probes are encapsulated in liposomes and delivered into cells, where they continuously report on AKT signaling activities through a Föster resonance energy transfer mechanism. We describe the use of a microwell chip to achieve single-cell resolution and demonstrate the procedure for on-chip immunostaining. Finally, we provide a method for data extraction, correction, and processing.
Collapse
Affiliation(s)
- Fei Ji
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Siwen Wang
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Shiqun Shao
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Priyanka Sarkar
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Min Xue
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
33
|
Szymonik J, Wala K, Górnicki T, Saczko J, Pencakowski B, Kulbacka J. The Impact of Iron Chelators on the Biology of Cancer Stem Cells. Int J Mol Sci 2021; 23:ijms23010089. [PMID: 35008527 PMCID: PMC8745085 DOI: 10.3390/ijms23010089] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/06/2023] Open
Abstract
Neoplastic diseases are still a major medical challenge, requiring a constant search for new therapeutic options. A serious problem of many cancers is resistance to anticancer drugs and disease progression in metastases or local recurrence. These characteristics of cancer cells may be related to the specific properties of cancer stem cells (CSC). CSCs are involved in inhibiting cells’ maturation, which is essential for maintaining their self-renewal capacity and pluripotency. They show increased expression of transcription factor proteins, which were defined as stemness-related markers. This group of proteins includes OCT4, SOX2, KLF4, Nanog, and SALL4. It has been noticed that the metabolism of cancer cells is changed, and the demand for iron is significantly increased. Iron chelators have been proven to have antitumor activity and influence the expression of stemness-related markers, thus reducing chemoresistance and the risk of tumor cell progression. This prompts further investigation of these agents as promising anticancer novel drugs. The article presents the characteristics of stemness markers and their influence on the development and course of neoplastic disease. Available iron chelators were also described, and their effects on cancer cells and expression of stemness-related markers were analyzed.
Collapse
Affiliation(s)
- Julia Szymonik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Kamila Wala
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Tomasz Górnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.S.); (K.W.); (T.G.)
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Bartosz Pencakowski
- Department of Pharmaceutical Biology and Botany, Faculty of Pharmacy, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-784-06-88
| |
Collapse
|
34
|
Resveratrol Analog 4-Bromo-Resveratrol Inhibits Gastric Cancer Stemness through the SIRT3-c-Jun N-Terminal Kinase Signaling Pathway. Curr Issues Mol Biol 2021; 44:63-72. [PMID: 35723384 PMCID: PMC8929134 DOI: 10.3390/cimb44010005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy is the treatment of choice for gastric cancer, but the currently available therapeutic drugs have limited efficacy. Studies have suggested that gastric cancer stem cells may play a key role in drug resistance in chemotherapy. Therefore, new agents that selectively target gastric cancer stem cells in gastric tumors are urgently required. Sirtuin-3 (SIRT3) is a deacetylase that regulates mitochondrial metabolic homeostasis to maintain stemness in glioma stem cells. Targeting the mitochondrial protein SIRT3 may provide a novel therapeutic option for gastric cancer treatment. However, the mechanism by which stemness is regulated through SIRT3 inhibition in gastric cancer remains unknown. We evaluated the stemness inhibition ability of the SIRT3 inhibitor 4′-bromo-resveratrol (4-BR), an analog of resveratrol in human gastric cancer cells. Our results suggested that 4-BR inhibited gastric cancer cell stemness through the SIRT3-c-Jun N-terminal kinase pathway and may aid in gastric cancer stem-cell–targeted therapy.
Collapse
|
35
|
Activating transcription factor 5 (ATF5) promotes tumorigenic capability and activates the Wnt/b-catenin pathway in bladder cancer. Cancer Cell Int 2021; 21:660. [PMID: 34895217 PMCID: PMC8665506 DOI: 10.1186/s12935-021-02315-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 01/06/2023] Open
Abstract
Background In bladder cancer, up to 70% of patients will relapse after resection within 5 years, in which the mechanism underlying the recurrence remains largely unclear. Methods Quantitative real-time PCR, western blot and immunohistochemistry were conducted. The assays of tumor sphere formation and tumor xenograft were further performed to assess the potential biological roles of ATF5 (activating transcription factor 5). Chromatin immunoprecipitation-qPCR and luciferase activity assays were carried out to explore the potential molecular mechanism. A two-tailed paired Student's t-test, χ2 test, Kaplan Meier and Cox regression analyses, and Spearman's rank correlation coefficients were used for statistical analyses. Results ATF5 is elevated in bladder urothelial cancer (BLCA) tissues, especially in recurrent BLCA, which confers a poor prognosis. Overexpressing ATF5 significantly enhanced, whereas silencing ATF5 inhibited, the capability of tumor sphere formation in bladder cancer cells. Mechanically, ATF5 could directly bind to and stimulate the promoter of DVL1 gene, resulting in activation of Wnt/β-catenin pathway. Conclusions This study provides a novel insight into a portion of the mechanism underlying high recurrence potential of BLCA, presenting ATF5 as a prognostic factor or potential therapeutic target for preventing recurrence in BLCA.
Collapse
|
36
|
Seong JB, Kim B, Kim S, Kim MH, Park YH, Lee Y, Lee HJ, Hong CW, Lee DS. Macrophage peroxiredoxin 5 deficiency promotes lung cancer progression via ROS-dependent M2-like polarization. Free Radic Biol Med 2021; 176:322-334. [PMID: 34637923 DOI: 10.1016/j.freeradbiomed.2021.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022]
Abstract
Strategies for cancer treatment have traditionally focused on suppressing cancer cell behavior, but many recent studies have demonstrated that regulating the tumor microenvironment (TME) can also inhibit disease progression. Macrophages are major TME components, and the direction of phenotype polarization is known to regulate tumor behavior, with M2-like polarization promoting progression. It is also known that reactive oxygen species (ROS) in macrophages drive M2 polarization, and M2 polarization promote lung cancer progression. Lung cancer patients with lower expression of the antioxidant enzyme peroxiredoxin 5 (Prx5) demonstrate poorer survival. This study revealed that Prx5 deficiency in macrophages induced M2 macrophage polarization by lung cancer. We report that injection of lung cancer cells produced larger tumors in Prx5-deficit mice than wild-type mice independent of cancer cell Prx5 expression. Through co-culture with lung cancer cell lines, Prx5-deficient macrophages exhibited M2 polarization, and reduced expression levels of the M1-associated inflammatory factors iNOS, TNFα, and Il-1β. Moreover, these Prx5-deficient macrophages promoted the proliferation and migration of co-cultured lung cancer cells. Conversely, suppression of ROS generation by N-acetyl cysteine (NAC) inhibited the M2-like polarization of Prx5-deficient macrophages, increased expression levels of inflammatory factors, inhibited the proliferation and migration of co-cultured lung cancer cells, and suppressed tumor growth in mice. These findings suggest that blocking the M2 polarization of macrophages may promote lung cancer regression.
Collapse
Affiliation(s)
- Jung Bae Seong
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea; National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Bokyung Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Soyoon Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Hye Kim
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, South Korea
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea; Research Institute eBiogen Inc., Seoul, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, South Korea; College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
37
|
Villasante A, Godier-Furnemont A, Hernandez-Barranco A, Coq JL, Boskovic J, Peinado H, Mora J, Samitier J, Vunjak-Novakovic G. Horizontal transfer of the stemness-related markers EZH2 and GLI1 by neuroblastoma-derived extracellular vesicles in stromal cells. Transl Res 2021; 237:82-97. [PMID: 34217898 PMCID: PMC9204390 DOI: 10.1016/j.trsl.2021.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 01/05/2023]
Abstract
Neuroblastoma (NB) is the most common extracranial pediatric solid cancer originating from undifferentiated neural crest cells. NB cells express EZH2 and GLI1 genes that are known to maintain the undifferentiated phenotype of cancer stem cells (CSC) in NB. Recent studies suggest that tumor-derived extracellular vesicles (EVs) can regulate the transformation of surrounding cells into CSC by transferring tumor-specific molecules they contain. However, the horizontal transfer of EVs molecules in NB remains largely unknown. We report the analysis of NB-derived EVs in bioengineered models of NB that are based on a collagen 1/hyaluronic acid scaffold designed to mimic the native tumor niche. Using these models, we observed an enrichment of GLI1 and EZH2 mRNAs in NB-derived EVs. As a consequence of the uptake of NB-derived EVs, the host cells increased the expression levels of GLI1 and EZH2. These results suggest the alteration of the expression profile of stromal cells through an EV-based mechanism, and point the GLI1 and EZH2 mRNAs in the EV cargo as diagnostic biomarkers in NB.
Collapse
Affiliation(s)
- Aranzazu Villasante
- Department of Biomedical Engineering, Columbia University, New York, New York,USA; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain.
| | | | - Alberto Hernandez-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Johanne Le Coq
- Electron Microscopy Unit, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Jasminka Boskovic
- Electron Microscopy Unit, Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Jaume Mora
- Oncology Department, Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, New York,USA; Department of Medicine, Columbia University, New York, New York, USA.
| |
Collapse
|
38
|
Polonio-Alcalá E, Rabionet M, Ruiz-Martínez S, Palomeras S, Porta R, Vásquez-Dongo C, Bosch-Barrera J, Puig T, Ciurana J. Polycaprolactone Electrospun Scaffolds Produce an Enrichment of Lung Cancer Stem Cells in Sensitive and Resistant EGFRm Lung Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13215320. [PMID: 34771484 PMCID: PMC8582538 DOI: 10.3390/cancers13215320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The culture of lung cancer stem cells (LCSCs) is not possible using traditional flat polystyrene surfaces. The study of these tumor-initiating cells is fundamental due to their key role in the resistance to anticancer therapies, tumor recurrence, and metastasis. Hence, we evaluated the use of polycaprolactone electrospun (PCL-ES) scaffolds for culturing LCSC population in sensitive and resistant EGFR-mutated lung adenocarcinoma models. Our findings revealed that both cell models seeded on PCL-ES structures showed a higher drug resistance, enhanced levels of several genes and proteins related to epithelial-to-mesenchymal process, stemness, and surface markers, and the activation of the Hedgehog pathway. We also determined that the non-expression of CD133 was associated with a low degree of histological differentiation, disease progression, distant metastasis, and worse overall survival in EGFR-mutated non-small cell lung cancer patients. Therefore, we confirmed PCL-ES scaffolds as a suitable three-dimensional cell culture model for the study of LCSC niche. Abstract The establishment of a three-dimensional (3D) cell culture model for lung cancer stem cells (LCSCs) is needed because the study of these stem cells is unable to be done using flat surfaces. The study of LCSCs is fundamental due to their key role in drug resistance, tumor recurrence, and metastasis. Hence, the purpose of this work is the evaluation of polycaprolactone electrospun (PCL-ES) scaffolds for culturing LCSCs in sensitive and resistant EGFR-mutated (EGFRm) lung adenocarcinoma cell models. We performed a thermal, physical, and biological characterization of 10% and 15%-PCL-ES structures. Several genes and proteins associated with LCSC features were analyzed by RT-qPCR and Western blot. Vimentin and CD133 tumor expression were evaluated in samples from 36 patients with EGFRm non-small cell lung cancer through immunohistochemistry. Our findings revealed that PC9 and PC9-GR3 models cultured on PCL-ES scaffolds showed higher resistance to osimertinib, upregulation of ABCB1, Vimentin, Snail, Twist, Sox2, Oct-4, and CD166, downregulation of E-cadherin and CD133, and the activation of Hedgehog pathway. Additionally, we determined that the non-expression of CD133 was significantly associated with a low degree of histological differentiation, disease progression, and distant metastasis. To sum up, we confirmed PCL-ES scaffolds as a suitable 3D cell culture model for the study of the LCSC niche.
Collapse
Affiliation(s)
- Emma Polonio-Alcalá
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Marc Rabionet
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Santiago Ruiz-Martínez
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Sònia Palomeras
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
| | - Rut Porta
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Medical Oncology Department, Catalan Institute of Oncology, 17007 Girona, Spain;
| | - Carmen Vásquez-Dongo
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Department of Pathology, Dr. Josep Trueta University Hospital, 17007 Girona, Spain
| | | | - Teresa Puig
- New Therapeutic Targets Laboratory (TargetsLab)-Oncology Unit, Department of Medical Sciences, Faculty of Medicine, University of Girona, 17003 Girona, Spain; (S.R.-M.); (S.P.); (R.P.); (C.V.-D.)
- Correspondence: (T.P.); (J.C.); Tel.: +34-972-419-628 (T.P.); +34-972-418-384 (J.C.)
| | - Joaquim Ciurana
- Product, Process and Production Engineering Research Group (GREP), Department of Mechanical Engineering and Industrial Construction, University of Girona, 17003 Girona, Spain; (E.P.-A.); (M.R.)
- Correspondence: (T.P.); (J.C.); Tel.: +34-972-419-628 (T.P.); +34-972-418-384 (J.C.)
| |
Collapse
|
39
|
Silva CTX, Saddi VA, Silva KSFE, Sugita DM, Guillo LA. Expression of the cancer stem cell marker OCT4 is associated with worse prognosis and survival in cutaneous melanoma. Melanoma Res 2021; 31:439-448. [PMID: 34433195 DOI: 10.1097/cmr.0000000000000767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cutaneous melanoma has an aggressive clinical presentation, showing rapid rate of growth and metastatic dissemination due to the permanence of cancer stem cells. The present study was to evaluate the expression of the self-renewal regulatory factor and the clinical significance of the transcription factor OCT4 in melanoma. Melanoma tissues were stained by immunohistochemistry and the correlation between the expression of this marker was determined through clinical-pathological variables and survival outcomes. Positive expression of nuclear and cytoplasmic OCT4 was observed in 49% and 41.2% of cases, respectively. The positive expression of nuclear OCT4 in melanoma was significantly associated with prognostic factors, such as Breslow depth, Clark's level, ulceration and metastasis. Survival of patients was 56% compared to positive nuclear OCT4 expression and 94.2% when compared to the low expression of the gene. Nuclear OCT4 positive genotype indicated aggressive tumor behavior with a worse clinical outcome, which indicates OCT4 as a useful biomarker in the prognosis of melanoma.
Collapse
Affiliation(s)
| | - Vera Aparecida Saddi
- Laboratory of Genetics and Biodiversity, Department of Environmental and Health Science, Pontifical Catholic University of Goiás
| | | | | | - Lidia Andreu Guillo
- Cell Biochemistry Laboratory, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
40
|
Sangster AB, Chang-McDonald B, Patel J, Bockett N, Paterson E, Davis PF, Tan ST. Expression of cathepsins B and D by cancer stem cells in head and neck metastatic malignant melanoma. Melanoma Res 2021; 31:426-438. [PMID: 34116545 DOI: 10.1097/cmr.0000000000000752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have previously demonstrated cancer stem cell (CSC) subpopulations in head and neck metastatic malignant melanoma (HNmMM), and the expression of components of the renin-angiotensin system (RAS) by these CSCs. Cathepsins B, D and G are involved in carcinogenesis and constitute bypass loops of the RAS. This study investigated the expression and localization of cathepsins B, D and G, in relation to these CSCs. Immunohistochemical staining demonstrated expression of cathepsins B, D and G in HNmMM sections from all 20 patients. Western blotting confirmed the presence of cathepsins B and D proteins in all six HNmMM tissue samples and four HNmMM-derived primary cell lines. RT-qPCR showed transcript expression of cathepsins B, D and G in all six HNmMM tissue samples, and cathepsins B and D but not cathepsin G in all four HNmMM-derived primary cell lines. Enzymatic activity assays demonstrated cathepsins B and D were active in all six HNmMM tissue samples. Immunofluorescence staining performed on two of the HNmMM tissue samples demonstrated expression of cathepsins B and D by the CSCs, and cathepsin G by cells within the peritumoral stroma. Our novel findings suggest the possibility of targeting these CSCs by modulation of paracrine RAS signaling.
Collapse
Affiliation(s)
| | | | - Josie Patel
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Erin Paterson
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial and Burns Unit, Hutt Hospital, Lower Hutt
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
41
|
HIF-1 recruits NANOG as a coactivator for TERT gene transcription in hypoxic breast cancer stem cells. Cell Rep 2021; 36:109757. [PMID: 34592152 DOI: 10.1016/j.celrep.2021.109757] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/07/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF-1α) is required for NANOG-mediated BCSC enrichment. Mechanistically, NANOG is recruited by HIF-1 to cooperatively activate transcription of the TERT gene encoding the telomerase reverse transcriptase that maintains telomere length, which is required for stem cell self-renewal. NANOG stimulates HIF-1 transcriptional activity by recruitment of the deubiquitinase USP9X, which inhibits HIF-1α protein degradation, and by stabilizing HIF-1α interaction with the coactivator p300, which mediates histone acetylation. Our results delineate a cooperative transcriptional mechanism by which HIF-1 and NANOG mediate BCSC self-renewal.
Collapse
|
42
|
Generali M, Satheesha S, Bode PK, Wanner D, Schäfer BW, Casanova EA. High Frequency of Tumor Propagating Cells in Fusion-Positive Rhabdomyosarcoma. Genes (Basel) 2021; 12:genes12091373. [PMID: 34573355 PMCID: PMC8469567 DOI: 10.3390/genes12091373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Fusion-positive RMS (FPRMS), expressing the PAX3/7-FOXO1, has a worse prognosis compared to the more common fusion-negative RMS (FNRMS). Although several studies reported hierarchical organization for FNRMS with the identification of cancer stem cells, the cellular organization of FPRMS is not yet clear. In this study we investigated the expression of key stem cell markers, developed a sphere assay, and investigated the seven most common FPRMS cell lines for subpopulations of tumor propagating cancer stem-like cells, also called cancer stem cells (CSCs). Moreover, loss- and gain-of-functions of the stem cell genes SOX2, OCT4, and NANOG were investigated in the same cells. Single-cell clonal analysis was performed in vitro as well as in vivo. We found that no stable CSC subpopulation could be enriched in FPRMS. Unlike depletion of PAX3-FOXO1, neither overexpression nor siRNA-mediated downregulation of SOX2, OCT4, and NANOG affected physiology of RMS cells. Every single subclone-derived cell clone initiated tumor growth in mice, despite displaying considerable heterogeneity in gene expression. FPRMS appears to contain a high frequency of tumor propagating stem-like cells, which could explain their higher propensity for metastasis and relapse. Their dependency on PAX3-FOXO1 activity reinforces the importance of the fusion protein as the key therapeutic target.
Collapse
Affiliation(s)
- Melanie Generali
- Center for Therapy Development and Good Manufacturing Practice, Institute for Regenerative Medicine (IREM), University of Zurich, 8044 Zurich, Switzerland; (M.G.); (D.W.)
| | - Sampoorna Satheesha
- Department of Oncology and Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland;
| | - Peter K. Bode
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| | - Debora Wanner
- Center for Therapy Development and Good Manufacturing Practice, Institute for Regenerative Medicine (IREM), University of Zurich, 8044 Zurich, Switzerland; (M.G.); (D.W.)
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital Zurich, 8032 Zurich, Switzerland;
- Correspondence: (B.W.S.); (E.A.C.); Tel.: +41-44-266-7553 (B.W.S.); +41-44-255-1976 (E.A.C.)
| | - Elisa A. Casanova
- Division of Trauma Surgery, Center for Clinical Research, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
- Correspondence: (B.W.S.); (E.A.C.); Tel.: +41-44-266-7553 (B.W.S.); +41-44-255-1976 (E.A.C.)
| |
Collapse
|
43
|
Oct4 confers stemness and radioresistance to head and neck squamous cell carcinoma by regulating the homologous recombination factors PSMC3IP and RAD54L. Oncogene 2021; 40:4214-4228. [PMID: 34079088 PMCID: PMC8211562 DOI: 10.1038/s41388-021-01842-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is often being diagnosed at an advanced stage, conferring a poor prognosis. The probability of local tumor control after radiotherapy depends on the eradication of cancer stem cells (CSCs) with activated DNA repair. This study provides evidence that the CSC-related transcription factor Oct4 contributes to HNSCC radioresistance by regulating DNA damage response and the CSC phenotype. Knockdown of Oct4 A isoform reduced self-renewal capacity in HNSCC and led to partial tumor cell radiosensitization caused by transcriptional downregulation of the cell cycle checkpoint kinases CHK1 and WEE1 and homologous recombination (HR) repair genes PSMC3IP and RAD54L. Besides, PARP inhibition with Olaparib selectively radiosensitized Oct4 A knockout, but not wild-type HNSCC cells. This finding links Oct4 A to the HR-mediated DNA repair mechanisms. In turn, knockdown of PSMC3IP and RAD54L reduced the HNSCC self-renewal capacity and clonogenic cell survival after irradiation, suggesting the interplay between DNA repair and the CSC phenotype. Similar to the effect of Oct4 knockdown, overexpression of Oct4 also resulted in significant HNSCC radiosensitization and increased DNA damage, suggesting that Oct4-dependent regulation of DNA repair depends on its fine-tuned expression. In line with this observation, HNSCC patients with high and low nuclear Oct4 expression at the invasive tumor front exhibited better loco-regional tumor control after postoperative radio(chemo)therapy compared to the intermediate expression subgroup. Thus, we found that the Oct4-driven transcriptional program plays a critical role in regulating HNSCC radioresistance, and a combination of radiotherapy with PARP inhibitors may induce synthetic lethality in Oct4-deregulated tumors.
Collapse
|
44
|
Biagioni A, Chillà A, Del Rosso M, Fibbi G, Scavone F, Andreucci E, Peppicelli S, Bianchini F, Calorini L, Li Santi A, Ragno P, Margheri F, Laurenzana A. CRISPR/Cas9 uPAR Gene Knockout Results in Tumor Growth Inhibition, EGFR Downregulation and Induction of Stemness Markers in Melanoma and Colon Carcinoma Cell Lines. Front Oncol 2021; 11:663225. [PMID: 34055629 PMCID: PMC8163229 DOI: 10.3389/fonc.2021.663225] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
uPAR is a globular protein, tethered to the cell membrane by a GPI-anchor involved in several cancer-related properties and its overexpression commonly correlates with poor prognosis and metastasis. We investigated the consequences of uPAR irreversible loss in human melanoma and colon cancer cell lines, knocking out its expression by CRISPR/Cas9. We analyzed through flow cytometry, western blotting and qPCR, the modulation of the most known cancer stem cells-associated genes and the EGFR while we observed the proliferation rate exploiting 2D and 3D cellular models. We also generated uPAR “rescue” expression cell lines as well as we promoted the expression of only its 3’UTR to demonstrate the involvement of uPAR mRNA in tumor progression. Knocking out PLAUR, uPAR-encoding gene, we observed an inhibited growth ratio unexpectedly coupled with a significant percentage of cells acquiring a stem-like phenotype. In vivo experiments demonstrated that uPAR loss completely abrogates tumorigenesis despite the gained stem-like profile. Nonetheless, we proved that the reintroduction of the 3’UTR of PLAUR gene was sufficient to restore the wild-type status validating the hypothesis that such a region may act as a “molecular sponge”. In particular miR146a, by binding PLAUR 3’ UTR region might be responsible for uPAR-dependent inhibition of EGFR expression.
Collapse
Affiliation(s)
- Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anastasia Chillà
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Gabriella Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Francesca Scavone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anna Li Santi
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Fisciano, Italy
| | - Francesca Margheri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| | - Anna Laurenzana
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Firenze, Italy
| |
Collapse
|
45
|
AlAbdi L, Saha D, He M, Dar MS, Utturkar SM, Sudyanti PA, McCune S, Spears BH, Breedlove JA, Lanman NA, Gowher H. Oct4-Mediated Inhibition of Lsd1 Activity Promotes the Active and Primed State of Pluripotency Enhancers. Cell Rep 2021; 30:1478-1490.e6. [PMID: 32023463 DOI: 10.1016/j.celrep.2019.11.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/30/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
An aberrant increase in pluripotency gene (PpG) expression due to enhancer reactivation could induce stemness and enhance the tumorigenicity of cancer stem cells. Silencing of PpG enhancers (PpGe) during embryonic stem cell differentiation involves Lsd1-mediated H3K4me1 demethylation and DNA methylation. Here, we observed retention of H3K4me1 and DNA hypomethylation at PpGe associated with a partial repression of PpGs in F9 embryonal carcinoma cells (ECCs) post-differentiation. H3K4me1 demethylation in F9 ECCs could not be rescued by Lsd1 overexpression. Given our observation that H3K4me1 demethylation is accompanied by strong Oct4 repression in P19 ECCs, we tested if Oct4 interaction with Lsd1 affects its catalytic activity. Our data show a dose-dependent inhibition of Lsd1 activity by Oct4 and retention of H3K4me1 at PpGe in Oct4-overexpressing P19 ECCs. These data suggest that Lsd1-Oct4 interaction in cancer stem cells could establish a "primed" enhancer state that is susceptible to reactivation, leading to aberrant PpG expression.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Debapriya Saha
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mohd Saleem Dar
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sagar M Utturkar
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Putu Ayu Sudyanti
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen McCune
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Brice H Spears
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - James A Breedlove
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nadia A Lanman
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
46
|
Healy FM, Prior IA, MacEwan DJ. The importance of Ras in drug resistance in cancer. Br J Pharmacol 2021; 179:2844-2867. [PMID: 33634485 DOI: 10.1111/bph.15420] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/19/2022] Open
Abstract
In this review, we analyse the impact of oncogenic Ras mutations in mediating cancer drug resistance and the progress made in the abrogation of this resistance, through pharmacological targeting. At a physiological level, Ras is implicated in many cellular proliferation and survival pathways. However, mutations within this small GTPase can be responsible for the initiation of cancer, therapeutic resistance and failure, and ultimately disease relapse. Often termed "undruggable," Ras is notoriously difficult to target directly, due to its structure and intrinsic activity. Thus, Ras-mediated drug resistance remains a considerable pharmacological problem. However, with advances in both analytical techniques and novel drug classes, the therapeutic landscape against Ras is changing. Allele-specific, direct Ras-targeting agents have reached clinical trials for the first time, indicating there may, at last, be hope of targeting such an elusive but significant protein for better more effective cancer therapy.
Collapse
Affiliation(s)
- Fiona M Healy
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| | - Ian A Prior
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| | - David J MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, UK
| |
Collapse
|
47
|
Chen YN, Li Y, Wei WB. Research Progress of Cancer Stem Cells in Uveal Melanoma. Onco Targets Ther 2020; 13:12243-12252. [PMID: 33273829 PMCID: PMC7708312 DOI: 10.2147/ott.s284262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Uveal melanoma is the most common malignant tumor in adult eyes, mostly in the choroid, but also in the iris and ciliary body. Distant metastasis is found in nearly half of the patients. Cancer stem cells are a kind of cells with the ability of self-renewal and multidirectional differentiation, which are related to tumor invasion and metastasis. Although the concept of cancer stem cells is relatively mature in other tumors, its existence and verification methods in uveal melanoma are still uncertain. A more in-depth understanding of cancer stem cells and their mechanism may reveal new strategies to treat uveal melanoma. This article reviews the concept of cancer stem cells and their research progress in uveal melanoma, including identification, probable markers, cancer stem cell targeted drug therapy and the controversies and prospects in this field.
Collapse
Affiliation(s)
- Yu Ning Chen
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yang Li
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wen Bin Wei
- Department of Ophthalmology, Beijing Tongren Eye Center, Beijing Key Laboratory of Intraocular Tumor Diagnosis and Treatment, Beijing Ophthalmology & Visual Sciences Key Lab, Medical Artificial Intelligence Research and Verification Key Laboratory of the Ministry of Industry and Information Technology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
48
|
Kim J. Cellular reprogramming to model and study epigenetic alterations in cancer. Stem Cell Res 2020; 49:102062. [PMID: 33202305 PMCID: PMC7768185 DOI: 10.1016/j.scr.2020.102062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
Cellular reprogramming to model human cancer. Cellular reprogramming to rewire epigenetic alterations in human cancer. Selective reactivation of malignancy in the cell lineage cancer is originated. Cellular reprogramming to recapitulate human cancer progression.
Although genetic mutations are required for cancer development, reversible non-genetic alterations also play a pivotal role in cancer progression. Failure of well-orchestrated gene regulation by chromatin states and master transcription factors can be one such non-genetic etiology for cancer development. Master transcription factor-mediated cellular reprogramming of human cancer cells allows us to model cancer progression. Here I cover the history and recent advances in reprogramming cancer cells, followed by lessons from cellular reprogramming of normal cells that may apply to cancer. Lastly, I share my perspective on cellular reprogramming for studying epigenetic alterations that have occurred in tumorigenesis, discuss the current limitations, and propose ways to overcome the obstacles in the reprogramming of cancer.
Collapse
Affiliation(s)
- Jungsun Kim
- Department of Molecular and Medical Genetics, Cancer Early Detection Advanced Research Center, Knight Cancer Institute (Cancer Biology Research Program), Oregon Health & Science University School of Medicine, KCRB 5001.51, 2720 SW Moody Ave., Portland, OR 97201, United States.
| |
Collapse
|
49
|
Cancer Stem Cells in Head and Neck Metastatic Malignant Melanoma Express Components of the Renin-Angiotensin System. Life (Basel) 2020; 10:life10110268. [PMID: 33147716 PMCID: PMC7694034 DOI: 10.3390/life10110268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Components of the renin-angiotensin system (RAS) are expressed by cancer stem cells (CSCs) in many cancer types. We here investigated expression of the RAS by the CSC subpopulations in human head and neck metastatic malignant melanoma (HNmMM) tissue samples and HNmMM-derived primary cell lines. Immunohistochemical staining demonstrated expression of pro-renin receptor (PRR), angiotensin-converting enzyme (ACE), and angiotensin II receptor 2 (AT2R) in all; renin in one; and ACE2 in none of the 20 HNmMM tissue samples. PRR was localized to cells within the tumor nests (TNs), while AT2R was expressed by cells within the TNs and the peritumoral stroma (PTS). ACE was localized to the endothelium of the tumor microvessels within the PTS. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) detected transcripts for PRR, ACE, ACE2, and AT1R, in all the five HNmMM tissue samples and four HNmMM-derived primary cell lines; renin in one tissue sample and one cell line, and AT2R in none of the five HNmMM tissue samples and cell lines. Western blotting showed variable expression of ACE, PRR, and AT2R, but not ACE2, in six HNmMM tissue samples and two HNmMM-derived primary cell lines. Immunofluorescence staining of two HNmMM tissue samples demonstrated expression of PRR and AT2R by the SOX2+ CSCs within the TNs and the OCT4+ CSCs within the PTS, with ACE localized to the endothelium of the tumor microvessels within the PTS.
Collapse
|
50
|
Zhao X, Lu H, Sun Y, Liu L, Wang H. Prognostic value of octamer binding transcription factor 4 for patients with solid tumors: A meta-analysis. Medicine (Baltimore) 2020; 99:e22804. [PMID: 33080755 PMCID: PMC7571959 DOI: 10.1097/md.0000000000022804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Octamer binding transcription factor 4 (Oct4) is critically important in the development and progression of cancer, and is considered a potential biomarker for tumor prognosis. However, the prognostic value of Oct4 in patients with solid tumors remains elusive. Herein, we conducted a meta-analysis to assess the prognostic value of Oct4 in patients with solid tumors. METHODS We conducted a literature search on PubMed, Embase, and Web of Science databases to retrieve comprehensive and eligible studies published until December 2019. The study was conducted per the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The pooled hazard ratios (HRs) with 95% confidence intervals (CIs) of overall survival (OS) and disease-free survival (DFS)/recurrence-free survival (RFS)/progress-free survival (PFS) were used to evaluate the prognostic value of Oct4 in patients with solid tumors via either random or fixed-effects models. RESULTS In total, 36 studies with 5198 patients were included in the meta-analysis. Notably, elevated Oct4 expression was associated with worse OS (pooled HR: 2.02, 95% CI: 1.55-2.62, P < .001) and DFS/RFS/PFS (pooled HR: 2.34, 95% CI: 1.88-2.92, P < .001). CONCLUSION This work demonstrated that patients with solid tumors show high expression of Oct4 which is linked to worse prognosis in patients with solid tumors including hepatocellular carcinoma (OS, DFS/RFS/PFS), esophageal squamous cell carcinoma (OS), gastric cancer (OS), cervical cancer (OS, DFS/RFS/PFS), and colorectal cancer (OS, DFS/RFS/PFS), this implicated Oct4 as a potential biomarker to predict the prognosis of tumors.
Collapse
Affiliation(s)
| | | | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College
| | - Li Liu
- Department of Epidemiology and Biostatistics, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|