1
|
Fanti M, Longo VD. Nutrition, GH/IGF-1 signaling, and cancer. Endocr Relat Cancer 2024; 31:e230048. [PMID: 39166749 PMCID: PMC11771996 DOI: 10.1530/erc-23-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Cancer is the second leading cause of death in the United States and among the most prevalent diseases globally, with an incidence expected to grow because of smoking, pollution, poor dietary habits, obesity, and the rise in the older population. Given their ability to reduce risk factors, albeit with varying efficacy, nutrition and fasting could help prevent cancer and other age-related disorders. Calorie restriction (CR), various forms of intermittent fasting (IF) or periodic fasting (PF), and fasting-mimicking diets (FMDs) have been shown to improve health span, increase lifespan, and prevent or postpone cancer in rodents. The effects of specific diets and fasting regimens on aging and cancer appear to be mediated in part by the reduction in the activity of the growth hormone (GH)/insulin-like-growth-factor-I (IGF-1) axis. Nevertheless, recent data indicate that the alternation of low and normal levels of these hormones and factors may be ideal for optimizing longevity and function. Here, we review the role of nutrition, CR, and fasting/FMD on cancer, focusing on the hypothesis that the modulation of GH, IGF-1, and insulin signaling partly mediates the effect of these dietary interventions on cancer prevention.
Collapse
Affiliation(s)
- Maura Fanti
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Valter D. Longo
- Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
2
|
Mohammedali A, Biernacka K, Barker RM, Holly JMP, Perks CM. The Role of Insulin-like Growth Factor Binding Protein (IGFBP)-2 in DNA Repair and Chemoresistance in Breast Cancer Cells. Cancers (Basel) 2024; 16:2113. [PMID: 38893232 PMCID: PMC11171178 DOI: 10.3390/cancers16112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The role if insulin-like growth factor binding protein-2 (IGFBP-2) in mediating chemoresistance in breast cancer cells has been demonstrated, but the mechanism of action is unclear. This study aimed to further investigate the role of IGFBP-2 in the DNA damage response induced by etoposide in MCF-7, T47D (ER+ve), and MDA-MB-231 (ER-ve) breast cancer cell lines. In the presence or absence of etoposide, IGFBP-2 was silenced using siRNA in the ER-positive cell lines, or exogenous IGFBP-2 was added to the ER-negative MDA-MB-231 cells. Cell number and death were assessed using trypan blue dye exclusion assay, changes in abundance of proteins were monitored using Western blotting of whole cell lysates, and localization and abundance were determined using immunofluorescence and cell fractionation. Results from ER-positive cell lines demonstrated that upon exposure to etoposide, loss of IGFBP-2 enhanced cell death, and this was associated with a reduction in P-DNA-PKcs and an increase in γH2AX. Conversely, with ER-negative cells, the addition of IGFBP-2 in the presence of etoposide resulted in cell survival, an increase in P-DNA-PKcs, and a reduction in γH2AX. In summary, IGFBP-2 is a survival factor for breast cancer cells that is associated with enhancement of the DNA repair mechanism.
Collapse
Affiliation(s)
- Alaa Mohammedali
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Kalina Biernacka
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Rachel M. Barker
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| | - Jeff M. P. Holly
- Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK;
| | - Claire M. Perks
- Cancer Endocrinology Group, Learning and Research Building, Southmead Hospital, Translational Health Sciences, Bristol Medical School, Bristol BS10 5NB, UK; (A.M.); (K.B.); (R.M.B.)
| |
Collapse
|
3
|
Hurcombe JA, Barrington F, Marchetti M, Betin VM, Bowen EE, Lay AC, Ni L, Dayalan L, Pope RJ, Brinkkoetter PT, Holzenberger M, Welsh GI, Coward RJ. Contrasting consequences of podocyte insulin-like growth factor 1 receptor inhibition. iScience 2024; 27:109749. [PMID: 38706850 PMCID: PMC11068853 DOI: 10.1016/j.isci.2024.109749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/12/2023] [Accepted: 04/11/2024] [Indexed: 05/07/2024] Open
Abstract
Insulin signaling to the glomerular podocyte via the insulin receptor (IR) is critical for kidney function. In this study we show that near-complete knockout of the closely related insulin-like growth factor 1 receptor (IGF1R) in podocytes is detrimental, resulting in albuminuria in vivo and podocyte cell death in vitro. In contrast, partial podocyte IGF1R knockdown confers protection against doxorubicin-induced podocyte injury. Proteomic analysis of cultured podocytes revealed that while near-complete loss of podocyte IGF1R results in the downregulation of mitochondrial respiratory complex I and DNA damage repair proteins, partial IGF1R inhibition promotes respiratory complex expression. This suggests that altered mitochondrial function and resistance to podocyte stress depends on the level of IGF1R suppression, the latter determining whether receptor inhibition is protective or detrimental. Our work suggests that the partial suppression of podocyte IGF1R could have therapeutic benefits in treating albuminuric kidney disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lan Ni
- Bristol Renal, University of Bristol, Bristol, UK
| | | | | | - Paul T. Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | | | | |
Collapse
|
4
|
Vélez-Bonet E, Gumpper-Fedus K, Cruz-Monserrate Z. Exploring the Role of Hyperinsulinemia in Obesity-Associated Tumor Development. Cancer Res 2024; 84:351-352. [PMID: 38095504 PMCID: PMC11472301 DOI: 10.1158/0008-5472.can-23-3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024]
Abstract
Although there has been a long-standing connection between hyperinsulinemia and cancer development, there is a lack of understanding of the role of the insulin receptor on cells that can become cancerous. In a recent issue of Cell Metabolism, Zhang and colleagues, using a diet-induced obesity mouse model, identified a direct function of insulin receptors on pancreatic acinar cells expressing a KRASG12D mutation in promoting obesity-associated pancreatic cancer. Furthermore, insulin receptor signaling from hyperinsulinemia promoted the secretion of digestive enzymes that contributed to acinar to ductal metaplasia. These findings highlight an important connection between obesity, diabetes, and pancreatic tumor development and suggest potential strategies for obesity-associated cancer prevention targeting the insulin receptor signaling pathways.
Collapse
Affiliation(s)
- Ericka Vélez-Bonet
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
- Program of Human Nutrition, College of Education and Human Ecology, The Ohio State University Columbus, OH
| | - Kristyn Gumpper-Fedus
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
- The James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
5
|
Liu Z, Feng C, Li C, He T, Wu G, Fu C, Li H, Shen M, Liu H. IGF-I protects porcine granulosa cells from hypoxia-induced apoptosis by promoting homologous recombination repair through the PI3K/AKT/E2F8/RAD51 pathway. FASEB J 2024; 38:e23332. [PMID: 38095232 DOI: 10.1096/fj.202301464r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Severe hypoxia induced by vascular compromise (ovarian torsion, surgery), obliteration of vessels (aging, chemotherapy, particularly platinum drugs) can cause massive follicle atresia. On the other hand, hypoxia increases the occurrence of DNA double-strand breaks (DSBs) and triggers cellular damage repair mechanisms; however, if the damage is not promptly repaired, it can also induce the apoptosis program. Insulin-like growth factor-I (IGF-I) is a polypeptide hormone that plays essential roles in stimulating mammalian follicular development. Here, we report a novel role for IGF-I in protecting hypoxic GCs from apoptosis by promoting DNA repair through the homologous recombination (HR) process. Indeed, the hypoxic environment within follicles significantly inhibited the efficiency of HR-directed DNA repair. The presence of IGF-I-induced HR pathway to alleviate hypoxia-induced DNA damage and apoptosis primarily through upregulating the expression of the RAD51 recombinase. Importantly, we identified a new transcriptional regulator of RAD51, namely E2F8, which mediates the protective effects of IGF-I on hypoxic GCs by facilitating the transcriptional activation of RAD51. Furthermore, we demonstrated that the PI3K/AKT pathway is crucial for IGF-I-induced E2F8 expression, resulting in increased RAD51 expression and enhanced HR activity, which mitigates hypoxia-induced DNA damage and thereby protects against GCs apoptosis. Together, these findings define a novel mechanism of IGF-I-mediated GCs protection by activating the HR repair through the PI3K/AKT/E2F8/RAD51 pathway under hypoxia.
Collapse
Affiliation(s)
- Zhaojun Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chungang Feng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chengyu Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Tong He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Gang Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chen Fu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongmin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Shen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Honglin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
6
|
Galal MA, Alouch SS, Alsultan BS, Dahman H, Alyabis NA, Alammar SA, Aljada A. Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance. Int J Mol Sci 2023; 24:15006. [PMID: 37834454 PMCID: PMC10573852 DOI: 10.3390/ijms241915006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Samhar Samer Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Buthainah Saad Alsultan
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Nouf Abdullah Alyabis
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Sarah Ammar Alammar
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
7
|
Emerging Role of IGF-1 in Prostate Cancer: A Promising Biomarker and Therapeutic Target. Cancers (Basel) 2023; 15:cancers15041287. [PMID: 36831629 PMCID: PMC9954466 DOI: 10.3390/cancers15041287] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Prostate cancer (PCa) is a highly heterogeneous disease driven by gene alterations and microenvironmental influences. Not only enhanced serum IGF-1 but also the activation of IGF-1R and its downstream signaling components has been increasingly recognized to have a vital driving role in the development of PCa. A better understanding of IGF-1/IGF-1R activity and regulation has therefore emerged as an important subject of PCa research. IGF-1/IGF-1R signaling affects diverse biological processes in cancer cells, including promoting survival and renewal, inducing migration and spread, and promoting resistance to radiation and castration. Consequently, inhibitory reagents targeting IGF-1/IGF-1R have been developed to limit cancer development. Multiple agents targeting IGF-1/IGF-1R signaling have shown effects against tumor growth in tumor xenograft models, but further verification of their effectiveness in PCa patients in clinical trials is still needed. Combining androgen deprivation therapy or cytotoxic chemotherapeutics with IGF-1R antagonists based on reliable predictive biomarkers and developing and applying novel agents may provide more desirable outcomes. This review will summarize the contribution of IGF-1 signaling to the development of PCa and highlight the relevance of this signaling axis in potential strategies for cancer therapy.
Collapse
|
8
|
Moreira-Silva F, Henrique R, Jerónimo C. From Therapy Resistance to Targeted Therapies in Prostate Cancer. Front Oncol 2022; 12:877379. [PMID: 35686097 PMCID: PMC9170957 DOI: 10.3389/fonc.2022.877379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy among men worldwide. Although early-stage disease is curable, advanced stage PCa is mostly incurable and eventually becomes resistant to standard therapeutic options. Different genetic and epigenetic alterations are associated with the development of therapy resistant PCa, with specific players being particularly involved in this process. Therefore, identification and targeting of these molecules with selective inhibitors might result in anti-tumoral effects. Herein, we describe the mechanisms underlying therapy resistance in PCa, focusing on the most relevant molecules, aiming to enlighten the current state of targeted therapies in PCa. We suggest that selective drug targeting, either alone or in combination with standard treatment options, might improve therapeutic sensitivity of resistant PCa. Moreover, an individualized analysis of tumor biology in each PCa patient might improve treatment selection and therapeutic response, enabling better disease management.
Collapse
Affiliation(s)
- Filipa Moreira-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (He-alth Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), Porto, Portugal.,Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences of the University of Porto (ICBAS-UP), Porto, Portugal
| |
Collapse
|
9
|
Wang P, Mak VCY, Cheung LWT. Drugging IGF-1R in cancer: New insights and emerging opportunities. Genes Dis 2022; 10:199-211. [PMID: 37013053 PMCID: PMC10066341 DOI: 10.1016/j.gendis.2022.03.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
The insulin-like growth factor (IGF) axis plays important roles in cancer development and metastasis. The type 1 IGF receptor (IGF-1R) is a key member in the IGF axis and has long been recognized for its oncogenic role in multiple cancer lineages. Here we review the occurrence of IGF-1R aberrations and activation mechanisms in cancers, which justify the development of anti-IGF-1R therapies. We describe the therapeutic agents available for IGF-1R inhibition, with focuses on the recent or ongoing pre-clinical and clinical studies. These include antisense oligonucleotide, tyrosine kinase inhibitors and monoclonal antibodies which may be conjugated with cytotoxic drug. Remarkably, simultaneous targeting of IGF-1R and several other oncogenic vulnerabilities has shown early promise, highlighting the potential benefits of combination therapy. Further, we discuss the challenges in targeting IGF-1R so far and new concepts to improve therapeutic efficacy such as blockage of the nuclear translocation of IGF-1R.
Collapse
|
10
|
Wu X, Seraia E, Hatch SB, Wan X, Ebner DV, Aroldi F, Jiang Y, Ryan AJ, Bogenrieder T, Weyer-Czernilofsky U, Rieunier G, Macaulay VM. CHK1 inhibition exacerbates replication stress induced by IGF blockade. Oncogene 2022; 41:476-488. [PMID: 34773074 PMCID: PMC8782724 DOI: 10.1038/s41388-021-02080-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022]
Abstract
We recently reported that genetic or pharmacological inhibition of insulin-like growth factor receptor (IGF-1R) slows DNA replication and induces replication stress by downregulating the regulatory subunit RRM2 of ribonucleotide reductase, perturbing deoxynucleotide triphosphate (dNTP) supply. Aiming to exploit this effect in therapy we performed a compound screen in five breast cancer cell lines with IGF neutralising antibody xentuzumab. Inhibitor of checkpoint kinase CHK1 was identified as a top screen hit. Co-inhibition of IGF and CHK1 caused synergistic suppression of cell viability, cell survival and tumour growth in 2D cell culture, 3D spheroid cultures and in vivo. Investigating the mechanism of synthetic lethality, we reveal that CHK1 inhibition in IGF-1R depleted or inhibited cells further downregulated RRM2, reduced dNTP supply and profoundly delayed replication fork progression. These effects resulted in significant accumulation of unreplicated single-stranded DNA and increased cell death, indicative of replication catastrophe. Similar phenotypes were induced by IGF:WEE1 co-inhibition, also via exacerbation of RRM2 downregulation. Exogenous RRM2 expression rescued hallmarks of replication stress induced by co-inhibiting IGF with CHK1 or WEE1, identifying RRM2 as a critical target of the functional IGF:CHK1 and IGF:WEE1 interactions. These data identify novel therapeutic vulnerabilities and may inform future trials of IGF inhibitory drugs.
Collapse
Affiliation(s)
- Xiaoning Wu
- Department of Oncology, University of Oxford, Oxford, UK
| | - Elena Seraia
- Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Xiao Wan
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Daniel V Ebner
- Target Discovery Institute, University of Oxford, Oxford, UK
| | | | - Yanyan Jiang
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Anderson J Ryan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Thomas Bogenrieder
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
- AMAL Therapeutics, c/o Fondation pour Recherches Médicales, 1205 Geneva, Switzerland
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | | | - Guillaume Rieunier
- Department of Oncology, University of Oxford, Oxford, UK.
- Immunocore Ltd, Abingdon, UK.
| | | |
Collapse
|
11
|
Chesnokova V, Zonis S, Apostolou A, Estrada HQ, Knott S, Wawrowsky K, Michelsen K, Ben-Shlomo A, Barrett R, Gorbunova V, Karalis K, Melmed S. Local non-pituitary growth hormone is induced with aging and facilitates epithelial damage. Cell Rep 2021; 37:110068. [PMID: 34910915 PMCID: PMC8716125 DOI: 10.1016/j.celrep.2021.110068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Microenvironmental factors modulating age-related DNA damage are unclear. Non-pituitary growth hormone (npGH) is induced in human colon, non-transformed human colon cells, and fibroblasts, and in 3-dimensional intestinal organoids with age-associated DNA damage. Autocrine/paracrine npGH suppresses p53 and attenuates DNA damage response (DDR) by inducing TRIM29 and reducing ATM phosphorylation, leading to reduced DNA repair and DNA damage accumulation. Organoids cultured up to 4 months exhibit aging markers, p16, and SA-β-galactosidase and decreased telomere length, as well as DNA damage accumulation, with increased npGH, suppressed p53, and attenuated DDR. Suppressing GH in aged organoids increases p53 and decreases DNA damage. WT mice exhibit age-dependent colon DNA damage accumulation, while in aged mice devoid of colon GH signaling, DNA damage remains low, with elevated p53. As age-associated npGH induction enables a pro-proliferative microenvironment, abrogating npGH signaling could be targeted as anti-aging therapy by impeding DNA damage and age-related pathologies. Chesnokova et al. show that non-pituitary growth hormone (npGH) is induced in aging DNA-damaged colon epithelium and suppresses DNA damage response by attenuating the phosphorylation of DNA repair proteins. npGH induction promotes DNA damage accumulation, resulting in age-associated colon microenvironment changes. Accordingly, disrupted GH signaling in aging mice prevents accumulated DNA damage.
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Svetlana Zonis
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Athanasia Apostolou
- Emulate Inc, Boston, MA 02210, USA; Graduate Program, Department of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Hannah Q Estrada
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Medicine, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Simon Knott
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kolja Wawrowsky
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kathrin Michelsen
- Department of Medicine, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anat Ben-Shlomo
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert Barrett
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Medicine, F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
12
|
Clay DE, Fox DT. DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond. Genes (Basel) 2021; 12:1882. [PMID: 34946831 PMCID: PMC8701014 DOI: 10.3390/genes12121882] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Genome damage is a threat to all organisms. To respond to such damage, DNA damage responses (DDRs) lead to cell cycle arrest, DNA repair, and cell death. Many DDR components are highly conserved, whereas others have adapted to specific organismal needs. Immense progress in this field has been driven by model genetic organism research. This review has two main purposes. First, we provide a survey of model organism-based efforts to study DDRs. Second, we highlight how model organism study has contributed to understanding how specific DDRs are influenced by cell cycle stage. We also look forward, with a discussion of how future study can be expanded beyond typical model genetic organisms to further illuminate how the genome is protected.
Collapse
Affiliation(s)
- Delisa E. Clay
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Donald T. Fox
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
13
|
Tsakiridis EE, Broadfield L, Marcinko K, Biziotis OD, Ali A, Mekhaeil B, Ahmadi E, Singh K, Mesci A, Zacharidis PG, Anagnostopoulos AE, Berg T, Muti P, Steinberg GR, Tsakiridis T. Combined metformin-salicylate treatment provides improved anti-tumor activity and enhanced radiotherapy response in prostate cancer; drug synergy at clinically relevant doses. Transl Oncol 2021; 14:101209. [PMID: 34479029 PMCID: PMC8411238 DOI: 10.1016/j.tranon.2021.101209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/05/2022] Open
Abstract
Combined metformin + salicylate treatment has improved anti-tumor efficacy in prostate cancer. At clinically achievable doses, it induces increased metabolic stress and sensitizes tumors to radiation. Metformin + salicylate blocks pathways of de novo lipogenesis and protein synthesis. In combination with radiation suppresses HIF1a and DNA replication. This work supports clinical investigation of metformin + salicylate in combination with radiotherapy.
Background There is need for well-tolerated therapies for prostate cancer (PrCa) secondary prevention and to improve response to radiotherapy (RT). The anti-diabetic agent metformin (MET) and the aspirin metabolite salicylate (SAL) are shown to activate AMP-activated protein kinase (AMPK), suppress de novo lipogenesis (DNL), the mammalian target of rapamycin (mTOR) pathway and reduce PrCa proliferation in-vitro. The purpose of this study was to examine whether combined MET+SAL treatment could provide enhanced PrCa tumor suppression and improve response to RT. Methods Androgen-sensitive (22RV1) and resistant (PC3, DU-145) PrCa cells and PC3 xenografts were used to examine whether combined treatment with MET+SAL can provide improved anti-tumor activity compared to each agent alone in non-irradiated and irradiated PrCa cells and tumors. Mechanisms of action were investigated with analysis of signaling events, mitochondria respiration and DNL activity assays. Results We observed that PrCa cells are resistant to clinically relevant doses of MET. Combined MET + SAL treatment provides synergistic anti-proliferative activity at clinically relevant doses and enhances the anti-proliferative effects of RT. This was associated with suppression of oxygen consumption rate (OCR), activation of AMPK, suppression of acetyl-CoA carboxylase (ACC)-DNL and mTOR-p70s6k/4EBP1 and HIF1α pathways. MET + SAL reduced tumor growth in non-irradiated tumors and enhanced the effects of RT. Conclusion MET+SAL treatment suppresses PrCa cell proliferation and tumor growth and enhances responses to RT at clinically relevant doses. Since MET and SAL are safe, widely-used and inexpensive agents, these data support the investigation of MET+SAL in PrCa clinical trials alone and in combination with RT.
Collapse
Affiliation(s)
- Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lindsay Broadfield
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katarina Marcinko
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Olga-Demetra Biziotis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Amr Ali
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Bassem Mekhaeil
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Elham Ahmadi
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Kanwaldeep Singh
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Aruz Mesci
- Department of Radiation Oncology, Juravinski Cancer Center, 699 Concession Street, Hamilton, Ontario L8V 5C2, Canada
| | - Panayiotis G Zacharidis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Alexander E Anagnostopoulos
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Tobias Berg
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Paola Muti
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Theodoros Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Radiation Oncology, Juravinski Cancer Center, 699 Concession Street, Hamilton, Ontario L8V 5C2, Canada.
| |
Collapse
|
14
|
Yang C, Zhang Y, Segar N, Huang C, Zeng P, Tan X, Mao L, Chen Z, Haglund F, Larsson O, Chen Z, Lin Y. Nuclear IGF1R interacts with NuMA and regulates 53BP1‑dependent DNA double‑strand break repair in colorectal cancer. Oncol Rep 2021; 46:168. [PMID: 34165167 PMCID: PMC8250583 DOI: 10.3892/or.2021.8119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Nuclear insulin-like growth factor 1 receptor (nIGF1R) has been associated with poor overall survival and chemotherapy resistance in various types of cancer; however, the underlying mechanism remains unclear. In the present study, immunoprecipitation-coupled mass spectrometry was performed in an IGF1R-overexpressing SW480-OE colorectal cancer cell line to identify the nIGF1R interactome. Network analysis revealed 197 proteins of interest which were involved in several biological pathways, including RNA processing, DNA double-strand break (DSB) repair and SUMOylation pathways. Nuclear mitotic apparatus protein (NuMA) was identified as one of nIGF1R's colocalizing partners. Proximity ligation assay (PLA) revealed different levels of p53-binding protein 1 (53BP1)-NuMA colocalization between IGF1R-positive (R+) and IGF1R-negative (R−) mouse embryonic fibroblasts following exposure to ionizing radiation (IR). 53BP1 was retained by NuMA in the R− cells during IR-induced DNA damage. By contrast, the level of NuMA-53BP1 was markedly lower in R+ cells compared with R− cells. The present data suggested a regulatory role of nIGF1R in 53BP1-dependent DSB repair through its interaction with NuMA. Bright-field PLA analysis on a paraffin-embedded tissue microarray from patients with colorectal cancer revealed a significant association between increased nuclear colocalizing signals of NuMA-53BP1 and a shorter overall survival. These results indicate that nIGF1R plays a role in facilitating 53BP1-dependent DDR by regulating the NuMA-53BP1 interaction, which in turn might affect the clinical outcome of patients with colorectal cancer.
Collapse
Affiliation(s)
- Chen Yang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Yifan Zhang
- Department of Clinical Pathology and Cytology, Karolinska University Hospital Solna, 171 64 Solna, Stockholm, Sweden
| | - Nelly Segar
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Changhao Huang
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Pengwei Zeng
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Xiangzhou Tan
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Linfeng Mao
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Zhikang Chen
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Felix Haglund
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Olle Larsson
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan 410000, P.R. China
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
15
|
Cheng Y, Li W, Gui R, Wang C, Song J, Wang Z, Wang X, Shen Y, Wang Z, Hao L. Dual Characters of GH-IGF1 Signaling Pathways in Radiotherapy and Post-radiotherapy Repair of Cancers. Front Cell Dev Biol 2021; 9:671247. [PMID: 34178997 PMCID: PMC8220142 DOI: 10.3389/fcell.2021.671247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Radiotherapy remains one of the most important cancer treatment modalities. In the course of radiotherapy for tumor treatment, the incidental irradiation of adjacent tissues could not be completely avoided. DNA damage is one of the main factors of cell death caused by ionizing radiation, including single-strand (SSBs) and double-strand breaks (DSBs). The growth hormone-Insulin-like growth factor 1 (GH-IGF1) axis plays numerous roles in various systems by promoting cell proliferation and inhibiting apoptosis, supporting its effects in inducing the development of multiple cancers. Meanwhile, the GH-IGF1 signaling involved in DNA damage response (DDR) and DNA damage repair determines the radio-resistance of cancer cells subjected to radiotherapy and repair of adjacent tissues damaged by radiotherapy. In the present review, we firstly summarized the studies on GH-IGF1 signaling in the development of cancers. Then we discussed the adverse effect of GH-IGF1 signaling in radiotherapy to cancer cells and the favorable impact of GH-IGF1 signaling on radiation damage repair to adjacent tissues after irradiation. This review further summarized recent advances on research into the molecular mechanism of GH-IGF1 signaling pathway in these effects, expecting to specify the dual characters of GH-IGF1 signaling pathways in radiotherapy and post-radiotherapy repair of cancers, subsequently providing theoretical basis of their roles in increasing radiation sensitivity during cancer radiotherapy and repairing damage after radiotherapy.
Collapse
Affiliation(s)
- Yunyun Cheng
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wanqiao Li
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Gui
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Chunli Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Xue Wang
- The First Hospital of Jilin University, Changchun, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
16
|
Zong R, Chen X, Feng J, Xu S. IGF-1R depletion sensitizes colon cancer cell lines to radiotherapy. Cancer Biomark 2021; 32:199-206. [PMID: 34092618 DOI: 10.3233/cbm-210016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Insulin like growth factor receptor 1 (IGF-1R) has been documented to play a key role in radiation response, thereby offering an attractive drug target to enhance tumor sensitivity to radiotherapy. Here, we investigated weather knockdown of IGF-1R can sensitize colorectal cancer (CRC) cell lines to radiation. MATERIAL AND METHODS Human colon carcinoma SW480 and HT-29 cells were transfected with specific small interference RNA (siRNA) to mediate IGF-1R depletion. The expression of IGF-1R mRNA and protein among transfected and untransfected cells was detected by Western blot analysis. Changes in cell proliferation and radiosensitivity were evaluated by the clonogenic survival assay. NVP-ADW742, an IGF-1R inhibitor, in combination with radiation was studied. RAD51, a measure for homologous recombination repair, and 53BP1, a maker for non-homologous end-joining (NHEJ), were determined by immunofluorescence for double-strand breaks (DSB) repair pathways. Cell cycle was also examined in the IGF-1R knockdown and IGF-1R-inhibited cells. RESULTS CRC cell lines were selectively sensitized to radiation after siRNA-mediated IGF-1R depletion. NVP-ADW742 efficiently increases cancer cell response to radiation. Furthermore, initial formation of RAD51 foci after IR, and 53BP1 foci were significantly reduced in IGF-1R-depleted or with IGF-1R Inhibitor CRC cell lines. Lastly, IGF-1R-depleted or with IGF-1R Inhibitor caused more G2 phase cell arrest. CONCLUSION Our findings demonstrate that depletion of IGF-1R lead to an increase in radiosensitivity in CRC.
Collapse
Affiliation(s)
- Rui Zong
- First Department of Oncology Radiotherapy, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Xiaoman Chen
- Department of Oncology, Qingdao Third People's Hospital, Qingdao, Shandong, China
| | - Jingjing Feng
- Second Department of Oncology Radiotherapy, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Shan Xu
- Department of Oncology, MianYang Central Hospital, MianYang, Sichuan, China
| |
Collapse
|
17
|
EPHA2 Interacts with DNA-PK cs in Cell Nucleus and Controls Ionizing Radiation Responses in Non-Small Cell Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13051010. [PMID: 33671073 PMCID: PMC7957683 DOI: 10.3390/cancers13051010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Ephrin (EFN)/ Erythropoietin-producing human hepatocellular receptors (Eph) signaling has earlier been reported to regulate non-small cell lung cancer (NSCLC) cell survival and cell death as well as invasion and migration. Here, the role of Ephrin type-A receptor 2 (EphA2) on the DNA damage response (DDR) signaling and ionizing radiation (IR) cellular effect was studied in NSCLC cells. Silencing of EphA2 resulted in IR sensitization, with increased activation of caspase-3, PARP-1 cleavage and reduced clonogenic survival. Profiling of EphA2 expression in a NSCLC cell line panel showed a correlation to an IR refractory phenotype. EphA2 was found to be transiently and rapidly phosphorylated at Ser897 in response to IR, which was paralleled with the activation of ribosomal protein S6 kinase (RSK). Using cell fractionation, a transient increase in both total and pSer897 EphA2 in the nuclear fraction in response to IR was revealed. By immunoprecipitation and LC-MS/MS analysis of EphA2 complexes, nuclear localized EphA2 was found in a complex with DNA-PKcs. Such complex formation rapidly increased after IR but returned back to basal level within an hour. Targeting EphA2 with siRNA or by treatment with EFNA1 ligand partly reduced phosphorylation of DNA-PKcs at S2056 at early time points after IR. Thus, we report that EphA2 interacts with DNA-PKcs in the cell nucleus suggesting a novel mechanism involving the EphA2 receptor in DDR signaling and IR responsiveness.
Collapse
|
18
|
Rieunier G, Wu X, Harris LE, Mills JV, Nandakumar A, Colling L, Seraia E, Hatch SB, Ebner DV, Folkes LK, Weyer-Czernilofsky U, Bogenrieder T, Ryan AJ, Macaulay VM. Targeting IGF Perturbs Global Replication through Ribonucleotide Reductase Dysfunction. Cancer Res 2021; 81:2128-2141. [PMID: 33509941 DOI: 10.1158/0008-5472.can-20-2860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/17/2020] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
Inhibition of IGF receptor (IGF1R) delays repair of radiation-induced DNA double-strand breaks (DSB), prompting us to investigate whether IGF1R influences endogenous DNA damage. Here we demonstrate that IGF1R inhibition generates endogenous DNA lesions protected by 53BP1 bodies, indicating under-replicated DNA. In cancer cells, inhibition or depletion of IGF1R delayed replication fork progression accompanied by activation of ATR-CHK1 signaling and the intra-S-phase checkpoint. This phenotype reflected unanticipated regulation of global replication by IGF1 mediated via AKT, MEK/ERK, and JUN to influence expression of ribonucleotide reductase (RNR) subunit RRM2. Consequently, inhibition or depletion of IGF1R downregulated RRM2, compromising RNR function and perturbing dNTP supply. The resulting delay in fork progression and hallmarks of replication stress were rescued by RRM2 overexpression, confirming RRM2 as the critical factor through which IGF1 regulates replication. Suspecting existence of a backup pathway protecting from toxic sequelae of replication stress, targeted compound screens in breast cancer cells identified synergy between IGF inhibition and ATM loss. Reciprocal screens of ATM-proficient/deficient fibroblasts identified an IGF1R inhibitor as the top hit. IGF inhibition selectively compromised growth of ATM-null cells and spheroids and caused regression of ATM-null xenografts. This synthetic-lethal effect reflected conversion of single-stranded lesions in IGF-inhibited cells into toxic DSBs upon ATM inhibition. Overall, these data implicate IGF1R in alleviating replication stress, and the reciprocal IGF:ATM codependence we identify provides an approach to exploit this effect in ATM-deficient cancers. SIGNIFICANCE: This study identifies regulation of ribonucleotide reductase function and dNTP supply by IGFs and demonstrates that IGF axis blockade induces replication stress and reciprocal codependence on ATM. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2128/F1.large.jpg.
Collapse
Affiliation(s)
| | - Xiaoning Wu
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Letitia E Harris
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Jack V Mills
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ashwin Nandakumar
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Laura Colling
- Department of Oncology, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Elena Seraia
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Stephanie B Hatch
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Daniel V Ebner
- Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Lisa K Folkes
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Thomas Bogenrieder
- AMAL Therapeutics, Geneva, Switzerland
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany
| | - Anderson J Ryan
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
19
|
IGF-1 Receptor Signaling Regulates Type II Pneumocyte Senescence and Resulting Macrophage Polarization in Lung Fibrosis. Int J Radiat Oncol Biol Phys 2020; 110:526-538. [PMID: 33385497 DOI: 10.1016/j.ijrobp.2020.12.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 11/22/2022]
Abstract
PURPOSE Type II pneumocyte (alveolar epithelial cells type II [AECII]) senescence has been implicated in the progression of lung fibrosis. The capacity of senescent cells to modulate pulmonary macrophages to drive fibrosis is unexplored. Insulin-like growth factor-1 receptor (IGF-1R) signaling has been implicated as a regulator of senescence and aging. METHODS AND MATERIALS Mice with an AECII-specific deletion of IGF-1R received thoracic irradiation (n ≥ 5 per condition), and the effect of IGF-1R deficiency on radiation-induced AECII senescence and macrophage polarization to an alternatively activated phenotype (M2) was investigated. IGF-1R signaling, macrophage polarization, and senescence were evaluated in surgically resected human lung (n = 63). RESULTS IGF-1R deficient mice demonstrated reduced AECII senescence (senescent AECII/field; intact: 7.25% ± 3.5% [mean ± SD], deficient: 2.75% ± 2.8%, P = .0001), reduced accumulation of M2 macrophages (intact: 24.7 ± 2.2 cells/field, deficient: 15.5 ± 1.2 cells/field, P = .0086), and fibrosis (hydroxyproline content; intact: 71.9 ± 21.7 μg/lung, deficient: 31.7 ± 7.9, P = .0485) after irradiation. Senescent AECII enhanced M2 polarization in a paracrine fashion (relative Arg1 mRNA, 0 Gy: 1.0 ± 0.4, 17.5 Gy: 7.34 ± 0.5, P < .0001). Evaluation of surgical samples from patients treated with chemoradiation demonstrated increased expression of IGF-1 (unirradiated: 10.2% ± 4.9% area, irradiated: 15.1% ± 11.5%, P = .0377), p21 (unirradiated: 0.013 ± 0.02 histoscore, irradiated: 0.084 ± 0.09 histoscore, P = .0002), IL-13 (unirradiated: 13.7% ± 2.8% area, irradiated: 21.7% ± 3.8%, P < .0001), and M2 macrophages in fibrotic regions relative to nonfibrotic regions (unirradiated: 11.4 ± 12.2 CD163 + cells/core, irradiated: 43.1 ± 40.9 cells/core, P = .0011), consistent with findings from animal models of lung fibrosis. CONCLUSIONS This study demonstrates that senescent AECII are necessary for the progression of pulmonary fibrosis and serve as a targetable, chronic stimuli for macrophage activation in fibrotic lung.
Collapse
|
20
|
Chabot T, Cheraud Y, Fleury F. Relationships between DNA repair and RTK-mediated signaling pathways. Biochim Biophys Acta Rev Cancer 2020; 1875:188495. [PMID: 33346130 DOI: 10.1016/j.bbcan.2020.188495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/06/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
Receptor Tyrosine Kinases (RTK) are an important family involved in numerous signaling pathways essential for proliferation, cell survival, transcription or cell-cycle regulation. Their role and involvement in cancer cell survival have been widely described in the literature, and are generally associated with overexpression and/or excessive activity in the cancer pathology. Because of these characteristics, RTKs are relevant targets in the fight against cancer. In the last decade, increasingly numerous works describe the role of RTK signaling in the modulation of DNA repair, thus providing evidence of the relationship between RTKs and the protein actors in the repair pathways. In this review, we propose a summary of RTKs described as potential modulators of double-stranded DNA repair pathways in order to put forward new lines of research aimed at the implementation of new therapeutic strategies targeting both DNA repair pathways and RTK-mediated signaling pathways.
Collapse
Affiliation(s)
- Thomas Chabot
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Yvonnick Cheraud
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Fabrice Fleury
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France.
| |
Collapse
|
21
|
Shen L, Li Z, Shen L. Quantitative Tyrosine Phosphoproteomic Analysis of Resistance to Radiotherapy in Nasopharyngeal Carcinoma Cells. Cancer Manag Res 2020; 12:12667-12678. [PMID: 33328764 PMCID: PMC7733897 DOI: 10.2147/cmar.s260028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Radioresistance poses a major challenge in nasopharyngeal carcinoma (NPC) treatment. Protein tyrosine phosphorylation has emerged as a key device in the control of resistance to therapy in cancer cells. METHODS Using tandem mass tag (TMT) labeling and phospho-antibody affinity enrichment followed by high-resolution LC-MS/MS analysis, quantitative tyrosine phosphorylome analysis was performed in CNE2 (parental) and its radioresistant subline CNE2-IR. RESULTS Altogether, 233 tyrosine phosphorylation sites in 179 protein groups were identified, among which 179 sites in 140 proteins were quantified. Among the quantified proteins, 38 tyrosine phosphorylation proteins are up-regulated and 18 tyrosine phosphorylation proteins are down-regulated in CNE2-IR vs CNE2. Increased tyrosine phosphorylation in multiple receptor/protein tyrosine kinases (EPHA2, EGFR, IGF1R, ABL1 and LYN) was identified in CNE2-IR vs CNE2 cells. Intensive bioinformatic analyses revealed robust activation of multiple biological processes/pathways including E-cadherin stabilization, cell-cell adhesion, and cell junction organization in radioresistant CNE2-IR cells. Specifically, we observed that the CNE2 cells incubated with EphrinA1-Fc exhibited higher EPHA2 Y772 phosphorylation and lower E-cadherin expression, as compared with PBS control. Furthermore, an ATP-competitive EPHA2 RTK inhibitor (ALW-II-41-27, ALW) reduced EPHA2 Y772 phosphorylation and increased the expression of E-cadherin in CNE2-IR cells. Colony formation analysis showed that EFNA1 (EFNA1 is the ligand of EPHA2) treatment in CNE2 significantly promoted colony formation after 6Gy irradiation; while incubation with EPHA2 inhibitor ALW-II-41-27 in CNE2-IR cells impaired colony formation after irradiation, as compared with solvent control (DMSO). CONCLUSION In conclusion, phosphoproteomic approach allowed us to link tyrosine kinases signaling with radioresistance in NPC. Further studies are necessary to delineate the molecular function of EPHA2/E-cadherin signaling in radioresistant NPC and to explore rational combination therapy and its underlying mechanism.
Collapse
Affiliation(s)
- Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha410008, People’s Republic of China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha410008, People’s Republic of China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha410008, People’s Republic of China
| |
Collapse
|
22
|
Li Y, Lu K, Zhao B, Zeng X, Xu S, Ma X, Zhi Y. Depletion of insulin-like growth factor 1 receptor increases radiosensitivity in colorectal cancer. J Gastrointest Oncol 2020; 11:1135-1145. [PMID: 33456988 DOI: 10.21037/jgo-20-210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Although radiation therapy for advanced colorectal cancer (CRC) is very effective in some patients, treatment resistance limits its efficacy. Insulin-like growth factor 1 receptor (IGF1R) can affect tumor responsiveness and sensitivity to radiation in several cancer types. Herein, we studied the underlying function of IGF1R in the resistance of advanced CRC to radiation therapy and the possible use of drugs targeting IGF1R to overcome this resistance in patients with CRC. Methods Differences in the expression levels of the IGF1R were assessed in CRC samples from patients who were radiosensitive or radioresistant. Two radio-resistant colorectal cancer cell lines, SW480 and HT29, were selected for in vitro studies, and the involvement of the IGF1R in their radiation resistance was elucidated by suppressing its expression through a targeted siRNA and through the use of a specific IGF1R inhibitor, BMS-754807. We assessed radiosensitivity in these human CRC cells lines by examining their proliferation and colony formation, as well as cell cycle analysis. Activation of the Akt pathway was assessed using western blotting. Results Compared with tissues from radiosensitive patients, higher IGF1R expression levels were found in patients with radiation-resistant colorectal cancer, while BMS-754807 had improved radiosensitivity and reversed radiation tolerance in both colorectal cancer cell lines. Pre-treatment with BMS-754807 prior to irradiation inhibited Akt phosphorylation, induced cell cycle arrest, and increased DNA damage. Therefore, the IGF1R contributes to radiation resistance of CRC cells in vitro. Conclusions This study supports the notion that the radiosensitivity of radiation-resistant colorectal cancer cells can be enhanced by directly targeting IGF1R expression or activity. Ultimately, the combination of radiotherapy with IGF1R targeted inhibitors could potentially increase its effectiveness in the treatment of advanced colorectal cancer.
Collapse
Affiliation(s)
- Yi Li
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kui Lu
- Department of Oncology, the Second People's Hospital of Taizhou City, Taizhou, China
| | - Ben Zhao
- Division of Solid Tumor Translational Oncology, German Cancer Consortium and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Xiaokui Zeng
- Department of Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shan Xu
- Department of Radiotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Xin Ma
- Department of Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Nephrology, the First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yunqing Zhi
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Transplantation, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| |
Collapse
|
23
|
Yang C, Zhang Y, Chen Y, Ragaller F, Liu M, Corvigno S, Dahlstrand H, Carlson J, Chen Z, Näsman A, Waraky A, Lin Y, Larsson O, Haglund F. Nuclear IGF1R interact with PCNA to preserve DNA replication after DNA-damage in a variety of human cancers. PLoS One 2020; 15:e0236291. [PMID: 32701997 PMCID: PMC7377393 DOI: 10.1371/journal.pone.0236291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Nuclear IGF1R has been linked to poor outcome in cancer. We recently showed that nuclear IGF1R phosphorylates PCNA and increases DNA damage tolerance. In this paper we aimed to describe this mechanism in cancer tissue as well as in cancer cell lines. In situ proximity ligation assay identified frequent IGF1R and PCNA colocalization in many cancer types. IGF1R/PCNA colocalization was more frequently increased in tumor cells than in adjacent normal, and more prominent in areas with dysplasia and invasion. However, the interaction was often lost in tumors with poor response to neoadjuvant treatment and most metastatic lesions. In two independent cohorts of serous ovarian carcinomas and oropharyngeal squamous cell carcinomas, stronger IGF1R/PCNA colocalization was significantly associated with a higher overall survival. Ex vivo irradiation of ovarian cancer tissue acutely induced IGF1R/PCNA colocalization together with γH2AX-foci formations. In vitro, RAD18 mediated mono-ubiquitination of PCNA during replication stress was dependent on IGF1R kinase activity. DNA fiber analysis revealed that IGF1R activation could rescue stalled DNA replication forks, but only in cancer cells with baseline IGF1R/PCNA interaction. We believe that the IGF1R/PCNA interaction is a basic cellular mechanism to increase DNA stress tolerance during proliferation, but that this mechanism is lost with tumor progression in conjunction with accumulated DNA damage and aberrant strategies to tolerate genomic instability. To exploit this mechanism in IGF1R targeted therapy, IGF1R inhibitors should be explored in the context of concomitant induction of DNA replication stress as well as in earlier clinical stages than previously tried.
Collapse
Affiliation(s)
- Chen Yang
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, Hunan, China
| | - Yifan Zhang
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yi Chen
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Franziska Ragaller
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mingzhi Liu
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Corvigno
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Dahlstrand
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Joseph Carlson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Zihua Chen
- Department of General Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, Hunan, China
| | - Anders Näsman
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed Waraky
- Department of Laboratory Medicine, Gothenburg University, Gothenburg, Sweden
| | - Yingbo Lin
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Olle Larsson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
24
|
Holly JMP, Biernacka K, Perks CM. The role of insulin-like growth factors in the development of prostate cancer. Expert Rev Endocrinol Metab 2020; 15:237-250. [PMID: 32441162 DOI: 10.1080/17446651.2020.1764844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Preclinical, clinical, and population studies have provided robust evidence for an important role for the insulin-like growth factor (IGF) system in the development of prostate cancer. AREAS COVERED An overview of the IGF system is provided. The evidence implicating the IGF system in the development of prostate cancer is summarized. The compelling evidence culminated in a number of clinical trials of agents targeting the system; the reasons for the failure of these trials are discussed. EXPERT OPINION Clinical trials of agents targeting the IGF system in prostate cancer were terminated due to limited objective clinical responses and are unlikely to be resumed unless a convincing predictive biomarker is identified that would enable the selection of likely responders. The aging population and increased screening will lead to greater diagnosis of prostate cancer. Although the vast majority will be indolent disease, the epidemics of obesity and diabetes will increase the proportion that progress to clinical disease. The increased population of worried men will result in more trials aimed to reduce the risk of disease progression; actual clinical endpoints will be challenging and the IGFs remain the best intermediate biomarkers to indicate a response that could alter the course of disease.
Collapse
Affiliation(s)
- Jeff M P Holly
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Kalina Biernacka
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Claire M Perks
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| |
Collapse
|
25
|
Abstract
DNA damage response (DDR) and DNA repair pathways determine neoplastic cell transformation and therapeutic responses, as well as the aging process. Altered DDR functioning results in accumulation of unrepaired DNA damage, increased frequency of tumorigenic mutations, and premature aging. Recent evidence suggests that polypeptide hormones play a role in modulating DDR and DNA damage repair, while DNA damage accumulation may also affect hormonal status. We review the available reports elucidating involvement of insulin-like growth factor 1 (IGF1), growth hormone (GH), α-melanocyte stimulating hormone (αMSH), and gonadotropin-releasing hormone (GnRH)/gonadotropins in DDR and DNA repair as well as the current understanding of pathways enabling these actions. We discuss effects of DNA damage pathway mutations, including Fanconi anemia, on endocrine function and consider mechanisms underlying these phenotypes. (Endocrine Reviews 41: 1 - 19, 2020).
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
26
|
Manipulation of Metabolic Pathways and Its Consequences for Anti-Tumor Immunity: A Clinical Perspective. Int J Mol Sci 2020; 21:ijms21114030. [PMID: 32512898 PMCID: PMC7312891 DOI: 10.3390/ijms21114030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the relatively short history of anti-tumor treatment, numerous medications have been developed against a variety of targets. Intriguingly, although many anti-tumor strategies have failed in their clinical trials, metformin, an anti-diabetic medication, demonstrated anti-tumor effects in observational studies and even showed its synergistic potential with immune checkpoint inhibitors (ICIs) in subsequent clinical studies. Looking back from bedside-to-bench, it may not be surprising that the anti-tumor effect of metformin derives largely from its ability to rewire aberrant metabolic pathways within the tumor microenvironment. As one of the most promising breakthroughs in oncology, ICIs were also found to exert their immune-stimulatory effects at least partly via rewiring metabolic pathways. These findings underscore the importance of correcting metabolic pathways to achieve sufficient anti-tumor immunity. Herein, we start by introducing the tumor microenvironment, and then we review the implications of metabolic syndrome and treatments for targeting metabolic pathways in anti-tumor therapies. We further summarize the close associations of certain aberrant metabolic pathways with impaired anti-tumor immunity and introduce the therapeutic effects of targeting these routes. Lastly, we go through the metabolic effects of ICIs and conclude an overall direction to manipulate metabolic pathways in favor of anti-tumor responses.
Collapse
|
27
|
Hua H, Kong Q, Yin J, Zhang J, Jiang Y. Insulin-like growth factor receptor signaling in tumorigenesis and drug resistance: a challenge for cancer therapy. J Hematol Oncol 2020; 13:64. [PMID: 32493414 PMCID: PMC7268628 DOI: 10.1186/s13045-020-00904-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Insulin-like growth factors (IGFs) play important roles in mammalian growth, development, aging, and diseases. Aberrant IGFs signaling may lead to malignant transformation and tumor progression, thus providing the rationale for targeting IGF axis in cancer. However, clinical trials of the type I IGF receptor (IGF-IR)-targeted agents have been largely disappointing. Accumulating evidence demonstrates that the IGF axis not only promotes tumorigenesis, but also confers resistance to standard treatments. Furthermore, there are diverse pathways leading to the resistance to IGF-IR-targeted therapy. Recent studies characterizing the complex IGFs signaling in cancer have raised hope to refine the strategies for targeting the IGF axis. This review highlights the biological activities of IGF-IR signaling in cancer and the contribution of IGF-IR to cytotoxic, endocrine, and molecular targeted therapies resistance. Moreover, we update the diverse mechanisms underlying resistance to IGF-IR-targeted agents and discuss the strategies for future development of the IGF axis-targeted agents.
Collapse
Affiliation(s)
- Hui Hua
- State Key Laboratory of Biotherapy, Laboratory of Stem Cell Biology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Yin
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yangfu Jiang
- State Key Laboratory of Biotherapy, Laboratory of Oncogene, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Inhibition of FGFR2-Signaling Attenuates a Homology-Mediated DNA Repair in GIST and Sensitizes Them to DNA-Topoisomerase II Inhibitors. Int J Mol Sci 2020; 21:ijms21010352. [PMID: 31948066 PMCID: PMC6982350 DOI: 10.3390/ijms21010352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 01/30/2023] Open
Abstract
Deregulation of receptor tyrosine kinase (RTK)-signaling is frequently observed in many human malignancies, making activated RTKs the promising therapeutic targets. In particular, activated RTK-signaling has a strong impact on tumor resistance to various DNA damaging agents, e.g., ionizing radiation and chemotherapeutic drugs. We showed recently that fibroblast growth factor receptor (FGFR)-signaling might be hyperactivated in imatinib (IM)-resistant gastrointestinal stromal tumors (GIST) and inhibition of this pathway sensitized tumor cells to the low doses of chemotherapeutic agents, such as topoisomerase II inhibitors. Here, we report that inhibition of FGFR-signaling in GISTs attenuates the repair of DNA double-strand breaks (DSBs), which was evidenced by the delay in γ-H2AX decline after doxorubicin (Dox)-induced DNA damage. A single-cell gel electrophoresis (Comet assay) data showed an increase of tail moment in Dox-treated GIST cells cultured in presence of BGJ398, a selective FGFR1-4 inhibitor, thereby revealing the attenuated DNA repair. By utilizing GFP-based reporter constructs to assess the efficiency of DSBs repair via homologous recombination (HR) and non-homologous end-joining (NHEJ), we found for the first time that FGFR inhibition in GISTs attenuated the homology-mediated DNA repair. Of note, FGFR inhibition/depletion did not reduce the number of BrdU and phospho-RPA foci in Dox-treated cells, suggesting that inhibition of FGFR-signaling has no impact on the processing of DSBs. In contrast, the number of Dox-induced Rad51 foci were decreased when FGFR2-mediated signaling was interrupted/inhibited by siRNA FGFR2 or BGJ398. Moreover, Rad51 and -H2AX foci were mislocalized in FGFR-inhibited GIST and the amount of Rad51 was substantially decreased in -H2AX-immunoprecipitated complexes, thereby illustrating the defect of Rad51 recombinase loading to the Dox-induced DSBs. Finally, as a result of the impaired homology-mediated DNA repair, the increased numbers of hypodiploid (i.e., apoptotic) cells were observed in FGFR2-inhibited GISTs after Dox treatment. Collectively, our data illustrates for the first time that inhibition of FGF-signaling in IM-resistant GIST interferes with the efficiency of DDR signaling and attenuates the homology-mediated DNA repair, thus providing the molecular mechanism of GIST’s sensitization to DNA damaging agents, e.g., DNA-topoisomerase II inhibitors.
Collapse
|
29
|
Type 1 IGF receptor associates with adverse outcome and cellular radioresistance in paediatric high-grade glioma. Br J Cancer 2019; 122:624-629. [PMID: 31857716 PMCID: PMC7054265 DOI: 10.1038/s41416-019-0677-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/26/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022] Open
Abstract
High-grade glioma (HGG) is highly resistant to therapy, prompting us to investigate the contribution of insulin-like growth factor receptor (IGF-1R), linked with radioresistance in other cancers. IGF-1R immunohistochemistry in 305 adult HGG (aHGG) and 103 paediatric/young adult HGG (pHGG) cases revealed significant association with adverse survival in pHGG, with median survival of 13.5 vs 29 months for pHGGs with moderate/strong vs negative/weak IGF-1R (p = 0.011). Secondly, we tested IGF-1R inhibitor BMS-754807 in HGG cells, finding minimal radiosensitisation of 2/3 aHGG cell lines (dose enhancement ratios DERs < 1.60 at 2–8 Gy), and greater radiosensitisation of 2/2 pHGG cell lines (DERs ≤ 4.16). BMS-754807 did not influence radiation-induced apoptosis but perturbed the DNA damage response with altered induction/resolution of γH2AX, 53BP1 and RAD51 foci. These data indicate that IGF-1R promotes radioresistance in pHGG, potentially contributing to the association of IGF-1R with adverse outcome and suggesting IGF-1R as a candidate treatment target in pHGG.
Collapse
|
30
|
Gupta A, Towers C, Willenbrock F, Brant R, Hodgson DR, Sharpe A, Smith P, Cutts A, Schuh A, Asher R, Myers K, Love S, Collins L, Wise A, Middleton MR, Macaulay VM. Dual-specificity protein phosphatase DUSP4 regulates response to MEK inhibition in BRAF wild-type melanoma. Br J Cancer 2019; 122:506-516. [PMID: 31839677 PMCID: PMC7028919 DOI: 10.1038/s41416-019-0673-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Background Aiming to improve treatment options for BRAF wild-type melanoma, we previously conducted the DOC-MEK study of docetaxel with MEK inhibitor (MEKi) selumetinib or placebo, revealing trends to prolongation of progression-free survival (hazard ratio 0.75, P = 0.130), and improved response rates (32% vs 14%, P = 0.059) with docetaxel plus selumetinib. NRAS status did not associate with outcome. Here, the aim was to identify novel biomarkers of response to MEKi. Methods A MEK 6 gene signature was quantified using NanoString and correlated with clinical outcomes. Two components of the gene signature were investigated by gene silencing in BRAF/NRAS wild-type melanoma cells. Results In melanomas of patients on the selumetinib but not the placebo arm, two gene signature components, dual-specificity protein phosphatase 4 (DUSP4) and ETS translocation variant 4 (ETV4), were expressed more highly in responders than non-responders. In vitro, ETV4 depletion inhibited cell survival but did not influence sensitivity to MEKi selumetinib or trametinib. In contrast, DUSP4-depleted cells showed enhanced cell survival and increased resistance to both selumetinib and trametinib. Conclusions ETV4 and DUSP4 associated with clinical response to docetaxel plus selumetinib. DUSP4 depletion induced MEKi resistance, suggesting that DUSP4 is not only a biomarker but also a mediator of MEKi sensitivity. Clinical Trial Registration DOC-MEK (EudraCT no: 2009-018153-23).
Collapse
Affiliation(s)
- Avinash Gupta
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK. .,Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK.
| | - Christopher Towers
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - Frances Willenbrock
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - Roz Brant
- Translational Science, Oncology iMED, AstraZeneca, Macclesfield, UK
| | | | | | - Paul Smith
- Cancer BioSciences, AstraZeneca, Cambridge, UK
| | - Anthony Cutts
- Molecular Diagnostics Centre, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anna Schuh
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK.,National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Ruth Asher
- Department of Cellular Pathology, John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Kevin Myers
- Experimental Cancer Medicine Centre, Oxford, UK
| | - Sharon Love
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Linda Collins
- Oncology Clinical Trials Office, University of Oxford, Oxford, UK
| | - Adelyn Wise
- Oncology Clinical Trials Office, University of Oxford, Oxford, UK
| | - Mark Roy Middleton
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK.,National Institute for Health Research Biomedical Research Centre, Oxford, UK
| | - Valentine Moya Macaulay
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK.,National Institute for Health Research Biomedical Research Centre, Oxford, UK
| |
Collapse
|
31
|
Qureishi A, Rieunier G, Shah KA, Aleksic T, Winter SC, Møller H, Macaulay VM. Radioresistant laryngeal cancers upregulate type 1 IGF receptor and exhibit increased cellular dependence on IGF and EGF signalling. Clin Otolaryngol 2019; 44:1026-1036. [PMID: 31536667 DOI: 10.1111/coa.13434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/01/2019] [Accepted: 09/13/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Patients failing radiotherapy for laryngeal squamous cell carcinoma (LSCC) often require salvage total laryngectomy which has major functional consequences, highlighting a need for biomarkers of radiotherapy resistance. In other tumour types, radioresistance has been linked to epidermal growth factor receptor (EGFR) and type 1 insulin-like growth factor receptor (IGF-1R). Here, we evaluated IGF-1R and EGFR as predictors and mediators of LSCC radioresistance. DESIGN We compared IGF-1R and EGFR immunohistochemical scores in patients with LSCC achieving long-term remission post-radiotherapy (n = 23), patients treated with primary laryngectomy (n = 22) or salvage laryngectomy following radiotherapy recurrence (n = 18). To model radioresistance in vitro, two LSCC cell lines underwent clinically relevant irradiation to 55 Gy in 2.75 Gy fractions. RESULTS Type 1 insulin-like growth factor receptor expression was higher in pre-treatment biopsies of radiotherapy failures compared with those in long-term remission and was upregulated post-radiotherapy. Patients undergoing primary laryngectomy had more advanced T/N stage and greater tumour IGF-1R content than those achieving long-term remission. Pre-treatment EGFR did not associate with radiotherapy outcomes but showed a trend to upregulation post-irradiation. In vitro, radiosensitivity was enhanced by inhibition of EGFR but not IGF. Repeated irradiation upregulated IGF-1R in BICR18 and SQ20B cells and EGFR in SQ20B, and enhanced SQ20B radioresistance. Repeatedly irradiated SQ20B_55 cells were not radiosensitised by inhibition of IGF and/or EGFR, but IGF-1R:EGFR co-inhibition suppressed baseline cell survival more effectively than blockade of either pathway alone, and more effectively than in parental cells. CONCLUSIONS Radiation upregulates IGF-1R and may enhance IGF/EGFR dependence, suggesting that IGF/EGFR blockade may have activity in LSCCs that recur post-radiotherapy.
Collapse
Affiliation(s)
- Ali Qureishi
- Department of Oncology, University of Oxford, Oxford, UK.,Nuffield Department of Surgery, University of Oxford and Department of Head and Neck Surgery, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | | | - Ketan A Shah
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Tamara Aleksic
- Department of Oncology, University of Oxford, Oxford, UK
| | - Stuart C Winter
- Nuffield Department of Surgery, University of Oxford and Department of Head and Neck Surgery, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| | - Henrik Møller
- School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Oxford, UK.,Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, UK
| |
Collapse
|
32
|
Osher E, Macaulay VM. Therapeutic Targeting of the IGF Axis. Cells 2019; 8:E895. [PMID: 31416218 PMCID: PMC6721736 DOI: 10.3390/cells8080895] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
The insulin like growth factor (IGF) axis plays a fundamental role in normal growth and development, and when deregulated makes an important contribution to disease. Here, we review the functions mediated by ligand-induced IGF axis activation, and discuss the evidence for the involvement of IGF signaling in the pathogenesis of cancer, endocrine disorders including acromegaly, diabetes and thyroid eye disease, skin diseases such as acne and psoriasis, and the frailty that accompanies aging. We discuss the use of IGF axis inhibitors, focusing on the different approaches that have been taken to develop effective and tolerable ways to block this important signaling pathway. We outline the advantages and disadvantages of each approach, and discuss progress in evaluating these agents, including factors that contributed to the failure of many of these novel therapeutics in early phase cancer trials. Finally, we summarize grounds for cautious optimism for ongoing and future studies of IGF blockade in cancer and non-malignant disorders including thyroid eye disease and aging.
Collapse
Affiliation(s)
- Eliot Osher
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
33
|
IGF-1R Inhibition Suppresses Cell Proliferation and Increases Radiosensitivity in Nasopharyngeal Carcinoma Cells. Mediators Inflamm 2019; 2019:5497467. [PMID: 31467485 PMCID: PMC6701353 DOI: 10.1155/2019/5497467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/13/2019] [Accepted: 06/25/2019] [Indexed: 11/17/2022] Open
Abstract
Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC) treatment, radioresistance is still a major threat for some subsets of patients. The insulin-like growth factor-1 receptor (IGF-1R) signaling pathway is tightly regulated and plays critical roles in mediating cell proliferation, growth, and survival. Thus, IGF-1R may be a potential therapeutic target for patients with different malignancies. However, its mechanism in NPC is not fully investigated. Linsitinib is an oral small molecule and is a tyrosine kinase inhibitor (TKI) of IGF-1R, which has been known for antitumor effects used widely. Here, we evaluated the proliferation and radiosensitivity of NPC cell lines (CNE-2 and SUNE-1) after linsitinib treatment. We found that linsitinib suppresses IGF-1-induced cell proliferation through inhibiting Akt and ERK phosphorylation. Moreover, linsitinib further boosted IR-induced DNA damage, G2-M cell cycle delay, and apoptosis in NPC cells. Finally, linsitinib reversed radioresistant NPC cells by decreasing the phosphorylation of IGF-1R. Our data indicated that the combination of linsitinib and IR and targeting IGF-1R by linsitinib could be a promising therapeutic strategy for NPC.
Collapse
|
34
|
Manzella L, Massimino M, Stella S, Tirrò E, Pennisi MS, Martorana F, Motta G, Vitale SR, Puma A, Romano C, Di Gregorio S, Russo M, Malandrino P, Vigneri P. Activation of the IGF Axis in Thyroid Cancer: Implications for Tumorigenesis and Treatment. Int J Mol Sci 2019; 20:E3258. [PMID: 31269742 PMCID: PMC6651760 DOI: 10.3390/ijms20133258] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
The Insulin-like growth factor (IGF) axis is one of the best-established drivers of thyroid transformation, as thyroid cancer cells overexpress both IGF ligands and their receptors. Thyroid neoplasms encompass distinct clinical and biological entities as differentiated thyroid carcinomas (DTC)-comprising papillary (PTC) and follicular (FTC) tumors-respond to radioiodine therapy, while undifferentiated tumors-including poorly-differentiated (PDTC) or anaplastic thyroid carcinomas (ATCs)-are refractory to radioactive iodine and exhibit limited responses to chemotherapy. Thus, safe and effective treatments for the latter aggressive thyroid tumors are urgently needed. Despite a strong preclinical rationale for targeting the IGF axis in thyroid cancer, the results of the available clinical studies have been disappointing, possibly because of the crosstalk between IGF signaling and other pathways that may result in resistance to targeted agents aimed against individual components of these complex signaling networks. Based on these observations, the combinations between IGF-signaling inhibitors and other anti-tumor drugs, such as DNA damaging agents or kinase inhibitors, may represent a promising therapeutic strategy for undifferentiated thyroid carcinomas. In this review, we discuss the role of the IGF axis in thyroid tumorigenesis and also provide an update on the current knowledge of IGF-targeted combination therapies for thyroid cancer.
Collapse
Affiliation(s)
- Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy.
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy.
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Maria Stella Pennisi
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Federica Martorana
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
- Department of Medical Oncology A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Gianmarco Motta
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
- Department of Medical Oncology A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Adriana Puma
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Chiara Romano
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Sandra Di Gregorio
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| | - Marco Russo
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, 95122, Italy
| | - Pasqualino Malandrino
- Endocrinology, Department of Clinical and Experimental Medicine, Garibaldi-Nesima Medical Center, University of Catania, 95122, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico-Vittorio Emanuele, 95123 Catania, Italy
| |
Collapse
|
35
|
Selfe J, Shipley JM. IGF signalling in germ cells and testicular germ cell tumours: roles and therapeutic approaches. Andrology 2019; 7:536-544. [PMID: 31179642 PMCID: PMC6771568 DOI: 10.1111/andr.12658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) axis plays key roles in normal tissue growth and development as well as in the progression of several tumour types and their subsequent growth and progression to a metastatic phenotype. This review explores the role of IGF system in normal germ cell development and function in addition to examining the evidence for deregulation of IGF signalling in cancer, with particular relevance to evidence supporting a role in testicular germ cell tumours (TGCTs). Despite the clear preclinical rationale for targeting the IGF axis in cancer, there has been a lack of progress in identifying which patients may benefit from such therapy. Future employment of agents targeting the IGF pathway is expected to concentrate on their use in combination with other treatments to prevent resistance and exploit their potential as chemo- and radiosensitizers.
Collapse
Affiliation(s)
- J Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - J M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
36
|
Chesnokova V, Zonis S, Barrett RJ, Gleeson JP, Melmed S. Growth Hormone Induces Colon DNA Damage Independent of IGF-1. Endocrinology 2019; 160:1439-1447. [PMID: 31002310 PMCID: PMC6530523 DOI: 10.1210/en.2019-00132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/13/2019] [Indexed: 12/13/2022]
Abstract
DNA damage occurs as a result of environmental insults and aging and, if unrepaired, may lead to chromosomal instability and tumorigenesis. Because GH suppresses ataxia-telangiectasia mutated kinase phosphorylation, decreases DNA repair, and increases DNA damage accumulation, we elucidated whether GH effects on DNA damage are mediated through induced IGF-1. In nontumorous human colon cells, GH, but not IGF-1, increased DNA damage. Stably disrupted IGF-1 receptor (IGF-1R) by lentivirus-expressing short hairpin RNA in vitro or treatment with the IGF-1R phosphorylation inhibitor picropodophyllotoxin (PPP) in vitro and in vivo led to markedly induced GH receptor (GHR) abundance, rendering cells more responsive to GH actions. Suppressing IGF-1R triggered DNA damage in both normal human colon cells and three-dimensional human intestinal organoids. DNA damage was further increased when cells with disrupted IGF-1R were treated with GH. Because GH induction of DNA damage accumulation appeared to be mediated not by IGF-1R but probably by more abundant GH receptor expression, we injected athymic mice with GH-secreting xenografts and then treated them with PPP. In these mice, high circulating GH levels were associated with increased colon DNA damage despite disrupted IGF-1R activity (P < 0.01), whereas GHR levels were also induced. Further confirming that GH effects on DNA damage are directly mediated by GHR signaling, GHR-/- mice injected with PPP did not show increased DNA damage, whereas wild-type mice with intact GHR exhibited increased colon DNA damage in the face of IGF-1 signaling suppression. The results indicate that GH directly induces DNA damage independent of IGF-1.
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Svetlana Zonis
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Robert J Barrett
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - John P Gleeson
- Department of Medicine, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shlomo Melmed
- Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Correspondence: Shlomo Melmed, MD, Academic Affairs, Room 2015, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048. E-mail:
| |
Collapse
|
37
|
Chesnokova V, Zonis S, Barrett R, Kameda H, Wawrowsky K, Ben-Shlomo A, Yamamoto M, Gleeson J, Bresee C, Gorbunova V, Melmed S. Excess growth hormone suppresses DNA damage repair in epithelial cells. JCI Insight 2019; 4:e125762. [PMID: 30728323 PMCID: PMC6413789 DOI: 10.1172/jci.insight.125762] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/20/2018] [Indexed: 12/18/2022] Open
Abstract
Growth hormone (GH) decreases with age, and GH therapy has been advocated by some to sustain lean muscle mass and vigor in aging patients and advocated by athletes to enhance performance. Environmental insults and aging lead to DNA damage, which - if unrepaired - results in chromosomal instability and tumorigenesis. We show that GH suppresses epithelial DNA damage repair and blocks ataxia telangiectasia mutated (ATM) kinase autophosphorylation with decreased activity. Decreased phosphorylation of ATM target proteins p53, checkpoint kinase 2 (Chk2), and histone 2A variant led to decreased DNA repair by nonhomologous end-joining. In vivo, prolonged high GH levels resulted in a 60% increase in unrepaired colon epithelial DNA damage. GH suppression of ATM was mediated by induced tripartite motif containing protein 29 (TRIM29) and attenuated tat interacting protein 60 kDa (Tip60). By contrast, DNA repair was increased in human nontumorous colon cells (hNCC) where GH receptor (GHR) was stably suppressed and in colon tissue derived from GHR-/- mice. hNCC treated with etoposide and GH showed enhanced transformation, as evidenced by increased growth in soft agar. In mice bearing human colon GH-secreting xenografts, metastatic lesions were increased. The results elucidate a mechanism underlying GH-activated epithelial cell transformation and highlight an adverse risk for inappropriate adult GH treatment.
Collapse
Affiliation(s)
| | | | - Robert Barrett
- Board of Governors Regenerative Medicine Institute
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, and
| | | | | | | | | | - John Gleeson
- Board of Governors Regenerative Medicine Institute
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Department of Medicine, and
| | - Catherine Bresee
- Biostatistics and Bioinformatics Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York, USA
| | | |
Collapse
|
38
|
Orlando E, Aebersold DM, Medová M, Zimmer Y. Oncogene addiction as a foundation of targeted cancer therapy: The paradigm of the MET receptor tyrosine kinase. Cancer Lett 2019; 443:189-202. [DOI: 10.1016/j.canlet.2018.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
|
39
|
Lu Y, Tao F, Zhou MT, Tang KF. The signaling pathways that mediate the anti-cancer effects of caloric restriction. Pharmacol Res 2019; 141:512-520. [PMID: 30641278 DOI: 10.1016/j.phrs.2019.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/31/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
Caloric restriction (CR) has been shown to promote longevity and ameliorate aging-associated diseases, including cancer. Extensive research over recent decades has revealed that CR reduces IGF-1/PI3K/AKT signaling and increases sirtuin signaling. We recently found that CR also enhances ALDOA/DNA-PK/p53 signaling. In the present review, we summarize the molecular mechanisms underlying the modulation of the IGF-1/PI3K/AKT pathway, sirtuin signaling, and the ALDOA/DNA-PK/p53 pathway by CR. We also summarize the evidence concerning the roles of these signaling pathways in carcinogenesis, and discuss how they are regulated by CR. Finally, we discuss the crosstalk between these signaling pathways.
Collapse
Affiliation(s)
- Yiyi Lu
- Department of Dermato-Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Fengxing Tao
- Department of Dermato-Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Meng-Tao Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China.
| | - Kai-Fu Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China; Digestive Cancer Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, Zhejiang, China.
| |
Collapse
|
40
|
Toulany M. Targeting DNA Double-Strand Break Repair Pathways to Improve Radiotherapy Response. Genes (Basel) 2019; 10:genes10010025. [PMID: 30621219 PMCID: PMC6356315 DOI: 10.3390/genes10010025] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
More than half of cancer patients receive radiotherapy as a part of their cancer treatment. DNA double-strand breaks (DSBs) are considered as the most lethal form of DNA damage and a primary cause of cell death and are induced by ionizing radiation (IR) during radiotherapy. Many malignant cells carry multiple genetic and epigenetic aberrations that may interfere with essential DSB repair pathways. Additionally, exposure to IR induces the activation of a multicomponent signal transduction network known as DNA damage response (DDR). DDR initiates cell cycle checkpoints and induces DSB repair in the nucleus by non-homologous end joining (NHEJ) or homologous recombination (HR). The canonical DSB repair pathways function in both normal and tumor cells. Thus, normal-tissue toxicity may limit the targeting of the components of these two pathways as a therapeutic approach in combination with radiotherapy. The DSB repair pathways are also stimulated through cytoplasmic signaling pathways. These signaling cascades are often upregulated in tumor cells harboring mutations or the overexpression of certain cellular oncogenes, e.g., receptor tyrosine kinases, PIK3CA and RAS. Targeting such cytoplasmic signaling pathways seems to be a more specific approach to blocking DSB repair in tumor cells. In this review, a brief overview of cytoplasmic signaling pathways that have been reported to stimulate DSB repair is provided. The state of the art of targeting these pathways will be discussed. A greater understanding of the underlying signaling pathways involved in DSB repair may provide valuable insights that will help to design new strategies to improve treatment outcomes in combination with radiotherapy.
Collapse
Affiliation(s)
- Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Roentgenweg 11, 72076 Tuebingen, Germany.
| |
Collapse
|
41
|
Manila NG, Kaida A, Nakahama KI, Miura M. Insulin-like growth factor I receptor regulates the radiation-induced G2/M checkpoint in HeLa cells. Biochem Biophys Res Commun 2018; 503:2977-2983. [DOI: 10.1016/j.bbrc.2018.08.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/09/2018] [Indexed: 12/25/2022]
|
42
|
Liu F, Liu Y, Liu X, Mao K, Zhong D, Marcus AI, Khuri FR, Sun SY, He Y, Zhou W. Inhibition of IGF1R enhances 2-deoxyglucose in the treatment of non-small cell lung cancer. Lung Cancer 2018; 123:36-43. [PMID: 30089593 PMCID: PMC6447049 DOI: 10.1016/j.lungcan.2018.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE We previously postulated that 2-deoxyglucose (2-DG) activates multiple pro-survival pathways through IGF1R to negate its inhibitory effect on glycolysis. Here, we evaluated whether IGF1R inhibitor synergizes with 2-DG to impede the growth of non-small cell lung cancer (NSCLC). MATERIALS AND METHODS The activation of IGF1R signaling was assessed by the phosphorylation of IGF1R and its downstream target AKT using immunoblot. Drug dose response and combination index analyses were carried out according to the method of Chou and Talalay. Flow cytometry was used to evaluate cell cycle progression. Apoptosis was monitored by caspase-3/PARP cleavages or Annexin V staining. A subcutaneous xenograft model was used to assess this combination in vivo. RESULTS 2-DG induces the phosphorylation of IGF1R in its kinase domain, which can be abolished by the IGF1R inhibitor BMS-754807. Furthermore, the combination of 2-DG and BMS-754807 synergistically inhibited the survival of several non-small cell lung cancer (NSCLC) cell lines both in vitro and in vivo. The mechanistic basis of this synergy was cell line-dependent, and LKB1-inactivated EKVX cells underwent apoptosis following treatment with a subtoxic dose of 2-DG and BMS-754807. For these cells, the restoration of LKB1 kinase activity suppressed apoptosis induced by this combination but enhanced G1 arrest. In H460 cells, the addition of 2-DG did not enhance the low level of apoptosis induced by BMS-754807. However, treatment with 0.75 μM of BMS-754807 resulted in the accumulation of H460 cells with 8n-DNA content without affecting cell density increases. Hence, H460 cells may escape BMS-754807-induced G2/M cell cycle arrest through polyploidy. The inclusion of 2-DG blocked formation of the 8n-DNA cell population and restored G2/M phase cell cycle arrest. CONCLUSION The combination of 2-DG and IGF1R inhibitor BMS-754807 may be used to suppress the proliferation of NSCLC tumors through different mechanisms.
Collapse
Affiliation(s)
- Fakeng Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| | - Yuan Liu
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, 30322, USA.
| | - Xiuju Liu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Kaisheng Mao
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Yulong He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
43
|
Aleksic T, Gray N, Wu X, Rieunier G, Osher E, Mills J, Verrill C, Bryant RJ, Han C, Hutchinson K, Lambert AG, Kumar R, Hamdy FC, Weyer-Czernilofsky U, Sanderson MP, Bogenrieder T, Taylor S, Macaulay VM. Nuclear IGF1R Interacts with Regulatory Regions of Chromatin to Promote RNA Polymerase II Recruitment and Gene Expression Associated with Advanced Tumor Stage. Cancer Res 2018; 78:3497-3509. [PMID: 29735545 PMCID: PMC6031306 DOI: 10.1158/0008-5472.can-17-3498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/28/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
Internalization of ligand-activated type I IGF receptor (IGF1R) is followed by recycling to the plasma membrane, degradation or nuclear translocation. Nuclear IGF1R reportedly associates with clinical response to IGF1R inhibitory drugs, yet its role in the nucleus is poorly characterized. Here, we investigated the significance of nuclear IGF1R in clinical cancers and cell line models. In prostate cancers, IGF1R was predominantly membrane localized in benign glands, while malignant epithelium contained prominent internalized (nuclear/cytoplasmic) IGF1R, and nuclear IGF1R associated significantly with advanced tumor stage. Using ChIP-seq to assess global chromatin occupancy, we identified IGF1R-binding sites at or near transcription start sites of genes including JUN and FAM21, most sites coinciding with occupancy by RNA polymerase II (RNAPol2) and histone marks of active enhancers/promoters. IGF1R was inducibly recruited to chromatin, directly binding DNA and interacting with RNAPol2 to upregulate expression of JUN and FAM21, shown to mediate tumor cell survival and IGF-induced migration. IGF1 also enriched RNAPol2 on promoters containing IGF1R-binding sites. These functions were inhibited by IGF1/II-neutralizing antibody xentuzumab (BI 836845), or by blocking receptor internalization. We detected IGF1R on JUN and FAM21 promoters in fresh prostate cancers that contained abundant nuclear IGF1R, with evidence of correlation between nuclear IGF1R content and JUN expression in malignant prostatic epithelium. Taken together, these data reveal previously unrecognized molecular mechanisms through which IGFs promote tumorigenesis, with implications for therapeutic evaluation of anti-IGF drugs.Significance: These findings reveal a noncanonical nuclear role for IGF1R in tumorigenesis, with implications for therapeutic evaluation of IGF inhibitory drugs. Cancer Res; 78(13); 3497-509. ©2018 AACR.
Collapse
Affiliation(s)
- Tamara Aleksic
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicki Gray
- Computational Biology Research Group, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Xiaoning Wu
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | - Eliot Osher
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Jack Mills
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Clare Verrill
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Richard J Bryant
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Cheng Han
- Department of Oncology, University of Oxford, Oxford, United Kingdom
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| | | | - Adam G Lambert
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Rajeev Kumar
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | - Thomas Bogenrieder
- Boehringer Ingelheim RCV GmbH & Co KG, Vienna, Austria
- Department of Urology, University Hospital Grosshadern, Ludwig-Maximilians-University, Marchioninistrasse, Munich, Germany
| | - Stephen Taylor
- Computational Biology Research Group, University of Oxford, Weatherall Institute of Molecular Medicine, Oxford, United Kingdom
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Oxford, United Kingdom.
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
44
|
Bhattacharya P, Shetake NG, Pandey BN, Kumar A. Receptor tyrosine kinase signaling in cancer radiotherapy and its targeting for tumor radiosensitization. Int J Radiat Biol 2018; 94:628-644. [DOI: 10.1080/09553002.2018.1478160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Poushali Bhattacharya
- Radiation Signaling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Neena G. Shetake
- Radiation Signaling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Badri N. Pandey
- Radiation Signaling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Amit Kumar
- Radiation Signaling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
45
|
Tang Q, Ma J, Sun J, Yang L, Yang F, Zhang W, Li R, Wang L, Wang Y, Wang H. Genistein and AG1024 synergistically increase the radiosensitivity of prostate cancer cells. Oncol Rep 2018; 40:579-588. [PMID: 29901146 PMCID: PMC6072286 DOI: 10.3892/or.2018.6468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/15/2018] [Indexed: 01/02/2023] Open
Abstract
Radiosensitivity of prostate cancer (PCa) cells promotes the curative treatment for PCa. The present study was designed to investigate the synergistic effect of genistein and AG1024 on the radiosensitivity of PCa cells. The optimal X-irradiation dose (4 Gy) and genistein concentration (30 µM) were selected by using the CCK-8 assay. Before X-irradiation (4 Gy), PC3 and DU145 cells were treated with genistein (30 µM), AG1024 (10 µM) and their combination. All treatments significantly reduced cell proliferation and enhanced cell apoptosis. Using flow cytometric analysis, we found that genistein arrested the cell cycle at S phase and AG1024 arrested the cell cycle at G2/M phase. Genistein treatment suppressed the homologous recombination (HRR) and the non-homologous end joining (NHEJ) pathways by inhibiting the expression of Rad51 and Ku70, and AG1024 treatment only inhibited the NHEJ pathway via the inactivation of Ku70 as detected by western blot analysis. Moreover, the combination treatment with genistein and AG1024 more effectively radiosensitized PCa cells than single treatments by suppressing cell proliferation, enhancing cell apoptosis and inactivating the HRR and NHEJ pathways. In vivo experiments demonstrated that animals receiving the combination treatment with genistein and AG1024 displayed obviously decreased tumor volume compared with animals treated with single treatment with either genistein or AG1024. We conclude that the combination of genistein (30 µM) and AG1024 (10 µM) exhibited a synergistic effect on the radiosensitivity of PCa cells by suppressing the HRR and NHEJ pathways.
Collapse
Affiliation(s)
- Qisheng Tang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Jianjun Ma
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Jinbo Sun
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Longfei Yang
- Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Wei Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Ruixiao Li
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Lei Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - Yong Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| | - He Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaan'xi 710038, P.R. China
| |
Collapse
|
46
|
O'Flanagan CH, O'Shea S, Lyons A, Fogarty FM, McCabe N, Kennedy RD, O'Connor R. IGF-1R inhibition sensitizes breast cancer cells to ATM-related kinase (ATR) inhibitor and cisplatin. Oncotarget 2018; 7:56826-56841. [PMID: 27472395 PMCID: PMC5302955 DOI: 10.18632/oncotarget.10862] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/10/2016] [Indexed: 01/18/2023] Open
Abstract
The complexity of the IGF-1 signalling axis is clearly a roadblock in targeting this receptor in cancer therapy. Here, we sought to identify mediators of resistance, and potential co-targets for IGF-1R inhibition. By using an siRNA functional screen with the IGF-1R tyrosine kinase inhibitor (TKI) BMS-754807 in MCF-7 cells we identified several genes encoding components of the DNA damage response (DDR) pathways as mediators of resistance to IGF-1R kinase inhibition. These included ATM and Ataxia Telangiectasia and RAD3-related kinase (ATR). We also observed a clear induction of DDR in cells that were exposed to IGF-1R TKIs (BMS-754807 and OSI-906) as indicated by accumulation of γ-H2AX, and phosphorylated Chk1. Combination of the IGF-1R/IR TKIs with an ATR kinase inhibitor VE-821 resulted in additive to synergistic cytotoxicity compared to either drug alone. In MCF-7 cells with stably acquired resistance to the IGF-1R TKI (MCF-7-R), DNA damage was also observed, and again, dual inhibition of the ATR kinase and IGF-1R/IR kinase resulted in synergistic cytotoxicity. Interestingly, dual inhibition of ATR and IGF-1R was more effective in MCF-7-R cells than parental cells. IGF-1R TKIs also potentiated the effects of cisplatin in a panel of breast cancer cell lines. Overall, our findings identify induction of DDR by IGF-1R kinase inhibition as a rationale for co-targeting the IGF-1R with ATR kinase inhibitors or cisplatin, particularly in cells with acquired resistance to TKIs.
Collapse
Affiliation(s)
- Ciara H O'Flanagan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sandra O'Shea
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Amy Lyons
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Fionola M Fogarty
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Nuala McCabe
- Almac Diagnostics, Craigavon, Northern Ireland, UK
| | - Richard D Kennedy
- Almac Diagnostics, Craigavon, Northern Ireland, UK.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Rosemary O'Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
47
|
Dong J, Ren Y, Zhang T, Wang Z, Ling CC, Li GC, He F, Wang C, Wen B. Inactivation of DNA-PK by knockdown DNA-PKcs or NU7441 impairs non-homologous end-joining of radiation-induced double strand break repair. Oncol Rep 2018; 39:912-920. [PMID: 29344644 PMCID: PMC5802037 DOI: 10.3892/or.2018.6217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in non-homologous end-joining (NHEJ) repair. We investigated the mechanism of NU7441, a highly selective DNA-PK inhibitor, in NHEJ-competent mouse embryonic fibroblast (MEF) cells and NHEJ-deficient cells and explored the feasibility of its application in radiosensitizing nasopharyngeal carcinoma (NPC) cells. We generated wild-type and DNA-PKcs−/− MEF cells. Clonogenic survival assays, flow cytometry, and immunoblotting were performed to study the effect of NU7441 on survival, cell cycle, and DNA repair. NU7441 profoundly radiosensitized wild-type MEF cells and SUNE-1 cells, but not DNA-PKcs−/− MEF cells. NU7441 significantly suppressed radiation-induced DSB repair post-irradiation through unrepaired and lethal DNA damage, the cell cycle arrest. The effect was associated with the activation of cell cycle checkpoints. The present study revealed a mechanism by which inhibition of DNA-PK sensitizes cells to irradiation suggesting that radiotherapy in combination with DNA-PK inhibitor is a promising paradigm for the management of NPC which merits further investigation.
Collapse
Affiliation(s)
- Jun Dong
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yufeng Ren
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tian Zhang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhenyu Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Clifton C Ling
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Gloria C Li
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Fuqiu He
- Department of Medical Physics and Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Chengtao Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Bixiu Wen
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
48
|
Bieghs L, Johnsen HE, Maes K, Menu E, Van Valckenborgh E, Overgaard MT, Nyegaard M, Conover CA, Vanderkerken K, De Bruyne E. The insulin-like growth factor system in multiple myeloma: diagnostic and therapeutic potential. Oncotarget 2018; 7:48732-48752. [PMID: 27129151 PMCID: PMC5217049 DOI: 10.18632/oncotarget.8982] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a highly heterogeneous plasma cell malignancy. The MM cells reside in the bone marrow (BM), where reciprocal interactions with the BM niche foster MM cell survival, proliferation, and drug resistance. As in most cancers, the insulin-like growth factor (IGF) system has been demonstrated to play a key role in the pathogenesis of MM. The IGF system consists of IGF ligands, IGF receptors, IGF binding proteins (IGFBPs), and IGFBP proteases and contributes not only to the survival, proliferation, and homing of MM cells, but also MM-associated angiogenesis and osteolysis. Furthermore, increased IGF-I receptor (IGF-IR) expression on MM cells correlates with a poor prognosis in MM patients. Despite the prominent role of the IGF system in MM, strategies targeting the IGF-IR using blocking antibodies or small molecule inhibitors have failed to translate into the clinic. However, increasing preclinical evidence indicates that IGF-I is also involved in the development of drug resistance against current standard-of-care agents against MM, including proteasome inhibitors, immunomodulatory agents, and corticoids. IGF-IR targeting has been able to overcome or revert this drug resistance in animal models, enhancing the efficacy of standard-of-care agents. This finding has generated renewed interest in the therapeutic potential of IGF-I targeting in MM. The present review provides an update of the impact of the different IGF system components in MM and discusses the diagnostic and therapeutic potentials.
Collapse
Affiliation(s)
- Liesbeth Bieghs
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Hematology, Aalborg Hospital, Aalborg University, Denmark.,Department of Biomedicin, Aarhus University, Aarhus, Denmark
| | - Hans E Johnsen
- Department of Hematology, Aalborg Hospital, Aalborg University, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Denmark.,Department of Clinical Medicine, Aalborg University, Denmark
| | - Ken Maes
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Valckenborgh
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Mette Nyegaard
- Department of Biomedicin, Aarhus University, Aarhus, Denmark
| | - Cheryl A Conover
- Division of Endocrinology, Metabolism and Nutrition, Endocrine Research Unit, Mayo Clinic, Rochester, NY, USA
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Elke De Bruyne
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
49
|
Fendler W, Malachowska B, Meghani K, Konstantinopoulos PA, Guha C, Singh VK, Chowdhury D. Evolutionarily conserved serum microRNAs predict radiation-induced fatality in nonhuman primates. Sci Transl Med 2017; 9:9/379/eaal2408. [PMID: 28251902 DOI: 10.1126/scitranslmed.aal2408] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/19/2016] [Accepted: 02/10/2017] [Indexed: 12/20/2022]
Abstract
Effective planning for the medical response to a radiological or nuclear accident is complex. Because of limited resources for medical countermeasures, the key would be to accurately triage and identify victims most likely to benefit from treatment. We used a mouse model system to provide evidence that serum microRNAs (miRNAs) may effectively predict the impact of radiation on the long-term viability of animals. We had previously used nonhuman primates (NHPs) to demonstrate that this concept is conserved and serum miRNA signatures have the potential to serve as prediction biomarkers for radiation-induced fatality in a human population. We identified a signature of seven miRNAs that are altered by irradiation in both mice and NHPs. Genomic analysis of these conserved miRNAs revealed that there is a combination of seven transcription factors that are predicted to regulate these miRNAs in human, mice, and NHPs. Moreover, a combination of three miRNAs (miR-133b, miR-215, and miR-375) can identify, with nearly complete accuracy, NHPs exposed to radiation versus unexposed NHPs. Consistent with historical data, female macaques appeared to be more sensitive to radiation, but the difference was not significant. Sex-based stratification allowed us to identify an interaction between gender and miR-16-2 expression, which affected the outcome of radiation exposure. Moreover, we developed a classifier based on two miRNAs (miR-30a and miR-126) that can reproducibly predict radiation-induced mortality. Together, we have obtained a five-miRNA composite signature that can identify irradiated macaques and predict their probability of survival.
Collapse
Affiliation(s)
- Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz 91-738, Poland
| | - Beata Malachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz 91-738, Poland
| | - Khyati Meghani
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA. .,Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Vijay K Singh
- Department of Pharmacology and Experimental Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA. .,Armed Forces Radiobiology Research Institute, Bethesda, MD 20814, USA
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
50
|
Aleksic T, Verrill C, Bryant RJ, Han C, Worrall AR, Brureau L, Larré S, Higgins GS, Fazal F, Sabbagh A, Haider S, Buffa FM, Cole D, Macaulay VM. IGF-1R associates with adverse outcomes after radical radiotherapy for prostate cancer. Br J Cancer 2017; 117:1600-1606. [PMID: 28972962 PMCID: PMC5729437 DOI: 10.1038/bjc.2017.337] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/20/2017] [Accepted: 08/30/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Activated type 1 insulin-like growth factor receptors (IGF-1Rs) undergo internalisation and nuclear translocation, promoting cell survival. We previously reported that IGF-1R inhibition delays DNA damage repair, sensitising prostate cancer cells to ionising radiation. Here we tested the clinical relevance of these findings. METHODS We assessed associations between IGF-1R and clinical outcomes by immunohistochemistry in diagnostic biopsies of 136 men treated with 55-70 Gy external beam radiotherapy for prostate cancer, comparing results with publicly available transcriptional data in surgically treated patients. RESULTS Following radiotherapy, overall recurrence-free survival was shorter in patients whose tumours contained high total, cytoplasmic and internalised (nuclear/cytoplasmic) IGF-1R. High total IGF-1R associated with high primary Gleason grade and risk of metastasis, and cytoplasmic and internalised IGF-1R with biochemical recurrence, which includes patients experiencing local recurrence within the radiation field indicating radioresistance. In multivariate analysis, cytoplasmic, internalised and total IGF-1R were independently associated with risk of overall recurrence, and cytoplasmic IGF-1R was an independent predictor of biochemical recurrence post radiotherapy. Insulin-like growth factor receptors expression did not associate with biochemical recurrence after radical prostatectomy. CONCLUSIONS These data reveal increased risk of post-radiotherapy recurrence in men whose prostate cancers contain high levels of total or cytoplasmic IGF-1R.
Collapse
Affiliation(s)
- Tamara Aleksic
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Clare Verrill
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU UK
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Richard J Bryant
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Cheng Han
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Andrew Ross Worrall
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Laurent Brureau
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Stephane Larré
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Geoff S Higgins
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Fahad Fazal
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Ahmad Sabbagh
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Syed Haider
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Francesca M Buffa
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - David Cole
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Valentine M Macaulay
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Oxford OX3 7LJ, UK
| |
Collapse
|