1
|
Hohmann M, Brunner V, Johannes W, Schum D, Carroll LM, Liu T, Sasaki D, Bosch J, Clavel T, Sieber SA, Zeller G, Tschurtschenthaler M, Janßen KP, Gulder TAM. Bacillamide D produced by Bacillus cereus from the mouse intestinal bacterial collection (miBC) is a potent cytotoxin in vitro. Commun Biol 2024; 7:655. [PMID: 38806706 PMCID: PMC11133360 DOI: 10.1038/s42003-024-06208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/17/2024] [Indexed: 05/30/2024] Open
Abstract
The gut microbiota influences human health and the development of chronic diseases. However, our understanding of potentially protective or harmful microbe-host interactions at the molecular level is still in its infancy. To gain further insights into the hidden gut metabolome and its impact, we identified a cryptic non-ribosomal peptide BGC in the genome of Bacillus cereus DSM 28590 from the mouse intestine ( www.dsmz.de/miBC ), which was predicted to encode a thiazol(in)e substructure. Cloning and heterologous expression of this BGC revealed that it produces bacillamide D. In-depth functional evaluation showed potent cytotoxicity and inhibition of cell migration using the human cell lines HCT116 and HEK293, which was validated using primary mouse organoids. This work establishes the bacillamides as selective cytotoxins from a bacterial gut isolate that affect mammalian cells. Our targeted structure-function-predictive approach is demonstrated to be a streamlined method to discover deleterious gut microbial metabolites with potential effects on human health.
Collapse
Affiliation(s)
- Maximilian Hohmann
- Chair of Technical Biochemistry, Technical University of Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Valentina Brunner
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
- Division of Translational Cancer Research German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Widya Johannes
- Department of Surgery, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
| | - Dominik Schum
- Department of Bioscience, Center for Functional Protein Assemblies, Technical University of Munich, 85748, Garching bei München, Germany
| | - Laura M Carroll
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 61997, Heidelberg, Germany
| | - Tianzhe Liu
- Chair of Technical Biochemistry, Technical University of Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Daisuke Sasaki
- Department of Surgery, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany
- Research and Development Headquarters, Nitto Boseki Co., Ltd., 102-8489, Tokyo, Japan
| | - Johanna Bosch
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, 52074, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, 52074, Aachen, Germany
| | - Stephan A Sieber
- Department of Bioscience, Center for Functional Protein Assemblies, Technical University of Munich, 85748, Garching bei München, Germany
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 61997, Heidelberg, Germany
| | - Markus Tschurtschenthaler
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany.
- Division of Translational Cancer Research German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| | - Klaus-Peter Janßen
- Department of Surgery, Klinikum rechts der Isar, School of Medicine and Health, Technical University of Munich, 81675, Munich, Germany.
| | - Tobias A M Gulder
- Chair of Technical Biochemistry, Technical University of Dresden, Bergstraße 66, 01069, Dresden, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Natural Product Biotechnology, Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy at Saarland University, Campus E8.1, 66123, Saarbrücken, Germany.
| |
Collapse
|
2
|
Pu F, Guo H, Shi D, Chen F, Peng Y, Huang X, Liu J, Zhang Z, Shao Z. The generation and use of animal models of osteosarcoma in cancer research. Genes Dis 2024; 11:664-674. [PMID: 37692517 PMCID: PMC10491873 DOI: 10.1016/j.gendis.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 12/16/2022] [Indexed: 09/12/2023] Open
Abstract
Osteosarcoma is the most common malignant bone tumor affecting children and adolescents. Currently, the most common treatment is surgery combined with neoadjuvant chemotherapy. Although the survival rate of patients with osteosarcoma has improved in recent years, it remains poor when the tumor(s) progress and distant metastases develop. Therefore, better animal models that more accurately replicate the natural progression of the disease are needed to develop improved prognostic and diagnostic markers, as well as targeted therapies for both primary and metastatic osteosarcoma. The present review described animal models currently being used in research investigating osteosarcoma, and their characteristics, advantages, and disadvantages. These models may help elucidate the pathogenic mechanism(s) of osteosarcoma and provide evidence to support and develop clinical treatment strategies.
Collapse
Affiliation(s)
- Feifei Pu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Haoyu Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Deyao Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Fengxia Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xin Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jianxiang Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
3
|
Segatto NV, Simões LD, Bender CB, Sousa FS, Oliveira TL, Paschoal JDF, Pacheco BS, Lopes I, Seixas FK, Qazi A, Thomas FM, Chaki S, Robertson N, Newsom J, Patel S, Rund LA, Jordan LR, Bolt C, Schachtschneider KM, Schook LB, Collares TV. Oncopig bladder cancer cells recapitulate human bladder cancer treatment responses in vitro. Front Oncol 2024; 14:1323422. [PMID: 38469237 PMCID: PMC10926022 DOI: 10.3389/fonc.2024.1323422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/05/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Bladder cancer is a common neoplasia of the urinary tract that holds the highest cost of lifelong treatment per patient, highlighting the need for a continuous search for new therapies for the disease. Current bladder cancer models are either imperfect in their ability to translate results to clinical practice (mouse models), or rare and not inducible (canine models). Swine models are an attractive alternative to model the disease due to their similarities with humans on several levels. The Oncopig Cancer Model has been shown to develop tumors that closely resemble human tumors. However, urothelial carcinoma has not yet been studied in this platform. Methods We aimed to develop novel Oncopig bladder cancer cell line (BCCL) and investigate whether these urothelial swine cells mimic human bladder cancer cell line (5637 and T24) treatment-responses to cisplatin, doxorubicin, and gemcitabine in vitro. Results Results demonstrated consistent treatment responses between Oncopig and human cells in most concentrations tested (p>0.05). Overall, Oncopig cells were more predictive of T24 than 5637 cell therapeutic responses. Microarray analysis also demonstrated similar alterations in expression of apoptotic (GADD45B and TP53INP1) and cytoskeleton-related genes (ZMYM6 and RND1) following gemcitabine exposure between 5637 (human) and Oncopig BCCL cells, indicating apoptosis may be triggered through similar signaling pathways. Molecular docking results indicated that swine and humans had similar Dg values between the chemotherapeutics and their target proteins. Discussion Taken together, these results suggest the Oncopig could be an attractive animal to model urothelial carcinoma due to similarities in in vitro therapeutic responses compared to human cells.
Collapse
Affiliation(s)
- Natália V. Segatto
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Lucas D. Simões
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila B. Bender
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fernanda S. Sousa
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thais L. Oliveira
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Júlia D. F. Paschoal
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bruna S. Pacheco
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Isadora Lopes
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana K. Seixas
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Aisha Qazi
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Faith M. Thomas
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Sulalita Chaki
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | | | | | - Shovik Patel
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Luke R. Jordan
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Sus Clinicals Inc., Chicago, IL, United States
| | - Courtni Bolt
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Sus Clinicals Inc., Chicago, IL, United States
| | | | - Lawrence B. Schook
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Sus Clinicals Inc., Chicago, IL, United States
| | - Tiago V. Collares
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
4
|
Salvermoser L, Flisikowski K, Dressel-Böhm S, Nytko KJ, Rohrer Bley C, Schnieke A, Samt AK, Thölke D, Lennartz P, Schwab M, Wang F, Bashiri Dezfouli A, Multhoff G. Elevated circulating Hsp70 levels are correlative for malignancies in different mammalian species. Cell Stress Chaperones 2023; 28:105-118. [PMID: 36399258 PMCID: PMC9877270 DOI: 10.1007/s12192-022-01311-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Circulating Hsp70 levels were determined in feline and porcine cohorts using two different ELISA systems. These comparative animal models of larger organisms often reflect diseases, and especially malignant tumors, better than conventional rodent models. It is therefore essential to investigate the biology and utility of tumor biomarkers in animals such as cats and pigs. In this study, levels of free Hsp70 in the blood of cats with spontaneously occurring tumors were detected using a commercial Hsp70 ELISA (R&D Systems). Sub-analysis of different tumor groups revealed that animals with tumors of epithelial origin presented with significantly elevated circulating Hsp70 concentrations. In addition to free Hsp70 levels measured with the R&D Systems Hsp70 ELISA, levels of exosomal Hsp70 were determined using the compHsp70 ELISA in pigs. Both ELISA systems detected significantly elevated Hsp70 levels (R&D Systems: median 24.9 ng/mL; compHsp70: median 44.2 ng/mL) in the blood of a cohort of APC1311/+ pigs diagnosed with high-grade adenoma polyps, and the R&D Systems Hsp70 ELISA detected also elevated Hsp70 levels in animals with low-grade polyps. In contrast, in flTP53R167H pigs, suffering from malignant osteosarcoma, the compHsp70 ELISA (median 674.32 ng/mL), but not the R&D Systems Hsp70 ELISA (median 4.78 ng/mL), determined significantly elevated Hsp70 concentrations, indicating that in tumor-bearing animals, the dominant form of Hsp70 is of exosomal origin. Our data suggest that both ELISA systems are suitable for detecting free circulating Hsp70 levels in pigs with high-grade adenoma, but only the compHsp70 ELISA can measure elevated, tumor-derived exosomal Hsp70 levels in tumor-bearing animals.
Collapse
Affiliation(s)
- Lukas Salvermoser
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany.
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany.
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr 15, 81377, Munich, Germany.
| | - Krzysztof Flisikowski
- Livestock Biotechnology, School of Live Sciences, Technische Universität München (TUM), Liesel-Beckmannstr 1, 85354, Freising, Germany
| | - Susann Dressel-Böhm
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Katarzyna J Nytko
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Carla Rohrer Bley
- Vetsuisse Faculty, Division of Radiation Oncology, University of Zurich, Winterthurerstr 258C, CH-8057, Zurich, Switzerland
| | - Angelika Schnieke
- Livestock Biotechnology, School of Live Sciences, Technische Universität München (TUM), Liesel-Beckmannstr 1, 85354, Freising, Germany
| | - Ann-Kathrin Samt
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Dennis Thölke
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Philipp Lennartz
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Melissa Schwab
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Fei Wang
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Ali Bashiri Dezfouli
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische, Universität München (TranslaTUM), Technische Universität München (TUM), Klinikum Rechts Der IsarEinsteinstr 25, 81675, Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts Der Isar, Technische Universität München (TUM), Ismaningerstr 22, 81675, Munich, Germany
| |
Collapse
|
5
|
Leonova EI, Reshetnikov VV, Sopova JV. CRISPR/Cas-edited pigs for personalized medicine: more than preclinical test-system. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.83872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Novel CRISPR-Cas-based genome editing tools made it feasible to introduce a variety of precise genomic modifications in the pig genome, including introducing multiple edits simultaneously, inserting long DNA sequences into specifically targeted loci, and performing nucleotide transitions and transversions. Pigs serve as a vital agricultural resource and animal model in biomedical studies, given their advantages over the other models. Pigs share high similarities to humans regarding body/organ size, anatomy, physiology, and a metabolic profile. The pig genome can be modified to carry the same genetic mutations found in humans to replicate inherited diseases to provide preclinical trials of drugs. Moreover, CRISPR-based modification of pigs antigen profile makes it possible to offer porcine organs for xenotransplantation with minimal transplant rejection responses. This review summarizes recent advances in endonuclease-mediated genome editing tools and research progress of genome-edited pigs as personalized test-systems for preclinical trials and as donors of organs with human-fit antigen profile.
Graphical abstract:
Collapse
|
6
|
Zhu T, Han J, Yang L, Cai Z, Sun W, Hua Y, Xu J. Immune Microenvironment in Osteosarcoma: Components, Therapeutic Strategies and Clinical Applications. Front Immunol 2022; 13:907550. [PMID: 35720360 PMCID: PMC9198725 DOI: 10.3389/fimmu.2022.907550] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/21/2022] Open
Abstract
Osteosarcoma is a primary malignant tumor that tends to threaten children and adolescents, and the 5-year event-free survival rate has not improved significantly in the past three decades, bringing grief and economic burden to patients and society. To date, the genetic background and oncogenesis mechanisms of osteosarcoma remain unclear, impeding further research. The tumor immune microenvironment has become a recent research hot spot, providing novel but valuable insight into tumor heterogeneity and multifaceted mechanisms of tumor progression and metastasis. However, the immune microenvironment in osteosarcoma has been vigorously discussed, and the landscape of immune and non-immune component infiltration has been intensively investigated. Here, we summarize the current knowledge of the classification, features, and functions of the main infiltrating cells, complement system, and exosomes in the osteosarcoma immune microenvironment. In each section, we also highlight the complex crosstalk network among them and the corresponding potential therapeutic strategies and clinical applications to deepen our understanding of osteosarcoma and provide a reference for imminent effective therapies with reduced adverse effects.
Collapse
Affiliation(s)
- Tianyi Zhu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Liu Yang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| | - Jing Xu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Bone Tumor Institution, Shanghai, China
| |
Collapse
|
7
|
Beck J, Ren L, Huang S, Berger E, Bardales K, Mannheimer J, Mazcko C, LeBlanc A. Canine and murine models of osteosarcoma. Vet Pathol 2022; 59:399-414. [PMID: 35341404 PMCID: PMC9290378 DOI: 10.1177/03009858221083038] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children. Despite efforts to develop and implement new therapies, patient outcomes have not measurably improved since the 1980s. Metastasis continues to be the main source of patient mortality, with 30% of cases developing metastatic disease within 5 years of diagnosis. Research models are critical in the advancement of cancer research and include a variety of species. For example, xenograft and patient-derived xenograft (PDX) mouse models provide opportunities to study human tumor cells in vivo while transgenic models have offered significant insight into the molecular mechanisms underlying OS development. A growing recognition of naturally occurring cancers in companion species has led to new insights into how veterinary patients can contribute to studies of cancer biology and drug development. The study of canine cases, including the use of diagnostic tissue archives and clinical trials, offers a potential mechanism to further canine and human cancer research. Advancement in the field of OS research requires continued development and appropriate use of animal models. In this review, animal models of OS are described with a focus on the mouse and tumor-bearing pet dog as parallel and complementary models of human OS.
Collapse
Affiliation(s)
| | - Ling Ren
- National Cancer Institute, Bethesda, MD
| | | | | | - Kathleen Bardales
- National Cancer Institute, Bethesda, MD
- University of Pennsylvania, Philadelphia, PA
| | | | | | | |
Collapse
|
8
|
Hou N, Du X, Wu S. Advances in pig models of human diseases. Animal Model Exp Med 2022; 5:141-152. [PMID: 35343091 PMCID: PMC9043727 DOI: 10.1002/ame2.12223] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 01/07/2023] Open
Abstract
Animal models of human diseases play a critical role in medical research. Pigs are anatomically and physiologically more like humans than are small rodents such as mice, making pigs an attractive option for modeling human diseases. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, and various genetic diseases. We also discuss areas that need to be improved. Animal models of human diseases play a critical role in medical research. Advances in recent years in genetic engineering have facilitated the rapid rise of pig models for use in studies of human disease. In the present review, we summarize the current status of pig models for human cardiovascular, metabolic, neurodegenerative, various genetic diseases and xenotransplantation.
Collapse
Affiliation(s)
- Naipeng Hou
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China
| | - Xuguang Du
- Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sen Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,Sanya Institute of China Agricultural University, Sanya, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Boettcher AN, Schachtschneider KM, Schook LB, Tuggle CK. Swine models for translational oncological research: an evolving landscape and regulatory considerations. Mamm Genome 2022; 33:230-240. [PMID: 34476572 PMCID: PMC8888764 DOI: 10.1007/s00335-021-09907-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023]
Abstract
Swine biomedical models have been gaining in popularity over the last decade, particularly for applications in oncology research. Swine models for cancer research include pigs that have severe combined immunodeficiency for xenotransplantation studies, genetically modified swine models which are capable of developing tumors in vivo, as well as normal immunocompetent pigs. In recent years, there has been a low success rate for the approval of new oncological therapeutics in clinical trials. The two leading reasons for these failures are either due to toxicity and safety issues or lack of efficacy. As all therapeutics must be tested within animal models prior to clinical testing, there are opportunities to expand the ability to assess efficacy and toxicity profiles within the preclinical testing phases of new therapeutics. Most preclinical in vivo testing is performed in mice, canines, and non-human primates. However, swine models are an alternative large animal model for cancer research with similarity to human size, genetics, and physiology. Additionally, tumorigenesis pathways are similar between human and pigs in that similar driver mutations are required for transformation. Due to their larger size, the development of orthotopic tumors is easier than in smaller rodent models; additionally, porcine models can be harnessed for testing of new interventional devices and radiological/surgical approaches as well. Taken together, swine are a feasible option for preclinical therapeutic and device testing. The goals of this resource are to provide a broad overview on regulatory processes required for new therapeutics and devices for use in the clinic, cross-species differences in oncological therapeutic responses, as well as to provide an overview of swine oncology models that have been developed that could be used for preclinical testing to fulfill regulatory requirements.
Collapse
Affiliation(s)
| | - Kyle M. Schachtschneider
- University of Illinois at Chicago, Department of Radiology, Chicago, Illinois, United States,University of Illinois at Urbana-Champaign, National Center for Supercomputing Applications, Urbana, Illinois, United States,University of Illinois at Chicago, Department of Biochemistry and Molecular Genetics, Chicago, Illinois, United States
| | - Lawrence B. Schook
- University of Illinois at Chicago, Department of Radiology, Chicago, Illinois, United States,University of Illinois at Urbana-Champaign, National Center for Supercomputing Applications, Urbana, Illinois, United States,University of Illinois at Urbana-Champaign, Department of Animal Sciences, Illinois, United States
| | - Christopher K Tuggle
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, 806 Stange Road, Ames, IA, 50011, USA.
| |
Collapse
|
10
|
Ehrenfeld M, Schrade A, Flisikowska T, Perl M, Hirsch ND, Sichler A, Geyer L, Flisikowski K, Wilhelm D, Schober SJ, Johannes L, Schnieke A, Janssen KP. Tumor targeting with bacterial Shiga toxin B-subunit in genetic porcine models for colorectal cancer and osteosarcoma. Mol Cancer Ther 2022; 21:686-699. [PMID: 35086950 DOI: 10.1158/1535-7163.mct-21-0445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/31/2021] [Accepted: 01/11/2022] [Indexed: 12/09/2022]
Abstract
The B-subunit of bacterial Shiga toxin (STxB) is non-toxic and has low immunogenicity. Its receptor, the glycosphingolipid Gb3/CD77, is overexpressed on the cell surface of human colorectal cancer (CRC). We tested whether genetic porcine models, closely resembling human anatomy and pathophysiology, can be used to exploit the tumor targeting potential of STxB. In accordance with findings on human CRC, the pig model APC1311 bound STxB in colorectal tumors, but not in normal colon or jejunum, except for putative enteroendocrine cells. In primary tumor cells from endoscopic biopsies, STxB was rapidly taken up along the retrograde intracellular route to the Golgi, whereas normal colon organoids did not bind or internalize STxB. Next, we tested a porcine model (TP53LSL-R167H) for osteosarcoma, a tumor entity with a dismal prognosis and insufficient treatment options, hitherto not known to express Gb3. Pig osteosarcoma strongly bound StxB and expressed the Gb3-synthase A4GALT. Primary osteosarcoma cells, but not normal osteoblasts, rapidly internalized fluorescently labelled STxB along the retrograde route to the Golgi. Importantly, six out of eight human osteosarcoma cell lines expressed A4GALT mRNA and showed prominent intracellular uptake of STxB. The physiological role of A4GALT was tested by Crispr/Cas9-mutagenesis in porcine LLC-PK1 kidney epithelial cells and RNA interference in MG-63 human osteosarcoma cells. A4GALT-deficiency or knock-down abolished STxB uptake and led to significantly reduced cell migration and proliferation, hinting towards a putative tumor-promoting role of Gb3. Thus, pig models are suitable tools for STxB-based tumor targeting, and may allow "reverse-translational" predictions on human tumor biology.
Collapse
Affiliation(s)
- Maximilian Ehrenfeld
- Departments of Surgery and Urology, Klinikum rechts der Isar, Technical University München
| | - Anna Schrade
- Department of Surgery, Klinikum rechts der Isar, Technical University München
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, School of Life Sciences, Technical University of Munich
| | - Markus Perl
- Department of Internal Medicine III, University Hospital Regensburg
| | - Noah-David Hirsch
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich
| | - Anna Sichler
- Department of Surgery, Klinikum rechts der Isar, Technical University Munich
| | - Laura Geyer
- Department of Surgery, Klinikum rechts der Isar, Technical University München
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, School of Life Sciences, Technical University of Munich
| | - Dirk Wilhelm
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich
| | - Sebastian Johannes Schober
- Department of Pediatrics and Children's Cancer Research Center, Kinderklinik München Schwabing, Technical University of Munich
| | - Ludger Johannes
- Endocytic Trafficking and Intracellular Delivery team, Institute Curie
| | | | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technical University München
| |
Collapse
|
11
|
Li H, Cheng W, Chen B, Pu S, Fan N, Zhang X, Jiao D, Shi D, Guo J, Li Z, Qing Y, Jia B, Zhao HY, Wei HJ. Efficient Generation of P53 Biallelic Mutations in Diannan Miniature Pigs Using RNA-Guided Base Editing. Life (Basel) 2021; 11:life11121417. [PMID: 34947951 PMCID: PMC8706133 DOI: 10.3390/life11121417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
The base editing 3 (BE3) system, a single-base gene editing technology developed using CRISPR/Cas9n, has a broad range of applications for human disease model construction and gene therapy, as it is highly efficient, accurate, and non-destructive. P53 mutations are present in more than 50% of human malignancies. Due to the similarities between humans and pigs at the molecular level, pig models carrying P53 mutations can be used to research the mechanism of tumorigenesis and improve tumor diagnosis and treatment. According to pathogenic mutations of the human P53 gene at W146* and Q100*, sgRNAs were designed to target exon 4 and exon 5 of the porcine P53 gene. The target editing efficiencies of the two sgRNAs were 61.9% and 50.0%, respectively. The editing efficiency of the BE3 system was highest (about 60%) when C (or G) was at the 5th base. Puromycin screening revealed that 75.0% (21/28) and 68.7% (22/32) of cell colonies contained a P53 mutation at sgRNA-Exon5 and sgRNA-Exon4, respectively. The reconstructed embryos from sgRNA-Exon5-5# were transferred into six recipient gilts, all of which aborted. The reconstructed embryos from sgRNA-Exon4-7# were transferred into 6 recipient gilts, 3 of which became pregnant, resulting in 14 live and 3 dead piglets. Sequencing analyses of the target site confirmed 1 P53 monoallelic mutation and 16 biallelic mutations. The qPCR analysis showed that the P53 mRNA expression level was significantly decreased in different tissues of the P53 mutant piglets (p < 0.05). Additionally, confocal microscopy and western blot analysis revealed an absence of P53 expression in the P53 mutant fibroblasts, livers, and lung tissues. In conclusion, a porcine cancer model with a P53 point mutation can be obtained via the BE3 system and somatic cell nuclear transfer (SCNT).
Collapse
Affiliation(s)
- Honghui Li
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Wenmin Cheng
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Bowei Chen
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Shaoxia Pu
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Ninglin Fan
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaolin Zhang
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Deling Jiao
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Dejia Shi
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jianxiong Guo
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
| | - Zhuo Li
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yubo Qing
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Baoyu Jia
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Hong-Ye Zhao
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (H.-Y.Z.); (H.-J.W.)
| | - Hong-Jiang Wei
- Yunnan Key Laboratory of Porcine Gene Editing and Xenotransplantation, Kunming 650201, China; (H.L.); (W.C.); (B.C.); (S.P.); (N.F.); (X.Z.); (D.J.); (D.S.); (J.G.); (Z.L.); (Y.Q.); (B.J.)
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (H.-Y.Z.); (H.-J.W.)
| |
Collapse
|
12
|
Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human biomedical model. Sci Transl Med 2021; 13:eabd5758. [PMID: 34818055 DOI: 10.1126/scitranslmed.abd5758] [Citation(s) in RCA: 355] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Angelica Van Goor
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Kristen E Walker
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Taylor Hailstock
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Jasmine Franklin
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Chaohui Dai
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
13
|
Chang X, Ma Z, Zhu G, Lu Y, Yang J. New perspective into mesenchymal stem cells: Molecular mechanisms regulating osteosarcoma. J Bone Oncol 2021; 29:100372. [PMID: 34258182 PMCID: PMC8254115 DOI: 10.1016/j.jbo.2021.100372] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with significant potential for regenerative medicine. The tumorigenesis of osteosarcoma is an intricate system and MSCs act as an indispensable part of this, interacting with the tumor microenvironment (TME) during the process. MSCs link to cells by acting on each component in the TME via autocrine or paracrine extracellular vesicles for cellular communication. Because of their unique characteristics, MSCs can be modified and processed into good biological carriers, loaded with drugs, and transfected with anticancer genes for the targeted treatment of osteosarcoma. Previous high-quality reviews have described the biological characteristics of MSCs; this review will discuss the effects of MSCs on the components of the TME and cellular communication and the prospects for clinical applications of MSCs.
Collapse
Key Words
- 3TSR, Three type 1 repeats
- 5 FC, 5-fluorocytosine
- AD-MSCs, Adipose-derived MSCs
- AQP1, Aquaporin-1
- BMSC-derived exosomes, BMSC-Exos
- BMSCs, Bone marrow mesenchymal stem cells
- CAFs, Carcinoma-associated-fibroblasts
- CRC, Colorectal cancer
- CSF, Colony-stimulating factor
- Cellular communication
- Clinical application
- DOX, Doxorubicin
- DP-MSCs, Dental pulp-derived MSCs, hUC-MSCs, Human umbilical cord MSCs
- ECM, Extracellular matrix
- ESCs, embryonic stem cells
- EVs, Extracellular vesicles
- GBM, Glioblastoma
- HCC, hepatocellular carcinoma
- LINE-1, Long interspersing element 1
- MCP-1, Monocyte chemoattractant protein-1
- MSC-Exos, MSC-derived exosomes
- MSC-MVs, MSC microvesicles
- MSCs
- MSCs, Mesenchymal stem cells
- OPG, osteoprotegerin
- OS, osteosarcoma
- Osteosarcoma
- PDGFRα, Platelet derived growth factor receptor α
- PDGFRβ, Platelet derived growth factor receptor β
- PDGFα, Platelet derived growth factor α
- S TRAIL, Secretable variant of the TNF-related apoptosis-inducing ligand
- SD-MSCs, stressed MSCs
- SDF-1, Stromal cell-derived factor 1
- TGF, Transforming growth factor
- TME
- TME, Tumor microenvironment
- TNF, Tumor necrosis factor
- TRA2B, Transformer 2β
- VEGF, Vascular endothelial growth factor
- hASCs, human adipose stem cells
- iPSCs, induced pluripotent stem cells
- yCD::UPRT, Yeast cytosine deaminase::uracil phosphoribosyl transferase
Collapse
Affiliation(s)
- Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zhanjun Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Guomao Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yubao Lu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingjing Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
14
|
Porcine pancreatic ductal epithelial cells transformed with KRAS G12D and SV40T are tumorigenic. Sci Rep 2021; 11:13436. [PMID: 34183736 PMCID: PMC8238942 DOI: 10.1038/s41598-021-92852-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
We describe our initial studies in the development of an orthotopic, genetically defined, large animal model of pancreatic cancer. Primary pancreatic epithelial cells were isolated from pancreatic duct of domestic pigs. A transformed cell line was generated from these primary cells with oncogenic KRAS and SV40T. The transformed cell lines outperformed the primary and SV40T immortalized cells in terms of proliferation, population doubling time, soft agar growth, transwell migration and invasion. The transformed cell line grew tumors when injected subcutaneously in nude mice, forming glandular structures and staining for epithelial markers. Future work will include implantation studies of these tumorigenic porcine pancreatic cell lines into the pancreas of allogeneic and autologous pigs. The resultant large animal model of pancreatic cancer could be utilized for preclinical research on diagnostic, interventional, and therapeutic technologies.
Collapse
|
15
|
Segatto NV, Bender CB, Seixas FK, Schachtschneider K, Schook L, Robertson N, Qazi A, Carlino M, Jordan L, Bolt C, Collares T. Perspective: Humanized Pig Models of Bladder Cancer. Front Mol Biosci 2021; 8:681044. [PMID: 34079821 PMCID: PMC8165235 DOI: 10.3389/fmolb.2021.681044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 12/09/2022] Open
Abstract
Bladder cancer (BC) is the 10th most common neoplasia worldwide and holds expensive treatment costs due to its high recurrence rates, resistance to therapy and the need for lifelong surveillance. Thus, it is necessary to improve the current therapy options and identify more effective treatments for BC. Biological models capable of recapitulating the characteristics of human BC pathology are essential in evaluating the effectiveness of new therapies. Currently, the most commonly used BC models are experimentally induced murine models and spontaneous canine models, which are either insufficient due to their small size and inability to translate results to clinical basis (murine models) or rarely spontaneously observed BC (canine models). Pigs represent a potentially useful animal for the development of personalized tumors due to their size, anatomy, physiology, metabolism, immunity, and genetics similar to humans and the ability to experimentally induce tumors. Pigs have emerged as suitable biomedical models for several human diseases. In this sense, the present perspective focuses on the genetic basis for BC; presents current BC animal models available along with their limitations; and proposes the pig as an adequate animal to develop humanized large animal models of BC. Genetic alterations commonly found in human BC can be explored to create genetically defined porcine models, including the BC driver mutations observed in the FGFR3, PIK3CA, PTEN, RB1, HRAS, and TP53 genes. The development of such robust models for BC has great value in the study of pathology and the screening of new therapeutic and diagnostic approaches to the disease.
Collapse
Affiliation(s)
- Natália Vieira Segatto
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Camila Bonemann Bender
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Fabiana Kommling Seixas
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Kyle Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Lawrence Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Aisha Qazi
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Maximillian Carlino
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Luke Jordan
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Courtni Bolt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Tiago Collares
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
16
|
Zhang Y, Niu G, Flisikowska T, Schnieke A, Flisikowski K. A tissue- and gender-specific regulation of the SARS-CoV-2 receptor ACE2 by p53 in pigs. Biochem Biophys Res Commun 2021; 553:25-29. [PMID: 33756342 PMCID: PMC7969875 DOI: 10.1016/j.bbrc.2021.03.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023]
Abstract
The current COVID-19 pandemic is caused by infections with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A sex-bias has been observed, with increased susceptibility and mortality in male compared to female patients. The gene for the SARS-CoV-2 receptor ACE2 is located on the X chromosome. We previously generated TP53 mutant pigs that exhibit a sex-specific patho-phenotype due to altered regulation of numerous X chromosome genes. In this study, we explored the effect of p53 deficiency on ACE2 expression in pigs. First, we identified the p53 binding site in the ACE2 promoter and could show its regulatory effect on ACE2 expression by luciferase assay in porcine primary kidney fibroblast cells. Later, quantitative PCR and western blot showed tissue- and gender-specific expression changes of ACE2 and its truncated isoform in p53-deficient pigs. We believe these findings will broaden the knowledge on ACE2 regulation and COVID-19 susceptibility.
Collapse
Affiliation(s)
- Yue Zhang
- Livestock Biotechnology, School of Life Science, Technische Universität München, Germany.
| | - Guanglin Niu
- Livestock Biotechnology, School of Life Science, Technische Universität München, Germany.
| | - Tatiana Flisikowska
- Livestock Biotechnology, School of Life Science, Technische Universität München, Germany.
| | - Angelika Schnieke
- Livestock Biotechnology, School of Life Science, Technische Universität München, Germany.
| | - Krzysztof Flisikowski
- Livestock Biotechnology, School of Life Science, Technische Universität München, Germany.
| |
Collapse
|
17
|
Niu G, Bak A, Nusselt M, Zhang Y, Pausch H, Flisikowska T, Schnieke AE, Flisikowski K. Allelic Expression Imbalance Analysis Identified YAP1 Amplification in p53- Dependent Osteosarcoma. Cancers (Basel) 2021; 13:cancers13061364. [PMID: 33803512 PMCID: PMC8002920 DOI: 10.3390/cancers13061364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Osteosarcoma (OS) is a highly heterogenous cancer, making the identification of genetic driving factors difficult. Genetic factors, such as heritable mutations of Rb1 and TP53, are associated with an increased risk of OS. We previously generated pigs carrying a mutated TP53 gene, which develop OS at high frequency. RNA sequencing and allelic expression imbalance analysis identified an amplification of YAP1 involved in p53- dependent OS progression. The inactivation of YAP1 inhibits proliferation, migration, and invasion, and leads to the silencing of TP63 and reconstruction of p16 expression in p53-deficient porcine OS cells. This study confirms the importance of p53/YAP1 network in cancer. Abstract Osteosarcoma (OS) is a primary bone malignancy that mainly occurs during adolescent growth, suggesting that bone growth plays an important role in the aetiology of the disease. Genetic factors, such as heritable mutations of Rb1 and TP53, are associated with an increased risk of OS. Identifying driver mutations for OS has been challenging due to the complexity of bone growth-related pathways and the extensive intra-tumoral heterogeneity of this cancer. We previously generated pigs carrying a mutated TP53 gene, which develop OS at high frequency. RNA sequencing and allele expression imbalance (AEI) analysis of OS and matched healthy control samples revealed a highly significant AEI (p = 2.14 × 10−39) for SNPs in the BIRC3-YAP1 locus on pig chromosome 9. Analysis of copy number variation showed that YAP1 amplification is associated with the AEI and the progression of OS. Accordingly, the inactivation of YAP1 inhibits proliferation, migration, and invasion, and leads to the silencing of TP63 and reconstruction of p16 expression in p53-deficient porcine OS cells. Increased p16 mRNA expression correlated with lower methylation of its promoter. Altogether, our study provides molecular evidence for the role of YAP1 amplification in the progression of p53-dependent OS.
Collapse
Affiliation(s)
- Guanglin Niu
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Agnieszka Bak
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Melanie Nusselt
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Yue Zhang
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Hubert Pausch
- Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland;
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Angelika E. Schnieke
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technical University of Munich, 85354 Freising, Germany; (G.N.); (A.B.); (M.N.); (Y.Z.); (T.F.); (A.E.S.)
- Correspondence:
| |
Collapse
|
18
|
Niu G, Hellmuth I, Flisikowska T, Pausch H, Rieblinger B, Carrapeiro A, Schade B, Böhm B, Kappe E, Fischer K, Klinger B, Steiger K, Burgkart R, Bourdon JC, Saur D, Kind A, Schnieke A, Flisikowski K. Porcine model elucidates function of p53 isoform in carcinogenesis and reveals novel circTP53 RNA. Oncogene 2021; 40:1896-1908. [PMID: 33603167 PMCID: PMC7946636 DOI: 10.1038/s41388-021-01686-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 01/31/2023]
Abstract
Recent years have seen an increasing number of genetically engineered pig models of human diseases including cancer. We previously generated pigs with a modified TP53 allele that carries a Cre-removable transcriptional stop signal in intron 1, and an oncogenic mutation TP53R167H (orthologous to human TP53R175H) in exon 5. Pigs with the unrecombined mutant allele (flTP53R167H) develop mainly osteosarcoma but also nephroblastomas and lymphomas. This observation suggested that TP53 gene dysfunction is itself the key initiator of bone tumorigenesis, but raises the question which aspects of the TP53 regulation lead to the development of such a narrow tumour spectrum. Molecular analysis of p53 revealed the presence of two internal TP53 promoters (Pint and P2) equivalent to those found in human. Consequently, both pig and human express TP53 isoforms. Data presented here strongly suggest that P2-driven expression of the mutant R167H-Δ152p53 isoform (equivalent to the human R175H-Δ160p53 isoform) and its circular counterpart circTP53 determine the tumour spectrum and play a critical role in the malignant transformation in flTP53R167H pigs. The detection of Δ152p53 isoform mRNA in serum is indicative of tumorigenesis. Furthermore, we showed a tissue-specific p53-dependent deregulation of the p63 and p73 isoforms in these tumours. This study highlights important species-specific differences in the transcriptional regulation of TP53. Considering the similarities of TP53 regulation between pig and human, these observations provide useful pointers for further investigation into isoform function including the novel circTP53 in both the pig model and human patients.
Collapse
Affiliation(s)
- Guanglin Niu
- Chair of Livestock Biotechnology, Technische Universität München, Munich, Germany
| | - Isabel Hellmuth
- Chair of Livestock Biotechnology, Technische Universität München, Munich, Germany
| | - Tatiana Flisikowska
- Chair of Livestock Biotechnology, Technische Universität München, Munich, Germany
| | | | - Beate Rieblinger
- Chair of Livestock Biotechnology, Technische Universität München, Munich, Germany
| | - Alexander Carrapeiro
- Chair of Livestock Biotechnology, Technische Universität München, Munich, Germany
| | - Benjamin Schade
- Department of Pathology, Bavarian Animal Health Service, Poing, Germany
| | - Brigitte Böhm
- Department of Pathology, Bavarian Animal Health Service, Poing, Germany
| | - Eva Kappe
- Department of Pathology, Bavarian Animal Health Service, Poing, Germany
| | - Konrad Fischer
- Chair of Livestock Biotechnology, Technische Universität München, Munich, Germany
| | - Bernhard Klinger
- Chair of Livestock Biotechnology, Technische Universität München, Munich, Germany
| | - Katja Steiger
- School of Medicine, Institute of Pathology, Technische Universität München, Munich, Germany
| | - Reiner Burgkart
- Klinik und Poliklinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Dieter Saur
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Alexander Kind
- Chair of Livestock Biotechnology, Technische Universität München, Munich, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, Technische Universität München, Munich, Germany
| | | |
Collapse
|
19
|
Jarvis S, Koumadoraki E, Madouros N, Sharif S, Saleem A, Khan S. Non-rodent animal models of osteosarcoma: A review. Cancer Treat Res Commun 2021; 27:100307. [PMID: 33453605 DOI: 10.1016/j.ctarc.2021.100307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 11/29/2022]
Abstract
Osteosarcoma is extremely malignant, and the most common cancer that affects bone. Current treatments involve surgical resection of the affected area and multi-agent chemotherapy, though survival rate is generally poor for those affected by metastases. As treatment for osteosarcoma has remained unchanged for the past few decades, there is a need for further advancements in the understanding of osteosarcoma biology and therapeutics. Thus, reliable animal models that can accurately recapitulate the disease are required. Though rodents represent the most popular animal model of osteosarcoma, they may not model the disease best. This review analyzes emerging alternative non-rodent animal models of osteosarcoma, such as the chick chorioallantoic membrane (CAM) assay, pigs, and canines. Each of these alternatives offer advantages over classic rodent models for pre-clinical research. Research of these cross-species platforms imparts knowledge of metastases biology and potential new treatments for osteosarcoma.
Collapse
Affiliation(s)
- Sommer Jarvis
- California Institute of Neurosciences & Behavioral Psychology, 4751 Mangels Blvd, Fairfield, CA 94534, United States.
| | - Evgenia Koumadoraki
- California Institute of Neurosciences & Behavioral Psychology, 4751 Mangels Blvd, Fairfield, CA 94534, United States
| | - Nikolaos Madouros
- California Institute of Neurosciences & Behavioral Psychology, 4751 Mangels Blvd, Fairfield, CA 94534, United States
| | - Shayka Sharif
- California Institute of Neurosciences & Behavioral Psychology, 4751 Mangels Blvd, Fairfield, CA 94534, United States
| | - Amber Saleem
- California Institute of Neurosciences & Behavioral Psychology, 4751 Mangels Blvd, Fairfield, CA 94534, United States
| | - Safeera Khan
- California Institute of Neurosciences & Behavioral Psychology, 4751 Mangels Blvd, Fairfield, CA 94534, United States
| |
Collapse
|
20
|
A novel method for isolation and culture of primary swine gastric epithelial cells. BMC Mol Cell Biol 2021; 22:1. [PMID: 33407092 PMCID: PMC7789315 DOI: 10.1186/s12860-020-00341-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Culturing primary epithelial cells has a major advantage over tumor-derived or immortalized cell lines as long as their functional phenotype and genetic makeup are mainly maintained. The swine model has shown to be helpful and reliable when used as a surrogate model for human diseases. Several porcine cell lines have been established based on a variety of tissues, which have shown to extensively contribute to the current understanding of several pathologies, especially cancer. However, protocols for the isolation and culture of swine gastric epithelial cells that preserve cell phenotype are rather limited. We aimed to develop a new method for establishing a primary epithelial cell culture from the fundic gland region of the pig stomach. RESULTS Mechanical and enzymatic dissociation of gastric tissue was possible by combining collagenase type I and dispase II, protease inhibitors and antioxidants, which allowed the isolation of epithelial cells from the porcine fundic glands showing cell viability > 90% during the incubation period. Gastric epithelial cells cultured in RPMI 1640, DMEM-HG and DMEM/F12 media did not contribute enough to cell adhesion, cluster formation and cell proliferation. By contrast, William's E medium supplemented with growth factors supports confluency and proliferation of a pure epithelial cell monolayer after 10 days of incubation at 37 °C, 5% CO2. Mucin-producing cell phenotype of primary isolates was confirmed by PAS staining, MUC1 by immunohistochemistry, as well as the expression of MUC1 and MUC20 genes by RT-PCR and cDNA sequencing. Swine gastric epithelial cells also showed origin-specific markers such as cytokeratin cocktail (AE1/AE3) and cytokeratin 18 (CK-18) using immunohistochemical and immunofluorescence methods, respectively. CONCLUSIONS A new method was successfully established for the isolation of primary gastric epithelial cells from the fundic gland zone through a swine model based on a combination of tissue-specific proteases, protease inhibitors and antioxidants after mechanical cell dissociation. The formulation of William's E medium with growth factors for epithelial cells contributes to cell adhesion and preserves functional primary cells phenotype, which is confirmed by mucin production and expression of typical epithelial markers over time.
Collapse
|
21
|
Hryhorowicz M, Lipiński D, Hryhorowicz S, Nowak-Terpiłowska A, Ryczek N, Zeyland J. Application of Genetically Engineered Pigs in Biomedical Research. Genes (Basel) 2020; 11:genes11060670. [PMID: 32575461 PMCID: PMC7349405 DOI: 10.3390/genes11060670] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Progress in genetic engineering over the past few decades has made it possible to develop methods that have led to the production of transgenic animals. The development of transgenesis has created new directions in research and possibilities for its practical application. Generating transgenic animal species is not only aimed towards accelerating traditional breeding programs and improving animal health and the quality of animal products for consumption but can also be used in biomedicine. Animal studies are conducted to develop models used in gene function and regulation research and the genetic determinants of certain human diseases. Another direction of research, described in this review, focuses on the use of transgenic animals as a source of high-quality biopharmaceuticals, such as recombinant proteins. The further aspect discussed is the use of genetically modified animals as a source of cells, tissues, and organs for transplantation into human recipients, i.e., xenotransplantation. Numerous studies have shown that the pig (Sus scrofa domestica) is the most suitable species both as a research model for human diseases and as an optimal organ donor for xenotransplantation. Short pregnancy, short generation interval, and high litter size make the production of transgenic pigs less time-consuming in comparison with other livestock species This review describes genetically modified pigs used for biomedical research and the future challenges and perspectives for the use of the swine animal models.
Collapse
Affiliation(s)
- Magdalena Hryhorowicz
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
- Correspondence:
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland;
| | - Agnieszka Nowak-Terpiłowska
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| | - Natalia Ryczek
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| | - Joanna Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| |
Collapse
|
22
|
Robertson N, Schook LB, Schachtschneider KM. Porcine cancer models: potential tools to enhance cancer drug trials. Expert Opin Drug Discov 2020; 15:893-902. [PMID: 32378979 DOI: 10.1080/17460441.2020.1757644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The amount of time and money invested into cancer drug research, development, and clinical trials has continually increased over the past few decades. Despite record high cancer drug approval rates, cancer remains a leading cause of death. This suggests the need for more effective tools to help bring novel therapies to clinical practice in a timely manner. AREAS COVERED In this review, current issues associated with clinical trials are discussed, specifically focusing on poor accrual rates and time for trial completion. In addition, details regarding preclinical studies required before advancing to clinical trials are discussed, including advantages and limitations of current preclinical animal cancer models and their relevance to human cancer trials. Finally, new translational porcine cancer models (Oncopig Cancer Model (OCM)) are presented as potential co-clinical trial models. EXPERT OPINION In order to address issues impacting the poor success rate of oncology clinical trials, we propose the incorporation of the transformative OCM 'co-clinical trial' pathway into the cancer drug approval process. Due to the Oncopig's high homology to humans and similar tumor phenotypes, their utilization can provide improved preclinical prediction of both drug safety and efficacy prior to investing significant time and money in human clinical trials.
Collapse
Affiliation(s)
- Noah Robertson
- Department of Radiology, University of Illinois at Chicago , Chicago, IL, USA
| | - Lawrence B Schook
- Department of Radiology, University of Illinois at Chicago , Chicago, IL, USA.,Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago , Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago , Chicago, IL, USA
| |
Collapse
|
23
|
Gain-of-Function Mutations in p53 in Cancer Invasiveness and Metastasis. Int J Mol Sci 2020; 21:ijms21041334. [PMID: 32079237 PMCID: PMC7072881 DOI: 10.3390/ijms21041334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Forty years of research has proven beyond any doubt that p53 is a key regulator of many aspects of cellular physiology. It is best known for its tumor suppressor function, but it is also a regulator of processes important for maintenance of homeostasis and stress response. Its activity is generally antiproliferative and when the cell is damaged beyond repair or intensely stressed the p53 protein contributes to apoptosis. Given its key role in preventing cancer it is no wonder that it is the most frequently mutated gene in human cancer. Surprisingly, a subset of missense mutations occurring in p53 (gain-of-function) cause it to lose its suppressor activity and acquire new functionalities that turn the tumor suppressor protein into an oncoprotein. A solid body of evidence exists demonstrating increased malignancy of cancers with mutated p53 in all aspects considered “hallmarks of cancer”. In this review, we summarize current findings concerning the cellular processes altered by gain-of-function mutations in p53 and their influence on cancer invasiveness and metastasis. We also present the variety of molecular mechanisms regulating these processes, including microRNA, direct transcriptional regulation, protein–protein interactions, and more.
Collapse
|
24
|
Swayden M, Soubeyran P, Iovanna J. Upcoming Revolutionary Paths in Preclinical Modeling of Pancreatic Adenocarcinoma. Front Oncol 2020; 9:1443. [PMID: 32038993 PMCID: PMC6987422 DOI: 10.3389/fonc.2019.01443] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022] Open
Abstract
To date, PDAC remains the cancer having the worst prognosis with mortality rates constantly on the rise. Efficient cures are still absent, despite all attempts to understand the aggressive physiopathology underlying this disease. A major stumbling block is the outdated preclinical modeling strategies applied in assessing effectiveness of novel anticancer therapeutics. Current in vitro preclinical models have a low fidelity to mimic the exact architectural and functional complexity of PDAC tumor found in human set, due to the lack of major components such as immune system and tumor microenvironment with its associated chemical and mechanical signals. The existing PDAC preclinical platforms are still far from being reliable and trustworthy to guarantee the success of a drug in clinical trials. Therefore, there is an urgent demand to innovate novel in vitro preclinical models that mirrors with precision tumor-microenvironment interface, pressure of immune system, and molecular and morphological aspects of the PDAC normally experienced within the living organ. This review outlines the traditional preclinical models of PDAC namely 2D cell lines, genetically engineered mice, and xenografts, and describing the present famous approach of 3D organoids. We offer a detailed narration of the pros and cons of each model system. Finally, we suggest the incorporation of two off-center newly born techniques named 3D bio-printing and organs-on-chip and discuss the potentials of swine models and in silico tools, as powerful new tools able to transform PDAC preclinical modeling to a whole new level and open new gates in personalized medicine.
Collapse
Affiliation(s)
- Mirna Swayden
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
25
|
Kalla D, Kind A, Schnieke A. Genetically Engineered Pigs to Study Cancer. Int J Mol Sci 2020; 21:E488. [PMID: 31940967 PMCID: PMC7013672 DOI: 10.3390/ijms21020488] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
Recent decades have seen groundbreaking advances in cancer research. Genetically engineered animal models, mainly in mice, have contributed to a better understanding of the underlying mechanisms involved in cancer. However, mice are not ideal for translating basic research into studies closer to the clinic. There is a need for complementary information provided by non-rodent species. Pigs are well suited for translational biomedical research as they share many similarities with humans such as body and organ size, aspects of anatomy, physiology and pathophysiology and can provide valuable means of developing and testing novel diagnostic and therapeutic procedures. Porcine oncology is a new field, but it is clear that replication of key oncogenic mutation in pigs can usefully mimic several human cancers. This review briefly outlines the technology used to generate genetically modified pigs, provides an overview of existing cancer models, their applications and how the field may develop in the near future.
Collapse
Affiliation(s)
| | | | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany; (D.K.); (A.K.)
| |
Collapse
|
26
|
Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. ILAR J 2019; 59:247-262. [PMID: 30476148 DOI: 10.1093/ilar/ily014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays dual roles in response to cancer. The host immune system protects against tumor formation via immunosurveillance; however, recognition of the tumor by immune cells also induces sculpting mechanisms leading to a Darwinian selection of tumor cell variants with reduced immunogenicity. Cancer immunoediting is the concept used to describe the complex interplay between tumor cells and the immune system. This concept, commonly referred to as the three E's, is encompassed by 3 distinct phases of elimination, equilibrium, and escape. Despite impressive results in the clinic, cancer immunotherapy still has room for improvement as many patients remain unresponsive to therapy. Moreover, many of the preclinical results obtained in the widely used mouse models of cancer are lost in translation to human patients. To improve the success rate of immuno-oncology research and preclinical testing of immune-based anticancer therapies, using alternative animal models more closely related to humans is a promising approach. Here, we describe 2 of the major alternative model systems: canine (spontaneous) and porcine (experimental) cancer models. Although dogs display a high rate of spontaneous tumor formation, an increased number of genetically modified porcine models exist. We suggest that the optimal immuno-oncology model may depend on the stage of cancer immunoediting in question. In particular, the spontaneous canine tumor models provide a unique platform for evaluating therapies aimed at the escape phase of cancer, while genetically engineered swine allow for elucidation of tumor-immune cell interactions especially during the phases of elimination and equilibrium.
Collapse
Affiliation(s)
- Nana H Overgaard
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | | | - Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois
| | - Lawrence B Schook
- Department of Radiology, University of Illinois, Chicago, Illinois.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, Illinois
| | - Gregers Jungersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
27
|
Nakamura K, Otake M. [Current progress of research and use of microminipigs in drug development]. Nihon Yakurigaku Zasshi 2019; 152:202-207. [PMID: 30298842 DOI: 10.1254/fpj.152.202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The use of minipigs has been increasing in the areas of pharmacology researches and drug development. The microminipig developed by Fuji Micra Inc. (Shizuoka, Japan) inherits characteristics of other pig strains showing several similarities to humans in anatomy, physiology, omnivorousness and diurnal, but at the same time has several advantages over other pig strains because of its small size which allows easy keeping, handling and dosing, and saving of test substances. The microminipig weighs about 10 kg at the age of 6 months. Canine cages can be used to keep the animal. Swine leukocyte antigens (SLA) are defined in each individual animal which is useful for testing immunological reactions. As there are many similarities in metabolic enzymes and transporters to those in humans, the microminipig is a powerful animal model for toxicokinetic studies. Unfortunately as in other minipigs the microminipig is not appropriate for embryo-fetal development studies of antibody drugs due to its poor placental transfer, but can be used for other reproductive and developmental studies. Repeat dose toxicity, safety pharmacology, immunotoxicity and local tolerance studies should be also other arenas of this animal model.
Collapse
Affiliation(s)
- Kazuichi Nakamura
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University
| | - Masayoshi Otake
- Swine and Poultry Department, Shizuoka Prefectural Research Institute of Animal Industry, Swine and Poultry Research Center
| |
Collapse
|
28
|
Bailey KL, Carlson MA. Porcine Models of Pancreatic Cancer. Front Oncol 2019; 9:144. [PMID: 30915276 PMCID: PMC6423062 DOI: 10.3389/fonc.2019.00144] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/20/2019] [Indexed: 01/29/2023] Open
Abstract
Pancreatic cancer is the fourth most common cause of cancer-related deaths in both men and women. The 5-year survival rate for metastatic pancreatic cancer is only 8%. There remains a need for improved early diagnosis and therapy for pancreatic cancer. Murine models are the current standard for preclinical study of pancreatic cancer. However, mice may not accurately reflect human biology because of a variety of differences between the two species. Remarkably, only 5-8% of anti-cancer drugs that have emerged from preclinical studies and entered clinical studies have ultimately been approved for clinical use. The cause of this poor approval rate is multi-factorial, but may in part be due to use of murine models that have limited accuracy with respect to human disease. Murine models also have limited utility in the development of diagnostic or interventional technology that require a human-sized model. So, at present, there remains a need for improved animal models of pancreatic cancer. The rationale for a porcine model of pancreatic cancer is (i) to enable development of diagnostic/therapeutic devices for which murine models have limited utility; and (ii) to have a highly predictive preclinical model in which anti-cancer therapies can be tested and optimized prior to a clinical trial. Recently, pancreatic tumors were induced in transgenic Oncopigs and porcine pancreatic ductal cells were transformed that contain oncogenic KRAS and p53-null mutations. Both techniques to induce pancreatic tumors in pigs are undergoing further refinement and expansion. The Oncopig currently is commercially available, and it is conceivable that other porcine models of pancreatic cancer may be available for general use in the near future.
Collapse
Affiliation(s)
- Katie L. Bailey
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mark A. Carlson
- Department of Surgery and Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States,Department of Surgery, VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States,*Correspondence: Mark A. Carlson
| |
Collapse
|
29
|
Xu C, Wu S, Schook LB, Schachtschneider KM. Translating Human Cancer Sequences Into Personalized Porcine Cancer Models. Front Oncol 2019; 9:105. [PMID: 30873383 PMCID: PMC6401626 DOI: 10.3389/fonc.2019.00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
The global incidence of cancer is rapidly rising, and despite an improved understanding of cancer molecular biology, immune landscapes, and advancements in cytotoxic, biologic, and immunologic anti-cancer therapeutics, cancer remains a leading cause of death worldwide. Cancer is caused by the accumulation of a series of gene mutations called driver mutations that confer selective growth advantages to tumor cells. As cancer therapies move toward personalized medicine, predictive modeling of the role driver mutations play in tumorigenesis and therapeutic susceptibility will become essential. The development of next-generation sequencing technology has made the evaluation of mutated genes possible in clinical practice, allowing for identification of driver mutations underlying cancer development in individual patients. This, combined with recent advances in gene editing technologies such as CRISPR-Cas9 enables development of personalized tumor models for prediction of treatment responses for mutational profiles observed clinically. Pigs represent an ideal animal model for development of personalized tumor models due to their similar size, anatomy, physiology, metabolism, immunity, and genetics compared to humans. Such models would support new initiatives in precision medicine, provide approaches to create disease site tumor models with designated spatial and temporal clinical outcomes, and create standardized tumor models analogous to human tumors to enable therapeutic studies. In this review, we discuss the process of utilizing genomic sequencing approaches, gene editing technologies, and transgenic porcine cancer models to develop clinically relevant, personalized large animal cancer models for use in co-clinical trials, ultimately improving treatment stratification and translation of novel therapeutic approaches to clinical practice.
Collapse
Affiliation(s)
- Chunlong Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lawrence B Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States.,Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
30
|
Tanihara F, Hirata M, Nguyen NT, Le QA, Hirano T, Takemoto T, Nakai M, Fuchimoto DI, Otoi T. Generation of a TP53-modified porcine cancer model by CRISPR/Cas9-mediated gene modification in porcine zygotes via electroporation. PLoS One 2018; 13:e0206360. [PMID: 30352075 PMCID: PMC6198999 DOI: 10.1371/journal.pone.0206360] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/11/2018] [Indexed: 01/14/2023] Open
Abstract
TP53 (which encodes p53) is one of the most frequently mutated genes in cancers. In this study, we generated TP53-mutant pigs by gene editing via electroporation of the Cas9 protein (GEEP), a process that involves introducing the Cas9 protein and single-guide RNA (sgRNA) targeting exon 3 and intron 4 of TP53 into in vitro-fertilized zygotes. Zygotes modified by the sgRNAs were transferred to recipients, two of which gave birth to a total of 11 piglets. Of those 11 piglets, 9 survived. Molecular genetic analysis confirmed that 6 of 9 live piglets carried mutations in TP53, including 2 piglets with no wild-type (WT) sequences and 4 genetically mosaic piglets with WT sequences. One mosaic piglet had 142 and 151 bp deletions caused by a combination of the two sgRNAs. These piglets were continually monitored for 16 months and three of the genome-edited pigs (50%) exhibited various tumor phenotypes that we presumed were caused by TP53 mutations. Two mutant pigs with no WT sequences developed mandibular osteosarcoma and nephroblastoma. The mosaic pig with a deletion between targeting sites of two sgRNAs exhibited malignant fibrous histiocytoma. Tumor phenotypes of TP53 mosaic mutant pigs have not been previously reported. Our results indicated that the mutations caused by gene editing successfully induced tumor phenotypes in both TP53 mosaic- and bi-allelic mutant pigs.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
- * E-mail:
| | - Maki Hirata
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Nhien Thi Nguyen
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Quynh Anh Le
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Takayuki Hirano
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Tatsuya Takemoto
- Division of Embryology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Michiko Nakai
- Division of Animal Sciences, Animal Biotechnology Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Dai-ichiro Fuchimoto
- Division of Animal Sciences, Animal Biotechnology Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Takeshige Otoi
- Laboratory of Animal Reproduction, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| |
Collapse
|
31
|
Zhang Y, Yang F. Analyzing the disease module associated with osteosarcoma via a network- and pathway-based approach. Exp Ther Med 2018; 16:2584-2592. [PMID: 30210606 PMCID: PMC6122582 DOI: 10.3892/etm.2018.6506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma is the most common type of primary malignant bone tumor observed in children and adolescents. The aim of the present study was to identify an osteosarcoma-related gene module (OSM) by looking for a dense module following the integration of signals from genome-wide association studies (GWAS) into the human protein-protein interaction (PPI) network. A dataset of somatic mutations in osteosarcoma was obtained from the dbGaP database and their testing P-values were incorporated into the PPI network from a recent study using the dmGWAS bioconductor package. An OSM containing 201 genes (OS genes) and 268 interactions, which were closely associated with immune response, intracellular signal transduction and cell activity was identified. Topological analysis of the OSM identified 11 genes, including APP, APPBP2, ATXN1, HSP90B1, IKZF1, KRTAP10-1, PAK1, PDPK1, SMAD4, SUZ12 and TP53 as potential diagnostic biomarkers for osteosarcoma. The overall survival analysis of osteosarcoma for those 11 genes based on a dataset from the Cancer Genome Atlas, identified APP, HSP90B1, SUZ12 and IKZF1 as osteosarcoma survival-related genes. The results of the present study should be helpful in understanding the diagnosis and treatment of osteosarcoma and its underlying mechanisms. In addition, the methodology used in the present study may be suitable for the analysis of other types of disease.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopaedic Microsurgery, Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| | - Fei Yang
- Department of Orthopedic Joint Surgery, Central Hospital of Zibo, Zibo, Shandong 255000, P.R. China
| |
Collapse
|
32
|
Perleberg C, Kind A, Schnieke A. Genetically engineered pigs as models for human disease. Dis Model Mech 2018; 11:11/1/dmm030783. [PMID: 29419487 PMCID: PMC5818075 DOI: 10.1242/dmm.030783] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetically modified animals are vital for gaining a proper understanding of disease mechanisms. Mice have long been the mainstay of basic research into a wide variety of diseases but are not always the most suitable means of translating basic knowledge into clinical application. The shortcomings of rodent preclinical studies are widely recognised, and regulatory agencies around the world now require preclinical trial data from nonrodent species. Pigs are well suited to biomedical research, sharing many similarities with humans, including body size, anatomical features, physiology and pathophysiology, and they already play an important role in translational studies. This role is set to increase as advanced genetic techniques simplify the generation of pigs with precisely tailored modifications designed to replicate lesions responsible for human disease. This article provides an overview of the most promising and clinically relevant genetically modified porcine models of human disease for translational biomedical research, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We briefly summarise the technologies involved and consider the future impact of recent technical advances. Summary: An overview of porcine models of human disease, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We summarise the technologies involved and potential future impact of recent technical advances.
Collapse
Affiliation(s)
- Carolin Perleberg
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Alexander Kind
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
33
|
Segatto NV, Remião MH, Schachtschneider KM, Seixas FK, Schook LB, Collares T. The Oncopig Cancer Model as a Complementary Tool for Phenotypic Drug Discovery. Front Pharmacol 2017; 8:894. [PMID: 29259556 PMCID: PMC5723300 DOI: 10.3389/fphar.2017.00894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
The screening of potential therapeutic compounds using phenotypic drug discovery (PDD) is being embraced once again by researchers and pharmaceutical companies as an approach to enhance the development of new effective therapeutics. Before the genomics and molecular biology era and the consecutive emergence of targeted-drug discovery approaches, PDD was the most common platform used for drug discovery. PDD, also known as phenotypic screening, consists of screening potential compounds in either in vitro cellular or in vivo animal models to identify compounds resulting in a desirable phenotypic change. Using this approach, the biological targets of the compounds are not taken into consideration. Suitable animal models are crucial for the continued validation and discovery of new drugs, as compounds displaying promising results in phenotypic in vitro cell-based and in vivo small animal model screenings often fail in clinical trials. Indeed, this is mainly a result of differential anatomy, physiology, metabolism, immunology, and genetics between humans and currently used pre-clinical small animal models. In contrast, pigs are more predictive of therapeutic treatment outcomes in humans than rodents. In addition, pigs provide an ideal platform to study cancer due to their similarities with humans at the anatomical, physiological, metabolic, and genetic levels. Here we provide a mini-review on the reemergence of PDD in drug development, highlighting the potential of porcine cancer models for improving pre-clinical drug discovery and testing. We also present precision medicine based genetically defined swine cancer models developed to date and their potential as biomedical models.
Collapse
Affiliation(s)
- Natalia V. Segatto
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Mariana H. Remião
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | | | - Fabiana K. Seixas
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| | - Tiago Collares
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
34
|
Shen Y, Xu K, Yuan Z, Guo J, Zhao H, Zhang X, Zhao L, Qing Y, Li H, Pan W, Jia B, Zhao HY, Wei HJ. Efficient generation of P53 biallelic knockout Diannan miniature pigs via TALENs and somatic cell nuclear transfer. J Transl Med 2017; 15:224. [PMID: 29100547 PMCID: PMC5670695 DOI: 10.1186/s12967-017-1327-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/27/2017] [Indexed: 11/13/2022] Open
Abstract
Background Pigs have many features that make them attractive as biomedical models for various diseases, including cancer. P53 is an important tumor suppressor gene that exerts a central role in protecting cells from oncogenic transformation and is mutated in a large number of human cancers. P53 mutations occur in almost every type of tumor and in over 50% of all tumors. In a recent publication, pigs with a mutated P53 gene were generated that resulted in lymphoma and renal and osteogenic tumors. However, approximately 80% of human tumors have dysfunctional P53. A P53-deficient pig model is still required to elucidate. Methods Transcription activator-like effector nucleases (TALENs) were designed to target porcine P53 exon 4. The targeting activity was evaluated using a luciferase SSA recombination assay. P53 biallelic knockout (KO) cell lines were established from single-cell colonies of fetal fibroblasts derived from Diannan miniature pigs followed by electroporation with TALENs plasmids. One cell line was selected as the donor cell line for somatic cell nuclear transfer (SCNT) for the generation of P53 KO pigs. P53 KO stillborn fetuses and living piglets were obtained. Gene typing of the collected cloned individuals was performed by T7EI assay and sequencing. Fibroblast cells from Diannan miniature piglets with a P53 biallelic knockout or wild type were analyzed for the P53 response to doxorubicin treatment by confocal microscopy and western blotting. Results The luciferase SSA recombination assay revealed that the targeting activities of the designed TALENs were 55.35-fold higher than those of the control. Eight cell lines (8/19) were mutated for P53, and five of them were biallelic knockouts. One of the biallelic knockout cell lines was selected as nuclear donor cells for SCNT. The cloned embryos were transferred into five recipient gilts, three of them becoming pregnant. Five live fetuses were obtained from one surrogate by caesarean section after 38 days of gestation for genotyping. Finally, six live piglets and one stillborn piglet were collected from two recipients by caesarean section. Sequencing analyses of the target site confirmed the P53 biallelic knockout in all fetuses and piglets, consistent with the genotype of the donor cells. The qPCR analysis showed that the expression of the P53 mRNA had significant reduction in various tissues of the knockout piglets. Furthermore, confocal microscopy and western blotting analyses demonstrated that the fibroblast cells of Diannan miniature piglets with a P53 biallelic knockout were defective in mediating DNA damage when incubated with doxorubicin. Conclusion TALENs combined with SCNT was successfully used to generate P53 KO Diannan miniature pigs. Although these genetically engineered Diannan miniature pigs had no tumorigenic signs, the P53 gene was dysfunctional. We believe that these pigs will provide powerful new resources for preclinical oncology and basic cancer research. Electronic supplementary material The online version of this article (10.1186/s12967-017-1327-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youfeng Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Kaixiang Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Zaimei Yuan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jianxiong Guo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
| | - Heng Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xuezeng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Key Laboratory Animal Nutrition and Feed of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Lu Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,Key Laboratory Animal Nutrition and Feed of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China
| | - Yubo Qing
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Honghui Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Weirong Pan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Baoyu Jia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hong-Ye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China. .,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China. .,Key Laboratory Animal Nutrition and Feed of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
35
|
Abstract
Osteosarcoma is the predominant form of bone cancer, affecting mostly adolescents. Recent progress made in molecular genetic studies of osteosarcoma has changed our view on the cause of the disease and ongoing therapeutic approaches for patients. As we draw closer to gaining more complete catalogs of candidate cancer driver genes in common forms of cancer, the landscape of somatic mutations in osteosarcoma is emerging from its first phase. In this review, we summarize recent whole genome and/or whole exome genomic studies, and then put these findings in the context of genetic hallmarks of somatic mutations and mutational processes in human osteosarcoma. One of the lessons learned here is that the extent of somatic mutations and complexity of the osteosarcoma genome are similar to that of common forms of adult cancer. Thus, a much higher number of samples than those currently obtained are needed to complete the catalog of driver mutations in human osteosarcoma. In parallel, genetic studies in other species have revealed candidate driver genes and their roles in the genesis of osteosarcoma. This review also summarizes newly identified drivers in genetically engineered mouse models (GEMMs) and discusses our understanding of the impact of nature and number of drivers on tumor latency, subtypes, and metastatic potentials of osteosarcoma. It is becoming apparent that a synergistic team composed of three drivers (one 'first driver' and two 'synergistic drivers') may be required to generate an animal model that recapitulates aggressive osteosarcoma with a short latency. Finally, new cancer therapies are urgently needed to improve survival rate and quality of life for osteosarcoma patients. Several vulnerabilities in osteosarcoma are illustrated in this review to exemplify the opportunities for next generation molecularly targeted therapies. However, much work remains in order to complete our understanding of the somatic mutation basis of osteosarcoma, to develop reliable animal models of human disease, and to apply this information to guide new therapeutic approaches for reducing morbidity and mortality of this rare disease.
Collapse
Affiliation(s)
- Kirby Rickel
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Fang Fang
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jianning Tao
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA; Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
36
|
Schachtschneider KM, Schwind RM, Newson J, Kinachtchouk N, Rizko M, Mendoza-Elias N, Grippo P, Principe DR, Park A, Overgaard NH, Jungersen G, Garcia KD, Maker AV, Rund LA, Ozer H, Gaba RC, Schook LB. The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform. Front Oncol 2017; 7:190. [PMID: 28879168 PMCID: PMC5572387 DOI: 10.3389/fonc.2017.00190] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/10/2017] [Indexed: 12/20/2022] Open
Abstract
Despite an improved understanding of cancer molecular biology, immune landscapes, and advancements in cytotoxic, biologic, and immunologic anti-cancer therapeutics, cancer remains a leading cause of death worldwide. More than 8.2 million deaths were attributed to cancer in 2012, and it is anticipated that cancer incidence will continue to rise, with 19.3 million cases expected by 2025. The development and investigation of new diagnostic modalities and innovative therapeutic tools is critical for reducing the global cancer burden. Toward this end, transitional animal models serve a crucial role in bridging the gap between fundamental diagnostic and therapeutic discoveries and human clinical trials. Such animal models offer insights into all aspects of the basic science-clinical translational cancer research continuum (screening, detection, oncogenesis, tumor biology, immunogenicity, therapeutics, and outcomes). To date, however, cancer research progress has been markedly hampered by lack of a genotypically, anatomically, and physiologically relevant large animal model. Without progressive cancer models, discoveries are hindered and cures are improbable. Herein, we describe a transgenic porcine model—the Oncopig Cancer Model (OCM)—as a next-generation large animal platform for the study of hematologic and solid tumor oncology. With mutations in key tumor suppressor and oncogenes, TP53R167H and KRASG12D, the OCM recapitulates transcriptional hallmarks of human disease while also exhibiting clinically relevant histologic and genotypic tumor phenotypes. Moreover, as obesity rates increase across the global population, cancer patients commonly present clinically with multiple comorbid conditions. Due to the effects of these comorbidities on patient management, therapeutic strategies, and clinical outcomes, an ideal animal model should develop cancer on the background of representative comorbid conditions (tumor macro- and microenvironments). As observed in clinical practice, liver cirrhosis frequently precedes development of primary liver cancer or hepatocellular carcinoma. The OCM has the capacity to develop tumors in combination with such relevant comorbidities. Furthermore, studies on the tumor microenvironment demonstrate similarities between OCM and human cancer genomic landscapes. This review highlights the potential of this and other large animal platforms as transitional models to bridge the gap between basic research and clinical practice.
Collapse
Affiliation(s)
| | - Regina M Schwind
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | | | | | - Mark Rizko
- College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Nasya Mendoza-Elias
- College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Paul Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Daniel R Principe
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex Park
- College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Nana H Overgaard
- Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gregers Jungersen
- Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kelly D Garcia
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL, United States
| | - Ajay V Maker
- Department of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, United States
| | - Laurie A Rund
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Howard Ozer
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ron C Gaba
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Lawrence B Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
37
|
Oncopig Soft-Tissue Sarcomas Recapitulate Key Transcriptional Features of Human Sarcomas. Sci Rep 2017; 7:2624. [PMID: 28572589 PMCID: PMC5453942 DOI: 10.1038/s41598-017-02912-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Human soft-tissue sarcomas (STS) are rare mesenchymal tumors with a 5-year survival rate of 50%, highlighting the need for further STS research. Research has been hampered by limited human sarcoma cell line availability and the large number of STS subtypes, making development of STS cell lines and animal models representative of the diverse human STS subtypes critical. Pigs represent ideal human disease models due to their similar size, anatomy, metabolism, and genetics compared to humans. The Oncopig encodes inducible KRASG12D and TP53R167H transgenes, allowing for STS modeling in a spatial and temporal manner. This study utilized Oncopig STS cell line (fibroblast) and tumor (leiomyosarcoma) RNA-seq data to compare Oncopig and human STS expression profiles. Altered expression of 3,360 and 7,652 genes was identified in Oncopig STS cell lines and leiomyosarcomas, respectively. Transcriptional hallmarks of human STS were observed in Oncopig STS, including altered TP53 signaling, Wnt signaling activation, and evidence of epigenetic reprogramming. Furthermore, master regulators of Oncopig STS expression were identified, including FOSL1, which was previously identified as a potential human STS therapeutic target. These results demonstrate the Oncopig STS model’s ability to mimic human STS transcriptional profiles, providing a valuable resource for sarcoma research and cell line development.
Collapse
|
38
|
Abstract
How can we treat cancer more effectively? Traditionally, tumours from the same anatomical site are treated as one tumour entity. This concept has been challenged by recent breakthroughs in cancer genomics and translational research that have enabled molecular tumour profiling. The identification and validation of cancer drivers that are shared between different tumour types, spurred the new paradigm to target driver pathways across anatomical sites by off-label drug use, or within so-called basket or umbrella trials which are designed to test whether molecular alterations in one tumour entity can be extrapolated to all others. However, recent clinical and preclinical studies suggest that there are tissue- and cell type-specific differences in tumorigenesis and the organization of oncogenic signalling pathways. In this Opinion article, we focus on the molecular, cellular, systemic and environmental determinants of organ-specific tumorigenesis and the mechanisms of context-specific oncogenic signalling outputs. Investigation, recognition and in-depth biological understanding of these differences will be vital for the design of next-generation clinical trials and the implementation of molecularly guided cancer therapies in the future.
Collapse
Affiliation(s)
- Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Marc Schmidt-Supprian
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Medicine III, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
| | - Roland Rad
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Dieter Saur
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 München, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|