1
|
Lima K, Ribas GT, Riella LV, Borges TJ. Inhibitory innate receptors and their potential role in transplantation. Transplant Rev (Orlando) 2023; 37:100776. [PMID: 37451057 DOI: 10.1016/j.trre.2023.100776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The regulatory arm of the immune system plays a crucial role in maintaining immune tolerance and preventing excessive immune responses. Immune regulation comprises various regulatory cells and molecules that work together to suppress or regulate immune responses. The programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) are examples of inhibitory receptors that counteract activating signals and fine-tune immune responses. While most of the discoveries of immune regulation have been related to T cells and the adaptive immune system, the innate arm of the immune system also has a range of inhibitory receptors that can counteract activating signals and suppress the effector immune responses. Targeting these innate inhibitory receptors may provide a complementary therapeutic approach in several immune-related conditions, including transplantation. In this review, we will explore the potential role of innate inhibitory receptors in controlling alloimmunity during solid organ transplantation.
Collapse
Affiliation(s)
- Karina Lima
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Guilherme T Ribas
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Professional and Technological Education Sector, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Leonardo V Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Sorin M, Karimi E, Rezanejad M, Yu MW, Desharnais L, McDowell SAC, Doré S, Arabzadeh A, Breton V, Fiset B, Wei Y, Rayes R, Orain M, Coulombe F, Manem VSK, Gagne A, Quail DF, Joubert P, Spicer JD, Walsh LA. Single-cell spatial landscape of immunotherapy response reveals mechanisms of CXCL13 enhanced antitumor immunity. J Immunother Cancer 2023; 11:jitc-2022-005545. [PMID: 36725085 PMCID: PMC9896310 DOI: 10.1136/jitc-2022-005545] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Immunotherapy has revolutionized clinical outcomes for patients suffering from lung cancer, yet relatively few patients sustain long-term durable responses. Recent studies have demonstrated that the tumor immune microenvironment fosters tumorous heterogeneity and mediates both disease progression and response to immune checkpoint inhibitors (ICI). As such, there is an unmet need to elucidate the spatially defined single-cell landscape of the lung cancer microenvironment to understand the mechanisms of disease progression and identify biomarkers of response to ICI. METHODS Here, in this study, we applied imaging mass cytometry to characterize the tumor and immunological landscape of immunotherapy response in non-small cell lung cancer by describing activated cell states, cellular interactions and neighborhoods associated with improved efficacy. We functionally validated our findings using preclinical mouse models of cancer treated with anti-programmed cell death protein-1 (PD-1) immune checkpoint blockade. RESULTS We resolved 114,524 single cells in 27 patients treated with ICI, enabling spatial resolution of immune lineages and activation states with distinct clinical outcomes. We demonstrated that CXCL13 expression is associated with ICI efficacy in patients, and that recombinant CXCL13 potentiates anti-PD-1 response in vivo in association with increased antigen experienced T cell subsets and reduced CCR2+ monocytes. DISCUSSION Our results provide a high-resolution molecular resource and illustrate the importance of major immune lineages as well as their functional substates in understanding the role of the tumor immune microenvironment in response to ICIs.
Collapse
Affiliation(s)
- Mark Sorin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Elham Karimi
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Morteza Rezanejad
- Department of Psychology and Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Miranda W Yu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada,Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Lysanne Desharnais
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada,Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Samuel Doré
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Azadeh Arabzadeh
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Valerie Breton
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Benoit Fiset
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Yuhong Wei
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Roni Rayes
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Michele Orain
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Quebec, Canada
| | - Francois Coulombe
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Quebec, Canada
| | - Venkata S K Manem
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Quebec, Canada
| | - Andreanne Gagne
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Quebec, Canada
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada,Department of Physiology, McGill University, Montreal, Quebec, Canada,Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Quebec, Canada
| | - Jonathan D Spicer
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada .,Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Logan A Walsh
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada .,Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Netting Gut Disease: Neutrophil Extracellular Trap in Intestinal Pathology. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5541222. [PMID: 34712384 PMCID: PMC8548149 DOI: 10.1155/2021/5541222] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/04/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022]
Abstract
Many gut disease etiologies are attributed to the presence of robust inflammatory cell recruitment. The recruitment of neutrophils plays a vital role in inflammatory infiltration. Neutrophils have various antimicrobial effector mechanisms, including phagocytosis, oxidative burst, and degranulation. It is suggested that neutrophils could release neutrophil extracellular traps (NETs) to kill pathogens. However, recent evidence indicates that neutrophil infiltration within the gut is associated with disrupted local immunological microenvironment and impaired epithelial barrier. Growing evidence implies that NETs are involved in the progression of many diseases, including cancer, diabetes, thrombosis, and autoimmune disease. Increased NET formation was found in acute or chronic conditions, including infection, sterile inflammation, cancer, and ischemia/reperfusion injury (IRI). Here, we present a comprehensive review of recent advances in the understanding of NETs, focusing on their effects in gut disease. We also discuss NETs as a potential therapeutic target in gut disease.
Collapse
|
4
|
O'Neill RS, Stoita A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol 2021; 27:4045-4087. [PMID: 34326612 PMCID: PMC8311531 DOI: 10.3748/wjg.v27.i26.4045] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer related mortality on a global scale. The disease itself is associated with a dismal prognosis, partly due to its silent nature resulting in patients presenting with advanced disease at the time of diagnosis. To combat this, there has been an explosion in the last decade of potential candidate biomarkers in the research setting in the hope that a diagnostic biomarker may provide a glimmer of hope in what is otherwise quite a substantial clinical dilemma. Currently, serum carbohydrate antigen 19-9 is utilized in the diagnostic work-up of patients diagnosed with PC however this biomarker lacks the sensitivity and specificity associated with a gold-standard marker. In the search for a biomarker that is both sensitive and specific for the diagnosis of PC, there has been a paradigm shift towards a focus on liquid biopsy and the use of diagnostic panels which has subsequently proved to have efficacy in the diagnosis of PC. Currently, promising developments in the field of early detection on PC using diagnostic biomarkers include the detection of microRNA (miRNA) in serum and circulating tumour cells. Both these modalities, although in their infancy and yet to be widely accepted into routine clinical practice, possess merit in the early detection of PC. We reviewed over 300 biomarkers with the aim to provide an in-depth summary of the current state-of-play regarding diagnostic biomarkers in PC (serum, urinary, salivary, faecal, pancreatic juice and biliary fluid).
Collapse
Affiliation(s)
- Robert S O'Neill
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| | - Alina Stoita
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| |
Collapse
|
5
|
Cui C, Lan P, Fu L. The role of myeloid-derived suppressor cells in gastrointestinal cancer. Cancer Commun (Lond) 2021; 41:442-471. [PMID: 33773092 PMCID: PMC8211353 DOI: 10.1002/cac2.12156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/09/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) cancer encompasses a range of malignancies that originate in the digestive system, which together represent the most common form of cancer diagnosed worldwide. However, despite numerous advances in both diagnostics and treatment, the incidence and mortality rate of GI cancer are on the rise. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that increase in number under certain pathological conditions, such as infection and inflammation, and this expansion is of particular relevance to cancer. MDSCs are heavily involved in the regulation of the immune system and act to dampen its response to tumors, favoring the escape of tumor cells from immunosurveillance and increasing both metastasis and recurrence. Several recent studies have supported the use of MDSCs as a prognostic and predictive biomarker in patients with cancer, and potentially as a novel treatment target. In the present review, the mechanisms underlying the immunosuppressive functions of MDSCs are described, and recent researches concerning the involvement of MDSCs in the progression, prognosis, and therapies of GI cancer are reviewed. The aim of this work was to present the development of novel treatments targeting MDSCs in GI cancer in the hope of improving outcomes for patients with this condition.
Collapse
Affiliation(s)
- Cheng Cui
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518055, P. R. China
| | - Penglin Lan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518055, P. R. China
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Centre, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
6
|
Rayes RF, Vourtzoumis P, Bou Rjeily M, Seth R, Bourdeau F, Giannias B, Berube J, Huang YH, Rousseau S, Camilleri-Broet S, Blumberg RS, Beauchemin N, Najmeh S, Cools-Lartigue J, Spicer JD, Ferri LE. Neutrophil Extracellular Trap-Associated CEACAM1 as a Putative Therapeutic Target to Prevent Metastatic Progression of Colon Carcinoma. THE JOURNAL OF IMMUNOLOGY 2020; 204:2285-2294. [PMID: 32169849 DOI: 10.4049/jimmunol.1900240] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
Neutrophils promote tumor growth and metastasis at multiple stages of cancer progression. One mechanism through which this occurs is via release of neutrophil extracellular traps (NETs). We have previously shown that NETs trap tumor cells in both the liver and the lung, increasing their adhesion and metastasis following postoperative complications. Multiple studies have since shown that NETs play a role in tumor progression and metastasis. NETs are composed of nuclear DNA-derived web-like structures decorated with neutrophil-derived proteins. However, it is unknown which, if any, of these NET-affiliated proteins is responsible for inducing the metastatic phenotype. In this study, we identify the NET-associated carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1) as an essential element for this interaction. Indeed, blocking CEACAM1 on NETs, or knocking it out in a murine model, leads to a significant decrease in colon carcinoma cell adhesion, migration and metastasis. Thus, this work identifies NET-associated CEACAM1 as a putative therapeutic target to prevent the metastatic progression of colon carcinoma.
Collapse
Affiliation(s)
- Roni F Rayes
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Phil Vourtzoumis
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Marianne Bou Rjeily
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Rashmi Seth
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - France Bourdeau
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Betty Giannias
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Julie Berube
- Meakins-Christie Laboratories, Department of Medicine, McGill University and the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Yu-Hwa Huang
- Department of Medicine, Harvard University, Boston, MA 02115
| | - Simon Rousseau
- Meakins-Christie Laboratories, Department of Medicine, McGill University and the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Sophie Camilleri-Broet
- Department of Pathology, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada; and
| | | | - Nicole Beauchemin
- Goodman Cancer Research Center, Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Sara Najmeh
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Jonathan Cools-Lartigue
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Jonathan D Spicer
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - Lorenzo E Ferri
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, Research Institute of the McGill University Health Center, Montreal, Quebec H4A 3J1, Canada;
| |
Collapse
|
7
|
Jinesh GG, Brohl AS. The genetic script of metastasis. Biol Rev Camb Philos Soc 2020; 95:244-266. [PMID: 31663259 DOI: 10.1111/brv.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 01/24/2023]
Abstract
Metastasis is a pivotal event that changes the course of cancers from benign and treatable to malignant and difficult to treat, resulting in the demise of patients. Understanding the genetic control of metastasis is thus crucial to develop efficient and sustainable targeted therapies. Here we discuss the alterations in epigenetic mechanisms, transcription, chromosomal instability, chromosome imprinting, non-coding RNAs, coding RNAs, mutant RNAs, enhancers, G-quadruplexes, and copy number variation to dissect the genetic control of metastasis. We conclude that the genetic control of metastasis is predominantly executed through epithelial to mesenchymal transition and evasion of cell death. We discuss how genetic regulatory mechanisms can be harnessed for therapeutic purposes to achieve sustainable control over cancer metastasis.
Collapse
Affiliation(s)
- Goodwin G Jinesh
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A.,Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, U.S.A
| |
Collapse
|
8
|
Wu S, Gu W. Association of T Stage and Serum CEA Levels in Determining Survival of Rectal Cancer. Front Med (Lausanne) 2020; 6:270. [PMID: 31998724 PMCID: PMC6965058 DOI: 10.3389/fmed.2019.00270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose: To investigate the association of T stage and serum carcinoembryonic antigen (CEA) levels in determining oncologic outcomes of rectal cancer. Methods: Patients diagnosed with stage I-II rectal cancer patients were identified from the Surveillance, Epidemiology, and End Results database. Results: In stage T1N0M0 disease, elevated level of serum CEA (C1) was associated with 227.6% increased risk of mortality compared to normal level of serum CEA (C0; hazard ratio = 3.276, 95% confidence interval = 2.781-3.858, P < 0.001). Conclusions: Stage T1N0M0 rectal cancer, when involved in preoperative serum CEA elevation, may be a surrogate of biologically aggressive disease and correlate with unfavorable oncologic outcomes. Moreover, this subgroup of rectal cancer deserves more clinical attention of oncologists.
Collapse
Affiliation(s)
- Shengwen Wu
- Department of General Surgery, The Affiliated Jianhu Hospital of Nantong University, Jianhu People's Hospital, Jianhu, China
| | - Wenlong Gu
- Department of Medical Oncology, The Affiliated Jianhu Hospital of Nantong University, Jianhu People's Hospital, Jianhu, China
| |
Collapse
|
9
|
Schramme F, Crosignani S, Frederix K, Hoffmann D, Pilotte L, Stroobant V, Preillon J, Driessens G, Van den Eynde BJ. Inhibition of Tryptophan-Dioxygenase Activity Increases the Antitumor Efficacy of Immune Checkpoint Inhibitors. Cancer Immunol Res 2019; 8:32-45. [PMID: 31806638 DOI: 10.1158/2326-6066.cir-19-0041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/27/2019] [Accepted: 11/15/2019] [Indexed: 11/16/2022]
Abstract
Tryptophan 2,3-dioxygenase (TDO) is an enzyme that degrades tryptophan into kynurenine and thereby induces immunosuppression. Like indoleamine 2,3-dioxygenase (IDO1), TDO is considered as a relevant drug target to improve the efficacy of cancer immunotherapy. However, its role in various immunotherapy settings has not been fully characterized. Here, we described a new small-molecule inhibitor of TDO that can modulate kynurenine and tryptophan in plasma, liver, and tumor tissue upon oral administration. We showed that this compound improved the ability of anti-CTLA4 to induce rejection of CT26 tumors expressing TDO. To better characterize TDO as a therapeutic target, we used TDO-KO mice and found that anti-CTLA4 or anti-PD1 induced rejection of MC38 tumors in TDO-KO, but not in wild-type mice. As MC38 tumors did not express TDO, we related this result to the high systemic tryptophan levels in TDO-KO mice, which lack the hepatic TDO needed to contain blood tryptophan. The antitumor effectiveness of anti-PD1 was abolished in TDO-KO mice fed on a tryptophan-low diet that normalized their blood tryptophan level. MC38 tumors expressed IDO1, which could have limited the efficacy of anti-PD1 in wild-type mice and could have been overcome in TDO-KO mice due to the high levels of tryptophan. Accordingly, treatment of mice with an IDO1 inhibitor improved the efficacy of anti-PD1 in wild-type, but not in TDO-KO, mice. These results support the clinical development of TDO inhibitors to increase the efficacy of immunotherapy of TDO-expressing tumors and suggest their effectiveness even in the absence of tumoral TDO expression.See article by Hoffmann et al., p. 19.
Collapse
Affiliation(s)
- Florence Schramme
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | | | | | - Delia Hoffmann
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium.,de Duve Institute, UCLouvain, Brussels, Belgium
| | | | | | - Benoit J Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium. .,de Duve Institute, UCLouvain, Brussels, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| |
Collapse
|
10
|
Rayes RF, Mouhanna JG, Nicolau I, Bourdeau F, Giannias B, Rousseau S, Quail D, Walsh L, Sangwan V, Bertos N, Cools-Lartigue J, Ferri LE, Spicer JD. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight 2019; 5:128008. [PMID: 31343990 DOI: 10.1172/jci.insight.128008] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Targeting the dynamic tumor immune microenvironment (TIME) can provide effective therapeutic strategies for cancer. Neutrophils are the predominant leukocyte population in mice and humans, and mounting evidence implicates these cells during tumor growth and metastasis. Neutrophil extracellular traps (NETs) are networks of extracellular neutrophil DNA fibers that are capable of binding tumor cells to support metastatic progression. Here we demonstrate for the first time that circulating NET levels are elevated in advanced esophageal, gastric and lung cancer patients compared to healthy controls. Using pre-clinical murine models of lung and colon cancer in combination with intravital video microscopy, we show that NETs functionally regulate disease progression and that blocking NETosis through multiple strategies significantly inhibits spontaneous metastasis to the lung and liver. Further, we visualize how inhibiting tumor-induced NETs decreases cancer cell adhesion to liver sinusoids following intrasplenic injection - a mechanism previously thought to be driven primarily by exogenous stimuli. Thus, in addition to neutrophil abundance, the functional contribution of NETosis within the TIME has critical translational relevance and represents a promising target to impede metastatic dissemination.
Collapse
Affiliation(s)
- Roni F Rayes
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Jack G Mouhanna
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Ioana Nicolau
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - France Bourdeau
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Betty Giannias
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Simon Rousseau
- Meakins-Christie Laboratories, Department of Medicine, McGill University and the MUHC, Montreal, Québec, Canada
| | - Daniela Quail
- Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada
| | - Logan Walsh
- Goodman Cancer Research Center, McGill University, Montreal, Québec, Canada
| | - Veena Sangwan
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Nicholas Bertos
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Jonathan Cools-Lartigue
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Lorenzo E Ferri
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| | - Jonathan D Spicer
- Cancer Research Program and the LD MacLean Surgical Research Laboratories, Department of Surgery, McGill University Health Center (MUHC), Montreal, Québec, Canada
| |
Collapse
|
11
|
Wang W, Chu HY, Zhong ZM, Qi X, Cheng R, Qin RJ, Liang J, Zhu XF, Zeng MS, Sun CZ. Platelet-secreted CCL3 and its receptor CCR5 promote invasive and migratory abilities of anaplastic thyroid carcinoma cells via MMP-1. Cell Signal 2019; 63:109363. [PMID: 31344439 DOI: 10.1016/j.cellsig.2019.109363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/28/2023]
Abstract
Platelet counts have been reported to be closely related to distant metastasis of many malignant tumors. Our previous study showed that elevated peripheral blood platelet counts may be an adverse prognostic factor of anaplastic thyroid carcinoma (ATC) patients, indicating that platelets may promote ATC progression. In the present study, we aimed to identify the role of platelets in ATC cell invasion and migration and to explore the underlying mechanisms. We found that platelets can promote the invasive and migratory of ATC cells, which may be related to the interaction between activated platelet-secreted chemokine (C-C motif) ligand 3 (CCL3) and its receptor CCR5. The interaction was shown to induce the upregulation of matrix metalloproteinase (MMP)-1 via NF-κB pathway. These findings could provide a new idea for the research of targeted platelets to inhibit tumor metastasis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Head and Neck Surgery Section II, the Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, China; Department of Oncology, Chuxiong people's Hospital, 318 Lucheng South Road, Chuxiong, China
| | - Hong-Ying Chu
- Department of Head and Neck Surgery Section II, the Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, China
| | - Zhao-Ming Zhong
- Department of Head and Neck Surgery Section II, the Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, China; Department of Medical Oncology, the First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, China
| | - Xiao Qi
- Department of Head and Neck Surgery Section II, the Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, China
| | - Rui Cheng
- Department of Head and Neck Surgery Section II, the Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, China
| | - Ru-Jia Qin
- Department of Head and Neck Surgery Section II, the Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, China
| | - Jin Liang
- Department of Medical Oncology, the First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, China
| | - Xiao-Feng Zhu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, China.
| | - Chuan-Zheng Sun
- Department of Head and Neck Surgery Section II, the Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Kunming, China.
| |
Collapse
|
12
|
Gur C, Maalouf N, Shhadeh A, Berhani O, Singer BB, Bachrach G, Mandelboim O. Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1. Oncoimmunology 2019; 8:e1581531. [PMID: 31069151 DOI: 10.1080/2162402x.2019.1581531] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 01/08/2023] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is an oral anaerobe found to be enriched in colorectal cancer (CRC). Presence of F. nucleatum in CRC has been correlated with resistance to chemotherapy and poor prognosis. We previously demonstrated that the Fap2 outer-surface protein of F. nucleatum binds and activates the human inhibitory receptor TIGIT which is expressed by T and Natural Killer (NK) cells, and inhibits anti-tumor immunity. Here we show that F. nucleatum also binds and activates the human inhibitory receptor CEACAM1 leading to inhibition of T and NK cells activities. Our results suggest that using CEACAM1 and TIGIT inhibitors and specific targeting of fusobacteria should be considered for treating fusobacteria-colonized tumors.
Collapse
Affiliation(s)
- Chamutal Gur
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, Institute for Medical Research Israel-Canada (IMRIC), Jerusalem, Israel
| | - Naseem Maalouf
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Amjad Shhadeh
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Orit Berhani
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, Institute for Medical Research Israel-Canada (IMRIC), Jerusalem, Israel
| | | | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center of General and Tumor Immunology, The Hebrew University Hadassah Medical School, Institute for Medical Research Israel-Canada (IMRIC), Jerusalem, Israel
| |
Collapse
|
13
|
Chen S, Yang L, Dong H, Guo H. Human telomerase reverse transcriptase recruits the β-catenin/TCF-4 complex to transactivate chemokine (C-C motif) ligand 2 expression in colorectal cancer. Biomed Pharmacother 2019; 112:108700. [PMID: 30970512 DOI: 10.1016/j.biopha.2019.108700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND AIM Various molecular mechanisms are involved in the pathogenesis of colorectal cancer (CRC), one of the leading fatal diseases. Although human telomerase reverse transcriptase (hTERT) is critical in promoting CRC development, its regulatory mechanism is still elusive. Chemokine (C-C motif) ligand 2 (CCL2) is important to CRC pathogenesis, but the upstream regulation of CCL2 requires further investigation. Therefore, we aim to investigate the crosstalk mechanism between hTERT and CCL2 and its involvement in the pathogenesis of CRC. METHODS The expression relationship between hTERT and CCL2 was verified in CRC and adjacent tissues by immunohistochemistry. Lentiviruses or plasmids were used to regulate hTERT and CCL2 expression. The roles of hTERT and CCL2 in cell growth and migration were studied using CCK8 and transwell assays. The interaction between hTERT and CCL2 was detected by a luciferase reporter assay, immunofluorescence and ChIP assays. The β-catenin/TCF-4 complex was confirmed by COIP. RESULTS Both hTERT and CCL2 expression levels were markedly increased in CRC tissues compared to the adjacent stroma. Moreover, myeloid-derived suppressor cells (MDSCs) were found in tumor areas with higher expression levels of hTERT and CCL2. hTERT promoted HCT116 cell migration and invasion by increasing CCL2 expression. Mechanistically, ectopic hTERT facilitated the nuclear translocation of canonical β-catenin and the formation of a complex with downstream effector TCF-4, which eventually activated the CCL2 promoter. CONCLUSIONS hTERT may promote CRC by recruiting β-catenin/TCF-4 complex to transactivate CCL2 expression, which is a novel crosstalk mechanism likely involved in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Li Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Hong Guo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
14
|
Han ZM, Huang HM, Sun YW. Effect of CEACAM-1 knockdown in human colorectal cancer cells. Oncol Lett 2018; 16:1622-1626. [PMID: 30008845 PMCID: PMC6036324 DOI: 10.3892/ol.2018.8835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 01/23/2018] [Indexed: 12/24/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1) is the major antigen of the CD66 cluster of granulocyte differentiation antigens. The present study aimed to assess the biological function of CEACAM-1 on the growth of human colorectal cancer (CRC) cells in vitro. Treatment of cultured CRC HCT-8 cells with CEACAM-1-specific siRNA successfully downregulated CEACAM-1 expression by 61% compared with control cells. The effects of CEACAM-1 downregulation on HCT-8 cell proliferation and apoptosis were then assessed via Cell Counting kit-8 assay and flow cytometry, respectively. The results demonstrated that siRNA-induced CEACAM-1 downregulation significantly inhibited proliferation and increased apoptosis, but had no significant effect on cell cycle progression in HCT-8 cells. Together, these results suggest that CEACAM-1 activity is critical to CRC growth, and thus, CEACAM-1 may be a promising therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Zhong-Min Han
- Department of Medical Technology, Zhengzhou Railway Vocational and Technical College, Zhengzhou, Henan 450052, P.R. China
| | - He-Mei Huang
- Department of Medical Technology, Zhengzhou Railway Vocational and Technical College, Zhengzhou, Henan 450052, P.R. China
| | - Yong-Wu Sun
- Department of Medical Technology, Zhengzhou Railway Vocational and Technical College, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
15
|
Yan F, Ying L, Li X, Qiao B, Meng Q, Yu L, Yuan X, Ren ST, Chan DW, Shi L, Ni P, Wang X, Xu D, Hu Y. Overexpression of the transcription factor ATF3 with a regulatory molecular signature associates with the pathogenic development of colorectal cancer. Oncotarget 2018; 8:47020-47036. [PMID: 28402947 PMCID: PMC5564541 DOI: 10.18632/oncotarget.16638] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/08/2017] [Indexed: 12/19/2022] Open
Abstract
The identification of novel biomarkers of cancer is important for improved diagnosis and prognosis. With an abundant amount of resources in the publicly available database, such as the Cancer Genome Atlas (TCGA) database, an integrative strategy is used to systematically characterize the aberrant patterns of colorectal cancer (CRC) based on RNA-Seq, chromatin immunoprecipitation sequencing (ChIP-Seq), tissue microarray (TMA), gene profiling and molecular signatures. The expression of the transcription factor ATF3 was elevated in human CRC specimens in a TMA by immunochemistry analysis compared to the adjacent normal tissues. In addition, ATF3 overexpression associated with a regulatory molecular signature, and its functions are related to the pathogenic development of CRC. Furthermore, putative ATF3 regulatory elements were identified within the promoters of ATF3 target genes and were confirmed by ChIP-Seq. Critically, in higher ATF3 expression cell lines (HCT116 and RKO) with CRISPR/Cas9 mediated ATF3 knock out, we are able to show that ATF3 target genes such as CEACAM1, DUSP14, HDC, HLF and ULBP2, are required for invasion and proliferation, and they are robustly linked with poor prognosis in CRC. Our findings have important implications for CRC tumorigenesis and may be exploited for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Feng Yan
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Le Ying
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Tea Science, Zhejiang University, Hangzhou, China
| | - Xiaofang Li
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Bin Qiao
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiaohong Meng
- Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Liang Yu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated First People's Hospital, Shanghai, China,
| | - Xiangliang Yuan
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shu-Ting Ren
- Department of Pathology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - David W Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China
| | - Liyun Shi
- Department of Microbiology and Immunology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peihua Ni
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dakang Xu
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Ageing Research, Hangzhou Normal University School of Medicine, Hangzhou, China.,Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Yiqun Hu
- Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Shu R, Xu Y, Tian Y, Zeng Y, Sun L, Gong F, Lei Y, Wang K, Luo H. Differential expression profiles of long noncoding RNA and mRNA in colorectal cancer tissues from patients with lung metastasis. Mol Med Rep 2018; 17:5666-5675. [PMID: 29436635 PMCID: PMC5866008 DOI: 10.3892/mmr.2018.8576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022] Open
Abstract
Lungs are the most common extra-abdominal site of metastasis of colorectal cancer (CRC), in which long noncoding RNA (lncRNA) may serve a role. In the present study, a high-throughput microarray assay was performed to detect lncRNA expression and identify novel targets for further study of lung metastasis in CRC. In the CRC tissues from patients with lung metastasis, 7,632 lncRNA (3,574 upregulated and 4,058 downregulated) and 6,185 mRNA (3,394 upregulated and 2,791 downregulated) were detected to be differentially expressed with a fold change ≥2 and P<0.05 compared with the CRC tissues without metastasis. A total of six differentially regulated lncRNA were confirmed by reverse transcription-quantitative polymerase chain reaction in 20 pairs of CRC samples. Furthermore, gene ontology and pathway analysis were conducted to predict the possible roles of the identified mRNA. The upregulated mRNA were associated with cell division (biological processes), protein kinase B binding (molecular functions) and cellular components. The downregulated mRNA were associated with cell adhesion, platelet-derived growth factor binding and membrane components. Pathway analysis determined that the upregulated mRNA were associated with the Wnt signaling pathway in the CRC tissues from patients with lung metastasis, while the downregulated mRNA were associated with the phosphoinositide 3-kinase/Akt signaling pathway. The results of the present study suggested that differentially expressed lncRNA may be associated with lung metastasis and may provide insights into the biology and prevention of lung metastasis.
Collapse
Affiliation(s)
- Ruo Shu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yu Xu
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yan Tian
- Kunming Engineering Technology Center of Digestive Disease, Kunming, Yunnan 650032, P.R. China
| | - Yujian Zeng
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liang Sun
- Kunming Engineering Technology Center of Digestive Disease, Kunming, Yunnan 650032, P.R. China
| | - Fangyou Gong
- Kunming Engineering Technology Center of Digestive Disease, Kunming, Yunnan 650032, P.R. China
| | - Yi Lei
- Kunming Engineering Technology Center of Digestive Disease, Kunming, Yunnan 650032, P.R. China
| | - Kunhua Wang
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Huayou Luo
- Department of Gastrointestinal and Hernia Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
17
|
Arabzadeh A, McGregor K, Breton V, Van Der Kraak L, Akavia UD, Greenwood CMT, Beauchemin N. EphA2 signaling is impacted by carcinoembryonic antigen cell adhesion molecule 1-L expression in colorectal cancer liver metastasis in a cell context-dependent manner. Oncotarget 2017; 8:104330-104346. [PMID: 29262644 PMCID: PMC5732810 DOI: 10.18632/oncotarget.22236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022] Open
Abstract
We have shown that carcinoembryonic antigen cell adhesion molecule 1 long isoform (CEACAM1-L) expression in MC38 metastatic colorectal cancer (CRC) cells results in liver metastasis inhibition via CCL2 and STAT3 signaling. But other molecular mechanisms orchestrating CEACAM1-L-mediated metastasis inhibition remain to be defined. We screened a panel of mouse and human CRC cells and evaluated their metastatic outcome after CEACAM1 overexpression or downregulation. An unbiased transcript profiling and a phospho-receptor tyrosine kinase screen comparing MC38 CEACAM1-L-expressing and non-expressing (CT) CRC cells revealed reduced ephrin type-A receptor 2 (EPHA2) expression and activity. An EPHA2-specific inhibitor reduced EPHA2 downstream signaling in CT cells similar to that in CEACAM1-L cells with decreased proliferation and migration. Human CRC patients exhibiting high CEACAM1 in combination with low EPHA2 expression benefited from longer time to first recurrence/metastasis compared to those with high EPHA2 expression. With the added interaction of CEACAM6, we denoted that CEACAM1 high- and EPHA2 low-expressing patient samples with lower CEACAM6 expression also exhibited a longer time to first recurrence/metastasis. In HT29 human CRC cells, down-regulation of CEACAM1 along with CEA and CEACAM6 up-regulation led to higher metastatic burden. Overall, CEACAM1-L expression in poorly differentiated CRC can inhibit liver metastasis through cell context-dependent EPHA2-mediated signaling. However, CEACAM1’s role should be considered in the presence of other CEACAM family members.
Collapse
Affiliation(s)
- Azadeh Arabzadeh
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Kevin McGregor
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada
| | - Valérie Breton
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Lauren Van Der Kraak
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Uri David Akavia
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Celia M T Greenwood
- Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC, Canada.,Lady Davis Institute, Jewish General Hospital, Montreal, QC, Canada.,Departments of Oncology and Human Genetics, McGill University, Montreal, QC, Canada
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada.,Departments of Medicine and Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Benedicto A, Romayor I, Arteta B. Role of liver ICAM-1 in metastasis. Oncol Lett 2017; 14:3883-3892. [PMID: 28943897 DOI: 10.3892/ol.2017.6700] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/07/2017] [Indexed: 12/15/2022] Open
Abstract
Intercellular adhesion molecule (ICAM)-1, is a transmembrane glycoprotein of the immunoglobulin (Ig)-like superfamily, consisting of five extracellular Ig-like domains, a transmembrane domain and a short cytoplasmic tail. ICAM-1 is expressed in various cell types, including endothelial cells and leukocytes, and is involved in several physiological processes. Furthermore, it has additionally been reported to be expressed in various cancer cells, including melanoma, colorectal cancer and lymphoma. The majority of studies to date have focused on the expression of the ICAM-1 on the surface of tumor cells, without research into ICAM-1 expression at sites of metastasis. Cancer cells frequently metastasize to the liver, due to its unique physiology and specialized liver sinusoid capillary network. Liver sinusoidal endothelial cells constitutively express ICAM-1, which is upregulated under inflammatory conditions. Furthermore, liver ICAM-1 may be important during the development of liver metastasis. Therefore, it is necessary to improve the understanding of the mechanisms mediated by this adhesion molecule in order to develop host-directed anticancer therapies.
Collapse
Affiliation(s)
- Aitor Benedicto
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| | - Irene Romayor
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| | - Beatriz Arteta
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of The Basque Country, UPV/EHU, Leioa, E-48940 Vizcaya, Spain
| |
Collapse
|
19
|
Zhou M, Jin Z, Liu Y, He Y, Du Y, Yang C, Wang Y, Hu J, Cui L, Gao F, Cao M. Up-regulation of carcinoembryonic antigen-related cell adhesion molecule 1 in gastrointestinal cancer and its clinical relevance. Acta Biochim Biophys Sin (Shanghai) 2017; 49:737-743. [PMID: 28655144 PMCID: PMC7109844 DOI: 10.1093/abbs/gmx060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 11/24/2022] Open
Abstract
Serum carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is dysregulated in various malignant tumors and has been associated with tumor progression. However, the expression and regulatory mechanisms of serum CEACAM1 in gastrointestinal cancer are still unclear. The expression ratio of the CEACAM1-L and CEACAM1-S isoforms has seldom been investigated in gastrointestinal cancer. In this study, we intended to explore the expression and diagnostic value of CEACAM1 in gastrointestinal cancer. Serum CEACAM1 levels were measured by enzyme-linked immunosorbent assay. The protein expression and distribution of CEACAM1 in tumors were examined by immunohistochemical staining. The expression patterns and ratio of CEACAM1-L/S were analyzed by reverse transcription-polymerase chain reaction. The results showed that serum CEACAM1 levels were significantly higher in cancer patients than in healthy controls. CEACAM1 was found in secreted forms within the neoplastic glands, and its expression was more intense at the tumor invasion front. The CEACAM1-L/S (L:S) ratios were up-regulated during tumorigenesis. Our data suggest that the serum level of CEACAM1 may be used to discriminate gastrointestinal cancer patients from health controls.
Collapse
Affiliation(s)
- Muqing Zhou
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhiming Jin
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiwen Liu
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiqing He
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yan Du
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Cuixia Yang
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yingzhi Wang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jiajie Hu
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lian Cui
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Feng Gao
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Department of Molecular Biology Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Correspondence address. Tel: +86-21-64369181; E-mail: (F.G.)/Tel: +86-21-64368564; E-mail: (M.C.)
| | - Manlin Cao
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Correspondence address. Tel: +86-21-64369181; E-mail: (F.G.)/Tel: +86-21-64368564; E-mail: (M.C.)
| |
Collapse
|
20
|
Dankner M, Gray-Owen SD, Huang YH, Blumberg RS, Beauchemin N. CEACAM1 as a multi-purpose target for cancer immunotherapy. Oncoimmunology 2017; 6:e1328336. [PMID: 28811966 PMCID: PMC5543821 DOI: 10.1080/2162402x.2017.1328336] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
CEACAM1 is an extensively studied cell surface molecule with established functions in multiple cancer types, as well as in various compartments of the immune system. Due to its multi-faceted role as a recently appreciated immune checkpoint inhibitor and tumor marker, CEACAM1 is an attractive target for cancer immunotherapy. Herein, we highlight CEACAM1's function in various immune compartments and cancer types, including in the context of metastatic disease. This review outlines CEACAM1's role as a therapeutic target for cancer treatment in light of these properties.
Collapse
Affiliation(s)
- Matthew Dankner
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yu-Hwa Huang
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology, and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Zhang Y, Cai P, Li L, Shi L, Chang P, Liang T, Yang Q, Liu Y, Wang L, Hu L. Co-expression of TIM-3 and CEACAM1 promotes T cell exhaustion in colorectal cancer patients. Int Immunopharmacol 2016; 43:210-218. [PMID: 28038383 DOI: 10.1016/j.intimp.2016.12.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022]
Abstract
T-cell immunoglobulin domain and mucin domain-3(TIM-3) is an activation induced inhibitory molecule involved in immune tolerance and is recently reported to induce T cell exhaustion which is mediated by carcinoembryonic antigen cell adhesion molecule 1(CEACAM1), another well-known molecule expressed on activated T cells and involved in T cell inhibition. To investigate the expression of TIM-3 and CEACAM1 on circulating CD8+ T cells and tumor infiltrating lymphocytes (TILs), 65 diagnosed colorectal cancer (CRC) patients and 38 healthy controls were enrolled in this study and the results showed that TIM-3 and CEACAM1 were both highly expressed on circulating CD8+ T cells in CRC patients and elevated on TILs compared with paraneoplastic T cells. Furthermore, TIM-3+CEACAM1+ CD8+ T cells represented the most dysfunctional population with the least IFN-γ production. In addition, the expressions of TIM-3 and CEACAM1 were correlated with advanced stage and could be independent risk factors for CRC. We for the first time to our knowledge suggested that co-expression of TIM-3 and CEACAM1 can mediate T cell exhaustion and may be potential biomarkers for CRC prediction, highlighting the possibility of being immunotherapy targets.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Panpan Chang
- Central Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianqian Yang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Lihua Hu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
22
|
Ding D, Yao Y, Zhang S, Su C, Zhang Y. C-type lectins facilitate tumor metastasis. Oncol Lett 2016; 13:13-21. [PMID: 28123516 PMCID: PMC5245148 DOI: 10.3892/ol.2016.5431] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Metastasis, a life-threatening complication of cancer, leads to the majority of cases of cancer-associated mortality. Unfortunately, the underlying molecular and cellular mechanisms of cancer metastasis remain to be fully elucidated. C-type lectins are a large group of proteins, which share structurally homologous carbohydrate-recognition domains (CRDs) and possess diverse physiological functions, including inflammation and antimicrobial immunity. Accumulating evidence has demonstrated the contribution of C-type lectins in different steps of the metastatic spread of cancer. Notably, a substantial proportion of C-type lectins, including selectins, mannose receptor (MR) and liver and lymph node sinusoidal endothelial cell C-type lectin, are important molecular targets for the formation of metastases in vitro and in vivo. The present review summarizes what has been found regarding C-type lectins in the lymphatic and hematogenous metastasis of cancer. An improved understanding the role of C-type lectins in cancer metastasis provides a comprehensive perspective for further clarifying the molecular mechanisms of cancer metastasis and supports the development of novel C-type lectins-based therapies the for prevention of metastasis in certain types of cancer.
Collapse
Affiliation(s)
- Dongbing Ding
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Yao Yao
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Songbai Zhang
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Chunjie Su
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| | - Yonglian Zhang
- Department of Gastrointestinal Surgery, Jingmen First People's Hospital, Jingmen, Hubei 448000, P.R. China
| |
Collapse
|
23
|
Liao YY, Tsai HC, Chou PY, Wang SW, Chen HT, Lin YM, Chiang IP, Chang TM, Hsu SK, Chou MC, Tang CH, Fong YC. CCL3 promotes angiogenesis by dysregulation of miR-374b/ VEGF-A axis in human osteosarcoma cells. Oncotarget 2016; 7:4310-25. [PMID: 26713602 PMCID: PMC4826207 DOI: 10.18632/oncotarget.6708] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/05/2015] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is the most frequent bone tumor, characterized by a high metastatic potential. However, the crosstalk between chemokine (C-C motif) ligand 3 (CCL3), which facilitates tumor progression and metastasis. Vascular endothelial growth factor-A (VEGF-A), an angiogenesis inducer and a highly specific mitogen for endothelial cells, has not been well explored in human osteosarcoma. Here we demonstrate the correlation of CCL3 and VEGF-A expressions, quantified by immunohistochemistry, with the tumor stage of human osteosarcoma tissues. Furthermore, CCL3 promotes VEGF-A expression in human osteosarcoma cells that subsequently induces human endothelial progenitor cell (EPC) migration and tube formation. Phosphorylation of JNK, ERK, and p38 was found after CCL3 stimulation. In addition, JNK, ERK, and p38 inhibitors also abolished CCL3-induced VEGF-A expression and angiogenesis. We noted that CCL3 reduces the expression of miR-374b and miR-374b mimic by reversing CCL3-promoted VEGF-A expression and angiogenesis in vitro and in vivo. This study shows that CCL3 promotes VEGF-A expression and angiogenesis in human osteosarcoma cells by down-regulating miR-374b expression via JNK, ERK, and p38 signaling pathways. Thus, CCL3 may be a new molecular therapeutic target in osteosarcoma angiogenesis and metastasis.
Collapse
Affiliation(s)
- Yuan-Ya Liao
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsiao-Chi Tsai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Pei-Yu Chou
- Department of Nursing, Hung Kuang University, Taichung, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Hsien-Te Chen
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Min Lin
- Department of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Orthopaedics, Taichung Veterans General Hospital, Taichung, Taiwan
| | - I-Ping Chiang
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Ming Chang
- Department of Orthopedic Surgery, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Shao-Keh Hsu
- Department of Orthopedic Surgery, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| |
Collapse
|
24
|
Costi R, Santi C, Bottarelli L, Azzoni C, Zarzavadjian Le Bian A, Riccó M, Sarli L, Silini EM, Violi V. Anastomotic recurrence of colon cancer: Genetic analysis challenges the widely held theories of cancerous cells' intraluminal implantation and metachronous carcinogenesis. J Surg Oncol 2016; 114:228-36. [PMID: 27158137 DOI: 10.1002/jso.24282] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/20/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Anastomotic recurrence (AR), whose etiopathogenesis is attributed to intraluminal implantation of cancerous cells or metachronous carcinogenesis, is a major issue for patients undergoing colon cancer (CC) resection. The objective of the study is to throw some light on AR etiopathogenesis and to identify risk factors of AR in selecting patients to undergo early endoscopy. METHODS An analysis of clinical and histopathological parameters, including MSI and LOH of seven sites (Myc-L, BAT26, BAT40, D5S346, D18S452, D18S64, D16S402) was performed in primary CC and AR of 18 patients. They were then compared to 36 controls not developing AR. RESULTS A genetic instability was present in 16/18 patients, with distinct genetic patterns between primaries and ARs. LOH at 5q21 and/or 18p11.23 were found in both primary and AR in >50% of cases, but this rate was no different from control population. CEA resulted as associated with AR (P = 0.03), whereas N status presented a borderline result (P = 0.08). CONCLUSIONS Our findings challenge present theories about AR development. No "genetic marker" has been found. CEA and, to a lesser extent, N status, appear associated with AR. Rectal washout is seemingly meaningless. Iterative resection should be recommended since a long survival may be expected. J. Surg. Oncol. 2016;114:228-236. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Renato Costi
- Dipartimento di Scienze Chirurgiche, Università degli Studi di Parma, Azienda Ospedaliero-Universitaria, Parma, Italia
| | - Caterina Santi
- Dipartimento di Scienze Chirurgiche, Università degli Studi di Parma, Azienda Ospedaliero-Universitaria, Parma, Italia
| | - Lorena Bottarelli
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali-S.Bi.Bi.T., Università degli Studi di Parma, Azienda Ospedaliero-Universitaria, Parma, Italia
| | - Cinzia Azzoni
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali-S.Bi.Bi.T., Università degli Studi di Parma, Azienda Ospedaliero-Universitaria, Parma, Italia
| | | | - Matteo Riccó
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali-S.Bi.Bi.T., Università degli Studi di Parma, Azienda Ospedaliero-Universitaria, Parma, Italia
| | - Leopoldo Sarli
- Dipartimento di Scienze Chirurgiche, Università degli Studi di Parma, Azienda Ospedaliero-Universitaria, Parma, Italia
| | - Enrico Maria Silini
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali-S.Bi.Bi.T., Università degli Studi di Parma, Azienda Ospedaliero-Universitaria, Parma, Italia
| | - Vincenzo Violi
- Dipartimento di Scienze Chirurgiche, Università degli Studi di Parma, Azienda Ospedaliero-Universitaria, Parma, Italia
| |
Collapse
|
25
|
Arabzadeh A, Dupaul-Chicoine J, Breton V, Haftchenary S, Yumeen S, Turbide C, Saleh M, McGregor K, Greenwood CMT, Akavia UD, Blumberg RS, Gunning PT, Beauchemin N. Carcinoembryonic Antigen Cell Adhesion Molecule 1 long isoform modulates malignancy of poorly differentiated colon cancer cells. Gut 2016; 65:821-9. [PMID: 25666195 PMCID: PMC4826327 DOI: 10.1136/gutjnl-2014-308781] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/20/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Nearly 20%-29% of patients with colorectal cancer (CRC) succumb to liver or lung metastasis and there is a dire need for novel targets to improve the survival of patients with metastasis. The long isoform of the Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1-L or CC1-L) is a key regulator of immune surveillance in primary CRC, but its role in metastasis remains largely unexplored. We have examined how CC1-L expression impacts on colon cancer liver metastasis. DESIGN Murine MC38 transfected with CC1-L were evaluated in vitro for proliferation, migration and invasion, and for in vivo experimental liver metastasis. Using shRNA silencing or pharmacological inhibition, we delineated the role in liver metastasis of Chemokine (C-C motif) Ligand 2 (CCL2) and Signal Transducer and Activator of Transcription 3 (STAT3) downstream of CC1-L. We further assessed the clinical relevance of these findings in a cohort of patients with CRC. RESULTS MC38-CC1-L-expressing cells exhibited significantly reduced in vivo liver metastasis and displayed decreased CCL2 chemokine secretion and reduced STAT3 activity. Down-modulation of CCL2 expression and pharmacological inhibition of STAT3 activity in MC38 cells led to reduced cell invasion capacity and decreased liver metastasis. The clinical relevance of our findings is illustrated by the fact that high CC1 expression in patients with CRC combined with some inflammation-regulated and STAT3-regulated genes correlate with improved 10-year survival. CONCLUSIONS CC1-L regulates inflammation and STAT3 signalling and contributes to the maintenance of a less-invasive CRC metastatic phenotype of poorly differentiated carcinomas.
Collapse
Affiliation(s)
- Azadeh Arabzadeh
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | | | - Valérie Breton
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Sina Haftchenary
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Sara Yumeen
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Claire Turbide
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Maya Saleh
- Complex Trait Group, McGill University, Montreal, Quebec, Canada
| | - Kevin McGregor
- Departments of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Celia M T Greenwood
- Departments of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Uri David Akavia
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Richard S Blumberg
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick T Gunning
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Ham B, Wang N, D'Costa Z, Fernandez MC, Bourdeau F, Auguste P, Illemann M, Eefsen RL, Høyer-Hansen G, Vainer B, Evrard M, Gao ZH, Brodt P. TNF Receptor-2 Facilitates an Immunosuppressive Microenvironment in the Liver to Promote the Colonization and Growth of Hepatic Metastases. Cancer Res 2015; 75:5235-47. [DOI: 10.1158/0008-5472.can-14-3173] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 10/07/2015] [Indexed: 11/16/2022]
|
27
|
Kaneko S, Nakatani Y, Takezaki T, Hide T, Yamashita D, Ohtsu N, Ohnishi T, Terasaka S, Houkin K, Kondo T. Ceacam1L Modulates STAT3 Signaling to Control the Proliferation of Glioblastoma-Initiating Cells. Cancer Res 2015; 75:4224-34. [PMID: 26238781 DOI: 10.1158/0008-5472.can-15-0412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/27/2015] [Indexed: 11/16/2022]
Abstract
Glioblastoma-initiating cells (GIC) are a tumorigenic cell subpopulation resistant to radiotherapy and chemotherapy, and are a likely source of recurrence. However, the basis through which GICs are maintained has yet to be elucidated in detail. We herein demonstrated that the carcinoembryonic antigen-related cell adhesion molecule Ceacam1L acts as a crucial factor in GIC maintenance and tumorigenesis by activating c-Src/STAT3 signaling. Furthermore, we showed that monomers of the cytoplasmic domain of Ceacam1L bound to c-Src and STAT3 and induced their phosphorylation, whereas oligomerization of this domain ablated this function. Our results suggest that Ceacam1L-dependent adhesion between GIC and surrounding cells play an essential role in GIC maintenance and proliferation, as mediated by signals transmitted by monomeric forms of the Ceacam1L cytoplasmic domain.
Collapse
Affiliation(s)
- Sadahiro Kaneko
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan. Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Yuka Nakatani
- Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan
| | - Tatsuya Takezaki
- Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan. Department of Neurosurgery, Kumamoto University Graduate School of Medical Science, Kumamoto, Kumamoto, Japan
| | - Takuichiro Hide
- Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan. Department of Neurosurgery, Kumamoto University Graduate School of Medical Science, Kumamoto, Kumamoto, Japan
| | - Daisuke Yamashita
- Department of Neurosurgery, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
| | - Naoki Ohtsu
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takanori Ohnishi
- Department of Neurosurgery, Ehime University Graduate School of Medicine, To-on, Ehime, Japan
| | - Shunsuke Terasaka
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Kiyohiro Houkin
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan. Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, Kobe, Hyogo, Japan.
| |
Collapse
|
28
|
Ling Y, Wang J, Wang L, Hou J, Qian P, Xiang-dong W. Roles of CEACAM1 in cell communication and signaling of lung cancer and other diseases. Cancer Metastasis Rev 2015; 34:347-57. [DOI: 10.1007/s10555-015-9569-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
29
|
Khairnar V, Duhan V, Maney SK, Honke N, Shaabani N, Pandyra AA, Seifert M, Pozdeev V, Xu HC, Sharma P, Baldin F, Marquardsen F, Merches K, Lang E, Kirschning C, Westendorf AM, Häussinger D, Lang F, Dittmer U, Küppers R, Recher M, Hardt C, Scheffrahn I, Beauchemin N, Göthert JR, Singer BB, Lang PA, Lang KS. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production. Nat Commun 2015; 6:6217. [PMID: 25692415 PMCID: PMC4346637 DOI: 10.1038/ncomms7217] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/07/2015] [Indexed: 01/03/2023] Open
Abstract
B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1−/− mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1−/− mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. Antibody responses are regulated by selective survival of B cells with proper antigen specificity. Here the authors show that CEACAM1 is critical for B-cell survival during homeostasis and antiviral responses.
Collapse
Affiliation(s)
- Vishal Khairnar
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Vikas Duhan
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Sathish Kumar Maney
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Nadine Honke
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Namir Shaabani
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Aleksandra A Pandyra
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Marc Seifert
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Virchowstrasse 173, Essen 45122, Germany
| | - Vitaly Pozdeev
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Haifeng C Xu
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Piyush Sharma
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Fabian Baldin
- Clinic for Primary Immunodeficiency, Medical Outpatient Unit and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital, Basel 4031, Switzerland
| | - Florian Marquardsen
- Clinic for Primary Immunodeficiency, Medical Outpatient Unit and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital, Basel 4031, Switzerland
| | - Katja Merches
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Department of Physiology I, University of Tuebingen, Gmelinstrasse 5, Tuebingen 72076, Germany
| | - Elisabeth Lang
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Carsten Kirschning
- Institute of Medical Microbiology, Faculty of Medicine, University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, Faculty of Medicine, University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| | - Florian Lang
- Department of Physiology I, University of Tuebingen, Gmelinstrasse 5, Tuebingen 72076, Germany
| | - Ulf Dittmer
- Institute of Virology, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Virchowstrasse 173, Essen 45122, Germany
| | - Mike Recher
- Clinic for Primary Immunodeficiency, Medical Outpatient Unit and Immunodeficiency Laboratory, Department of Biomedicine, University Hospital, Basel 4031, Switzerland
| | - Cornelia Hardt
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Inka Scheffrahn
- Clinic of Gastroenterology and Hepatology, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer Centre, Departments of Biochemistry, Medicine and Oncology, McIntyre Medical Science Building, Montreal, Quebec, Canada H3G 1Y6
| | - Joachim R Göthert
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Bernhard B Singer
- Institute of Anatomy, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany
| | - Philipp A Lang
- 1] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany [2] Department of Molecular Medicine II, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, Düsseldorf 40225, Germany
| | - Karl S Lang
- 1] Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45147, Germany [2] Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, Düsseldorf 40225, Germany
| |
Collapse
|
30
|
Gebauer F, Wicklein D, Horst J, Sundermann P, Maar H, Streichert T, Tachezy M, Izbicki JR, Bockhorn M, Schumacher U. Carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 as biomarkers in pancreatic cancer. PLoS One 2014; 9:e113023. [PMID: 25409014 PMCID: PMC4237406 DOI: 10.1371/journal.pone.0113023] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/20/2014] [Indexed: 12/24/2022] Open
Abstract
Background Aim of this study was to assess the biological function in tumor progression and metastatic process carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 in pancreatic adenocarcinoma (PDAC). Experimental Design CEACAM knock down cells were established and assessed in vitro and in a subcutaneous and intraperitoneal mouse xenograft model. Tissue and serum expression of patients with PDAC were assessed by immunohistochemistry (IHC) and by enzyme linked immunosorbent assays. Results Presence of lymph node metastasis was correlated with CEACAM 5 and 6 expression (determined by IHC) and tumor recurrence exclusively with CEACAM 6. Patients with CEACAM 5 and 6 expression showed a significantly shortened OS in Kaplan-Meier survival analyses. Elevated CEACAM6 serum values showed a correlation with distant metastasis and. Survival analysis revealed a prolonged OS for patients with low serum CEACAM 1 values. In vitro proliferation and migration capacity was increased in CEACAM knock down PDAC cells, however, mice inoculated with CEACAM knock down cells showed a prolonged overall-survival (OS). The number of spontaneous pulmonary metastasis was increased in the CEACAM knock down group. Conclusion The effects mediated by CEACAM expression in PDAC are complex, though overexpression is correlated with loco-regional aggressive tumor growth. However, loss of CEACAM can be considered as a part of epithelial-mesenchymal transition and is therefore of rather importance in the process of distant metastasis.
Collapse
Affiliation(s)
- Florian Gebauer
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Horst
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Sundermann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Streichert
- Institute of Clinical Chemistry, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
31
|
Arabzadeh A, Beauchemin N. Stromal CEACAM1 expression regulates colorectal cancer metastasis. Oncoimmunology 2014; 1:1205-1207. [PMID: 23170281 PMCID: PMC3494647 DOI: 10.4161/onci.20735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Colorectal cancer metastasis to Ceacam1-/- livers is significantly impaired, compared with wild type livers, due to decreased endothelial cell survival, reduced tumor cell proliferation, diminished immune infiltration and altered chemokine expression. Ceacam1-/- myeloid-derived suppressor cells diminish metastatic burden, as confirmed by bone marrow transplantation and adoptive transfer experiments.
Collapse
Affiliation(s)
- Azadeh Arabzadeh
- Goodman Cancer Research Centre; McGill University; Montreal, QC Canada
| | | |
Collapse
|
32
|
Macrophage trafficking as key mediator of adenine-induced kidney injury. Mediators Inflamm 2014; 2014:291024. [PMID: 25132730 PMCID: PMC4124723 DOI: 10.1155/2014/291024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/23/2014] [Accepted: 07/03/2014] [Indexed: 01/15/2023] Open
Abstract
Macrophages play a special role in the onset of several diseases, including acute and chronic kidney injuries. In this sense, tubule interstitial nephritis (TIN) represents an underestimated insult, which can be triggered by different stimuli and, in the absence of a proper regulation, can lead to fibrosis deposition. Based on this perception, we evaluated the participation of macrophage recruitment in the development of TIN. Initially, we provided adenine-enriched food to WT and searched for macrophage presence and action in the kidney. Also, a group of animals were depleted of macrophages with the clodronate liposome while receiving adenine-enriched diet. We collected blood and renal tissue from these animals and renal function, inflammation, and fibrosis were evaluated. We observed higher expression of chemokines in the kidneys of adenine-fed mice and a substantial protection when macrophages were depleted. Then, we specifically investigated the role of some key chemokines, CCR5 and CCL3, in this TIN experimental model. Interestingly, CCR5 KO and CCL3 KO animals showed less renal dysfunction and a decreased proinflammatory profile. Furthermore, in those animals, there was less profibrotic signaling. In conclusion, we can suggest that macrophage infiltration is important for the onset of renal injury in the adenine-induced TIN.
Collapse
|
33
|
Wang N, Feng Y, Wang Q, Liu S, Xiang L, Sun M, Zhang X, Liu G, Qu X, Wei F. Neutrophils infiltration in the tongue squamous cell carcinoma and its correlation with CEACAM1 expression on tumor cells. PLoS One 2014; 9:e89991. [PMID: 24587171 PMCID: PMC3937421 DOI: 10.1371/journal.pone.0089991] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/25/2014] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE The present study aimed to explore the clinical significance of neutrophils infiltration and carcinoembryonic antigen related cell adhesion molecule 1 (CEACAM1) expression in the tongue squamous cell carcinoma (TSCC), and to probe the possible relationship between them. MATERIALS AND METHODS Tissue microarray and immunohistochemistry were used to detect neutrophils density and CEACAM1 expression in 74 cases of primary TSCC specimens and 17 cases of corresponding peritumoral tissues. The relationship of CEACAM1 expression and neutrophils density with clinicopathologic parameters and cancer-related survival of TSCC patients were evaluated. The correlation between CEACAM1 expression and neutrophils density was also evaluated. Real-time quantitative transcription polymerase chain reaction (qRT-PCR) was used to explore the possible molecular mechanisms between CEACAM1 expression and neutrophils infiltration. RESULTS Immunohistochemistry evaluation revealed that there was more neutrophils infiltration in TSCC tissues than in peritumoral tissues. High neutrophil density was associated with LN metastasis (P=0.01), higher clinical stage (P=0.037) and tumor recurrence (P=0.024). CEACAM1 overexpression was also associated with lymph node metastasis (P=0.000) and higher clinical stage (P=0.001). Survival analysis revealed that both neutrophils infiltration and CEACAM1 overexpression were associated with poorer cancer-related survival of TSCC patients (P<0.05), and neutrophils infiltration was an independent prognostic factor for TSCC (P<0.05). Furthermore, overexpression of CEACAM1 was correlated with more neutrophils infiltration in TSCC tissues (P<0.01). qRT-PCR results showed that CEACAM1-4L can upregulate the mRNA expression of IL-8 and CXCL-6, which were strong chemotactic factors of neutrophils. CONCLUSION Our results demonstrated that more neutrophils infiltration and overexpression of CEACAM1 were associated with poor clinical outcomes in TSCC tissues. Overexpression of CEACAM1 on tumor cells correlated with more neutrophils infiltration to some extent through upregulating mRNA expression of IL-8 and CXCL-6.
Collapse
Affiliation(s)
- Ning Wang
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
- Department of Pathology, Medical College of Qingdao University, Qingdao, Shandong, China
- Department of Pathology, Medical College of Shandong University, Jinan, Shandong, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qingjie Wang
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Shaohua Liu
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Lei Xiang
- Department of Pathology, Medical College of Shandong University, Jinan, Shandong, China
| | - Mingxia Sun
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Xiaoying Zhang
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Guixiang Liu
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, China
- * E-mail: (XQ); (FW)
| | - Fengcai Wei
- Department of Stomatology, Qilu Hospital, and Institute of Stomatology, Shandong University, Jinan, Shandong, China
- * E-mail: (XQ); (FW)
| |
Collapse
|
34
|
Hsu CJ, Wu MH, Chen CY, Tsai CH, Hsu HC, Tang CH. AMP-activated protein kinase activation mediates CCL3-induced cell migration and matrix metalloproteinase-2 expression in human chondrosarcoma. Cell Commun Signal 2013; 11:68. [PMID: 24047437 PMCID: PMC3851317 DOI: 10.1186/1478-811x-11-68] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 09/03/2013] [Indexed: 01/26/2023] Open
Abstract
Chemokine (C-C motif) ligand 3 (CCL3), also known as macrophage inflammatory protein-1α, is a cytokine involved in inflammation and activation of polymorphonuclear leukocytes. CCL3 has been detected in infiltrating cells and tumor cells. Chondrosarcoma is a highly malignant tumor that causes distant metastasis. However, the effect of CCL3 on human chondrosarcoma metastasis is still unknown. Here, we found that CCL3 increased cellular migration and expression of matrix metalloproteinase (MMP)-2 in human chondrosarcoma cells. Pre-treatment of cells with the MMP-2 inhibitor or transfection with MMP-2 specific siRNA abolished CCL3-induced cell migration. CCL3 has been reported to exert its effects through activation of its specific receptor, CC chemokine receptor 5 (CCR5). The CCR5 and AMP-activated protein kinase (AMPK) inhibitor or siRNA also attenuated CCL3-upregulated cell motility and MMP-2 expression. CCL3-induced expression of MMP-2 and migration were also inhibited by specific inhibitors, and inactive mutants of AMPK, p38 mitogen activated protein kinase (p38 or p38-MAPK), and nuclear factor κB (NF-κB) cascades. On the other hand, CCL3 treatment demonstrably activated AMPK, p38, and NF-κB signaling pathways. Furthermore, the expression levels of CCL3, CCR5, and MMP-2 were correlated in human chondrosarcoma specimens. Taken together, our results indicate that CCL3 enhances the migratory ability of human chondrosarcoma cells by increasing MMP-2 expression via the CCR5, AMPK, p38, and NF-κB pathways.
Collapse
Affiliation(s)
- Chin-Jung Hsu
- Graduate Institute of Basic Medical Science, China Medical University, No, 91, Hsueh-Shih Road, Taichung, Taiwan.
| | | | | | | | | | | |
Collapse
|
35
|
Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 2013; 32:643-71. [DOI: 10.1007/s10555-013-9444-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Ma C, Zhao X, Han H, Tong W, Zhang Q, Qin P, Chang C, Peng B, Ying W, Qian X. N-linked glycoproteome profiling of human serum using tandem enrichment and multiple fraction concatenation. Electrophoresis 2013; 34:2440-50. [PMID: 23712678 DOI: 10.1002/elps.201200662] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/05/2013] [Accepted: 03/08/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | - Xinyuan Zhao
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Huanhuan Han
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Wei Tong
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Qi Zhang
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Peibin Qin
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Cheng Chang
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Bo Peng
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | - Wantao Ying
- State Key Laboratory of Proteomics; Beijing Proteome Research Center; Beijing Institute of Radiation Medicine; Beijing; P. R. China
| | | |
Collapse
|
37
|
Zou Y, Chen Y, Wu X, Yuan R, Cai Z, He X, Fan X, Wang L, Wu X, Lan P. CCL21 as an independent favorable prognostic factor for stage III/IV colorectal cancer. Oncol Rep 2013; 30:659-66. [PMID: 23760102 DOI: 10.3892/or.2013.2533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/28/2013] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to investigate the expression dynamics of CCL21 and its prognostic significance in human stage III/IV colorectal cancer (CRC). CCL21 expression dynamics were detected with western blotting. The expression of CCL21 in CRC tissue microarrays was examined by immunohistochemistry. The optimal cut-point of CCL21 expression was assessed by the X-tile program. The prognostic significance was analyzed using both Kaplan-Meier curves and Cox regression analysis. Western blot analysis demonstrated that CCL21 expression was comparable in the CRC and normal colorectal tissues. According to the X-tile program, the cut-point for high expression of CCL21 in CRC was determined when the CCL21 expression index was >56.1. Overexpression of CCL21 was significantly correlated with larger tumor diameter, more mucinous carcinoma or signet ring cell carcinoma and poor tumor differentiation. Patients with high expression of CCL21 had a higher overall survival rate in comparison to patients with low expression. In the multivariate Cox regression analysis, CCL21 expression was found to be an independent prognostic biomarker for CRC. ROC curves showed that CCL21 expression could improve the prognostic capability of TNM stage in stage III/IV CRC patients. High expression of CCL21 is an independent and useful biomarker for predicting longer survival of stage III/IV CRC patients.
Collapse
Affiliation(s)
- Yifeng Zou
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Van den Eynden GG, Majeed AW, Illemann M, Vermeulen PB, Bird NC, Høyer-Hansen G, Eefsen RL, Reynolds AR, Brodt P. The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications. Cancer Res 2013; 73:2031-43. [PMID: 23536564 DOI: 10.1158/0008-5472.can-12-3931] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The liver is host to many metastatic cancers, particularly colorectal cancer, for which the last 2 decades have seen major advances in diagnosis and treatment. The liver is a vital organ, and the extent of its involvement with metastatic disease is a major determinant of survival. Metastatic cells arriving in the liver via the bloodstream encounter the microenvironment of the hepatic sinusoid. The interactions of the tumor cells with hepatic sinusoidal and extrasinusoidal cells (endothelial, Kupffer, stellate, and inflammatory cells) determine their fate. The sinusoidal cells can have a dual role, sometimes fatal to the tumor cells but also facilitatory to their survival and growth. Adhesion molecules participate in these interactions and may affect their outcome. Bone marrow-derived cells and chemokines also play a part in the early battle for survival of the metastases. Once the tumor cells have arrested and survived the initial onslaught, tumors can grow within the liver in 3 distinct patterns, reflecting differing host responses, mechanisms of vascularization, and proteolytic activity. This review aims to present current knowledge of the interactions between the host liver cells and the invading metastases that has implications for the clinical course of the disease and the response to treatment.
Collapse
|
39
|
Sevko A, Umansky V. Myeloid-derived suppressor cells interact with tumors in terms of myelopoiesis, tumorigenesis and immunosuppression: thick as thieves. J Cancer 2012; 4:3-11. [PMID: 23386900 PMCID: PMC3564242 DOI: 10.7150/jca.5047] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022] Open
Abstract
Tumor progression is often associated with chronic inflammation in the tumor microenvironment, which is mediated by numerous cytokines, chemokines and growth factors produced by cancer and stroma cells. All these mediators support tumor development and immunosuppression in autocrine and/or paracrine ways. Neutralization of chronic inflammatory conditions can lead to the restoration of anti-tumor immune responses. Among stroma cells infiltrating tumors, myeloid-derived suppressor cells (MDSCs) represent one of the most important players mediating immunosuppression. These cells may not only inhibit an anti-tumor immunity but also directly stimulate tumorigenesis as well as tumor growth and expansion. Therefore, understanding the mechanisms of generation, migration to the tumor site and activation of MDSC is necessary for the development of new strategies of tumor immunotherapy.
Collapse
Affiliation(s)
- Alexandra Sevko
- Skin Cancer Unit, German Cancer Research Center, Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, 69120 Heidelberg, Germany
| | | |
Collapse
|