1
|
Zhai X, Shen N, Guo T, Wang J, Xie C, Cao Y, Liu L, Yan Y, Meng S, Du S. SPTLC2 drives an EGFR-FAK-HBEGF signaling axis to promote ovarian cancer progression. Oncogene 2025; 44:679-693. [PMID: 39645550 DOI: 10.1038/s41388-024-03249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
The epidermal growth factor receptor (EGFR) signaling pathway is frequently associated with ovarian cancer (OC) progression. However, inhibition of EGFR signaling in OC patients achieved limited therapeutic effects, highlighting the need to define the mechanism of EGFR deregulation in OC development. Herein we showed that serine palmitoyltransferase long chain base subunit 2 (SPTLC2) acts as a positive regulator in the EGFR signaling pathway in OC. Phenotypically, depletion of SPTLC2 suppressed clonogenic growth and migration of OC cells in vitro and in ovo, as well as metastasis in OC xenograft models, whereas overexpression of SPTLC2 yielded opposite effects. Mechanistically, SPTLC2 drives an EGFR-FAK-HBEGF signaling axis via binding with EGFR. Notably, the serine palmitoyltransferase activity of SPTLC2 is critical for regulation of the EGFR-FAK-HBEGF signaling axis and activity in OC progression. Clinically, high SPTLC2 expression is associated with high-grade serous ovarian cancer and metastasis. Collectively, our findings establish an oncogenic role of SPTLC2 in OC growth and progression though upregulation of EGFR signaling and suggest that SPTLC2 represents a potential therapeutic target in EGFR-driven ovarian cancer patients.
Collapse
Affiliation(s)
- Xingyue Zhai
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
- Clinical Nutrition Department, The Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Ning Shen
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Tao Guo
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China
| | - Jianxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Chunrui Xie
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Yukai Cao
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Ling Liu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China
| | - Yumei Yan
- The First Department of Ultrasound, The First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, China.
| | - Songshu Meng
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China.
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, No. 9 West Section, South Lvshun Road, Dalian, 116044, China.
| |
Collapse
|
2
|
Wei X, Si A, Zhao S, Fu Y, Li J, Aishanjiang K, Ma Y, Yu C, Yu B, Cui C, Wang H, Kong X, Li S, Kong X, Tong Y, Wu H. CircUCK2(2,3) promotes cancer progression and enhances synergistic cytotoxicity of lenvatinib with EGFR inhibitors via activating CNIH4-TGFα-EGFR signaling. Cell Mol Biol Lett 2025; 30:15. [PMID: 39885395 PMCID: PMC11781035 DOI: 10.1186/s11658-025-00690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Circular (circ)RNAs have emerged as crucial contributors to cancer progression. Nonetheless, the expression regulation, biological functions, and underlying mechanisms of circRNAs in mediating hepatocellular carcinoma (HCC) progression remain insufficiently elucidated. METHODS We identified circUCK2(2,3) through circRNA sequencing, RT-PCR, and Sanger sequencing. CircUCK2(2,3) levels were measured in two independent HCC cohorts using quantitative real-time PCR (qRT-PCR). We explored the functions of circUCK2(2,3) using gain- and loss-of-function assays. Techniques such as RNA-sequencing, RNA immunoprecipitation (RIP), polysome fractionation, RNA pulldown, dual luciferase reporter assay, inhibitors of EGFR downstream signaling, CRISPR-Cas9, and medium transfer assays were employed to investigate the regulatory mechanisms and the protumoral activities of circUCK2(2,3). Additionally, in vitro cytotoxic assays and patient-derived xenograft (PDX) models assessed the effects of circUCK2(2,3) on the cytotoxic synergy of lenvatinib and EGFR inhibitors. RESULTS CircUCK2(2,3) is upregulated in HCC tissues and serves as an independent risk factor for poor recurrence-free survival. The expression of circUCK2(2,3) is independent on its host gene, UCK2, but is regulated by its upstream promoter and flanking inverted complementary sequences. Functionally, circUCK2(2,3) enhances HCC proliferation, migration, and invasion, both in vitro and in vivo. Mechanistically, by sponging miR-149-5p, circUCK2(2,3) increases CNIH4 levels, which in turn amplifies TGFα secretion, resulting in the activation of EGFR and downstream pAKT and pERK signaling pathways. Moreover, circUCK2(2,3) overexpression sensitizes HCC cells to EGFR inhibitors, and increases the synergistic cytotoxicity of combined lenvatinib and EGFR inhibitor treatment. CONCLUSIONS CircUCK2(2,3) regulates a novel oncogenic pathway, miR-149-5p-CNIH4-TGFα-EGFR, in HCC, presenting a viable therapeutic target and biomarker for the precision treatment of HCC.
Collapse
Affiliation(s)
- Xindong Wei
- Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China
- Collaborative Research Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Anfeng Si
- Department of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210015, China
| | - Shuai Zhao
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi Fu
- Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
- Collaborative Research Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jilei Li
- Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
- Collaborative Research Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Kedeerya Aishanjiang
- Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 831399, China
| | - Yujie Ma
- Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China
- Collaborative Research Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Chang Yu
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China
| | - Bo Yu
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Chunhong Cui
- Basic Medical College, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Hui Wang
- Basic Medical College, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xianming Kong
- Collaborative Research Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shibo Li
- Department of Infectious Disease, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316100, China.
| | - Xiaoni Kong
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China.
| | - Ying Tong
- Department of Liver Surgery, School of Medicine, Renji Hospital, Shanghai JiaoTong University, Shanghai, 200003, China.
| | - Hailong Wu
- Clinical Research Center, Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, China.
- Collaborative Research Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
- School of Pharmacy, Joint Innovation Laboratory for Cell Therapy Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
3
|
Zhu M, Zhang S, Tang J, Hou H, Wang L, Lin H, Zhang X, Jin M. Two Small Peptides from Buthus martensii Hydrolysates Exhibit Antitumor Activity Through Inhibition of TNF-α-Mediated Signal Transduction Pathways. Life (Basel) 2025; 15:105. [PMID: 39860044 PMCID: PMC11766664 DOI: 10.3390/life15010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The scorpion Buthus martensii Karsch is edible and has been an essential resource in traditional Chinese medicine for treating numerous diseases. In this study, two small peptides from B. martensii hydrolysates were examined to elucidate their potential against gastric cancer. The small peptides (AK and GK) were identified using the LC-QTOF-MS-based approach. In silico prediction of therapeutic targets, MGC-803 cells and transgenic zebrafish models, and immunoblotting experiments were used to reveal the molecular mechanism of action of the peptides. The peptides AK and GK competitively bound to the receptor to modulate the TNF/TNFR-signaling cascade and alter the tumor microenvironment. EGFR, TP53, MYC, PTEN, and STAT3 were also identified as major functional targets of the peptides. Mechanistically, AK and GK inactivated the TNF-α/EGFR/STAT3-signaling pathway, decreased c-myc protein expression levels, and upregulated p53 and PTEN expression, thereby preventing TNF-α-induced tumor growth. Our findings indicated that AK and GK played a pivotal role in offsetting the inflammatory stimuli that caused gastric cancer cell invasion and highlighted the use of B. martensii resources as functional products with health benefits.
Collapse
Affiliation(s)
- Mengshuang Zhu
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| | - Shanshan Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| | - Jiyang Tang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| | - Hairong Hou
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| | - Lizhen Wang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| | - Houwen Lin
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xuanming Zhang
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| | - Meng Jin
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (M.Z.); (S.Z.); (J.T.); (H.H.); (L.W.); (H.L.)
| |
Collapse
|
4
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
5
|
Thull T, Kempton D. Ovarian cancer: A review for primary care providers. JAAPA 2024; 37:32-36. [PMID: 38916368 DOI: 10.1097/01.jaa.0000000000000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
ABSTRACT Ovarian cancer is the second most common gynecologic cancer in the United States and the deadliest gynecologic cancer worldwide, with a 5-year survival rate of less than 50%. Because of its vague symptoms, more than half of patients present with advanced disease and metastasis. This article reviews the epidemiology, pathogenesis, risk factors, screening, presentation, and diagnosis of ovarian cancer, in addition to providing an overview of the standard approach to treatment and novel targeted biologic therapies.
Collapse
Affiliation(s)
- Tessa Thull
- Tessa Thull practices in psychiatry in Cincinnati, Ohio. Danielle Kempton is director and clinical professor in the Doctor of Medical Science program at Northern Arizona University in Phoenix, Ariz. The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | |
Collapse
|
6
|
Shea AA, Heffron CL, Grieco JP, Roberts PC, Schmelz EM. Obesity modulates the cellular and molecular microenvironment in the peritoneal cavity: implication for ovarian cancer risk. Front Immunol 2024; 14:1323399. [PMID: 38264656 PMCID: PMC10803595 DOI: 10.3389/fimmu.2023.1323399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Abdominal obesity increases the risk of developing ovarian cancer but the molecular mechanisms of how obesity supports ovarian cancer development remain unknown. Here we investigated the impact of obesity on the immune cell and gene expression profiles of distinct abdominal tissues, focusing on the peritoneal serous fluid (PSF) and the omental fat band (OFB) as critical determinants for the dissemination of ovarian metastases and early metastatic events within the peritoneal cavity. Methods Female C57BL/6 mice were fed a low-fat (LFD) or a high-fat diet (HFD) for 12 weeks until the body weights in the HFD group were significantly higher and the mice displayed an impaired glucose tolerance. Then the mice were injected with the murine ovarian cancer cells (MOSE-LTICv) while remaining on their diets. After 21 days, the mice were sacrificed, tumor burden was evaluated and tissues were harvested. The immune cell composition of abdominal tissues and changes in gene expression in the PSF and OFB were evaluated by flow cytometry and qPCR RT2-profiler PCR arrays and confirmed by qRT-PCR, respectively. Other peritoneal adipose tissues including parametrial and retroperitoneal white adipose tissues as well as blood were also investigated. Results While limited effects were observed in the other peritoneal adipose tissues, feeding mice the HFD led to distinct changes in the immune cell composition in the PSF and the OFB: a depletion of B cells but an increase in myeloid-derived suppressor cells (MDSC) and mono/granulocytes, generating pro-inflammatory environments with increased expression of cyto- and chemokines, and genes supporting adhesion, survival, and growth, as well as suppression of apoptosis. This was associated with a higher peritoneal tumor burden compared to mice fed a LFD. Changes in cellular and genetic profiles were often exacerbated by the HFD. There was a large overlap in genes that were modulated by both the HFD and the cancer cells, suggesting that this 'genetic fingerprint' is important for ovarian metastases to the OFB. Discussion In accordance with the 'seed and soil' theory, our studies show that obesity contributes to the generation of a pro-inflammatory peritoneal environment that supports the survival of disseminating ovarian cancer cells in the PSF and the OFB and enhances the early metastatic adhesion events in the OFB through an increase in extracellular matrix proteins and modulators such as fibronectin 1 and collagen I expression as well as in genes supporting growth and invasion such as Tenacin C. The identified genes could potentially be used as targets for prevention strategies to lower the ovarian cancer risk in women with obesity.
Collapse
Affiliation(s)
- Amanda A. Shea
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Connie Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Joseph P. Grieco
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, United States
| | - Paul C. Roberts
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA, United States
| | - Eva M. Schmelz
- Department of Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
Zmarzły N, Januszyk S, Mieszczański P, Czarniecka J, Bednarska-Czerwińska A, Boroń D, Oplawski M, Grabarek BO. The influence of selected microRNAs on the expression profile of genes and proteins related to the tumor necrosis factor-alpha signaling pathways in endometrioid endometrial cancer. J Cancer Res Clin Oncol 2023; 149:9679-9689. [PMID: 37233761 PMCID: PMC10423110 DOI: 10.1007/s00432-023-04863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE Tumor necrosis factor exerts many adverse biological effects, from cell proliferation to cell death. Accurate diagnosis and treatment are therefore difficult due to many factors influencing tumor necrosis factor-alpha (TNF-α) signaling, including microRNAs (miRNAs), especially in tumors. The aim of the study was to determine the influence of miRNAs on the expression profile of genes and proteins related to TNF-α signaling in endometrial cancer. METHODS The material consisted of 45 endometrioid endometrial cancer and 45 normal endometrium tissue samples. Gene expression was determined with microarrays and then validated for TNF-α, tumor necrosis factor receptor 1 (TNFR1) and 2 (TNFR2), caveolin 1 (CAV1), nuclear factor kappa B subunit 1 (NFKB1), and TGF-beta activated kinase 1 (MAP3K7)-binding protein 2 (TAB2) using real-time quantitative reverse transcription reaction (RT-qPCR). The protein concentration was assessed by enzyme-linked immunosorbent assay (ELISA). In addition, differentiating miRNAs were identified using miRNA microarrays and their relationships with TNF-α signaling genes were evaluated using the mirDIP tool. RESULTS TNF-α, TNFR1, TNFR2, CAV1, NFKB1, and TAB2 were upregulated both on the mRNA and protein levels. The decrease in the activity of miR-1207-5p, miR-1910-3p, and miR-940 may be related to CAV1 overexpression. Similarly for miR-572 and NFKB1 as well as miR-939-5p and TNF-α. In turn, miR-3178 may partially inhibit TNFR1 activity up to grade 2 cancer. CONCLUSION TNF-α signaling, especially the TNF-α/NF-κB axis, is disrupted in endometrial cancer and worsens with disease progression. The observed changes may be the result of miRNAs' activity in the initial stage of endometrial cancer and its gradual loss in later grades.
Collapse
Affiliation(s)
- Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland.
- Department of Gynecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland.
| | | | - Paweł Mieszczański
- Hospital of Ministry of Interior and Administration, 40-052, Katowice, Poland
| | - Justyna Czarniecka
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland
| | - Anna Bednarska-Czerwińska
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851, Katowice, Poland
- American Medical Clinic, 40-600, Katowice, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, 40-662, Katowice, Poland
| | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826, Kraków, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Cracow, 30-705, Cracow, Poland
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, 41-800, Zabrze, Poland
- Gyncentrum, Laboratory of Molecular Biology and Virology, 40-851, Katowice, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, 40-662, Katowice, Poland
| |
Collapse
|
8
|
Çakır Gündoğdu A, Arı NS, Höbel A, Şenol G, Eldiven Ö, Kar F. Boric Acid Exhibits Anticancer Properties in Human Endometrial Cancer Ishikawa Cells. Cureus 2023; 15:e44277. [PMID: 37772231 PMCID: PMC10531031 DOI: 10.7759/cureus.44277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2023] [Indexed: 09/30/2023] Open
Abstract
Objective This study aims to explore the potential anti-cancer properties of boric acid (BA) in human endometrial cancer Ishikawa cells by assessing its influence on cell viability, apoptosis, oxidative stress, and inflammatory responses. Methods The impact of BA at concentrations ranging from 2.5 to 100 mM on cell viability was assessed in Ishikawa cells and normal fibroblast L929 cells (used as the control) through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Spectrophotometric measurements were performed to determine the total oxidant status (TOS) and total antioxidant status (TAS) in BA-treated cells, and the oxidative stress index (OSI) was calculated. The enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of cytochrome c and caspase 3, both of which are constituents of the extrinsic apoptotic pathway. Furthermore, changes in the concentrations of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) in the cells were analyzed using ELISA and immunofluorescence staining. Results The exposure of Ishikawa cells to BA for 24 hours led to a dose-dependent decline in cell viability, with an IC50 value of 40 mM. BA dose-dependently increased cytochrome c and caspase 3 levels in cancer cells. In Ishikawa cells, BA treatment led to a significant elevation in OSI. Moreover, the concentrations of TNF-α and IL-1β exhibited a dose-dependent decrease in BA-treated cells. On the other hand, in L929 cells, BA decreased OSI in a dose-dependent manner but did not change TNF-α and IL-1β levels. Concentrations up to 80 mM had no effect on cell viability and apoptosis, but BA at 80 mM concentration decreased viability and increased cytochrome c and caspase 3 levels in L929 cells. Conclusion BA inhibited cell viability, triggered apoptosis, induced oxidative stress, and suppressed inflammatory responses in endometrial cancer cells. Notably, at its IC50 concentration, BA had no cytotoxic effect on normal fibroblasts. Given its favorable properties, BA may provide a valuable therapeutic option to impede the development and progression of endometrial cancer.
Collapse
Affiliation(s)
| | - Neziha Senem Arı
- Histology and Embryology, Kütahya Health Sciences University, Kütahya, TUR
| | - Asiye Höbel
- Histology and Embryology, Kütahya Health Sciences University, Kütahya, TUR
| | - Gülnihal Şenol
- Histology and Embryology, Kütahya Health Sciences University, Kütahya, TUR
| | - Ömer Eldiven
- Histology and Embryology, Kütahya Health Sciences University, Kütahya, TUR
| | - Fatih Kar
- Medical Biochemistry, Kutahya University of Health Sciences, School of Medicine, Kütahya, TUR
| |
Collapse
|
9
|
Fang WB, Medrano M, Cote P, Portsche M, Rao V, Hong Y, Behbod F, Knapp JR, Bloomer C, Noel-Macdonnell J, Cheng N. Transcriptome analysis reveals differences in cell cycle, growth and migration related genes that distinguish fibroblasts derived from pre-invasive and invasive breast cancer. Front Oncol 2023; 13:1130911. [PMID: 37091166 PMCID: PMC10118028 DOI: 10.3389/fonc.2023.1130911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
Background/Introduction As the most common form of pre-invasive breast cancer, ductal carcinoma in situ (DCIS) affects over 50,000 women in the US annually. Despite standardized treatment involving lumpectomy and radiation therapy, up to 25% of patients with DCIS experience disease recurrence often with invasive ductal carcinoma (IDC), indicating that a subset of patients may be under-treated. As most DCIS cases will not progress to invasion, many patients may experience over-treatment. By understanding the underlying processes associated with DCIS to IDC progression, we can identify new biomarkers to determine which DCIS cases may become invasive and improve treatment for patients. Accumulation of fibroblasts in IDC is associated with disease progression and reduced survival. While fibroblasts have been detected in DCIS, little is understood about their role in DCIS progression. Goals We sought to determine 1) whether DCIS fibroblasts were similar or distinct from normal and IDC fibroblasts at the transcriptome level, and 2) the contributions of DCIS fibroblasts to breast cancer progression. Methods Fibroblasts underwent transcriptome profiling and pathway analysis. Significant DCIS fibroblast-associated genes were further analyzed in existing breast cancer mRNA databases and through tissue array immunostaining. Using the sub-renal capsule graft model, fibroblasts from normal breast, DCIS and IDC tissues were co-transplanted with DCIS.com breast cancer cells. Results Through transcriptome profiling, we found that DCIS fibroblasts were characterized by unique alterations in cell cycle and motility related genes such as PKMYT1, TGF-α, SFRP1 and SFRP2, which predicted increased cell growth and invasion by Ingenuity Pathway Analysis. Immunostaining analysis revealed corresponding increases in expression of stromal derived PKMYT1, TGF-α and corresponding decreases in expression of SFRP1 and SFRP2 in DCIS and IDC tissues. Grafting studies in mice revealed that DCIS fibroblasts enhanced breast cancer growth and invasion associated with arginase-1+ cell recruitment. Conclusion DCIS fibroblasts are phenotypically distinct from normal breast and IDC fibroblasts, and play an important role in breast cancer growth, invasion, and recruitment of myeloid cells. These studies provide novel insight into the role of DCIS fibroblasts in breast cancer progression and identify some key biomarkers associated with DCIS progression to IDC, with important clinical implications.
Collapse
Affiliation(s)
- Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marcela Medrano
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paige Cote
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Mike Portsche
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Vinamratha Rao
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Yan Hong
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer R. Knapp
- Center for Genes Environment and Health, National Jewish Health, Denver, CO, United States
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Clark Bloomer
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Janelle Noel-Macdonnell
- Biostatistics and Epidemiology Core, Health Services and Outcomes Research Children’s Mercy Hospital, Kansas City, MO, United States
- Department of Pediatrics, University of Missouri-Kansas City (UMKC) School of Medicine, Kansas City, MO, United States
| | - Nikki Cheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
10
|
Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B, Sarkar TR. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol 2023; 11:1089068. [PMID: 36793444 PMCID: PMC9923123 DOI: 10.3389/fcell.2023.1089068] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023] Open
Abstract
Stromal heterogeneity of tumor microenvironment (TME) plays a crucial role in malignancy and therapeutic resistance. Cancer-associated fibroblasts (CAFs) are one of the major players in tumor stroma. The heterogeneous sources of origin and subsequent impacts of crosstalk with breast cancer cells flaunt serious challenges before current therapies to cure triple-negative breast cancer (TNBC) and other cancers. The positive and reciprocal feedback of CAFs to induce cancer cells dictates their mutual synergy in establishing malignancy. Their substantial role in creating a tumor-promoting niche has reduced the efficacy of several anti-cancer treatments, including radiation, chemotherapy, immunotherapy, and endocrine therapy. Over the years, there has been an emphasis on understanding CAF-induced therapeutic resistance in order to enhance cancer therapy results. CAFs, in the majority of cases, employ crosstalk, stromal management, and other strategies to generate resilience in surrounding tumor cells. This emphasizes the significance of developing novel strategies that target particular tumor-promoting CAF subpopulations, which will improve treatment sensitivity and impede tumor growth. In this review, we discuss the current understanding of the origin and heterogeneity of CAFs, their role in tumor progression, and altering the tumor response to therapeutic agents in breast cancer. In addition, we also discuss the potential and possible approaches for CAF-mediated therapies.
Collapse
Affiliation(s)
- Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Tristan Nguyen
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Esheksha Gundre
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Olajumoke Ogunlusi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Mohanad El-Sobky
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, English Bazar, India
| | - Tapasree Roy Sarkar
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
11
|
Wienen F, Nilson R, Allmendinger E, Graumann D, Fiedler E, Bosse-Doenecke E, Kochanek S, Krutzke L. Affilin-based retargeting of adenoviral vectors to the epidermal growth factor receptor. BIOMATERIALS ADVANCES 2023; 144:213208. [PMID: 36442453 DOI: 10.1016/j.bioadv.2022.213208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Treatment of head and neck squamous cell carcinomas (HNSCC) by oncolytic adenoviral vectors holds promise as an efficient anti-cancer therapy. The epidermal growth factor receptor (EGFR) represents an attractive target receptor since it is frequently overexpressed in many types of HNSCC. METHODS To achieve EGFR-specific targeting by human adenovirus type 5 (HAdV-5) based vectors, the EGFR affinity ligand Affilin was covalently attached in a position specific manner either to the fiber or the hexon protein of the vector capsid. In vitro and in vivo studies investigated EGFR-specific cancer cell transduction, susceptibility to natural sequestration mechanisms, pharmacokinetics and biodistribution profiles of Affilin-decorated vectors. RESULTS Affilin-decorated vectors showed strongly enhanced and EGFR-specific cancer cell transduction in vitro and less susceptibility to known sequestration mechanisms of HAdV-5 particles. However, in vivo neither systemic nor intratumoral vector administration resulted in an improved transduction of EGFR-positive tumors. Comprehensive analyses indicated hampered EGFR-targeting by Affilin-decorated vectors was caused by rapid vector particle consumption due to binding to the murine EGFR, insufficient tumor vascularization and poor target accessibility for Affilin in the solid tumor caused by a pronounced tumor stroma. CONCLUSION In vitro studies yielded proof-of-concept results demonstrating that covalent attachment of a receptor-specific Affilin to the adenoviral capsid provides an effective and versatile tool to address cancer-specific target receptors by adenoviral vectors. Regarding EGFR as the vector target, off-target tissue transduction and low receptor accessibility within the tumor tissue prevented efficient tumor transduction by Affilin-decorated vectors, rendering EGFR a difficult-to-target receptor for adenoviral vectors.
Collapse
Affiliation(s)
- Frederik Wienen
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Robin Nilson
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Ellen Allmendinger
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - David Graumann
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Erik Fiedler
- Navigo Proteins GmbH, Heinrich-Damerow-Str. 1, 06120 Halle, Germany
| | | | - Stefan Kochanek
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Lea Krutzke
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany.
| |
Collapse
|
12
|
Tian C, Zhao J, Liu D, Sun J, Ji C, Jiang Q, Li H, Wang X, Sun Y. Identification of metabolism-related genes for predicting peritoneal metastasis in patients with gastric cancer. BMC Genom Data 2022; 23:84. [PMID: 36503378 PMCID: PMC9743729 DOI: 10.1186/s12863-022-01096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The reprogramming of metabolism is an important factor in the metastatic process of cancer. In our study, we intended to investigate the predictive value of metabolism-related genes (MRGs) in recurrent gastric cancer (GC) patients with peritoneal metastasis. METHODS The sequencing data of mRNA of GC patients were obtained from Asian Cancer Research Group (ACRG) and the GEO databases (GSE53276). The differentially expressed MRGs (DE-MRGs) between a cell line without peritoneal metastasis (HSC60) and one with peritoneal metastasis (60As6) were analyzed with the Limma package. According to the LASSO regression, eight MRGs were identified as crucially related to peritoneal seeding recurrence in patients. Then, disease free survival related genes were screened using Cox regression, and a promising prognostic model was constructed based on 8 MRGs. We trained and verified it in two independent cohort. RESULTS We confirmed 713 DE-MRGs and the enriched pathways. Pathway analysis found that the MRG-related pathways were related to tumor metabolism development. With the help of Kaplan-Meier analysis, we found that the group with higher risk scores had worse rates of peritoneal seeding recurrence than the group with lower scores in the cohorts. CONCLUSIONS This study developed an eight-gene signature correlated with metabolism that could predict peritoneal seeding recurrence for GC patients. This signature could be a promising prognostic model, providing better strategy in treatment.
Collapse
Affiliation(s)
- Chenyu Tian
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junjie Zhao
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan Liu
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Sun
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chengbo Ji
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Quan Jiang
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haojie Li
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuefei Wang
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yihong Sun
- grid.413087.90000 0004 1755 3939Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Carvalho RF, do Canto LM, Abildgaard C, Aagaard MM, Tronhjem MS, Waldstrøm M, Jensen LH, Steffensen KD, Rogatto SR. Single-cell and bulk RNA sequencing reveal ligands and receptors associated with worse overall survival in serous ovarian cancer. Cell Commun Signal 2022; 20:176. [DOI: 10.1186/s12964-022-00991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Serous ovarian carcinoma is the most frequent histological subgroup of ovarian cancer and the leading cause of death among gynecologic tumors. The tumor microenvironment and cancer-associated fibroblasts (CAFs) have a critical role in the origin and progression of cancer. We comprehensively characterized the crosstalk between CAFs and ovarian cancer cells from malignant fluids to identify specific ligands and receptors mediating intercellular communications and disrupted pathways related to prognosis and therapy response.
Methods
Malignant fluids of serous ovarian cancer, including tumor-derived organoids, CAFs-enriched (eCAFs), and malignant effusion cells (no cultured) paired with normal ovarian tissues, were explored by RNA-sequencing. These data were integrated with single-cell RNA-sequencing data of ascites from ovarian cancer patients. The most relevant ligand and receptor interactions were used to identify differentially expressed genes with prognostic values in ovarian cancer.
Results
CAF ligands and epithelial cancer cell receptors were enriched for PI3K-AKT, focal adhesion, and epithelial-mesenchymal transition signaling pathways. Collagens, MIF, MDK, APP, and laminin were detected as the most significant signaling, and the top ligand-receptor interactions THBS2/THBS3 (CAFs)—CD47 (cancer cells), MDK (CAFs)—NCL/SDC2/SDC4 (cancer cells) as potential therapeutic targets. Interestingly, 34 genes encoding receptors and ligands of the PI3K pathway were associated with the outcome, response to treatment, and overall survival in ovarian cancer. Up-regulated genes from this list consistently predicted a worse overall survival (hazard ratio > 1.0 and log-rank P < 0.05) in two independent validation cohorts.
Conclusions
This study describes critical signaling pathways, ligands, and receptors involved in the communication between CAFs and cancer cells that have prognostic and therapeutic significance in ovarian cancer.
Collapse
|
14
|
Cheng CS, Yang PW, Sun Y, Song SL, Chen Z. Fibroblast activation protein-based theranostics in pancreatic cancer. Front Oncol 2022; 12:969731. [PMID: 36263225 PMCID: PMC9574192 DOI: 10.3389/fonc.2022.969731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Fibroblast activation protein-α (FAP) is a type II transmembrane serine protease that has specific endopeptidase activity. Given its well-established selective expression in the activated stromal fibroblasts of epithelial cancers, although not in quiescent fibroblasts, FAP has received substantial research attention as a diagnostic marker and therapeutic target. Pancreatic cancer is characterized by an abundant fibrotic or desmoplastic stroma, leading to rapid progression, therapeutic resistance, and poor clinical outcomes. Numerous studies have revealed that the abundant expression of FAP in cancer cells, circulating tumor cells, stromal cells, and cancer-associated fibroblasts (CAFs) of pancreatic adenocarcinoma is implicated in diverse cancer-related signaling pathways, contributing to cancer progression, invasion, migration, metastasis, immunosuppression, and resistance to treatment. In this article, we aim to systematically review the recent advances in research on FAP in pancreatic adenocarcinoma, including its utility as a diagnostic marker, therapeutic potential, and correlation with prognosis. We also describe the functional role of FAP-overexpressing stromal cells, particulary CAFs, in tumor immuno- and metabolic microenvironments, and summarize the mechanisms underlying the contribution of FAP-overexpressing CAFs in pancreatic cancer progression and treatment resistance. Furthermore, we discuss whether targeting FAP-overexpressing CAFs could represent a potential therapeutic strategy and describe the development of FAP-targeted probes for diagnostic imaging. Finally, we assess the emerging basic and clinical studies regarding the bench-to-bedside translation of FAP in pancreatic cancer.
Collapse
Affiliation(s)
- Chien-shan Cheng
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Pei-wen Yang
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun Sun
- Department of Research and Development, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Shao-li Song
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Nuclear Medicine Department, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhen Chen
- Department of Integrative Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Zhen Chen,
| |
Collapse
|
15
|
The PDGF Family Is Associated with Activated Tumor Stroma and Poor Prognosis in Ovarian Cancer. DISEASE MARKERS 2022; 2022:5940049. [PMID: 36199822 PMCID: PMC9529473 DOI: 10.1155/2022/5940049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022]
Abstract
The initiation and progression of cancer depend on the genetic alterations inherent in cancer cells, coupled with the mutual interplay of cancer cells with the surrounding tumor stroma. The platelet-derived growth factor (PDGF) family, as a mesenchymal growth factor, was involved in tumor progression by affecting the surrounding tumor stroma in some cancer types. However, the association of the PDGF family with the ovarian cancer stroma remains elusive. In our study, we first explored the expression pattern of the PDGF family using RNA expression profiles from public databases. We found that the PDGF family was highly expressed in tumor stroma compared with the corresponding epithelial components of ovarian cancer. In particular, PDGF receptors were weakly expressed in ovarian cancer tissues compared with the respective normal tissues; even in tumor mass, PDGF receptors were predominantly expressed by tumor stroma rather than ovarian cancer cells. Importantly, functional enrichment analyses and correlation analyses revealed that the PDGF family was strongly associated with activated stromal scores in ovarian cancer, including higher stromal scores, enriched pathways related to the extracellular matrix (ECM) organization and remodeling, elevated cancer-associated fibroblasts (CAFs) infiltration, and increased tumor-associated macrophages (TAMs) infiltration, especially macrophage M2. Besides, the positive correlations of the PDGF family with CAFs infiltration and macrophage M2 infiltration were observed in other various cancer types. Of note, the PDGF family was also involved in tumor progression-related pathways, such as transforming growth factor β (TGF-β) signaling, epithelial-mesenchymal transition (EMT), angiogenesis, and phosphatidylinositol 3-kinase-Akt (PI3K-Akt) signaling. Higher expressions of PDGF receptors were also observed in ovarian cancer patients with venous or lymphatic invasion. Furthermore, we uncovered the prognostic prediction of the PDGF family in ovarian cancer and constructed a PDGF family-based risk prognosis model with a hazard ratio of 1.932 (95%confidence interval (CI) = 1.27–2.95) and P value < 0.01 (AUC = 0.782, 0.752 for 1 year and 2 years, respectively). Taken together, we demonstrated that ovarian cancers with high PDGF family expression biologically exhibit malignant progression behaviors as well as poor clinical survival, which is attributed to the activated tumor stroma in ovarian cancer.
Collapse
|
16
|
Ding H, Zhang J, Zhang F, Xu Y, Yu Y, Liang W, Li Q. Role of Cancer-Associated fibroblast in the pathogenesis of ovarian Cancer: Focus on the latest therapeutic approaches. Int Immunopharmacol 2022; 110:109052. [DOI: 10.1016/j.intimp.2022.109052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/04/2022] [Accepted: 07/10/2022] [Indexed: 11/05/2022]
|
17
|
Pre-diagnosis and post-diagnosis dietary patterns and survival in women with ovarian cancer. Br J Cancer 2022; 127:1097-1105. [DOI: 10.1038/s41416-022-01901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
|
18
|
GLIS1 in Cancer-Associated Fibroblasts Regulates the Migration and Invasion of Ovarian Cancer Cells. Int J Mol Sci 2022; 23:ijms23042218. [PMID: 35216340 PMCID: PMC8874490 DOI: 10.3390/ijms23042218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
A cancer-associated fibroblasts (CAFs) are the most important players that modulate tumor aggressiveness. In this study, we aimed to identify CAF-related genes in ovarian serous carcinomas (OSC) that account for the high incidence and mortality of ovarian cancers (OCs) and to develop therapeutic targets for tumor microenvironment modulation. Here, we performed a microarray analysis of CAFs isolated from three metastatic and three nonmetastatic OSC tissues and compared their gene expression profiles. Among the genes increased in metastatic CAFs (mCAFs), GLIS1 (Glis Family Zinc Finger 1) showed a significant increase in both the gene mRNA and protein expression levels. Knockdown of GLIS1 in mCAFs significantly inhibited migration, invasion, and wound healing ability of OC cells. In addition, an in vivo study demonstrated that knockdown of GLIS1 in CAFs reduced peritoneal metastasis. Taken together, these results suggest that CAFs support migration and metastasis of OC cells by GLIS1 overexpression. It also indicates GLIS1 in CAFs might be a potential therapeutic target to inhibit OC metastasis.
Collapse
|
19
|
Yee C, Dickson KA, Muntasir MN, Ma Y, Marsh DJ. Three-Dimensional Modelling of Ovarian Cancer: From Cell Lines to Organoids for Discovery and Personalized Medicine. Front Bioeng Biotechnol 2022; 10:836984. [PMID: 35223797 PMCID: PMC8866972 DOI: 10.3389/fbioe.2022.836984] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer has the highest mortality of all of the gynecological malignancies. There are several distinct histotypes of this malignancy characterized by specific molecular events and clinical behavior. These histotypes have differing responses to platinum-based drugs that have been the mainstay of therapy for ovarian cancer for decades. For histotypes that initially respond to a chemotherapeutic regime of carboplatin and paclitaxel such as high-grade serous ovarian cancer, the development of chemoresistance is common and underpins incurable disease. Recent discoveries have led to the clinical use of PARP (poly ADP ribose polymerase) inhibitors for ovarian cancers defective in homologous recombination repair, as well as the anti-angiogenic bevacizumab. While predictive molecular testing involving identification of a genomic scar and/or the presence of germline or somatic BRCA1 or BRCA2 mutation are in clinical use to inform the likely success of a PARP inhibitor, no similar tests are available to identify women likely to respond to bevacizumab. Functional tests to predict patient response to any drug are, in fact, essentially absent from clinical care. New drugs are needed to treat ovarian cancer. In this review, we discuss applications to address the currently unmet need of developing physiologically relevant in vitro and ex vivo models of ovarian cancer for fundamental discovery science, and personalized medicine approaches. Traditional two-dimensional (2D) in vitro cell culture of ovarian cancer lacks critical cell-to-cell interactions afforded by culture in three-dimensions. Additionally, modelling interactions with the tumor microenvironment, including the surface of organs in the peritoneal cavity that support metastatic growth of ovarian cancer, will improve the power of these models. Being able to reliably grow primary tumoroid cultures of ovarian cancer will improve the ability to recapitulate tumor heterogeneity. Three-dimensional (3D) modelling systems, from cell lines to organoid or tumoroid cultures, represent enhanced starting points from which improved translational outcomes for women with ovarian cancer will emerge.
Collapse
Affiliation(s)
- Christine Yee
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mohammed N. Muntasir
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Deborah J. Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
20
|
Ghoneum A, Almousa S, Warren B, Abdulfattah AY, Shu J, Abouelfadl H, Gonzalez D, Livingston C, Said N. Exploring the clinical value of tumor microenvironment in platinum-resistant ovarian cancer. Semin Cancer Biol 2021; 77:83-98. [PMID: 33476723 PMCID: PMC8286277 DOI: 10.1016/j.semcancer.2020.12.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Platinum resistance in epithelial ovarian cancer (OvCa) is rising at an alarming rate, with recurrence of chemo-resistant high grade serous OvCa (HGSC) in roughly 75 % of all patients. Additionally, HGSC has an abysmal five-year survival rate, standing at 39 % and 17 % for FIGO stages III and IV, respectively. Herein we review the crucial cellular interactions between HGSC cells and the cellular and non-cellular components of the unique peritoneal tumor microenvironment (TME). We highlight the role of the extracellular matrix (ECM), ascitic fluid as well as the mesothelial cells, tumor associated macrophages, neutrophils, adipocytes and fibroblasts in platinum-resistance. Moreover, we underscore the importance of other immune-cell players in conferring resistance, including natural killer cells, myeloid-derived suppressive cells (MDSCs) and T-regulatory cells. We show the clinical relevance of the key platinum-resistant markers and their correlation with the major pathways perturbed in OvCa. In parallel, we discuss the effect of immunotherapies in re-sensitizing platinum-resistant patients to platinum-based drugs. Through detailed analysis of platinum-resistance in HGSC, we hope to advance the development of more effective therapy options for this aggressive disease.
Collapse
Affiliation(s)
- Alia Ghoneum
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Sameh Almousa
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Bailey Warren
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Ammar Yasser Abdulfattah
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Alexandria University School of Medicine, Alexandria, Egypt
| | - Junjun Shu
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; The Third Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hebatullah Abouelfadl
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Department of Genetics, Animal Health Research Institute, Dokki, Egypt
| | - Daniela Gonzalez
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Christopher Livingston
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA
| | - Neveen Said
- Departments of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Departments of Urology, Wake Forest University School of Medicine, Winston Salem, NC, 27157, USA; Comprehensive Cancer Center, Winston Salem, NC, 27157, USA.
| |
Collapse
|
21
|
Lawal B, Wang YC, Wu ATH, Huang HS. Pro-Oncogenic c-Met/EGFR, Biomarker Signatures of the Tumor Microenvironment are Clinical and Therapy Response Prognosticators in Colorectal Cancer, and Therapeutic Targets of 3-Phenyl-2H-benzo[e][1,3]-Oxazine-2,4(3H)-Dione Derivatives. Front Pharmacol 2021; 12:691234. [PMID: 34512327 PMCID: PMC8429938 DOI: 10.3389/fphar.2021.691234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic and environmental factors play important roles in cancer progression, metastasis, and drug resistance. Herein, we used a multiomics data analysis to evaluate the predictive and prognostic roles of genetic and epigenetic modulation of c-MET (hepatocyte growth factor receptor)/epidermal growth factor receptor (EGFR) in colorectal cancer (CRC). First, we found that overexpressions of c-MET/EGFR were associated with the infiltration of tumor immune cells and cancer-associated fibroblasts, and were of prognostic relevance in CRC cohorts. We also observed that genetic alterations of c-MET/EGFR in CRC co-occurred with other gene alterations and were associated with overexpression of messenger (m)RNA of some cancer hallmark proteins. More specifically, DNA-methylation and somatic copy number alterations of c-MET/EGFR were associated with immune infiltration, dysfunctional T-cell phenotypes, and poor prognoses of the cohorts. Moreover, we describe two novel gefitinib-inspired small molecules derivatives of 3-phenyl-2H-benzo[e] [1,3]-oxazine-2,4(3H)-dione, NSC777205 and NSC777207, which exhibited wide-spectrum antiproliferative activities and selective cytotoxic preference for drug-sensitive and multidrug-resistant melanoma, renal, central nervous system, colon, and non-small cell lung cancer cell lines. We further provided in silico mechanistic evidence implicating c-MET/EGFR/phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (mTOR) inhibition in anticancer activities of those compounds. Our overall structure-activity relationship study revealed that the addition of an –OCH3 group to salicylic core of NSC777207 was not favorable, as the added moiety led to overall less-favorable drug properties as well as weaker anticancer activities compared to the properties and activities demonstrated by NSC777205 that has no –OCH3 substituent group. Further in vitro and in vivo analyses in tumor-bearing mice are ongoing in our lab to support this claim and to unravel the full therapeutic efficacies of NSC777205 and NSC777207 in CRC.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chi Wang
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Alexander T H Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei, Taiwan.,Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan.,Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.,PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
22
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
23
|
Roles for growth factors and mutations in metastatic dissemination. Biochem Soc Trans 2021; 49:1409-1423. [PMID: 34100888 PMCID: PMC8286841 DOI: 10.1042/bst20210048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Cancer is initiated largely by specific cohorts of genetic aberrations, which are generated by mutagens and often mimic active growth factor receptors, or downstream effectors. Once initiated cells outgrow and attract blood vessels, a multi-step process, called metastasis, disseminates cancer cells primarily through vascular routes. The major steps of the metastatic cascade comprise intravasation into blood vessels, circulation as single or collectives of cells, and eventual colonization of distant organs. Herein, we consider metastasis as a multi-step process that seized principles and molecular players employed by physiological processes, such as tissue regeneration and migration of neural crest progenitors. Our discussion contrasts the irreversible nature of mutagenesis, which establishes primary tumors, and the reversible epigenetic processes (e.g. epithelial-mesenchymal transition) underlying the establishment of micro-metastases and secondary tumors. Interestingly, analyses of sequencing data from untreated metastases inferred depletion of putative driver mutations among metastases, in line with the pivotal role played by growth factors and epigenetic processes in metastasis. Conceivably, driver mutations may not confer the same advantage in the microenvironment of the primary tumor and of the colonization site, hence phenotypic plasticity rather than rigid cellular states hardwired by mutations becomes advantageous during metastasis. We review the latest reported examples of growth factors harnessed by the metastatic cascade, with the goal of identifying opportunities for anti-metastasis interventions. In summary, because the overwhelming majority of cancer-associated deaths are caused by metastatic disease, understanding the complexity of metastasis, especially the roles played by growth factors, is vital for preventing, diagnosing and treating metastasis.
Collapse
|
24
|
Uribe ML, Marrocco I, Yarden Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers (Basel) 2021; 13:cancers13112748. [PMID: 34206026 PMCID: PMC8197917 DOI: 10.3390/cancers13112748] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) has served as the founding member of the large family of growth factor receptors harboring intrinsic tyrosine kinase function. High abundance of EGFR and large internal deletions are frequently observed in brain tumors, whereas point mutations and small insertions within the kinase domain are common in lung cancer. For these reasons EGFR and its preferred heterodimer partner, HER2/ERBB2, became popular targets of anti-cancer therapies. Nevertheless, EGFR research keeps revealing unexpected observations, which are reviewed herein. Once activated by a ligand, EGFR initiates a time-dependent series of molecular switches comprising downregulation of a large cohort of microRNAs, up-regulation of newly synthesized mRNAs, and covalent protein modifications, collectively controlling phenotype-determining genes. In addition to microRNAs, long non-coding RNAs and circular RNAs play critical roles in EGFR signaling. Along with driver mutations, EGFR drives metastasis in many ways. Paracrine loops comprising tumor and stromal cells enable EGFR to fuel invasion across tissue barriers, survival of clusters of circulating tumor cells, as well as colonization of distant organs. We conclude by listing all clinically approved anti-cancer drugs targeting either EGFR or HER2. Because emergence of drug resistance is nearly inevitable, we discuss the major evasion mechanisms.
Collapse
|
25
|
Takeshita Y, Motohara T, Kadomatsu T, Doi T, Obayashi K, Oike Y, Katabuchi H, Endo M. Angiopoietin-like protein 2 decreases peritoneal metastasis of ovarian cancer cells by suppressing anoikis resistance. Biochem Biophys Res Commun 2021; 561:26-32. [PMID: 34000514 DOI: 10.1016/j.bbrc.2021.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Peritoneal metastasis is a common mode of spread of ovarian cancer. Despite therapeutic advances, some patients have intractable peritoneal metastasis. Therefore, in-depth characterization of the molecular mechanism of peritoneal metastasis is a key imperative. Angiopoietin-like protein 2 (ANGPTL2) is an inflammatory factor which activates NF-κB signaling and plays an important role in the pathogenesis of various inflammatory diseases including cancers, such as lung and breast cancer. In this study, we examined the role of ANGPTL2 in ovarian cancer peritoneal metastasis. We observed no difference of cell proliferation between ANGPTL2-expressing and control cells. In the mouse intraperitoneal xenograft model, formation of peritoneal metastasis by ANGPTL2-expressing cells was significantly decreased compared to control. In the in vitro analysis, the expressions of integrin α5β1, α6, and β4, but not those of αvβ3, α3, α4, and β1, were significantly decreased in ANGPTL2-expressing cells compared to control cells. ANGPTL2-expressing cells showed significantly inhibited adherence to laminin compared to control. In addition, we observed upregulation of anoikis (a form of programmed cell death occurring under an anchorage-independent condition) and significant decrease in the expression of Bcl-2 in ANGPTL2-expressing cells as compared to control cells. These results suggest that ANGPTL2 expression in ovarian cancer cells represses peritoneal metastasis by suppressing anoikis resistance.
Collapse
Affiliation(s)
- Yuko Takeshita
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takeshi Motohara
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tomomitsu Doi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hidetaka Katabuchi
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| |
Collapse
|
26
|
Tao LJ, Pan XY, Wang JW, Zhang L, Tao LS, Liang CZ. Circular RNA circANKS1B acts as a sponge for miR-152-3p and promotes prostate cancer progression by upregulating TGF-α expression. Prostate 2021; 81:271-278. [PMID: 33556191 DOI: 10.1002/pros.24102] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND A growing number of studies indicate that circular RNAs (circRNAs) play critical roles in human diseases, and show great potential as biomarkers and therapeutic targets. This study aimed to investigate the expression and function of circANKS1B in prostate cancer (PC). METHODS The expression of circANKS1B and miR-152-3p was analyzed by real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Cell migration and invasion were measured using a transwell assay. The interaction between circANKS1B and miR-152-3p was confirmed by a dual-luciferase reporter gene assay. Rescue experiments were conducted to determine whether circANKS1B regulated the invasion of PC cells via the circANKS1B-miR-152-3p-TGF-α pathway. RESULTS The expression of circANKS1B was markedly upregulated in both PC cells and tissues. Moreover, high circANKS1B expression was associated with poor prognosis in PC patients. Dual-luciferase reporter assay indicated that circANKS1B directly bound to miR-152-3p. Furthermore, circANKS1B negatively regulated miR-152-3p expression. Knockdown of circANKS1B markedly suppressed cell migration and invasion and TGF-α expression in PC cells, whereas the effects of circANKS1B silencing were reversed by miR-152-3p deficiency. In addition, the impact of miR-152-3p silencing on invasion of circANKS1B-deficient PC cells was also abrogated by TGF-α deficiency. Overall, circANKS1B acts as a sponge for miR-152-3p to promote PC progression by upregulating TGF-α expression. CONCLUSION Our findings reveal that circANKS1B may be a potential prognostic biomarker and therapeutic target for PC.
Collapse
Affiliation(s)
- Liang-Jun Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xin-Yuan Pan
- Department of Ophthalmology, The Second People's Hospital of Wuhu, Wuhu, Anhui, China
| | - Jia-Wei Wang
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Ling-Song Tao
- Department of Urology, The Second People's Hospital of Wuhu, Wuhu, Anhui, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
27
|
Abstract
Secretory proteins in tumor tissues are important components of the tumor microenvironment. Secretory proteins act on tumor cells or stromal cells or mediate interactions between tumor cells and stromal cells, thereby affecting tumor progression and clinical treatment efficacy. In this paper, recent research advances in secretory proteins in malignant tumors are reviewed.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
28
|
Gagliano T, Brancolini C. Epigenetic Mechanisms beyond Tumour-Stroma Crosstalk. Cancers (Basel) 2021; 13:cancers13040914. [PMID: 33671588 PMCID: PMC7926949 DOI: 10.3390/cancers13040914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Despite cancer having been usually considered the result of genetic mutations, it is now well established that epigenetic dysregulations play pivotal roles in cancer onset and progression. Hence, inactivation of tumour suppressor genes can be gained not only by genetic mutations, but also by epigenetic mechanisms such as DNA methylation and histone modifications. To occur, epigenetic events need to be triggered by genetic alterations of the epigenetic regulators, or they can be mediated by intracellular and extracellular stimuli. In this last setting, the tumour microenvironment (TME) plays a fundamental role. Therefore, to decipher how epigenetic changes are associated with TME is a challenge still open. The complex signalling between tumour cells and stroma is currently under intensive investigation, and most of the molecules and pathways involved still need to be identified. Neoplastic initiation and development are likely to involve a back-and-forth crosstalk among cancer and stroma cells. An increasing number of studies have highlighted that the cancer epigenome can be influenced by tumour microenvironment and vice versa. Here, we discuss about the recent literature on tumour-stroma interactions that focus on epigenetic mechanisms and the reciprocal regulation between cancer and TME cells.
Collapse
|
29
|
Modulation of Immune Infiltration of Ovarian Cancer Tumor Microenvironment by Specific Subpopulations of Fibroblasts. Cancers (Basel) 2020; 12:cancers12113184. [PMID: 33138184 PMCID: PMC7692816 DOI: 10.3390/cancers12113184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor immune infiltration plays a key role in the progression of solid tumors, including ovarian cancer, and immunotherapies are rapidly emerging as effective treatment modalities. However, the role of cancer-associated fibroblasts (CAFs), a predominant stromal constituent, in determining the tumor-immune microenvironment and modulating efficacy of immunotherapies remains poorly understood. We have conducted an extensive bioinformatic analysis of our and other publicly available ovarian cancer datasets (GSE137237, GSE132289 and GSE71340), to determine the correlation of fibroblast subtypes within the tumor microenvironment (TME) with the characteristics of tumor-immune infiltration. We identified (1) four functional modules of CAFs in ovarian cancer that are associated with the TME and metastasis of ovarian cancer, (2) immune-suppressive function of the collagen 1,3,5-expressing CAFs in primary ovarian cancer and omental metastases, and (3) consistent positive correlations between the functional modules of CAFs with anti-immune response genes and negative correlation with pro-immune response genes. Our study identifies a specific fibroblast subtype, fibroblast functional module (FFM)2, in the ovarian cancer tumor microenvironment that can potentially modulate a tumor-promoting immune microenvironment, which may be detrimental toward the effectiveness of ovarian cancer immunotherapies.
Collapse
|
30
|
Fogg KC, Miller AE, Li Y, Flanigan W, Walker A, O'Shea A, Kendziorski C, Kreeger PK. Ovarian cancer cells direct monocyte differentiation through a non-canonical pathway. BMC Cancer 2020; 20:1008. [PMID: 33069212 PMCID: PMC7568422 DOI: 10.1186/s12885-020-07513-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/08/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Alternatively-activated macrophages (AAMs), an anti-inflammatory macrophage subpopulation, have been implicated in the progression of high grade serous ovarian carcinoma (HGSOC). Increased levels of AAMs are correlated with poor HGSOC survival rates, and AAMs increase the attachment and spread of HGSOC cells in vitro. However, the mechanism by which monocytes in the HGSOC tumor microenvironment are differentiated and polarized to AAMs remains unknown. METHODS Using an in vitro co-culture device, we cultured naïve, primary human monocytes with a panel of five HGSOC cell lines over the course of 7 days. An empirical Bayesian statistical method, EBSeq, was used to couple RNA-seq with observed monocyte-derived cell phenotype to explore which HGSOC-derived soluble factors supported differentiation to CD68+ macrophages and subsequent polarization towards CD163+ AAMs. Pathways of interest were interrogated using small molecule inhibitors, neutralizing antibodies, and CRISPR knockout cell lines. RESULTS HGSOC cell lines displayed a wide range of abilities to generate AAMs from naïve monocytes. Much of this variation appeared to result from differential ability to generate CD68+ macrophages, as most CD68+ cells were also CD163+. Differences in tumor cell potential to generate macrophages was not due to a MCSF-dependent mechanism, nor variance in established pro-AAM factors. TGFα was implicated as a potential signaling molecule produced by tumor cells that could induce macrophage differentiation, which was validated using a CRISPR knockout of TGFA in the OVCAR5 cell line. CONCLUSIONS HGSOC production of TGFα drives monocytes to differentiate into macrophages, representing a central arm of the mechanism by which AAMs are generated in the tumor microenvironment.
Collapse
Affiliation(s)
- Kaitlin C Fogg
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 4553, Madison, WI, 53705, USA
| | - Andrew E Miller
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 4553, Madison, WI, 53705, USA
| | - Ying Li
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Will Flanigan
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 4553, Madison, WI, 53705, USA
| | - Alyssa Walker
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 4553, Madison, WI, 53705, USA
| | - Andrea O'Shea
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, WIMR 4553, Madison, WI, 53705, USA.
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
31
|
Huang YL, Liang CY, Ritz D, Coelho R, Septiadi D, Estermann M, Cumin C, Rimmer N, Schötzau A, Núñez López M, Fedier A, Konantz M, Vlajnic T, Calabrese D, Lengerke C, David L, Rothen-Rutishauser B, Jacob F, Heinzelmann-Schwarz V. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. eLife 2020; 9:59442. [PMID: 33026975 PMCID: PMC7541088 DOI: 10.7554/elife.59442] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) plays critical roles in tumor progression and metastasis. However, the contribution of ECM proteins to early metastatic onset in the peritoneal cavity remains unexplored. Here, we suggest a new route of metastasis through the interaction of integrin alpha 2 (ITGA2) with collagens enriched in the tumor coinciding with poor outcome in patients with ovarian cancer. Using multiple gene-edited cell lines and patient-derived samples, we demonstrate that ITGA2 triggers cancer cell adhesion to collagen, promotes cell migration, anoikis resistance, mesothelial clearance, and peritoneal metastasis in vitro and in vivo. Mechanistically, phosphoproteomics identify an ITGA2-dependent phosphorylation of focal adhesion kinase and mitogen-activated protein kinase pathway leading to enhanced oncogenic properties. Consequently, specific inhibition of ITGA2-mediated cancer cell-collagen interaction or targeting focal adhesion signaling may present an opportunity for therapeutic intervention of metastatic spread in ovarian cancer.
Collapse
Affiliation(s)
- Yen-Lin Huang
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ching-Yeu Liang
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Danilo Ritz
- Proteomics core facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Ricardo Coelho
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Manuela Estermann
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Cécile Cumin
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Natalie Rimmer
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Andreas Schötzau
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mónica Núñez López
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - André Fedier
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Martina Konantz
- Stem Cells and Hematopoiesis, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tatjana Vlajnic
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Diego Calabrese
- Histology Core Facility, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Claudia Lengerke
- Stem Cells and Hematopoiesis, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Internal Medicine, Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Leonor David
- Differentiation and Cancer group, Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Gynecological Cancer Center, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
32
|
Onaciu A, Munteanu R, Munteanu VC, Gulei D, Raduly L, Feder RI, Pirlog R, Atanasov AG, Korban SS, Irimie A, Berindan-Neagoe I. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics (Basel) 2020; 10:E660. [PMID: 32878340 PMCID: PMC7555044 DOI: 10.3390/diagnostics10090660] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Considering the complexity of the current framework in oncology, the relevance of animal models in biomedical research is critical in light of the capacity to produce valuable data with clinical translation. The laboratory mouse is the most common animal model used in cancer research due to its high adaptation to different environments, genetic variability, and physiological similarities with humans. Beginning with spontaneous mutations arising in mice colonies that allow for pursuing studies of specific pathological conditions, this area of in vivo research has significantly evolved, now capable of generating humanized mice models encompassing the human immune system in biological correlation with human tumor xenografts. Moreover, the era of genetic engineering, especially of the hijacking CRISPR/Cas9 technique, offers powerful tools in designing and developing various mouse strains. Within this article, we will cover the principal mouse models used in oncology research, beginning with behavioral science of animals vs. humans, and continuing on with genetically engineered mice, microsurgical-induced cancer models, and avatar mouse models for personalized cancer therapy. Moreover, the area of spontaneous large animal models for cancer research will be briefly presented.
Collapse
Affiliation(s)
- Anca Onaciu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Raluca Munteanu
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Vlad Cristian Munteanu
- Department of Urology, The Oncology Institute “Prof Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
- Department of Anatomy and Embryology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
| | - Richard-Ionut Feder
- Research Center for Advanced Medicine - Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (A.O.); (R.M.); (R.-I.F.)
| | - Radu Pirlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Morphological Sciences, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Atanas G. Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria;
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Alexandru Irimie
- 11th Department of Surgical Oncology and Gynaecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania;
- Department of Surgery, The Oncology Institute Prof. Dr. Ion Chiricuta, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (L.R.); (R.P.)
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
33
|
Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: a comprehensive review of clinical evidence. Signal Transduct Target Ther 2020; 5:137. [PMID: 32728057 PMCID: PMC7391668 DOI: 10.1038/s41392-020-0199-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Advanced and recurrent gynecological cancers are associated with poor prognosis and lack of effective treatment. The developments of the molecular mechanisms on cancer progression provide insight into novel targeted therapies, which are emerging as groundbreaking and promising cancer treatment strategies. In gynecologic malignancies, potential therapeutic targeted agents include antiangiogenic agents, poly (ADP-ribose) polymerase (PARP) inhibitors, tumor-intrinsic signaling pathway inhibitors, selective estrogen receptor downregulators, and immune checkpoint inhibitors. In this article, we provide a comprehensive review of the clinical evidence of targeted agents in gynecological cancers and discuss the future implication.
Collapse
Affiliation(s)
- Qiao Wang
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Hongling Peng
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
34
|
Fogg KC, Renner CM, Christian H, Walker A, Marty-Santos L, Khan A, Olson WR, Parent C, O'Shea A, Wellik DM, Weisman PS, Kreeger PK. Ovarian Cells Have Increased Proliferation in Response to Heparin-Binding Epidermal Growth Factor as Collagen Density Increases. Tissue Eng Part A 2020; 26:747-758. [PMID: 32598229 DOI: 10.1089/ten.tea.2020.0001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It is well known that during ovarian cancer progression, the omentum transforms from a thin lacy organ to a thick tougher tissue. However, the mechanisms regulating this transformation and the implications of the altered microenvironment on ovarian cancer progression remain unclear. To address these questions, the global and local concentrations of collagen I were determined for normal and metastatic human omentum. Collagen I was increased 5.3-fold in omenta from ovarian cancer patients and localized to areas of activated fibroblasts rather than regions with a high density of cancer cells. Transforming growth factor beta 1 (TGFβ1) was detected in ascites from ovarian cancer patients (4 ng/mL), suggesting a potential role for TGFβ1 in the observed increase in collagen. Treatment with TGFβ1 induced fibroblast activation, proliferation, and collagen deposition in mouse omental explants and an in vitro model with human omental fibroblasts. Finally, the impact of increased collagen I on ovarian cancer cells was determined by examining proliferation on collagen I gels formulated to mimic normal and cancerous omenta. While collagen density alone had no impact on proliferation, a synergistic effect was observed with collagen density and heparin-binding epidermal growth factor treatment. These results suggest that TGFβ1 induces collagen deposition from the resident fibroblasts in the omentum and that this altered microenvironment impacts cancer cell response to growth factors found in ascites. Impact statement Using quantitative analysis of patient samples, in vitro models of the metastatic ovarian cancer microenvironment were designed with pathologically relevant collagen densities and growth factor concentrations. Studies in these models support a mechanism where transforming growth factor β1 in the ascites fluid induces omental fibroblast proliferation, activation, and deposition of collagen I, which then impacts tumor cell proliferation in response to additional ascites growth factors such as heparin-binding epidermal growth factor. This approach can be used to dissect mechanisms involved in microenvironmental modeling in multiple disease applications.
Collapse
Affiliation(s)
- Kaitlin C Fogg
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Carine M Renner
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Hannah Christian
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Alyssa Walker
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Leilani Marty-Santos
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Aisha Khan
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Will R Olson
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Carl Parent
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Andrea O'Shea
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, and University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul S Weisman
- University of Wisconsin Carbone Cancer Center, and University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Pamela K Kreeger
- Department of Biomedical Engineering, University of Wisconsin - Madison, Madison, Wisconsin, USA.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.,University of Wisconsin Carbone Cancer Center, and University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
35
|
Microenvironment remodeled by tumor and stromal cells elevates fibroblast-derived COL1A1 and facilitates ovarian cancer metastasis. Exp Cell Res 2020; 394:112153. [PMID: 32589888 DOI: 10.1016/j.yexcr.2020.112153] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 01/25/2023]
Abstract
Wide peritoneal metastasis is the cause of the highest lethality of ovarian cancer in gynecologic malignancies. Ascites play a key role in ovarian cancer metastasis, but involved mechanism is uncertain. Here, we performed a quantitative proteomics of ascites, and found that collagen type I alpha 1 (COL1A1) was notably elevated in ascites from epithelial ovarian cancer patients compared to normal peritoneal fluids, and verified that elevated COL1A1 was mainly originated from fibroblasts. COL1A1 promoted migration and invasion of ovarian cancer cells, but such effects were partially eliminated by COL1A1 antibodies. Intraperitoneally injected COL1A1 accelerated intraperitoneal metastasis of ovarian cancer xenograft in NOD/SCID mice. Further, COL1A1 activated downstream AKT phosphorylation by binding to membrane surface receptor integrin β1 (ITGB1). Knockdown or blockage of ITGB1 reversed COL1A1 enhanced migration and invasion in ovarian cancer cells. Conversely, ovarian cancer ascites and fibrinogen promoted fibroblasts to secrete COL1A1. Elevated fibrinogen in ascites might be associated with increased vascular permeability induced by ovarian cancer. Our findings suggest that microenvironment remodeled by tumor cells and stromal cells promotes fibroblasts to secrete COL1A1 and facilitates the metastasis of ovarian cancer, which may provide a new approach for ovarian cancer therapeutics.
Collapse
|
36
|
Yoshida GJ. Regulation of heterogeneous cancer-associated fibroblasts: the molecular pathology of activated signaling pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:112. [PMID: 32546182 PMCID: PMC7296768 DOI: 10.1186/s13046-020-01611-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Accumulating evidence indicates that intratumoral heterogeneity contributes to the development of resistance to anticancer therapeutics. Fibroblasts, which are components of the paraneoplastic stroma, play a crucial role in the wound-healing process. Activated fibroblasts accumulate in the wound and are involved in many aspects of the tissue remodeling cascade that initiates the repair process and prevents further tissue damage. The pathophysiological roles of cancer-associated fibroblasts (CAFs) in the heterogeneous tumor microenvironment have attracted increasing interest. CAFs play crucial roles in tumor progression and the response to chemotherapy. Several cytokines and chemokines are involved in the conversion of normal fibroblasts into CAFs, and some of these form a feedback loop between cancer cells and CAFs. In addition, the physical force between tumor cells and CAFs promotes cooperative invasion or co-migration of both types of cells. Pro-inflammatory cytokines, such as leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), are secreted by both cancer cells and CAFs, and mediate the epigenetic modification of CAFs. This enhances the pro-tumorigenic function of CAFs mediated by promoting actomyosin contractility and extracellular matrix remodeling to form the tracks used for collective cancer cell migration. The concept of intra-tumoral CAF heterogeneity refers to the presence of inflammatory CAFs with low levels of α-smooth muscle actin (α-SMA) and high levels of IL-6 expression, which are in striking contrast to transforming growth factor-β (TGF-β)-dependent myofibroblastic CAFs with high α-SMA expression levels. CAF populations that suppress tumor growth and progression through stroma-specific Hedgehog (Hh) activation have been detected in different murine tumor models including those of the bladder, colon, and pancreas. A new therapeutic strategy targeting CAFs is the "stromal switch," in which tumor-promoting CAFs are changed into tumor-retarding CAFs with attenuated stromal stiffness. Several molecular mechanisms that can be exploited to design personalized anticancer therapies targeting CAFs remain to be elucidated. Strategies aimed at targeting the tumor stroma as well as tumor cells themselves have attracted academic attention for their application in precision medicine. This novel review discusses the role of the activation of EGFR, Wnt/β-catenin, Hippo, TGF-β, and JAK/STAT cascades in CAFs in relation to the chemoresistance and invasive/metastatic behavior of cancer cells. For instance, although activated EGFR signaling contributes to collective cell migration in cooperation with CAFs, an activated Hippo pathway is responsible for stromal stiffness resulting in the collapse of neoplastic blood vessels. Therefore, identifying the signaling pathways that are activated under specific conditions is crucial for precision medicine.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
37
|
Maurya SK, Shadab G, Siddique HR. Chemosensitization of Therapy Resistant Tumors: Targeting Multiple Cell Signaling Pathways by Lupeol, A Pentacyclic Triterpene. Curr Pharm Des 2020; 26:455-465. [DOI: 10.2174/1381612826666200122122804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Background:
The resistance of cancer cells to different therapies is one of the major stumbling blocks
for successful cancer treatment. Various natural and pharmaceuticals drugs are unable to control drug-resistance
cancer cell's growth. Also, chemotherapy and radiotherapy have several side effects and cannot apply to the patient
in excess. In this context, chemosensitization to the therapy-resistant cells by non-toxic phytochemicals
could be an excellent alternative to combat therapy-resistant cancers.
Objective:
To review the currently available literature on chemosensitization of therapy resistance cancers by
Lupeol for clinically approved drugs through targeting different cell signaling pathways.
Methods:
We reviewed relevant published articles in PubMed and other search engines from 1999 to 2019 to
write this manuscript. The key words used for the search were “Lupeol and Cancer”, “Lupeol and Chemosensitization”,
“Lupeol and Cell Signaling Pathways”, “Cancer Stem Cells and Lupeol” etc. The published results on the
chemosensitization of Lupeol were compared and discussed.
Results:
Lupeol chemosensitizes drug-resistant cancer cells for clinically approved drugs. Lupeol alone or in
combination with approved drugs inhibits inflammation in different cancer cells through modulation of expression
of IL-6, TNF-α, and IFN-γ. Lupeol, through altering the expression levels of BCL-2, BAX, Survivin, FAS,
Caspases, and PI3K-AKT-mTOR signaling pathway, significantly induce cell deaths among therapy-resistant
cells. Lupeol also modulates the molecules involved in cell cycle regulation such as Cyclins, CDKs, P53, P21,
and PCNA in different cancer types.
Conclusion:
Lupeol chemosensitizes the therapy-resistant cancer cells for the treatment of various clinically
approved drugs via modulating different signaling pathways responsible for chemoresistance cancer. Thus, Lupeol
might be used as an adjuvant molecule along with clinically approved drugs to reduce the toxicity and increase
the effectiveness.
Collapse
Affiliation(s)
- Santosh K. Maurya
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - G.G.H.A. Shadab
- Molecular Toxicology & Cytogenetics Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| |
Collapse
|
38
|
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO, Jain RK, Janowitz T, Jorgensen C, Kimmelman AC, Kolonin MG, Maki RG, Powers RS, Puré E, Ramirez DC, Scherz-Shouval R, Sherman MH, Stewart S, Tlsty TD, Tuveson DA, Watt FM, Weaver V, Weeraratna AT, Werb Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 2020; 20:174-186. [PMID: 31980749 PMCID: PMC7046529 DOI: 10.1038/s41568-019-0238-1] [Citation(s) in RCA: 2325] [Impact Index Per Article: 465.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment with diverse functions, including matrix deposition and remodelling, extensive reciprocal signalling interactions with cancer cells and crosstalk with infiltrating leukocytes. As such, they are a potential target for optimizing therapeutic strategies against cancer. However, many challenges are present in ongoing attempts to modulate CAFs for therapeutic benefit. These include limitations in our understanding of the origin of CAFs and heterogeneity in CAF function, with it being desirable to retain some antitumorigenic functions. On the basis of a meeting of experts in the field of CAF biology, we summarize in this Consensus Statement our current knowledge and present a framework for advancing our understanding of this critical cell type within the tumour microenvironment.
Collapse
Affiliation(s)
- Erik Sahai
- The Francis Crick Institute, London, UK.
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Edna Cukierman
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David G DeNardo
- Division of Oncology, Washington University Medical School, St Louis, MO, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Douglas Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rakesh K Jain
- Edwin L Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Northwell Health Cancer Institute, New Hyde Park, NY, USA
| | - Claus Jorgensen
- Cancer Research UK Manchester Institute, University of Manchester, Nether Alderley, UK
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY, USA
| | - Mikhail G Kolonin
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Robert G Maki
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Northwell Health Cancer Institute, New York, NY, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - R Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel C Ramirez
- Zucker School of Medicine at Hofstra/Northwell Health System, New York, NY, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sheila Stewart
- Department of Cell Biology and Physiology, Department of Medicine, ICCE Institute, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Thea D Tlsty
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, UCSF, San Francisco, CA, USA
| | | | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Valerie Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ashani T Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
39
|
Zhang M, Li M, Du L, Zeng J, Yao T, Jin Y. Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. Int J Pharm 2020; 578:119177. [PMID: 32105724 DOI: 10.1016/j.ijpharm.2020.119177] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/26/2020] [Accepted: 02/23/2020] [Indexed: 01/27/2023]
Abstract
Bacterial therapy is emerging for the treatment of cancers though some scientific and clinical problems have not been addressed. Here, a live drug-loaded carrier, paclitaxel-in-liposome-in-bacteria (LPB), was prepared for inhalation treatment of primary lung cancer, where liposomal paclitaxel (LP) was highly effectively internalized into bacteria (E. coli or L. casei) to get LP-in-E. coli (LPE) or LP-in-L. casei (LPL) by electroporation that had no influence on the growth of these bacteria. Bacteria, LP, the simple mixture of LP and bacteria, and LPB remarkably inhibited the proliferation of A549 lung cancer cells, where LPE was the strongest one. Drug-loaded bacteria delivered the cargos into the cells more quickly than the mixture of drugs and bacteria and the cargos alone. LPE also showed the highest anticancer effect on the rat primary lung cancer among them with the downregulation of VEGF and HIF-1α and the improvement of cancer cell apoptosis after intratracheal administration. Moreover, the bacterial formulations significantly enhanced the expressions of immune markers (TNF-α, IL-4, and IFN-γ) and immune cells (leukocytes and neutrophils). LPB showed much higher bacterial distribution in the lung than other organs after intratracheal administration. LPB is a promising medicine for inhalation treatment of primary lung cancer.
Collapse
Affiliation(s)
- Mengmeng Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Miao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Ji Zeng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Tianbing Yao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; Pharmaceutical College of Henan University, Kaifeng 475004, China.
| |
Collapse
|
40
|
Zhao Y, Li J, Li D, Wang Z, Zhao J, Wu X, Sun Q, Lin PP, Plum P, Damanakis A, Gebauer F, Zhou M, Zhang Z, Schlösser H, Jauch KW, Nelson PJ, Bruns CJ. Tumor biology and multidisciplinary strategies of oligometastasis in gastrointestinal cancers. Semin Cancer Biol 2020; 60:334-343. [PMID: 31445220 DOI: 10.1016/j.semcancer.2019.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022]
Abstract
More than 70% of gastrointestinal (GI) cancers are diagnosed with metastases, leading to poor prognosis. For some cancer patients with limited sites of metastatic tumors, the term oligometastatic disease (OMD) has been coined as opposed to systemic polymetastasis (PMD) disease. Stephan Paget first described an organ-specific pattern of metastasis in 1889, now known as the "seed and soil" theory where distinct cancer types are found to metastasize to different tumor-specific sites. Our understanding of the biology of tumor metastasis and specifically the molecular mechanisms driving their formation are still limited, in particular, as it relates to the genesis of oligometastasis. In the following review, we discuss recent advances in general understanding of this metastatic behavior including the role of specific signaling pathways, various molecular features and biomarkers, as well as the interaction of carcinoma cells with their tissue microenvironments (both primary and metastatic niches). The unique features that underlie OMD provide potential targets for localized therapy. As it relates to clinical practice, OMD is emerging as treatable with surgical resection and/or other local therapy options. Strategies currently being applied in the clinical management of OMD will be discussed including surgical, radiation-based therapy, ablation procedures, and the results of emerging clinical trials involving immunotherapy.
Collapse
Affiliation(s)
- Yue Zhao
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of General, Visceral und Vascular Surgery, Otto von Guericke University, Magdeburg, Germany.
| | - Jiahui Li
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Dai Li
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of Anethesiology, Changhai Hospital, Naval Medical University, Shanghai, PR China
| | - Zhefang Wang
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Jiangang Zhao
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Xiaolin Wu
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Qiye Sun
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | | | - Patrick Plum
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | - Alexander Damanakis
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Florian Gebauer
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Menglong Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hans Schlösser
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology (CIO) Achen, Bonn, Cologne and Düsseldorf, Cologne, Germany
| | - Karl-Walter Jauch
- Department of General, Visceral und Vascular Surgery, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Peter J Nelson
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Germany
| | - Christiane J Bruns
- Department of General, Visceral und Tumor Surgery, University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany; Center for Integrated Oncology (CIO) Achen, Bonn, Cologne and Düsseldorf, Cologne, Germany.
| |
Collapse
|
41
|
Evolution of placental invasion and cancer metastasis are causally linked. Nat Ecol Evol 2019; 3:1743-1753. [PMID: 31768023 PMCID: PMC7340496 DOI: 10.1038/s41559-019-1046-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
Among mammals, placental invasion is correlated with vulnerability to malignancy. Animals with more invasive placentation (e.g. humans) are more vulnerable to malignancy. To explain this correlation, we propose the hypothesis of Evolved Levels of Invasibility: the evolution of invasibility of stromal tissue affects both, placental and cancer invasion. We provide evidence for this hypothesis using an in vitro model. We find that bovine endometrial and skin fibroblasts are more resistant to invasion than their human counterparts. Gene expression profiling identified genes with high expression in human but not in bovine fibroblasts. Knocking down a subset of them in human fibroblasts leads to stronger resistance to cancer cell invasion. Identifying the evolutionary determinants of stromal invasibility can provide significant insights to develop rational anti-metastatic therapeutics.
Collapse
|
42
|
Fan FS, Yang CF. Synchronous peritoneal carcinomatosis from a buccal squamous cell carcinoma: a case report focusing on possible metastatic mechanisms and novel therapeutic modalities. Ecancermedicalscience 2019; 13:954. [PMID: 31645882 PMCID: PMC6759322 DOI: 10.3332/ecancer.2019.954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Indexed: 11/27/2022] Open
Abstract
A 53-year-old male patient was diagnosed with squamous cell carcinoma of buccal mucosa with synchronous diffuse peritoneal carcinomatosis, a very rare presentation for oral cancer. His disease was highly resistant to intensive systemic chemotherapy and progressed rapidly. So far as we know, there were only five cases with peritoneal involvement by metastatic head and neck cancer reported prior to this patient in the English literature. Immunohistochemistry study revealed that tumour specimens from both oral cavity and peritoneum were negative for tumour necrosis factor alpha and CD24 but positive for CD44 and CD36. These four molecules have been disclosed to be involved in the process of peritoneal metastasis from ovarian cancer. Their roles in the metastatic pathway and possible therapeutic policy targeting at them will be thoroughly discussed.
Collapse
Affiliation(s)
- Frank S Fan
- Section of Haematology and Oncology, Department of Medicine, Ministry of Health and Welfare Changhua Hospital, 80, Sec. 2, Chung-Jeng Rd, Pu-Shin Township, Chang-Hua County, 51341, Taiwan.,https://orcid.org/0000-0002-8123-6941
| | - Chung-Fan Yang
- Department of Pathology, Ministry of Health and Welfare Changhua Hospital, 80, Sec. 2, Chung-Jeng Rd, Pu-Shin Township, Chang-Hua County, 51341, Taiwan.,https://orcid.org/0000-0002-7366-4380
| |
Collapse
|
43
|
Shimbo A, Kajiyama H, Tamauchi S, Yoshikawa N, Ikeda Y, Nishino K, Suzuki S, Niimi K, Sakata J, Kikkawa F. Expression of connective tissue growth factor as a prognostic indicator and its possible involvement in the aggressive properties of epithelial ovarian carcinoma. Oncol Rep 2019; 42:2323-2332. [PMID: 31578579 PMCID: PMC6826307 DOI: 10.3892/or.2019.7352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022] Open
Abstract
Recently, connective tissue growth factor (CTGF) was demonstrated to be associated with aggressive characteristics, including proliferation, invasion and metastasis, in a number of malignancies. Here, we investigated the expression and function of CTGF in epithelial ovarian carcinoma (EOC) to clarify its molecular mechanism and clinical significance. Paraffin sections from clinical samples of EOC (N=104) were immunostained with the CTGF antibody, and then the staining positivity was semiquantitatively examined. Moreover, we explored the role of CTGF expression in the migration-promoting effect on and chemoresistance of EOC cells. The results revealed that of the 104 EOC patients, the low and high CTGF staining expression rates were 65 (62.5%) and 39 (37.5%), respectively. Patients belonging to the higher-level CTGF group showed poorer progression-free (PFS) and overall survival (OS) rates than those in the lower-level group [PFS (log-rank: P=0.0076) and OS (log-rank: P=0.0078), respectively]. Multivariable analysis showed that CTGF expression was a significant predictor of poorer PFS and OS [PFS: HR (high vs. low): 1.837, 95% CI: 1.023–3.289 (P=0.0418); OS: HR: 2.141, 95% CI: 1.077–4.296 (P=0.0300)]. In in vitro studies, in acquired paclitaxel (PTX)-resistant EOC cells, the silencing of CTGF expression led to the restoration of PTX sensitivity. Furthermore, we confirmed that the TGF-β-dependent migration-promoting effect on these CTGF-depleted cells was completely inhibited. In conclusion, the results of the present study suggest the possible involvement of CTGF in the migration-promoting effect and chemoresistance of EOC, suggesting that it may be a target for overcoming the malignant properties of EOC.
Collapse
Affiliation(s)
- Akiko Shimbo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Kimihiro Nishino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Kaoru Niimi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| | - Jun Sakata
- Department of Gynecology, Graduate School of Medicine, Aichi Cancer Center Hospital, Nagoya, Aichi 464‑8681, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466‑8550, Japan
| |
Collapse
|
44
|
Da Silva AC, Jammal MP, Crispim PCA, Murta EFC, Nomelini RS. The Role of Stroma in Ovarian Cancer. Immunol Invest 2019; 49:406-424. [PMID: 32264761 DOI: 10.1080/08820139.2019.1658770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Ovarian cancer is one of the gynecological malignancies responsible for thousands of deaths in women worldwide. Malignant solid tumors are formed by malignant cells and stroma that influence each other, where different types of cells in the stromal environment can be recruited by malignant cells to promote tumor growth and facilitate metastasis. The chronic inflammatory response is increasingly accepted in its relation to the pathophysiology of the onset and development of tumors, sustained cell proliferation in an environment rich in inflammatory cells, growth factors, activated stroma and DNA damage agents may increase the risk to develop a neoplasm.Methods: A search for the following keywords was performed in the PubMed database; "Ovarian cancer", "stroma", "tumor-associated macrophages", "cancer-associated fibroblasts", "cytokines", "angiogenesis", "epithelial-mesenchymal transition", and "extracellular matrix".Results: The articles identified were published in English between 1971 and 2018. A total of 154 articles were selected for further analysis. Conclusion: We consider ovarian cancer as a heterogeneous disease, not only in the sense that different histological or molecular subtypes may be behind the same clinical result, but also that multiple cell types besides cancer cells, like other non-cellular components, need to be mobilized and coordinated to support tumor survival, growth, invasion and progression.
Collapse
Affiliation(s)
- Ana Carolinne Da Silva
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Millena Prata Jammal
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Paula Carolina Arvelos Crispim
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Eddie Fernando Candido Murta
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Rosekeila Simões Nomelini
- Research Institute of Oncology (IPON)/Department of Gynecology and Obstetrics, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
45
|
Yu Y, Suryo Rahmanto Y, Shen YA, Ardighieri L, Davidson B, Gaillard S, Ayhan A, Shi X, Xuan J, Wang TL, Shih IM. Spleen tyrosine kinase activity regulates epidermal growth factor receptor signaling pathway in ovarian cancer. EBioMedicine 2019; 47:184-194. [PMID: 31492560 PMCID: PMC6796592 DOI: 10.1016/j.ebiom.2019.08.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/14/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Spleen tyrosine kinase (SYK) is frequently upregulated in recurrent ovarian carcinomas, for which effective therapy is urgently needed. SYK phosphorylates several substrates, but their translational implications remain unclear. Here, we show that SYK interacts with EGFR and ERBB2, and directly enhances their phosphorylation. METHODS We used immunohistochemistry and immunoblotting to assess SYK and EGFR phosphorylation in ovarian serous carcinomas. Association with survival was determined by Kaplan-Meier analysis and the log-rank test. To study its role in EGFR signaling, SYK activity was modulated using a small molecule inhibitor, a syngeneic knockout, and an active kinase inducible system. We applied RNA-seq and phosphoproteomic mass spectrometry to investigate the SYK-regulated EGF-induced transcriptome and downstream substrates. FINDINGS Induced expression of constitutively active SYK130E reduced cellular response to EGFR/ERBB2 inhibitor, lapatinib. Expression of EGFRWT, but not SYK non-phosphorylatable EGFR3F mutant, resulted in paclitaxel resistance, a phenotype characteristic to SYK active ovarian cancers. In tumor xenografts, SYK inhibitor reduces phosphorylation of EGFR substrates. Compared to SYKWT cells, SYKKO cells have an attenuated EGFR/ERBB2-transcriptional activity and responsiveness to EGF-induced transcription. In ovarian cancer tissues, pSYK (Y525/526) levels showed a positive correlation with pEGFR (Y1187). Intense immunoreactivity of pSYK (Y525/526) correlated with poor overall survival in ovarian cancer patients. INTERPRETATION These findings indicate that SYK activity positively modulates the EGFR pathway, providing a biological foundation for co-targeting SYK and EGFR. FUND: Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, NIH/NCI, Ovarian Cancer Research Foundation Alliance, HERA Women's Cancer Foundation and Roseman Foundation. Funders had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript and eventually in the decision to submit the manuscript.
Collapse
Affiliation(s)
- Yu Yu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America.
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Yao-An Shen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Laura Ardighieri
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America
| | - Ben Davidson
- Department of Pathology, Oslo University Hospital and Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norwegian Radium Hospital, 0310 Oslo, Norway
| | - Stephanie Gaillard
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America
| | - Ayse Ayhan
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America; Department of Pathology, Seirei Mikatahara Hospital, Hamamatsu and Hiroshima Universities Schools of Medicine, Hamamatsu 431-3192, Japan
| | - Xu Shi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Jianhua Xuan
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, United States of America
| | - Tian-Li Wang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, United States of America; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States of America.
| | - Ie-Ming Shih
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, United States of America; Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD 21287, United States of America.
| |
Collapse
|
46
|
Kumar R, Paul AM, Rameshwar P, Pillai MR. Epigenetic Dysregulation at the Crossroad of Women's Cancer. Cancers (Basel) 2019; 11:cancers11081193. [PMID: 31426393 PMCID: PMC6721458 DOI: 10.3390/cancers11081193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
An increasingly number of women of all age groups are affected by cancer, despite substantial progress in our understanding of cancer pathobiology, the underlying genomic alterations and signaling cascades, and cellular-environmental interactions. Though our understanding of women’s cancer is far more complete than ever before, there is no comprehensive model to explain the reasons behind the increased incidents of certain reproductive cancer among older as well as younger women. It is generally suspected that environmental and life-style factors affecting hormonal and growth control pathways might help account for the rise of women’s cancers in younger age, as well, via epigenetic mechanisms. Epigenetic regulators play an important role in orchestrating an orderly coordination of cellular signals in gene activity in response to upstream signaling and/or epigenetic modifiers present in a dynamic extracellular milieu. Here we will discuss the broad principles of epigenetic regulation of DNA methylation and demethylation, histone acetylation and deacetylation, and RNA methylation in women’s cancers in the context of gene expression, hormonal action, and the EGFR family of cell surface receptor tyrosine kinases. We anticipate that a better understanding of the epigenetics of women’s cancers may provide new regulatory leads and further fuel the development of new epigenetic biomarkers and therapeutic approaches.
Collapse
Affiliation(s)
- Rakesh Kumar
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India.
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | - Aswathy Mary Paul
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
- Graduate Degree Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Pranela Rameshwar
- Department of Medicine, Division of Hematology-Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - M Radhakrishna Pillai
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala 695014, India
| |
Collapse
|
47
|
Sekiya A, Suzuki S, Tanaka A, Hattori S, Shimizu Y, Yoshikawa N, Koya Y, Kajiyama H, Kikkawa F. Interleukin‑33 expression in ovarian cancer and its possible suppression of peritoneal carcinomatosis. Int J Oncol 2019; 55:755-765. [PMID: 31322193 DOI: 10.3892/ijo.2019.4845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/01/2019] [Indexed: 11/05/2022] Open
Abstract
Refractory peritoneal carcinomatosis is a common terminal feature of epithelial ovarian cancer (EOC). Previous reports have suggested that immunotherapy is a promising therapeutic strategy for EOC. Interleukin (IL)‑33 is a member of the IL‑1 superfamily of cytokines. The role of IL‑33 in tissue inflammation and promoting type 2 immune responses has been established, and recently, there is accumulating evidence to suggest the involvement of IL‑33 in carcinogenesis. In this study, we focused on the association between the tumor expression of IL‑33 and ovarian peritoneal carcinomatosis. We used an immunosufficient murine model of peritoneal carcinomatosis and human EOC samples. The overexpression of IL‑33 in the ID8 mouse EOC cell line tumors significantly prolonged the survival of immunocompetent mice in the peritoneal carcinomatosis setting, but not in the subcutaneous model. In addition, the silencing of IL‑33 in ID8‑T6 cells (subclone with high dissemination potential) significantly shortened the survival of the tumor‑bearing mice. This was likely due to the intratumoral accumulation of CD8+ and CD4+ T cells, and a decrease in CD11b+Gr1+ cells. Furthermore, IL‑33 induced the intraperitoneal microenvironment favoring tumor elimination through the inhibition of differentiation into CD11b+Gr1+ cells. On the whole, the findings of this study suggest IL‑33 to be a cytokine that reflects antitumor peritoneal conditions. Further investigation of the antitumorigenic role of IL‑33 may aid in the development of more effective therapeutic approaches for the treatment of EOC with peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Atsushi Sekiya
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Ayako Tanaka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Satomi Hattori
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Yusuke Shimizu
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Yoshihiro Koya
- Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi 466‑8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| |
Collapse
|
48
|
Sun W, Fu S. Role of cancer-associated fibroblasts in tumor structure, composition and the microenvironment in ovarian cancer. Oncol Lett 2019; 18:2173-2178. [PMID: 31452720 PMCID: PMC6676664 DOI: 10.3892/ol.2019.10587] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/05/2019] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer (OVAC) remains the most lethal gynecological malignancy; it is ranked fifth among the most common types of cancer that affect women worldwide. Several aspects of the disease, including molecular pathogenesis, epidemiology, histological subtypes, poor prognosis at early stages due to the absence of specific signs and symptoms, and curative treatments in the advanced stages are all responsible for the poor survival rate, which is evaluated to be at 5 years once the cancer is diagnosed and treatment begins. A better understanding of the pathogenesis of ovarian cancer is therefore crucial, even though unexplored pathways, in order to improve the prognosis of patients with OVAC and to develop novel therapeutic approaches. Accordingly, the tumor microenvironment, defined as the combination of proteins produced by all tumor cells and by non-cancerous cells or the stroma, and composed of several cells, including those from the immune, inflammatory and adipose systems, as well as the mesenchymal stem, endothelial and fibroblasts cells, has recently attracted attention. Of particular interest are fibroblasts, which can be activated into cancer-associated fibroblast (CAFs) to become a potent supporter of carcinogenesis, promoting the initiation of epithelial tumor formation, tumor growth, angiogenesis and metastasis, as well as therapeutic resistance and immunosuppression. Thus, the targeting of CAFs for early diagnosis and effective therapy warrants our attention. In this review, we discuss the mechanisms through which CAFs may affect the structure, composition and microenvironment of the ovarian tumor. We also aim to highlight important aspects of OVAC pathobiology involving CAFs, in an attempt to provide insight into novel diagnostic windows and provide new therapeutic perspectives.
Collapse
Affiliation(s)
- Wei Sun
- Department of Gynecology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu 210029, P.R. China
| | - Shilong Fu
- Department of Gynecology, Τhe First Affiliated Hospital of Nanjing Medical University, Nanjing Jiangsu 210029, P.R. China
| |
Collapse
|
49
|
Mishra S, Bernal C, Silvano M, Anand S, Ruiz i Altaba A. The protein secretion modulator TMED9 drives CNIH4/TGFα/GLI signaling opposing TMED3-WNT-TCF to promote colon cancer metastases. Oncogene 2019; 38:5817-5837. [PMID: 31253868 PMCID: PMC6755966 DOI: 10.1038/s41388-019-0845-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/13/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
How cells in primary tumors initially become pro-metastatic is not understood. A previous genome-wide RNAi screen uncovered colon cancer metastatic suppressor and WNT promoting functions of TMED3, a member of the p24 ER-to-Golgi protein secretion family. Repression of canonical WNT signaling upon knockdown (kd) of TMED3 might thus be sufficient to drive metastases. However, searching for transcriptional influences on other family members here we find that TMED3 kd leads to enhanced TMED9, that TMED9 acts downstream of TMED3 and that TMED9 kd compromises metastasis. Importantly, TMED9 pro-metastatic function is linked to but distinct from the repression of TMED3-WNT-TCF signaling. Functional rescue of the migratory deficiency of TMED9 kd cells identifies TGFα as a mediator of TMED9 pro-metastatic activity. Moreover, TMED9 kd compromises the biogenesis, and thus function, of TGFα. Analyses in three colon cancer cell types highlight a TMED9-dependent gene set that includes CNIH4, a member of the CORNICHON family of TGFα exporters. Our data indicate that TGFA and CNIH4, which display predictive value for disease-free survival, promote colon cancer cell metastatic behavior, and suggest that TMED9 pro-metastatic function involves the modulation of the secretion of TGFα ligand. Finally, TMED9/TMED3 antagonism impacts WNT-TCF and GLI signaling, where TMED9 primacy over TMED3 leads to the establishment of a positive feedback loop together with CNIH4, TGFα, and GLI1 that enhances metastases. We propose that primary colon cancer cells can transition between two states characterized by secretion-transcription regulatory loops gated by TMED3 and TMED9 that modulate their metastatic proclivities.
Collapse
Affiliation(s)
- Sonakshi Mishra
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland
| | - Carolina Bernal
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland
| | - Marianna Silvano
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland
| | - Santosh Anand
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland
| | - Ariel Ruiz i Altaba
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva Medical School, 1 rue Michel Servet, CH1211, Geneva, Switzerland.
| |
Collapse
|
50
|
Camargo S, Shamis Y, Assis A, Mitrani E. An in vivo Like Micro-Carcinoma Model. Front Oncol 2019; 9:410. [PMID: 31192122 PMCID: PMC6540606 DOI: 10.3389/fonc.2019.00410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/01/2019] [Indexed: 11/13/2022] Open
Abstract
We here present a novel micro-system which allows to reconstitute an in vivo lung carcinoma where the various constituting epithelial and/or stromal structural and/or cellular components can be incorporated at will. In contrast to various "organs on a chip" the model is based on the observation that in nature, epithelial cells are always supported by a connective tissue or stroma. The model is based on acellular micro-scaffolds of microscopic dimensions which enable seeded cells to obtain gases and nutrients through diffusion thus avoiding the need for vascularization. As a proof of concept, we show that in this model, Calu-3 cells can form a well-organized, continuous, polarized, one-layer epithelium lining the stromal derived alveolar cavities, and express a different pattern of tumor-related genes than when grown as standard monolayer cultures on plastic culture dishes. To our knowledge, this model, introduces for the first time a system where the function of carcinogenic cells can be tested in vitro in an environment that closely mimics the natural in vivo situation.
Collapse
Affiliation(s)
- Sandra Camargo
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yulia Shamis
- Department of Developmental and Regenerative Biology, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Assaf Assis
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eduardo Mitrani
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|