1
|
Chen PL, Richardson RA, Rovito S, Yang G, Writt HN, Ojha C, DeBeauchamp J, Crumpton JC, Woodard K, Penaflor M, Kercher L, Webby RJ, Sautto GA, Ross TM, Russell CJ. Live-attenuated pandemic H1N1 influenza vaccines expressing computationally optimized broadly reactive antigens (COBRAs) are immunogenic and protective in mice and ferrets. Vaccine 2025; 53:127090. [PMID: 40186991 DOI: 10.1016/j.vaccine.2025.127090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Computationally optimized broadly reactive antigens (COBRAs) induce broad and protective immune responses across multiple viral vaccine platforms. However, their suitability for incorporation into live attenuated influenza vaccines (LAIVs) remains uncertain, as antigen modifications could potentially impact LAIV generation, replication, stability, or immunogenicity. In this study, COBRA hemagglutinin (HA) and neuraminidase (NA) antigens designated Y2 and N1I, respectively, of the influenza H1N1 subtype were reverse-engineered into A/Puerto Rico/8/1934 (PR8)-based LAIVs. The impact of HA stability and NA composition on LAIV properties was evaluated in cell culture, mice, and ferrets. COBRA LAIV yields were higher in MDCK cells compared to Vero cells, and a higher HA activation pH was associated with increased LAIV growth in cell culture. The COBRA LAIVs elicited broad antibody responses against pandemic H1N1 viruses and provided robust protection in both mice and ferrets. The standard COBRA LAIV, containing unmodified HA Y2 and NA N1I, had virus inactivation pH and HA activation pH values of 5.4 and 5.6, respectively. In contrast, a modified COBRA LAIV, containing an HA2-K153E mutation and NA from the vaccine strain A/Hawaii/70/2019 (HI19), had a virus inactivation pH of 5.3 and an elevated HA activation pH of 6.0. This modified LAIV had improved growth in cell culture and greater protection from challenge virus lung titers in elderly ferrets. These studies demonstrate the successful integration of COBRA antigen engineering into a LAIV platform. Furthermore, fine-tuning HA stability and NA composition appears to be a promising strategy to enhance LAIVs containing modifications to computationally optimized antigens.
Collapse
MESH Headings
- Animals
- Ferrets
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Mice
- Neuraminidase/immunology
- Neuraminidase/genetics
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Female
- Dogs
- Antigens, Viral/immunology
- Antigens, Viral/genetics
- Madin Darby Canine Kidney Cells
- Immunogenicity, Vaccine
- Chlorocebus aethiops
- Vero Cells
- Mice, Inbred BALB C
- Humans
Collapse
Affiliation(s)
- Po-Ling Chen
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert A Richardson
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Samuel Rovito
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Guohua Yang
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haley N Writt
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chet Ojha
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer DeBeauchamp
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jeri Carol Crumpton
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Karlie Woodard
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Melissa Penaflor
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lisa Kercher
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Charles J Russell
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Ontiveros-Padilla L, Bachelder EM, Ainslie KM. Microparticle and nanoparticle-based influenza vaccines. J Control Release 2024; 376:880-898. [PMID: 39427775 DOI: 10.1016/j.jconrel.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Influenza infections are a health public problem worldwide every year with the potential to become the next pandemic. Vaccination is the most effective strategy to prevent future influenza outbreaks, however, influenza vaccines need to be reformulated each year to provide protection due to viral antigenic drift and shift. As more efficient influenza vaccines are needed, it is relevant to recapitulate strategies to improve the immunogenicity and broad reactivity of the current vaccines. Here, we review the current approved vaccines in the U.S. market and the platform used for their production. We discuss the different approaches to develop a broadly reactive vaccine as well as reviewing the adjuvant systems that are under study for being potentially included in future influenza vaccine formulations. The main components of the immune system involved in achieving a protective immune response are reviewed and how they participate in the trafficking of particles systemically and in the mucosa. Finally, we describe and classify, according to their physicochemical properties, some of the potential micro and nano-particulate platforms that can be used as delivery systems for parenteral and mucosal vaccinations.
Collapse
Affiliation(s)
- Luis Ontiveros-Padilla
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering & Molecular Pharmaceutics, Eshelman School of Pharmacy, UNC, Chapel Hill, NC, USA; Department of Biomedical Engineering, NC State/UNC, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, UNC, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Dar L, Krishnan A, Kumar R, Dhakad S, Choudekar A, Bagga S, Sharma A, Kumar A, Jethani J, Saha S, Amarchand R, Kumar R, Choudhary A, Narayan VV, Gopal G, Lafond KE, Lindstrom S. Nasal shedding of vaccine viruses after immunization with a Russian-backbone live attenuated influenza vaccine in India. Influenza Other Respir Viruses 2023; 17:e13149. [PMID: 37380175 PMCID: PMC10293783 DOI: 10.1111/irv.13149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/24/2023] [Accepted: 05/07/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND We present post-vaccination nasal shedding findings from the phase IV, community-based, triple-blinded RCT conducted to assess efficacy of trivalent LAIV and inactivated influenza vaccines in rural north India. METHODS Children aged 2-10 years received LAIV or intranasal placebo across 2015 and 2016, as per initial allocation. On days 2 and 4 post-vaccination, trained study nurses collected nasal swabs from randomly selected subset of trial participants based on operational feasibility, accounting for 10.0% and 11.4% of enrolled participants in 2015 and 2016, respectively. Swabs were collected in viral transport medium and transported under cold chain to laboratory for testing by reverse transcriptase real-time polymerase chain reaction. RESULTS In year 1, on day 2 post-vaccination, 71.2% (74/104) of LAIV recipients shed at least one of vaccine virus strains compared to 42.3% (44/104) on day 4. During year 1, on day 2 post-vaccination, LAIV-A(H1N1)pdm09 was detected in nasal swabs of 12% LAIV recipients, LAIV-A(H3N2) in 41%, and LAIV-B in 59%. In year 2, virus shedding was substantially lower; 29.6% (32/108) of LAIV recipients shed one of the vaccine virus strains on day 2 compared to 21.3% on day 4 (23/108). CONCLUSION At day 2 post-vaccination in year 1, two-thirds of LAIV recipients were shedding vaccine viruses. Shedding of vaccine viruses varied between strains and was lower in year 2. More research is needed to determine the reason for lower virus shedding and vaccine efficacy for LAIV-A(H1N1)pdm09.
Collapse
Affiliation(s)
- Lalit Dar
- Department of MicrobiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Anand Krishnan
- Centre for Community MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - Ramesh Kumar
- Department of MicrobiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Shivram Dhakad
- Department of MicrobiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Avinash Choudekar
- Department of MicrobiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Sumedha Bagga
- Department of MicrobiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Amrit Sharma
- Department of MicrobiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Amit Kumar
- Department of MicrobiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Jyoti Jethani
- Department of MicrobiologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Siddhartha Saha
- Influenza DivisionUS Centers for Disease Control and PreventionNew DelhiIndia
| | - Ritvik Amarchand
- Centre for Community MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - Rakesh Kumar
- Centre for Community MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - Aashish Choudhary
- Department of MicrobiologyAll India Institute of Medical SciencesNew DelhiIndia
| | | | - Giridara Gopal
- Centre for Community MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - Kathryn E. Lafond
- Influenza DivisionUS Centers for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Stephen Lindstrom
- Influenza DivisionUS Centers for Disease Control and PreventionAtlantaGeorgiaUSA
| |
Collapse
|
4
|
Bagga S, Krishnan A, Dar L. Revisiting live attenuated influenza vaccine efficacy among children in developing countries. Vaccine 2023; 41:1009-1017. [PMID: 36604216 DOI: 10.1016/j.vaccine.2022.12.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Seasonal influenza epidemics cause significant pediatric mortality and morbidity worldwide. Live attenuated influenza vaccines (LAIVs) can be administered intranasally, induce a broad and robust immune response, demonstrate higher yields during manufacturing as compared to inactivated influenza vaccines (IIVs), and thereby represent an attractive possibility for young children in developing countries. We summarize recent pediatric studies evaluating LAIV efficacy in developing countries where a large proportion of the influenza-virus-associated respiratory disease burden occurs. Recently, two randomized controlled trials (RCTs) assessing Russian-backbone trivalent LAIV in children reported contradictory results; vaccine efficacy varied between Bangladesh (41 %) and Senegal (0.0 %) against all influenza viral strains. Prior to 2013, Ann Arbor-based LAIV demonstrated superior efficacy as compared to IIV. However, due to low effectiveness of the Ann Arbor-based LAIV against influenza A(H1N1)pdm09-like viruses, the CDC Advisory Committee on Immunization Practices (ACIP) recommended against the use of LAIV during the 2016-17 and 2017-18 influenza seasons. Reduced replicative fitness of the A(H1N1)pdm09 LAIV strains is thought to have led to the low effectiveness of the Ann-Arbor-based LAIV. Once the A(H1N1)pdm09 component was updated, the ACIP reintroduced the Ann-Arbor-based LAIV as a vaccine choice for the 2018-19 influenza season. In 2021, results from a 2-year RCT evaluating the Russian-backbone trivalent LAIV in rural north India reported that LAIV demonstrated significantly lower efficacy compared to IIV, but in Year 2, the vaccine efficacy for LAIV and IIV was comparable. A profounder understanding of the mechanisms underlying varied efficacy of LAIV in developing countries is warranted. Assessing replicative fitness, in addition to antigenicity, when selecting annual A(H1N1)pdm09 components in the Russian-backbone trivalent LAIVs is essential and may ultimately, enable widespread utility in resource-poor settings.
Collapse
Affiliation(s)
- Sumedha Bagga
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Anand Krishnan
- Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Dar
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
5
|
Canaday LM, Resnick JD, Liu H, Powell H, McCoy AM, Nguyen D, Pekosz A. HA and M2 sequences alter the replication of 2013-16 H1 live attenuated influenza vaccine infection in human nasal epithelial cell cultures. Vaccine 2022; 40:4544-4553. [PMID: 35718589 DOI: 10.1016/j.vaccine.2022.05.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
From 2013 to 2016, the H1N1 component of live, attenuated influenza vaccine (LAIV) performed very poorly in contrast to the inactivated influenza vaccine. We utilized a primary, differentiated human nasal epithelial cell (hNEC) culture system to assess the replication differences between isogenic LAIVs containing the HA segment from either A/Bolivia/559/2013 (rBol), which showed poor vaccine efficacy, and A/Slovenia/2903/2015 (rSlov), which had reasonable vaccine efficacy. There were minimal differences in infectious virus production in Madin-Darby Canine Kidney (MDCK) cells, but the rSlov LAIV showed markedly improved replication in hNEC cultures at both 32 °C and 37 °C, demonstrating that the HA segment alone could impact LAIV replication in physiologically relevant systems. The rSlov-infected hNEC cultures showed stronger production of interferon and proinflammatory chemokines which might also be contributing to the increased overall vaccine effectiveness through enhanced recruitment and activation of immune cells. An M2-S86A mutation had no positive effects on H1 LAIV replication in hNEC cultures, in contrast to the increased infectious virus production seen in an H3 LAIV. No obvious defects in viral RNA packaging were detected, suggesting that HA function, rather than defective particle production, may be driving the differential infectious virus production in hNEC cultures. Overall, we have shown that not all H1 HA segments can be successfully used in LAIV, and this phenotype cannot be fully explained by segment incompatibilities. Physiologically relevant temperatures and primary cell cultures should be used to demonstrate that candidate LAIVs can replicate efficiently, which is a necessary property for effective vaccines.
Collapse
Affiliation(s)
- Laura M Canaday
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jessica D Resnick
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Harrison Powell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alyssa M McCoy
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dat Nguyen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
6
|
Zuber PLF, Gruber M, Kaslow DC, Chen RT, Giersing BK, Friede MH. Evolving pharmacovigilance requirements with novel vaccines and vaccine components. BMJ Glob Health 2021; 6:bmjgh-2020-003403. [PMID: 34011500 PMCID: PMC8137242 DOI: 10.1136/bmjgh-2020-003403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 01/08/2023] Open
Abstract
This paper explores the pipeline of new and upcoming vaccines as it relates to monitoring their safety. Compared with most currently available vaccines, that are constituted of live attenuated organisms or inactive products, future vaccines will also be based on new technologies. Several products that include such technologies are either already licensed or at an advanced stage of clinical development. Those include viral vectors, genetically attenuated live organisms, nucleic acid vaccines, novel adjuvants, increased number of antigens present in a single vaccine, novel mode of vaccine administration and thermostabilisation. The Global Advisory Committee on Vaccine Safety (GACVS) monitors novel vaccines, from the time they become available for large scale use. GACVS maintains their safety profile as evidence emerges from post-licensure surveillance and observational studies. Vaccines and vaccine formulations produced with novel technologies will have different safety profiles that will require adapting pharmacovigilance approaches. For example, GACVS now considers viral vector templates developed on the model proposed by Brighton Collaboration. The characteristics of those novel products will also have implications for the risk management plans (RMPs). Questions related to the duration of active monitoring for genetic material, presence of adventitious agents more easily detected with enhanced biological screening, or physiological mechanisms of novel adjuvants are all considerations that will belong to the preparation of RMPs. In addition to assessing those novel products and advising experts, GACVS will also consider how to more broadly communicate about risk assessment, so vaccine users can also benefit from the committee’s advice.
Collapse
Affiliation(s)
- Patrick L F Zuber
- Access to Medicines and Health Products Division, World Health Organization, Geneva, Switzerland
| | - Marion Gruber
- Center for Biologics Evaluation and Research, Food and Drugs Administration, Silver Spring, Massachusetts, USA
| | | | - Robert T Chen
- Brighton Collaboration, Task Force for Global Health, Decatur, Georgia, USA
| | - Brigitte K Giersing
- Immunization, Vaccines and Biologicals Department, World Health Organization, Geneva, Switzerland
| | - Martin H Friede
- Immunization, Vaccines and Biologicals Department, World Health Organization, Geneva, Switzerland
| |
Collapse
|
7
|
Genito CJ, Batty CJ, Bachelder EM, Ainslie KM. Considerations for Size, Surface Charge, Polymer Degradation, Co-Delivery, and Manufacturability in the Development of Polymeric Particle Vaccines for Infectious Diseases. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000041. [PMID: 33681864 PMCID: PMC7917382 DOI: 10.1002/anbr.202000041] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Indexed: 01/15/2023] Open
Abstract
Vaccines have advanced human health for centuries. To improve upon the efficacy of subunit vaccines they have been formulated into nano/microparticles for infectious diseases. Much progress in the field of polymeric particles for vaccine formulation has been made since the push for a tetanus vaccine in the 1990s. Modulation of particle properties such as size, surface charge, degradation rate, and the co-delivery of antigen and adjuvant has been used. This review focuses on advances in the understanding of how these properties influence immune responses to injectable polymeric particle vaccines. Consideration is also given to how endotoxin, route of administration, and other factors influence conclusions that can be made. Current manufacturing techniques involved in preserving vaccine efficacy and scale-up are discussed, as well as those for progressing polymeric particle vaccines toward commercialization. Consideration of all these factors should aid the continued development of efficacious and marketable polymeric particle vaccines.
Collapse
Affiliation(s)
- Christopher J. Genito
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Cole J. Batty
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Eric M. Bachelder
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Kristy M. Ainslie
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| |
Collapse
|
8
|
Gautam A, Akauliya M, Thapa B, Park BK, Kim D, Kim J, Lee K, Choi KC, Bae JY, Park MS, Lee Y, Kwon HJ. Abdominal and Pelvic Organ Failure Induced by Intraperitoneal Influenza A Virus Infection in Mice. Front Microbiol 2020; 11:1713. [PMID: 32765481 PMCID: PMC7379156 DOI: 10.3389/fmicb.2020.01713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/30/2020] [Indexed: 11/13/2022] Open
Abstract
In humans, respiratory infections with influenza A viruses can be lethal, but it is unclear whether non-respiratory influenza A infections can be equally lethal. Intraperitoneal infection makes the abdominal and pelvic organs accessible to pathogens because of the circulation of peritoneal fluid throughout the pelvis and abdomen. We found that high-dose intraperitoneal infection in mice with influenza A viruses resulted in severe sclerosis and structural damage in the pancreas, disruption of ovarian follicles, and massive infiltration of immune cells in the uterus. The intraperitoneal infections also caused robust upregulation of proinflammatory mediators including IL-6, BLC, and MIG. In addition, low-dose intraperitoneal infection with one influenza strain provided cross-protection against subsequent intraperitoneal or intranasal challenge with another influenza strain. Our results suggest that low-dose, non-respiratory administration might provide a route for influenza vaccination. Furthermore, these results provide insight on the pathological role of influenza A viruses in high-risk patients, including women and diabetic individuals.
Collapse
Affiliation(s)
- Avishekh Gautam
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Madhav Akauliya
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Bikash Thapa
- Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| | - Byoung Kwon Park
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Dongbum Kim
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jinsoo Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Keunwook Lee
- Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea.,Department of Biomedical Science, College of Natural Sciences, Hallym University, Chuncheon, South Korea
| | - Kyung Chan Choi
- Department of Pathology, Hallym University Sacred Heart Hospital, Chuncheon, South Korea
| | - Joon-Yong Bae
- Department of Microbiology, College of Medicine and the Institute for Viral Diseases, Korea University, Seoul, South Korea
| | - Man-Seong Park
- Department of Microbiology, College of Medicine and the Institute for Viral Diseases, Korea University, Seoul, South Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, South Korea
| | - Hyung-Joo Kwon
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, South Korea.,Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, South Korea
| |
Collapse
|
9
|
Valli E, Harriett AJ, Nowakowska MK, Baudier RL, Provosty WB, McSween Z, Lawson LB, Nakanishi Y, Norton EB. LTA1 is a safe, intranasal enterotoxin-based adjuvant that improves vaccine protection against influenza in young, old and B-cell-depleted (μMT) mice. Sci Rep 2019; 9:15128. [PMID: 31641151 PMCID: PMC6805908 DOI: 10.1038/s41598-019-51356-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 09/19/2019] [Indexed: 01/17/2023] Open
Abstract
Enterotoxin-based adjuvants including cholera toxin and heat-labile toxin (LT) are powerful manipulators of mucosal immunity; however, past clinical trials identified unacceptable neurological toxicity when LT or mutant AB5 adjuvant proteins were added to intranasal vaccines. Here, we examined the isolated enzymatic A1 domain of LT (LTA1) for intranasal safety and efficacy in combination with influenza (flu) vaccination. LTA1-treated mice exhibited no neurotoxicity, as measured by olfactory system testing and H&E staining of nasal tissue in contrast with cholera toxin. In vaccination studies, intranasal LTA1 enhanced immune responses to inactivated virus antigen and subsequent protection against H1N1 flu challenge in mice (8-week or 24-months). In addition, lung H1N1 viral titers post-challenge correlated to serum antibody responses; however, enhanced protection was also observed in μMT mice lacking B-cells while activation and recruitment of CD4 T-cells into the lung was apparent. Thus, we report that LTA1 protein is a novel, safe and effective enterotoxin adjuvant that improves protection of an intranasal flu vaccination by a mechanism that does not appear to require B-cells.
Collapse
Affiliation(s)
- E Valli
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
| | - A J Harriett
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
| | - M K Nowakowska
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
| | - R L Baudier
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
| | - W B Provosty
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
| | - Z McSween
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
| | - L B Lawson
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA
| | - Y Nakanishi
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, USA
| | - E B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, USA.
| |
Collapse
|
10
|
Nelson SA, Sant AJ. Imprinting and Editing of the Human CD4 T Cell Response to Influenza Virus. Front Immunol 2019; 10:932. [PMID: 31134060 PMCID: PMC6514101 DOI: 10.3389/fimmu.2019.00932] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Immunity to influenza is unique among pathogens, in that immune memory is established both via intermittent lung localized infections with highly variable influenza virus strains and by intramuscular vaccinations with inactivated protein-based vaccines. Studies in the past decades have suggested that the B cell responses to influenza infection and vaccination are highly biased by an individual's early history of influenza infection. This reactivity likely reflects both the competitive advantage that memory B cells have in an immune response and the relatively limited diversity of epitopes in influenza hemagglutinin that are recognized by B cells. In contrast, CD4 T cells recognize a wide array of epitopes, with specificities that are heavily influenced by the diversity of influenza antigens available, and a multiplicity of functions that are determined by both priming events and subsequent confrontations with antigens. Here, we consider the events that prime and remodel the influenza-specific CD4 T cell response in humans that have highly diverse immune histories and how the CD4 repertoire may be edited in terms of functional potential and viral epitope specificity. We discuss the consequences that imprinting and remodeling may have on the potential of different human hosts to rapidly respond with protective cellular immunity to infection. Finally, these issues are discussed in the context of future avenues of investigation and vaccine strategies.
Collapse
Affiliation(s)
| | - Andrea J. Sant
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
11
|
|