1
|
Nicaise Y, Delmas C, Cohen‐Jonathan‐Moyal E, Seva C. PEA3 Transcription Factors, Role in Invasion, Proliferation and Radioresistance of Glioblastoma Stem Cells. J Cell Mol Med 2025; 29:e70533. [PMID: 40275610 PMCID: PMC12022000 DOI: 10.1111/jcmm.70533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/25/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
The presence of glioblastoma stem cells (GSCs), known for their high invasiveness and resistance to radiation, is one of the reasons for systematic recurrence. It is therefore important to understand the resistance mechanisms of these cells to optimise therapies. We focused on the PEA3 family of transcription factors, ETV1, ETV4 and ETV5, in patient-derived GSCs. We demonstrate that ETV1 is over-expressed in high invasive GSCs. In 3D invasion assays, inhibiting ETV1 expression using specific siRNAs significantly reduces cell invasion. Furthermore, we show a significant correlation between ETV1 and ZEB1, a major driver of invasion. Blocking ETV1 decreases ZEB1 expression in GSCs. The study also demonstrates the essential role of ETV1, ETV4 and ETV5 in the radioresistance of GSCs and their ability to form neurospheres. Using specific siRNAs to inhibit the expression of these transcription factors led to an increased sensitivity of GSCs to radiation and a decrease in both the number and size of neurospheres. These findings suggest that PEA3 transcription factors play a major role in GSCs aggressiveness by regulating invasion, radioresistance and the ability to form neurospheres. Trial Registration: Registry and the Registration N° of the study/trial: 12TETE01, ID-RCB No. 2012-A00585-38, approval Date: May 7, 2012.
Collapse
Affiliation(s)
- Yvan Nicaise
- Centre de Recherche en Cancérologie de Toulouse (CRCT)INSERM U1037, Université Toulouse III‐Paul SabatierToulouseFrance
| | - Caroline Delmas
- Centre de Recherche en Cancérologie de Toulouse (CRCT)INSERM U1037, Université Toulouse III‐Paul SabatierToulouseFrance
- IUCT‐Oncopole, Institut Claudius RegaudToulouseFrance
| | - Elizabeth Cohen‐Jonathan‐Moyal
- Centre de Recherche en Cancérologie de Toulouse (CRCT)INSERM U1037, Université Toulouse III‐Paul SabatierToulouseFrance
- IUCT‐Oncopole, Institut Claudius RegaudToulouseFrance
| | - Catherine Seva
- Centre de Recherche en Cancérologie de Toulouse (CRCT)INSERM U1037, Université Toulouse III‐Paul SabatierToulouseFrance
| |
Collapse
|
2
|
Karayel O, Soung A, Gurung H, Schubert AF, Klaeger S, Kschonsak M, Al-Maraghi A, Bhat AA, Alshabeeb Akil AS, Dugger DL, Webster JD, French DM, Anand D, Soni N, Fakhro KA, Rose CM, Harris SF, Ndoja A, Newton K, Dixit VM. Impairment of DET1 causes neurological defects and lethality in mice and humans. Proc Natl Acad Sci U S A 2025; 122:e2422631122. [PMID: 39937864 PMCID: PMC11848315 DOI: 10.1073/pnas.2422631122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025] Open
Abstract
COP1 and DET1 are components of an E3 ubiquitin ligase that is conserved from plants to humans. Mammalian COP1 binds to DET1 and is a substrate adaptor for the CUL4A-DDB1-RBX1 RING E3 ligase. Transcription factor substrates, including c-Jun, ETV4, and ETV5, are targeted for proteasomal degradation to effect rapid transcriptional changes in response to cues such as growth factor deprivation. Here, we link a homozygous DET1R26W mutation to lethal developmental abnormalities in humans. Experimental cryo-electron microscopy of the DET1 complex with DDB1 and DDA1, as well as co-immunoprecipitation experiments, revealed that DET1R26W impairs binding to DDB1, thereby compromising E3 ligase function. Accordingly, human-induced pluripotent stem cells homozygous for DET1R26W expressed ETV4 and ETV5 highly, and exhibited defective mitochondrial homeostasis and aberrant caspase-dependent cell death when differentiated into neurons. Neuronal cell death was increased further in the presence of Det1-deficient microglia as compared to WT microglia, indicating that the deleterious effects of the DET1 p.R26W mutation may stem from the dysregulation of multiple cell types. Mice lacking Det1 died during embryogenesis, while Det1 deletion just in neural stem cells elicited hydrocephalus, cerebellar dysplasia, and neonatal lethality. Our findings highlight an important role for DET1 in the neurological development of mice and humans.
Collapse
Affiliation(s)
- Ozge Karayel
- Department of Physiological Chemistry, Genentech, South San Francisco, CA94080
| | - Allison Soung
- Department of Neuroscience, Genentech, South San Francisco, CA94080
| | - Hem Gurung
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA94080
| | | | - Susan Klaeger
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA94080
| | - Marc Kschonsak
- Department of Structural Biology, Genentech, South San Francisco, CA94080
| | | | - Ajaz A. Bhat
- Department of Human Genetics, Sidra Medicine, Doha26999, Qatar
| | | | - Debra L. Dugger
- Department of Physiological Chemistry, Genentech, South San Francisco, CA94080
| | | | | | | | - Naharmal Soni
- Division of Neonatology, Sidra Medicine, Doha26999, Qatar
| | - Khalid A. Fakhro
- Department of Human Genetics, Sidra Medicine, Doha26999, Qatar
- Genomics, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha34110, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha24144, Qatar
| | - Christopher M. Rose
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA94080
| | - Seth F. Harris
- Department of Structural Biology, Genentech, South San Francisco, CA94080
| | - Ada Ndoja
- Department of Neuroscience, Genentech, South San Francisco, CA94080
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, South San Francisco, CA94080
| | - Vishva M. Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA94080
| |
Collapse
|
3
|
Bullert A, Wang H, Valenzuela AE, Neier K, Wilson RJ, Badley JR, LaSalle JM, Hu X, Lein PJ, Lehmler HJ. Interactions of Polychlorinated Biphenyls and Their Metabolites with the Brain and Liver Transcriptome of Female Mice. ACS Chem Neurosci 2024; 15:3991-4009. [PMID: 39392776 PMCID: PMC11587508 DOI: 10.1021/acschemneuro.4c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Exposure to polychlorinated biphenyls (PCBs) is linked to neurotoxic effects. This study aims to close knowledge gaps regarding the specific modes of action of PCBs in female C57BL/6J mice (>6 weeks) orally exposed for 7 weeks to a human-relevant PCB mixture (MARBLES mix) at 0, 0.1, 1, and 6 mg/kg body weight/day. PCB and hydroxylated PCB (OH-PCBs) levels were quantified in the brain, liver, and serum; RNA sequencing was performed in the striatum, prefrontal cortex, and liver, and metabolomic analyses were performed in the striatum. Profiles of PCBs but not their hydroxylated metabolites were similar in all tissues. In the prefrontal cortex, PCB exposure activated the oxidative phosphorylation respiration pathways, while suppressing the axon guidance pathway. PCB exposure significantly changed the expression of genes associated with neurodevelopmental and neurodegenerative diseases in the striatum, impacting pathways like growth hormone synthesis and dendrite development. PCBs did not affect the striatal metabolome. In contrast to the liver, which showed activation of metabolic processes following PCB exposure and the induction of cytochrome P450 enzymes, the expression of xenobiotic processing genes was not altered by PCB exposure in either brain region. Network analysis revealed complex interactions between individual PCBs (e.g., PCB28 [2,4,4'-trichlorobiphenyl]) and their hydroxylated metabolites and specific differentially expressed genes (DEGs), underscoring the need to characterize the association between specific PCBs and DEGs. These findings enhance the understanding of PCB neurotoxic mechanisms and their potential implications for human health.
Collapse
Affiliation(s)
- Amanda
J. Bullert
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Hui Wang
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Anthony E. Valenzuela
- Department
of Molecular Biosciences, University of
California, Davis, California 95616, United States
| | - Kari Neier
- Department
of Medical Microbiology and Immunology, University of California, Davis, California 95616, United States
| | - Rebecca J. Wilson
- Department
of Molecular Biosciences, University of
California, Davis, California 95616, United States
| | - Jessie R. Badley
- Department
of Molecular Biosciences, University of
California, Davis, California 95616, United States
| | - Janine M. LaSalle
- Department
of Medical Microbiology and Immunology, University of California, Davis, California 95616, United States
| | - Xin Hu
- Gangarosa
Department of Environmental Health, Emory
University, Atlanta, Georgia 30329, United States
| | - Pamela J. Lein
- Department
of Molecular Biosciences, University of
California, Davis, California 95616, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Human Toxicology, University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
4
|
Pattelli ON, Valdivia EM, Beyersdorf MS, Regan CS, Rivas M, Hebert KA, Merajver SD, Cierpicki T, Mapp AK. A Lipopeptidomimetic of Transcriptional Activation Domains Selectively Disrupts the Coactivator Med25 Protein-Protein Interactions. Angew Chem Int Ed Engl 2024; 63:e202400781. [PMID: 38527936 PMCID: PMC11134611 DOI: 10.1002/anie.202400781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Short amphipathic peptides are capable of binding to transcriptional coactivators, often targeting the same binding surfaces as native transcriptional activation domains. However, they do so with modest affinity and generally poor selectivity, limiting their utility as synthetic modulators. Here we show that incorporation of a medium-chain, branched fatty acid to the N-terminus of one such heptameric lipopeptidomimetic (LPPM-8) increases the affinity for the coactivator Med25 >20-fold (Ki >100 μM to 4 μM), rendering it an effective inhibitor of Med25 protein-protein interactions (PPIs). The lipid structure, the peptide sequence, and the C-terminal functionalization of the lipopeptidomimetic each influence the structural propensity of LPPM-8 and its effectiveness as an inhibitor. LPPM-8 engages Med25 through interaction with the H2 face of its activator interaction domain and in doing so stabilizes full-length protein in the cellular proteome. Further, genes regulated by Med25-activator PPIs are inhibited in a cell model of triple-negative breast cancer. Thus, LPPM-8 is a useful tool for studying Med25 and mediator complex biology and the results indicate that lipopeptidomimetics may be a robust source of inhibitors for activator-coactivator complexes.
Collapse
Affiliation(s)
- Olivia N. Pattelli
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Estefanía Martínez Valdivia
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Matthew S. Beyersdorf
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Clint S. Regan
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | - Mónica Rivas
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
| | | | - Sofia D. Merajver
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Tomasz Cierpicki
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109 USA
| | - Anna K. Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
5
|
Alfahed A, Ebili HO, Almoammar NE, Alasiri G, AlKhamees OA, Aldali JA, Al Othaim A, Hakami ZH, Abdulwahed AM, Waggiallah HA. Prognostic Values of Gene Copy Number Alterations in Prostate Cancer. Genes (Basel) 2023; 14:genes14050956. [PMID: 37239316 DOI: 10.3390/genes14050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Whilst risk prediction for individual prostate cancer (PCa) cases is of a high priority, the current risk stratification indices for PCa management have severe limitations. This study aimed to identify gene copy number alterations (CNAs) with prognostic values and to determine if any combination of gene CNAs could have risk stratification potentials. Clinical and genomic data of 500 PCa cases from the Cancer Genome Atlas stable were retrieved from the Genomic Data Commons and cBioPortal databases. The CNA statuses of a total of 52 genetic markers, including 21 novel markers and 31 previously identified potential prognostic markers, were tested for prognostic significance. The CNA statuses of a total of 51/52 genetic markers were significantly associated with advanced disease at an odds ratio threshold of ≥1.5 or ≤0.667. Moreover, a Kaplan-Meier test identified 27/52 marker CNAs which correlated with disease progression. A Cox Regression analysis showed that the amplification of MIR602 and deletions of MIR602, ZNF267, MROH1, PARP8, and HCN1 correlated with a progression-free survival independent of the disease stage and Gleason prognostic group grade. Furthermore, a binary logistic regression analysis identified twenty-two panels of markers with risk stratification potentials. The best model of 7/52 genetic CNAs, which included the SPOP alteration, SPP1 alteration, CCND1 amplification, PTEN deletion, CDKN1B deletion, PARP8 deletion, and NKX3.1 deletion, stratified the PCa cases into a localised and advanced disease with an accuracy of 70.0%, sensitivity of 85.4%, specificity of 44.9%, positive predictive value of 71.67%, and negative predictive value of 65.35%. This study validated prognostic gene level CNAs identified in previous studies, as well as identified new genetic markers with CNAs that could potentially impact risk stratification in PCa.
Collapse
Affiliation(s)
- Abdulaziz Alfahed
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Henry Okuchukwu Ebili
- Department of Morbid Anatomy and Histopathology, Olabisi Onabanjo University, Ago-Iwoye P.M.B. 2002, Nigeria
| | - Nasser Eissa Almoammar
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Glowi Alasiri
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud University, Riyadh 13317, Saudi Arabia
| | - Osama A AlKhamees
- Department of Pharmacology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Jehad A Aldali
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratories, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Abdulhadi M Abdulwahed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
6
|
Cosi I, Moccia A, Pescucci C, Munagala U, Di Giorgio S, Sineo I, Conticello SG, Notaro R, De Angioletti M. Identification and characterization of novel ETV4 splice variants in prostate cancer. Sci Rep 2023; 13:5267. [PMID: 37002241 PMCID: PMC10066307 DOI: 10.1038/s41598-023-29484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/06/2023] [Indexed: 04/03/2023] Open
Abstract
ETV4, one of ETS proteins overexpressed in prostate cancer, promotes migration, invasion, and proliferation in prostate cells. This study identifies a series of previously unknown ETV4 alternatively spliced transcripts in human prostate cell lines. Their expression has been validated using several unbiased techniques, including Nanopore sequencing. Most of these transcripts originate from an in-frame exon skipping and, thus, are expected to be translated into ETV4 protein isoforms. Functional analysis of the most abundant among these isoforms shows that they still bear an activity, namely a reduced ability to promote proliferation and a residual ability to regulate the transcription of ETV4 target genes. Alternatively spliced genes are common in cancer cells: an analysis of the TCGA dataset confirms the abundance of these novel ETV4 transcripts in prostate tumors, in contrast to peritumoral tissues. Since none of their translated isoforms have acquired a higher oncogenic potential, such abundance is likely to reflect the tumor deranged splicing machinery. However, it is also possible that their interaction with the canonical variants may contribute to the biology and the clinics of prostate cancer. Further investigations are needed to elucidate the biological role of these ETV4 transcripts and of their putative isoforms.
Collapse
Affiliation(s)
- Irene Cosi
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
- ICCOM - National Research Council, Sesto Fiorentino, Florence, Italy
| | - Annalisa Moccia
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Chiara Pescucci
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Uday Munagala
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Salvatore Di Giorgio
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Irene Sineo
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
| | - Silvestro G Conticello
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
- IFC - National Research Council, Pisa, Italy
| | - Rosario Notaro
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy
- IFC - National Research Council, Pisa, Italy
| | - Maria De Angioletti
- Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Viale Pieraccini 6, 50139, Florence, Italy.
- ICCOM - National Research Council, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
7
|
Pattelli ON, Valdivia EM, Beyersdorf MS, Regan CS, Rivas M, Merajver SD, Cierpicki T, Mapp AK. A lipopeptidomimetic of transcriptional activation domains selectively disrupts Med25 PPIs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534168. [PMID: 36993479 PMCID: PMC10055422 DOI: 10.1101/2023.03.24.534168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Short amphipathic peptides are capable of binding to transcriptional coactivators, often targeting the same binding surfaces as native transcriptional activation domains. However, they do so with modest affinity and generally poor selectivity, limiting their utility as synthetic modulators. Here we show that incorporation of a medium-chain, branched fatty acid to the N-terminus of one such heptameric lipopeptidomimetic (34913-8) increases the affinity for the coactivator Med25 >10-fold ( Ki >>100 μM to 10 μM). Importantly, the selectivity of 34913-8 for Med25 compared to other coactivators is excellent. 34913-8 engages Med25 through interaction with the H2 face of its Ac tivator I nteraction D omain and in doing so stabilizes full-length protein in the cellular proteome. Further, genes regulated by Med25-activator PPIs are inhibited in a cell model of triple-negative breast cancer. Thus, 34913-8 is a useful tool for studying Med25 and the Mediator complex biology and the results indicate that lipopeptidomimetics may be a robust source of inhibitors for activator-coactivator complexes.
Collapse
|
8
|
Mosaad H, Ahmed MM, Elaidy MM, Elfarargy OM, Abdelwahab MM, Abdelnour HM. Down-regulated MiRNA 29-b as a diagnostic marker in colorectal cancer and its correlation with ETV4 and Cyclin D1 immunohistochemical expression. Cancer Biomark 2023; 37:179-189. [PMID: 37248886 DOI: 10.3233/cbm-220349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common malignant tumor of the gastrointestinal tract with unfavorable prognosis. Therefore, novel biomarkers that may be used for new diagnostic strategies and drug-targeting therapy should be developed. OBJECTIVES To investigate the expression of miR-29b in CRC and its association with ETV4 and cyclin D1 expression. Moreover, the current work aims to investigate the association between them and the clinicopathological features of CRC. METHODS The expression of miR-29b and ETV4 (by qRT-PCR) and ETV4 and cyclin D1 (immunohistochemistry) was investigated in 65 cases of colon cancer and surrounding healthy tissues. RESULTS MiR-29b down-regulated and ETV4 and Cyclin D1 up-regulated significantly in colon cancer tissues compared to normal nearby colonic tissues. In addition, significant associations between ETV4 and cyclin D1 expressions and progressive stage and lymph node (LN) metastasis (P< 0.001 for each) were found. Furthermore, there was a negative correlation between miR-29b gene expression and ETV4 gene expression (r=-0.298, P<0.016). CONCLUSION Down-regulation of miR-29b and over-expression of ETV4 and cyclin D1 may be utilized as early diagnostic marker for development of colon cancer. ETV4 and cyclin D1 correlate with poor prognostic indicators and considered as a possible target for therapy in colon cancer.
Collapse
Affiliation(s)
- Hala Mosaad
- Department of Biochemistry, Faculty of Medicine Zagazig University, Egypt
| | | | - Mostafa M Elaidy
- Department of General Surgery, Faculty of Medicine Zagazig University, Egypt
| | - Ola M Elfarargy
- Department of Medical Oncology, Faculty of Medicine Zagazig University, Egypt
| | | | - Hanim M Abdelnour
- Department of Biochemistry, Faculty of Medicine Zagazig University, Egypt
| |
Collapse
|
9
|
Goettsch KA, Zhang L, Singh AB, Dhawan P, Bastola DK. Reliable epithelial-mesenchymal transition biomarkers for colorectal cancer detection. Biomark Med 2022; 16:889-901. [PMID: 35892269 PMCID: PMC9442548 DOI: 10.2217/bmm-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: To combat increases in colorectal cancer (CRC) incidence and mortality, biomarkers among differentially expressed genes (DEGs) have been identified to objectively detect cancer. However, DEGs are numerous, and additional parameters may identify more reliable biomarkers. Here, CRC DEGs were filtered into a prioritized list of biomarkers. Materials & methods: Two independent datasets (COAD-READ [n = 698] and GSE50760 [n = 36]) were input alternatively to the recently published data-driven reference method. Results were filtered based on epithelial-mesenchymal transition enrichment (χ-square statistic: 919.05; p = 2.2e-16) to produce 37 potential CRC biomarkers. Results: All 37 genes reliably classified CRC samples and ETV4, CLDN1 and CA2 together were top-ranked by DDR (accuracy: 89%; F1 score: 0.89). Conclusion: Biological and statistical information were combined to produce a better set of CRC detection biomarkers.
Collapse
Affiliation(s)
- Kaitlin A Goettsch
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, 1110 S. 67th Street, Omaha, NE 68182, USA
| | - Ling Zhang
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, 1110 S. 67th Street, Omaha, NE 68182, USA
| | - Amar B Singh
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 42nd & Emile Streets, Omaha, NE 68198, USA.,Veterans Affairs Nebraska - Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA
| | - Punita Dhawan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 42nd & Emile Streets, Omaha, NE 68198, USA
| | - Dhundy K Bastola
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, 1110 S. 67th Street, Omaha, NE 68182, USA
| |
Collapse
|
10
|
Grishin D, Gusev A. Allelic imbalance of chromatin accessibility in cancer identifies candidate causal risk variants and their mechanisms. Nat Genet 2022; 54:837-849. [PMID: 35697866 PMCID: PMC9886437 DOI: 10.1038/s41588-022-01075-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/08/2022] [Indexed: 02/02/2023]
Abstract
While many germline cancer risk variants have been identified through genome-wide association studies (GWAS), the mechanisms by which these variants operate remain largely unknown. Here we used 406 cancer ATAC-Seq samples across 23 cancer types to identify 7,262 germline allele-specific accessibility QTLs (as-aQTLs). Cancer as-aQTLs had stronger enrichment for cancer risk heritability (up to 145 fold) than any other functional annotation across seven cancer GWAS. Most cancer as-aQTLs directly altered transcription factor (TF) motifs and exhibited differential TF binding and gene expression in functional screens. To connect as-aQTLs to putative risk mechanisms, we introduced the regulome-wide associations study (RWAS). RWAS identified genetically associated accessible peaks at >70% of known breast and prostate loci and discovered new risk loci in all examined cancer types. Integrating as-aQTL discovery, motif analysis and RWAS identified candidate causal regulatory elements and their probable upstream regulators. Our work establishes cancer as-aQTLs and RWAS analysis as powerful tools to study the genetic architecture of cancer risk.
Collapse
Affiliation(s)
- Dennis Grishin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,The Eli and Edythe L. Broad Institute, Cambridge, MA, USA. .,Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Computing microRNA-gene interaction networks in pan-cancer using miRDriver. Sci Rep 2022; 12:3717. [PMID: 35260634 PMCID: PMC8904490 DOI: 10.1038/s41598-022-07628-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
DNA copy number aberrated regions in cancer are known to harbor cancer driver genes and the short non-coding RNA molecules, i.e., microRNAs. In this study, we integrated the multi-omics datasets such as copy number aberration, DNA methylation, gene and microRNA expression to identify the signature microRNA-gene associations from frequently aberrated DNA regions across pan-cancer utilizing a LASSO-based regression approach. We studied 7294 patient samples associated with eighteen different cancer types from The Cancer Genome Atlas (TCGA) database and identified several cancer-specific and common microRNA-gene interactions enriched in experimentally validated microRNA-target interactions. We highlighted several oncogenic and tumor suppressor microRNAs that were cancer-specific and common in several cancer types. Our method substantially outperformed the five state-of-art methods in selecting significantly known microRNA-gene interactions in multiple cancer types. Several microRNAs and genes were found to be associated with tumor survival and progression. Selected target genes were found to be significantly enriched in cancer-related pathways, cancer hallmark and Gene Ontology (GO) terms. Furthermore, subtype-specific potential gene signatures were discovered in multiple cancer types.
Collapse
|
12
|
I V AN, Nair AS. Bioinformatics screening of ETV4 transcription factor oncogenes and identifying small-molecular anticancer drugs. Chem Biol Drug Des 2021; 99:277-285. [PMID: 34757684 DOI: 10.1111/cbdd.13981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022]
Abstract
This bioinformatics study aimed to identify ETV4 transcription factor oncogenes and outline anticancer drugs for these genes. First, we collected known 61 ETV4 cancer targets that were framed as two classes of queries to screen against the multiomics resources in GeneMANIA. This method accessed and added functionally similar 20 genes to each set. These data were interpreted by hub genes, network clustering, gene ontology, and pathway analyses, and the results confirmed that all resultant genes were cancer promoters. The ETS-binding motifs were identified from the promoter regions of these genes. Thus, 23 ETV4 targets were figured and those involved in oncogenesis were filtered as the following 16 putative nodes: MMP8, MMP14, KDR, BRIP1, CXCR1, GRB14, SHC2, SHC4, SH2B1, SH2B2, INPPL1, PTPN3, GNG12, SEMA4D, RHOA, and SPSB2. The transcriptional regulation of these oncogenes was coordinated by an extensive miRNA network that found to deregulate many cancer pathways. Using DgIb database, the high quality 6 oncogene-drug combinations (MMP8-CHEMBL1231240, MMP8-Aminomethylamide, CXCR1-Reparixin, SEMA4D-Pepinemab, RHOA-Clausine E, and SPSB2-CHEMBL175296) were proposed. These findings may advance our understanding of novel neoplastic gene nexus of ETV4 and design treatment strategies for its modulation.
Collapse
Affiliation(s)
- Ambily Nath I V
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| | - Achuthsankar S Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
13
|
Jiang W, Xu Y, Chen X, Pan S, Zhu X. E26 transformation-specific variant 4 as a tumor promotor in human cancers through specific molecular mechanisms. Mol Ther Oncolytics 2021; 22:518-527. [PMID: 34553037 PMCID: PMC8433062 DOI: 10.1016/j.omto.2021.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
E26 transformation-specific (ETS) variant 4 (ETV4) is an important transcription factor that belongs to the ETS transcription factor family and is essential for much cellular physiology. Recent evidence has revealed that ETV4 is aberrantly expressed in many types of tumors, and its overexpression is related to poor prognosis of cancer patients. Additionally, increasing studies have identified that ETV4 promotes cancer growth, invasion, metastasis, and drug resistance. Mechanistically, the level of ETV4 is regulated by some post-translation modulations in a broad spectrum of cancers. However, little progress has been made to comprehensively summarize the critical roles of ETV4 in different human cancers. Hence, this review mainly focuses on the physiological functions of ETV4 in various human tumors. In addition, the molecular mechanisms of ETV4-mediated cancer progression were elucidated, including how ETV4 modulates its downstream signaling pathways and how ETV4 is regulated by some factors. On this basis, the present review may provide a valuable therapeutics strategy for future cancer treatment by targeting ETV4-related pathways.
Collapse
Affiliation(s)
- Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xin Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
14
|
Sun T, Zhang J. ETV4 mediates the wnt/β-catenin pathway through transcriptional activation of ANXA2 to promote hepatitis B virus-associated liver hepatocellular carcinoma progression. J Biochem 2021; 170:663-673. [PMID: 34347084 DOI: 10.1093/jb/mvab088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
ETS variant 4 (ETV4) has been implicated in the development of various cancers. However, the molecular events mediated by ETV4 in liver cancer are poorly understood, especially in Hepatitis B virus (HBV)-associated liver hepatocellular carcinoma (LIHC). Here, we aimed to identify the target involved in ETV4-driven hepatocarcinogenesis. Bioinformatics analysis revealed that ETV4 was highly expressed in patients with HBV-associated LIHC, and HBV infection promoted the expression of ETV4 in LIHC cells. Inhibition of ETV4 repressed the proliferation, migration, invasion of LIHC cells and suppressed the secretion of HBV and the replication of HBV DNA. ANXA2 expression in LIHC patients was positively correlated with ETV4 expression. ChIP and dual-luciferase reporter assays revealed that ETV4 elevated the ANXA2 expression at the transcriptional level by binding to the ANXA2 promoter. Overexpression of ANXA2 reversed the inhibitory effect of sh-ETV4 on the malignant biological behaviors of HBV-infected LIHC cells by activating the Wnt/β-catenin pathway. In conclusion, ETV4 mediates the activation of Wnt/β-catenin pathway through transcriptional activation of ANXA2 expression to promote HBV-associated LIHC progression.
Collapse
Affiliation(s)
- Tianfeng Sun
- Department of Liver Disease Infection, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, 215101, Jiangsu, P.R. China
| | - Jing Zhang
- Department Of Respiratory, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, 215101, Jiangsu, P.R. China
| |
Collapse
|
15
|
Garlick JM, Sturlis SM, Bruno PA, Yates JA, Peiffer AL, Liu Y, Goo L, Bao L, De Salle SN, Tamayo-Castillo G, Brooks CL, Merajver SD, Mapp AK. Norstictic Acid Is a Selective Allosteric Transcriptional Regulator. J Am Chem Soc 2021; 143:9297-9302. [PMID: 34137598 PMCID: PMC8717358 DOI: 10.1021/jacs.1c03258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inhibitors of transcriptional protein-protein interactions (PPIs) have high value both as tools and for therapeutic applications. The PPI network mediated by the transcriptional coactivator Med25, for example, regulates stress-response and motility pathways, and dysregulation of the PPI networks contributes to oncogenesis and metastasis. The canonical transcription factor binding sites within Med25 are large (∼900 Å2) and have little topology, and thus, they do not present an array of attractive small-molecule binding sites for inhibitor discovery. Here we demonstrate that the depsidone natural product norstictic acid functions through an alternative binding site to block Med25-transcriptional activator PPIs in vitro and in cell culture. Norstictic acid targets a binding site comprising a highly dynamic loop flanking one canonical binding surface, and in doing so, it both orthosterically and allosterically alters Med25-driven transcription in a patient-derived model of triple-negative breast cancer. These results highlight the potential of Med25 as a therapeutic target as well as the inhibitor discovery opportunities presented by structurally dynamic loops within otherwise challenging proteins.
Collapse
Affiliation(s)
- Julie M Garlick
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Steven M Sturlis
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul A Bruno
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joel A Yates
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Amanda L Peiffer
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yejun Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Laura Goo
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - LiWei Bao
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Samantha N De Salle
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Charles L Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sofia D Merajver
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
ETV4 promotes breast cancer cell stemness by activating glycolysis and CXCR4-mediated sonic Hedgehog signaling. Cell Death Discov 2021; 7:126. [PMID: 34052833 PMCID: PMC8164634 DOI: 10.1038/s41420-021-00508-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/12/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) are a major cause of tumor treatment resistance, relapse and metastasis. Cancer cells exhibit reprogrammed metabolism characterized by aerobic glycolysis, which is also critical for sustaining cancer stemness. However, regulation of cancer cell metabolism rewiring and stemness is not completely understood. Here, we report that ETV4 is a key transcription factor in regulating glycolytic gene expression. ETV4 loss significantly inhibits the expression of HK2, LDHA as well as other glycolytic enzymes, reduces glucose uptake and lactate release in breast cancer cells. In human breast cancer and hepatocellular carcinoma tissues, ETV4 expression is positively correlated with glycolytic signaling. Moreover, we confirm that breast CSCs (BCSCs) are glycolysis-dependent and show that ETV4 is required for BCSC maintenance. ETV4 is enriched in BCSCs, its knockdown and overexpression suppresses and promotes breast cancer cell stem-like traits, respectively. Mechanistically, on the one hand, we find that ETV4 may enhance glycolysis activity to facilitate breast cancer stemness; on the other, ETV4 activates Sonic Hedgehog signaling by transcriptionally promoting CXCR4 expression. A xenograft assay validates the tumor growth-impeding effect and inhibition of CXCR4/SHH/GLI1 signaling cascade after ETV4 depletion. Together, our study highlights the potential roles of ETV4 in promoting cancer cell glycolytic shift and BCSC maintenance and reveals the molecular basis.
Collapse
|
17
|
Fonseca AS, Ramão A, Bürger MC, de Souza JES, Zanette DL, de Molfetta GA, de Araújo LF, de Barros E Lima Bueno R, Aguiar GM, Plaça JR, Alves CDP, Dos Santos ARD, Vidal DO, Silva GEB, Panepucci RA, Peria FM, Feres O, da Rocha JJR, Zago MA, Silva WA. ETV4 plays a role on the primary events during the adenoma-adenocarcinoma progression in colorectal cancer. BMC Cancer 2021; 21:207. [PMID: 33648461 PMCID: PMC7919324 DOI: 10.1186/s12885-021-07857-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers worldwide; it is the fourth leading cause of death in the world and the third in Brazil. Mutations in the APC, DCC, KRAS and TP53 genes have been associated with the progression of sporadic CRC, occurring at defined pathological stages of the tumor progression and consequently modulating several genes in the corresponding signaling pathways. Therefore, the identification of gene signatures that occur at each stage during the CRC progression is critical and can present an impact on the diagnosis and prognosis of the patient. In this study, our main goal was to determine these signatures, by evaluating the gene expression of paired colorectal adenoma and adenocarcinoma samples to identify novel genetic markers in association to the adenoma-adenocarcinoma stage transition. METHODS Ten paired adenoma and adenocarcinoma colorectal samples were subjected to microarray gene expression analysis. In addition, mutations in APC, KRAS and TP53 genes were investigated by DNA sequencing in paired samples of adenoma, adenocarcinoma, normal tissue, and peripheral blood from ten patients. RESULTS Gene expression analysis revealed a signature of 689 differentially expressed genes (DEG) (fold-change> 2, p< 0.05), between the adenoma and adenocarcinoma paired samples analyzed. Gene pathway analysis using the 689 DEG identified important cancer pathways such as remodeling of the extracellular matrix and epithelial-mesenchymal transition. Among these DEG, the ETV4 stood out as one of the most expressed in the adenocarcinoma samples, further confirmed in the adenocarcinoma set of samples from the TCGA database. Subsequent in vitro siRNA assays against ETV4 resulted in the decrease of cell proliferation, colony formation and cell migration in the HT29 and SW480 colorectal cell lines. DNA sequencing analysis revealed KRAS and TP53 gene pathogenic mutations, exclusively in the adenocarcinomas samples. CONCLUSION Our study identified a set of genes with high potential to be used as biomarkers in CRC, with a special emphasis on the ETV4 gene, which demonstrated involvement in proliferation and migration.
Collapse
Affiliation(s)
- Aline Simoneti Fonseca
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil.
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil.
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, SP, Brazil.
- Research Institute Pelé Pequeno Príncipe, Av Silva Jardim, 1632, CEP: 80250-060, Água Verde, Curitiba, PR, Brazil.
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Matheus Carvalho Bürger
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Jorge Estefano Santana de Souza
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Dalila Lucíola Zanette
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, SP, Brazil
- Laboratory of Applied Science and Technology in Health (LASTH), Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brazil
| | - Greice Andreotti de Molfetta
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, SP, Brazil
| | - Luiza Ferreira de Araújo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, SP, Brazil
| | - Rafaela de Barros E Lima Bueno
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Graziela Moura Aguiar
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Jessica Rodrigues Plaça
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Cleidson de Pádua Alves
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Anemari Ramos Dinarte Dos Santos
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Daniel Onofre Vidal
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Gyl Eanes Barros Silva
- Laboratory of Immunofluorescence and Electron Microscopy (LIME), Presidente Dutra University Hospital (HUUFMA), São Luís, MA, Brazil
| | - Rodrigo Alexandre Panepucci
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Fernanda Maris Peria
- Departament of Medical Clinic, Medical School of Ribeirão Preto, University of São Paulo, USP, Ribeirão Preto, SP, Brazil
| | - Omar Feres
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo, Sao Paulo, Brazil
| | | | - Marco Antonio Zago
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av Bandeirantes, 3900, CEP: 14049-900, Monte Alegre, Ribeirão Preto, SP, Brazil.
- Center for Cell Based Therapy and National Institute of Science and Technology in Stem Cell and Cell Therapy, Ribeirão Preto, SP, Brazil.
- Center for Integrative Systems Biology - CISBi, NAP/USP, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
18
|
He S, Lyu F, Lou L, Liu L, Li S, Jakowitsch J, Ma Y. Anti-tumor activities of Panax quinquefolius saponins and potential biomarkers in prostate cancer. J Ginseng Res 2021; 45:273-286. [PMID: 33841008 PMCID: PMC8020356 DOI: 10.1016/j.jgr.2019.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/28/2019] [Accepted: 12/30/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Prostate carcinoma is the second most common cancer among men worldwide. Developing new therapeutic approaches and diagnostic biomarkers for prostate cancer (PC) is a significant need. The Chinese herbal medicine Panax quinquefolius saponins (PQS) have been reported to show anti-tumor effects. We hypothesized that PQS exhibits anti-cancer activity in human PC cells and we aimed to search for novel biomarkers allowing early diagnosis of PC. METHODS We used the human PC cell line DU145 and the prostate epithelial cell line PNT2 to perform cell viability assays, flow cytometric analysis of the cell cycle, and FACS-based apoptosis assays. Microarray-based gene expression analysis was used to display specific gene expression patterns and to search for novel biomarkers. Western blot and quantitative real-time PCR were performed to demonstrate the expression levels of multiple cancer-related genes. RESULTS Our data showed that PQS inhibited the viability of DU145 cells and induced cell cycle arrest at the G1 phase. A significant decrease in DU145 cell invasion and migration were observed after 24 h treatment by PQS. PQS up-regulated the expression levels of p21, p53, TMEM79, ACOXL, ETV5, and SPINT1 while it down-regulated the expression levels of bcl2, STAT3, FANCD2, DRD2, and TMPRSS2. CONCLUSION PQS promoted cells apoptosis and inhibited the proliferation of DU145 cells, which suggests that PQS may be effective for treating PC. TMEM79 and ACOXL were expressed significantly higher in PNT2 than in DU145 cells and could be novel biomarker candidates for PC diagnosis.
Collapse
Key Words
- ACOXL, Acyl-CoA oxidase-like protein
- Chinese medicinal herbs
- DRD2, dopamine receptor D2
- ETV5, ETS variant 5
- FACS, fluorescence-activated cell sorting
- FANCD2, fanconi anemia group D2
- PC, prostate cancer
- PQS, Panax quinquefolius saponins
- Panax quinquefolius
- Potential biomarkers
- Prostate cancer cells
- SPINT1, serine peptidase inhibitor Kunitz type 1
- STAT3, signal transducer and activator of transcription 3
- TCM, Traditional Chinese Medicine
- TMEM79, transmembrane protein 79
- TMPRSS2, transmembrane protease serine 2
- bcl2, B-cell lymphoma 2
- p21, cyclin-dependent kinase inhibitor p21
- p53, tumor suppressor p53
- qRT-PCR, quantitative real-time PCR
- saponins
Collapse
Affiliation(s)
- Shan He
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Fangqiao Lyu
- Department of Cell Biology, School of Basic Medicine, Capital Medical University, Beijing, China
| | - Lixia Lou
- The Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Songlin Li
- Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, China
| | - Johannes Jakowitsch
- Department of Internal Medicine, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Yan Ma
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology & Immunology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Scaravilli M, Koivukoski S, Latonen L. Androgen-Driven Fusion Genes and Chimeric Transcripts in Prostate Cancer. Front Cell Dev Biol 2021; 9:623809. [PMID: 33634124 PMCID: PMC7900491 DOI: 10.3389/fcell.2021.623809] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Androgens are steroid hormones governing the male reproductive development and function. As such, androgens and the key mediator of their effects, androgen receptor (AR), have a leading role in many diseases. Prostate cancer is a major disease where AR and its transcription factor function affect a significant number of patients worldwide. While disease-related AR-driven transcriptional programs are connected to the presence and activity of the receptor itself, also novel modes of transcriptional regulation by androgens are exploited by cancer cells. One of the most intriguing and ingenious mechanisms is to bring previously unconnected genes under the control of AR. Most often this occurs through genetic rearrangements resulting in fusion genes where an androgen-regulated promoter area is combined to a protein-coding area of a previously androgen-unaffected gene. These gene fusions are distinctly frequent in prostate cancer compared to other common solid tumors, a phenomenon still requiring an explanation. Interestingly, also another mode of connecting androgen regulation to a previously unaffected gene product exists via transcriptional read-through mechanisms. Furthermore, androgen regulation of fusion genes and transcripts is not linked to only protein-coding genes. Pseudogenes and non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) can also be affected by androgens and de novo functions produced. In this review, we discuss the prevalence, molecular mechanisms, and functional evidence for androgen-regulated prostate cancer fusion genes and transcripts. We also discuss the clinical relevance of especially the most common prostate cancer fusion gene TMPRSS2-ERG, as well as present open questions of prostate cancer fusions requiring further investigation.
Collapse
Affiliation(s)
- Mauro Scaravilli
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sonja Koivukoski
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
20
|
Lee DH, Olson AW, Wang J, Kim WK, Mi J, Zeng H, Le V, Aldahl J, Hiroto A, Wu X, Sun Z. Androgen action in cell fate and communication during prostate development at single-cell resolution. Development 2021; 148:dev.196048. [PMID: 33318148 DOI: 10.1242/dev.196048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023]
Abstract
Androgens/androgen receptor (AR)-mediated signaling pathways are essential for prostate development, morphogenesis and regeneration. Specifically, stromal AR signaling has been shown to be essential for prostatic initiation. However, the molecular mechanisms underlying AR-initiated mesenchymal-epithelial interactions in prostate development remain unclear. Here, using a newly generated mouse model, we have directly addressed the fate and role of genetically marked AR-expressing cells during embryonic prostate development. Androgen signaling-initiated signaling pathways were identified in mesenchymal niche populations at single-cell transcriptomic resolution. The dynamic cell-signaling networks regulated by stromal AR were additionally characterized in relation to prostatic epithelial bud formation. Pseudotime analyses further revealed the differentiation trajectory and fate of AR-expressing cells in both prostatic mesenchymal and epithelial cell populations. Specifically, the cellular properties of Zeb1-expressing progenitors were assessed. Selective deletion of AR signaling in a subpopulation of mesenchymal rather than epithelial cells dysregulated the expression of the master regulators and significantly impaired prostatic bud formation. These data provide novel, high-resolution evidence demonstrating the important role of mesenchymal androgen signaling in the cellular niche controlling prostate early development by initiating dynamic mesenchyme-epithelia cell interactions.
Collapse
Affiliation(s)
- Dong-Hoon Lee
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Adam W Olson
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jinhui Wang
- Integrative Genomics Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Won Kyung Kim
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Jiaqi Mi
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Hong Zeng
- Transgenic, Knockout and Tumor Model Center, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vien Le
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Joseph Aldahl
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Alex Hiroto
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiwei Wu
- Integrative Genomics Core, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Zijie Sun
- Department of Cancer Biology, Cancer Center and Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
21
|
Yoshiya S, Itoh S, Yoshizumi T, Yugawa K, Kurihara T, Toshima T, Harada N, Hashisako M, Yonemasu H, Fukuzawa K, Oda Y, Mori M. Impact of Capicua on Pancreatic Cancer Progression. Ann Surg Oncol 2020; 28:3198-3207. [PMID: 33216264 DOI: 10.1245/s10434-020-09339-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/17/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND The transcription factor capicua (CIC) regulates mammalian development and homeostasis. Growing evidence shows that CIC suppresses various human cancers by directly repressing the downstream cancer-related target genes. This study investigated the clinical and biologic significance of CIC expression in pancreatic cancer (PC). METHODS The study reviewed 132 patients with PC who underwent curative resection. The patients were divided into two groups according to CIC immunoreactivity score by immunohistochemistry, and the associations between CIC expression, clinicopathologic characteristics, and postoperative prognosis were investigated. Moreover, the influence of CIC expression on the malignant potential of PC cells was assessed with cell proliferation, motility assays, and use of quantitative real time-polymerase chain reaction and Western blot on the downstream target genes of CIC in knockdown experiments. RESULTS The low-CIC expression group showed a higher proportion of lymphatic invasion (72.9% vs. 53.1%; p = 0.024), intrapancreatic neural invasion (94.1% vs. 81.3%; p = 0.021), and extrapancreatic plexus invasion (30.9% vs. 7.8%; p = 0.0006) than the high-CIC expression group as well as significantly worse overall survival (p = 0.0002) and recurrence-free survival (p = 0.0041) rates. Low CIC expression was an independent risk factor for poor prognosis (p = 0.038). Pancreatic cancer cells with knockdown CIC significantly enhanced cell motilities and cell cycle progression, promoted expression levels of ETV4 and MMP-9, and induced EMT. CONCLUSIONS The study elucidated the association of low CIC expression with a poor prognosis for patients with PC and suggested that the CIC-ETV4-MMP-9 axis might control PC progression.
Collapse
Affiliation(s)
- Shohei Yoshiya
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery, Oita Red Cross Hospital, Oita, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyohei Yugawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeshi Kurihara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Surgery, Oita Red Cross Hospital, Oita, Japan
| | - Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikiko Hashisako
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Anatomic Pathology, Oita Red Cross Hospital, Oita, Japan
| | | | - Kengo Fukuzawa
- Department of Surgery, Oita Red Cross Hospital, Oita, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Froechlich G, Caiazza C, Gentile C, D’Alise AM, De Lucia M, Langone F, Leoni G, Cotugno G, Scisciola V, Nicosia A, Scarselli E, Mallardo M, Sasso E, Zambrano N. Integrity of the Antiviral STING-mediated DNA Sensing in Tumor Cells Is Required to Sustain the Immunotherapeutic Efficacy of Herpes Simplex Oncolytic Virus. Cancers (Basel) 2020; 12:cancers12113407. [PMID: 33213060 PMCID: PMC7698602 DOI: 10.3390/cancers12113407] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Oncolytic viruses are emerging immunotherapeutics in cancer treatments. The conflicting role of innate immunity in the antitumor activity of oncolytic viruses is still a matter of debate. The STING-dependent DNA sensing axis is considered detrimental for viral replication and cancer cell clearance. Accordingly, we observed that STING loss in tumor cells was associated with improved lytic potential by a herpes-based oncolytic virus. However, STING-knockout cancer cells infected with the oncolytic virus showed impaired immunogenicity, as immunogenic cell death was improperly triggered. In agreement with these observations, STING-knockout tumors raised in a murine syngeneic model were more resistant to a combined treatment of the oncolytic virus with PD-1 blockade. The present study demonstrates the antitumor benefit of antiviral immunity and sheds lights on the mechanisms of immune resistance to oncovirotherapy exerted by STING-loss in tumor cells. Abstract The dichotomic contribution of cancer cell lysis and tumor immunogenicity is considered essential for effective oncovirotherapy, suggesting that the innate antiviral immune response is a hurdle for efficacy of oncolytic viruses. However, emerging evidence is resizing this view. By sensing cytosolic DNA, the cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) axis can both counteract viral spread and contribute to the elicitation of adaptive immunity via type I interferon responses. In this paper, we analyzed the tumor-resident function of Sting-mediated DNA sensing in a combined approach of oncovirotherapy and PD-1 immune checkpoint blockade, in an immunocompetent murine model. While supporting increased lytic potential by oncolytic HER2-retargeted HSV-1 in vitro and in vivo, Sting-knockout tumors showed molecular signatures of an immunosuppressive tumor microenvironment. These signatures were correspondingly associated with ineffectiveness of the combination therapy in a model of established tumors. Results suggest that the impairment in antiviral response of Sting-knockout tumors, while favoring viral replication, is not able to elicit an adequate immunotherapeutic effect, due to lack of immunogenic cell death and the inability of Sting-knockout cancer cells to promote anti-tumor adaptive immune responses. Accordingly, we propose that antiviral, tumor-resident Sting provides fundamental contributions to immunotherapeutic efficacy of oncolytic viruses.
Collapse
Affiliation(s)
- Guendalina Froechlich
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (G.F.); (C.G.); (V.S.); (A.N.); (N.Z.)
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
| | - Chiara Gentile
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (G.F.); (C.G.); (V.S.); (A.N.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
| | - Anna Morena D’Alise
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Maria De Lucia
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Francesca Langone
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Guido Leoni
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Gabriella Cotugno
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Vittorio Scisciola
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (G.F.); (C.G.); (V.S.); (A.N.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
| | - Alfredo Nicosia
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (G.F.); (C.G.); (V.S.); (A.N.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Elisa Scarselli
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
| | - Emanuele Sasso
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (G.F.); (C.G.); (V.S.); (A.N.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
- Nouscom S.R.L., Via di Castel Romano 100, 00128 Rome, Italy; (A.M.D.); (M.D.L.); (F.L.); (G.L.); (G.C.); (E.S.)
- Correspondence:
| | - Nicola Zambrano
- CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145 Naples, Italy; (G.F.); (C.G.); (V.S.); (A.N.); (N.Z.)
- Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy; (C.C.); (M.M.)
| |
Collapse
|
23
|
Qi T, Qu Q, Li G, Wang J, Zhu H, Yang Z, Sun Y, Lu Q, Qu J. Function and regulation of the PEA3 subfamily of ETS transcription factors in cancer. Am J Cancer Res 2020; 10:3083-3105. [PMID: 33163259 PMCID: PMC7642666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023] Open
Abstract
The PEA3 subfamily is a subgroup of the E26 transformation-specific (ETS) family. Its members, ETV1, ETV4, and ETV5, have been found to be overexpressed in multiple cancers. The deregulation of ETV1, ETV4, and ETV5 induces cell growth, invasion, and migration in various tumor cells, leading to tumor progression, metastasis, and drug resistance. Therefore, exploring drugs or therapeutic targets that target the PEA3 subfamily may contribute to the clinical treatment of tumor patients. In this review, we introduce the structures and functions of the PEA3 subfamily members, systematically review their main roles in various tumor cells, analyze their prognostic and diagnostic value, and, finally, introduce several molecular targets and therapeutic drugs targeting ETV1, ETV4, and ETV5. We conclude that targeting a series of upstream regulators and downstream target genes of the PEA3 subfamily may be an effective strategy for the treatment of ETV1/ETV4/ETV5-overexpressing tumors.
Collapse
Affiliation(s)
- Tingting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Guohua Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jiaojiao Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Haihong Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Zhi Yang
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha 410007, PR China
| | - Yuesheng Sun
- Department of General Surgery, The Third Clinical College of Wenzhou Medical University, Wenzhou People’s HospitalWenzhou 325000, PR China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha 410011, PR China
- Institute of Clinical Pharmacy, Central South UniversityChangsha 410011, PR China
| |
Collapse
|
24
|
Cosi I, Pellecchia A, De Lorenzo E, Torre E, Sica M, Nesi G, Notaro R, De Angioletti M. ETV4 promotes late development of prostatic intraepithelial neoplasia and cell proliferation through direct and p53-mediated downregulation of p21. J Hematol Oncol 2020; 13:112. [PMID: 32791988 PMCID: PMC7427297 DOI: 10.1186/s13045-020-00943-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/27/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND ETV4 is one of the ETS proteins overexpressed in prostate cancer (PC) as a result of recurrent chromosomal translocations. In human prostate cell lines, ETV4 promotes migration, invasion, and proliferation; however, its role in PC has been unclear. In this study, we have explored the effects of ETV4 expression in the prostate in a novel transgenic mouse model. METHODS We have created a mouse model with prostate-specific expression of ETV4 (ETV4 mice). By histochemical and molecular analysis, we have investigated in these engineered mice the expression of p21, p27, and p53. The implications of our in vivo findings have been further investigated in human cells lines by chromatin-immunoprecipitation (ChIP) and luciferase assays. RESULTS ETV4 mice, from two independent transgenic lines, have increased cell proliferation in their prostate and two-thirds of them, by the age of 10 months, developed mouse prostatic intraepithelial neoplasia (mPIN). In these mice, cdkn1a and its p21 protein product were reduced compared to controls; p27 protein was also reduced. By ChIP assay in human prostate cell lines, we show that ETV4 binds to a specific site (-704/-696 bp upstream of the transcription start) in the CDKN1A promoter that was proven, by luciferase assay, to be functionally competent. ETV4 further controls CDKN1A expression by downregulating p53 protein: this reduction of p53 was confirmed in vivo in ETV4 mice. CONCLUSIONS ETV4 overexpression results in the development of mPIN but not in progression to cancer. ETV4 increases prostate cell proliferation through multiple mechanisms, including downregulation of CDKN1A and its p21 protein product: this in turn is mediated through direct binding of ETV4 to the CDKN1A promoter and through the ETV4-mediated decrease of p53. This multi-faceted role of ETV4 in prostate cancer makes it a potential target for novel therapeutic approaches that could be explored in this ETV4 transgenic model.
Collapse
Affiliation(s)
- Irene Cosi
- Laboratory of Cancer Genetics, Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, 50139, Italy.,Doctorate School GenOMeC, University of Siena, Siena, Italy
| | - Annamaria Pellecchia
- Laboratory of Cancer Genetics, Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, 50139, Italy
| | - Emanuele De Lorenzo
- Laboratory of Cancer Genetics, Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, 50139, Italy
| | - Eugenio Torre
- Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and Oncology, University of Florence, 50134, Florence, Italy
| | - Michela Sica
- Laboratory of Cancer Genetics, Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, 50139, Italy
| | - Gabriella Nesi
- Division of Pathology, Department of Health Sciences, University of Florence, 50139, Florence, Italy
| | - Rosario Notaro
- Laboratory of Cancer Genetics, Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, 50139, Italy
| | - Maria De Angioletti
- Laboratory of Cancer Genetics, Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, 50139, Italy. .,ICCOM-National Council of Research, Sesto Fiorentino, Florence, 50019, Italy.
| |
Collapse
|
25
|
Expression Signatures of Cisplatin- and Trametinib-Treated Early-Stage Medaka Melanomas. G3-GENES GENOMES GENETICS 2019; 9:2267-2276. [PMID: 31101653 PMCID: PMC6643878 DOI: 10.1534/g3.119.400051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Small aquarium fish models provide useful systems not only for a better understanding of the molecular basis of many human diseases, but also for first-line screening to identify new drug candidates. For testing new chemical substances, current strategies mostly rely on easy to perform and efficient embryonic screens. Cancer, however, is a disease that develops mainly during juvenile and adult stage. Long-term treatment and the challenge to monitor changes in tumor phenotype make testing of large chemical libraries in juvenile and adult animals cost prohibitive. We hypothesized that changes in the gene expression profile should occur early during anti-tumor treatment, and the disease-associated transcriptional change should provide a reliable readout that can be utilized to evaluate drug-induced effects. For the current study, we used a previously established medaka melanoma model. As proof of principle, we showed that exposure of melanoma developing fish to the drugs cisplatin or trametinib, known cancer therapies, for a period of seven days is sufficient to detect treatment-induced changes in gene expression. By examining whole body transcriptome responses we provide a novel route toward gene panels that recapitulate anti-tumor outcomes thus allowing a screening of thousands of drugs using a whole-body vertebrate model. Our results suggest that using disease-associated transcriptional change to screen therapeutic molecules in small fish model is viable and may be applied to pre-clinical research and development stages in new drug discovery.
Collapse
|
26
|
Interaction network analysis of YBX1 for identification of therapeutic targets in adenocarcinomas. J Biosci 2019. [DOI: 10.1007/s12038-019-9848-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Murugesan SN, Yadav BS, Maurya PK, Chaudhary A, Singh S, Mani A. Interaction network analysis of YBX1 for identification of therapeutic targets in adenocarcinomas. J Biosci 2019; 44:27. [PMID: 31180040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Human Y-box binding protein-1 (YBX1) is a member of highly conserved cold-shock domain protein family, which is involved in transcriptional as well as translational regulation of many genes. Nuclear localization of YBX1 has been observed in various cancer types and it's overexpression has been linked to adverse clinical outcome and poor therapy response, but no diagnostic or therapeutic correlation has been established so far. This study aimed to identify differentially expressed novel genes among the interactors of YBX1 in different cancer types. Analysis of RNA-Seq data for colorectal, lung, prostate and stomach adenocarcinoma identified 39 unique genes, which are differentially expressed in the four adenocarcinoma types. Gene-enrichment analysis for the differentially expressed genes from individual adenocarcinoma with focus on unique genes resulted in a total of 57 gene sets specific to each adenocarcinoma. Gene ontology for commonly expressed genes suggested the pathways and possible mechanisms through which they affect each adenocarcinoma type considered in the study. Gene regulatory network constructed for the common genes and network topology was analyzed for the central nodes. Here 12 genes were found to play important roles in the network formation; among them, two genes FOXM1 and TOP2A were found to be in central network formation, which makes them a common target for therapeutics. Furthermore, five common differentially expressed genes in all adenocarcinomas were also identified.
Collapse
|
28
|
Segalés L, Juanpere N, Lorenzo M, Albero-González R, Fumadó L, Cecchini L, Bellmunt J, Lloreta-Trull J, Hernández-Llodrà S. Strong cytoplasmic ETV1 expression has a negative impact on prostate cancer outcome. Virchows Arch 2019; 475:457-466. [DOI: 10.1007/s00428-019-02573-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 04/04/2019] [Indexed: 01/28/2023]
|
29
|
Hsing M, Wang Y, Rennie PS, Cox ME, Cherkasov A. ETS transcription factors as emerging drug targets in cancer. Med Res Rev 2019; 40:413-430. [PMID: 30927317 DOI: 10.1002/med.21575] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 12/11/2022]
Abstract
The ETS family of proteins consists of 28 transcription factors, many of which have been implicated in development and progression of a variety of cancers. While one family member, ERG, has been rigorously studied in the context of prostate cancer where it plays a critical role, other ETS factors keep emerging as potential hallmark oncodrivers. In recent years, numerous studies have reported initial discoveries of small molecule inhibitors of ETS proteins and opened novel avenues for ETS-directed cancer therapies. This review summarizes the state of the art data on therapeutic targeting of ETS family members and highlights the corresponding drug discovery strategies.
Collapse
Affiliation(s)
- Michael Hsing
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuzhuo Wang
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul S Rennie
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael E Cox
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre and the Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Zhang Y, Shi W. Steroid receptor coactivator-1 regulates glioma angiogenesis through polyomavirus enhancer activator 3 signaling. Biochem Cell Biol 2018; 97:488-496. [PMID: 30532986 DOI: 10.1139/bcb-2018-0114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Steroid receptor coactivator 1 (SRC-1) is a transcriptional coactivator for steroid receptors and other transcription factors. SRC-1 has been shown to play an important role in the progression of breast cancer and prostate cancer. However, its role in glioma progression remains unknown. Here, in this study, we report that SRC-1 is upregulated in the vessels of human glioma and exerts important regulatory functions. Specifically, SRC-1 expression significantly enhanced basic fibroblast growth factor (bFGF)-mediated angiogenesis in vivo. Downregulating of SRC-1 expression suppressed endothelial cell migration and tube formation in vitro and upregulated the expression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix metallopeptidase (MMP)-9 in glioma cells. These SRC-1-mediated effects were dependent on the activation of polyomavirus enhancer activator 3 (PEA3) transcriptional activity. VEGF and VEGF inducer GS4012 induced the direct binding of SRC-1 and PEA3 in glioma cells, and PEA3 could directly bind with VEGF and MMP-9 promoter under GS4012 treatment in glioma cell. The expression of pro-angiogenic factors induced by SRC-1 was abrogated by sh-PEA3 knockdown. Taken together, these novel outcomes indicated that SRC-1 modulated endothelial cell (EC) function and facilitated a pro-angiogenic microenvironment through PEA3 signaling. Moreover, a combination of targeting SRC-1 and PEA3 signaling in glioma could be a promising strategy for suppressing tumor angiogenesis.
Collapse
Affiliation(s)
- Yi Zhang
- a Department of Neurosurgery, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710004, Shaanxi, People's Republic of China.,b Department of Neurosurgery, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, People's Republic of China
| | - Wei Shi
- a Department of Neurosurgery, Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710004, Shaanxi, People's Republic of China
| |
Collapse
|
31
|
Budka JA, Ferris MW, Capone MJ, Hollenhorst PC. Common ELF1 deletion in prostate cancer bolsters oncogenic ETS function, inhibits senescence and promotes docetaxel resistance. Genes Cancer 2018; 9:198-214. [PMID: 30603056 PMCID: PMC6305106 DOI: 10.18632/genesandcancer.182] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ETS family transcription factors play major roles in prostate tumorigenesis with some acting as oncogenes and others as tumor suppressors. ETS factors can compete for binding at some cis-regulatory sequences, but display specific binding at others. Therefore, changes in expression of ETS family members during tumorigenesis can have complex, multimodal effects. Here we show that ELF1 was the most commonly down-regulated ETS factor in primary prostate tumors, and expression decreased further in metastatic disease. Genome-wide mapping in cell lines indicated that ELF1 has two distinct tumor suppressive roles mediated by distinct cis-regulatory sequences. First, ELF1 inhibited cell migration and epithelial-mesenchymal transition by interfering with oncogenic ETS functions at ETS/AP-1 cis-regulatory motifs. Second, ELF1 uniquely targeted and activated genes that promote senescence. Furthermore, knockdown of ELF1 increased docetaxel resistance, indicating that the genomic deletions found in metastatic prostate tumors may promote therapeutic resistance through loss of both RB1 and ELF1.
Collapse
Affiliation(s)
- Justin A Budka
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Mary W Ferris
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Matthew J Capone
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| |
Collapse
|
32
|
Deshmukh SK, Singh AP, Singh S. ETV4: an emerging target in pancreatic cancer. Oncoscience 2018; 5:260-261. [PMID: 30460327 PMCID: PMC6231443 DOI: 10.18632/oncoscience.471] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/04/2022] Open
Affiliation(s)
| | - Ajay P Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604-1405, USA
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604-1405, USA
| |
Collapse
|
33
|
The Transcription Factor ETV5 Mediates BRAFV600E-Induced Proliferation and TWIST1 Expression in Papillary Thyroid Cancer Cells. Neoplasia 2018; 20:1121-1134. [PMID: 30265861 PMCID: PMC6161370 DOI: 10.1016/j.neo.2018.09.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/08/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022] Open
Abstract
The ETS family of transcription factors is involved in several normal remodeling events and pathological processes including tumor progression. ETS transcription factors are divided into subfamilies based on the sequence and location of the ETS domain. ETV5 (Ets variant gene 5; also known as ERM) is a member of the PEA3 subfamily. Our meta-analysis of normal, benign, and malignant thyroid samples demonstrated that ETV5 expression is upregulated in papillary thyroid cancer and was predominantly associated with BRAF V600E or RAS mutations. However, the precise role of ETV5 in these lesions is unknown. In this study, we used the KTC1 cell line as a model for human advanced papillary thyroid cancer (PTC) because the cells harbor the heterozygous BRAF (V600E) mutation together with the C250T TERT promoter mutation. The role of ETV5 in PTC proliferation was tested using RNAi followed by high-throughput screening. Signaling pathways driving ETV5 expression were identified using specific pharmacological inhibitors. To determine if ETV5 influences the expression of epithelial-to-mesenchymal (EMT) markers in these cells, an EMT PCR array was used, and data were confirmed by qPCR and ChIP-qPCR. We found that ETV5 is critical for PTC cell growth, is expressed downstream of the MAPK pathway, and directly upregulates the transcription factor TWIST1, a known marker of intravasation and metastasis. Increased ETV5 expression could therefore be considered as a marker for advanced PTCs and a possible future therapeutic target.
Collapse
|
34
|
Eskandari E, Mahjoubi F, Motalebzadeh J. An integrated study on TFs and miRNAs in colorectal cancer metastasis and evaluation of three co-regulated candidate genes as prognostic markers. Gene 2018; 679:150-159. [PMID: 30193961 DOI: 10.1016/j.gene.2018.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/06/2018] [Accepted: 09/03/2018] [Indexed: 01/20/2023]
Abstract
Molecular alterations that occur in cancer have the potential to be considered as either cancer biomarkers or targeted therapies or even both. In the presented study, we aimed to elucidate the gene regulatory network of metastatic colorectal cancer using data acquired from microarrays to reach the most common DEGs in colorectal cancer metastasis and find their possible regulatory mechanism by DETFs and DEmiRs. In this regards, seven microarray datasets were employed to assess the most important DEGs, DETFs and DEmiRs in colorectal cancer metastasis. Afterward, GRN based on DETFs and DEmiRs were constructed. Also ARACNE algorithm was used to construct an accurate GRN. GRN was analyzed structurally and then, two DETFs (LEF1 and ETV4) and a less-well known DEG (FABP6) by real time qRT-PCR in 50 patients with colorectal cancer were quantified. The constructed GRN highlighted the importance of some DETFs and DEmiRs in colorectal cancer metastasis. Interestingly the gene expression analysis by qRT-PCR on three candidate genes (LEF1, ETV4 and FABP6) indicated that the three genes were co-expressed in tumor samples, and were significantly associated with metastasis in colorectal cancer. Therefore, our experimental results proved a part of our comprehensive data analysis and system biology results. In summary, according to our empirical study we found the importance of three candidate genes as the potent prognostic factors in colorectal cancer metastasis. Also our study in a holistic insight on gene regulatory mechanism revealed the importance of some gene regulatory factors (DETFs and DEmiRs) and their potential as prognostic factors and/or targets in molecular targeted therapies in colorectal cancer.
Collapse
Affiliation(s)
- Elaheh Eskandari
- Department of Clinical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Frouzandeh Mahjoubi
- Department of Clinical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Jamshid Motalebzadeh
- Department of Clinical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
35
|
Rodgers JJ, McClure R, Epis MR, Cohen RJ, Leedman PJ, Harvey JM, Thomas MA, Bentel JM. ETS1 induces transforming growth factor β signaling and promotes epithelial-to-mesenchymal transition in prostate cancer cells. J Cell Biochem 2018; 120:848-860. [PMID: 30161276 DOI: 10.1002/jcb.27446] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/16/2018] [Indexed: 02/01/2023]
Abstract
Expression of the transcriptional regulator, E26 transformation-specific 1 (ETS1), is elevated in human prostate cancers, and this is associated with more aggressive tumor behavior and a rapid progression to castrate-resistant disease. Multiple ETS1 isoforms with distinct biological activities have been characterized and in 44 matched nonmalignant and malignant human prostate specimens, messenger RNAs for two ETS1 isoforms, ETS1p51 and ETS1p42, were detected, with ETS1p51 levels significantly lower in prostate tumor compared to matched nonmalignant prostate tissues. In contrast, ETS1p51 protein, the only ETS1 isoform detected, was expressed at significantly higher levels in malignant prostate. Analysis of epithelial-to-mesenchymal transition (EMT)-associated genes regulated following overexpression of ETS1p51 in the LNCaP prostate cancer cell line predicted promotion of transforming growth factor β (TGFβ) signaling and of EMT. ETS1p51 overexpression upregulated cellular levels of the EMT transcriptional regulators, ZEB1 and SNAIL1, resulted in reduced expression of the mesenchymal marker vimentin with concomitantly elevated levels of claudin 1, an epithelial tight junction protein, and increased prostate cancer cell migration and invasion. ETS1p51-induced activation of the pro-EMT TGFβ signaling pathway that was predicted in polymerase chain reaction arrays was verified by demonstration of elevated SMAD2 phosphorylation following ETS1p51 overexpression. Attenuation of ETS1p51 effects on prostate cancer cell migration and invasion by inhibition of TGFβ pathway signaling indicated that ETS1p51 effects were in part mediated by induction of TGFβ signaling. Thus, overexpression of ETS1p51, the predominant ETS1 isoform expressed in prostate tumors, promotes an EMT program in prostate cancer cells in part via activation of TGFβ signaling, potentially accounting for the poor prognosis of ETS1-overexpressing prostate tumors.
Collapse
Affiliation(s)
- Jamie J Rodgers
- Anatomical Pathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Robert McClure
- Anatomical Pathology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Michael R Epis
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia
| | - Ronald J Cohen
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia.,Uropath, West Leederville, Western Australia, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, Nedlands, Western Australia, Australia.,Centre for Medical Research and Medical School, University of Western Australia, Crawley, Western Australia, Australia
| | - Jennet M Harvey
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia.,Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Crawley, Western Australia, Australia
| | -
- Australian Prostate Cancer BioResource (APCB), Brisbane, Queensland, Australia
| | - Marc A Thomas
- Anatomical Pathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,Anatomical Pathology, PathWest Laboratory Medicine, QEII Medical Centre, Crawley, Western Australia, Australia
| | - Jacqueline M Bentel
- Anatomical Pathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,Anatomical Pathology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| |
Collapse
|
36
|
Klein RH, Tung PY, Somanath P, Fehling HJ, Knoepfler PS. Genomic functions of developmental pluripotency associated factor 4 (Dppa4) in pluripotent stem cells and cancer. Stem Cell Res 2018; 31:83-94. [PMID: 30031967 PMCID: PMC6133722 DOI: 10.1016/j.scr.2018.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022] Open
Abstract
Developmental pluripotency associated factor 4 (Dppa4) is a highly specific marker of pluripotent cells, and is also overexpressed in certain cancers, but its function in either of these contexts is poorly understood. In this study, we use ChIP-Seq to identify Dppa4 binding genome-wide in three distinct cell types: mouse embryonic stem cells (mESC), embryonal carcinoma cells, and 3T3 fibroblasts ectopically expressing Dppa4. We find a core set of Dppa4 binding sites shared across cell types, and also a substantial number of sites unique to each cell type. Across cell types Dppa4 shows a preference for binding to regions with active chromatin signatures, and can influence chromatin modifications at target genes. In 3T3 fibroblasts with enforced Dppa4 expression, Dppa4 represses the cell cycle inhibitor Cdkn2c and activates Ets family transcription factor Etv4, leading to alterations in the cell cycle that likely contribute to the oncogenic phenotype. Dppa4 also directly regulates Etv4 in mESC but represses it in this context, and binds with Oct4 to a set of shared targets that are largely independent of Sox2 and Nanog, indicating that Dppa4 functions independently of the core pluripotency network in stem cells. Together these data provide novel insights into Dppa4 function in both pluripotent and oncogenic contexts.
Collapse
Affiliation(s)
- Rachel Herndon Klein
- Department of Cell Biology and Human Anatomy, University of California, Davis, 1 Shields Ave, Davis, CA 95616, United States.; Institute of Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, United States
| | - Po-Yuan Tung
- Department of Cell Biology and Human Anatomy, University of California, Davis, 1 Shields Ave, Davis, CA 95616, United States.; Institute of Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, United States
| | - Priyanka Somanath
- Department of Cell Biology and Human Anatomy, University of California, Davis, 1 Shields Ave, Davis, CA 95616, United States.; Institute of Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, United States
| | | | - Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, University of California, Davis, 1 Shields Ave, Davis, CA 95616, United States.; Institute of Pediatric Regenerative Medicine, Shriners Hospitals for Children Northern California, Sacramento, CA 95817, United States.
| |
Collapse
|
37
|
Wu X, Liu W, Liu X, Ai Q, Yu J. Overexpression of MCPH1 inhibits the migration and invasion of lung cancer cells. Onco Targets Ther 2018; 11:3111-3117. [PMID: 29872322 PMCID: PMC5975609 DOI: 10.2147/ott.s156102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The role of dysfunction of MCPH1, a recently identified tumor suppressor gene, has not yet been established in lung cancer. In our previous study, it was reported that MCPH1 expression is downregulated in lung cancer tissues and that MCPH1 overexpression inhibits the proliferation of non-small-cell lung cancer cells. The results can be found in the APJC and Oncology Letters journals. Methods Kaplan-Meier survival analysis was conducted to explore the prognostic significance of MCPH1. Cell experiments were performed to investigate the effects of MCPH1 on the biologic behaviors of lung cancer cells. Results In the current study, microarray analysis of MCPH1 revealed that lung cancer patients with high MCPH1 expression had longer relapse-free survival. Overexpression of MCPH1 in A549 lung carcinoma cells successfully inhibited cell migration and invasion. Moreover, overexpression of MCPH1 inhibited migration and invasion by regulating the activities of several proteins that control the epithelial–mesenchymal transition, such as Slug, Snail, E-cadherin, Mdm2, and p53. Conclusion Our results indicate that downregulation of MCPH1 correlates with tumor progression in lung cancer, and hence MCPH1 may be an important tumor suppressor gene and a novel candidate therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Xiaobin Wu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Wei Liu
- Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xueliang Liu
- Otolaryngology, The Chongqing Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Qing Ai
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jialin Yu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, People's Republic of China.,Key Laboratory of Pediatrics in Chongqing, Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
38
|
Identification of candidate anti-cancer molecular mechanisms of Compound Kushen Injection using functional genomics. Oncotarget 2018; 7:66003-66019. [PMID: 27602759 PMCID: PMC5323210 DOI: 10.18632/oncotarget.11788] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
Compound Kushen Injection (CKI) has been clinically used in China for over 15 years to treat various types of solid tumours. However, because such Traditional Chinese Medicine (TCM) preparations are complex mixtures of plant secondary metabolites, it is essential to explore their underlying molecular mechanisms in a systematic fashion. We have used the MCF-7 human breast cancer cell line as an initial in vitro model to identify CKI induced changes in gene expression. Cells were treated with CKI for 24 and 48 hours at two concentrations (1 and 2 mg/mL total alkaloids), and the effect of CKI on cell proliferation and apoptosis were measured using XTT and Annexin V/Propidium Iodide staining assays respectively. Transcriptome data of cells treated with CKI or 5-Fluorouracil (5-FU) for 24 and 48 hours were subsequently acquired using high-throughput Illumina RNA-seq technology. In this report we show that CKI inhibited MCF-7 cell proliferation and induced apoptosis in a dose-dependent fashion. We integrated and applied a series of transcriptome analysis methods, including gene differential expression analysis, pathway over-representation analysis, de novo identification of long non-coding RNAs (lncRNA) as well as co-expression network reconstruction, to identify candidate anti-cancer molecular mechanisms of CKI. Multiple pathways were perturbed and the cell cycle was identified as the potential primary target pathway of CKI in MCF-7 cells. CKI may also induce apoptosis in MCF-7 cells via a p53 independent mechanism. In addition, we identified novel lncRNAs and showed that many of them might be expressed as a response to CKI treatment.
Collapse
|
39
|
Bohn JA, Van Etten JL, Schagat TL, Bowman BM, McEachin RC, Freddolino PL, Goldstrohm AC. Identification of diverse target RNAs that are functionally regulated by human Pumilio proteins. Nucleic Acids Res 2018; 46:362-386. [PMID: 29165587 PMCID: PMC5758885 DOI: 10.1093/nar/gkx1120] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
Human Pumilio proteins, PUM1 and PUM2, are sequence specific RNA-binding proteins that regulate protein expression. We used RNA-seq, rigorous statistical testing and an experimentally derived fold change cut-off to identify nearly 1000 target RNAs-including mRNAs and non-coding RNAs-that are functionally regulated by PUMs. Bioinformatic analysis defined a PUM Response Element (PRE) that was significantly enriched in transcripts that increased in abundance and matches the PUM RNA-binding consensus. We created a computational model that incorporates PRE position and frequency within an RNA relative to the magnitude of regulation. The model reveals significant correlation of PUM regulation with PREs in 3' untranslated regions (UTRs), coding sequences and non-coding RNAs, but not 5' UTRs. To define direct, high confidence PUM targets, we cross-referenced PUM-regulated RNAs with all PRE-containing RNAs and experimentally defined PUM-bound RNAs. The results define nearly 300 direct targets that include both PUM-repressed and, surprisingly, PUM-activated target RNAs. Annotation enrichment analysis reveal that PUMs regulate genes from multiple signaling pathways and developmental and neurological processes. Moreover, PUM target mRNAs impinge on human disease genes linked to cancer, neurological disorders and cardiovascular disease. These discoveries pave the way for determining how the PUM-dependent regulatory network impacts biological functions and disease states.
Collapse
Affiliation(s)
- Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jamie L Van Etten
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Trista L Schagat
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Promega Corporation, Madison, WI 53711, USA
| | - Brittany M Bowman
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard C McEachin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
40
|
Zeng S, Seifert AM, Zhang JQ, Kim TS, Bowler TG, Cavnar MJ, Medina BD, Vitiello GA, Rossi F, Loo JK, Param NJ, DeMatteo RP. ETV4 collaborates with Wnt/β-catenin signaling to alter cell cycle activity and promote tumor aggressiveness in gastrointestinal stromal tumor. Oncotarget 2017; 8:114195-114209. [PMID: 29371979 PMCID: PMC5768396 DOI: 10.18632/oncotarget.23173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/26/2017] [Indexed: 02/04/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common sarcoma, often resulting from a KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutation. The lineage transcription factor ETV1 is expressed similarly in GISTs regardless of malignant potential. Although the related transcription factor ETV4 has been associated with metastasis and tumor progression in other cancers, its role in GIST is unknown. In this study, we found that ETV4 levels were high in a subset of human GISTs and correlated with high mitotic rate. Through Gene Set Enrichment Analysis in selected human GISTs, we identified a relationship between ETV4 levels and β-catenin signaling, especially in advanced GISTs. GIST specimens with high ETV4 levels overexpressed cell cycle regulating genes and had aberrant activation of the canonical Wnt pathway. In human GIST cell lines, ETV4 RNA interference suppressed cell cycle genes and Wnt/β-catenin signaling. ETV4 knockdown also reduced tumor cell proliferation, invasion, and tumor growth in vivo. Conversely, ETV4 overexpression increased cyclin D1 expression and Wnt/β-catenin signaling. Moreover, we determined that ETV4 knockdown destabilized nuclear β-catenin and increased its degradation via COP1, an E3 ligase involved in both ETV4 and β-catenin turnover. Aberrant accumulation of ETV4 and nuclear β-catenin was found in patient derived xenografts created from metastatic GISTs that became resistant to tyrosine kinase inhibitors. Collectively, our findings highlight the significance of ETV4 expression in GIST and identify ETV4 as a biomarker in human GISTs.
Collapse
Affiliation(s)
- Shan Zeng
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrian M Seifert
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer Q Zhang
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Teresa S Kim
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy G Bowler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael J Cavnar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin D Medina
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gerardo A Vitiello
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ferdinand Rossi
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jennifer K Loo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nesteene J Param
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald P DeMatteo
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
41
|
Tyagi N, Deshmukh SK, Srivastava SK, Azim S, Ahmad A, Al-Ghadhban A, Singh AP, Carter JE, Wang B, Singh S. ETV4 Facilitates Cell-Cycle Progression in Pancreatic Cells through Transcriptional Regulation of Cyclin D1. Mol Cancer Res 2017; 16:187-196. [PMID: 29117940 DOI: 10.1158/1541-7786.mcr-17-0219] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/24/2017] [Accepted: 10/13/2017] [Indexed: 12/15/2022]
Abstract
The ETS family transcription factor ETV4 is aberrantly expressed in a variety of human tumors and plays an important role in carcinogenesis through upregulation of relevant target gene expression. Here, it is demonstrated that ETV4 is overexpressed in pancreatic cancer tissues as compared with the normal pancreas, and is associated with enhanced growth and rapid cell-cycle progression of pancreatic cancer cells. ETV4 expression was silenced through stable expression of a specific short hairpin RNA (shRNA) in two pancreatic cancer cell lines (ASPC1 and Colo357), while it was ectopically expressed in BXPC3 cells. Silencing of ETV4 in ASPC1 and Colo357 cells reduced the growth by 55.3% and 38.9%, respectively, while forced expression of ETV4 in BXPC3 cells increased the growth by 46.8% in comparison with respective control cells. Furthermore, ETV4-induced cell growth was facilitated by rapid transition of cells from G1- to S-phase of the cell cycle. Mechanistic studies revealed that ETV4 directly regulates the expression of Cyclin D1 CCND1, a protein crucial for cell-cycle progression from G1- to S-phase. These effects on the growth and cell cycle were reversed by the forced expression of Cyclin D1 in ETV4-silenced pancreatic cancer cells. Altogether, these data provide the first experimental evidence for a functional role of ETV4 in pancreatic cancer growth and cell-cycle progression.Implications: The functional and mechanistic data presented here regarding ETV4 in pancreatic cancer growth and cell-cycle progression suggest that ETV4 could serve as a potential biomarker and novel target for pancreatic cancer therapy. Mol Cancer Res; 16(2); 187-96. ©2017 AACR.
Collapse
Affiliation(s)
- Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Sachin K Deshmukh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Division of Cell Biology and Genetics, Tatva Biosciences, Coastal Innovation Hub, Mobile, Alabama
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Ahmed Al-Ghadhban
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - James E Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, Mobile, Alabama
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama. .,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
42
|
Lemaître C, Tsang J, Bireau C, Heidmann T, Dewannieux M. A human endogenous retrovirus-derived gene that can contribute to oncogenesis by activating the ERK pathway and inducing migration and invasion. PLoS Pathog 2017. [PMID: 28651004 PMCID: PMC5501692 DOI: 10.1371/journal.ppat.1006451] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endogenous retroviruses are cellular genes of retroviral origin captured by their host during the course of evolution and represent around 8% of the human genome. Although most are defective and transcriptionally silenced, some are still able to generate retroviral-like particles and proteins. Among these, the HERV-K(HML2) family is remarkable since its members have amplified relatively recently and many of them still have full length coding genes. Furthermore, they are induced in cancers, especially in melanoma, breast cancer and germ cell tumours, where viral particles, as well as the envelope protein (Env), can be detected. Here we show that HERV-K(HML2) Env per se has oncogenic properties. Its expression in a non-tumourigenic human breast epithelial cell line induces epithelial to mesenchymal transition (EMT), often associated with tumour aggressiveness and metastasis. In our model, this is typified by key modifications in a set of molecular markers, changes in cell morphology and enhanced cell motility. Remarkably, microarrays performed in 293T cells reveal that HERV-K(HML2) Env is a strong inducer of several transcription factors, namely ETV4, ETV5 and EGR1, which are downstream effectors of the MAPK ERK1/2 and are associated with cellular transformation. We demonstrate that HERV-K(HML2) Env effectively activates the ERK1/2 pathway in our experimental setting and that this activation depends on the Env cytoplasmic tail. In addition, this phenomenon is very specific, being absent with every other retroviral Env tested, except for Jaagsiekte Sheep Retrovirus (JSRV) Env, which is already known to have transforming properties in vivo. Though HERV-K Env is not directly transforming by itself, the newly discovered properties of this protein may contribute to oncogenesis. Nearly half the DNA of mammals consists of reitarated, selfish elements that can move and amplify within the genome. With time, some of these elements are recruited by the host and the proteins they encode are used to fulfill physiological functions, whereas other elements have conserved some of their pathological properties and contribute to the development of diseases. The human HERV-K(HML2) elements originated from an ancestral infection of the primate germline by an infectious retrovirus that has been maintained and amplified in the human lineage. It is associated with several pathologies in modern humans, in particular cancer of the breast, germline and skin. We show that the HERV-K(HML2) envelope protein is able to activate a major cellular signalling pathway often involved in human cancers, and that its expression promotes a series of cellular changes that are characteristic of cancer development. Altogether, this study indicates that the expression of HERV-K(HML2) elements is not only a marker of cancer, but can also directly participate to tumourigenesis via the newly discovered oncogenic properties carried by the envelope protein.
Collapse
Affiliation(s)
- Cécile Lemaître
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- Université Paris Denis Diderot, Sorbonne Paris-Cité, Paris, France
| | - Jhen Tsang
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Caroline Bireau
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
| | - Thierry Heidmann
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- * E-mail: (MD); (TH)
| | - Marie Dewannieux
- CNRS, UMR 9196, Institut Gustave Roussy, Villejuif, France
- Université Paris-Sud, Orsay, France
- * E-mail: (MD); (TH)
| |
Collapse
|
43
|
Arase M, Tamura Y, Kawasaki N, Isogaya K, Nakaki R, Mizutani A, Tsutsumi S, Aburatani H, Miyazono K, Koinuma D. Dynamics of chromatin accessibility during TGF-β-induced EMT of Ras-transformed mammary gland epithelial cells. Sci Rep 2017; 7:1166. [PMID: 28446749 PMCID: PMC5430828 DOI: 10.1038/s41598-017-00973-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is induced by transforming growth factor (TGF)-β and facilitates tumor progression. We here performed global mapping of accessible chromatin in the mouse mammary gland epithelial EpH4 cell line and its Ras-transformed derivative (EpRas) using formaldehyde-assisted isolation of regulatory element (FAIRE)-sequencing. TGF-β and Ras altered chromatin accessibility either cooperatively or independently, and AP1, ETS, and RUNX binding motifs were enriched in the accessible chromatin regions of EpH4 and EpRas cells. Etv4, an ETS family oncogenic transcription factor, was strongly expressed and bound to more than one-third of the accessible chromatin regions in EpRas cells treated with TGF-β. While knockdown of Etv4 and another ETS family member Etv5 showed limited effects on the decrease in the E-cadherin abundance and stress fiber formation by TGF-β, gene ontology analysis showed that genes encoding extracellular proteins were most strongly down-regulated by Etv4 and Etv5 siRNAs. Accordingly, TGF-β-induced expression of Mmp13 and cell invasiveness were suppressed by Etv4 and Etv5 siRNAs, which were accompanied by the reduced chromatin accessibility at an enhancer region of Mmp13 gene. These findings suggest a mechanism of transcriptional regulation during Ras- and TGF-β-induced EMT that involves alterations of accessible chromatin, which are partly regulated by Etv4 and Etv5.
Collapse
Affiliation(s)
- Mayu Arase
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Tamura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Natsumi Kawasaki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazunobu Isogaya
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ryo Nakaki
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| | - Anna Mizutani
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
44
|
Kim H, Datta A, Talwar S, Saleem SN, Mondal D, Abdel-Mageed AB. Estradiol-ERβ2 signaling axis confers growth and migration of CRPC cells through TMPRSS2-ETV5 gene fusion. Oncotarget 2016; 8:62820-62833. [PMID: 28968951 PMCID: PMC5609883 DOI: 10.18632/oncotarget.11355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 07/26/2016] [Indexed: 12/12/2022] Open
Abstract
Estrogen receptor beta (ERβ) splice variants are implicated in prostate cancer (PC) progression; however their underlying mechanisms remain elusive. We report that non-canonical activation of estradiol (E2)-ERβ2 signaling axis primes growth, colony-forming ability and migration of the androgen receptor (AR)-null castration-resistant PC (CRPC) cells under androgen-deprived conditions (ADC). The non-classical E2-ERβ2 mediates phosphorylation and activation of Src-IGF-1R complex, which in turn triggers p65-dependent transcriptional upregulation of the androgen-regulated serine protease TMPRSS2:ETV5a/TMPRSS2:ETV5b gene fusions under ADC. siRNA silencing of TMPRSS2 and/or ETV5 suggests that TMPRSS2:ETV5 fusions facilitates the E2-ERβ induced growth and migration effects via NF-κB-dependent induction of cyclin D1 and MMP2 and MMP9 in PC-3 cells. Collectively, our results unravel the functional significance of oncogenic TMPRSS2:ETV5 fusions in mediating growth and migration of E2-ERβ2 signaling axis in CRPC cells. E2-ERβ2 signaling axis may have significant therapeutic and prognostic implications in patients with CRPC.
Collapse
Affiliation(s)
- Hogyoung Kim
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Amrita Datta
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Sudha Talwar
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Sarmad N Saleem
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Debasis Mondal
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| | - Asim B Abdel-Mageed
- Department of Urology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA.,Tulane Cancer Center, Tulane University School of Medicine, New Orleans, Louisiana, 70112, USA
| |
Collapse
|
45
|
Tan J, Yang S, Shen P, Sun H, Xiao J, Wang Y, Wu B, Ji F, Yan J, Xue H, Zhou D. C-kit signaling promotes proliferation and invasion of colorectal mucinous adenocarcinoma in a murine model. Oncotarget 2016; 6:27037-48. [PMID: 26356816 PMCID: PMC4694972 DOI: 10.18632/oncotarget.4815] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/20/2015] [Indexed: 01/07/2023] Open
Abstract
It was reported that the receptor tyrosine kinase (RTK) family often highly expressed in several mucinous carcinomas. In the present study, we established a murine model of colorectal mucinous adenocardinoma (CRMAC) by treating C57 mice [both wild type (WT) and loss-of-function c-kit mutant type (Wads-/-)] with AOM+DSS for 37 weeks and found that c-kit, a member of RTK family, clearly enhanced the tumor cell proliferation by decreasing p53 and increasing cyclin D1 through AKT pathway. Significantly, c-kit strongly promoted tumor cell invasiveness by increasing ETV4, which induced MMP7 expression and epithelial-mesenchymal transition (EMT) via ERK pathway. In vitro up- or down-regulating c-kit activation in human colorectal cancer HCT-116 cells further consolidated these results. In conclusion, our data suggested that the c-kit signaling obviously promoted proliferation and invasion of CRMAC. Therefore, targeting the c-kit signaling and its downstream molecules might provide the potential strategies for treatment of patients suffering from CRMAC in the future.
Collapse
Affiliation(s)
- Jun Tan
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China
| | - Shu Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| | - Ping Shen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| | - Haimei Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| | - Jie Xiao
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| | - Yaxi Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China
| | - Bo Wu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| | - Fengqing Ji
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| | - Jihong Yan
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Hong Xue
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China
| | - Deshan Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P. R. China.,Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P. R. China.,Cancer Institute of Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
46
|
Fung TM, Ng KY, Tong M, Chen JN, Chai S, Chan KT, Law S, Lee NP, Choi MY, Li B, Cheung AL, Tsao SW, Qin YR, Guan XY, Chan KW, Ma S. Neuropilin-2 promotes tumourigenicity and metastasis in oesophageal squamous cell carcinoma through ERK-MAPK-ETV4-MMP-E-cadherin deregulation. J Pathol 2016; 239:309-19. [PMID: 27063000 DOI: 10.1002/path.4728] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 03/03/2016] [Accepted: 04/06/2016] [Indexed: 12/15/2022]
Abstract
Oesophageal squamous cell carcinoma (ESCC) is the most common histological subtype of oesophageal cancer. The disease is particularly prevalent in southern China. The incidence of the disease is on the rise and its overall survival rate remains dismal. Identification and characterization of better molecular markers for early detection and therapeutic targeting are urgently needed. Here, we report levels of transmembrane and soluble neuropilin-2 (NRP2) to be significantly up-regulated in ESCC, and to correlate positively with advanced tumour stage, lymph node metastasis, less favourable R category and worse overall patient survival. NRP2 up-regulation in ESCC was in part a result of gene amplification at chromosome 2q. NRP2 overexpression promoted clonogenicity, angiogenesis and metastasis in ESCC in vitro, while NRP2 silencing by lentiviral knockdown or neutralizing antibody resulted in a contrary effect. This observation was extended in vivo in animal models of subcutaneous tumourigenicity and tail vein metastasis. Mechanistically, overexpression of NRP2 induced expression of ERK MAP kinase and the transcription factor ETV4, leading to enhanced MMP-2 and MMP-9 activity and, as a consequence, suppression of E-cadherin. In summary, NRP2 promotes tumourigenesis and metastasis in ESCC through deregulation of ERK-MAPK-ETV4-MMP-E-cadherin signalling. NRP2 represents a potential diagnostic or prognostic biomarker and therapeutic target for ESCC. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tsun Ming Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Kai Yu Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Man Tong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Jin-Na Chen
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Stella Chai
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Kin-Tak Chan
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Simon Law
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Nikki P Lee
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Mei Yuk Choi
- Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Bin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Annie L Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Yan-Ru Qin
- Department of Clinical Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Kwok Wah Chan
- Department of Pathology, Li Ka Shing Faculty of Medicine, University of Hong Kong
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong
| |
Collapse
|
47
|
Mesquita D, Barros-Silva JD, Santos J, Skotheim RI, Lothe RA, Paulo P, Teixeira MR. Specific and redundant activities of ETV1 and ETV4 in prostate cancer aggressiveness revealed by co-overexpression cellular contexts. Oncotarget 2016; 6:5217-36. [PMID: 25595908 PMCID: PMC4467144 DOI: 10.18632/oncotarget.2847] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022] Open
Abstract
Genomic rearrangements involving ETS transcription factors are found in 50–70% of prostate carcinomas. While the large majority of the rearrangements involve ERG, around 10% involve members of the PEA3 subfamily (ETV1, ETV4 and ETV5). Using a panel of prostate cancer cell lines we found co-overexpression of ETV1 and ETV4 in two cell line models of advanced prostate cancer (MDA-PCa-2b and PC3) and questioned whether these PEA3 family members would cooperate in the acquisition of oncogenic properties or show functional redundancy. Using shRNAs we found that ETV1 and ETV4 have partially overlapping functions, with ETV1 being more relevant for cell invasion and ETV4 for anchorage-independent growth. In vitro expression signatures revealed the regulation of both specific and shared candidate targets that may resemble cellular mechanisms in vivo by interaction with the same intermediate partners. By combining the phenotypic impact data and the gene expression profiles of in vitro models with clinico-pathological features and gene expression profiles of ETS-subtyped tumors, we identified a set of eight genes associated with advanced stage and a set of three genes associated with higher Gleason score, supporting an oncogenic role of ETV1 and ETV4 overexpression and revealing gene sets that may be useful as prognostic markers.
Collapse
Affiliation(s)
- Diana Mesquita
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute, Porto, Portugal
| | - João D Barros-Silva
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute, Porto, Portugal
| | - Joana Santos
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute, Porto, Portugal
| | - Rolf I Skotheim
- Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ragnhild A Lothe
- Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Paula Paulo
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute, Porto, Portugal.,Department of Cancer Prevention, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Nydalen, Oslo, Norway.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Manuel R Teixeira
- Department of Genetics and Cancer Genetics Group - CI-IPOP, Portuguese Oncology Institute, Porto, Portugal.,Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| |
Collapse
|
48
|
Keenan MM, Liu B, Tang X, Wu J, Cyr D, Stevens RD, Ilkayeva O, Huang Z, Tollini LA, Murphy SK, Lucas J, Muoio DM, Kim SY, Chi JT. ACLY and ACC1 Regulate Hypoxia-Induced Apoptosis by Modulating ETV4 via α-ketoglutarate. PLoS Genet 2015; 11:e1005599. [PMID: 26452058 PMCID: PMC4599891 DOI: 10.1371/journal.pgen.1005599] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022] Open
Abstract
In order to propagate a solid tumor, cancer cells must adapt to and survive under various tumor microenvironment (TME) stresses, such as hypoxia or lactic acidosis. To systematically identify genes that modulate cancer cell survival under stresses, we performed genome-wide shRNA screens under hypoxia or lactic acidosis. We discovered that genetic depletion of acetyl-CoA carboxylase (ACACA or ACC1) or ATP citrate lyase (ACLY) protected cancer cells from hypoxia-induced apoptosis. Additionally, the loss of ACLY or ACC1 reduced levels and activities of the oncogenic transcription factor ETV4. Silencing ETV4 also protected cells from hypoxia-induced apoptosis and led to remarkably similar transcriptional responses as with silenced ACLY or ACC1, including an anti-apoptotic program. Metabolomic analysis found that while α-ketoglutarate levels decrease under hypoxia in control cells, α-ketoglutarate is paradoxically increased under hypoxia when ACC1 or ACLY are depleted. Supplementation with α-ketoglutarate rescued the hypoxia-induced apoptosis and recapitulated the decreased expression and activity of ETV4, likely via an epigenetic mechanism. Therefore, ACC1 and ACLY regulate the levels of ETV4 under hypoxia via increased α-ketoglutarate. These results reveal that the ACC1/ACLY-α-ketoglutarate-ETV4 axis is a novel means by which metabolic states regulate transcriptional output for life vs. death decisions under hypoxia. Since many lipogenic inhibitors are under investigation as cancer therapeutics, our findings suggest that the use of these inhibitors will need to be carefully considered with respect to oncogenic drivers, tumor hypoxia, progression and dormancy. More broadly, our screen provides a framework for studying additional tumor cell stress-adaption mechanisms in the future. During the development of most solid tumors, there are characteristic physiological differences in the tumor that result from tumor cells outgrowing their local blood supply. Two of these physiological differences, or “stresses,” that occur in the tumor are low oxygen levels (hypoxia) and an accumulation of lactic acidic (lactic acidosis). Cancer cells experiencing hypoxia and lactic acidosis tend to be more resistant to chemo- and radio-therapy and metastasize more readily. Therefore, it is important to understand how tumor cells adapt to and survive these stresses. We used a large scale screening experiment in order to find which genes and proteins are involved in tumor cell adaptation and survival under hypoxia or lactic acidosis. We found that inhibiting either of two genes involved in lipid synthesis allowed tumor cells to survive hypoxia. This occurred because silencing these genes led to an increase in the metabolite α-ketoglutarate, which repressed a transcription factor that contributed to cell death under hypoxia. This research specifically advances our understanding of how tumor cells survive hypoxia and lactic acidosis and more broadly enhances our understanding of the cellular biology of solid tumors.
Collapse
Affiliation(s)
- Melissa M. Keenan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Beiyu Liu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Xiaohu Tang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Derek Cyr
- Department of Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robert D. Stevens
- Sarah W Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Olga Ilkayeva
- Sarah W Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura A. Tollini
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Lucas
- Department of Electrical and Computer Engineering, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Deborah M. Muoio
- Sarah W Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - So Young Kim
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
49
|
Kherrouche Z, Monte D, Werkmeister E, Stoven L, De Launoit Y, Cortot AB, Tulasne D, Chotteau-Lelievre A. PEA3 transcription factors are downstream effectors of Met signaling involved in migration and invasiveness of Met-addicted tumor cells. Mol Oncol 2015; 9:1852-67. [PMID: 26238631 DOI: 10.1016/j.molonc.2015.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/16/2015] [Accepted: 07/01/2015] [Indexed: 12/31/2022] Open
Abstract
Various solid tumors including lung or gastric carcinomas display aberrant activation of the Met receptor which correlates with aggressive phenotypes and poor prognosis. Although downstream signaling of Met is well described, its integration at the transcriptional level is poorly understood. We demonstrate here that in cancer cells harboring met gene amplification, inhibition of Met activity with tyrosine kinase inhibitors or specific siRNA drastically decreased expression of ETV1, ETV4 and ETV5, three transcription factors constituting the PEA3 subgroup of the ETS family, while expression of the other members of the family were less or not affected. Similar link between Met activity and PEA3 factors expression was found in lung cancer cells displaying resistance to EGFR targeted therapy involving met gene amplification. Using silencing experiments, we demonstrate that the PEA3 factors are required for efficient migration and invasion mediated by Met, while other biological responses such as proliferation or unanchored growth remain unaffected. PEA3 overexpression or silencing revealed that they participated in the regulation of the MMP2 target gene involved in extracellular matrix remodeling. Our results demonstrated that PEA3-subgroup transcription factors are key players of the Met signaling integration involved in regulation of migration and invasiveness.
Collapse
Affiliation(s)
- Zoulika Kherrouche
- CNRS UMR 8161, Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille, SIRIC ONCOLille, Lille 59021, France
| | - Didier Monte
- CNRS USR 3078, Institut de Recherche Interdisciplinaire, Université de Lille, Villeneuve d'Ascq 59658, France
| | - Elisabeth Werkmeister
- CNRS UMR 8161, Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille, SIRIC ONCOLille, Lille 59021, France; BioImaging Center Lille Nord de France, Lille 59021, France
| | - Luc Stoven
- CNRS UMR 8161, Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille, SIRIC ONCOLille, Lille 59021, France
| | - Yvan De Launoit
- CNRS UMR 8161, Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille, SIRIC ONCOLille, Lille 59021, France
| | - Alexis B Cortot
- CNRS UMR 8161, Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille, SIRIC ONCOLille, Lille 59021, France; Thoracic Oncology Department, Lille University Hospital, Université de Lille, France
| | - David Tulasne
- CNRS UMR 8161, Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille, SIRIC ONCOLille, Lille 59021, France.
| | - Anne Chotteau-Lelievre
- CNRS UMR 8161, Institut de Biologie de Lille, Institut Pasteur de Lille, Université de Lille, SIRIC ONCOLille, Lille 59021, France
| |
Collapse
|
50
|
Chatterjee P, Choudhary GS, Alswillah T, Xiong X, Heston WD, Magi-Galluzzi C, Zhang J, Klein EA, Almasan A. The TMPRSS2-ERG Gene Fusion Blocks XRCC4-Mediated Nonhomologous End-Joining Repair and Radiosensitizes Prostate Cancer Cells to PARP Inhibition. Mol Cancer Ther 2015; 14:1896-906. [PMID: 26026052 DOI: 10.1158/1535-7163.mct-14-0865] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/19/2015] [Indexed: 11/16/2022]
Abstract
Exposure to genotoxic agents, such as ionizing radiation (IR), produces DNA damage, leading to DNA double-strand breaks (DSB); IR toxicity is augmented when the DNA repair is impaired. We reported that radiosensitization by a PARP inhibitor (PARPi) was highly prominent in prostate cancer cells expressing the TMPRSS2-ERG gene fusion protein. Here, we show that TMPRSS2-ERG blocks nonhomologous end-joining (NHEJ) DNA repair by inhibiting DNA-PKcs. VCaP cells, which harbor TMPRSS2-ERG and PC3 cells that stably express it, displayed γH2AX and 53BP1 foci constitutively, indicating persistent DNA damage that was absent if TMPRSS2-ERG was depleted by siRNA in VCaP cells. The extent of DNA damage was enhanced and associated with TMPRSS2-ERG's ability to inhibit DNA-PKcs function, as indicated by its own phosphorylation (Thr2609, Ser2056) and that of its substrate, Ser1778-53BP1. DNA-PKcs deficiency caused by TMPRSS2-ERG destabilized critical NHEJ components on chromatin. Thus, XRCC4 was not recruited to chromatin, with retention of other NHEJ core factors being reduced. DNA-PKcs autophosphorylation was restored to the level of parental cells when TMPRSS2-ERG was depleted by siRNA. Following IR, TMPRSS2-ERG-expressing PC3 cells had elevated Rad51 foci and homologous recombination (HR) activity, indicating that HR compensated for defective NHEJ in these cells, hence addressing why TMPRSS2-ERG alone did not lead to radiosensitization. However, the presence of TMPRSS2-ERG, by inhibiting NHEJ DNA repair, enhanced PARPi-mediated radiosensitization. IR in combination with PARPi resulted in enhanced DNA damage in TMPRSS2-ERG-expressing cells. Therefore, by inhibiting NHEJ, TMPRSS2-ERG provides a synthetic lethal interaction with PARPi in prostate cancer patients expressing TMPRSS2-ERG.
Collapse
Affiliation(s)
- Payel Chatterjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio. School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Gaurav S Choudhary
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio. Department of Pathology, Case Western Reserve University School of Medicine, Ohio
| | | | - Xiahui Xiong
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Warren D Heston
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Cristina Magi-Galluzzi
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio. Robert J. Tomisch Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio
| | - Junran Zhang
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio
| | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio. Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|