1
|
Iheagwam FN, Joseph AJ, Adedoyin ED, Iheagwam OT, Ejoh SA. Mitochondrial Dysfunction in Diabetes: Shedding Light on a Widespread Oversight. PATHOPHYSIOLOGY 2025; 32:9. [PMID: 39982365 DOI: 10.3390/pathophysiology32010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 02/22/2025] Open
Abstract
Diabetes mellitus represents a complicated metabolic condition marked by ongoing hyperglycemia arising from impaired insulin secretion, inadequate insulin action, or a combination of both. Mitochondrial dysfunction has emerged as a significant contributor to the aetiology of diabetes, affecting various metabolic processes critical for glucose homeostasis. This review aims to elucidate the complex link between mitochondrial dysfunction and diabetes, covering the spectrum of diabetes types, the role of mitochondria in insulin resistance, highlighting pathophysiological mechanisms, mitochondrial DNA damage, and altered mitochondrial biogenesis and dynamics. Additionally, it discusses the clinical implications and complications of mitochondrial dysfunction in diabetes and its complications, diagnostic approaches for assessing mitochondrial function in diabetics, therapeutic strategies, future directions, and research opportunities.
Collapse
Affiliation(s)
- Franklyn Nonso Iheagwam
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Amarachi Joy Joseph
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| | - Eniola Deborah Adedoyin
- Department of Biochemistry, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| | | | - Samuel Akpoyowvare Ejoh
- Department of Biological Sciences, College of Science and Technology, Covenant University, Ota 112104, Nigeria
| |
Collapse
|
2
|
Salagre D, Navarro-Alarcón M, González LG, Elrayess MA, Villalón-Mir M, Haro-López R, Agil A. Melatonin Ameliorates Organellar Calcium Homeostasis, Improving Endoplasmic Reticulum Stress-Mediated Apoptosis in the Vastus Lateralis Muscle of Both Sexes of Obese Diabetic Rats. Antioxidants (Basel) 2024; 14:16. [PMID: 39857351 PMCID: PMC11762543 DOI: 10.3390/antiox14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Endoplasmic reticulum (ER) stress is a crucial factor in the progression of obesity-related type 2 diabetes (diabesity), contributing to skeletal muscle (SKM) dysfunction, calcium imbalance, metabolic inflexibility, and muscle atrophy. The ER and mitochondria together regulate intracellular calcium levels, and melatonin, a natural compound with antioxidant properties, may alleviate these challenges. Our previous research showed that melatonin raises intracellular calcium and preserves muscle structure by enhancing mitochondrial function in obese diabetic rats. This study further explores melatonin's potential to reduce ER stress in the vastus lateralis (VL) muscle by modulating the unfolded protein response (UPR) and restoring calcium levels disrupted by diabesity. Five-week-old Zücker diabetic fatty (ZDF) rats and lean littermates of both sexes were divided into control and melatonin-treated groups (10 mg/kg/day for 12 weeks). Flame atomic absorption spectrometry results showed that melatonin restored VL intraorganellar calcium homeostasis, increasing calcium levels in mitochondria and reducing them in the ER by raising the activity and expression of calcium transporters in both sexes of ZDF rats. Melatonin also decreased ER stress markers (GRP78, ATF6, IRE1α, and PERK) and reduced pro-apoptosis markers (Bax, Bak, P-JNK, cleaved caspase 3 and 9) while increasing Bcl2 levels and melatonin receptor 2 (MT2) expression. These findings suggest that melatonin may protect against muscle atrophy in obese and diabetic conditions by mitigating ER stress and calcium imbalance, highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Diego Salagre
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.); (L.G.G.); (R.H.-L.)
- Nutrition, Metabolism, Growth and Development Group, BioHealth Institute Granada (ibs.GRANADA), 18012 Granada, Spain
- Neuroscience Institute “Federico Olóriz”, Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain
| | - Miguel Navarro-Alarcón
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (M.N.-A.); (M.V.-M.)
| | - Luis Gerardo González
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.); (L.G.G.); (R.H.-L.)
- Bola de Oro Primary Care Health Center, Sanitary District of Granada, Andalusian Health Services (SAS), 18008 Granada, Spain
| | - Mohamed A. Elrayess
- Biomedical Research Center, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Marina Villalón-Mir
- Department of Nutrition and Bromatology, School of Pharmacy, University of Granada, 18071 Granada, Spain; (M.N.-A.); (M.V.-M.)
| | - Rocío Haro-López
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.); (L.G.G.); (R.H.-L.)
| | - Ahmad Agil
- Department of Pharmacology, School of Medicine, University of Granada, 18016 Granada, Spain; (D.S.); (L.G.G.); (R.H.-L.)
- Nutrition, Metabolism, Growth and Development Group, BioHealth Institute Granada (ibs.GRANADA), 18012 Granada, Spain
- Neuroscience Institute “Federico Olóriz”, Biomedical Research Center (CIBM), University of Granada, 18016 Granada, Spain
| |
Collapse
|
3
|
Rizo-Roca D, Guimarães DSPSF, Pendergrast LA, Di Leo N, Chibalin AV, Maqdasy S, Rydén M, Näslund E, Zierath JR, Krook A. Decreased mitochondrial creatine kinase 2 impairs skeletal muscle mitochondrial function independently of insulin in type 2 diabetes. Sci Transl Med 2024; 16:eado3022. [PMID: 39383244 DOI: 10.1126/scitranslmed.ado3022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Increased plasma creatine concentrations are associated with the risk of type 2 diabetes, but whether this alteration is associated with or causal for impairments in metabolism remains unexplored. Because skeletal muscle is the main disposal site of both creatine and glucose, we investigated the role of intramuscular creatine metabolism in the pathophysiology of insulin resistance in type 2 diabetes. In men with type 2 diabetes, plasma creatine concentrations were increased, and intramuscular phosphocreatine content was reduced. These alterations were coupled to reduced expression of sarcomeric mitochondrial creatine kinase 2 (CKMT2). In C57BL/6 mice fed a high-fat diet, neither supplementation with creatine for 2 weeks nor treatment with the creatine analog β-GPA for 1 week induced changes in glucose tolerance, suggesting that increased circulating creatine was associated with insulin resistance rather than causing it. In C2C12 myotubes, silencing Ckmt2 using small interfering RNA reduced mitochondrial respiration, membrane potential, and glucose oxidation. Electroporation-mediated overexpression of Ckmt2 in skeletal muscle of high-fat diet-fed male mice increased mitochondrial respiration, independent of creatine availability. Given that overexpression of Ckmt2 improved mitochondrial function, we explored whether exercise regulates CKMT2 expression. Analysis of public data revealed that CKMT2 content was up-regulated by exercise training in both humans and mice. We reveal a previously underappreciated role of CKMT2 in mitochondrial homeostasis beyond its function for creatine phosphorylation, independent of insulin action. Collectively, our data provide functional evidence for how CKMT2 mediates mitochondrial dysfunction associated with type 2 diabetes.
Collapse
Affiliation(s)
- David Rizo-Roca
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Logan A Pendergrast
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Nicolas Di Leo
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Salwan Maqdasy
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, SE-182 57 Danderyd, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
4
|
Amar D, Gay NR, Jimenez-Morales D, Jean Beltran PM, Ramaker ME, Raja AN, Zhao B, Sun Y, Marwaha S, Gaul DA, Hershman SG, Ferrasse A, Xia A, Lanza I, Fernández FM, Montgomery SB, Hevener AL, Ashley EA, Walsh MJ, Sparks LM, Burant CF, Rector RS, Thyfault J, Wheeler MT, Goodpaster BH, Coen PM, Schenk S, Bodine SC, Lindholm ME. The mitochondrial multi-omic response to exercise training across rat tissues. Cell Metab 2024; 36:1411-1429.e10. [PMID: 38701776 PMCID: PMC11152996 DOI: 10.1016/j.cmet.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/27/2023] [Accepted: 12/15/2023] [Indexed: 05/05/2024]
Abstract
Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.
Collapse
Affiliation(s)
- David Amar
- Stanford University, Stanford, CA, USA; Insitro, San Francisco, CA, USA
| | | | | | | | | | | | | | - Yifei Sun
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - David A Gaul
- Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Ashley Xia
- National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lauren M Sparks
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | | | | | - John Thyfault
- University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | - Paul M Coen
- Translational Research Institute AdventHealth, Orlando, FL, USA
| | - Simon Schenk
- University of California, San Diego, La Jolla, CA, USA
| | - Sue C Bodine
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | |
Collapse
|
5
|
Anania S, Farnir M, Peiffer R, Boumahd Y, Thiry M, Agirman F, Maloujahmoum N, Bellahcène A, Peulen O. Identification of myoferlin as a mitochondria-associated membranes component required for calcium signaling in PDAC cell lines. Cell Commun Signal 2024; 22:133. [PMID: 38368370 PMCID: PMC10874564 DOI: 10.1186/s12964-024-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is an aggressive cancer type with one of the lowest survival rates due to late diagnosis and the absence of effective treatments. A better understanding of PDAC biology will help researchers to discover the Achilles' heel of cancer cells. In that regard, our research team investigated the function of an emerging oncoprotein known as myoferlin. Myoferlin is overexpressed in PDAC and its silencing/targeting has been shown to affect cancer cell proliferation, migration, mitochondrial dynamics and metabolism. Nevertheless, our comprehension of myoferlin functions in cells remains limited. In this study, we aimed to understand the molecular mechanism linking myoferlin silencing to mitochondrial dynamics. METHODS Experiments were performed on two pancreas cancer cell lines, Panc-1 and MiaPaCa-2. Myoferlin localization on mitochondria was evaluated by immunofluorescence, proximity ligation assay, and cell fractionation. The presence of myoferlin in mitochondria-associated membranes was assessed by cell fractionation and its function in mitochondrial calcium transfer was evaluated using calcium flow experiments, proximity ligation assays, co-immunoprecipitation, and timelapse fluorescence microscopy in living cells. RESULTS Myoferlin localization on mitochondria was investigated. Our results suggest that myoferlin is unlikely to be located on mitochondria. Instead, we identified myoferlin as a new component of mitochondria-associated membranes. Its silencing significantly reduces the mitochondrial calcium level upon stimulation, probably through myoferlin interaction with the inositol 1,4,5-triphosphate receptors 3. CONCLUSIONS For the first time, myoferlin was specifically demonstrated to be located in mitochondria-associated membranes where it participates to calcium flow. We hypothesized that this function explains our previous results on mitochondrial dynamics. This study improves our comprehension of myoferlin localization and function in cancer biology.
Collapse
Affiliation(s)
- Sandy Anania
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Martin Farnir
- STAR Institute, Université de Liège, Allée du 6 Août 19, Liège, B-4000, Belgium
| | - Raphaël Peiffer
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Yasmine Boumahd
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Marc Thiry
- Cellular and Tissular Biology, GIGA-Neurosciences, Cell Biology L3, Université de Liège, Liège, B-4000, Belgium
| | - Ferman Agirman
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Naima Maloujahmoum
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Akeila Bellahcène
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium.
- Center for Interdisciplinary Research on Medicines (CIRM), Mitochondria Adaptation in Cancer Group, Pathology Institute B23, Université de Liège, Liège, B-4000, Belgium.
| |
Collapse
|
6
|
Emanuelsson EB, Arif M, Reitzner SM, Perez S, Lindholm ME, Mardinoglu A, Daub C, Sundberg CJ, Chapman MA. Remodeling of the human skeletal muscle proteome found after long-term endurance training but not after strength training. iScience 2024; 27:108638. [PMID: 38213622 PMCID: PMC10783619 DOI: 10.1016/j.isci.2023.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024] Open
Abstract
Exercise training has tremendous systemic tissue-specific health benefits, but the molecular adaptations to long-term exercise training are not completely understood. We investigated the skeletal muscle proteome of highly endurance-trained, strength-trained, and untrained individuals and performed exercise- and sex-specific analyses. Of the 6,000+ proteins identified, >650 were differentially expressed in endurance-trained individuals compared with controls. Strikingly, 92% of the shared proteins with higher expression in both the male and female endurance groups were known mitochondrial. In contrast to the findings in endurance-trained individuals, minimal differences were found in strength-trained individuals and between females and males. Lastly, a co-expression network and comparative literature analysis revealed key proteins and pathways related to the health benefits of exercise, which were primarily related to differences in mitochondrial proteins. This network is available as an interactive database resource where investigators can correlate clinical data with global gene and protein expression data for hypothesis generation.
Collapse
Affiliation(s)
- Eric B. Emanuelsson
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Muhammad Arif
- Science for Life Laboratory, KTH – Royal Institute of Technology, 171 77 Stockholm, Sweden
| | - Stefan M. Reitzner
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sean Perez
- Department of Biology, Pomona College, Claremont, CA 91711, USA
| | - Maléne E. Lindholm
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH – Royal Institute of Technology, 171 77 Stockholm, Sweden
- Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London WC2R 2LS, UK
| | - Carsten Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, 171 77 Stockholm, Sweden
- Science for Life Laboratory, 171 65 Solna, Sweden
| | - Carl Johan Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden
- Department of Learning, Informatics, Management and Ethics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mark A. Chapman
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Integrated Engineering, University of San Diego, San Diego, CA 92110, USA
| |
Collapse
|
7
|
Pandey D, Perumal P. O. Improved meta-analysis pipeline ameliorates distinctive gene regulators of diabetic vasculopathy in human endothelial cell (hECs) RNA-Seq data. PLoS One 2023; 18:e0293939. [PMID: 37943808 PMCID: PMC10635490 DOI: 10.1371/journal.pone.0293939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
Enormous gene expression data generated through next-generation sequencing (NGS) technologies are accessible to the scientific community via public repositories. The data harboured in these repositories are foundational for data integrative studies enabling large-scale data analysis whose potential is yet to be fully realized. Prudent integration of individual gene expression data i.e. RNA-Seq datasets is remarkably challenging as it encompasses an assortment and series of data analysis steps that requires to be accomplished before arriving at meaningful insights on biological interrogations. These insights are at all times latent within the data and are not usually revealed from the modest individual data analysis owing to the limited number of biological samples in individual studies. Nevertheless, a sensibly designed meta-analysis of select individual studies would not only maximize the sample size of the analysis but also significantly improves the statistical power of analysis thereby revealing the latent insights. In the present study, a custom-built meta-analysis pipeline is presented for the integration of multiple datasets from different origins. As a case study, we have tested with the integration of two relevant datasets pertaining to diabetic vasculopathy retrieved from the open source domain. We report the meta-analysis ameliorated distinctive and latent gene regulators of diabetic vasculopathy and uncovered a total of 975 i.e. 930 up-regulated and 45 down-regulated gene signatures. Further investigation revealed a subset of 14 DEGs including CTLA4, CALR, G0S2, CALCR, OMA1, and DNAJC3 as latent i.e. novel as these signatures have not been reported earlier. Moreover, downstream investigations including enrichment analysis, and protein-protein interaction (PPI) network analysis of DEGs revealed durable disease association signifying their potential as novel transcriptomic biomarkers of diabetic vasculopathy. While the meta-analysis of individual whole transcriptomic datasets for diabetic vasculopathy is exclusive to our comprehension, however, the novel meta-analysis pipeline could very well be extended to study the mechanistic links of DEGs in other disease conditions.
Collapse
Affiliation(s)
- Diksha Pandey
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Onkara Perumal P.
- Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
8
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
10
|
Zhu Y, Chen X, Geng S, Li Q, Li Y, Yuan H, Jiang H. Identification of the cuproptosis-related hub genes and therapeutic agents for sarcopenia. Front Genet 2023; 14:1136763. [PMID: 37007946 PMCID: PMC10063920 DOI: 10.3389/fgene.2023.1136763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Along with acceleration of population aging, the increasing prevalence of sarcopenia has posed a heavy burden on families as well as society. In this context, it is of great significance to diagnose and intervene sarcopenia as early as possible. Recent evidence has indicated the role of cuproptosis in the development of sarcopenia. In this study, we aimed to seek the key cuproptosis-related genes that can be used for identification and intervention of sarcopenia.Methods: The GSE111016 dataset was retrieved from GEO. The 31 cuproptosis-related genes (CRGs) were obtained from previous published studies. The differentially expressed genes (DEGs) and Weighed gene co-expression network analysis (WGCNA) were subsequently analyzed. The core hub genes were acquired by the intersection of DEGs, WGCNA and CRGs. Through logistic regression analysis, we established a diagnostic model of sarcopenia based on the selected biomarkers and was validated in muscle samples from GSE111006 and GSE167186. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis were performed on these genes. Furthermore, the gene set enrichment analysis (GSEA), and immune cell infiltration were also conducted on the identified core genes. Finally, we screened the potential drugs targeting the potential biomarkers of sarcopenia.Results: A total of 902 DEGs and WGCNA containing 1,281 significant genes were preliminarily selected. Intersection of DEGs, WGCNA and CRGs yielded four core genes (PDHA1, DLAT, PDHB, and NDUFC1) as potential biomarkers for the prediction of sarcopenia. The predictive model was established and validated with high AUC values. KEGG pathway and Gene Ontology biological analysis indicated these core genes may play a crucial role in energy metabolism in mitochondria, oxidation process, and aging-related degenerative diseases. In addition, the immune cells may be involved in the development of sarcopenia through mitochondrial metabolism. Finally, metformin was identified as a promising strategy of sarcopenia treatment via targeting NDUFC1.Conclusion: The four cuproptosis-related genes PDHA1, DLAT, PDHB and NDUFC1 may be the diagnostic biomarkers for sarcopenia, and metformin holds great potential to be developed as a therapy for sarcopenia. These outcomes provide new insights for better understanding of sarcopenia and innovative therapeutic approaches.
Collapse
Affiliation(s)
- Yingqian Zhu
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of General Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Chen
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of General Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shasha Geng
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of General Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingqing Li
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of General Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Li
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of General Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huixiao Yuan
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of General Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Jiang
- Department of Geriatrics, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of General Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Hua Jiang,
| |
Collapse
|
11
|
Elevated hippocampal copper in cases of type 2 diabetes. EBioMedicine 2022; 86:104317. [DOI: 10.1016/j.ebiom.2022.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
|
12
|
Diamanti K, Cavalli M, Pereira MJ, Pan G, Castillejo-López C, Kumar C, Mundt F, Komorowski J, Deshmukh AS, Mann M, Korsgren O, Eriksson JW, Wadelius C. Organ-specific metabolic pathways distinguish prediabetes, type 2 diabetes, and normal tissues. Cell Rep Med 2022; 3:100763. [PMID: 36198307 PMCID: PMC9589007 DOI: 10.1016/j.xcrm.2022.100763] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/02/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Environmental and genetic factors cause defects in pancreatic islets driving type 2 diabetes (T2D) together with the progression of multi-tissue insulin resistance. Mass spectrometry proteomics on samples from five key metabolic tissues of a cross-sectional cohort of 43 multi-organ donors provides deep coverage of their proteomes. Enrichment analysis of Gene Ontology terms provides a tissue-specific map of altered biological processes across healthy, prediabetes (PD), and T2D subjects. We find widespread alterations in several relevant biological pathways, including increase in hemostasis in pancreatic islets of PD, increase in the complement cascade in liver and pancreatic islets of PD, and elevation in cholesterol biosynthesis in liver of T2D. Our findings point to inflammatory, immune, and vascular alterations in pancreatic islets in PD that are hypotheses to be tested for potential contributions to hormonal perturbations such as impaired insulin and increased glucagon production. This multi-tissue proteomic map suggests tissue-specific metabolic dysregulations in T2D.
Collapse
Affiliation(s)
- Klev Diamanti
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marco Cavalli
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria J Pereira
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Gang Pan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Casimiro Castillejo-López
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Chanchal Kumar
- Translational Science & Experimental Medicine, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Karolinska Institutet/AstraZeneca Integrated CardioMetabolic Center (KI/AZ ICMC), Department of Medicine, Novum, Huddinge, Sweden
| | - Filip Mundt
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Jan Komorowski
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden; Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland; Washington National Primate Research Center, Seattle, WA, USA; Swedish Collegium for Advanced Study, Uppsala, Sweden
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Olle Korsgren
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Claes Wadelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Giannos P, Prokopidis K, Raleigh SM, Kelaiditi E, Hill M. Altered mitochondrial microenvironment at the spotlight of musculoskeletal aging and Alzheimer's disease. Sci Rep 2022; 12:11290. [PMID: 35788655 PMCID: PMC9253146 DOI: 10.1038/s41598-022-15578-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Emerging evidence has linked Alzheimer's disease (AD) onset with musculoskeletal aging via a muscle-brain crosstalk mediated by dysregulation of the mitochondrial microenvironment. This study investigated gene expression profiles from skeletal muscle tissues of older healthy adults to identify potential gene biomarkers whose dysregulated expression and protein interactome were involved in AD. Screening of the literature resulted in 12 relevant microarray datasets (GSE25941, GSE28392, GSE28422, GSE47881, GSE47969, GSE59880) in musculoskeletal aging and (GSE4757, GSE5281, GSE16759, GSE28146, GSE48350, GSE84422) in AD. Retrieved differentially expressed genes (DEGs) were used to construct two unique protein-protein interaction networks and clustering gene modules were identified. Overlapping module DEGs in the musculoskeletal aging and AD networks were ranked based on 11 topological algorithms and the five highest-ranked ones were considered as hub genes. The analysis revealed that the dysregulated expression of the mitochondrial microenvironment genes, NDUFAB1, UQCRC1, UQCRFS1, NDUFS3, and MRPL15, overlapped between both musculoskeletal aging and AD networks. Thus, these genes may have a potential role as markers of AD occurrence in musculoskeletal aging. Human studies are warranted to evaluate the functional role and prognostic value of these genes in aging populations with sarcopenia and AD.
Collapse
Affiliation(s)
- Panagiotis Giannos
- Society of Meta-research and Biomedical Innovation, London, UK. .,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington, London, SW7 2AZ, UK.
| | - Konstantinos Prokopidis
- Society of Meta-research and Biomedical Innovation, London, UK.,Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Stuart M Raleigh
- Cardiovascular and Lifestyle Medicine Research Group, Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Eirini Kelaiditi
- Faculty of Sport, Allied Health and Performance Science, St Mary's University Twickenham, Twickenham, UK
| | - Mathew Hill
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
14
|
The mitochondrial proteomic changes of rat hippocampus induced by 28-day simulated microgravity. PLoS One 2022; 17:e0265108. [PMID: 35271667 PMCID: PMC8912132 DOI: 10.1371/journal.pone.0265108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/23/2022] [Indexed: 11/19/2022] Open
Abstract
A large number of aerospace practices have confirmed that the aerospace microgravity environment can lead to cognitive function decline. Mitochondria are the most important energy metabolism organelles, and some studies demonstrate that the areospace microgravity environment can cause mitochondrial dysfunction. However, the relationships between cognitive function decline and mitochondrial dysfunction in the microgravity environment have not been elucidated. In this study, we simulated the microgravity environment in the Sprague-Dawley (SD) rats by -30° tail suspension for 28 days. We then investigated the changes of mitochondrial morphology and proteomics in the hippocampus. The electron microscopy results showed that the 28-day tail suspension increased the mitochondria number and size of rat hippocampal neuronal soma. Using TMT-based proteomics analysis, we identified 163 differentially expressed proteins (DEPs) between tail suspension and control samples, and among them, 128 proteins were upregulated and 35 proteins were downregulated. Functional and network analyses of the DEPs indicated that several of mitochondrial metabolic processes including the tricarboxylic acid (TCA) cycle were altered by simulating microgravity (SM). We verified 3 upregulated proteins, aconitate hydratase (ACO2), dihydrolipoamide S-succinyltransferase (DLST), and citrate synthase (CS), in the TCA cycle process by western blotting and confirmed their differential expressions between tail suspension and control samples. Taken together, our results demonstrate that 28-day tail suspension can cause changes in the morphology and metabolic function of hippocampus mitochondria, which might represent a mechanism of cognitive disorder caused by aerospace microgravity.
Collapse
|
15
|
Silva-Gaona OG, Guzmán-Flores JM, Hernández-Ortiz M, Vargas-Ortiz K, Ramírez-Emiliano J, Encarnación-Guevara S, Pérez-Vázquez V. Curcumin Reverts the Protein Differential Expression in the Liver of the Diabetic Obese db/db Mice. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210114112642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
In type 2 diabetic mouse liver, hyperglycemia, and insulin modify gene expression. Curcumin is a
powerful antioxidant and antidiabetic agent that regulates the gene expression of different signaling pathways through
various transcription factors. Therefore, we hypothesized that curcumin modifies the protein expression profile in the liver
of diabetic db/db mice.
Objective:
To determine the effects of curcumin on the liver protein profile of diabetic db/db mice.
Methods:
db/db and wild type (WT) male mice were allocated in four groups, and they were fed for eight weeks. Three WT
and three diabetic db/db mice received a standard diet (SD; WT and db/db groups, respectively); three WT and three
diabetic db/db mice received a SD supplemented with 0.75 % (w/w) curcumin (WT+C and db/db+C groups, respectively).
Liver proteins were separated by 2D electrophoresis. Differential protein expression analysis was performed on
ImageMaster 2D Platinum software, and selected proteins were identified by MALDI-TOF-MS and subjected to enrichment
analysis using STRING and DAVID databases.
Results:
Thirty-six proteins with differential expression due to the diabetic background and curcumin treatment were found;
these proteins participate in the metabolism of amino acids, carbohydrates, and lipids. Interestingly, the altered expression of
seven proteins was prevented in the liver of the diabetic mice that received curcumin.
Conclusions:
Among all differentially expressed proteins, curcumin reverted the altered expression of seven proteins. Thus,
although it was observed that curcumin did not affect the biochemical parameters, it does modify the expression of some
liver proteins in diabetic mice.
Collapse
Affiliation(s)
- Oscar Gerardo Silva-Gaona
- Dpto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato., México
| | - Juan Manuel Guzmán-Flores
- Depto. de Salud, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad
de Guadalajara, Tepatitlán, Jalisco, México
| | | | - Katya Vargas-Ortiz
- Dpto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato., México
| | - Joel Ramírez-Emiliano
- Dpto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato., México
| | - Sergio Encarnación-Guevara
- Dpto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato., México
| | - Victoriano Pérez-Vázquez
- Dpto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato., México
| |
Collapse
|
16
|
Bettahi I, Krishnankutty R, Jaganjac M, Suleiman NNM, Ramanjaneya M, Jerobin J, Hassoun S, Alkasem M, Abdelhakam I, Iskandarani A, Samra TA, Mohamed-Ali V, Abou-Samra AB. Differences in protein expression, at the basal state and at 2 h of insulin infusion, in muscle biopsies from healthy Arab men with high or low insulin sensitivity measured by hyperinsulinemic euglycemic clamp. Front Endocrinol (Lausanne) 2022; 13:1024832. [PMID: 36876056 PMCID: PMC9982120 DOI: 10.3389/fendo.2022.1024832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/14/2022] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Skeletal muscle is the main site for insulin-dependent glucose disposal. The hyperinsulinemic euglycemic clamp (HIEC) is the gold standard for the assessment of insulin sensitivity (IS). We have previously shown that insulin sensitivity, measured by HIEC, varied widely among a group of 60 young healthy men with normoglycemia. The aim of this study was to correlate the proteomic profile of skeletal muscles to insulin sensitivity. METHODS Muscle biopsies from 16 subjects having the highest (M ≥ 13; n = 8, HIS) and lowest (M ¾ 6, n = 8, LIS) IS were obtained at baseline and during insulin infusion after stabilization of the blood glucose level and glucose infusion rate at the end of the HIEC. The samples were processed using a quantitative proteomic analysis approach. RESULTS At baseline, 924 proteins were identified in the HIS and LIS groups. Among the 924 proteins detected in both groups, three were suppressed and three were increased significantly in the LIS subjects compared with the HIS subjects. Following insulin infusion, 835 proteins were detected in both groups. Among the 835 proteins, two showed differential responsiveness to insulin; ATP5F1 protein was decreased, and MYLK2 was higher in the LIS group compared with that in the HIS group. Our data suggest that alteration in mitochondrial proteins and an increased number of proteins involved in fast-twitch fiber correlate to insulin sensitivity in healthy young Arab men. CONCLUSIONS These results suggest a change in a small number of differentially expressed proteins. A possible reason for this small change could be our study cohorts representing a homogeneous and healthy population. Additionally, we show differences in protein levels from skeletal muscle in low and high insulin sensitivity groups. Therefore, these differences may represent early events for the development of insulin resistance, pre-diabetes, and type 2 diabetes.
Collapse
Affiliation(s)
- Ilham Bettahi
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- *Correspondence: Ilham Bettahi,
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Morana Jaganjac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Noor Nabeel M. Suleiman
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Manjunath Ramanjaneya
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jayakumar Jerobin
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shaimaa Hassoun
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Meis Alkasem
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ibrahem Abdelhakam
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ahmad Iskandarani
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tareq A. Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Abdul Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Weill Cornell Medicine-Qatar, Doha, Qatar
| |
Collapse
|
17
|
Eshima H. Influence of Obesity and Type 2 Diabetes on Calcium Handling by Skeletal Muscle: Spotlight on the Sarcoplasmic Reticulum and Mitochondria. Front Physiol 2021; 12:758316. [PMID: 34795598 PMCID: PMC8592904 DOI: 10.3389/fphys.2021.758316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity and diabetes have been shown to interfere with energy metabolism and cause peripheral insulin resistance in skeletal muscle. However, recent studies have focused on the effect metabolic insult has on the loss of muscle size, strength, and physical function. Contractile dysfunction has been linked to impaired intracellular Ca2+ concentration ([Ca2+]i) regulation. In skeletal muscle, [Ca2+]i homeostasis is highly regulated by Ca2+ transport across the sarcolemma/plasma membrane, the golgi apparatus, sarcoplasmic reticulum (SR), and mitochondria. Particularly, the SR and or mitochondria play an important role in the fine-tuning of this metabolic process. Recent studies showed that obesity and insulin resistance are associated with interactions between the SR and mitochondrial networks (the dynamic tubular reticulum formed by mitochondria), suggesting that metabolic disorders alter Ca2+ handling by these organelles. These interactions are facilitated by specific membrane proteins, including ion channels. This review considers the impact of metabolic disorders, such as obesity and type 2 diabetes, on the regulation of [Ca2+]i in skeletal muscle. It also discusses the mechanisms by which this occurs, focusing chiefly on the SR and mitochondria networks. A deeper understanding of the effect of metabolic disorders on calcium handling might be useful for therapeutic strategies.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of International Tourism, Nagasaki International University, Nagasaki, Japan
| |
Collapse
|
18
|
The Physiological Role of Irisin in the Regulation of Muscle Glucose Homeostasis. ENDOCRINES 2021; 2:266-283. [PMID: 35392577 PMCID: PMC8986094 DOI: 10.3390/endocrines2030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Irisin is a myokine that primarily targets adipose tissue, where it increases energy expenditure and contributes to the beneficial effects of exercise through the browning of white adipose tissue. As our knowledge has deepened in recent years, muscle has been found to be a major target organ for irisin as well. Several studies have attempted to characterize the role of irisin in muscle to improve glucose metabolism through mechanisms such as reducing insulin resistance. Although they are very intriguing reports, some contradictory results make it difficult to grasp the whole picture of the action of irisin on muscle. In this review, we attempted to organize the current knowledge of the role of irisin in muscle glucose metabolism. We discussed the direct effects of irisin on glucose metabolism in three types of muscle, that is, skeletal muscle, smooth muscle, and the myocardium. We also describe irisin’s effects on mitochondria and its interactions with other hormones. Furthermore, to consider the relationship between the irisin-induced improvement of glucose metabolism in muscle and systemic disorders of glucose metabolism, we reviewed the results from animal interventional studies and human clinical studies.
Collapse
|
19
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
20
|
Öhman T, Teppo J, Datta N, Mäkinen S, Varjosalo M, Koistinen HA. Skeletal muscle proteomes reveal downregulation of mitochondrial proteins in transition from prediabetes into type 2 diabetes. iScience 2021; 24:102712. [PMID: 34235411 PMCID: PMC8246593 DOI: 10.1016/j.isci.2021.102712] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/17/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022] Open
Abstract
Skeletal muscle insulin resistance is a central defect in the pathogenesis of type 2 diabetes (T2D). Here, we analyzed skeletal muscle proteome in 148 vastus lateralis muscle biopsies obtained from men covering all glucose tolerance phenotypes: normal, impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and T2D. Skeletal muscle proteome was analyzed by a sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics technique. Our data indicate a downregulation in several proteins involved in mitochondrial electron transport or respiratory chain complex assembly already in IFG and IGT muscles, with most profound decreases observed in T2D. Additional phosphoproteomic analysis reveals altered phosphorylation in several signaling pathways in IFG, IGT, and T2D muscles, including those regulating glucose metabolic processes, and the structure of muscle cells. These data reveal several alterations present in skeletal muscle already in prediabetes and highlight impaired mitochondrial energy metabolism in the trajectory from prediabetes into T2D. Skeletal muscle proteome from men with all stages of glucose tolerance was analyzed Phosphoproteomics reveal altered phosphorylation in IFG, IGT, and T2D muscles OXPHOS proteins are decreased in prediabetic muscles, with most decrease in T2D
Collapse
Affiliation(s)
- Tiina Öhman
- University of Helsinki, Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, 00014 Helsinki, Finland
| | - Jaakko Teppo
- University of Helsinki, Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, 00014 Helsinki, Finland.,University of Helsinki, Drug Research Program, Faculty of Pharmacy, 00014 Helsinki, Finland
| | - Neeta Datta
- University of Helsinki, Department of Medicine, Helsinki University Hospital, Haartmaninkatu 4, PO BOX 340, 00029 HUS, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Selina Mäkinen
- University of Helsinki, Department of Medicine, Helsinki University Hospital, Haartmaninkatu 4, PO BOX 340, 00029 HUS, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Markku Varjosalo
- University of Helsinki, Molecular Systems Biology Research Group and Proteomics Unit, Institute of Biotechnology, 00014 Helsinki, Finland
| | - Heikki A Koistinen
- University of Helsinki, Department of Medicine, Helsinki University Hospital, Haartmaninkatu 4, PO BOX 340, 00029 HUS, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
21
|
Molecular pathways behind acquired obesity: Adipose tissue and skeletal muscle multiomics in monozygotic twin pairs discordant for BMI. CELL REPORTS MEDICINE 2021; 2:100226. [PMID: 33948567 PMCID: PMC8080113 DOI: 10.1016/j.xcrm.2021.100226] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/31/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Tissue-specific mechanisms prompting obesity-related development complications in humans remain unclear. We apply multiomics analyses of subcutaneous adipose tissue and skeletal muscle to examine the effects of acquired obesity among 49 BMI-discordant monozygotic twin pairs. Overall, adipose tissue appears to be more affected by excess body weight than skeletal muscle. In heavier co-twins, we observe a transcriptional pattern of downregulated mitochondrial pathways in both tissues and upregulated inflammatory pathways in adipose tissue. In adipose tissue, heavier co-twins exhibit lower creatine levels; in skeletal muscle, glycolysis- and redox stress-related protein and metabolite levels remain higher. Furthermore, metabolomics analyses in both tissues reveal that several proinflammatory lipids are higher and six of the same lipid derivatives are lower in acquired obesity. Finally, in adipose tissue, but not in skeletal muscle, mitochondrial downregulation and upregulated inflammation are associated with a fatty liver, insulin resistance, and dyslipidemia, suggesting that adipose tissue dominates in acquired obesity. Multiomics analyses of adipose tissue and skeletal muscle in BMI-discordant twins Excess body weight downregulates mitochondrial pathways in both tissues Excess body weight upregulates proinflammatory pathways in both tissues Adipose tissue alterations are associated with metabolic health in acquired obesity
Collapse
|
22
|
Fiorentino TV, Monroy A, Kamath S, Sotero R, Cas MD, Daniele G, Chavez AO, Abdul-Ghani M, Hribal ML, Sesti G, Tripathy D, DeFronzo RA, Folli F. Pioglitazone corrects dysregulation of skeletal muscle mitochondrial proteins involved in ATP synthesis in type 2 diabetes. Metabolism 2021; 114:154416. [PMID: 33137378 DOI: 10.1016/j.metabol.2020.154416] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/25/2022]
Abstract
CONTEXT In this study, we aimed to identify the determinants of mitochondrial dysfunction in skeletal muscle (SKLM) of subjects with type 2 diabetes (T2DM), and to evaluate the effect of pioglitazone (PIO) on SKLM mitochondrial proteome. METHODS Two different groups of adults were studied. Group I consisted of 8 individuals with normal glucose tolerance (NGT) and 8 with T2DM, subjected to SKLM mitochondrial proteome analysis by 2D-gel electrophoresis followed by mass spectrometry-based protein identification. Group II included 24 individuals with NGT and 24 with T2DM, whose SKLM biopsies were subjected to immunoblot analysis. Of the 24 subjects with T2DM, 20 were randomized to receive placebo or PIO (15 mg daily) for 6 months. After 6 months of treatment, SKLM biopsy was repeated. RESULTS Mitochondrial proteomic analysis on Group I revealed that several mitochondrial proteins involved in oxidative metabolism were differentially expressed between T2DM and NGT groups, with a downregulation of ATP synthase alpha chain (ATP5A), electron transfer flavoprotein alpha-subunit (ETFA), cytochrome c oxidase subunit VIb isoform 1 (CX6B1), pyruvate dehydrogenase protein X component (ODPX), dihydrolipoamide dehydrogenase (DLDH), dihydrolipoamide-S-succinyltransferase (DLST), and mitofilin, and an up-regulation of hydroxyacyl-CoA-dehydrogenase (HCDH), 3,2-trans-enoyl-CoA-isomerase (D3D2) and delta3,5-delta2,4-dienoyl-CoA-isomerase (ECH1) in T2DM as compared to NGT subjects. By immunoblot analysis on SKLM lysates obtained from Group II we confirmed that, in comparison to NGT subjects, those with T2DM exhibited lower protein levels of ATP5A (-30%, P = 0.006), ETFA (-50%, P = 0.02), CX6B1 (-30%, P = 0.03), key factors for ATP biosynthesis, and of the structural protein mitofilin (-30%, P = 0.01). T2DM was associated with a reduced abundance of the enzymes involved in the Krebs cycle DLST and ODPX (-20%, P ≤ 0.05) and increased levels of HCDH and ECH1, enzymes implicated in the fatty acid catabolism (+30%, P ≤ 0.05). In subjects with type 2 diabetes treated with PIO for 6 months we found a restored SKLM protein abundance of ATP5A, ETFA, CX6B1, and mitofilin. Moreover, protein levels of HCDH and ECH1 were reduced by -10% and - 15% respectively (P ≤ 0.05 for both) after PIO treatment. CONCLUSION Type 2 diabetes is associated with reduced levels of mitochondrial proteins involved in oxidative phosphorylation and an increased abundance of enzymes implicated in fatty acid catabolism in SKLM. PIO treatment is able to improve SKLM mitochondrial proteomic profile in subjects with T2DM.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy; Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Adriana Monroy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America; Oncology, General Hospital of Mexico, Mexico City, Mexico
| | - Subash Kamath
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Rosa Sotero
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Michele Dei Cas
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Science, University of Milan, Milan, Italy
| | - Giuseppe Daniele
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Alberto O Chavez
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Muhammad Abdul-Ghani
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy
| | - Devjit Tripathy
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Ralph A DeFronzo
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Franco Folli
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America; Endocrinology and Metabolism, Department of Health Science, University of Milan, Diabetologia e Malattie Metaboliche, Aziende Socio Sanitarie Territoriali Santi Paolo e Carlo, Milan, Italy.
| |
Collapse
|
23
|
Lofaro FD, Boraldi F, Garcia-Fernandez M, Estrella L, Valdivielso P, Quaglino D. Relationship Between Mitochondrial Structure and Bioenergetics in Pseudoxanthoma elasticum Dermal Fibroblasts. Front Cell Dev Biol 2020; 8:610266. [PMID: 33392199 PMCID: PMC7773789 DOI: 10.3389/fcell.2020.610266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a genetic disease considered as a paradigm of ectopic mineralization disorders, being characterized by multisystem clinical manifestations due to progressive calcification of skin, eyes, and the cardiovascular system, resembling an age-related phenotype. Although fibroblasts do not express the pathogenic ABCC6 gene, nevertheless these cells are still under investigation because they regulate connective tissue homeostasis, generating the "arena" where cells and extracellular matrix components can promote pathologic calcification and where activation of pro-osteogenic factors can be associated to pathways involving mitochondrial metabolism. The aim of the present study was to integrate structural and bioenergenetic features to deeply investigate mitochondria from control and from PXE fibroblasts cultured in standard conditions and to explore the role of mitochondria in the development of the PXE fibroblasts' pathologic phenotype. Proteomic, biochemical, and morphological data provide new evidence that in basal culture conditions (1) the protein profile of PXE mitochondria reveals a number of differentially expressed proteins, suggesting changes in redox balance, oxidative phosphorylation, and calcium homeostasis in addition to modified structure and organization, (2) measure of oxygen consumption indicates that the PXE mitochondria have a low ability to cope with a sudden increased need for ATP via oxidative phosphorylation, (3) mitochondrial membranes are highly polarized in PXE fibroblasts, and this condition contributes to increased reactive oxygen species levels, (4) ultrastructural alterations in PXE mitochondria are associated with functional changes, and (5) PXE fibroblasts exhibit a more abundant, branched, and interconnected mitochondrial network compared to control cells, indicating that fusion prevail over fission events. In summary, the present study demonstrates that mitochondria are modified in PXE fibroblasts. Since mitochondria are key players in the development of the aging process, fibroblasts cultured from aged individuals or aged in vitro are more prone to calcify, and in PXE, calcified tissues remind features of premature aging syndromes; it can be hypothesized that mitochondria represent a common link contributing to the development of ectopic calcification in aging and in diseases. Therefore, ameliorating mitochondrial functions and cell metabolism could open new strategies to positively regulate a number of signaling pathways associated to pathologic calcification.
Collapse
Affiliation(s)
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Garcia-Fernandez
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Lara Estrella
- Department of Human Physiology, Biomedical Research Institute of Málaga, University of Malaga, Málaga, Spain
| | - Pedro Valdivielso
- Department of Medicine and Dermatology, Instituto de Investigación Biomédica de Málaga, University of Malaga, Málaga, Spain
- Internal Medicine Unit, Hospital Virgen de la Victoria, Málaga, Spain
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
24
|
Kalita B, Bano S, Vavachan VM, Taunk K, Seshadri V, Rapole S. Application of mass spectrometry based proteomics to understand diabetes: A special focus on interactomics. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140469. [DOI: 10.1016/j.bbapap.2020.140469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/07/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
|
25
|
Skuratovskaia D, Komar A, Vulf M, Litvinova L. Mitochondrial destiny in type 2 diabetes: the effects of oxidative stress on the dynamics and biogenesis of mitochondria. PeerJ 2020; 8:e9741. [PMID: 32904391 PMCID: PMC7453922 DOI: 10.7717/peerj.9741] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/26/2020] [Indexed: 12/28/2022] Open
Abstract
Background One reason for the development of insulin resistance is the chronic inflammation in obesity. Materials & Methods Scientific articles in the field of knowledge on the involvement of mitochondria and mitochondrial DNA (mtDNA) in obesity and type 2 diabetes were analyzed. Results Oxidative stress developed during obesity contributes to the formation of peroxynitrite, which causes cytochrome C-related damage in the mitochondrial electron transfer chain and increases the production of reactive oxygen species (ROS), which is associated with the development of type 2 diabetes. Oxidative stress contributes to the nuclease activity of the mitochondrial matrix, which leads to the accumulation of cleaved fragments and an increase in heteroplasmy. Mitochondrial dysfunction and mtDNA variations during insulin resistance may be connected with a change in ATP levels, generation of ROS, mitochondrial division/fusion and mitophagy. This review discusses the main role of mitochondria in the development of insulin resistance, which leads to pathological processes in insulin-dependent tissues, and considers potential therapeutic directions based on the modulation of mitochondrial biogenesis. In this regard, the development of drugs aimed at the regulation of these processes is gaining attention. Conclusion Changes in the mtDNA copy number can help to protect mitochondria from severe damage during conditions of increased oxidative stress. Mitochondrial proteome studies are conducted to search for potential therapeutic targets. The use of mitochondrial peptides encoded by mtDNA also represents a promising new approach to therapy.
Collapse
Affiliation(s)
| | - Alexandra Komar
- Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Maria Vulf
- Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| | - Larisa Litvinova
- Immanuel Kant Baltic Federal University, Kaliningrad, Russian Federation
| |
Collapse
|
26
|
Kruse R, Sahebekhtiari N, Højlund K. The Mitochondrial Proteomic Signatures of Human Skeletal Muscle Linked to Insulin Resistance. Int J Mol Sci 2020; 21:ijms21155374. [PMID: 32731645 PMCID: PMC7432338 DOI: 10.3390/ijms21155374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: Mitochondria are essential in energy metabolism and cellular survival, and there is growing evidence that insulin resistance in chronic metabolic disorders, such as obesity, type 2 diabetes (T2D), and aging, is linked to mitochondrial dysfunction in skeletal muscle. Protein profiling by proteomics is a powerful tool to investigate mechanisms underlying complex disorders. However, despite significant advances in proteomics within the past two decades, the technologies have not yet been fully exploited in the field of skeletal muscle proteome. Area covered: Here, we review the currently available studies characterizing the mitochondrial proteome in human skeletal muscle in insulin-resistant conditions, such as obesity, T2D, and aging, as well as exercise-mediated changes in the mitochondrial proteome. Furthermore, we outline technical challenges and limitations and methodological aspects that should be considered when planning future large-scale proteomics studies of mitochondria from human skeletal muscle. Authors’ view: At present, most proteomic studies of skeletal muscle or isolated muscle mitochondria have demonstrated a reduced abundance of proteins in several mitochondrial biological processes in obesity, T2D, and aging, whereas the beneficial effects of exercise involve an increased content of muscle proteins involved in mitochondrial metabolism. Powerful mass-spectrometry-based proteomics now provides unprecedented opportunities to perform in-depth proteomics of muscle mitochondria, which in the near future is expected to increase our understanding of the complex molecular mechanisms underlying the link between mitochondrial dysfunction and insulin resistance in chronic metabolic disorders.
Collapse
Affiliation(s)
- Rikke Kruse
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Navid Sahebekhtiari
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
| | - Kurt Højlund
- Steno Diabetes Center Odense, Odense University Hospital, DK-5000 Odense C, Denmark; (R.K.); (N.S.)
- Department of Clinical Research & Department of Molecular Medicine, University of Southern Denmark, DK-5000 Odense C, Denmark
- Correspondence: ; Tel.: +45-2532-06-48
| |
Collapse
|
27
|
Serum biomarkers from cell-based assays for AhRL and MIS strongly predicted the future development of diabetes in a large community-based prospective study in Korea. Sci Rep 2020; 10:6339. [PMID: 32286339 PMCID: PMC7156500 DOI: 10.1038/s41598-020-62550-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 03/11/2020] [Indexed: 02/08/2023] Open
Abstract
Exposure to environment-polluting chemicals (EPC) is associated with the development of diabetes. Many EPCs exert toxic effects via aryl hydrocarbon receptor (AhR) and/or mitochondrial inhibition. Here we investigated if the levels of human exposure to a mixture of EPC and/or mitochondrial inhibitors could predict the development of diabetes in a prospective study, the Korean Genome and Epidemiological Study (KoGES). We analysed AhR ligands (AhRL) and mitochondria-inhibiting substances (MIS) in serum samples (n = 1,537), collected during the 2008 Ansung KoGES survey with a 4-year-follow-up. Serum AhRL, determined by the AhR-dependent luciferase reporter assay, represents the contamination level of AhR ligand mixture in serum. Serum levels of MIS, analysed indirectly by MIS-ATP or MIS-ROS, are the serum MIS-induced mitochondria inhibiting effects on ATP content or reactive oxygen species (ROS) production in the cultured cells. Among 919 normal subjects at baseline, 7.1% developed impaired glucose tolerance (IGT) and 1.6% diabetes after 4 years. At the baseline, diabetic and IGT sera displayed higher AhRL and MIS than normal sera, which correlated with indices of insulin resistance. When the subjects were classified according to ROC cut-off values, fully adjusted relative risks of diabetes development within 4 years were 7.60 (95% CI, 4.23–13.64), 4.27 (95% CI, 2.38–7.64), and 21.11 (95% CI, 8.46–52.67) for AhRL ≥ 2.70 pM, MIS-ATP ≤ 88.1%, and both, respectively. Gender analysis revealed that male subjects with AhRL ≥ 2.70 pM or MIS-ATP ≤ 88.1% showed higher risk than female subjects. High serum levels of AhRL and/or MIS strongly predict the future development of diabetes, suggesting that the accumulation of AhR ligands and/or mitochondrial inhibitors in body may play an important role in the pathogenesis of diabetes.
Collapse
|
28
|
Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer's disease in the Middle East and its shared pathological mediators. Saudi J Biol Sci 2020; 27:736-750. [PMID: 32210695 PMCID: PMC6997863 DOI: 10.1016/j.sjbs.2019.12.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
The incidence of Alzheimer's disease (AD) has risen exponentially worldwide over the past decade. A growing body of research indicates that AD is linked to diabetes mellitus (DM) and suggests that impaired insulin signaling acts as a crucial risk factor in determining the progression of this devastating disease. Many studies suggest people with diabetes, especially type 2 diabetes, are at higher risk of eventually developing Alzheimer's dementia or other dementias. Despite nationwide efforts to increase awareness, the prevalence of Diabetes Mellitus (DM) has risen significantly in the Middle East and North African (MENA) region which might be due to rapid urbanization, lifestyle changes, lack of physical activity and rise in obesity. Growing body of evidence indicates that DM and AD are linked because both conditions involve impaired glucose homeostasis and altered brain function. Current theories and hypothesis clearly implicate that defective insulin signaling in the brain contributes to synaptic dysfunction and cognitive deficits in AD. In the periphery, low-grade chronic inflammation leads to insulin resistance followed by tissue deterioration. Thus insulin resistance acts as a bridge between DM and AD. There is pressing need to understand on how DM increases the risk of AD as well as the underlying mechanisms, due to the projected increase in age related disorders. Here we aim to review the incidence of AD and DM in the Middle East and the possible link between insulin signaling and ApoE carrier status on Aβ aggregation, tau hyperphosphorylation, inflammation, oxidative stress and mitochondrial dysfunction in AD. We also critically reviewed mutation studies in Arab population which might influence DM induced AD. In addition, recent clinical trials and animal studies conducted to evaluate the efficiency of anti-diabetic drugs have been reviewed.
Collapse
Key Words
- AAV, Adeno-associated virus
- ABCA1, ATP binding cassette subfamily A member 1
- AD, Alzheimer’s disease
- ADAMTS9, ADAM Metallopeptidase With Thrombospondin Type 1 Motif 9
- AGPAT1, 1-acyl-sn-glycerol-3-phosphate acyltransferase alpha
- Alzheimer’s disease
- Anti-diabetic drugs
- ApoE, Apolipoprotein E
- Arab population
- Aβ, Amyloid-beta
- BACE1, Beta-secretase 1
- BBB, Blood-Brain Barrier
- BMI, Body mass index
- CALR, calreticulin gene
- CIP2A, Cancerous Inhibitor Of Protein Phosphatase 2A
- COX-2, Cyclooxygenase 2
- CSF, Cerebrospinal fluid
- DM, Diabetes mellitus
- DUSP9, Dual Specificity Phosphatase 9
- Diabetes mellitus
- ECE-1, Endotherin converting enzyme 1
- FDG-PET, Fluorodeoxyglucose- positron emission tomography
- FRMD4A, FERM Domain Containing 4A
- FTO, Fat Mass and Obesity Associated Gene
- GLP-1, Glucagon like peptide
- GNPDA2, Glucosamine-6-phosphate deaminase 2
- GSK-3β, Glycogen synthase kinase 3 beta
- IDE, Insulin degrading enzyme
- IGF-1, Insulin-like growth factor 1
- IR, Insulin receptor
- IR, Insulin resistance
- Insulin signaling
- LPA, Lipophosphatidic acid
- MC4R, Melanocortin 4 receptor
- MCI, Myocardial infarction
- MENA, Middle East North African
- MG-H1, Methylglyoxal-hydroimidazolone isomer trifluoroactic acid salt
- MRI, Magnetic resonance imaging
- NDUFS3, NADH:Ubiquinone Oxidoreductase Core Subunit S3
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NFT, Neurofibrillary tangles
- NOTCH4, Neurogenic locus notch homolog protein 4
- PI3K, Phosphoinositide-3
- PP2A, Protein phosphatase 2
- PPAR-γ2, Peroxisome proliferator-activated receptor gamma 2
- Pit-PET, Pittsburgh compound B- positron emission tomography
- RAB1A, Ras-related protein 1A
- SORT, Sortilin
- STZ, Streptozotocin
- T1DM, Type 1 Diabetes Mellitus
- T2DM, Type 2 Diabetes Mellitus
- TCF7L2, Transcription Factor 7 Like 2
- TFAP2B, Transcription Factor AP-2 Beta
Collapse
Affiliation(s)
| | | | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
29
|
Cheng H, Gang X, He G, Liu Y, Wang Y, Zhao X, Wang G. The Molecular Mechanisms Underlying Mitochondria-Associated Endoplasmic Reticulum Membrane-Induced Insulin Resistance. Front Endocrinol (Lausanne) 2020; 11:592129. [PMID: 33329397 PMCID: PMC7719781 DOI: 10.3389/fendo.2020.592129] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria and the endoplasmic reticulum (ER) are connected at multiple sites via what are known as mitochondria-associated ER membranes (MAMs). These associations are known to play an important role in maintaining cellular homeostasis. Impaired MAM signaling has wide-ranging effects in many diseases, such as obesity, diabetes, and neurodegenerative disorders. Accumulating evidence has suggested that MAMs influence insulin signaling through different pathways, including those associated with Ca2+ signaling, lipid metabolism, mitochondrial function, ER stress responses, and inflammation. Altered MAM signaling is a common feature of insulin resistance in different tissues, including the liver, muscle, and even the brain. In the liver, MAMs are key glucose-sensing regulators and have been proposed to be a hub for insulin signaling. Impaired MAM integrity has been reported to disrupt hepatic responses to changes in glucose availability during nutritional transition and to induce hepatic insulin resistance. Meanwhile, these effects can be rescued by the reinforcement of MAM interactions. In contrast, several studies have proposed that enhanced ER-mitochondria connections are detrimental to hepatic insulin signaling and can lead to mitochondrial dysfunction. Thus, given these contradictory results, the role played by the MAM in the regulation of hepatic insulin signaling remains elusive. Similarly, in skeletal muscle, enhanced MAM formation may be beneficial in the early stage of diabetes, whereas continuous MAM enhancement aggravates insulin resistance. Furthermore, recent studies have suggested that ER stress may be the primary pathway through which MAMs induce brain insulin resistance, especially in the hypothalamus. This review will discuss the possible mechanisms underlying MAM-associated insulin resistance as well as the therapeutic potential of targeting the MAM in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | - Xue Zhao
- *Correspondence: Guixia Wang, ; Xue Zhao,
| | | |
Collapse
|
30
|
Araujo TT, Barbosa Silva Pereira HA, Dionizio A, Sanchez CDC, de Souza Carvalho T, da Silva Fernandes M, Rabelo Buzalaf MA. Changes in energy metabolism induced by fluoride: Insights from inside the mitochondria. CHEMOSPHERE 2019; 236:124357. [PMID: 31325826 DOI: 10.1016/j.chemosphere.2019.124357] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
The mechanisms involved in changes in energy metabolism caused by excessive exposure to fluoride (F) are not completely understood. The present study employed proteomic tools to investigate the molecular mechanisms underlying the dose- and time-dependency of the effects of F in the rat liver mitochondria. Thirty-six male Wistar rats received water containing 0, 15 or 50 mgF/L (as NaF) for 20 or 60 days. Rat liver mitochondria were isolated and the proteome profiles were examined using label-free quantitative nLC-MS/MS. PLGS software was used to detect changes in protein expression among the different groups. The bioinformatics analysis was done using the software CYTOSCAPE® 3.0.7 (Java®) with the aid of ClueGo plugin. The dose of 15 mgF/L, when administered for 20 days, reduced glycolysis, which was counterbalanced by an increase in other energetic pathways. At 60 days, however, an increase in all energy pathways was observed. On the other hand, the dose of 50 mgF/L, when administered for 20 days, reduced the enzymes involved in all energetic pathways, indicating a lower rate of energy production, with less generation of ROS and consequent reduction of antioxidant enzymes. However, when the 50 mgF/L dose was administered for 60 days, an increase in energy metabolism was seen but in general no changes were observed in the antioxidant enzymes. Except for the group treated with 50 mgF/L for 20 days, all the other groups had alterations in proteins in attempt to maintain calcium homeostasis and avoid apoptosis. The results suggest that the organism seems to adapt to the effects of F over time, activating pathways to reduce the toxicity of this ion. Ultimately, our findings corroborate the safety of the use of fluoride for caries control.
Collapse
Affiliation(s)
- Tamara Teodoro Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Heloisa Aparecida Barbosa Silva Pereira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | | | - Thamyris de Souza Carvalho
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Mileni da Silva Fernandes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Al. Octávio Pinheiro Brisolla, 9-75, 17012-901, Bauru, São Paulo, Brazil.
| |
Collapse
|