1
|
Shao Y, Zhang S, Pan Y, Peng Z, Dong Y. miR-135b: A key role in cancer biology and therapeutic targets. Noncoding RNA Res 2025; 12:67-80. [PMID: 40124960 PMCID: PMC11930451 DOI: 10.1016/j.ncrna.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/13/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
miR-135b, a microRNA, is consistently up-regulated in various cancer tissues and cells, promoting cancer progression. By inhibiting one or more target genes, miR-135b regulates phenotypes such as cancer growth, apoptosis, migration, invasion, drug resistance, and angiogenesis, establishing it as a critical driver of cancer progression. Additionally, miR-135b is regulated by various oncogenes and therapeutic drugs, highlighting its complexity and therapeutic potential. Significant progress has been made in understanding miR-135b's impact on cancer cell behavior, establishing it as a promising biomarker for cancer diagnosis and prognosis, as well as a potential target for future cancer therapies. However, despite the extensive research on this topic, there has been no comprehensive review summarizing its role and mechanisms across different cancer types. This review aims to provide a detailed overview of the biological characteristics of miR-135b, its regulatory targets, upstream signaling pathways, and its therapeutic potential, including its influence on cancer chemoresistance. The review also addresses key controversies surrounding miR-135b in cancer research, aiming to deepen the understanding of its role, promote the transformation of its clinical application, and provide a theoretical foundation for developing more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Yingchun Shao
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, 266000, China
| | - Shuangshuang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, China
| | - Yuxin Pan
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhan Peng
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Yinying Dong
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
2
|
Chong ZX, Ho WY, Yeap SK. Deciphering the roles of non-coding RNAs in liposarcoma development: Challenges and opportunities for translational therapeutic advances. Noncoding RNA Res 2025; 11:73-90. [PMID: 39736850 PMCID: PMC11683247 DOI: 10.1016/j.ncrna.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
Liposarcoma is one of the most prevalent forms of soft tissue sarcoma, and its prognosis is highly dependent on its molecular subtypes. Non-coding RNAs (ncRNAs) like microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) can bind various cellular targets to regulate carcinogenesis. By affecting the expressions and activities of their downstream targets post-transcriptionally, dysregulations of miRNAs can alter different oncogenic signalling pathways, mediating liposarcoma progression. On the contrary, lncRNAs can sponge miRNAs to spare their downstream targets from translational repression, indirectly affecting miRNA-regulated oncogenic activities. In the past 15 years, multiple fundamental and clinical research has shown that different ncRNAs play essential roles in modulating liposarcoma development. Yet, there is a lack of an effective review report that could summarize the findings from various studies. To narrow this literature gap, this review article aimed to compare the findings from different studies on the tumour-regulatory roles of ncRNAs in liposarcoma and to understand how ncRNAs control liposarcoma progression mechanistically. Additionally, the reported findings were critically reviewed to evaluate the translational potentials of various ncRNAs in clinical applications, including employing these ncRNAs as diagnostic and prognostic biomarkers or as therapeutic targets in the management of liposarcoma. Overall, over 15 ncRNAs were reported to play essential roles in modulating different cellular pathways, including apoptosis, WNT/β-catenin, TGF-β/SMAD4, EMT, interleukin, and YAP-associated pathways to influence liposarcoma development. 28 ncRNAs were reported to be upregulated in liposarcoma tissues or circulation, whereas 11 were downregulated, making them potential candidates as liposarcoma diagnostic biomarkers. Among these ncRNAs, measuring the tissues or circulating levels of miR-155 and miR-195 was reported to help detect liposarcoma, differentiate liposarcoma subtypes, and predict the survival and treatment response of liposarcoma patients. Overall, except for a few ncRNAs like miR-155 and miR-195, current evidence to support the use of discussed ncRNAs as biomarkers and therapeutic targets in managing liposarcoma is mainly based on a single-center study with relatively small sample sizes or cell-based studies. Hence, more large-scale multi-center studies should be conducted to further confirm the sensitivity, specificity, and safety of ncRNAs as biomarkers and therapeutic targets. Instead of furthering investigation to confirm the translational values of all the discussed ncRNAs, which can be time- and cost-consuming, it would be more practical to focus on a few ncRNAs, including miR-155 and miR-195, to evaluate if they are sensitive and safe to be used as liposarcoma biomarkers and therapeutic agents or targets.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, 117599, Singapore
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Selangor, Malaysia
| |
Collapse
|
3
|
Yan D, He Q, Wang C, Li T, Yi X, Yu H, Wu W, Yang H, Wang W, Ma L. miR-135b: A Potential Biomarker for Pathological Diagnosis and Biological Therapy. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70002. [PMID: 40034060 DOI: 10.1002/wrna.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 03/05/2025]
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs found in eukaryotes with post-transcriptional regulatory functions. A variety of miRNAs is differentially expressed in cancer tissues and thus can be used as biomarkers. microRNA-135b-5p (miR-135b) has been shown to be involved in the pathological processes of a variety of neoplastic and non-neoplastic diseases. Under different conditions, miR-135b has different tumor suppressive and carcinogenic effects. miR-135b regulates the development of cancer, including metabolism, proliferation, apoptosis, invasion, fibrosis, angiogenesis, immunomodulation, and drug resistance. miR-135b can be used as a new biomarker for tumor diagnosis and prognosis, which has the potential for clinical guidance. This article reviews the relevant research on miR-135B in the field of tumors, including the biogenesis background of miR-135b, the expression of miR-135b in tumors, and the related targets and signaling pathways of miR-135b mediating tumor progression in order to sort out and explore the clinical transformation value of miR-135b.
Collapse
Affiliation(s)
- Dezhi Yan
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingliu He
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chunjian Wang
- Department of Hematology, Peking University International Hospital, Beijing, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xueping Yi
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Haisheng Yu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfei Wu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hanyun Yang
- Faculty of Health Sciences for Occupational Therapy, Curtin University, West Australia, Australia
| | - Wenzhao Wang
- Department of Orthopedic, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Liang Ma
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
- The First Clinical School of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Kawaguchi K, Kohashi K, Iwasaki T, Mori T, Furukawa H, Sato C, Sonoda H, Shiraishi S, Endo M, Nakashima Y, Oda Y. Nuclear morphological atypia in biopsy accurately reflects the prognosis of myxoid liposarcoma. Virchows Arch 2025; 486:373-380. [PMID: 38538773 DOI: 10.1007/s00428-024-03796-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 03/04/2025]
Abstract
Currently, it is difficult to predict the prognosis of myxoid liposarcoma (MLS) in biopsy specimens. In this study, we determined whether nuclear morphology may be used to predict the prognosis of MLS in primary biopsy specimens. Two pathologists evaluated nuclear morphology using the modified WHO/ISUP and Fuhrman grades. Survival analyses were performed by grouping nuclear high- and low-grades. We examined 53 MLS cases, which included 29 (54.7%) male and 24 (45.3%) female patients with a median age of 46 years (interquartile range, 37 - 60). In total, 7 (13.2%) and 16 (30.2%) cases were assigned to the high nuclear grade group based on the modified WHO/ISUP and Fuhrman gradings, respectively. Survival analyses revealed a significantly worse disease-free survival in the high-grade group (hazard ratio (HR), 7.51; 95% confidence interval (CI), 2.67-21.1, p < 0.001 by the modified WHO/ISUP grading; HR, 4.45; 95% CI, 1.63-12.1, p = 0.001 by the modified Fuhrman grading). Moreover, the modified WHO/ISUP grade showed a significantly worse overall survival in the high-grade group (HR, 4.39; 95% CI, 1.04-18.6, p = 0.028), and the modified Fuhrman grade exhibited a similar, but not significant, trend. Our results indicate that nuclear morphology grading is a good predictor of patient prognosis at the time of biopsy in MLS. Even when cell density is sparse, treatment strategies should be carefully considered when individual tumor cells exhibit atypical nuclei.
Collapse
Affiliation(s)
- Kengo Kawaguchi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Pathology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Taro Mori
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Furukawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Chiaki Sato
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroki Sonoda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Sakura Shiraishi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
5
|
Jerala M, Remic T, Hauptman N, Homan P, Zajšek N, Petitjean M, Chen L, Zidar N. Thrombospondin 2, matrix Gla protein and digital analysis identified distinct fibroblast populations in fibrostenosing Crohn's disease. Sci Rep 2024; 14:13810. [PMID: 38877292 PMCID: PMC11178913 DOI: 10.1038/s41598-024-64672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
Fibrosis is an important complication in inflammatory bowel diseases. Previous studies suggest an important role of matrix Gla protein (MGP) and thrombospondin 2 (THBS2) in fibrosis in various organs. Our aim was to analyse their expression together with regulatory miRNAs in submucosal and subserosal fibroblasts in ulcerative colitis (UC) and Crohn's disease (CD) using immunohistochemistry and qPCR. Digital pathology was used to compare collagen fibre characteristics of submucosal and subserosal fibrosis. Immunohistochemistry showed expression of MGP, but not THBS2 in submucosa in UC and CD. In the subserosa, there was strong staining for both proteins in CD but not in UC. qPCR showed significant upregulation of THBS2 and MGP genes in CD subserosa compared to the submucosa. Digital pathology analysis revealed higher proportion of larger and thicker fibres that were more tortuous and reticulated in subserosal fibrosis compared to submucosal fibrosis. These results suggest distinct fibroblast populations in fibrostenosing CD, and are further supported by image analysis showing significant differences in the morphology and architecture of collagen fibres in submucosal fibrosis in comparison to subserosal fibrosis. Our study is the first to describe differences in submucosal and subserosal fibroblast populations, contributing to understanding of the pathogenesis of fibrostenosis in CD.
Collapse
Affiliation(s)
- Miha Jerala
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Tinkara Remic
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Nina Hauptman
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Pia Homan
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Neža Zajšek
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | | | - Li Chen
- PharmaNest Inc., Princeton, NJ, 08540, USA
| | - Nina Zidar
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Zhao Y, Qin D, Li X, Wang T, Zhang T, Rao X, Min L, Wan Z, Luo C, Xiao M. Identification of NINJ1 as a novel prognostic predictor for retroperitoneal liposarcoma. Discov Oncol 2024; 15:155. [PMID: 38733554 PMCID: PMC11088571 DOI: 10.1007/s12672-024-01016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Retroperitoneal liposarcoma (RPLS) is known for its propensity for local recurrence and short survival time. We aimed to identify a credible and specific prognostic biomarker for RPLS. METHODS Cases from The Cancer Genome Atlas (TCGA) sarcoma dataset were included as the training group. Co-expression modules were constructed using weighted gene co-expression network analysis (WGCNA) to explore associations between modules and survival. Survival analysis of hub genes was performed using the Kaplan-Meier method. In addition, independent external validation was performed on a cohort of 135 Chinese RPLS patients from the REtroperitoneal SArcoma Registry (RESAR) study (NCT03838718). RESULTS A total of 19 co-expression modules were constructed based on the expression levels of 26,497 RNAs in the TCGA cohort. Among these modules, the green module exhibited a positive correlation with overall survival (OS, p = 0.10) and disease-free survival (DFS, p = 0.06). Gene set enrichment analysis showed that the green module was associated with endocytosis and soft-tissue sarcomas. Survival analysis demonstrated that NINJ1, a hub gene within the green module, was positively associated with OS (p = 0.019) in the TCGA cohort. Moreover, in the validation cohort, patients with higher NINJ1 expression levels displayed a higher probability of survival for both OS (p = 0.023) and DFS (p = 0.012). Multivariable Cox analysis further confirmed the independent prognostic significance of NINJ1. CONCLUSIONS We here provide a foundation for the establishment of a consensus prognostic biomarker for RPLS, which should not only facilitate medical treatment but also guide the development of novel targeted drugs.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Da Qin
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Xiangji Li
- Department of Retroperitoneal Tumor Surgery, International Hospital, Peking University, Beijing, China
| | - Tiange Wang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Tong Zhang
- Department of Pathology, International Hospital, Peking University, Beijing, China
| | - Xiaosong Rao
- Department of Pathology, International Hospital, Peking University, Beijing, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Zhiyi Wan
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenghua Luo
- Department of Retroperitoneal Tumor Surgery, Peking University People's Hospital, Beijing, China.
| | - Mengmeng Xiao
- Department of Retroperitoneal Tumor Surgery, International Hospital, Peking University, Beijing, China.
| |
Collapse
|
7
|
Lesovaya EA, Fetisov TI, Bokhyan BY, Maksimova VP, Kulikov EP, Belitsky GA, Kirsanov KI, Yakubovskaya MG. Genetic, Epigenetic and Transcriptome Alterations in Liposarcoma for Target Therapy Selection. Cancers (Basel) 2024; 16:271. [PMID: 38254762 PMCID: PMC10813500 DOI: 10.3390/cancers16020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Liposarcoma (LPS) is one of the most common adult soft-tissue sarcomas (STS), characterized by a high diversity of histopathological features as well as to a lesser extent by a spectrum of molecular abnormalities. Current targeted therapies for STS do not include a wide range of drugs and surgical resection is the mainstay of treatment for localized disease in all subtypes, while many LPS patients initially present with or ultimately progress to advanced disease that is either unresectable, metastatic or both. The understanding of the molecular characteristics of liposarcoma subtypes is becoming an important option for the detection of new potential targets and development novel, biology-driven therapies for this disease. Innovative therapies have been introduced and they are currently part of preclinical and clinical studies. In this review, we provide an analysis of the molecular genetics of liposarcoma followed by a discussion of the specific epigenetic changes in these malignancies. Then, we summarize the peculiarities of the key signaling cascades involved in the pathogenesis of the disease and possible novel therapeutic approaches based on a better understanding of subtype-specific disease biology. Although heterogeneity in liposarcoma genetics and phenotype as well as the associated development of resistance to therapy make difficult the introduction of novel therapeutic targets into the clinic, recently a number of targeted therapy drugs were proposed for LPS treatment. The most promising results were shown for CDK4/6 and MDM2 inhibitors as well as for the multi-kinase inhibitors anlotinib and sunitinib.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia, 9 Vysokovol’tnaya St., Ryazan 390026, Russia;
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Timur I. Fetisov
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Beniamin Yu. Bokhyan
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Varvara P. Maksimova
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Evgeny P. Kulikov
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia, 9 Vysokovol’tnaya St., Ryazan 390026, Russia;
| | - Gennady A. Belitsky
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Kirill I. Kirsanov
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Marianna G. Yakubovskaya
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| |
Collapse
|
8
|
Yang L, Yu Q, Zhu Y, Ali Mallah M, Wang W, Feng F, Zhang Q. Core genes in lung adenocarcinoma identified by integrated bioinformatic analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:243-257. [PMID: 34961365 DOI: 10.1080/09603123.2021.2016660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
This study aims to identify potential core genes of lung adenocarcinoma (LUAD). Three datasets (GSE32863, GSE43458, and GSE116959) were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between LUAD and normal tissues were filtrated by GEO2R tool. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed via Metascape database. The protein-protein interaction (PPI) network was constructed and core genes were identified using STRING and Cytoscape. Core genes expressions and their relevant clinical characteristics were performed via Oncomine and UALCAN databases respectively. The correlation between core genes and immune infiltrates was investigated by TIMER database. Kaplan-Meier plotter was performed for survival analysis. The signal pathway network of core genes was mapped by KEGG Mapper analysis tool. In this study, ten core genes were significantly related to overall survival (OS) of LUAD patients, which can provide clues for prognosis of LUAD.
Collapse
Affiliation(s)
- Liu Yang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Qi Yu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Yonghang Zhu
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Manthar Ali Mallah
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhongyuan District, Zhengzhou, Henan Province, China
| |
Collapse
|
9
|
Teo AYT, Lim VY, Yang VS. MicroRNAs in the Pathogenesis, Prognostication and Prediction of Treatment Resistance in Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:cancers15030577. [PMID: 36765536 PMCID: PMC9913386 DOI: 10.3390/cancers15030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Soft tissue sarcomas are highly aggressive malignant neoplasms of mesenchymal origin, accounting for less than 1% of adult cancers, but comprising over 20% of paediatric solid tumours. In locally advanced, unresectable, or metastatic disease, outcomes from even the first line of systemic treatment are invariably poor. MicroRNAs (miRNAs), which are short non-coding RNA molecules, target and modulate multiple dysregulated target genes and/or signalling pathways within cancer cells. Accordingly, miRNAs demonstrate great promise for their utility in diagnosing, prognosticating and improving treatment for soft tissue sarcomas. This review aims to provide an updated discussion on the known roles of specific miRNAs in the pathogenesis of sarcomas, and their potential use in prognosticating outcomes and prediction of therapeutic resistance.
Collapse
Affiliation(s)
- Andrea York Tiang Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivian Yujing Lim
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Valerie Shiwen Yang
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
10
|
Kadkhoda S, Eslami S, Mahmud Hussen B, Ghafouri-Fard S. A review on the importance of miRNA-135 in human diseases. Front Genet 2022; 13:973585. [PMID: 36147505 PMCID: PMC9486161 DOI: 10.3389/fgene.2022.973585] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/04/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNA-135 (miR-135) is a microRNA which is involved in the pathoetiology of several neoplastic and non-neoplastic conditions. Both tumor suppressor and oncogenic roles have been reported for this miRNA. Studies in prostate, renal, gallbladder and nasopharyngeal cancers as well as glioma have shown down-regulation of miR-135 in cancerous tissues compared with controls. These studies have also shown the impact of miR-135 down-regulation on enhancement of cell proliferation and aggressive behavior. Meanwhile, miR-135 has been shown to be up-regulated in bladder, oral, colorectal and liver cancers. Studies in breast, gastric, lung and pancreatic cancers as well as head and neck squamous cell carcinoma have reported dual roles for miR-135. Dysregulation of miR-135 has also been noted in various non-neoplastic conditions such as Alzheimer’s disease, atherosclerosis, depression, diabetes, Parkinson, pulmonary arterial hypertension, nephrotic syndrome, endometriosis, epilepsy and allergic conditions. In the current review, we summarize the role of miR-135 in the carcinogenesis as well as development of other disorders.
Collapse
Affiliation(s)
- Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Soudeh Ghafouri-Fard,
| |
Collapse
|
11
|
Identification of a Five-MiRNA Expression Assay to Aid Colorectal Cancer Diagnosis. GASTROINTESTINAL DISORDERS 2022. [DOI: 10.3390/gidisord4030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: One-third of colorectal cancer (CRC) patients present with advanced disease, and establishing control remains a challenge. Identifying novel biomarkers to facilitate earlier diagnosis is imperative in enhancing oncological outcomes. We aimed to create miRNA oncogenic signature to aid CRC diagnosis. Methods: Tumour and tumour-associated normal (TAN) were extracted from 74 patients during surgery for CRC. RNA was isolated and target miRNAs were quantified using real-time reverse transcriptase polymerase chain reaction. Regression analyses were performed in order to identify miRNA targets capable of differentiating CRC from TAN and compared with two endogenous controls (miR-16 and miR-345) in each sample. Areas under the curve (AUCs) in Receiver Operating Characteristic (ROC) analyses were determined. Results: MiR-21 (β-coefficient:3.661, SE:1.720, p = 0.033), miR-31 (β-coefficient:2.783, SE:0.918, p = 0.002), and miR-150 (β-coefficient:−4.404, SE:0.526, p = 0.004) expression profiles differentiated CRC from TAN. In multivariable analyses, increased miR-31 (β-coefficient:2.431, SE:0.715, p < 0.001) and reduced miR-150 (β-coefficient:−4.620, SE:1.319, p < 0.001) independently differentiated CRC from TAN. The highest AUC generated for miR-21, miR-31, and miR-150 in an oncogenic expression assay was 83.0% (95%CI: 61.7–100.0, p < 0.001). In the circulation of 34 independent CRC patients and 5 controls, the mean expression of miR-21 (p = 0.001), miR-31 (p = 0.001), and miR-150 (p < 0.001) differentiated CRC from controls; however, the median expression of miR-21 (p = 0.476), miR-31 (p = 0.933), and miR-150 (p = 0.148) failed to differentiate these groups. Conclusion: This study identified a five-miRNA signature capable of distinguishing CRC from normal tissues with a high diagnostic test accuracy. Further experimentation with this signature is required to elucidate its diagnostic relevance in the circulation of CRC patients.
Collapse
|
12
|
Davey MG, Feeney G, Annuk H, Paganga M, Holian E, Lowery AJ, Kerin MJ, Miller N. MicroRNA Expression Profiling Predicts Nodal Status and Disease Recurrence in Patients Treated with Curative Intent for Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14092109. [PMID: 35565239 PMCID: PMC9106021 DOI: 10.3390/cancers14092109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Approximately one-third of colorectal cancer (CRC) patients will suffer recurrence. MiRNAs are small non-coding RNAs that play important roles in gene expression. We aimed to correlate miRNA expression with aggressive clinicopathological characteristics and survival outcomes in CRC. Methods: Tumour samples were extracted from 74 CRC patients. MiRNAs were quantified using real-time reverse transcriptase polymerase chain reaction. Descriptive statistics and Cox regression analyses were performed to correlate miRNA targets with clinicopathological and outcome data. Results: Aberrant miR-21 and miR-135b expression correlate with increased nodal stage (p = 0.039, p = 0.022). Using univariable Cox regression analyses, reduced miR-135b (β-coefficient −1.126, hazard ratio 0.324, standard error (SE) 0.4698, p = 0.017) and increased miR-195 (β-coefficient 1.442, hazard ratio 4.229, SE 0.446, p = 0.001) predicted time to disease recurrence. Survival regression trees analysis illustrated a relative cut-off of ≤0.488 for miR-195 and a relative cut-off of >−0.218 for miR-135b; both were associated with improved disease recurrence (p < 0.001, p = 0.015). Using multivariable analysis with all targets as predictors, miR-195 (β-coefficient 3.187, SE 1.419, p = 0.025) was the sole significant independent predictor of recurrence. Conclusion: MiR-195 has strong value in predicting time to recurrence in CRC patients. Additionally, miR-21 and miR-135b predict the degree nodal burden. Future studies may include these findings to personalize therapeutic and surgical decision making.
Collapse
Affiliation(s)
- Matthew G. Davey
- Department of Surgery, Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (G.F.); (H.A.); (A.J.L.); (M.J.K.); (N.M.)
- Correspondence:
| | - Gerard Feeney
- Department of Surgery, Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (G.F.); (H.A.); (A.J.L.); (M.J.K.); (N.M.)
| | - Heidi Annuk
- Department of Surgery, Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (G.F.); (H.A.); (A.J.L.); (M.J.K.); (N.M.)
| | - Maxwell Paganga
- School of Mathematical and Statistical Sciences, National University of Ireland, H91 H3CY Galway, Ireland; (M.P.); (E.H.)
| | - Emma Holian
- School of Mathematical and Statistical Sciences, National University of Ireland, H91 H3CY Galway, Ireland; (M.P.); (E.H.)
| | - Aoife J. Lowery
- Department of Surgery, Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (G.F.); (H.A.); (A.J.L.); (M.J.K.); (N.M.)
| | - Michael J. Kerin
- Department of Surgery, Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (G.F.); (H.A.); (A.J.L.); (M.J.K.); (N.M.)
| | - Nicola Miller
- Department of Surgery, Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (G.F.); (H.A.); (A.J.L.); (M.J.K.); (N.M.)
| |
Collapse
|
13
|
Tumor-stroma TGF-β1-THBS2 feedback circuit drives pancreatic ductal adenocarcinoma progression via integrin αvβ3/CD36-mediated activation of the MAPK pathway. Cancer Lett 2022; 528:59-75. [DOI: 10.1016/j.canlet.2021.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 01/06/2023]
|
14
|
Role of FUS-CHOP in Myxoid Liposarcoma via miR-486/CDK4 Axis. Biochem Genet 2021; 60:1095-1106. [PMID: 34792704 DOI: 10.1007/s10528-021-10151-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
This study aimed to explore the roles and relationship between FUsed in Sarcoma (FUS)-C/EBP HOmologous Protein (CHOP), microRNA (miR)-486 and cyclin dependent kinase 4 (CDK4) in myxoid liposarcoma, and determined whether FUS-CHOP can regulate proliferation and apoptosis of myxoid liposarcoma cells by regulating miR-486/CDK4 axis. The levels of miR-486, CDK4 and FUS-CHOP in myxoid liposarcoma samples/adjacent normal muscle tissues and myxoid liposarcoma/human adipose-derived stem cell line were evaluated using reverse transcription-quantitative polymerase chain reaction and western blotting. Cell proliferation and apoptosis were performed using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and flow cytometry, respectively. Furthermore, the apoptosis-related proteins were determined using Western blot assay. We found that miR-486 was down-regulated, FUS-CHOP and CDK4 were up-regulated in myxoid liposarcoma tissues and myxoid liposarcoma cell lines. Moreover, FUS-CHOP-siRNA distinctly suppressed FUS-CHOP level and increased miR-486 levels in 1955/91 cells. Our results demonstrated that knockdown of FUS-CHOP by siRNA inhibited 1955/91 growth, promoted cell apoptosis and enhanced cleaved Caspase3 protein expression. However, all these data were reversed by miR-486 inhibitor. Similarly, compared to mimic control, miR-486 mimic markedly reduced 1955/91 cells growth, induced cell apoptosis and fortified cleaved Caspase3 level, while these results were abolished by CDK4-plasmid. Collectively, our observations clearly suggested that FUS-CHOP regulated myxoid liposarcoma cell proliferation and apoptosis by the regulation of miR-486/CDK4 axis, indicating the potential use of FUS-CHOP-siRNA as a promising therapy for myxoid liposarcoma.
Collapse
|
15
|
Damerell V, Pepper MS, Prince S. Molecular mechanisms underpinning sarcomas and implications for current and future therapy. Signal Transduct Target Ther 2021; 6:246. [PMID: 34188019 PMCID: PMC8241855 DOI: 10.1038/s41392-021-00647-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/18/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcomas are complex mesenchymal neoplasms with a poor prognosis. Their clinical management is highly challenging due to their heterogeneity and insensitivity to current treatments. Although there have been advances in understanding specific genomic alterations and genetic mutations driving sarcomagenesis, the underlying molecular mechanisms, which are likely to be unique for each sarcoma subtype, are not fully understood. This is in part due to a lack of consensus on the cells of origin, but there is now mounting evidence that they originate from mesenchymal stromal/stem cells (MSCs). To identify novel treatment strategies for sarcomas, research in recent years has adopted a mechanism-based search for molecular markers for targeted therapy which has included recapitulating sarcomagenesis using in vitro and in vivo MSC models. This review provides a comprehensive up to date overview of the molecular mechanisms that underpin sarcomagenesis, the contribution of MSCs to modelling sarcomagenesis in vivo, as well as novel topics such as the role of epithelial-to-mesenchymal-transition (EMT)/mesenchymal-to-epithelial-transition (MET) plasticity, exosomes, and microRNAs in sarcomagenesis. It also reviews current therapeutic options including ongoing pre-clinical and clinical studies for targeted sarcoma therapy and discusses new therapeutic avenues such as targeting recently identified molecular pathways and key transcription factors.
Collapse
Affiliation(s)
- Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
| |
Collapse
|
16
|
Chen R, Yang M, Huang W, Wang B. Cascades between miRNAs, lncRNAs and the NF-κB signaling pathway in gastric cancer (Review). Exp Ther Med 2021; 22:769. [PMID: 34055068 PMCID: PMC8145527 DOI: 10.3892/etm.2021.10201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/28/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a common digestive tract malignancy that is mainly treated with surgery combined with perioperative adjuvant chemoradiotherapy and biological targeted therapy. However, the diagnosis rate of early gastric cancer is low and both postoperative recurrence and distant metastasis are thorny problems. Therefore, it is essential to study the pathogenesis of gastric cancer and search for more effective means of treatment. The nuclear factor-κB (NF-κB) signaling pathway has an important role in the occurrence and development of gastric cancer and recent studies have revealed that microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are able to regulate this pathway through a variety of mechanisms. Understanding these interrelated molecular mechanisms is helpful in guiding improvements in gastric cancer treatment. In the present review, the functional associations between miRNAs, lncRNAs and the NF-κB signaling pathway in the occurrence, development and prognosis of gastric cancer were discussed. It was concluded that miRNAs and lncRNAs have complex relations with the NF-κB signaling pathway in gastric cancer. miRNAs/target genes/NF-κB/target proteins, signaling molecules/NF-κB/miRNAs/target genes, lncRNAs/miRNAs/NF-κB/genes or mRNAs, lncRNAs/target genes/NF-Κb/target proteins, and lncRNAs/NF-κB/target proteins cascades are all important factors in the occurrence and development of gastric cancer.
Collapse
Affiliation(s)
- Risheng Chen
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Mingxiu Yang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Weiguo Huang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology (2016TP1015), Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Baiyun Wang
- Department of Anesthesiology, Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
17
|
Horváth M, Nagy G, Zsindely N, Bodai L, Horváth P, Vágvölgyi C, Nosanchuk JD, Tóth R, Gácser A. Oral Epithelial Cells Distinguish between Candida Species with High or Low Pathogenic Potential through MicroRNA Regulation. mSystems 2021; 6:6/3/e00163-21. [PMID: 33975967 PMCID: PMC8125073 DOI: 10.1128/msystems.00163-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oral epithelial cells monitor microbiome composition and initiate immune response upon dysbiosis, as in the case of Candida imbalances. Candida species, such as C. albicans and C. parapsilosis, are the most prevalent yeasts in the oral cavity. Comparison of healthy oral epithelial cell responses revealed that while C. albicans infection robustly activated inflammation cascades, C. parapsilosis primarily activated various inflammation-independent pathways. In posttranscriptional regulatory processes, several miRNAs were altered by both species. For C. parapsilosis, the dose of yeast cells directly correlated with changes in transcriptomic responses with higher fungal burdens inducing significantly different and broader changes. MicroRNAs (miRNAs) associated with carbohydrate metabolism-, hypoxia-, and vascular development-related responses dominated with C. parapsilosis infection, whereas C. albicans altered miRNAs linked to inflammatory responses. Subsequent analyses of hypoxia-inducible factor 1α (HIF1-α) and hepatic stellate cell (HSC) activation pathways predicted target genes through which miRNA-dependent regulation of yeast-specific functions may occur, which also supported the observed species-specific responses. Our findings suggest that C. parapsilosis is recognized as a commensal at low doses by the oral epithelium; however, increased fungal burden activates different pathways, some of which overlap with the inflammatory processes robustly induced by C. albicans IMPORTANCE A relatively new topic within the field of immunology involves the role of miRNAs in innate as well as adaptive immune response regulation. In recent years, posttranscriptional regulation of host-pathogenic fungal interactions through miRNAs was also suggested. Our study reveals that the distinct nature of human oral epithelial cell responses toward C. parapsilosis and C. albicans is possibly due to species-specific fine-tuning of host miRNA regulatory processes. The findings of this study also shed new light on the nature of early host cell transcriptional responses to the presence of C. parapsilosis and highlight the species' potential inflammation-independent host activation processes. These findings contribute to our better understanding of how miRNA deregulation at the oral immunological barrier, in noncanonical immune cells, may discriminate between fungal species, particularly Candida species with high or low pathogenic potential.
Collapse
Affiliation(s)
- Márton Horváth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, University of Szeged, Szeged, Hungary
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Joshua D Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Renáta Tóth
- Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
18
|
Huangfu L, He Q, Han J, Shi J, Li X, Cheng X, Guo T, Du H, Zhang W, Gao X, Luan F, Xing X, Ji J. MicroRNA-135b/CAMK2D Axis Contribute to Malignant Progression of Gastric Cancer through EMT Process Remodeling. Int J Biol Sci 2021; 17:1940-1952. [PMID: 34131397 PMCID: PMC8193265 DOI: 10.7150/ijbs.58062] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/26/2021] [Indexed: 01/10/2023] Open
Abstract
There is a continued need for investigating the roles of microRNAs (miRNAs) and their targets on the progression of gastric cancer (GC), especially metastasis. Here, we performed an integrated study to identify dysregulated miRNAs critical for GC development and progression. miR-135b was determined as a promising biomarker for GC. The expression level of miR-135b was increased among GC cell lines, patient tumor tissues, serum samples, and correlation with aggravation of the GC patients. The in vitro functional assays demonstrated overexpression of miR-135b promoted cell proliferation, migration and invasion in GC, while miR-135b inhibition led to the opposite results. CAMK2D was found to be the direct target of miR-135b, serving as a tumor suppressor in GC cells. Based on our and public datasets, we confirmed the attenuation of CAMK2D expression in GC tissues. And, the expression levels of miR-135b and CAMK2D were closely associated with prognosis of GC patients. Ectopic expression of miR-135b resulted in the down-regulation of CAMK2D. Additionally, CAMK2D was a prerequisite for miR-135b to promote GC cells proliferation and migration by regulating the EMT process, which was confirmed by the in vivo experiments. Importantly, in vivo injection of miR-135b antagomir significantly repressed the tumor growth and metastasis of xenograft models, which suggested that the miR-135b antagomir were promising for clinical applications. Taken together, these results indicate that miR-135b/CAMK2D axis drives GC progression by EMT process remodeling, suggesting that miR-135b may be utilized as a new therapeutic target and prognostic marker for GC patients.
Collapse
Affiliation(s)
- Longtao Huangfu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Qifei He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China.,Department of Orthopedics, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Jing Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Jingyao Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaomei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaojing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Wanhong Zhang
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, Fu-Cheng Road, Beijing, 100142, China.,Center of Minimally Invasive Gastrointestinal Surgery, Shanxi Cancer Hospital, Zhigong New Street, Taiyuan, Shanxi, China
| | - Xiangyu Gao
- Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, Fu-Cheng Road, Beijing, 100142, China
| | - Fengming Luan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital, Fu-Cheng Road, Beijing, 100142, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital, Beijing, Fu-Cheng Road, Beijing, 100142, China
| |
Collapse
|
19
|
Heijs B, Holst-Bernal S, de Graaff MA, Briaire-de Bruijn IH, Rodriguez-Girondo M, van de Sande MAJ, Wuhrer M, McDonnell LA, Bovée JVMG. Molecular signatures of tumor progression in myxoid liposarcoma identified by N-glycan mass spectrometry imaging. J Transl Med 2020; 100:1252-1261. [PMID: 32341520 DOI: 10.1038/s41374-020-0435-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Myxoid liposarcoma (MLS) is the second most common subtype of liposarcoma, accounting for ~6% of all sarcomas. MLS is characterized by a pathognomonic FUS-DDIT3, or rarely EWSR1-DDIT3, gene fusion. The presence of ≥5% hypercellular round cell areas is associated with a worse prognosis for the patient and is considered high grade. The prognostic significance of areas with moderately increased cellularity (intermediate) is currently unknown. Here we have applied matrix-assisted laser desorption/ionization mass spectrometry imaging to analyze the spatial distribution of N-linked glycans on an MLS microarray in order to identify molecular markers for tumor progression. Comparison of the N-glycan profiles revealed that increased relative abundances of high-mannose type glycans were associated with tumor progression. Concomitantly, an increase of the average number of mannoses on high-mannose glycans was observed. Although overall levels of complex-type glycans decreased, an increase of tri- and tetra-antennary N-glycans was observed with morphological tumor progression and increased tumor histological grade. The high abundance of tri-antennary N-glycan species was also associated with poor disease-specific survival. These findings mirror recent observations in colorectal cancer, breast cancer, ovarian cancer, and cholangiocarcinoma, and are in line with a general role of high-mannose glycans and higher-antennary complex-type glycans in cancer progression.
Collapse
Affiliation(s)
- Bram Heijs
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Stephanie Holst-Bernal
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke A de Graaff
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Mar Rodriguez-Girondo
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Liam A McDonnell
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands.,Fondazione Pisana per la Scienza ONLUS, Pisa, Italy
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
MiR-135b Induces Osteosarcoma Invasion by the Modulation of FOXO-1 and c-Myc. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2020. [DOI: 10.5812/ijcm.101577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Osteosarcoma (OS) is the most common type of bone malignancy. Many studies have attempted to find the association between microRNAs and cancer-associated processes. Alterations in miRNA expression through genetic or epigenetic changes, impairment of transcription factors, and ectopic expression of miRNAs induce the development and progression of cancer. Although miR-135b has been thoroughly documented as an oncogene in the majority of studies, some controversies remain about the conflicting role of miR-135b as a tumor-suppressor. Objectives: The present study aimed at investigating the oncogenic and/or tumor-suppressing role of miR-135b in human OS. Methods: In this study, 21 OS tissue samples, along with 21 adjacent bone tissues (normal) as control specimens were collected to analyze the expression of miR-135b. The Saos2 cell-line was transiently transfected with the miR-135b mimic and inhibitor to assess its effect on two critical transcription factors, namely FOXO-1 and c-Myc. qRT-PCR was performed to quantify the expression of miR-135b in both OS tissues and the Saos2 cell-line. The MTT, cell migration, and cell invasion assays were used to characterize the miR-135b function. The western blot analysis was carried out to monitor the targets of miR-135b. Finally, the changes in cellular functions such as migration and invasion, following the transfection of miR-135b mimic and inhibitor, were verified. Results: The results showed that in comparison with the adjacent normal bone tissues, the expression of miR-135b was higher in OS tissue samples, which inversely correlated with the expression rate of FOXO-1, whereas the expression of c-Myc had a direct relationship to miR-135b expression. Functionally, the miR-135b mimic led to an increase in cell proliferation, invasion, and migration of OS cancer cells. Conclusions: MiR-135b induces the proliferation and invasion of OS cells by the degradation of FOXO-1 and upregulation of c-Myc.
Collapse
|
21
|
Xin Y, Yang X, Xiao J, Zhao W, Li Y, Lu L, He X, Zhan M. MiR-135b promotes HCC tumorigenesis through a positive-feedback loop. Biochem Biophys Res Commun 2020; 530:259-265. [PMID: 32828296 DOI: 10.1016/j.bbrc.2020.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Hippo pathway plays critical roles in cell proliferation and apoptosis and its dysregulation leads to various types of cancers, including hepatocellular carcinoma (HCC). However, the mechanism maintaining Hippo pathway homeostasis still remains unclear. In this study, we discovered that the expression of miR-135b is apparently upregulated in HCC tissues and HCC cell lines. The level of miR-135b was positively correlated with HCC stages and negatively correlated with the survival of HCC patients, suggesting an oncogenic role of miR-135b in HCC progression. Similarly, miR-135b mimic promoted HCC cell proliferation and migration, whereas its inhibitor played an opposite role. Mechanistically, we identified a seed sequence of miR-135b in the MST1 3'-UTR region. MiR-135b inhibited the Hippo pathway by silencing MST1 expression. Additionally, we revealed that miR-135b was a transcriptional target of the Hippo pathway. Based on these data, we propose that a positive-feedback axis of MST1-YAP-miR-135b exists for HCC aggravation. Our study not only deepens the insight into the Hippo pathway homeostasis, but also suggests miR-135b as a potential prognosis biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Yongjie Xin
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 519000, PR China
| | - Xiangyu Yang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 519000, PR China
| | - Jing Xiao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 519000, PR China
| | - Wei Zhao
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 519000, PR China
| | - Yong Li
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 519000, PR China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 519000, PR China
| | - Xu He
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 519000, PR China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 519000, PR China.
| |
Collapse
|
22
|
Nix JS, Yuan M, Imada EL, Ames H, Marchionni L, Gutmann DH, Rodriguez FJ. Global microRNA profiling identified miR-10b-5p as a regulator of neurofibromatosis 1 (NF1)-glioma migration. Neuropathol Appl Neurobiol 2020; 47:96-107. [PMID: 32603552 DOI: 10.1111/nan.12641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 06/14/2020] [Accepted: 06/30/2020] [Indexed: 01/12/2023]
Abstract
AIMS Neurofibromatosis 1 (NF1) is an autosomal-dominant cancer predisposition syndrome caused by loss of function alterations involving the NF1 locus on chromosome 17. The most common brain tumours encountered in affected patients are low-grade gliomas (pilocytic astrocytomas), although high-grade gliomas are also observed at increased frequency. While bi-allelic NF1 loss characterizes these tumours, previous studies have suggested noncoding RNA molecules (microRNA, miR) may have important roles in dictating glioma biology. METHODS To explore the contributions of miRs in NF1-associated gliomas, we analysed five high-grade gliomas (NF1-HGG) and five PAs (NF1-PA) using global microRNA profiling with NanoString-based microarrays followed by functional experiments with glioma cell lines. RESULTS miR-10b-5p, miR-135b-5p, miR-196a-5p, miR-196b-5p, miR-1247-5p and miR-320a (adjusted P < 0.05) were increased> 3-fold in NF1-HGG relative to NF1-PA tumours. In addition, miR-378b and miR-1305 were decreased 6.8- and 6-fold, respectively, whereas miR-451a was increased 2.7-fold (adjusted P < 0.05) in NF1-PAs compared to non-neoplastic NF1 patient brain specimens (n = 2). As miR-10b-5p was the microRNA overexpressed the most in NF1-high-grade glioma compared to NF1-low-grade glioma (5.76 fold), we examined its levels in glioma cell lines. miR-10b-5p levels were highest in adult glioma cell lines and lowest in paediatric low-grade glioma lines (P = 0.02). miR-10b-5p knockdown resulted in decreased invasion in NF1-deficient LN229 high-grade glioma line, whereas its overexpression in the NF1-PA derived line (JHH-NF1-PA1) led to increased invasion. There was no change in cell growth (viability and proliferation). CONCLUSIONS These proof-of-concept experiments support a role for microRNA regulation in NF1-glioma biology.
Collapse
Affiliation(s)
- J S Nix
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - M Yuan
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - E L Imada
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - H Ames
- Department of Pathology, University of Maryland, Baltimore, MD, USA
| | - L Marchionni
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D H Gutmann
- Department of Neurology, Washington University, St. Louis, Missouri, USA
| | - F J Rodriguez
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departments of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
23
|
Vos M, Boers R, Vriends ALM, Boers J, van Kuijk PF, van Houdt WJ, van Leenders GJLH, Wagrodzki M, van IJcken WFJ, Gribnau J, Grünhagen DJ, Verhoef C, Sleijfer S, Wiemer EAC. MicroRNA expression and DNA methylation profiles do not distinguish between primary and recurrent well-differentiated liposarcoma. PLoS One 2020; 15:e0228014. [PMID: 31971976 PMCID: PMC6977735 DOI: 10.1371/journal.pone.0228014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Approximately one-third of the patients with well-differentiated liposarcoma (WDLPS) will develop a local recurrence. Not much is known about the molecular relationship between the primary tumor and the recurrent tumor, which is important to reveal potential drivers of recurrence. Here we investigated the biology of recurrent WDLPS by comparing paired primary and recurrent WDLPS using microRNA profiling and genome-wide DNA methylation analyses. In total, 27 paired primary and recurrent WDLPS formalin-fixed and paraffin-embedded tumor samples were collected. MicroRNA expression profiles were determined using TaqMan® Low Density Array (TLDA) cards. Genome-wide DNA methylation and differentially methylated regions (DMRs) were assessed by methylated DNA sequencing (MeD-seq). A supervised cluster analysis based on differentially expressed microRNAs between paired primary and recurrent WDLPS did not reveal a clear cluster pattern separating the primary from the recurrent tumors. The clustering was also not based on tumor localization, time to recurrence, age or status of the resection margins. Changes in DNA methylation between primary and recurrent tumors were extremely variable, and no consistent DNA methylation changes were found. As a result, a supervised clustering analysis based on DMRs between primary and recurrent tumors did not show a distinct cluster pattern based on any of the features. Subgroup analysis for tumors localized in the extremity or the retroperitoneum also did not yield a clear distinction between primary and recurrent WDLPS samples. In conclusion, microRNA expression profiles and DNA methylation profiles do not distinguish between primary and recurrent WDLPS and no putative common drivers could be identified.
Collapse
Affiliation(s)
- Melissa Vos
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ruben Boers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anne L. M. Vriends
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Patricia F. van Kuijk
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Winan J. van Houdt
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Michal Wagrodzki
- Department of Pathology, Maria Skłodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | | | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dirk J. Grünhagen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Erik A. C. Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
24
|
Jiao H, Zeng L, Zhang J, Yang S, Lou W. THBS2, a microRNA-744-5p target, modulates MMP9 expression through CUX1 in pancreatic neuroendocrine tumors. Oncol Lett 2020; 19:1683-1692. [PMID: 32194660 PMCID: PMC7039111 DOI: 10.3892/ol.2020.11273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023] Open
Abstract
The underlying molecular mechanisms of pancreatic neuroendocrine tumor (pNET) development have not yet been clearly identified. The present study revealed that thrombospondin 2 (THBS2) was downregulated in pNET tissues and cells. Forced expression of THBS2 inhibited the proliferation and migration of pNET cells in vitro. MicroRNA(miR)-744-5p was indicated to be a direct regulator of THBS2. Upregulation of miR-744-5p potentially caused THBS2 repression. Furthermore, THBS2 inhibited the production of matrix metalloproteinase (MMP) MMP9 through suppressing the transcriptional activity of CUT-like homeobox 1 (CUX1). CUX1 and MMP9 mediated the effect of THBS2 on pNET proliferation and migration, respectively. The results of the present study revealed a mechanistic role for THBS2 in pNET proliferation and migration, indicating that THBS2 was downregulated by miR-744-5p and further affected the CUX1/MMP9 cascade, which promoted the development of pNET.
Collapse
Affiliation(s)
- Heng Jiao
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Lingxiao Zeng
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jianpeng Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, P.R. China
| | - Shengsheng Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Second Military Medical University, Shanghai 200433, P.R. China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
25
|
Yang L, Chen S, Luo P, Yan W, Wang C. Liposarcoma: Advances in Cellular and Molecular Genetics Alterations and Corresponding Clinical Treatment. J Cancer 2020; 11:100-107. [PMID: 31892977 PMCID: PMC6930414 DOI: 10.7150/jca.36380] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Liposarcoma is a malignant tumor of mesenchymal origin with significant tissue diversity. It is composed of adipocytes with different degrees of differentiation and different degrees of heteromorphosis. It is not sensitive to traditional radiotherapy and chemotherapy and has a poor prognosis. In recent years, with the rapid development of basic immunology, molecular genetics and tumor molecular biology, the histological classification of liposarcoma has become increasingly clear. More and more new methods and technologies, such as gene expression profile analysis, the whole genome sequencing, miRNA expression profile analysis and RNA sequencing, have been successfully applied to liposarcoma, bringing about a deeper understanding of gene expression changes and molecular pathogenic mechanisms in the occurrence and development of liposarcoma. This study reviews the present research status and progress of cellular and molecular alterations of liposarcoma and corresponding clinical treatment progress.
Collapse
Affiliation(s)
- Lingge Yang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shiqi Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Luo
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chunmeng Wang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Arabsorkhi Z, Gharib E, Yaghmoorian Khojini J, Farhadieh M, Nazemalhosseini‐Mojarad E, Zali MR. miR‐298 plays a pivotal role in colon cancer invasiveness by targeting PTEN. J Cell Physiol 2019; 235:4335-4350. [DOI: 10.1002/jcp.29310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Zahra Arabsorkhi
- Department of Molecular Biology, Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ehsan Gharib
- Department of Molecular Biology, Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | | | - Ehsan Nazemalhosseini‐Mojarad
- Department of Gastrointestinal Cancer, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Reza Zali
- Department of Gastrointestinal Cancer, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
27
|
Wei S, Chen J, Huang Y, Sun Q, Wang H, Liang X, Hu Z, Li X. Identification of hub genes and construction of transcriptional regulatory network for the progression of colon adenocarcinoma hub genes and TF regulatory network of colon adenocarcinoma. J Cell Physiol 2019; 235:2037-2048. [PMID: 31612481 PMCID: PMC6916361 DOI: 10.1002/jcp.29067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
The aim of this study was to identify key genes related to the progression of colon adenocarcinoma (COAD), and to investigate the regulatory network of hub genes and transcription factors (TFs). Dataset GSE20916 including 44 normal colon, 55 adenoma, and 36 adenocarcinoma tissue samples was used to construct co‐expression networks via weighted gene co‐expression network. Gene Ontology annotation and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for the objective module were performed using the online Database for Annotation, Visualization and Integrated Discovery. Hub genes were identified by taking the intersection of differentially expressed genes between dataset GSE20916 and GSE39582 and validated using The Cancer Genome Atlas (TCGA) database. The correlations between microRNA (miRNA) and hub genes were analyzed using the online website StarBase. Cytoscape was used to establish a regulatory network of TF‐miRNA‐target gene. We found that the orange module was a key module related to the tumor progression in COAD. In datasets GSE20916 and GSE39582, a total of eight genes (BGN, SULF1, COL1A1, FAP, THBS2, CTHRC1, COL5A2, and COL1A2) were selected, which were closely related with patients’ survivals in TCGA database and dataset GSE20916. COAD patients with higher expressions of each hub gene had a worse prognosis than those with lower expressions. A regulatory network of TF‐miRNA‐target gene with 144 TFs, 26 miRNAs, and 7 hub genes was established, including model KLF11‐miR149‐BGN, TCEAL6‐miR29B2‐COL1A1, and TCEAL6‐miR29B2‐COL1A2. In conclusion, during the progression of COAD, eight core genes (BGN, SULF1, COL1A1, FAP, THBS2, CTHRC1, COL5A2, and COL1A2) play vital roles. Regulatory networks of TF‐miRNA‐target gene can help to understand the disease progression and optimize treatment strategy.
Collapse
Affiliation(s)
- Shuxun Wei
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jinshui Chen
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Yu Huang
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Qiang Sun
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Haolu Wang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Xiaowen Liang
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Zhiqian Hu
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Xinxing Li
- Department of General Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
28
|
Huang R, Zeng Z, Li G, Song D, Yan P, Yin H, Hu P, Zhu X, Chang R, Zhang X, Zhang J, Meng T, Huang Z. The Construction and Comprehensive Analysis of ceRNA Networks and Tumor-Infiltrating Immune Cells in Bone Metastatic Melanoma. Front Genet 2019; 10:828. [PMID: 31608101 PMCID: PMC6774271 DOI: 10.3389/fgene.2019.00828] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/12/2019] [Indexed: 12/19/2022] Open
Abstract
Background/Aims: As a malignant and melanocytic tumor, cutaneous melanoma is the devastating skin tumor with high rates of recurrence and metastasis. Bone is the common metastatic location, and bone metastasis may result in pathologic fracture, neurologic damage, and severe bone pain. Although metastatic melanoma was reported to get benefits from immunotherapy, molecular mechanisms and immune microenviroment underlying the melanoma bone metastasis and prognostic factors are still unknown. Methods: Gene expression profiling of 112 samples, including 104 primary melanomas and 8 bone metastatic melanomas from The Cancer Genome Atlas database, was assayed to construct a ceRNA network associated with bone metastases. Besides, we detected the fraction of 22 immune cell types in melanoma via the algorithm of “cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT).” Based on the significant ceRNAs or immune cells, we constructed nomograms to predict the prognosis of patients with melanoma. Ultimately, correlation analysis was implemented to discover the relationship between the significant ceRNA and immune cells to reveal the potential signaling pathways. Results: We constructed a ceRNA network based on the interaction among 8 pairs of long noncoding RNA–microRNA and 15 pairs of microRNA–mRNA. CIBERSORT and ceRNA integration analysis discovered that AL118506.1 has both significant prognostic value (P = 0.002) and high correlation with T follicular helper cells (P = 0.033). Meanwhile, T cells CD8 and macrophages M2 were negatively correlated (P < 0.001). Moreover, we constructed two satisfactory nomograms (area under curve of 3-year survival: 0.899; 5-year survival: 0.885; and concordance index: 0.780) with significant ceRNAs or immune cells, to predict the prognosis of patients. Conclusions: In this study, we suggest that bone metastasis in melanoma might be related to AL118506.1 and its role in regulating thrombospondin 2 and T follicular helper cells. Two nomograms were constructed to predict the prognosis of patients with melanoma and demonstrated their value in improving the personalized management.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zhiwei Zeng
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangyu Li
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Penghui Yan
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peng Hu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruizhi Chang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- Shanghai East Hospital, Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai, China
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Tongji University, Shanghai, China.,Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Shen Y, Yu J, Jing Y, Zhang J. MiR-106a aggravates sepsis-induced acute kidney injury by targeting THBS2 in mice model. Acta Cir Bras 2019; 34:e201900602. [PMID: 31432993 PMCID: PMC6705346 DOI: 10.1590/s0102-865020190060000002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/02/2019] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To investigate the role and related mechanisms of miR-106a in sepsis-induced AKI. METHODS Serum from sepsis and healthy patients was collected, sepsis mouse model was established by cecal ligation and puncture (CLP). TCMK-1 cells were treated with lipopolysaccharide (LPS) and transfected with THBS2-small interfering RNA (siTHBS2), miR-106a inhibitor, miR-106a mimics and their negative controls (NCs). The expression of miR-106a, thrombospondin 2 (THBS2), Bax, cleaved caspase-3 and Bcl-2, cell viability, relative caspase-3 activity and TNF-α, IL-1β, IL-6 content were respectively detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, Cell Counting Kit-8 (CCK-8) and enzyme linked immunosorbent assay (ELISA). The relationship between miR-106a and THBS2 was confirmed by dual luciferase reporter assay. RESULTS MiR-106a was up-regulated in serum of sepsis patients, CLP-induced mice models and LPS-induced TCMK-1 cells. LPS reduced cell viability and Bcl-2 expression, and increased caspase-3 activity, Bax expression, the content of TNF-α, IL-1β, IL-6. THBS2 was a target of miR-106a. The decreases of caspase-3 activity, TNF-α, IL-1β, IL-6, Bax expression and the increases of cell viability, Bcl-2 expression caused by miR-106a knockdown were reversed when THBS2 silencing in LPS-stimulated TCMK-1 cells. CONCLUSION MiR-106a aggravated LPS-induced inflammation and apoptosis of TCMK-1 cells via regulating THBS2 expression.
Collapse
Affiliation(s)
- Yezhou Shen
- Bachelor, Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China. Conception and design of the study, acquisition of data, technical procedures, manuscript preparation and writing
| | - Jiaoyang Yu
- Master, Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China. Technical procedures, acquisition of data
| | - Yunyan Jing
- Master, Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China. Technical procedures, acquisition of data
| | - Jian Zhang
- Bachelor, Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China. Statistical analysis, interpretation of data
| |
Collapse
|
30
|
Zhao CC, Jiao Y, Zhang YY, Ning J, Zhang YR, Xu J, Wei W, Kang-Sheng G. Lnc SMAD5-AS1 as ceRNA inhibit proliferation of diffuse large B cell lymphoma via Wnt/β-catenin pathway by sponging miR-135b-5p to elevate expression of APC. Cell Death Dis 2019; 10:252. [PMID: 30874550 PMCID: PMC6420660 DOI: 10.1038/s41419-019-1479-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/07/2019] [Accepted: 02/21/2019] [Indexed: 12/16/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a common and fatal hematological malignancy. Long noncoding RNAs (lncRNAs) have emerged as crucial biomarkers and regulators in many cancers. Novel lncRNA biomarker in DLBCL needs to be investigated badly, as well as its function and molecular mechanism. To further explore, microarray analysis was performed to identify the differentially expressed lncRNAs in DLBCL tissues. To investigate the biological functions of SMAD5-AS1, we performed gain- and loss-of-function experiments in vitro and in vivo. Furthermore, bioinformatics analysis, dual-luciferase reporter assays, Argonaute 2-RNA immunoprecipitation (AGO2-RIP), RNA pull-down assay, quantitative PCR arrays, western blot assay, TOPFlash/FOPFlash reporter assay, and rescue experiments were conducted to explore the underlying mechanisms of competitive endogenous RNAs (ceRNAs). We found that SMAD5-AS1 was down-regulated in DLBCL tissues and cell lines. Functionally, SMAD5-AS1 downregulation promoted cell proliferation in vitro and in vivo, whereas SMAD5-AS1 overexpression could lead to the opposite effects in vitro and in vivo. Bioinformatics analysis and luciferase assays revealed that miR-135b-5p was a direct target of SMAD5-AS1, which was validated by dual-luciferase reporter assays, AGO2-RIP, RNA pull-down assay, and rescue experiments. Also, dual-luciferase reporter assays and rescue experiments demonstrated that miR-135b-5p targeted the adenomatous polyposis coli (APC) gene directly. SMAD5-AS1/miR-135b-5p inhibits the cell proliferation via inactivating the classic Wnt/β-catenin pathway in the form of APC dependency. Our results indicated that SMAD5-AS1 inhibits DLBCL proliferation by sponging miR-135b-5p to up-regulate APC expression and inactivate classic Wnt/β-catenin pathway, suggesting that SMAD5-AS1 may act as a potential biomarker and therapeutic target for DLBCL.
Collapse
Affiliation(s)
- Chen-Chen Zhao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yang Jiao
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yi-Yin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jie Ning
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yi-Ruo Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jing Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| | - Gu Kang-Sheng
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
31
|
Han TS, Voon DCC, Oshima H, Nakayama M, Echizen K, Sakai E, Yong ZWE, Murakami K, Yu L, Minamoto T, Ock CY, Jenkins BJ, Kim SJ, Yang HK, Oshima M. Interleukin 1 Up-regulates MicroRNA 135b to Promote Inflammation-Associated Gastric Carcinogenesis in Mice. Gastroenterology 2019; 156:1140-1155.e4. [PMID: 30508510 DOI: 10.1053/j.gastro.2018.11.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 11/13/2018] [Accepted: 11/25/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Gastritis is associated with development of stomach cancer, but little is known about changes in microRNA expression patterns during gastric inflammation. Specific changes in gene expression in epithelial cells are difficult to monitor because of the heterogeneity of the tissue. We investigated epithelial cell-specific changes in microRNA expression during gastric inflammation and gastritis-associated carcinogenesis in mice. METHODS We used laser microdissection to enrich epithelial cells from K19-C2mE transgenic mice, which spontaneously develop gastritis-associated hyperplasia, and Gan mice, which express activated prostaglandin E2 and Wnt in the gastric mucosa and develop gastric tumors. We measured expression of epithelial cell-enriched microRNAs and used bioinformatics analyses to integrate data from different systems to identify inflammation-associated microRNAs. We validated our findings in gastric tissues from mice and evaluated protein functions in gastric cell lines (SNU-719, SNU-601, SNU-638, AGS, and GIF-14) and knockout mice. Organoids were cultured from gastric corpus tissues of wild-type and miR-135b-knockout C57BL/6 mice. We measured levels of microRNAs in pairs of gastric tumors and nontumor mucosa from 28 patients in Japan. RESULTS We found microRNA 135b (miR-135B) to be the most overexpressed microRNA in gastric tissues from K19-C2mE and Gan mice: levels increased during the early stages of gastritis-associated carcinogenesis. Levels of miR-135B were also increased in gastric tumor tissues from gp130F/F mice and patients compared with nontumor tissues. In gastric organoids and immortalized cell lines, expression of miR-135B was induced by interleukin 1 signaling. K19-C2mE mice with disruption of Mir-135b developed hyperplastic lesions that were 50% smaller than mice without Mir-135b disruption and had significant reductions in cell proliferation. Expression of miR-135B in gastric cancer cell lines increased their colony formation, migration, and sphere formation. We identified FOXN3 and RECK messenger RNAs (mRNAs) as targets of miR-135B; their knockdown reduced migration of gastric cancer cell lines. Levels of FOXN3 and RECK mRNAs correlated inversely with levels of miR-135B in human gastric tumors and in inflamed mucosa from K19-C2mE mice. CONCLUSIONS We found expression of miR-135B to be up-regulated by interleukin L1 signaling in gastric cancer cells and organoids. miR-135B promotes invasiveness and stem-cell features of gastric cancer cells in culture by reducing FOXN3 and RECK messenger RNAs. Levels of these messenger RNA targets, which encode tumor suppressor, are reduced in human gastric tumors.
Collapse
Affiliation(s)
- Tae-Su Han
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan; AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan; Biotherapeutics Translational Research Center, Division of Biomedical Science, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Dominic Chih-Cheng Voon
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan; Innovative Cancer Model Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan.
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan; WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Mizuho Nakayama
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan; WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan
| | - Kanae Echizen
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan; AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Eri Sakai
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Zachary Wei Ern Yong
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Murakami
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Liang Yu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Australia; Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, Australia
| | - Toshinari Minamoto
- Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Chan-Young Ock
- Theragen Etex Bio Institute, Suwon, Korea; Precision Medicine Research Center, Advanced Institutes of Convergence Technology and Department of Transdisciplinary Studies, Seoul National University, Suwon, Korea
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, Australia; Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, Australia
| | - Seong-Jin Kim
- Theragen Etex Bio Institute, Suwon, Korea; Precision Medicine Research Center, Advanced Institutes of Convergence Technology and Department of Transdisciplinary Studies, Seoul National University, Suwon, Korea
| | - Han-Kwang Yang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan; AMED-CREST, AMED, Japan Agency for Medical Research and Development, Tokyo, Japan; WPI Nano-Life Science Institute (Nano-LSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
32
|
Takahashi RU, Prieto-Vila M, Kohama I, Ochiya T. Development of miRNA-based therapeutic approaches for cancer patients. Cancer Sci 2019; 110:1140-1147. [PMID: 30729639 PMCID: PMC6447849 DOI: 10.1111/cas.13965] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades, siRNA and miRNA have attracted a great deal of attention from researchers and clinicians. These molecules have been extensively studied from the standpoint of developing biopharmaceuticals against various diseases, including heart disease, diabetes and cancers. siRNA suppresses only a single target, whereas each miRNA regulates the expression of multiple target genes. More importantly, because miRNA are also secreted from cancer cells, and their aberrant expression is associated with tumor development and progression, they represent not only therapeutic targets but also promising biomarkers for diagnosis and prognosis. Therefore, miRNA may be more effective tools against cancers, in which multiple signal pathways are dysregulated. In this review, we summarize recent progress in the development of miRNA therapeutics for the treatment of cancer patients, and describe delivery systems for oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Ryou-U Takahashi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Cellular and Molecular Biology, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Marta Prieto-Vila
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Isaku Kohama
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
33
|
Naorem LD, Muthaiyan M, Venkatesan A. Identification of dysregulated miRNAs in triple negative breast cancer: A meta‐analysis approach. J Cell Physiol 2018; 234:11768-11779. [DOI: 10.1002/jcp.27839] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Leimarembi Devi Naorem
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University Pondicherry India
| | - Mathavan Muthaiyan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University Pondicherry India
| | - Amouda Venkatesan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University Pondicherry India
| |
Collapse
|
34
|
Wang N, Zhang T. Downregulation of MicroRNA-135 Promotes Sensitivity of Non-Small Cell Lung Cancer to Gefitinib by Targeting TRIM16. Oncol Res 2018; 26:1005-1014. [PMID: 29295721 PMCID: PMC7844745 DOI: 10.3727/096504017x15144755633680] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Personalized treatment targeting the epidermal growth factor receptor (EGFR) may be a promising new treatment of non-small cell lung cancer (NSCLC). Gefitinib, a tyrosine kinase inhibitor, is the first drug for NSCLC, which unfortunately easily leads to drug resistance. Our study aimed to explore the functional role of microRNA (miR)-135 in the sensitivity to gefitinib of NSCLC cells. Expression of miR-135 in normal cells and NSCLC cells was assessed, followed by the effects of abnormally expressed miR-135 on cell viability, migration, invasion, apoptosis, sensitivity to gefitinib, and the expression levels of adhesion molecules and programmed death ligand 1 (PD-L1) in H1650 and H1975 cells. Next, the possible target gene of miR-135 was screened and verified. Finally, the potential involvement of the JAK/STAT signaling pathway was investigated. Expression of miR-135 was upregulated in NSCLC cells, and miR-135 silencing repressed cell viability, migration, and invasion, but increased cell apoptosis and sensitivity to gefitinib. E-cadherin and β-catenin were significantly upregulated, but PD-L1 was downregulated by the silencing of miR-135. Subsequently, tripartite-motif (TRIM) 16 was screened and verified to be a target gene of miR-135, and miR-135 suppression was shown to function through upregulation of TRIM16 expression. Phosphorylated levels of the key kinases in the JAK/STAT pathway were reduced by silencing miR-135 by targeting TRIM16. In conclusion, miR-135 acted as a tumor promoter, and its suppression could improve sensitivity to gefitinib by targeting TRIM16 and inhibition of the JAK/STAT pathway.
Collapse
Affiliation(s)
- Ning Wang
- *Department of Thoracic Surgery, Shengli Oilfield Central Hospital, Dongying, P.R. China
| | - Tingting Zhang
- †Department of Oncology, Shengli Oilfield Central Hospital, Dongying, P.R. China
| |
Collapse
|
35
|
Shao L, Chen Z, Soutto M, Zhu S, Lu H, Romero-Gallo J, Peek R, Zhang S, El-Rifai W. Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer. FASEB J 2018; 33:264-274. [PMID: 29985646 DOI: 10.1096/fj.201701456rr] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori infection is a major risk factor for the development of gastric cancer. Aberrant expression of microRNAs is strongly implicated in gastric tumorigenesis; however, their contribution in response to H. pylori infection has not been fully elucidated. In this study, we evaluated the expression of miR-135b-5p and its role in gastric cancer. We describe the overexpression of miR-135b-5p in human gastric cancer tissue samples compared with normal tissue samples. Furthermore, we found that miR-135b-5p is also up-regulated in gastric tumors from the trefoil factor 1-knockout mouse model. Infection with H. pylori induced the expression of miR-135b-5p in the in vitro and in vivo models. miR-135b-5p induction was mediated by NF-κB. Treatment of gastric cancer cells with TNF-α induced miR-135b-5p in a NF-κB-dependent manner. Mechanistically, we found that miR-135b-5p targets Krüppel-like factor 4 (KLF4) and binds to its 3' UTR, leading to reduced KLF4 expression. Functionally, high levels of miR-135b-5p suppress apoptosis and induce cisplatin resistance. Our results uncovered a mechanistic link between H. pylori infection and miR-135b-5p-KLF4, suggesting that targeting miR-135b-5p could be a potential therapeutic approach to circumvent resistance to cisplatin.-Shao, L., Chen, Z., Soutto, M., Zhu, S., Lu, H., Romero-Gallo, J., Peek, R., Zhang, S., El-Rifai, W. Helicobacter pylori-induced miR-135b-5p promotes cisplatin resistance in gastric cancer.
Collapse
Affiliation(s)
- Linlin Shao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
| | - Zheng Chen
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA.,Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA; and
| | - Mohammed Soutto
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
| | - Shoumin Zhu
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA; and
| | - Heng Lu
- Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA; and
| | - Judith Romero-Gallo
- Division of Gastroenterology, Hematology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Richard Peek
- Division of Gastroenterology, Hematology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shutian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wael El-Rifai
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA.,Department of Surgery, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA; and
| |
Collapse
|
36
|
Kapodistrias N, Mavridis K, Batistatou A, Gogou P, Karavasilis V, Sainis I, Briasoulis E, Scorilas A. Assessing the clinical value of microRNAs in formalin-fixed paraffin-embedded liposarcoma tissues: Overexpressed miR-155 is an indicator of poor prognosis. Oncotarget 2018; 8:6896-6913. [PMID: 28036291 PMCID: PMC5351678 DOI: 10.18632/oncotarget.14320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 12/01/2016] [Indexed: 12/26/2022] Open
Abstract
Liposarcoma (LPS) is a malignancy with extreme heterogeneity and thus optimization towards personalizing patient prognosis and treatment is essential. Here, we evaluated miR-155, miR-21, miR-143, miR-145 and miR-451 that are implicated in LPS, as novel FFPE tissue biomarkers. A total of 83 FFPE tissue specimens from primary LPS and lipomas (LPM) were analyzed. A proteinase K incubation-Trizol treatment coupled protocol was used for RNA isolation. After polyadenylation of total RNA and reverse transcription, expression analysis of 9 candidate reference and 5 target miRNAs was performed by qPCR. Genorm and NormFinder were used for finding the most suitable molecules for normalization. Survival analyses were performed in order to evaluate the prognostic potential of miRNAs. MiR-103 and miR-191 are most suitable for normalization of miRNA expression in LPS. MiR-155 and miR-21 are clearly overexpressed (P<0.001) in LPS compared with LPM specimens, whereas miR-145 (P<0.001), miR-143 (P =0.008) and miR-451 (P=0.037) are underexpressed. MiR-155 (P=0.007) and miR-21 (P=0.029) are differentially expressed between well-differentiated, dedifferentiated, myxoid/round cell and pleomorphic LPs tumor subtypes. MiR-155 represents a novel independent indicator of unfavorable prognosis in LPS (HR = 2.97, 95% CI = 1.23–7.17, P = 0.016).
Collapse
Affiliation(s)
| | - Konstantinos Mavridis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| | - Anna Batistatou
- Department of Pathology, School of Medicine, University of Ioannina, Greece
| | - Penelope Gogou
- Clinical Oncology Department, Norwich University Hospital, UK
| | | | - Ioannis Sainis
- Cancer Biobank Center, University of Ioannina, University Campus, Ioannina, Greece
| | - Evangelos Briasoulis
- Cancer Biobank Center, University of Ioannina, University Campus, Ioannina, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens, Greece
| |
Collapse
|
37
|
Jiang W, Zhao S, Shen J, Guo L, Sun Y, Zhu Y, Ma Z, Zhang X, Hu Y, Xiao W, Li K, Li S, Zhou L, Huang L, Lu Z, Feng Y, Xiao J, Zhang EE, Yang L, Wan R. The MiR-135b-BMAL1-YY1 loop disturbs pancreatic clockwork to promote tumourigenesis and chemoresistance. Cell Death Dis 2018; 9:149. [PMID: 29396463 PMCID: PMC5833454 DOI: 10.1038/s41419-017-0233-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/03/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
Circadian disruption has been implicated in tumour development, but the underlying mechanism remains unclear. Here, we show that the molecular clockwork within malignant human pancreatic epithelium is disrupted and that this disruption is mediated by miR-135b-induced BMAL1 repression. miR-135b directly targets the BMAL1 3'-UTR and thereby disturbs the pancreatic oscillator, and the downregulation of miR-135b is essential for the realignment of the cellular clock. Asynchrony between miR-135b and BMAL1 expression impairs the local circadian gating control of tumour suppression and significantly promotes tumourigenesis and resistance to gemcitabine in pancreatic cancer (PC) cells, as demonstrated by bioinformatics analyses of public PC data sets and in vitro and in vivo functional studies. Moreover, we found that YY1 transcriptionally activated miR-135b and formed a 'miR-135b-BMAL1-YY1' loop, which holds significant predictive and prognostic value for patients with PC. Thus, our work has identified a novel signalling loop that mediates pancreatic clock disruption as an important mechanism of PC progression and chemoresistance.
Collapse
Affiliation(s)
- Weiliang Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Senlin Zhao
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Shen
- Tumour Initiation and Maintenance Program, NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lihong Guo
- Department of Gastroenterology, Central Hospital of Shengli Oil-field, Dongying, Shandong, China
| | - Yi Sun
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuntian Zhu
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejing, China
| | - Zhixiong Ma
- National Institute of Biological Sciences, Beijing, China
| | - Xin Zhang
- Department of Pathology, Zhejiang Province People's Hospital, Hangzhou, Zhejiang, China
| | - Yangyang Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqin Xiao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sisi Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhanjun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Feng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junhua Xiao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | | | - Lijuan Yang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
38
|
MicroRNAs expression profile in solid and unicystic ameloblastomas. PLoS One 2017; 12:e0186841. [PMID: 29053755 PMCID: PMC5650163 DOI: 10.1371/journal.pone.0186841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/09/2017] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Odontogenic tumors (OT) represent a specific pathological category that includes some lesions with unpredictable biological behavior. Although most of these lesions are benign, some, such as the ameloblastoma, exhibit local aggressiveness and high recurrence rates. The most common types of ameloblastoma are the solid/multicystic (SA) and the unicystic ameloblastoma (UA); the latter considered a much less aggressive entity as compared to the SA. The microRNA system regulates the expression of many human genes while its deregulation has been associated with neoplastic development. The aim of the current study was to determine the expression profiles of microRNAs present in the two most common types of ameloblastomas. MATERIAL & METHODS MicroRNA expression profiles were assessed using TaqMan® Low Density Arrays (TLDAs) in 24 samples (8 SA, 8 UA and 8 control samples). The findings were validated using quantitative RTqPCR in an independent cohort of 19 SA, 8 UA and 19 dentigerous cysts as controls. RESULTS We identified 40 microRNAs differentially regulated in ameloblastomas, which are related to neoplastic development and differentiation, and with the osteogenic process. Further validation of the top ranked microRNAs revealed significant differences in the expression of 6 of them in relation to UA, 7 in relation to SA and 1 (miR-489) that was related to both types. CONCLUSION We identified a new microRNA signature for the ameloblastoma and for its main types, which may be useful to better understand the etiopathogenesis of this neoplasm. In addition, we identified a microRNA (miR-489) that is suggestive of differentiating among solid from unicystic ameloblastoma.
Collapse
|
39
|
Yao D, Cui H, Zhou S, Guo L. Morin inhibited lung cancer cells viability, growth, and migration by suppressing miR-135b and inducing its target CCNG2. Tumour Biol 2017; 39:1010428317712443. [PMID: 28975847 DOI: 10.1177/1010428317712443] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is one of the most severe threats with the highest mortality rate to humans in the world. Recently, morin has been reported to have anti-tumor properties observed in several types of cancers. However, its mechanism is still unclear. We assessed the influences of morin on cell viability, colony formation, and migration ability of A549 and employed microRNA array to identify the microRNAs affected by morin. We found that morin-treated A549 cells showed statistically decreased cell viability, colony formation, and migration rate when comparing with the dimethyl sulfoxide-treated cells. Microarray results showed that with the treatment of morin, the expression level of miR-135b significantly reduced compared the control group, suggesting that morin may exert its anti-cancer property by suppressing the expression of miR-135b. In addition, we found a potential binding site of miR-135b within 3' untranslated region of CCNG2-encoding cyclin homolog cyclin-G2. We evidenced that miR-135b directly targets CCNG2, which could be a potential biomarker of lung cancer prognosis. Morin exerts its anti-tumor function via downregulating the expression of miR-135b that directly targets and represses CCNG2.
Collapse
Affiliation(s)
- Dongjie Yao
- 1 Department of Quality Control, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Hujun Cui
- 2 Department of Oncology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Shufen Zhou
- 3 Department of Gerontology, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang, China
| | - Ling Guo
- 4 Department of Pathology, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
40
|
Shen S, Huang K, Wu Y, Ma Y, Wang J, Qin F, Ma J. A miR-135b-TAZ positive feedback loop promotes epithelial–mesenchymal transition (EMT) and tumorigenesis in osteosarcoma. Cancer Lett 2017; 407:32-44. [DOI: 10.1016/j.canlet.2017.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022]
|
41
|
Fei W, Chen L, Chen J, Shi Q, Zhang L, Liu S, Li L, Zheng L, Hu X. RBP4 and THBS2 are serum biomarkers for diagnosis of colorectal cancer. Oncotarget 2017; 8:92254-92264. [PMID: 29190912 PMCID: PMC5696178 DOI: 10.18632/oncotarget.21173] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/29/2017] [Indexed: 01/13/2023] Open
Abstract
The potential role of serum RBP4 and THBS2 as biomarker in colorectal cancer (CRC) diagnosis has never been studied. We investigated in large sample using quantitative ELISA method to explore whether serum RBP4 and THBS2 can act as biomarkers for CRC diagnosis. The concentration of RBP4 and THBS2 was measured in 402 CRC patients' serum samples and 218 normal controls' serum samples. The results showed that the average RBP4 and THBS2 concentrations in normal controls were significantly higher than in CRC patients (36.5±11.4μg/mL vs 21.8±8.7μg/mL and 20.5±6.1ng/mL vs 14.5±7.3ng/mL, respectively), both p<0.001. RBP4 distinguished CRC patients from normal individuals with the area under the receiver operating characteristic curve (AUC) performing at 0.852, with sensitivity of 74.9% and specificity of 81.7%. While THBS2 distinguished CRC patients performing AUC at 0.794, with sensitivity of 64.9% and specificity of 87.1%. The ability of RBP4 and THBS2 serum concentration distinguishing CRC from normal controls showed better than that of serum CEA (AUC=0.818) or CA19-9 (AUC=0.650) concentration. This is the first study to report RBP4 and THBS2 as diagnosis serum biomarkers for CRC, which might be a good supplement for CEA or CA19-9 for clinical diagnosis.
Collapse
Affiliation(s)
- Weiqiang Fei
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Li Chen
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiaxin Chen
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qinglan Shi
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lumin Zhang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shuiping Liu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lingfei Li
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Lili Zheng
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Indalao IL, Sawabuchi T, Takahashi E, Kido H. IL-1β is a key cytokine that induces trypsin upregulation in the influenza virus-cytokine-trypsin cycle. Arch Virol 2016; 162:201-211. [PMID: 27714503 PMCID: PMC5225228 DOI: 10.1007/s00705-016-3093-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
Abstract
Severe influenza is characterized by a cytokine storm, and the influenza virus-cytokine-trypsin cycle is one of the important mechanisms of viral multiplication and multiple organ failure. The aim of this study was to define the key cytokine(s) responsible for trypsin upregulation. Mice were infected with influenza virus strain A/Puerto Rico/8/34 (H1N1) or treated individually or with a combination of interleukin-1β, interleukin-6, and tumor necrosis factor α. The levels of these cytokines and trypsin in the lungs were monitored. The neutralizing effects of anti-IL-1β antibodies on cytokine and trypsin expression in human A549 cells and lung inflammation in the infected mice were examined. Infection induced interleukin-1β, interleukin-6, tumor necrosis factor α, and ectopic trypsin in mouse lungs in a dose- and time-dependent manner. Intraperitoneal administration of interleukin-1β combined with other cytokines tended to upregulate trypsin and cytokine expression in the lungs, but the combination without interleukin-1β did not induce trypsin. In contrast, incubation of A549 cells with interleukin-1β alone induced both cytokines and trypsin, and anti-interleukin-1β antibody treatment abrogated these effects. Administration of the antibody in the infected mice reduced lung inflammation area. These findings suggest that IL-1β plays a key role in trypsin upregulation and has a pathological role in multiple organ failure.
Collapse
Affiliation(s)
- I L Indalao
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, 770-8503, Japan
| | - T Sawabuchi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, 770-8503, Japan
| | - E Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, 770-8503, Japan
| | - H Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, 770-8503, Japan.
| |
Collapse
|