1
|
Ma G, Yang P, Lu T, Deng X, Meng L, Xie H, Zhou J, Xiao X, Tang X. Comparative analysis of oral, placental, and gut microbiota characteristics, functional features and microbial networks in healthy pregnant women. J Reprod Immunol 2025; 169:104535. [PMID: 40315739 DOI: 10.1016/j.jri.2025.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/14/2025] [Accepted: 04/27/2025] [Indexed: 05/04/2025]
Abstract
AIM Most studies on pregnant women focus on analyzing individual microbial species at specific body sites. This study aims to explore the characteristics, functions, and microbial networks of the oral, placental, and gut microbiota in healthy pregnant women. METHODS A total of 23 healthy pregnant women were enrolled in this study. We analyzed the microbial composition, functional profiles, and microbial networks of the oral, placental, and gut microbiota using 16S rRNA gene sequencing. RESULTS Our findings revealed significant differences in microbial composition across these three sites. The placental microbiota contained a relatively high proportion of low-abundance microorganisms, which were more diverse and evenly distributed compared to the gut and oral microbiota. The microbial composition at each site displayed distinct characteristics, likely influenced by environmental, physiological, and biological factors. The placental microbiota exhibited a complex network of tightly interconnected genera, whereas the gut microbiota showed sparser connections, with fewer closely related genera compared to the placental and oral microbiota. Functional differences were also observed among the three microbiota, with each playing a unique role in maintaining host health and metabolic balance. While the oral and gut microbiota shared functional similarities, the placental microbiota exhibited distinct functional characteristics. CONCLUSIONS This study provides valuable insights into the microbial communities of healthy pregnant women, offering important data for microbiological research during pregnancy and laying the foundation for future investigations into the roles of these microbial communities in maternal health.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Yang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China
| | - Tong Lu
- Department of Otolaryngology, Shenzhen Long Hua District Central Hospital, Shenzhen, China
| | - Xinyi Deng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lulu Meng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haishan Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Xie Z, Chen Z, Chai Y, Yao W, Ma G. Unveiling the placental bacterial microbiota: implications for maternal and infant health. Front Physiol 2025; 16:1544216. [PMID: 40161970 PMCID: PMC11949977 DOI: 10.3389/fphys.2025.1544216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
The human placenta is a unique organ that forms under specific physiological conditions and plays a crucial role in nutrient and metabolite exchange between the mother and fetus. Research on the placenta is important for understanding maternal-fetal diseases. Traditionally, the placenta was considered "sterile," but advancements in detection techniques have revealed the presence of a low level of microorganisms. This discovery challenges the traditional notion that the uterine placenta is sterile. The revelation of this truth marks a significant breakthrough in medical research, prompting more researchers to focus on this vital organ, the placenta. Placental microbial communities may originate from the oral, vaginal, and intestinal microbiota of expectant mothers. These microorganisms may reach the maternal-fetal interface, collectively shaping the placental microbiota and contributing to the composition of normal placental microbial communities. Abnormal placental microbial communities may be associated with some pregnancy complications and fetal developmental issues such as preterm birth, gestational hypertension, fetal growth restriction, and gestational diabetes mellitus. Intervention strategies targeting microbial communities, which include modulation of placental microbiota composition or function, such as probiotics, may help prevent or treat complications related to abnormal placental microbiota during pregnancy.
Collapse
Affiliation(s)
- Zhuojun Xie
- General Medicine Department, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Chai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wang Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Chang CJ, Bai YC, Jiang H, Ma QW, Hsieh CH, Liu CC, Huang HC, Chen TJ. Microbiome analysis of serum extracellular vesicles in gestational diabetes patients. Acta Diabetol 2025; 62:329-341. [PMID: 39570375 DOI: 10.1007/s00592-024-02358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 11/22/2024]
Abstract
AIM Gestational Diabetes Mellitus (GDM) is among the most common complications during pregnancy, posing serious risks to both the patient's and offspring's health and well-being. Alterations in the maternal microbiome are closely associated with the pathogenesis of GDM, with Extracellular Vesicles (EVs) facilitating communication between microbiota and the host. However, little is known about the relationship between the microbial composition within EVs and the pathogenesis of GDM. Therefore, this study aims to characterize the microbiota within serum EVs of GDM Patients (GDM group) and to identify microbial communities that significantly differ from those in Women With Normal Pregnancies (NonGDM group). METHODS Blood samples were collected from both groups of patients, and EVs derived from serum were isolated via centrifugation. Identification and characterization of EVs were performed using transmission electron microscopy and nanoparticle flow cytometry. Microbiome analysis of serum EVs from both groups was conducted using 16S rRNA sequencing. RESULTS Results indicated altered diversity in microbial communities within serum EVs of GDM patients. Further analysis at the phylum, family, genus, and species levels revealed that Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes were the dominant taxa in the EVs of both the NonGDM and GDM groups. Specifically, Actinobacteria and Firmicutes showed increased relative abundance in GDM group EVs compared to NonGDM, leading to a higher Firmicutes/Bacteroidetes ratio, while Proteobacteria and Bacteroidetes exhibited decreased relative abundance. Tax4Fun analysis revealed enrichment of microbial functions related to amino acid metabolism, carbohydrate metabolism, energy metabolism, and metabolism of cofactors and vitamins in both patient groups. CONCLUSION In conclusion, this study reveals a potential correlation between changes in the microbial composition and diversity of serum EVs and the onset and development of GDM. Furthermore, changes in the relative abundance of Actinobacteria, Proteobacteria, Bacteroidetes, and Firmicutes may play an important role in the pathogenesis of GDM.
Collapse
Affiliation(s)
- Chih-Jung Chang
- School of Medicine and Medical Research Center, Xiamen Chang Gung Hospital Huaqiao University, Fujian, China
| | - Yu-Ci Bai
- Department of Obstetrics and Gynecology, Xiamen Chang Gung Hospital Huaqiao University, Fujian, China
| | - Hong Jiang
- Reproductive Medicine Center, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Qi-Wen Ma
- School of Medicine and Medical Research Center, Xiamen Chang Gung Hospital Huaqiao University, Fujian, China
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Chien Huang
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City, Taiwan.
| | - Tien-Jui Chen
- Department of Laboratory Medicine, Yeezen General Hospital, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Ma G, Chen Z, Xie Z, Liu J, Xiao X. Mechanisms underlying changes in intestinal permeability during pregnancy and their implications for maternal and infant health. J Reprod Immunol 2025; 168:104423. [PMID: 39793281 DOI: 10.1016/j.jri.2025.104423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/01/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Proper regulation of intestinal permeability is essential for maintaining the integrity of the intestinal mucosal barrier. An abnormal increase in permeability can significantly contribute to the onset and progression of various diseases, including autoimmune disorders, metabolic conditions, allergies, and inflammatory bowel diseases. The potential connection between intestinal permeability and maternal health during pregnancy is increasingly recognized, yet a comprehensive review remains lacking. Pregnancy triggers a series of physiological structural adaptations and significant hormonal fluctuations that collectively contribute to an increase in intestinal permeability. Although an increase in intestinal permeability is typically a normal physiological response during pregnancy, an abnormal rise is associated with immune dysregulation, metabolic disorders, and various pregnancy-related complications, such as recurrent pregnancy loss, gestational diabetes mellitus, overweight and obesity during pregnancy, intrahepatic cholestasis of pregnancy, and preeclampsia. This paper discusses the components of the intestinal mucosal barrier, the concept of intestinal permeability and its measurement methods, and the mechanisms and physiological significance of increased intestinal permeability during pregnancy. It thoroughly explores the association between abnormal intestinal permeability during pregnancy and maternal diseases, aiming to provide evidence for the pathophysiology of disease development in pregnant women. Additionally, the paper examines intervention methods, such as gut microbiota modulation and nutritional interventions, to regulate intestinal permeability during pregnancy, improve immune and metabolic states, and offer feasible strategies for the prevention and adjuvant treatment of clinical pregnancy complications.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Zhongsheng Chen
- Department of Colorectal Cancer Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Zhuojun Xie
- General Medicine Department, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - JinXiang Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China.
| |
Collapse
|
5
|
Su Z, Liu L, Zhang J, Guo J, Wang G, Zeng X. A scientometric visualization analysis of the gut microbiota and gestational diabetes mellitus. Front Microbiol 2025; 16:1485560. [PMID: 39980689 PMCID: PMC11841407 DOI: 10.3389/fmicb.2025.1485560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/08/2025] [Indexed: 02/22/2025] Open
Abstract
Background The prevalence of gestational diabetes mellitus (GDM), a condition that is widespread globally, is increasing. The relationship between the gut microbiota and GDM has been a subject of research for nearly two decades, yet there has been no bibliometric analysis of this correlation. This study aimed to use bibliometrics to explore the relationship between the gut microbiota and GDM, highlighting emerging trends and current research hotspots in this field. Results A total of 394 papers were included in the analysis. China emerged as the preeminent nation in terms of the number of publications on the subject, with 128 papers (32.49%), whereas the United States had the most significant impact, with 4,874 citations. The University of Queensland emerged as the most prolific institution, contributing 18 publications. Marloes Dekker Nitert was the most active author with 16 publications, and Omry Koren garnered the most citations, totaling 154. The journal Nutrients published the most studies (28 publications, 7.11%), whereas PLoS One was the most commonly co-cited journal, with a total of 805 citations. With respect to keywords, research focuses can be divided into 4 clusters, namely, "the interrelationship between the gut microbiota and pregnancy, childbirth," "the relationship between adverse metabolic outcomes and GDM," "the gut microbiota composition and metabolic mechanisms" and "microbiota and ecological imbalance." Key areas of focus include the interactions between the gut microbiota and individuals with GDM, as well as the formation and inheritance of the gut microbiota. Increasing attention has been given to the impact of probiotic supplementation on metabolism and pregnancy outcomes in GDM patients. Moreover, ongoing research is exploring the potential of the gut microbiota as a biomarker for GDM. These topics represent both current and future directions in this field. Conclusion This study provides a comprehensive knowledge map of the gut microbiota and GDM, highlights key research areas, and outlines potential future directions.
Collapse
Affiliation(s)
- Zehao Su
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Lina Liu
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jian Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Jingjing Guo
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Guan Wang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Saadaoui M, Djekidel MN, Murugesan S, Kumar M, Elhag D, Singh P, Kabeer BSA, Marr AK, Kino T, Brummaier T, McGready R, Nosten F, Chaussabel D, Terranegra A, Al Khodor S. Exploring the composition of placental microbiome and its potential origin in preterm birth. Front Cell Infect Microbiol 2025; 14:1486409. [PMID: 39885963 PMCID: PMC11779731 DOI: 10.3389/fcimb.2024.1486409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/16/2024] [Indexed: 02/01/2025] Open
Abstract
Introduction For years, the placenta was believed to be sterile, but recent studies reveal it hosts a unique microbiome. Despite these findings, significant questions remain about the origins of the placental microbiome and its effects on pregnancy and fetal health. Some studies suggest it may originate from the vaginal tract, while others indicate that oral bacteria can enter the maternal bloodstream and seed the placenta. However, research analyzing the vaginal, oral, and placental microbiomes within the same cohort is lacking. Additionally, it's unclear whether the placental microbiome differs between healthy pregnancies and those with complications like preterm birth (PTB), which remains a leading cause of neonatal morbidity and mortality worldwide. Methods In this study, we performed 16S rRNA gene sequencing to investigate the composition of the oral and placental microbiome in samples collected from 18 women who experienced PTB and 36 matched controls who delivered at term (TB), all of whom were part of the Molecular Signature in Pregnancy (MSP) study. We leveraged on the multisite microbiome sampling from the MSP participants and on our previously published vaginal microbiome data to investigate the potential origins of the placental microbiome and assess whether its composition varies between healthy and complicated pregnancies. Results and Discussion Our analysis revealed distinct profiles in the oral microbiome of PTB subjects compared to those who delivered at term. Specifically, we observed an increased abundance of Treponema maltophilum, Bacteroides sp, Mollicutes, Prevotella buccae, Leptotrichia, Prevotella_sp_Alloprevotella, in the PTB group. Importantly, Treponema maltophilum species showed higher abundance in the PTB group during the second trimester, suggesting its potential use as biomarkers. When we assessed the placenta microbiome composition, we found that Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were the most dominant phyla. Interestingly, microorganisms such as Ureaplasma urealyticum were more abundant in PTB placenta samples. Our findings suggest that the placenta microbiome could originate from the oral or vaginal cavities, with a notable increase in the crosstalk between the vaginal and placental sites in cases of PTB. Specifically, our data revealed that in PTB cases, the placental microbiome exhibited a closer resemblance to the vaginal microbiome, whereas in term pregnancies, the placental microbiome was similar to the oral microbiome.
Collapse
Affiliation(s)
| | | | | | - Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | - Duaa Elhag
- Research Department, Sidra Medicine, Doha, Qatar
| | - Parul Singh
- Research Department, Sidra Medicine, Doha, Qatar
| | - Basirudeen Syed Ahamed Kabeer
- Research Department, Sidra Medicine, Doha, Qatar
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha University, Chennai, India
| | | | | | - Tobias Brummaier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Damien Chaussabel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | | | | |
Collapse
|
7
|
Kim YH, Lee TY, Kim HY, Jeong SJ, Han JH, Shin JE, Lee JH, Kang CM. Natal factors influencing newborn's oral microbiome diversity. Sci Rep 2024; 14:28161. [PMID: 39548168 PMCID: PMC11568190 DOI: 10.1038/s41598-024-78609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
The early microbiota of neonates is crucial for developing the postnatal immune system and establishing normal physiological, metabolic, and neurological functions. This study aimed to investigate the factors influencing the diversity of the neonatal oral microbiome, including mother-to-newborn microbial transmission. The study includes a prospective cohort comprising 73 mothers and 87 neonates and a retrospective cohort comprising 991 mothers and 1,121 neonates. Samples from the maternal cervix and neonatal gastric, bronchial, and oral cavities were analyzed using culture-based methods. Neonatal oral swab samples were also analyzed using 16S rRNA gene sequencing to characterize microbial diversity and composition. Similar genera were detected in the neonatal gastric, bronchial, and oral samples, and the neonatal gastric culture was the most similar to the maternal cervical culture. In addition to mother-to-newborn microbial transmission, various natal factors including birth type, birth weight, delivery mode, maternal chorioamnionitis, maternal diabetes and the presence of microbes in other sites influenced neonatal oral microbiome diversity. Among these factors, the birth type was the most significant, and preterm neonates exhibited decreased oral microbiome diversity, with fewer beneficial bacteria and more pathogens. These findings could serve as a baseline for research on the establishment of the oral microbiota in preterm neonates and its health implications.
Collapse
Affiliation(s)
- Yoon-Hee Kim
- Department of Pediatric Dentistry, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Tae Yang Lee
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Republic of Korea
- Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | | | - Su Jin Jeong
- Statistics Support Part, Medical Science Research Institute, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Jung Ho Han
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Eun Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Ho Lee
- Department of Pediatric Dentistry, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea
- Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Chung-Min Kang
- Department of Pediatric Dentistry, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seoul, 03722, Republic of Korea.
- Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Hummel G, Aagaard K. Arthropods to Eutherians: A Historical and Contemporary Comparison of Sparse Prenatal Microbial Communities Among Animalia Species. Am J Reprod Immunol 2024; 92:e13897. [PMID: 39140417 DOI: 10.1111/aji.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Since the advent of next-generation sequencing, investigators worldwide have sought to discern whether a functional and biologically or clinically relevant prenatal microbiome exists. One line of research has led to the hypothesis that microbial DNA detected in utero/in ovo or prior to birth/hatching is a result of contamination and does not belong to viable and functional microbes. Many of these preliminary evaluations have been conducted in humans, mice, and nonhuman primates due to sample and specimen availability. However, a comprehensive review of the literature across animal species suggests organisms that maintain an obligate relationship with microbes may act as better models for interrogating the selective pressures placed on vertical microbial transfer over traditional laboratory species. To date, studies in humans and viviparous laboratory species have failed to illustrate the clear presence and transfer of functional microbes in utero. Until a ground truth regarding the status and relevance of prenatal microbes can be ascertained, it is salient to conduct parallel investigations into the prevalence of a functional prenatal microbiome across the developmental lifespan of multiple organisms in the kingdom Animalia. This comprehensive understanding is necessary not only to determine the role of vertically transmitted microbes and their products in early human health but also to understand their full One Health impact. This review is among the first to compile such comprehensive primary conclusions from the original investigator's conclusions, and hence collectively illustrates that prenatal microbial transfer is supported by experimental evidence arising from over a long and rigorous scientific history encompassing a breadth of species from kingdom Animalia.
Collapse
Affiliation(s)
- Gwendolynn Hummel
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| | - Kjersti Aagaard
- Departments of Obstetrics and Gynecology (Division of Maternal-Fetal Medicine) and Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
9
|
Biete M, Vasudevan S. Gestational diabetes mellitus: Impacts on fetal neurodevelopment, gut dysbiosis, and the promise of precision medicine. Front Mol Biosci 2024; 11:1420664. [PMID: 39055983 PMCID: PMC11269231 DOI: 10.3389/fmolb.2024.1420664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a common metabolic disorder affecting approximately 16.5% of pregnancies worldwide and causing significant health concerns. GDM is a serious pregnancy complication caused by chronic insulin resistance in the mother and has been associated with the development of neurodevelopmental disorders in offspring. Emerging data support the notion that GDM affects both the maternal and fetal microbiome, altering the composition and function of the gut microbiota, resulting in dysbiosis. The observed dysregulation of microbial presence in GDM pregnancies has been connected to fetal neurodevelopmental problems. Several reviews have focused on the intricate development of maternal dysbiosis affecting the fetal microbiome. Omics data have been instrumental in deciphering the underlying relationship among GDM, gut dysbiosis, and fetal neurodevelopment, paving the way for precision medicine. Microbiome-associated omics analyses help elucidate how dysbiosis contributes to metabolic disturbances and inflammation, linking microbial changes to adverse pregnancy outcomes such as those seen in GDM. Integrating omics data across these different layers-genomics, transcriptomics, proteomics, metabolomics, and microbiomics-offers a comprehensive view of the molecular landscape underlying GDM. This review outlines the affected pathways and proposes future developments and possible personalized therapeutic interventions by integrating omics data on the maternal microbiome, genetics, lifestyle factors, and other relevant biomarkers aimed at identifying women at high risk of developing GDM. For example, machine learning tools have emerged with powerful capabilities to extract meaningful insights from large datasets.
Collapse
Affiliation(s)
| | - Sona Vasudevan
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
10
|
Heinz AT, Grumaz S, Slavetinsky C, Döring M, Queudeville M, Handgretinger R, Ebinger M. No evidence on infectious DNA-based agents in pediatric acute lymphoblastic leukemia using whole metagenome shotgun sequencing. Front Cell Infect Microbiol 2024; 14:1355787. [PMID: 38975323 PMCID: PMC11224432 DOI: 10.3389/fcimb.2024.1355787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/24/2024] [Indexed: 07/09/2024] Open
Abstract
The etiology of pediatric acute lymphatic leukemia (ALL) is still unclear. Whole-metagenome shotgun sequencing of bone marrow samples in patients with treatment-naïve ALL (n=6) was performed for untargeted investigation of bacterial and viral DNA. The control group consisted of healthy children (n=4) and children with non-oncologic diseases (n=2) undergoing bone marrow sampling. Peripheral blood of all participants was investigated at the same time. After bioinformatical elimination of potential contaminants by comparison with the employed controls, no significant amounts of microbial or viral DNA were identified.
Collapse
Affiliation(s)
- Amadeus T. Heinz
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Tuebingen, Tuebingen, Germany
- Stuttgart Cancer Center, Zentrum für Kinder-, Jugend- und Frauenmedizin (Olgahospital), Pädiatrie 5 (Pädiatrische Onkologie, Hämatologie, Immunologie), Klinikum der Landeshauptstadt Stuttgart, Stuttgart, Germany
| | | | - Christoph Slavetinsky
- Department of Pediatric Surgery and Urology, University Children´s Hospital Tuebingen, Tuebingen, Germany
| | - Michaela Döring
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Tuebingen, Tuebingen, Germany
| | - Manon Queudeville
- Department for Stem Cell Transplantation and Immunology, Klinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Martin Ebinger
- Department of Pediatric Hematology and Oncology, University Children´s Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
11
|
Lu X, Shi Z, Jiang L, Zhang S. Maternal gut microbiota in the health of mothers and offspring: from the perspective of immunology. Front Immunol 2024; 15:1362784. [PMID: 38545107 PMCID: PMC10965710 DOI: 10.3389/fimmu.2024.1362784] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Due to the physiological alteration during pregnancy, maternal gut microbiota changes following the metabolic processes. Recent studies have revealed that maternal gut microbiota is closely associated with the immune microenvironment in utero during pregnancy and plays a vital role in specific pregnancy complications, including preeclampsia, gestational diabetes, preterm birth and recurrent miscarriages. Some other evidence has also shown that aberrant maternal gut microbiota increases the risk of various diseases in the offspring, such as allergic and neurodevelopmental disorders, through the immune alignment between mother and fetus and the possible intrauterine microbiota. Probiotics and the high-fiber diet are effective inventions to prevent mothers and fetuses from diseases. In this review, we summarize the role of maternal gut microbiota in the development of pregnancy complications and the health condition of future generations from the perspective of immunology, which may provide new therapeutic strategies for the health management of mothers and offspring.
Collapse
Affiliation(s)
- Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Zhan Shi
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
12
|
Liu S, Liu X, Guo J, Yang R, Wang H, Sun Y, Chen B, Dong R. The Association Between Microplastics and Microbiota in Placentas and Meconium: The First Evidence in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17774-17785. [PMID: 36269573 DOI: 10.1021/acs.est.2c04706] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Pregnancy and infancy are vulnerable times for detrimental environmental exposures. However, the exposure situation of microplastics (MPs) for mother-infant pairs and the adverse health effect of MPs are largely unknown. Therefore, we explored MP exposure in placentas and meconium samples, and the potential correlation of MP exposure with microbiota in placentas and meconium. A total of 18 mother-infant pairs were effectively recruited from Shanghai, China. The study required pregnant women to provide placentas and meconium samples. An Agilent 8700 laser infrared imaging spectrometer (LDIR) was applied to identify MPs. Microbiota detection was identified by 16S rRNA sequencing. Sixteen types of MPs were found in all matrices, and polyamide (PA) and polyurethane (PU) were the major types we identified. MPs detected in samples with a size of 20-50 μm were more than 76.46%. At the phylum level, both placenta and meconium microbiota were mainly composed of Proteobacteria, Bacteroidota, and Firmicutes. We also found some significant differences between placenta and meconium microbiota in β-diversity and gut composition. Additionally, we found polystyrene was inversely related with the Chao index of meconium microbiota. Polyethylene was consistently inversely correlated with several genera of placenta microbiota. The total MPs, PA, and PU consistently impacted several genera of meconium microbiota. In conclusion, MPs are ubiquitous in placentas and meconium samples, indicating the wide exposure of pregnant women and infants. Moreover, our findings may support a link between high concentration of MPs and microbiota genera in placentas and meconium. Additionally, there were several significant associations between the particle size of MPs in 50-100 μm and meconium microbiota.
Collapse
Affiliation(s)
- Shaojie Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Xinyuan Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Jialin Guo
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Ruoru Yang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Hangwei Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Yongyun Sun
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
| | - Bo Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
- Institute of Nutrition, Fudan University, Shanghai 200032, China
| | - Ruihua Dong
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China
- Institute of Nutrition, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Borka Balas R, Meliț LE, Lupu A, Lupu VV, Mărginean CO. Prebiotics, Probiotics, and Synbiotics-A Research Hotspot for Pediatric Obesity. Microorganisms 2023; 11:2651. [PMID: 38004665 PMCID: PMC10672778 DOI: 10.3390/microorganisms11112651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Childhood obesity is a major public health problem worldwide with an increasing prevalence, associated not only with metabolic syndrome, insulin resistance, hypertension, dyslipidemia, and non-alcoholic fatty liver disease (NAFLD), but also with psychosocial problems. Gut microbiota is a new factor in childhood obesity, which can modulate the blood lipopolysaccharide levels, the satiety, and fat distribution, and can ensure additional calories to the host. The aim of this review was to assess the differences and the impact of the gut microbial composition on several obesity-related complications such as metabolic syndrome, NAFLD, or insulin resistance. Early dysbiosis was proven to be associated with an increased predisposition to obesity. Depending on the predominant species, the gut microbiota might have either a positive or negative impact on the development of obesity. Prebiotics, probiotics, and synbiotics were suggested to have a positive effect on improving the gut microbiota and reducing cardio-metabolic risk factors. The results of clinical trials regarding probiotic, prebiotic, and synbiotic administration in children with metabolic syndrome, NAFLD, and insulin resistance are controversial. Some of them (Lactobacillus rhamnosus bv-77, Lactobacillus salivarius, and Bifidobacterium animalis) were proven to reduce the body mass index in obese children, and also improve the blood lipid content; others (Bifidobacterium bifidum, Bifidobacterium longum, Lactobacillus acidophilus, Lacticaseibacillus rhamnosus, Enterococcus faecium, and fructo-oligosaccharides) failed in proving any effect on lipid parameters and glucose metabolism. Further studies are necessary for understanding the mechanism of the gut microbiota in childhood obesity and for developing low-cost effective strategies for its management.
Collapse
Affiliation(s)
- Reka Borka Balas
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Lorena Elena Meliț
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| | - Ancuța Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Vasile Valeriu Lupu
- Department of Pediatrics, University of Medicine and Pharmacy Gr. T. Popa Iași, Universității Street No 16, 700115 Iași, Romania; (A.L.); (V.V.L.)
| | - Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (R.B.B.); (C.O.M.)
| |
Collapse
|
14
|
Dias S, Pheiffer C, Adam S. The Maternal Microbiome and Gestational Diabetes Mellitus: Cause and Effect. Microorganisms 2023; 11:2217. [PMID: 37764061 PMCID: PMC10535124 DOI: 10.3390/microorganisms11092217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a growing public health concern that affects many pregnancies globally. The condition is associated with adverse maternal and neonatal outcomes including gestational hypertension, preeclampsia, placental abruption, preterm birth, stillbirth, and fetal growth restriction. In the long-term, mothers and children have an increased risk of developing metabolic diseases such as type 2 diabetes and cardiovascular disease. Accumulating evidence suggest that alterations in the maternal microbiome may play a role in the pathogenesis of GDM and adverse pregnancy outcomes. This review describes changes in the maternal microbiome during the physiological adaptations of pregnancy, GDM and adverse maternal and neonatal outcomes. Findings from this review highlight the importance of understanding the link between the maternal microbiome and GDM. Furthermore, new therapeutic approaches to prevent or better manage GDM are discussed. Further research and clinical trials are necessary to fully realize the therapeutic potential of the maternal microbiome and translate these findings into clinical practice.
Collapse
Affiliation(s)
- Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.D.); (C.P.)
| | - Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.D.); (C.P.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Diabetes Research Centre, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
15
|
Kim S, Li H, Jin Y, Armad J, Gu H, Mani S, Cui JY. Maternal PBDE exposure disrupts gut microbiome and promotes hepatic proinflammatory signaling in humanized PXR-transgenic mouse offspring over time. Toxicol Sci 2023; 194:209-225. [PMID: 37267213 PMCID: PMC10375318 DOI: 10.1093/toxsci/kfad056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Developmental exposure to the persistent environmental pollutant, polybrominated diphenyl ethers (PBDEs), is associated with increased diabetes prevalence. The microbial tryptophan metabolite, indole-3-propionic acid (IPA), is associated with reduced risk of type 2 diabetes and lower-grade inflammation and is a pregnane X receptor (PXR) activator. To explore the role of IPA in modifying the PBDE developmental toxicity, we orally exposed humanized PXR-transgenic (hPXR-TG) mouse dams to vehicle, 0.1 mg/kg/day DE-71 (an industrial PBDE mixture), DE-71+IPA (20 mg/kg/day), or IPA, from 4 weeks preconception to the end of lactation. Pups were weaned at 21 days of age and IPA supplementation continued in the corresponding treatment groups. Tissues were collected at various ages until 6 months of age (n = 5 per group). In general, the effect of maternal DE-71 exposure on the gut microbiome of pups was amplified over time. The regulation of hepatic cytokines and prototypical xenobiotic-sensing transcription factor target genes by DE-71 and IPA was age- and sex-dependent, where DE-71-mediated mRNA increased selected cytokines (Il10, Il12p40, Il1β [both sexes], and [males]). The hepatic mRNA of the aryl hydrocarbon receptor (AhR) target gene Cyp1a2 was increased by maternal DE-71 and DE-71+IPA exposure at postnatal day 21 but intestinal Cyp1a1 was not altered by any of the exposures and ages. Maternal DE-71 exposure persistently increased serum indole, a known AhR ligand, in age- and sex-dependent manner. In conclusion, maternal DE-71 exposure produced a proinflammatory signature along the gut-liver axis, including gut dysbiosis, dysregulated tryptophan microbial metabolism, attenuated PXR signaling, and elevated AhR signaling in postweaned hPXR-TG pups over time, which was partially corrected by IPA supplementation.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Hao Li
- Departments of Medicine, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, Florida 34987-2352, USA
| | - Jasmine Armad
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, Florida 34987-2352, USA
| | - Sridhar Mani
- Departments of Medicine, Molecular Pharmacology, and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Julia Y Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
16
|
Teixeira RA, Silva C, Ferreira AC, Martins D, Leite-Moreira A, Miranda IM, Barros AS. The Association between Gestational Diabetes and the Microbiome: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:1749. [PMID: 37512921 PMCID: PMC10385443 DOI: 10.3390/microorganisms11071749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Gestational diabetes, affecting about 10% of pregnancies, is characterized by impaired glucose regulation and can lead to complications for health of pregnant women and their offspring. The microbiota, the resident microbes within the body, have been linked to the development of several metabolic conditions. This systematic review with meta-analysis aims to summarize the evidence on the differences in microbiota composition in pregnant women with gestational diabetes and their offspring compared to healthy pregnancies. A thorough search was conducted in the PubMed, Scopus, and Web of Science databases, and data from 21 studies were analyzed utilizing 41 meta-analyses. In the gut microbiota, Bifidobacterium and Alistipes were found to be more abundant in healthy pregnancies, while Roseburia appears to be more abundant in gestational diabetes. The heterogeneity among study findings regarding the microbiota in the meconium is considerable. The placental microbiota exhibited almost no heterogeneity, with an increased abundance of Firmicutes in the gestational diabetes group and a higher abundance of Proteobacteria in the control. The role of the microbiota in gestational diabetes is reinforced by these findings, which additionally point to the potential of microbiome-targeted therapies. To completely comprehend the interactions between gestational diabetes and the microbiome, standardizing methodologies and further research is necessary.
Collapse
Affiliation(s)
- Rita Almeida Teixeira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Cláudia Silva
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - António Carlos Ferreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Diana Martins
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Isabel M Miranda
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - António S Barros
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
17
|
Liu Y, Amit G, Zhao X, Wu N, Li D, Bashan A. Individualized network analysis reveals link between the gut microbiome, diet intervention and Gestational Diabetes Mellitus. PLoS Comput Biol 2023; 19:e1011193. [PMID: 37384793 DOI: 10.1371/journal.pcbi.1011193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM), a serious complication during pregnancy which is defined by abnormal glucose regulation, is commonly treated by diabetic diet and lifestyle changes. While recent findings place the microbiome as a natural mediator between diet interventions and diverse disease states, its role in GDM is still unknown. Here, based on observation data from healthy pregnant control group and GDM patients, we developed a new network approach using patterns of co-abundance of microorganism to construct microbial networks that represent human-specific information about gut microbiota in different groups. By calculating network similarity in different groups, we analyze the gut microbiome from 27 GDM subjects collected before and after two weeks of diet therapy compared with 30 control subjects to identify the health condition of microbial community balance in GDM subjects. Although the microbial communities remain similar after the diet phase, we find that the structure of their inter-species co-abundance network is significantly altered, which is reflected in that the ecological balance of GDM patients was not "healthier" after the diet intervention. In addition, we devised a method for individualized network analysis of the microbiome, thereby a pattern is found that GDM individuals whose microbial networks are with large deviations from the GDM group are usually accompanied by their abnormal glucose regulation. This approach may help the development of individualized diagnosis strategies and microbiome-based therapies in the future.
Collapse
Affiliation(s)
- Yimeng Liu
- Department of Reliability and Systems Engineering, Beihang University, Beijing, China
| | - Guy Amit
- Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
- Department of Natural Sciences, The Open University of Israel, Raanana, Israel
| | - Xiaolei Zhao
- Gastroenterology Department, Peking University People's Hospital, Beijing, China
| | - Na Wu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Daqing Li
- Department of Reliability and Systems Engineering, Beihang University, Beijing, China
| | - Amir Bashan
- Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
18
|
Stupak A, Kwaśniewski W. Evaluating Current Molecular Techniques and Evidence in Assessing Microbiome in Placenta-Related Health and Disorders in Pregnancy. Biomolecules 2023; 13:911. [PMID: 37371491 PMCID: PMC10296270 DOI: 10.3390/biom13060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The microbiome is of great interest due to its potential influence on the occurrence and treatment of some human illnesses. It may be regarded as disruptions to the delicate equilibrium that humans ordinarily maintain with their microorganisms or the microbiota in their environment. The focus of this review is on the methodologies and current understanding of the functional microbiome in pregnancy outcomes. We present how novel techniques bring new insights to the contemporary field of maternal-fetal medicine with a critical analysis. The maternal microbiome in late pregnancy has been extensively studied, although data on maternal microbial changes during the first trimester are rare. Research has demonstrated that, in healthy pregnancies, the origin of the placental microbiota is oral (gut) rather than vaginal. Implantation, placental development, and maternal adaptation to pregnancy are complex processes in which fetal and maternal cells interact. Microbiome dysbiosis or microbial metabolites are rising as potential moderators of antenatal illnesses related to the placenta, such as fetal growth restriction, preeclampsia, and others, including gestational diabetes and preterm deliveries. However, because of the presence of antimicrobial components, it is likely that the bacteria identified in placental tissue are (fragments of) bacteria that have been destroyed by the placenta's immune cells. Using genomic techniques (metagenomics, metatranscriptomics, and metaproteomics), it may be possible to predict some properties of a microorganism's genome and the biochemical (epigenetic DNA modification) and physical components of the placenta as its environment. Despite the results described in this review, this subject needs further research on some major and crucial aspects. The phases of an in utero translocation of the maternal gut microbiota to the fetus should be explored. With a predictive knowledge of the impacts of the disturbance on microbial communities that influence human health and the environment, genomics may hold the answer to the development of novel therapies for the health of pregnant women.
Collapse
Affiliation(s)
- Aleksandra Stupak
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Staszica Str. 16, 20-081 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecological Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
19
|
Zhang Q, Gu S, Wang Y, Hu S, Yue S, Wang C. Stereoselective metabolic disruption of cypermethrin by remolding gut homeostasis in rat. J Environ Sci (China) 2023; 126:761-771. [PMID: 36503801 DOI: 10.1016/j.jes.2022.03.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 06/17/2023]
Abstract
Cypermethrin (CYP), a prototypical synthetic pyrethroid, reportedly causes metabolic disruption, while its stereoselective impact remains elusive. This study initially revealed that only α-CYP caused significant weight loss at 8.5 mg/(kg•day) in rats. All three CYP isomers caused the accumulation of hepatic glycogen, and hyperlipemia phenotype as the increment of total triglyceride. Rats treated with α-CYP had markedly high blood glucose levels and homeostasis model assessment of insulin resistance index. The systematic inflammation of θ-CYP group rats was evidenced by high lipopolysaccharide-binding protein levels and abnormalities of leukocytes indices. By examining the gut microbiome, we found that α-CYP-treated rats had low contents of Firmicutes and high levels of Verrucomicrobia while Elusimicrobia was enriched in the β-CYP group. The increasing alpha diversity in the θ-CYP group may be due to the dominance of pathogenic bacteria and the increase of probiotics to counteract adverse effects. Exclusively, the α-CYP group enriched total short-chain fatty acids (SCFAs), whereas most SCFAs depleted in the θ-CYP group. The correlation analysis further found Firmicutes, an energy storage modulator, was positive to body weight (BW), while SCFAs exerted the opposite, confirming the low BW in α-CYP. Blood glucose that correlated well with SCFAs and Verrucomicrobia can be accounted for the discrepancy between α-CYP and θ-CYP. Overall, the three isomers exerted stereoselective glycolipid disruption in rats, and gut homeostasis acted as vital indicators.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shitao Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Siqing Yue
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
20
|
Panzer JJ, Romero R, Greenberg JM, Winters AD, Galaz J, Gomez-Lopez N, Theis KR. Is there a placental microbiota? A critical review and re-analysis of published placental microbiota datasets. BMC Microbiol 2023; 23:76. [PMID: 36934229 PMCID: PMC10024458 DOI: 10.1186/s12866-023-02764-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/10/2023] [Indexed: 03/20/2023] Open
Abstract
The existence of a placental microbiota is debated. The human placenta has historically been considered sterile and microbial colonization was associated with adverse pregnancy outcomes. Yet, recent DNA sequencing investigations reported a microbiota in typical human term placentas. However, this detected microbiota could represent background DNA or delivery-associated contamination. Using fifteen publicly available 16S rRNA gene datasets, existing data were uniformly re-analyzed with DADA2 to maximize comparability. While Amplicon Sequence Variants (ASVs) identified as Lactobacillus, a typical vaginal bacterium, were highly abundant and prevalent across studies, this prevalence disappeared after applying likely DNA contaminant removal to placentas from term cesarean deliveries. A six-study sub-analysis targeting the 16S rRNA gene V4 hypervariable region demonstrated that bacterial profiles of placental samples and technical controls share principal bacterial ASVs and that placental samples clustered primarily by study origin and mode of delivery. Contemporary DNA-based evidence does not support the existence of a placental microbiota.ImportanceEarly-gestational microbial influences on human development are unclear. By applying DNA sequencing technologies to placental tissue, bacterial DNA signals were observed, leading some to conclude that a live bacterial placental microbiome exists in typical term pregnancy. However, the low-biomass nature of the proposed microbiome and high sensitivity of current DNA sequencing technologies indicate that the signal may alternatively derive from environmental or delivery-associated bacterial DNA contamination. Here we address these alternatives with a re-analysis of 16S rRNA gene sequencing data from 15 publicly available placental datasets. After identical DADA2 pipeline processing of the raw data, subanalyses were performed to control for mode of delivery and environmental DNA contamination. Both environment and mode of delivery profoundly influenced the bacterial DNA signal from term-delivered placentas. Aside from these contamination-associated signals, consistency was lacking across studies. Thus, placentas delivered at term are unlikely to be the original source of observed bacterial DNA signals.
Collapse
Affiliation(s)
- Jonathan J Panzer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA.
- Detroit Medical Center, Detroit, Michigan, USA.
| | - Jonathan M Greenberg
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Andrew D Winters
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.
| |
Collapse
|
21
|
Evrensel A. Microbiome-Induced Autoimmunity and Novel Therapeutic Intervention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:71-90. [PMID: 36949306 DOI: 10.1007/978-981-19-7376-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Microorganisms' flora, which colonize in many parts of our body, stand out as one of the most important components for a healthy life. This microbial organization called microbiome lives in integration with the body as a single and whole organ/system. Perhaps, the human first encounters the microbial activity it carries through the immune system. This encounter and interaction are vital for the development of immune system cells that protect the body against pathogenic organisms and infections throughout life. In recent years, it has been determined that some disruptions in the host-microbiome interaction play an important role in the physiopathology of autoimmune diseases. Although the details of this interaction have not been clarified yet, the focus is on leaky gut syndrome, dysbiosis, toll-like receptor ligands, and B cell dysfunction. Nutritional regulations, prebiotics, probiotics, fecal microbiota transplantation, bacterial engineering, and vaccination are being investigated as new therapeutic approaches in the treatment of problems in these areas. This article reviews recent research in this area.
Collapse
Affiliation(s)
- Alper Evrensel
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
- NP Brain Hospital, Istanbul, Turkey
| |
Collapse
|
22
|
Ameliorative Effects of Bifidobacterium animalis subsp. lactis J-12 on Hyperglycemia in Pregnancy and Pregnancy Outcomes in a High-Fat-Diet/Streptozotocin-Induced Rat Model. Nutrients 2022; 15:nu15010170. [PMID: 36615827 PMCID: PMC9824282 DOI: 10.3390/nu15010170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Bifidobacterium, a common probiotic, is widely used in the food industry. Hyperglycemia in pregnancy has become a common disease that impairs the health of the mother and can lead to adverse pregnancy outcomes, such as preeclampsia, macrosomia, fetal hyperinsulinemia, and perinatal death. Currently, Bifidobacterium has been shown to have the potential to mitigate glycolipid derangements. Therefore, the use of Bifidobacterium-based probiotics to interfere with hyperglycemia in pregnancy may be a promising therapeutic option. We aimed to determine the potential effects of Bifidobacterium animalis subsp. lactis J-12 (J-12) in high-fat diet (HFD)/streptozotocin (STZ)-induced rats with hyperglycemia in pregnancy (HIP) and respective fetuses. We observed that J-12 or insulin alone failed to significantly improve the fasting blood glucose (FBG) level and oral glucose tolerance; however, combining J-12 and insulin significantly reduced the FBG level during late pregnancy. Moreover, J-12 significantly decreased triglycerides and total cholesterol, relieved insulin and leptin resistance, activated adiponectin, and restored the morphology of the maternal pancreas and hepatic tissue of HIP-induced rats. Notably, J-12 ingestion ameliorated fetal physiological parameters and skeletal abnormalities. HIP-induced cardiac, renal, and hepatic damage in fetuses was significantly alleviated in the J-12-alone intake group, and it downregulated hippocampal mRNA expression of insulin receptor (InsR) and insulin-like growth factor-1 receptor (IGF-1R) and upregulated AKT mRNA on postnatal day 0, indicating that J-12 improved fetal neurological health. Furthermore, placental tissue damage in rats with HIP appeared to be in remission in the J-12 group. Upon exploring specific placental microbiota, we observed that J-12 affected the abundance of nine genera, positively correlating with FBG and leptin in rats and hippocampal mRNA levels of InsR and IGF-1R mRNA in the fetus, while negatively correlating with adiponectin in rats and hippocampal levels of AKT in the fetus. These results suggest that J-12 may affect the development of the fetal central nervous system by mediating placental microbiota via the regulation of maternal-related indicators. J-12 is a promising strategy for improving HIP and pregnancy outcomes.
Collapse
|
23
|
Sassin AM, Johnson GJ, Goulding AN, Aagaard KM. Crucial nuances in understanding (mis)associations between the neonatal microbiome and Cesarean delivery. Trends Mol Med 2022; 28:806-822. [PMID: 36085277 PMCID: PMC9509442 DOI: 10.1016/j.molmed.2022.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022]
Abstract
As rates of Cesarean delivery and common non-communicable disorders (NCDs), such as obesity, metabolic disease, and atopy/asthma, have concomitantly increased in recent decades, investigators have attempted to discern a causal link. One line of research has led to a hypothesis that Cesarean birth disrupts the presumed normal process of colonization of the neonatal microbiome with vaginal microbes, yielding NCDs later in life. However, a direct link between a disrupted microbiota transfer at time of delivery and acute and/or chronic illness in infants born via Cesarean has not been causally established. Microbiota seeding from maternal vaginal or stool sources has been preliminarily evaluated as an intervention designed to compensate for the lack of (or limited) exposure to such sources among Cesarean-delivered neonates. However, to date, clinical trials have yet to show a clear health benefit with neonatal 'vaginal seeding' practices. Until the long-term effects of these microbiome alterations can be fully determined, it is paramount to conduct parallel meaningful and mechanistic-minded interrogations of the impact of clinically modifiable maternal, nutritional, or environmental exposure on the functional microbiome over the duration of pregnancy and lactation to determine their role in the mitigation of childhood and adult NCDs.
Collapse
Affiliation(s)
- Alexa M Sassin
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Grace J Johnson
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alison N Goulding
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Ding L, Ren S, Song Y, Zang C, Liu Y, Guo H, Yang W, Guan H, Liu J. Modulation of gut microbiota and fecal metabolites by corn silk among high-fat diet-induced hypercholesterolemia mice. Front Nutr 2022; 9:935612. [PMID: 35978956 PMCID: PMC9376456 DOI: 10.3389/fnut.2022.935612] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022] Open
Abstract
Corn silk (CS) is known to reduce cholesterol levels, but its underlying mechanisms remain elusive concerning the gut microbiota and metabolites. The aim of our work was to explore how altered gut microbiota composition and metabolite profile are influenced by CS intervention in mice using integrated 16S ribosomal RNA (rRNA) sequencing and an untargeted metabolomics methodology. The C57BL/6J mice were fed a normal control diet, a high-fat diet (HFD), and HFD supplemented with the aqueous extract of CS (80 mg/mL) for 8 weeks. HFD-induced chronic inflammation damage is alleviated by CS extract intervention and also resulted in a reduction in body weight, daily energy intake as well as serum and hepatic total cholesterol (TC) levels. In addition, CS extract altered gut microbial composition and regulated specific genera viz. Allobaculum, Turicibacter, Romboutsia, Streptococcus, Sporobacter, Christensenella, ClostridiumXVIII, and Rikenella. Using Spearman’s correlation analysis, we determined that Turicibacter and Rikenella were negatively correlated with hypercholesterolemia-related parameters. Fecal metabolomics analysis revealed that CS extract influences multiple metabolic pathways like histidine metabolism-related metabolites (urocanic acid, methylimidazole acetaldehyde, and methiodimethylimidazoleacetic acid), sphingolipid metabolism-related metabolites (sphinganine, 3-dehydrosphinganine, sphingosine), and some bile acids biosynthesis-related metabolites including chenodeoxycholic acid (CDCA), lithocholic acid (LCA), ursodeoxycholic acid (UDCA), and glycoursodeoxycholic acid (GUDCA). As a whole, the present study indicates that the modifications in the gut microbiota and subsequent host bile acid metabolism may be a potential mechanism for the antihypercholesterolemic effects of CS extract.
Collapse
Affiliation(s)
- Lin Ding
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Shan Ren
- College of Basic Medical, Qiqihar Medical University, Qiqihar, China
| | - Yaoxin Song
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Chuangang Zang
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Yuchao Liu
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Hao Guo
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Wenqing Yang
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Hong Guan
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- Department of Scientific Research, Science and Technology Achievement Transformation Center, Qiqihar Medical University, Qiqihar, China.,Qiqihar Academy of Medical Sciences, Qiqihar, China
| |
Collapse
|
25
|
La X, Wang Y, Xiong X, Shen L, Chen W, Zhang L, Yang F, Cai X, Zheng H, Jiang H. The Composition of Placental Microbiota and Its Association With Adverse Pregnancy Outcomes. Front Microbiol 2022; 13:911852. [PMID: 35923403 PMCID: PMC9342854 DOI: 10.3389/fmicb.2022.911852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
To verify whether the placenta harbors bacteria, and to explore the composition of placental microbiota (if yes) and its association with adverse pregnancy outcomes. The placental microbiota was detected by 16S rRNA gene sequencing technology. In the process of detecting placental samples, exogenous marine bacterial DNA that does not exist in the human body was artificially added to obtain a visible 16S band. At the same time, the sterile samples, such as scissors, sheets, and cotton swabs, in delivery and operating rooms were collected as the environmental control samples. As a result, a total of 2,621,009 sequences were obtained from 71 samples, 88.9% of which came from artificially added exogenous bacterial DNA, suggesting that the placenta contained fewer bacteria. After removing the operational taxonomic units (OTUs) that coexisted in environmental controls, the placenta was annotated with 11 phyla, 22 classes, 43 orders, 79 families, and 157 genera. The β diversity analysis showed that there were significant differences in the placental microbiota between 10 women with gestational diabetes mellitus (GDM) (p AMOVA = 0.01) or 19 women with premature rupture of membranes (PROM) (p AMOVA = 0.004), and 21 women without adverse pregnancy outcomes, respectively. There were higher abundances of genera Bifidobacterium, Duncaniella, and Ruminococcus in the placenta samples of women with GDM. The genera of Bacteroides, Paraprevotella, and Ruminococcus were more enriched in the placental samples of women with PROM. The authors concluded that the placenta may harbor small amounts of microbiota, and significant differences in the dominant microbiota of the placenta were observed between those pregnant women with and without adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Xuena La
- School of Public Health, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, China
| | - Yuezhu Wang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai (CHGC) and Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Xu Xiong
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Liandi Shen
- Department of Administrative office, Shanghai Jiading Maternal and Child Health Hospital, Shanghai, China
| | - Weiyi Chen
- School of Public Health, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, China
| | - Lifeng Zhang
- Department of Administrative office, Shanghai Jiading Maternal and Child Health Hospital, Shanghai, China
| | - Fengyun Yang
- Department of Administrative office, Shanghai Jiading Maternal and Child Health Hospital, Shanghai, China
| | - Xushan Cai
- Department of Clinical Laboratory, Shanghai Jiading Maternal and Child Health Hospital, Shanghai, China
| | - Huajun Zheng
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, China
| | - Hong Jiang
- School of Public Health, Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Correlation Analysis of Umbilical Cord Blood Metabolic Phenotype and Inflammation in Patients with Gestational Diabetes Mellitus Complicated with Overweight and Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6072286. [PMID: 35600958 PMCID: PMC9122673 DOI: 10.1155/2022/6072286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 12/01/2022]
Abstract
Background Gestational diabetes mellitus (GDM) is a common metabolic disorder in pregnancy. The incidence rate is increasing year by year, which seriously threatens the safety of maternal and infant. Obesity is a vital factor in inducing GDM. Pregnant women with GDM account for a large proportion of overweight and obese pregnant women. Our study aimed to explore the potential mechanism of differential metabolites on inflammation and find the intervention and management methods for GDM in overweight and obese pregnant women. Methods Umbilical cord blood samples and placenta were collected from normal weight pregnant women with GDM (control group) and overweight and obese pregnant women with GDM (obesity group) for a comparative study. Serum inflammatory factors IL-10, TNF-α, IL-6, lipopolysaccharide (LPS), and TLR4 expression were detected by ELISA. The expression levels of BCL-2 and caspase-3 were measured by Western blot. TUNEL staining was used to observe the apoptosis of placental villi. KEGG combined with metabolomics was used to compare the differences of metabolic maps between the two groups. Results Compared with the control group, the level of anti-inflammatory factor IL-10 in the cord blood was decreased in the obesity group, while the levels of proinflammatory factors TNF-α, IL-6, and LPS were increased. In the placental tissues, the obesity group had higher concentrations of LPS, TLR4, and caspase-3 and lower concentration of BCL-2. Placental villi in the obesity group were more likely to undergo apoptosis than the control group. Correlation analysis showed that the above metabolite concentrations were negatively correlated with TNF-α or LPS. Conclusion Metabolites could control obesity in the process of controlling the occurrence and development of inflammation.
Collapse
|
27
|
Abstract
At birth, neonates provide a vast habitat awaiting microbial colonization. Microbiome assembly is a complex process involving microbial seeding and succession driven by ecological forces and subject to environmental conditions. These successional events not only significantly affect the ecology and function of the microbiome, but also impact host health. While the establishment of the infant microbiome has been a point of interest for decades, an integrated view focusing on strain level colonization has been lacking until recently. Technological and computational advancements enabling strain-level analyses of the infant microbiome have demonstrated the immense complexity of this system and allowed for an improved understanding of how strains of the same species spread, colonize, evolve, and affect the host. Here, we review the current knowledge of the establishment and maturation of the infant gut microbiome with particular emphasis on newer discoveries achieved through strain-centric analyses.
Collapse
Affiliation(s)
- Hagay Enav
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.
| |
Collapse
|
28
|
Zuccarello D, Sorrentino U, Brasson V, Marin L, Piccolo C, Capalbo A, Andrisani A, Cassina M. Epigenetics of pregnancy: looking beyond the DNA code. J Assist Reprod Genet 2022; 39:801-816. [PMID: 35301622 PMCID: PMC9050975 DOI: 10.1007/s10815-022-02451-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Epigenetics is the branch of genetics that studies the different mechanisms that influence gene expression without direct modification of the DNA sequence. An ever-increasing amount of evidence suggests that such regulatory processes may play a pivotal role both in the initiation of pregnancy and in the later processes of embryonic and fetal development, thus determining long-term effects even in adult life. In this narrative review, we summarize the current knowledge on the role of epigenetics in pregnancy, from its most studied and well-known mechanisms to the new frontiers of epigenetic regulation, such as the role of ncRNAs and the effects of the gestational environment on fetal brain development. Epigenetic mechanisms in pregnancy are a dynamic phenomenon that responds both to maternal-fetal and environmental factors, which can influence and modify the embryo-fetal development during the various gestational phases. Therefore, we also recapitulate the effects of the most notable environmental factors that can affect pregnancy and prenatal development, such as maternal nutrition, stress hormones, microbiome, and teratogens, focusing on their ability to cause epigenetic modifications in the gestational environment and ultimately in the fetus. Despite the promising advancements in the knowledge of epigenetics in pregnancy, more experience and data on this topic are still needed. A better understanding of epigenetic regulation in pregnancy could in fact prove valuable towards a better management of both physiological pregnancies and assisted reproduction treatments, other than allowing to better comprehend the origin of multifactorial pathological conditions such as neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniela Zuccarello
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy.
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Valeria Brasson
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Loris Marin
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Chiara Piccolo
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | | | - Alessandra Andrisani
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| |
Collapse
|
29
|
Miko E, Csaszar A, Bodis J, Kovacs K. The Maternal-Fetal Gut Microbiota Axis: Physiological Changes, Dietary Influence, and Modulation Possibilities. Life (Basel) 2022; 12:424. [PMID: 35330175 PMCID: PMC8955030 DOI: 10.3390/life12030424] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The prenatal period and the first years of life have a significant impact on the health issues and life quality of an individual. The appropriate development of the immune system and the central nervous system are thought to be major critical determining events. In parallel to these, establishing an early intestinal microbiota community is another important factor for future well-being interfering with prenatal and postnatal developmental processes. This review aims at summarizing the main characteristics of maternal gut microbiota and its possible transmission to the offspring, thereby affecting fetal and/or neonatal development and health. Since maternal dietary factors are potential modulators of the maternal-fetal microbiota axis, we will outline current knowledge on the impact of certain diets, nutritional factors, and nutritional modulators during pregnancy on offspring's microbiota and health.
Collapse
Affiliation(s)
- Eva Miko
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 12 Szigeti Street, 7624 Pécs, Hungary
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary; (A.C.); (J.B.); (K.K.)
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pécs, Hungary
| | - Andras Csaszar
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary; (A.C.); (J.B.); (K.K.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, 17 Edesanyak Street, 7624 Pécs, Hungary
| | - Jozsef Bodis
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary; (A.C.); (J.B.); (K.K.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, 17 Edesanyak Street, 7624 Pécs, Hungary
| | - Kalman Kovacs
- National Laboratory for Human Reproduction, University of Pécs, 7624 Pécs, Hungary; (A.C.); (J.B.); (K.K.)
- Department of Obstetrics and Gynaecology, Medical School, University of Pécs, 17 Edesanyak Street, 7624 Pécs, Hungary
| |
Collapse
|
30
|
Meliț LE, Mărginean CO, Săsăran MO. The Yin-Yang Concept of Pediatric Obesity and Gut Microbiota. Biomedicines 2022; 10:biomedicines10030645. [PMID: 35327446 PMCID: PMC8945275 DOI: 10.3390/biomedicines10030645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
The era of pediatric obesity is no longer a myth. Unfortunately, pediatric obesity has reached alarming incidence levels worldwide and the factors that contribute to its development have been intensely studied in multiple recent and emerging studies. Gut microbiota was recently included in the wide spectrum of factors implicated in the determination of obesity, but its role in pediatric obese patients is far from being fully understood. In terms of the infant gut microbiome, multiple factors have been demonstrated to shape its content, including maternal diet and health, type of delivery, feeding patterns, weaning and dietary habits. Nevertheless, the role of the intrauterine environment, such as the placental microbial community, cannot be completely excluded. Most studies have identified Firmicutes and Bacteroidetes as the most important players related to obesity risk in gut microbiota reflecting an increase of Firmicutes and a decrease in Bacteroidetes in the context of obesity; however, multiple inconsistencies between studies were recently reported, especially in pediatric populations, and there is a scarcity of studies performed in this age group.
Collapse
Affiliation(s)
- Lorena Elena Meliț
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania;
| | - Cristina Oana Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania;
- Correspondence:
| | - Maria Oana Săsăran
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No 38, 540136 Târgu Mureș, Romania;
| |
Collapse
|
31
|
Winters AD, Romero R, Greenberg JM, Galaz J, Shaffer ZD, Garcia-Flores V, Kracht DJ, Gomez-Lopez N, Theis KR. Does the Amniotic Fluid of Mice Contain a Viable Microbiota? Front Immunol 2022; 13:820366. [PMID: 35296083 PMCID: PMC8920496 DOI: 10.3389/fimmu.2022.820366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
The existence of an amniotic fluid microbiota (i.e., a viable microbial community) in mammals is controversial. Its existence would require a fundamental reconsideration of fetal in utero exposure to and colonization by microorganisms and the role of intra-amniotic microorganisms in fetal immune development as well as in pregnancy outcomes. In this study, we determined whether the amniotic fluid of mice harbors a microbiota in late gestation. The profiles of the amniotic fluids of pups located proximally or distally to the cervix were characterized through quantitative real-time PCR, 16S rRNA gene sequencing, and culture (N = 21 dams). These profiles were compared to those of technical controls for bacterial and DNA contamination. The load of 16S rRNA genes in the amniotic fluid exceeded that in controls. Additionally, the 16S rRNA gene profiles of the amniotic fluid differed from those of controls, with Corynebacterium tuberculostearicum being differentially more abundant in amniotic fluid profiles; however, this bacterium was not cultured from amniotic fluid. Of the 42 attempted bacterial cultures of amniotic fluids, only one yielded bacterial growth – Lactobacillus murinus. The 16S rRNA gene of this common murine-associated bacterium was not detected in any amniotic fluid sample, suggesting it did not originate from the amniotic fluid. No differences in the 16S rRNA gene load, 16S rRNA gene profile, or bacterial culture were observed between the amniotic fluids located Proximally and distally to the cervix. Collectively, these data indicate that, although there is a modest DNA signal of bacteria in murine amniotic fluid, there is no evidence that this signal represents a viable microbiota. While this means that amniotic fluid is not a source of microorganisms for in utero colonization in mice, it may nevertheless contribute to fetal exposure to microbial components. The developmental consequences of this observation warrant further investigation.
Collapse
Affiliation(s)
- Andrew D. Winters
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
- Detroit Medical Center, Detroit, MI, United States
| | - Jonathan M. Greenberg
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Zachary D. Shaffer
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- MD/PhD Combined Degree Program, Wayne State University School of Medicine, Detroit, MI, United States
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - David J. Kracht
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Kevin R. Theis, ; Nardhy Gomez-Lopez,
| | - Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI, United States
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Kevin R. Theis, ; Nardhy Gomez-Lopez,
| |
Collapse
|
32
|
Bolte EE, Moorshead D, Aagaard KM. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med 2022; 14:4. [PMID: 35016706 PMCID: PMC8751292 DOI: 10.1186/s13073-021-01005-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
At the dawn of the twentieth century, the medical care of mothers and children was largely relegated to family members and informally trained birth attendants. As the industrial era progressed, early and key public health observations among women and children linked the persistence of adverse health outcomes to poverty and poor nutrition. In the time hence, numerous studies connecting genetics ("nature") to public health and epidemiologic data on the role of the environment ("nurture") have yielded insights into the importance of early life exposures in relation to the occurrence of common diseases, such as diabetes, allergic and atopic disease, cardiovascular disease, and obesity. As a result of these parallel efforts in science, medicine, and public health, the developing brain, immune system, and metabolic physiology are now recognized as being particularly vulnerable to poor nutrition and stressful environments from the start of pregnancy to 3 years of age. In particular, compelling evidence arising from a diverse array of studies across mammalian lineages suggest that modifications to our metagenome and/or microbiome occur following certain environmental exposures during pregnancy and lactation, which in turn render risk of childhood and adult diseases. In this review, we will consider the evidence suggesting that development of the offspring microbiome may be vulnerable to maternal exposures, including an analysis of the data regarding the presence or absence of a low-biomass intrauterine microbiome.
Collapse
Affiliation(s)
- Erin E Bolte
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - David Moorshead
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - Kjersti M Aagaard
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA.
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA.
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
- Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, USA.
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
33
|
Farhat S, Hemmatabadi M, Ejtahed HS, Shirzad N, Larijani B. Microbiome alterations in women with gestational diabetes mellitus and their offspring: A systematic review. Front Endocrinol (Lausanne) 2022; 13:1060488. [PMID: 36568098 PMCID: PMC9772279 DOI: 10.3389/fendo.2022.1060488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
AIMS Gestational diabetes mellitus (GDM) is a metabolic disorder that might predispose pregnant women to develop type 2 Diabetes Mellitus or lead to severe adverse outcomes in their offspring. One of the factors that have been thought to be involved in the pathology behind this disorder is the microbiome. In this systematic review, we comprehensively review the documents regarding the microbiota alterations in different tracts of pregnant women with GDM and their offspring. METHODS A comprehensive search was conducted in major databases including MEDLINE (PubMed), Scopus, and Web of sciences up to August 2021. Data on the demographics, methodology, and microbiome alterations were extracted and classified according to the type of microbiome in pregnant women with GDM and their offspring. The quality of studies was assessed using the Newcastle-Ottawa Scale (NOS). RESULTS In 49 articles which were retrieved, the findings were variable on the level of changes in alpha and beta diversity, enrichment or depletion in phyla, genera, species and OTUs, in each microbiome type. Although there were some inconsistencies among the results, a pattern of significant alterations was seen in the gut, oral, vaginal microbiome of women with GDM and gut, oral, and placental microbiome of their offspring. CONCLUSION Even though the alteration of the microbiome of the different tracts was seen in the cases of GDM, the inconsistency among the studies prevents us from identifying unique pattern. However, the results seem promising and further studies that overcome the confounding factors related to the demographics and methodology are needed.
Collapse
Affiliation(s)
- Sara Farhat
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Hemmatabadi
- Endocrine Research Center, Valiasr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh-Sadat Ejtahed
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Hanieh-Sadat Ejtahed, ; Nooshin Shirzad,
| | - Nooshin Shirzad
- Endocrine Research Center, Valiasr Hospital, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Hanieh-Sadat Ejtahed, ; Nooshin Shirzad,
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Zakis DR, Paulissen E, Kornete L, Kaan AMM, Nicu EA, Zaura E. The evidence for placental microbiome and its composition in healthy pregnancies: A systematic review. J Reprod Immunol 2021; 149:103455. [PMID: 34883392 DOI: 10.1016/j.jri.2021.103455] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/11/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To assess the available scientific evidence regarding the placental microbial composition of a healthy pregnancy, the quality of this evidence, and the potential relation between placental and oral microbiome. MATERIALS AND METHODS Data sources: MEDLINE and EMBASE up to August 1, 2019. STUDY ELIGIBILITY CRITERIA Human subjects; healthy women; term deliveries; healthy normal birth weight; assessment of microorganisms (bacteria) in placental tissue; full research papers in English. The quality of the included studies was assessed by a modified Joanna Briggs Institute checklist for analytical cross-sectional studies. RESULTS 57 studies passed the inclusion criteria. Of these, 33 had a high risk of quality bias (e.g., insufficient infection control, lack of negative controls, poor description of the healthy cases). The remaining 24 studies had a low (N = 12) to moderate (N = 12) risk of bias and were selected for in-depth analysis. Of these 24 studies, 22 reported microorganisms in placental tissues, where Lactobacillus (11 studies), Ureaplasma (7), Fusobacterium (7), Staphylococcus (7), Prevotella (6) and Streptococcus (6) were among the most frequently identified genera. Methylobacterium (4), Propionibacterium (3), Pseudomonas (3) and Escherichia (2), among others, although frequently reported in placental samples, were often reported as contaminants in studies that used negative controls. CONCLUSIONS The results support the existence of a low biomass placental microbiota in healthy pregnancies. Some of the microbial taxa found in the placenta might have an oral origin. The high risk of quality bias for the majority of the included studies indicates that the results of individual papers should be interpreted with caution.
Collapse
Affiliation(s)
- Davis R Zakis
- Department of Conservative Dentistry and Oral Health, Faculty of Dentistry, Rīga Stradiņš University, Latvia; Department of Cariology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Eva Paulissen
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Liga Kornete
- Faculty of Medicine, Rīga Stradiņš University, Latvia
| | - A M Marije Kaan
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Elena A Nicu
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
35
|
Cerritelli F, Frasch MG, Antonelli MC, Viglione C, Vecchi S, Chiera M, Manzotti A. A Review on the Vagus Nerve and Autonomic Nervous System During Fetal Development: Searching for Critical Windows. Front Neurosci 2021; 15:721605. [PMID: 34616274 PMCID: PMC8488382 DOI: 10.3389/fnins.2021.721605] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
Abstract
The autonomic nervous system (ANS) is one of the main biological systems that regulates the body's physiology. Autonomic nervous system regulatory capacity begins before birth as the sympathetic and parasympathetic activity contributes significantly to the fetus' development. In particular, several studies have shown how vagus nerve is involved in many vital processes during fetal, perinatal, and postnatal life: from the regulation of inflammation through the anti-inflammatory cholinergic pathway, which may affect the functioning of each organ, to the production of hormones involved in bioenergetic metabolism. In addition, the vagus nerve has been recognized as the primary afferent pathway capable of transmitting information to the brain from every organ of the body. Therefore, this hypothesis paper aims to review the development of ANS during fetal and perinatal life, focusing particularly on the vagus nerve, to identify possible "critical windows" that could impact its maturation. These "critical windows" could help clinicians know when to monitor fetuses to effectively assess the developmental status of both ANS and specifically the vagus nerve. In addition, this paper will focus on which factors-i.e., fetal characteristics and behaviors, maternal lifestyle and pathologies, placental health and dysfunction, labor, incubator conditions, and drug exposure-may have an impact on the development of the vagus during the above-mentioned "critical window" and how. This analysis could help clinicians and stakeholders define precise guidelines for improving the management of fetuses and newborns, particularly to reduce the potential adverse environmental impacts on ANS development that may lead to persistent long-term consequences. Since the development of ANS and the vagus influence have been shown to be reflected in cardiac variability, this paper will rely in particular on studies using fetal heart rate variability (fHRV) to monitor the continued growth and health of both animal and human fetuses. In fact, fHRV is a non-invasive marker whose changes have been associated with ANS development, vagal modulation, systemic and neurological inflammatory reactions, and even fetal distress during labor.
Collapse
Affiliation(s)
- Francesco Cerritelli
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Martin G. Frasch
- Department of Obstetrics and Gynecology and Center on Human Development and Disability, University of Washington, Seattle, WA, United States
| | - Marta C. Antonelli
- Facultad de Medicina, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Universidad de Buenos Aires, Buenos Aires, Argentina
- Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Chiara Viglione
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Stefano Vecchi
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Marco Chiera
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
| | - Andrea Manzotti
- Research and Assistance for Infants to Support Experience Lab, Foundation Center for Osteopathic Medicine Collaboration, Pescara, Italy
- Department of Pediatrics, Division of Neonatology, “V. Buzzi” Children's Hospital, Azienda Socio-Sanitaria Territoriale Fatebenefratelli Sacco, Milan, Italy
- Research Department, Istituto Osteopatia Milano, Milan, Italy
| |
Collapse
|
36
|
The reproductive tract microbiota in pregnancy. Biosci Rep 2021; 41:229559. [PMID: 34397086 PMCID: PMC8421591 DOI: 10.1042/bsr20203908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
The reproductive tract microbiota plays a crucial role in maintenance of normal pregnancy and influences reproductive outcomes. Microbe–host interactions in pregnancy remain poorly understood and their role in shaping immune modulation is still being uncovered. In this review, we describe the composition of vaginal microbial communities in the reproductive tract and their association with reproductive outcomes. We also consider strategies for manipulating microbiota composition by using live biotherapeutics, selective eradication of pathogenic bacteria with antibiotics and vaginal microbiota transplantation. Finally, future developments in this field and the need for mechanistic studies to explore the functional significance of reproductive tract microbial communities are highlighted.
Collapse
|
37
|
Lim JJ, Dutta M, Dempsey JL, Lehmler HJ, MacDonald J, Bammler T, Walker C, Kavanagh TJ, Gu H, Mani S, Cui JY. Neonatal Exposure to BPA, BDE-99, and PCB Produces Persistent Changes in Hepatic Transcriptome Associated With Gut Dysbiosis in Adult Mouse Livers. Toxicol Sci 2021; 184:83-103. [PMID: 34453844 PMCID: PMC8557404 DOI: 10.1093/toxsci/kfab104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Recent evidence suggests that complex diseases can result from early life exposure to environmental toxicants. Polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) and remain a continuing risk to human health despite being banned from production. Developmental BPA exposure mediated-adult onset of liver cancer via epigenetic reprogramming mechanisms has been identified. Here, we investigated whether the gut microbiome and liver can be persistently reprogrammed following neonatal exposure to POPs, and the associations between microbial biomarkers and disease-prone changes in the hepatic transcriptome in adulthood, compared with BPA. C57BL/6 male and female mouse pups were orally administered vehicle, BPA, BDE-99 (a breast milk-enriched PBDE congener), or the Fox River PCB mixture (PCBs), once daily for three consecutive days (postnatal days [PND] 2-4). Tissues were collected at PND5 and PND60. Among the three chemicals investigated, early life exposure to BDE-99 produced the most prominent developmental reprogramming of the gut-liver axis, including hepatic inflammatory and cancer-prone signatures. In adulthood, neonatal BDE-99 exposure resulted in a persistent increase in Akkermansia muciniphila throughout the intestine, accompanied by increased hepatic levels of acetate and succinate, the known products of A. muciniphila. In males, this was positively associated with permissive epigenetic marks H3K4me1 and H3K27, which were enriched in loci near liver cancer-related genes that were dysregulated following neonatal exposure to BDE-99. Our findings provide novel insights that early life exposure to POPs can have a life-long impact on disease risk, which may partly be regulated by the gut microbiome.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Moumita Dutta
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Joseph L Dempsey
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington, USA,Center for Microbiome Sciences and Therapeutics, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, Iowa, USA
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Cheryl Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas 77030, USA,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA,Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Pheonix, Arizona 85004, USA
| | - Sridhar Mani
- Department of Medicine, Molecular Pharmacology and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA,To whom correspondence should be addressed at Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, USA. E-mail:
| |
Collapse
|
38
|
Jang H, Patoine A, Wu TT, Castillo DA, Xiao J. Oral microflora and pregnancy: a systematic review and meta-analysis. Sci Rep 2021; 11:16870. [PMID: 34413437 PMCID: PMC8377136 DOI: 10.1038/s41598-021-96495-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding changes in oral flora during pregnancy, its association to maternal health, and its implications to birth outcomes is essential. We searched PubMed, Embase, Web of Science, and Cochrane Library in May 2020 (updated search in April and June 2021), and conducted a systematic review and meta-analyses to assess the followings: (1) oral microflora changes throughout pregnancy, (2) association between oral microorganisms during pregnancy and maternal oral/systemic conditions, and (3) implications of oral microorganisms during pregnancy on birth outcomes. From 3983 records, 78 studies were included for qualitative assessment, and 13 studies were included in meta-analysis. The oral microflora remains relatively stable during pregnancy; however, pregnancy was associated with distinct composition/abundance of oral microorganisms when compared to postpartum/non-pregnant status. Oral microflora during pregnancy appears to be influenced by oral and systemic conditions (e.g. gestational diabetes mellitus, pre-eclampsia, etc.). Prenatal dental care reduced the carriage of oral pathogens (e.g. Streptococcus mutans). The Porphyromonas gingivalis in subgingival plaque was more abundant in women with preterm birth. Given the results from meta-analyses were inconclusive since limited studies reported outcomes on the same measuring scale, more future studies are needed to elucidate the association between pregnancy oral microbiota and maternal oral/systemic health and birth outcomes.
Collapse
Affiliation(s)
- Hoonji Jang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Alexa Patoine
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, USA
| | - Daniel A Castillo
- Miner Library, University of Rochester Medical Center, Rochester, NY, USA
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY, USA.
- Perinatal Oral Health, Eastman Institute for Oral Health, University of Rochester, 625 Elmwood Ave, Rochester, 14620, USA.
| |
Collapse
|
39
|
Kalbermatter C, Fernandez Trigo N, Christensen S, Ganal-Vonarburg SC. Maternal Microbiota, Early Life Colonization and Breast Milk Drive Immune Development in the Newborn. Front Immunol 2021; 12:683022. [PMID: 34054875 PMCID: PMC8158941 DOI: 10.3389/fimmu.2021.683022] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
The innate immune system is the oldest protection strategy that is conserved across all organisms. Although having an unspecific action, it is the first and fastest defense mechanism against pathogens. Development of predominantly the adaptive immune system takes place after birth. However, some key components of the innate immune system evolve during the prenatal period of life, which endows the newborn with the ability to mount an immune response against pathogenic invaders directly after birth. Undoubtedly, the crosstalk between maternal immune cells, antibodies, dietary antigens, and microbial metabolites originating from the maternal microbiota are the key players in preparing the neonate’s immunity to the outer world. Birth represents the biggest substantial environmental change in life, where the newborn leaves the protective amniotic sac and is exposed for the first time to a countless variety of microbes. Colonization of all body surfaces commences, including skin, lung, and gastrointestinal tract, leading to the establishment of the commensal microbiota and the maturation of the newborn immune system, and hence lifelong health. Pregnancy, birth, and the consumption of breast milk shape the immune development in coordination with maternal and newborn microbiota. Discrepancies in these fine-tuned microbiota interactions during each developmental stage can have long-term effects on disease susceptibility, such as metabolic syndrome, childhood asthma, or autoimmune type 1 diabetes. In this review, we will give an overview of the recent studies by discussing the multifaceted emergence of the newborn innate immune development in line with the importance of maternal and early life microbiota exposure and breast milk intake.
Collapse
Affiliation(s)
- Cristina Kalbermatter
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nerea Fernandez Trigo
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sandro Christensen
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
40
|
Schiattarella A, Lombardo M, Morlando M, Rizzo G. The Impact of a Plant-Based Diet on Gestational Diabetes: A Review. Antioxidants (Basel) 2021; 10:antiox10040557. [PMID: 33918528 PMCID: PMC8065523 DOI: 10.3390/antiox10040557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Gestational diabetes mellitus (GDM) represents a challenging pregnancy complication in which women present a state of glucose intolerance. GDM has been associated with various obstetric complications, such as polyhydramnios, preterm delivery, and increased cesarean delivery rate. Moreover, the fetus could suffer from congenital malformation, macrosomia, neonatal respiratory distress syndrome, and intrauterine death. It has been speculated that inflammatory markers such as tumor necrosis factor-alpha (TNF-α), interleukin (IL) 6, and C-reactive protein (CRP) impact on endothelium dysfunction and insulin resistance and contribute to the pathogenesis of GDM. Nutritional patterns enriched with plant-derived foods, such as a low glycemic or Mediterranean diet, might favorably impact on the incidence of GDM. A high intake of vegetables, fibers, and fruits seems to decrease inflammation by enhancing antioxidant compounds. This aspect contributes to improving insulin efficacy and metabolic control and could provide maternal and neonatal health benefits. Our review aims to deepen the understanding of the impact of a plant-based diet on oxidative stress in GDM.
Collapse
Affiliation(s)
- Antonio Schiattarella
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.S.); (M.M.)
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Maddalena Morlando
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.S.); (M.M.)
| | - Gianluca Rizzo
- Independent Researcher, Via Venezuela 66, 98121 Messina, Italy
- Correspondence: ; Tel.: +39-320-897-6687
| |
Collapse
|
41
|
Microbiota continuum along the chicken oviduct and its association with host genetics and egg formation. Poult Sci 2021; 100:101104. [PMID: 34051407 PMCID: PMC8167817 DOI: 10.1016/j.psj.2021.101104] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022] Open
Abstract
The microbiota of female reproductive tract have attracted considerable attention in recent years due to their effects on host fitness. However, the microbiota throughout the chicken oviduct and its symbiotic relationships with the host have not been well characterized. Here, we characterized the microbial composition of six segments of the reproductive tract, including the infundibulum, magnum, isthmus, uterus, vagina and cloaca, in pedigreed laying hens with phenotypes of egg quality and quantity. We found that the microbial diversity gradually increased along the reproductive tract from the infundibulum to the cloaca, and the microbial communities were distinct among the cloaca, vagina and four other oviductal segments. The magnum exhibited the lowest diversity, given that the lysozyme and other antimicrobial proteins are secreted at this location. The results of correlation estimated showed that the relationship between host genetic kinship and microbial distance was negligible. Additionally, the genetically related pairwise individuals did not exhibit a more similar microbial community than unrelated pairs. Although the egg might be directly contaminated with potential pathogenic bacteria during egg formation and oviposition, some microorganisms provide long-term benefits to the host. Among these, we observed that increased abundance of vaginal Staphylococcus and Ralstonia was significantly associated with darker eggshells. Meanwhile, vaginal Romboutsia could be used as a predictor for egg number. These findings provide insight into the nature of the chicken reproductive tract microbiota and highlight the effect of oviductal bacteria on the process of egg formation.
Collapse
|
42
|
No evidence for a placental microbiome in human pregnancies at term. Am J Obstet Gynecol 2021; 224:296.e1-296.e23. [PMID: 32871131 DOI: 10.1016/j.ajog.2020.08.103] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The placenta plays an important role in the modulation of pregnancy immunity; however, there is no consensus regarding the existence of a placental microbiome in healthy full-term pregnancies. OBJECTIVE This study aimed to investigate the existence and origin of a placental microbiome. STUDY DESIGN A cross-sectional study comparing samples (3 layers of placental tissue, amniotic fluid, vernix caseosa, and saliva, vaginal, and rectal samples) from 2 groups of full-term births: 50 women not in labor with elective cesarean deliveries and 26 with vaginal deliveries. The comparisons were performed using polymerase chain reaction amplification and DNA sequencing techniques and bacterial culture experiments. RESULTS There were no significant differences regarding background characteristics between women who delivered by elective cesarean and those who delivered vaginally. Quantitative measurements of bacterial content in all 3 placental layers (quantitative polymerase chain reaction of the 16S ribosomal RNA gene) did not show any significant difference among any of the sample types and the negative controls. Here, 16S ribosomal RNA gene sequencing of the maternal side of the placenta could not differentiate between bacteria in the placental tissue and contamination of the laboratory reagents with bacterial DNA. Probe-specific quantitative polymerase chain reaction for bacterial taxa suspected to be present in the placenta could not detect any statistically significant difference between the 2 groups. In bacterial cultures, substantially more bacteria were observed in the placenta layers from vaginal deliveries than those from cesarean deliveries. In addition, 16S ribosomal RNA gene sequencing of bacterial colonies revealed that most of the bacteria that grew on the plates were genera typically found in human skin; moreover, it revealed that placentas delivered vaginally contained a high prevalence of common vaginal bacteria. Bacterial growth inhibition experiments indicated that placental tissue may facilitate the inhibition of bacterial growth. CONCLUSION We found no evidence to support the existence of a placental microbiome in our study of 76 term pregnancies, which used polymerase chain reaction amplification and sequencing techniques and bacterial culture experiments. Incidental findings of bacterial species could be due to contamination or to low-grade bacterial presence in some locations; such bacteria do not represent a placental microbiome per se.
Collapse
|
43
|
Coscia A, Bardanzellu F, Caboni E, Fanos V, Peroni DG. When a Neonate Is Born, So Is a Microbiota. Life (Basel) 2021; 11:life11020148. [PMID: 33669262 PMCID: PMC7920069 DOI: 10.3390/life11020148] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, the role of human microbiota as a short- and long-term health promoter and modulator has been affirmed and progressively strengthened. In the course of one’s life, each subject is colonized by a great number of bacteria, which constitute its specific and individual microbiota. Human bacterial colonization starts during fetal life, in opposition to the previous paradigm of the “sterile womb”. Placenta, amniotic fluid, cord blood and fetal tissues each have their own specific microbiota, influenced by maternal health and habits and having a decisive influence on pregnancy outcome and offspring outcome. The maternal microbiota, especially that colonizing the genital system, starts to influence the outcome of pregnancy already before conception, modulating fertility and the success rate of fertilization, even in the case of assisted reproduction techniques. During the perinatal period, neonatal microbiota seems influenced by delivery mode, drug administration and many other conditions. Special attention must be reserved for early neonatal nutrition, because breastfeeding allows the transmission of a specific and unique lactobiome able to modulate and positively affect the neonatal gut microbiota. Our narrative review aims to investigate the currently identified pre- and peri-natal factors influencing neonatal microbiota, before conception, during pregnancy, pre- and post-delivery, since the early microbiota influences the whole life of each subject.
Collapse
Affiliation(s)
- Alessandra Coscia
- Neonatology Unit, Department of Public Health and Pediatrics, Università degli Studi di Torino, 10124 Turin, Italy;
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
- Correspondence:
| | - Elisa Caboni
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy; (E.C.); (V.F.)
| | - Diego Giampietro Peroni
- Clinical and Experimental Medicine Department, Section of Pediatrics, University of Pisa, Via Roma, 55, 56126 Pisa PI, Italy;
| |
Collapse
|
44
|
Silverstein RB, Mysorekar IU. Group therapy on in utero colonization: seeking common truths and a way forward. MICROBIOME 2021; 9:7. [PMID: 33436100 PMCID: PMC7805186 DOI: 10.1186/s40168-020-00968-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/06/2020] [Indexed: 05/04/2023]
Abstract
The human microbiome refers to the genetic composition of microorganisms in a particular location in the human body. Emerging evidence over the past many years suggests that the microbiome constitute drivers of human fate almost at par with our genome and epigenome. It is now well accepted after decades of disbelief that a broad understanding of human development, health, physiology, and disease requires understanding of the microbiome along with the genome and epigenome. We are learning daily of the interdependent relationships between microbiome/microbiota and immune responses, mood, cancer progression, response to therapies, aging, obesity, antibiotic usage, and overusage and much more. The next frontier in microbiome field is understanding when does this influence begin? Does the human microbiome initiate at the time of birth or are developing human fetuses already primed with microbes and their products in utero. In this commentary, we reflect on evidence gathered thus far on this question and identify the unknown common truths. We present a way forward to continue understanding our microbial colleagues and our interwoven fates.
Collapse
Affiliation(s)
- Rachel B Silverstein
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
45
|
Meloncelli N, Wilkinson SA, de Jersey S. Searching for Utopia, the Challenge of Standardized Medical Nutrition Therapy Prescription in Gestational Diabetes Mellitus Management: A Critical Review. Semin Reprod Med 2021; 38:389-397. [PMID: 33429445 DOI: 10.1055/s-0040-1722316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy disorder and the incidence is increasing worldwide. GDM is associated with adverse maternal outcomes which may be reduced with proper management. Lifestyle modification in the form of medical nutrition therapy and physical activity, as well as self-monitoring of blood glucose levels, is the cornerstone of GDM management. Inevitably, the search for the "ultimate" diet prescription has been ongoing. Identifying the amount and type of carbohydrate to maintain blood glucose levels below targets while balancing the nutritional requirements of pregnancy and achieving gestational weight gain within recommendations is challenging. Recent developments in the area of the gut microbiota and its impact on glycemic response add another layer of complexity to the success of medical nutrition therapy. This review critically explores the challenges to dietary prescription for GDM and why utopia may never be found.
Collapse
Affiliation(s)
- Nina Meloncelli
- Nutrition and Dietetics, Sunshine Coast University Hospital, Birtinya, Australia.,Centre for Clinical Research and Perinatal Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Shelley A Wilkinson
- School of Human Movements and Nutrition Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, Queensland, Australia.,Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Susan de Jersey
- Centre for Clinical Research and Perinatal Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,Department of Nutrition and Dietetics, Royal Brisbane and Women's Hospital, Metro North Hospital and Health Service, Brisbane, Australia
| |
Collapse
|
46
|
Supplementation of Bacillus sp. DU-106 reduces hypercholesterolemia and ameliorates gut dysbiosis in high-fat diet rats. Appl Microbiol Biotechnol 2020; 105:287-299. [PMID: 33128611 DOI: 10.1007/s00253-020-10977-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/13/2022]
Abstract
Gut microbiota modulation by a probiotic is a novel therapy for hypercholesterolemia mitigation. This study initially investigated the potential hypocholesterolemic effect of Bacillus sp. DU-106 in hypercholesterolemic rats and explored its potential relation with gut microbiota. Sprague-Dawley rats received a high-fat diet, or a high-fat diet supplemented with 7.5 × 109 and 1.5 × 1010 CFU/kg bw/day Bacillus sp. DU-106 (low-dose and high-dose groups). At the end of 9 weeks, Bacillus sp. DU-106 treatment significantly decreased the body weight, liver index, and total cholesterol. 16S rRNA sequencing showed that Bacillus sp. DU-106 intervention significantly increased bacterial richness and particularly increased the genus abundance of Turicibacter, Acinetobacter, Brevundimonas, and Bacillus and significantly decreased the abundance of Ralstonia. Metabolomic data further indicated that the supplementation of Bacillus sp. DU-106 remarkably changed the gut metabolic profiles of hypercholesterolemic rats and, in particular, elevated the metabolites of indole-3-acetate, methylsuccinic acid, creatine, glutamic acid, threonine, lysine, ascorbic acid, and pyridoxamine. Spearman's correlation analysis showed the close relation between the different genera and metabolites. In conclusion, Bacillus sp. DU-106 supplement ameliorated high-fat diet-induced hypercholesterolemia and showed potential probiotic benefits for the intestine. KEY POINTS: • A novel potential probiotic Bacillus sp. DU-106 ameliorated hypercholesterolemia in rats. • Bacillus sp. DU-106 supplement regulated gut microbiome structure and richness. • Bacillus sp. DU-106 supplement changed metabolic profiles in high-fat diet rats. • Significant correlations were observed between differential genera and metabolites.
Collapse
|
47
|
Hu J, Benny P, Wang M, Ma Y, Lambertini L, Peter I, Xu Y, Lee MJ. Intrauterine Growth Restriction Is Associated with Unique Features of the Reproductive Microbiome. Reprod Sci 2020; 28:828-837. [PMID: 33107014 DOI: 10.1007/s43032-020-00374-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Intrauterine growth restriction (IUGR) is an obstetrical complication with an increased risk of perinatal mortality and morbidity. The uterus, once considered to be a sterile environment, has now been described in recent microbiome studies to harbor diverse commensal placenta microbiota, as well as potentially pathogenic flora known to cause infection. Therefore, in this pilot study, we tested whether IUGR was associated with changes to the reproductive microbiome. The reproductive microbiome was surveyed using 16S sequencing (20 IUGR, 20 controls). Alpha and beta diversity were compared, and differential taxa features associated with IUGR were identified. Microbial screening of the placenta demonstrated a diverse range of flora predominantly including Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes. Neither alpha- nor beta-diversity was significantly different by IUGR status. However, at the taxa level, IUGR patients had significantly higher prevalence of Neisseriaceae, mucosal β-hemolytic bacteria known to uptake iron-bound host proteins including hemoglobin. Moreover, the increase in anaerobic bacteria such as Desulfovibrio reflects the emergence of a hypoxic environment in the IUGR placenta. Further analysis of the reproductive microbiome of IUGR samples showed lower levels of H202-producing Bifidobacterium and Lactobacillus that switch from respiration to fermentation, a less energetic metabolic process, when oxygen levels decrease. Source tracking analysis showed that the placental microbial contents were predominantly contributed from an oral source, as compared to a gut or vaginal source. Our results suggest that the reproductive microbiome profiles may, in the future, constitute potential biomarkers for fetal health during pregnancy, while Neisseriaceae may constitute promising therapeutic targets for IUGR treatment.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Benny
- Department of Obstetrics, Gynecology and Women's Health, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Michelle Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Washington University at St. Louis, Saint Louis, MO, USA
| | - Yula Ma
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luca Lambertini
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yajuan Xu
- The Third Affiliated Hospital of Zhangzhou University, Zhengzhou, Henan, China
| | - Men-Jean Lee
- Department of Obstetrics, Gynecology and Women's Health, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
48
|
The Role of Environmental Exposures in Atopic Dermatitis. Curr Allergy Asthma Rep 2020; 20:74. [PMID: 33047271 DOI: 10.1007/s11882-020-00971-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Although genetic factors clearly play a role in the development of atopic dermatitis (AD), the recent dramatic increase in the prevalence of AD in low- and middle-income countries is not consistent with only a role of genetic factors. These findings strongly suggest that environmental factors may play an important role in the pathogenesis of AD. RECENT FINDINGS We reviewed the role of gene-environment studies; in utero exposures including tobacco smoke, alcohol, maternal stress, various digestive supplements, and gestational diabetes; early-life exposures including diet, gut microbiota, antibiotics, and breastfeeding; climate including temperature, ultraviolet radiation exposure, and air pollution; and household products, indoor allergens, water hardness, pH, and skin microbiota and their effects on AD. Environmental factors definitely play a role in the pathogenesis of AD. However, identifying definitive factors continues to be difficult in the setting of conflicting evidence and the complex interactions between genotypes and the environment resulting in a multitude of AD phenotypes. All of the different environmental interactions discussed highlight the importance of intervening on multiple levels in a patient's environment to improve or even prevent AD symptoms. Further, the importance of modifying environmental factors early on in a person's life is demonstrated. When possible, all of these environmental factors should be considered in treating a patient with AD and the appropriate modifications should be made at population and individual levels.
Collapse
|
49
|
Gil A, Rueda R, Ozanne SE, van der Beek EM, van Loo-Bouwman C, Schoemaker M, Marinello V, Venema K, Stanton C, Schelkle B, Flourakis M, Edwards CA. Is there evidence for bacterial transfer via the placenta and any role in the colonization of the infant gut? - a systematic review. Crit Rev Microbiol 2020; 46:493-507. [PMID: 32776793 DOI: 10.1080/1040841x.2020.1800587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 06/14/2020] [Indexed: 10/23/2022]
Abstract
With the important role of the gut microbiome in health and disease, it is crucial to understand key factors that establish the microbial community, including gut colonization during infancy. It has been suggested that the first bacterial exposure is via a placental microbiome. However, despite many publications, the robustness of the evidence for the placental microbiome and transfer of bacteria from the placenta to the infant gut is unclear and hence the concept disputed. Therefore, we conducted a systematic review of the evidence for the role of the placental, amniotic fluid and cord blood microbiome in healthy mothers in the colonization of the infant gut. Most of the papers which were fully assessed considered placental tissue, but some studied amniotic fluid or cord blood. Great variability in methodology was observed especially regarding sample storage conditions, DNA/RNA extraction, and microbiome characterization. No study clearly considered transfer of the normal placental microbiome to the infant gut. Moreover, some studies in the review and others published subsequently reported little evidence for a placental microbiome in comparison to negative controls. In conclusion, current data are limited and provide no conclusive evidence that there is a normal placental microbiome which has any role in colonization of infant gut.
Collapse
Affiliation(s)
- Angel Gil
- Institute of Nutrition and Food Technology "José Mataix", Center of Biomedical Research, University of Granada, Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- IBS.GRANADA, Instituto de Investigación Biosanitaria, Complejo Hospitalario Universitario de Granada, Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto San Carlos, Madrid, Spain
| | | | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eline M van der Beek
- Danone Nutricia Research, Utrecht, The Netherlands
- Department of Pediatrics University medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Vittoria Marinello
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| | - Koen Venema
- Center for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, The Netherlands
| | | | - Bettina Schelkle
- ILSI Europe a.i.s.b.l, Brussels, Belgium
- EUFIC, Brussels, Belgium
| | | | - Christine A Edwards
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow, UK
| |
Collapse
|
50
|
Gschwind R, Fournier T, Kennedy S, Tsatsaris V, Cordier AG, Barbut F, Butel MJ, Wydau-Dematteis S. Evidence for contamination as the origin for bacteria found in human placenta rather than a microbiota. PLoS One 2020; 15:e0237232. [PMID: 32776951 PMCID: PMC7416914 DOI: 10.1371/journal.pone.0237232] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/13/2020] [Indexed: 01/12/2023] Open
Abstract
Until recently the in utero environment of pregnant women was considered sterile. Recent high-sensitivity molecular techniques and high-throughput sequencing lead to some evidence for a low-biomass microbiome associated with the healthy placenta. Other studies failed to reveal evidence for a consistent presence of bacteria using either culture or molecular based techniques. Comparing conflicting “placental microbiome” studies is complicated by the use of varied and inconsistent protocols. Given this situation, we undertook an evaluation of the in utero environment sterility using several controlled methods, in the same study, to evaluate the presence or absence of bacteria and to explain contradictions present in the literature. Healthy pregnant women (n = 38) were recruited in three maternity wards. Placenta were collected after cesarean section with or without Alexis® and vaginal delivery births. For this study we sampled fetal membranes, umbilical cord and chorionic villi. Bacterial presence was analyzed using bacterial culture and qPCR on 34 fetal membranes, umbilical cord and chorionic villi samples. Shotgun metagenomics was performed on seven chorionic villi samples. We showed that the isolation of meaningful quantities of viable bacteria or bacterial DNA was possible only outside the placenta (fetal membranes and umbilical cords) highlighting the importance of sampling methods in studying the in utero environment. Bacterial communities described by metagenomics analysis were similar in chorionic villi samples and in negative controls and were dependent on the database chosen for the analysis. We conclude that the placenta does not harbor a specific, consistent and functional microbiota.
Collapse
Affiliation(s)
- Rémi Gschwind
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
| | - Thierry Fournier
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
- PremUp Foundation, Paris, France
| | - Sean Kennedy
- Department of Computational Biology, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Vassilis Tsatsaris
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
- PremUp Foundation, Paris, France
| | - Anne-Gaël Cordier
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
- PremUp Foundation, Paris, France
| | - Frédéric Barbut
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
- PremUp Foundation, Paris, France
| | - Marie-José Butel
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
- PremUp Foundation, Paris, France
| | - Sandra Wydau-Dematteis
- Université de Paris, INSERM UMR-S 1139 (3PHM), Paris, France
- Hospital-University Department Risks in Pregnancy, Paris, France
- PremUp Foundation, Paris, France
- * E-mail:
| |
Collapse
|