1
|
Cai H, Tian C, Chen L, Yang Y, Sun AX, McCracken K, Tchieu J, Gu M, Mackie K, Guo F. Vascular network-inspired diffusible scaffolds for engineering functional midbrain organoids. Cell Stem Cell 2025; 32:824-837.e5. [PMID: 40101722 DOI: 10.1016/j.stem.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/03/2025] [Accepted: 02/19/2025] [Indexed: 03/20/2025]
Abstract
Organoids, 3D organ-like tissue cultures derived from stem cells, show promising potential for developmental biology, drug discovery, and regenerative medicine. However, the function and phenotype of current organoids, especially neural organoids, are still limited by insufficient diffusion of oxygen, nutrients, metabolites, signaling molecules, and drugs. Herein, we present vascular network-inspired diffusible (VID) scaffolds to mimic physiological diffusion physics for generating functional organoids and phenotyping their drug response. Specifically, the VID scaffolds, 3D-printed meshed tubular channel networks, successfully engineer human midbrain organoids almost without necrosis and hypoxia in commonly used well plates. Compared with conventional organoids, these engineered organoids develop more physiologically relevant features and functions, including midbrain-specific identity, oxygen metabolism, neuronal maturation, and network activity. Moreover, these engineered organoids also better recapitulate pharmacological responses, such as neural activity changes to fentanyl exposure, compared with conventional organoids with significant diffusion limits. This platform may provide insights for organoid development and therapeutic innovation.
Collapse
Affiliation(s)
- Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Chunhui Tian
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Lei Chen
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Yang Yang
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Alfred Xuyang Sun
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioral Disorders, 8 College Road, Singapore 169857, Singapore
| | - Kyle McCracken
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Jason Tchieu
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Mingxia Gu
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University Bloomington, Bloomington, IN 47405, USA.
| |
Collapse
|
2
|
Li Y, Sun XY, Zeng PM, Luo ZG. Neural Responses to Hypoxic Injury in a Vascularized Cerebral Organoid Model. Neurosci Bull 2025:10.1007/s12264-025-01396-2. [PMID: 40261528 DOI: 10.1007/s12264-025-01396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 04/24/2025] Open
Abstract
Hypoxic injury (HI) in the prenatal period often causes neonatal neurological disabilities. Due to the difficulty in obtaining clinical samples, the molecular and cellular mechanisms remain unclear. Here we use vascularized cerebral organoids to investigate the hypoxic injury phenotype and explore the intercellular interactions between vascular and neural tissues under hypoxic conditions. Our results indicate that fused vascularized cerebral organoids exhibit broader hypoxic responses and larger decreases in panels of neural development-related genes when exposed to low oxygen levels compared to single cerebral organoids. Interestingly, vessels also exhibit neural protective effects on T-box brain protein 2+ intermediate progenitors (IPs), which are markedly lost in HI cerebral organoids. Furthermore, we identify the role of bone morphogenic protein signaling in protecting IPs. Thus, this study has established an in vitro organoid system that can be used to study the contribution of vessels to brain injury under hypoxic conditions and provides a strategy for the identification of intervention targets.
Collapse
Affiliation(s)
- Yang Li
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Xin-Yao Sun
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Peng-Ming Zeng
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
3
|
Zhang R, Jiang Y, Zhang G, Zeng W, Suo Y, Zhang F, Jiang X. Mitochondrial DNA in atherosclerosis: Mechanisms, biomarker potential, and therapeutic perspectives. Int Immunopharmacol 2025; 152:114449. [PMID: 40073813 DOI: 10.1016/j.intimp.2025.114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
Atherosclerosis is a chronic inflammatory disease in which mitochondrial DNA (mtDNA) has emerged as a key contributor to its pathogenesis. We synthesized evidence from experimental and clinical studies showing that mtDNA damage, release, and mutation profoundly affect endothelial cells, macrophages, and vascular smooth muscle cells, thereby driving plaque initiation and progression. By activating immune signaling pathways-including cGAS-STING, NLRP3 inflammasome, and TLR9-mtDNA amplifies inflammation and oxidative stress, exacerbating atherosclerotic lesion development. We further highlight that mtDNA copy number variations and specific mtDNA mutations may serve as biomarkers for early atherosclerosis detection and risk stratification. In reviewing these data, we also discuss promising therapeutic interventions aimed at mitigating mtDNA damage, such as mitochondria-targeted antioxidants and enhanced mitophagy, which have shown preliminary efficacy in delaying plaque progression. Overall, this review underscores mtDNA's dual role as both a driver of atherosclerosis and a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifang Jiang
- School of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- Department of Oncology, Ganzhou People 's Hospital, Jiangxi, China
| | - Yanrong Suo
- Department of Traditional Chinese Medicine, Ganzhou People's Hospital, Jiangxi, China
| | - Fayan Zhang
- Department of Rheumatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
4
|
Nchioua R, Kmiec D, Krchlikova V, Mattes S, Noettger S, Bibollet-Ruche F, Russell RM, Sparrer KMJ, Charpentier T, Tardy F, Bosinger SE, Sauter D, Hahn BH, Kirchhoff F. Host ZAP activity correlates with the levels of CpG suppression in primate lentiviruses. Proc Natl Acad Sci U S A 2025; 122:e2419489122. [PMID: 40178887 PMCID: PMC12012506 DOI: 10.1073/pnas.2419489122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Zinc-finger antiviral protein (ZAP) is thought to drive the suppression of CpG dinucleotides in many viruses to mimic the composition of their host genomes. However, in vivo evidence is sparse. Here, we investigated the reasons for unusually high CpG levels in SIVmus and SIVmon from mustached and mona monkeys, descendants of one of the precursors of HIV-1. We show that SIVmus is not resistant to ZAP inhibition. Instead, these Cercopithecus monkey hosts differ from other primate species by a splice site mutation and express the poorly active extralarge XL rather than the highly active L isoform of ZAP. Similarly, higher CpG levels in endogenous prosimian lentiviruses were associated with low activity of the corresponding host lemur ZAPs. In addition, lemur genes also show lower CpG suppression than other primates. Thus, the antiviral activity of ZAP not only affects suppression of CpG dinucleotides in viral transcripts but possibly also host genomes.
Collapse
Affiliation(s)
- Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| | - Veronika Krchlikova
- Research group "Mechanisms of innate Antiviral immunity", Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen72076, Germany
| | - Sarah Mattes
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| | - Sabrina Noettger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| | - Frederic Bibollet-Ruche
- Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ronnie M. Russell
- Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Konstantin M. J. Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
- Neurovirology & Neuroinflammation, German Center for Neurodegenerative Diseases (DZNE), Ulm89081, Germany
| | | | | | - Steven E. Bosinger
- Department of Pathology & Laboratory Medicine, Emory University, Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, GA30329
| | - Daniel Sauter
- Research group "Mechanisms of innate Antiviral immunity", Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen72076, Germany
| | - Beatrice H. Hahn
- Department of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm89081, Germany
| |
Collapse
|
5
|
Wang L, Shi F, Cao Y, Xie L. Multiple roles of branched-chain amino acid metabolism in tumour progression. J Biomed Sci 2025; 32:41. [PMID: 40205401 PMCID: PMC11983764 DOI: 10.1186/s12929-025-01132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
Metabolic reprogramming enables tumour cells to sustain their continuous proliferation and adapt to the ever-changing microenvironment. Branched-chain amino acids (BCAAs) and their metabolites are involved in intracellular protein synthesis and catabolism, signal transduction, epigenetic modifications, and the maintenance of oxidative homeostasis. Alterations in BCAA metabolism can influence the progression of various tumours. However, how BCAA metabolism is dysregulated differs among depending on tumour type; for example, it can manifest as decreased BCAA metabolism leading to BCAA accumulation, or as enhanced BCAA uptake and increased catabolism. In this review, we describe the role of BCAA metabolism in the progression of different tumours. As well as discuss how BCAA metabolic reprogramming drives tumour therapy resistance and evasion of the antitumour immune response, and how these pro-cancer effects are achieved in part by activating the mTORC signalling pathway. In-depth investigations into the potential mechanisms by which BCAA metabolic reprogramming affects tumorigenesis and tumour progression can enhance our understanding of the relationship between metabolism and cancer and provide new strategies for cancer therapy.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Longlong Xie
- Department of Radiology, The Affiliated Children's Hospital of Xiangya School of Medicine (Hunan Children's Hospital), Central South University, Changsha, 410078, China.
| |
Collapse
|
6
|
Guo Y, Yuan T, Wang Y, Xia L, Zhang J, Fan S. Blockade of calcium-activated chloride channel ANO1 ameliorates ionizing radiation-induced intestinal injury. J Adv Res 2025:S2090-1232(25)00228-0. [PMID: 40210148 DOI: 10.1016/j.jare.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025] Open
Abstract
INTRODUCTION Radiation enteritis is one of the most frequent clinical complications of radiotherapy (RT), yet few effective strategies currently exist to protect against that. Anoctamin 1 (ANO1) functions both as a chloride channel and a signal transduction protein, influencing numerous pathophysiological processes. OBJECTIVES This study aimed to investigate whether targeting ANO1 could mitigate radiation-induced enteritis while enhancing tumor radiosensitivity. METHODS Quantitative PCR (qPCR) and Western blot (WB) were used to assess ANO1 expression and its changes after irradiation. Survival rates were recorded to evaluate the effects of ANO1 agonist and inhibitors. A cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor was administered to irradiated mice to investigate the role of chloride channel in radiation protection. qPCR and WB were executed to analyze the expression of relevant ion channels in intestinal epithelium. Functional validation was conducted using inhibitors in mice and 3D organoids. Fluorescent probe kits detected intracellular ion levels and membrane potential, and WB was performed to elucidate the underlying mechanisms. Finally, the radiosensitizing effect of CaCCinh-A01 was assessed in colorectal cancer (CRC) cells and validated in in vivo models. RESULTS Blocking the calcium-activated chloride channel (CaCC) protein ANO1, which is highly expressed in the colon, protects the intestine from radiation-induced damage. The ANO1 inhibitor CaCCinh-A01, suppresses CaCC currents, downregulates ANO1 protein expression, alleviates radiation-induced intestine injury, and enhances the radiosensitivity of CRC. Mechanistically, CaCCinh-A01 upregulates Na-K-Cl Cotransporter 1 (NKCC1) protein expression, leading to an increase in intracellular Cl- concentration and the inhibition of membrane depolarization in MODE-K cells. This subsequently inhibits p53-mediate DNA damage signaling, ultimately alleviating ionizing radiation-induced intestinal injury. CONCLUSION These findings suggest that targeting ANO1 not only alleviates radiation-induced intestinal injury in mice but also enhances CRC radiosensitivity. Thus, ANO1 represents a promising therapeutic target for mitigating the side effects of RT in CRC patients.
Collapse
Affiliation(s)
- Yuying Guo
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Tong Yuan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Yuna Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China
| | - Lei Xia
- Department of Cancer Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Immunotherapy, Chongqing 401336, China.
| | - Junling Zhang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| | - Saijun Fan
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
| |
Collapse
|
7
|
Hackett NR, Crystal RG. Four decades of adenovirus gene transfer vectors: History and current use. Mol Ther 2025:S1525-0016(25)00271-0. [PMID: 40181546 DOI: 10.1016/j.ymthe.2025.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Replication-deficient adenovirus-based gene therapy vectors were the first vectors demonstrated to mediate effective, robust in vivo gene transfer. The ease of genome engineering, large carrying capacity, and methods for large-scale vector production made adenoviral vectors a primary focus in the early days of gene therapy. Many vector modifications such as capsid engineering and regulated and cell-specific transgene expression were first demonstrated in adenovirus (Ad) vectors. However, early human studies proved disappointing, with safety and efficacy issues arising from anti-vector innate and acquired immune responses. While many gene therapy researchers moved to other vectors, others recognized that the immune response and limited duration of transgene expression were useful in the correct context. The striking example of this was the use of several effective adenovirus vectors engineered as COVID-19 vaccines estimated to have been administered to 2 billion people. In addition to vaccines, current applications of Ad vectors relate to anti-cancer therapies, tissue remodeling, and gene editing.
Collapse
Affiliation(s)
- Neil R Hackett
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
8
|
Crawford CEW, Burslem GM. Acetylation: a new target for protein degradation in cancer. Trends Cancer 2025; 11:403-420. [PMID: 40055119 PMCID: PMC11981854 DOI: 10.1016/j.trecan.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 04/11/2025]
Abstract
Acetylation is an increasing area of focus for cancer research as it is closely related to a variety of cellular processes through modulation of histone and non-histone proteins. However, broadly targeting acetylation threatens to yield nonselective toxic effects owing to the vital role of acetylation in cellular function. There is thus a pressing need to elucidate and characterize the specific cancer-relevant roles of acetylation for future therapeutic design. Acetylation-mediated protein homeostasis is an example of selective acetylation that affects a myriad of proteins as well as their correlated functions. We review recent examples of acetylation-mediated protein homeostasis that have emerged as key contributors to tumorigenesis, tumor proliferation, metastasis, and/or drug resistance, and we discuss their implications for future exploration of this intriguing phenomenon.
Collapse
Affiliation(s)
- Callie E W Crawford
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA.
| |
Collapse
|
9
|
Xu S, Akhatayeva Z, Liu J, Feng X, Yu Y, Badaoui B, Esmailizadeh A, Kantanen J, Amills M, Lenstra JA, Johansson AM, Coltman DW, Liu GE, Curik I, Orozco-terWengel P, Paiva SR, Zinovieva NA, Zhang L, Yang J, Liu Z, Wang Y, Yu Y, Li M. Genetic advancements and future directions in ruminant livestock breeding: from reference genomes to multiomics innovations. SCIENCE CHINA. LIFE SCIENCES 2025; 68:934-960. [PMID: 39609363 DOI: 10.1007/s11427-024-2744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
Ruminant livestock provide a rich source of products, such as meat, milk, and wool, and play a critical role in global food security and nutrition. Over the past few decades, genomic studies of ruminant livestock have provided valuable insights into their domestication and the genetic basis of economically important traits, facilitating the breeding of elite varieties. In this review, we summarize the main advancements for domestic ruminants in reference genome assemblies, population genomics, and the identification of functional genes or variants for phenotypic traits. These traits include meat and carcass quality, reproduction, milk production, feed efficiency, wool and cashmere yield, horn development, tail type, coat color, environmental adaptation, and disease resistance. Functional genomic research is entering a new era with the advancements of graphical pangenomics and telomere-to-telomere (T2T) gap-free genome assembly. These advancements promise to improve our understanding of domestication and the molecular mechanisms underlying economically important traits in ruminant livestock. Finally, we provide new perspectives and future directions for genomic research on ruminant genomes. We suggest how ever-increasing multiomics datasets will facilitate future studies and molecular breeding in livestock, including the potential to uncover novel genetic mechanisms underlying phenotypic traits, to enable more accurate genomic prediction models, and to accelerate genetic improvement programs.
Collapse
Affiliation(s)
- Songsong Xu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhanerke Akhatayeva
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, 010010, China
| | - Jiaxin Liu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueyan Feng
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yi Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, 10106, Morocco
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, FI-31600, Finland
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
- Departament de Ciència Animal i dels Aliments, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584, The Netherlands
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Biology, Western University, London, Ontario, N6A 5B7, Canada
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, 10000, Croatia
- Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences (MATE), Kaposvár, 7400, Hungary
| | | | - Samuel R Paiva
- Embrapa Genetic Resources and Biotechnology, Laboratory of Animal Genetics, Brasília, Federal District, 70770917, Brazil
| | - Natalia A Zinovieva
- L.K. Ernst Federal Science Center for Animal Husbandry, Moscow Region, Podolsk, 142132, Russian Federation
| | - Linwei Zhang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Ji Yang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Yachun Wang
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Yu
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Menghua Li
- Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572024, China.
| |
Collapse
|
10
|
Sultan MH, Zhan Q, Jin H, Jia X, Wang Y. Epigenetic modulation by oncolytic viruses: Implications for cancer therapeutic efficacy. Biochim Biophys Acta Rev Cancer 2025; 1880:189270. [PMID: 39855579 DOI: 10.1016/j.bbcan.2025.189270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Among various therapeutic agents, Oncolytic Viruses (OVs) are the most promising anticancer therapeutics because of their tumor-specific targeting and capability to mediate an antitumor immune response. In this review, we will discuss how epigenetic reprogramming of both the host and tumor can facilitate increased sensitivity of tumors to OV therapy. OVs infect tumor cells and modulate epigenetic landscapes, including DNA methylation, histone modifications, and chromatin remodeling, as well as non-coding RNA expression that consequently induces immune responses. These epigenetic changes, including hypermethylation of tumor-associated antigen genes and chromatin accessibility alterations, enhance the immunogenicity of tumors to facilitate recognition by the immune system. Here, we provide a general review addressing this question by discussing the potential benefits of combining OVs with epigenetic drugs to combat resistance and promote treatment efficacy. This information illustrates the importance of personalized OV therapy regarding epigenome in individual profiles and transitions. Still, it extends difficulty in inducing with acquisitions of viral-induced changes globally and making translatable steps by creating cancer-specific predictive treatment models.
Collapse
Affiliation(s)
- Muhammad Haris Sultan
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qi Zhan
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Jin
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoyuan Jia
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
11
|
Phengpol N, Promsan S, Pengrattanachot N, Jaruan O, Sutthasupha P, Lungkaphin A. Maternal obesity promotes impaired renal autophagic process and kidney injury in male offspring. Int J Obes (Lond) 2025:10.1038/s41366-025-01751-3. [PMID: 40133698 DOI: 10.1038/s41366-025-01751-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 02/12/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Obesity during pregnancy increases the risk of obesity, insulin resistance, diabetes, and the development and progression of chronic kidney disease (CKD) in later life in offspring. Impaired renal autophagic process is linked to kidney dysfunction in the setting of increased renal lipid accumulation. The aim of this study was to elucidate the effect of maternal obesity on kidney injury related to impaired renal autophagic process in the offspring. METHODS Maternal obesity model was conducted using female C57BL/6 mice fed with high-fat diet (HFD) for 8 weeks before mating. HFD was consecutively maintained throughout gestation and lactation. Male offspring were selected for investigation after weaning. Metabolic parameters and kidney morphology were performed. Renal insulin signaling, lipid metabolism, lipid accumulation, fibrosis and autophagy were determined. RESULTS Male offspring of HFD fed mothers developed obesity with insulin resistance, hyperglycemia, hyperlipidemia and consequently promoted kidney injury. Maternal obesity increased CD36, FAS, SREBP1c and Perilipin-2 while suppressed PPARα and CPT1A. The reduction of AMPK, SIRT1, Beclin-1, LC3B, and LAMP2 and the elevation of mTOR and SQSTM1/P62 were observed. These findings indicated the impairment of autophagy and renal lipid metabolism exaggerating renal lipid accumulation in the offspring of maternal obesity. CONCLUSIONS This study demonstrated that long-term HFD consumption in mothers promoted obesity with insulin resistance related kidney injury through the impairment of autophagic process and renal lipid metabolism in the offspring. These circumstances accelerated kidney injury and contributed to an increased susceptibility to CKD in male offspring of maternal obesity.
Collapse
Affiliation(s)
- Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Onanong Jaruan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Functional Food Research Center for Well-being, Multidisciplinary Research Institute Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
12
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
13
|
Li L, Hammerlindl H, Shen SQ, Bao F, Hammerlindl S, Altschuler SJ, Wu LF. A phenopushing platform to identify compounds that alleviate acute hypoxic stress by fast-tracking cellular adaptation. Nat Commun 2025; 16:2684. [PMID: 40102413 PMCID: PMC11920246 DOI: 10.1038/s41467-025-57754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
Severe acute hypoxic stress is a major contributor to the pathology of human diseases, including ischemic disorders. Current treatments focus on managing consequences of hypoxia, with few addressing cellular adaptation to low-oxygen environments. Here, we investigate whether accelerating hypoxia adaptation could provide a strategy to alleviate acute hypoxic stress. We develop a high-content phenotypic screening platform to identify compounds that fast-track adaptation to hypoxic stress. Our platform captures a high-dimensional phenotypic hypoxia response trajectory consisting of normoxic, acutely stressed, and chronically adapted cell states. Leveraging this trajectory, we identify compounds that phenotypically shift cells from the acutely stressed state towards the adapted state, revealing mTOR/PI3K or BET inhibition as strategies to induce this phenotypic shift. Importantly, our compound hits promote the survival of liver cells exposed to ischemia-like stress, and rescue cardiomyocytes from hypoxic stress. Our "phenopushing" platform offers a general, target-agnostic approach to identify compounds and targets that accelerate cellular adaptation, applicable across various stress conditions.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Susan Q Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Feng Bao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Yang S, Cui Y, Yu S, He J, Ma R, Bai X, Zhang H, Zhao P. Integrated analysis of the expression profiles of the lncRNA-miRNA-mRNA ceRNA network in CASMCs under hypoxia and normoxia conditions in yak heart. Sci Rep 2025; 15:9165. [PMID: 40097453 PMCID: PMC11914617 DOI: 10.1038/s41598-025-85483-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/03/2025] [Indexed: 03/19/2025] Open
Abstract
Hypoxia causes the occurrence of right heart hypertrophy and right heart failure. However, the yak living in the hypoxic environment, does not exhibit hypoxia-related pathological features. Therefore, It is of great significance to explore the hypoxia adaptation mechanism of yak heart. In this study, the yak heart coronary vascular smooth muscle cells (CASMCs) were treated with 21% O2 (normoxic group) and 5% O2 (hypoxic group). The results showed that hypoxia could promote the proliferation of CASMCs. Subsequently, we sequenced CASMCs in normoxic and hypoxic groups. The analysis revealed differential expression of 835 mRNAs, 285 lncRNAs and 126 miRNAs were between the two groups. GO and KEGG analysis showed that the differentially expressed genes were predominantly associated with extracellular matrix components, transcription factor activity, protein binding, immune system processes, metabolic processes and cell development processes and TGF-β, MAPK, cAMP, mTOR, PI3K-Akt and other signaling pathways. By constructing a network of mRNAs, miRNAs and lncRNAs based on the major differentially expressed RNAs, core regulatory elements associated with hypoxic adaptive function were identified. Our study may help to prove the potential role of differential genes related to hypoxic adaptation, and enhanced understanding of the molecular mechanisms of hypoxic adaptation in yak heart.
Collapse
Affiliation(s)
- Shanshan Yang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
- , No.1 Yingmen Village, Anning, Lanzhou, 730070, Gansu, China.
| | - Sijiu Yu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Junfeng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Rui Ma
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xuefeng Bai
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hui Zhang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pengfei Zhao
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
15
|
Masi M, Poppi L, Previtali V, Nelson SR, Wynne K, Varignani G, Falchi F, Veronesi M, Albanesi E, Tedesco D, De Franco F, Ciamarone A, Myers SH, Ortega JA, Bagnolini G, Ferrandi G, Farabegoli F, Tirelli N, Di Stefano G, Oliviero G, Walsh N, Roberti M, Girotto S, Cavalli A. Investigating synthetic lethality and PARP inhibitor resistance in pancreatic cancer through enantiomer differential activity. Cell Death Discov 2025; 11:106. [PMID: 40091075 PMCID: PMC11911456 DOI: 10.1038/s41420-025-02382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
The RAD51-BRCA2 interaction is central to DNA repair through homologous recombination. Emerging evidence indicates RAD51 overexpression and its correlation with chemoresistance in various cancers, suggesting RAD51-BRCA2 inhibition as a compelling avenue for intervention. We previously showed that combining olaparib (a PARP inhibitor (PARPi)) with RS-35d (a BRCA2-RAD51 inhibitor) was efficient in killing pancreatic ductal adenocarcinoma (PDAC) cells. However, RS-35d impaired cell viability even when administered alone, suggesting potential off-target effects. Here, through multiple, integrated orthogonal biological approaches in different 2D and 3D PDAC cultures, we characterised RS-35d enantiomers, in terms of mode of action and single contributions. By differentially inhibiting both RAD51-BRCA2 interaction and sensor kinases ATM, ATR and DNA-PK, RS-35d enantiomers exhibit a 'within-pathway synthetic lethality' profile. To the best of our knowledge, this is the first reported proof-of-concept single small molecule capable of demonstrating this built-in synergism. In addition, RS-35d effect on BRCA2-mutated, olaparib-resistant PDAC cells suggests that this compound may be effective as an anticancer agent possibly capable of overcoming PARPi resistance. Our results demonstrate the potential of synthetic lethality, with its diversified applications, to propose new and concrete opportunities to effectively kill cancer cells while limiting side effects and potentially overcoming emerging drug resistance.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Laura Poppi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Viola Previtali
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Shannon R Nelson
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Giulia Varignani
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Federico Falchi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Marina Veronesi
- Structural Biophysics Facility, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Ennio Albanesi
- Department of Neuroscience and Brain Technologies, Neurofacility, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Daniele Tedesco
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), I-40129, Bologna, Italy
| | | | - Andrea Ciamarone
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Samuel H Myers
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Jose Antonio Ortega
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giovanni Ferrandi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Nicola Tirelli
- Laboratory for Polymers and Biomaterials, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Giuseppina Di Stefano
- Department of Surgical and Medical Sciences, University of Bologna, 40126, Bologna, Italy
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Stefania Girotto
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy.
- Structural Biophysics Facility, Italian Institute of Technology IIT, 16163, Genoa, Italy.
| | - Andrea Cavalli
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy.
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
- Centre Européen de Calcul Atomique et Moléculaire (CECAM), Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
16
|
Ullah K, Ai L, Li Y, Liu L, Zhang Q, Pan K, Humayun Z, Piao L, Sitikov A, Zhao Q, Su Q, Sharp W, Fang Y, Wu D, Liao JK, Wu R. ARNT-dependent HIF-2α signaling protects cardiac microvascular barrier integrity and heart function post-myocardial infarction. Commun Biol 2025; 8:440. [PMID: 40089572 PMCID: PMC11910586 DOI: 10.1038/s42003-025-07753-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/15/2025] [Indexed: 03/17/2025] Open
Abstract
Myocardial infarction (MI) compromises the cardiac microvascular endothelial barrier, increasing leakage and inflammation. HIF2α, predominantly expressed in cardiac endothelial cells during ischemia, has an unclear role in barrier function during MI. Here, we show that inducible, adult endothelial-specific deletion of Hif2α in mice leads to increased mortality, cardiac leakage, inflammation, reduced heart function, and adverse remodeling after MI. In parallel, human cardiac microvascular endothelial cells (HCMVECs) lacking HIF2α display impaired barrier integrity, reduced tight-junction proteins, increased cell death, and elevated IL-6 levels, effects that are alleviated by overexpressing ARNT, a key partner of HIF2α under hypoxic conditions. Interestingly, ARNT, but not HIF2α, directly binds the IL-6 promoter to suppress its expression. These findings suggest the HIF2α/ARNT axis as a protective mechanism in heart failure post-MI and identify potential therapeutic targets to support cardiac function.
Collapse
Affiliation(s)
- Karim Ullah
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Lizhuo Ai
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Yan Li
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lifeng Liu
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Qin Zhang
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Kaichao Pan
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Zainab Humayun
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Lin Piao
- Emergency Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Albert Sitikov
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Qiong Zhao
- Division of Cardiology, Department of Medicine, Inova Heart and Vascular Institute, Falls Church, VA, USA
| | - Qiaozhu Su
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Willard Sharp
- Emergency Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Yun Fang
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - David Wu
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - James K Liao
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Rongxue Wu
- Section of Cardiology,, Biological Sciences Division, Department of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
17
|
Nie T, Nepovimova E, Wu Q. Circadian rhythm, hypoxia, and cellular senescence: From molecular mechanisms to targeted strategies. Eur J Pharmacol 2025; 990:177290. [PMID: 39863143 DOI: 10.1016/j.ejphar.2025.177290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence. Circadian proteins are central to the molecular mechanism governing circadian rhythm, which regulates homeostasis throughout the body. These proteins mediate responses to hypoxic stress and influence the progression of cellular senescence, with protein Brain and muscle arnt-like 1 (BMAL1 or Arntl) playing a prominent role. Hypoxia-inducible factor-1α (HIF-1α), a key regulator of oxygen homeostasis within the cellular microenvironment, orchestrates the transcription of genes involved in various physiological processes. HIF-1α not only impacts normal circadian rhythm functions but also can induce or inhibit cellular senescence. Notably, HIF-1α may aberrantly interact with BMAL1, forming the HIF-1α-BMAL1 heterodimer, which can instigate multiple physiological dysfunctions. This heterodimer is hypothesized to modulate cellular senescence by affecting the molecular mechanism of circadian rhythm and hypoxia signaling pathways. In this review, we elucidate the intricate relationships among circadian rhythm, hypoxia, and cellular senescence. We synthesize diverse evidence to discuss their underlying mechanisms and identify novel therapeutic targets to address cellular senescence. Additionally, we discuss current challenges and suggest potential directions for future research. This work aims to deepen our understanding of the interplay between circadian rhythm, hypoxia, and cellular senescence, ultimately facilitating the development of therapeutic strategies for aging and related diseases.
Collapse
Affiliation(s)
- Tong Nie
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
18
|
Reddan B, Cummins EP. The regulation of cell metabolism by hypoxia and hypercapnia. J Biol Chem 2025; 301:108252. [PMID: 39914740 PMCID: PMC11923829 DOI: 10.1016/j.jbc.2025.108252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 03/06/2025] Open
Abstract
Every cell in the body is exposed to a certain level of CO2 and O2. Hypercapnia and hypoxia elicit stress signals to influence cellular metabolism and function. Both conditions exert profound yet distinct effects on metabolic pathways and mitochondrial dynamics, highlighting the need for cells to adapt to changes in the gaseous microenvironment. The interplay between hypercapnia and hypoxia signaling is the key for dictating cellular homeostasis as microenvironmental CO2 and O2 levels are inextricably linked. Hypercapnia, characterized by elevated pCO2, introduces metabolic adaptations within the aerobic metabolism pathways, affecting tricarboxylic acid cycle flux, lipid, and amino acid metabolism, oxidative phosphorylation and the electron transport chain. Hypoxia, defined by reduced oxygen availability, necessitates a shift from oxidative phosphorylation to anaerobic glycolysis to sustain ATP production, a process orchestrated by the stabilization of hypoxia-inducible factor-1α. Given that hypoxia and hypercapnia are present in both physiological and cancerous microenvironments, how might the coexistence of hypercapnia and hypoxia influence metabolic pathways and cellular function in physiological niches and the tumor microenvironment?
Collapse
Affiliation(s)
- Ben Reddan
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Eoin P Cummins
- School of Medicine, University College Dublin, Dublin, Ireland; Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
19
|
Baek S, Lee JC, Byun BH, Park SY, Ha JH, Lee KC, Yang SH, Lee JS, Hong S, Han G, Lim SM, Kim Y, Kim HY. Combination of Aβ40, Aβ42, and Tau Plasma Levels to Distinguish Amyloid-PET Positive Alzheimer Patients from Normal Controls. Exp Neurobiol 2025; 34:1-8. [PMID: 40091634 PMCID: PMC11919640 DOI: 10.5607/en25008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
Alzheimer disease (AD) diagnosis is confirmed using a medley of modalities, such as the detection of amyloid-β (Aβ) neuritic plaques and neurofibrillary tangles with positron electron tomography (PET) or the appraisal of irregularities in cognitive function with examinations. Although these methods have been efficient in confirming AD pathology, the rising demand for earlier intervention during pathogenesis has led researchers to explore the diagnostic potential of fluid biomarkers in cerebrospinal fluid (CSF) and plasma. Since CSF sample collection is invasive and limited in quantity, biomarker detection in plasma has become more attractive and modern advancements in technology has permitted more efficient and accurate analysis of plasma biomolecules. In this study, we found that a composite of standard factors, Aβ40 and total tau levels in plasma, divided by the variation factor, plasma Aβ42 level, provide better correlation with amyloid neuroimaging and neuropsychological test results than a level comparison between total tau and Aβ42 in plasma. We collected EDTA-treated blood plasma samples of 53 subjects, of randomly selected 27 AD patients and 26 normal cognition (NC) individuals, who received amyloid-PET scans for plaque quantification, and measured plasma levels of Aβ40, Aβ42, and total tau with digital enzyme-linked immunosorbent assay (ELISA) in a blinded manner. There was difficulty distinguishing AD patients from controls when analyzing biomarkers independently. However, significant differentiation was observed between the two groups when comparing individual ratios of total-tau×Aβ40/Aβ42. Our results indicate that collectively comparing fluctuations of these fluid biomarkers could aid in monitoring AD pathogenesis.
Collapse
Affiliation(s)
- Seungyeop Baek
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Jinny Claire Lee
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Byung Hyun Byun
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Seoul 01812, Korea
| | - Su Yeon Park
- Department of Neurology, Korea Cancer Center Hospital, Seoul 01812, Korea
| | - Jeong Ho Ha
- Department of Neurology, Korea Cancer Center Hospital, Seoul 01812, Korea
| | - Kyo Chul Lee
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Seung-Hoon Yang
- Department of Medical Biotechnology, Dongguk University, Seoul 04620, Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University, Seoul 02841, Korea
| | - Seungpyo Hong
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Pharmaceutical Sciences Division and Wisconsin Center for NanoBioSystems (WisCNano), School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Gyoonhee Han
- Department of Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Sang Moo Lim
- Department of Nuclear Medicine, Korea Cancer Center Hospital, Seoul 01812, Korea
| | - YoungSoo Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Amyloid Solution Inc., Seongnam 13486, Korea
| | - Hye Yun Kim
- Department of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| |
Collapse
|
20
|
Guo H, Yang R, Cheng W, Li Q, Du M. An Update of Salivary Biomarkers for the Diagnosis of Alzheimer's Disease. Int J Mol Sci 2025; 26:2059. [PMID: 40076682 PMCID: PMC11900270 DOI: 10.3390/ijms26052059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive cognition and behavior impairments. Diagnosing AD early is important for clinicians to slow down AD progression and preserve brain function. Biomarkers such as tau protein and amyloid-β peptide (Aβ) are used to aid diagnosis as clinical diagnosis often lags. Additionally, biomarkers can be used to monitor AD status and evaluate AD treatment. Clinicians detect these AD biomarkers in the brain using positron emission tomography/computed tomography or in the cerebrospinal fluid using a lumbar puncture. However, these methods are expensive and invasive. In contrast, saliva collection is simple, inexpensive, non-invasive, stress-free, and repeatable. Moreover, damage to the brain parenchyma can impact the oral cavity and some pathogenic molecules could travel back and forth from the brain to the mouth. This has prompted researchers to explore biomarkers in the saliva. Therefore, this study provides an overview of the main finding of salivary biomarkers for AD diagnosis. Based on these available studies, Aβ, tau, cholinesterase enzyme activity, lactoferrin, melatonin, cortisol, proteomics, metabolomics, exosomes, and the microbiome were changed in AD patients' saliva when compared to controls. However, well-designed studies are essential to confirm the reliability and validity of these biomarkers in diagnosing and monitoring AD.
Collapse
Affiliation(s)
| | | | | | | | - Minquan Du
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (H.G.); (R.Y.); (W.C.); (Q.L.)
| |
Collapse
|
21
|
Shen T, Yu J, Xie B, Huang C, Cui J, Liu K, Liu C, Chen C. Protein arginine methyltransferase 7 linked to schizophrenia through regulation of neural progenitor cell proliferation and differentiation. Cell Rep 2025; 44:115279. [PMID: 39921858 DOI: 10.1016/j.celrep.2025.115279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/22/2024] [Accepted: 01/16/2025] [Indexed: 02/10/2025] Open
Abstract
Genome-wide association studies (GWASs) have identified numerous genomic loci linked to schizophrenia (SCZ), while their pathogenic mechanisms largely remain unclear. This study demonstrated protein arginine methyltransferase 7 (PRMT7) as a key target of SCZ risk SNPs with allele-specific enhancer activity at 16q22.1. Downregulating PRMT7 in neural progenitor cells (NPCs) decreased proliferation, increased neuronal differentiation, and also led to longer neurites in these neurons. Conversely, overexpressing PRMT7 enhanced NPC proliferation and reduced neuronal differentiation. In three-dimensional (3D) cerebral organoids, similar NPC phenotypic changes were noted following PRMT7 depletion. Mechanistically, PRMT7 regulates the expression of genes related to the cell cycle and neuronal functions, such as CDKN2A and SYP, via symmetrical di-methylation at arginine 3 of histone 4 (H4R3me2s) modification in their promoters. Notably, these genes have a stronger association with SCZ compared to other mental disorders. Together, the results of this study reveal that PRMT7 is a functional gene at 16q22.1, contributing to the etiology of SCZ by modulating NPC proliferation and differentiation as an epigenetic regulator.
Collapse
Affiliation(s)
- Ting Shen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China.
| | - Jing Yu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Bin Xie
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Cuiping Huang
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Jingjie Cui
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Kefu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China
| | - Chunyu Liu
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Chao Chen
- MOE Key Laboratory of Rare Pediatric Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410000, Hunan, China; Furong Laboratory, Changsha 410000, Hunan, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha 410000, China.
| |
Collapse
|
22
|
Rahman FA, Graham MQ, Adam AM, Juracic ES, Tupling AR, Quadrilatero J. Mitophagy is required to protect against excessive skeletal muscle atrophy following hindlimb immobilization. J Biomed Sci 2025; 32:29. [PMID: 39979946 PMCID: PMC11844018 DOI: 10.1186/s12929-025-01118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Skeletal muscle atrophy involves significant remodeling of fibers and is characterized by deficits in mitochondrial content and function. These changes are intimately connected to shifts in mitochondrial turnover, encompassing processes such as mitophagy and mitochondrial biogenesis. However, the role of these mitochondrial turnover processes in muscle atrophy remains poorly understood. METHODS We used a novel mitophagy reporter model, mt-Keima mice, to perform hindlimb immobilization and accurately measure mitophagy. A comprehensive set of analyses were conducted to investigate biochemical and molecular changes at the muscle and mitochondrial levels. We also performed image analyses to determine mitophagic flux. To further explore the role of mitophagy in immobilization-induced atrophy, we treated animals with N-acetylcysteine (NAC; 150 mg/kg/day) to modify reactive oxygen species (ROS) signaling and colchicine (0.4 mg/kg/day) to inhibit autophagy. RESULTS Our study revealed that hindlimb immobilization leads to muscle weakness and atrophy of fast-twitch muscle fibers (types IIA, IIX, and IIB), with recovery observed in IIA fibers following remobilization. This atrophy was accompanied by a significant increase in mitophagic flux. Additionally, immobilization induced notable mitochondrial dysfunction, as shown by diminished respiration, increased mitochondrial ROS, and greater whole muscle lipid peroxidation. Treatment of immobilized mice with NAC enhanced mitochondrial respiration and reduced ROS generation but suppressed mitophagic flux and intensified atrophy of type IIX and IIB fibers. Additionally, administration of colchicine to immobilized mice suppressed mitophagic flux, which also exacerbated atrophy of IIX and IIB fibers. Colchicine treatment led to significant reductions in mitochondrial function, accompanied by CASP9 and CASP3 activation. CONCLUSION These findings emphasize the role of mitophagy in limiting excessive muscle atrophy during immobilization. Targeting mitophagy may offer new strategies to preserve muscle function during prolonged periods of immobilization.
Collapse
Affiliation(s)
- Fasih A Rahman
- Faculty of Health, Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - Mackenzie Q Graham
- Faculty of Health, Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - Amanda M Adam
- Faculty of Health, Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - Emma S Juracic
- Faculty of Health, Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - A Russell Tupling
- Faculty of Health, Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada
| | - Joe Quadrilatero
- Faculty of Health, Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Ave. West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
23
|
George NP, Kwon M, Jang YE, Kim SG, Hwang JS, Lee SS, Lee G. Integrative Analysis of Metabolome and Proteome in the Cerebrospinal Fluid of Patients with Multiple System Atrophy. Cells 2025; 14:265. [PMID: 39996738 PMCID: PMC11853536 DOI: 10.3390/cells14040265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
Multiple system atrophy (MSA) is a progressive neurodegenerative synucleinopathy. Differentiating MSA from other synucleinopathies, especially in the early stages, is challenging because of its overlapping symptoms with other forms of Parkinsonism. Thus, there is a pressing need to clarify the underlying biological mechanisms and identify specific biomarkers for MSA. The metabolic profile of cerebrospinal fluid (CSF) is known to be altered in MSA. To further investigate the biological mechanisms behind the metabolic changes, we created a network of altered CSF metabolites in patients with MSA and analysed these changes using bioinformatic software. Acknowledging the limitations of metabolomics, we incorporated proteomic data to improve the overall comprehensiveness of the study. Our in silico predictions showed elevated ROS, cytoplasmic inclusions, white matter demyelination, ataxia, and neurodegeneration, with ATP concentration, neurotransmitter release, and oligodendrocyte count predicted to be suppressed in MSA CSF samples. Machine learning and dimension reduction are important multi-omics approaches as they handle large amounts of data, identify patterns, and make predictions while reducing variance without information loss and generating easily visualised plots that help identify clusters, patterns, or outliers. Thus, integrated multiomics and machine learning approaches are essential for elucidating neurodegenerative mechanisms and identifying potential diagnostic biomarkers of MSA.
Collapse
Affiliation(s)
- Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Minjun Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yong Eun Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Seop Lee
- Department of Pharmacology, Inje University College of Medicine, Busan 50834, Republic of Korea;
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (N.P.G.); (M.K.); (Y.E.J.); (S.G.K.); (J.S.H.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
24
|
Song J, Cho E, Lee H, Lee S, Kim S, Kim J. Development of Neurodegenerative Disease Diagnosis and Monitoring from Traditional to Digital Biomarkers. BIOSENSORS 2025; 15:102. [PMID: 39997004 PMCID: PMC11852611 DOI: 10.3390/bios15020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Monitoring and assessing the progression of symptoms in neurodegenerative diseases, including Alzheimer's and Parkinson's disease, are critical for improving patient outcomes. Traditional biomarkers, such as cerebrospinal fluid analysis and brain imaging, are widely used to investigate the underlying mechanisms of disease and enable early diagnosis. In contrast, digital biomarkers derived from phenotypic changes-such as EEG, eye movement, gait, and speech analysis-offer a noninvasive and accessible alternative. Leveraging portable and widely available devices, such as smartphones and wearable sensors, digital biomarkers are emerging as a promising tool for ND diagnosis and monitoring. This review highlights the comprehensive developments in digital biomarkers, emphasizing their unique advantages and integration potential alongside traditional biomarkers.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinsik Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea; (J.S.); (E.C.); (H.L.); (S.L.); (S.K.)
| |
Collapse
|
25
|
Onu CJ, Adu M, Chakkour M, Kumar V, Greenberg ML. Inositol Phosphates and Synthesizing Enzymes: Implications in Neurodegenerative Disorders. Biomolecules 2025; 15:225. [PMID: 40001529 PMCID: PMC11853280 DOI: 10.3390/biom15020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Inositol is a vital sugar molecule involved in numerous signaling pathways required for cellular homeostasis and cell survival. Myo-inositol and its phospho-derivatives, inositol phosphates (IPs), are the most prevalent forms of inositol found in living cells. They are involved in regulating ion channels, metabolic flux, stress response, and other key biological processes. While emerging research has highlighted the significant roles of inositol phosphates in immunity, cancer, and metabolic diseases, there is a lack of comprehensive reviews on their roles in psychiatric and neurological disorders. This review aims to fill that gap by analyzing the existing literature on the importance of inositol phosphates in severe psychiatric and neurological conditions such as Parkinson's disease, Alzheimer's disease, bipolar disorder, amyotrophic lateral sclerosis, schizophrenia, and Huntington's disease, underscoring the potential to pave the way for new treatment regimens for these debilitating disorders targeting inositol pathways.
Collapse
Affiliation(s)
| | | | | | | | - Miriam L. Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA (M.A.); (V.K.)
| |
Collapse
|
26
|
Alirezaee A, Mirmoghtadaei M, Heydarlou H, Akbarian A, Alizadeh Z. Interferon therapy in alpha and Delta variants of SARS-CoV-2: The dichotomy between laboratory success and clinical realities. Cytokine 2025; 186:156829. [PMID: 39693873 DOI: 10.1016/j.cyto.2024.156829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The COVID-19 pandemic has caused significant morbidity and mortality worldwide. The emergence of the Alpha and Delta variants of SARS-CoV-2 has led to a renewed interest in using interferon therapy as a potential treatment option. Interferons are a group of signaling proteins produced by host cells in response to viral infections. They play a critical role in the innate immune response to viral infections by inducing an antiviral state in infected and neighboring cells. Interferon therapy has shown promise as a potential treatment option for COVID-19. In this review paper, we review the current knowledge regarding interferon therapy in the context of the Alpha and Delta variants of SARS-CoV-2 and discuss the challenges that must be overcome to translate laboratory findings into effective clinical treatments.
Collapse
Affiliation(s)
- Atefe Alirezaee
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Mirmoghtadaei
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Heydarlou
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Asiye Akbarian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Alizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Kumar A, Shukla R. Current strategic arsenal and advances in nose to brain nanotheranostics for therapeutic intervention of glioblastoma multiforme. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:212-246. [PMID: 39250527 DOI: 10.1080/09205063.2024.2396721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
The fight against Glioblastoma multiforme (GBM) is ongoing and the long-term outlook for GBM remains challenging due to low prognosis but every breakthrough brings us closer to improving patient outcomes. Significant hurdles in GBM are heterogeneity, fortified tumor location, and blood-brain barrier (BBB), hindering adequate drug concentrations within functioning brain regions, thus leading to low survival rates. The nasal passageway has become an appealing location to commence the course of cancer therapy. Utilization of the nose-to-brain (N2B) route for drug delivery takes a sidestep from the BBB to allow therapeutics to directly access the central nervous system (CNS) and enhance drug localization in the vicinity of the tumor. This comprehensive review provides insights into pertinent anatomy and cellular organization of the nasal cavity, present-day diagnostic tools, intracranial invasive therapies, and advancements in intranasal (IN) therapies in GBM models for better clinical outcomes. Also, this review highlights groundbreaking carriers and delivery techniques that could revolutionize GBM management such as biomimetics, image guiding-drug delivery, and photodynamic and photothermal therapies for GBM management.
Collapse
Affiliation(s)
- Ankit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, UP, India
| |
Collapse
|
28
|
Yang M, Chen X, Zhang M, Zhang X, Xiao D, Xu H, Lu M. hUC-MSC preserves erectile function by restoring mitochondrial mass of penile smooth muscle cells in a rat model of cavernous nerve injury via SIRT1/PGC-1a/TFAM signaling. Biol Res 2025; 58:8. [PMID: 39871297 PMCID: PMC11773750 DOI: 10.1186/s40659-024-00578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/09/2024] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Cavernous nerve injury-induced erectile dysfunction (CNI-ED) is a common complication following radical prostatectomy and severely affects patients' quality of life. The mitochondrial impairment in corpus cavernosum smooth muscle cells (CCSMCs) may be an important pathological mechanism of CNI-ED. Previous studies have shown that transplantation of human adipose derived stem cells (ADSC) can alleviate CNI-ED in a rat model. However, little is known about the effect of human umbilical cord mesenchymal stem cells (hUC-MSC) on CNI-ED. It remains unclear whether hUC-MSC can ameliorate mitochondrial damage in CCSMCs. In this study, we aimed to investigate the impacts of hUC-MSC on the mitochondrial mass and function of CCSMCs, as well as elucidate its underlying molecular mechanism. METHODS The CNI-ED rat model was established by bilaterally crushing cavernous nerves. Subsequently, hUC-MSC were transplanted into the cavernosum and ADSC were injected as a positive control group. Erectile function evaluation and histological detection were performed 4 weeks after cell transplantation. In vitro, CCSMCs underwent hypoxia and were then co-cultured with ADSC or hUC-MSC using a transwell system. The mitochondrial mass and function, as well as signaling pathways, were investigated. To explore the role of the SIRT1/PGC-1α/TFAM pathway in regulating mitochondrial biogenesis of CCSMCs, we knocked down SIRT1 by siRNA. RESULTS The administration of hUC-MSC significantly improved erectile function of CNI-ED rats and reduced the ratio of collagen to smooth muscle. Specifically, hUC-MSC treatment restored mitochondrial mass and function in CCSMCs injured by CNI or hypoxia, and inhibited the apoptosis of CCSMCs. Mechanistically, the application of hUC-MSC activated SIRT1/PGC-1α/TFAM pathway both in rat penile tissues and CCSMCs. In addition, knockdown of SIRT1 in CCSMCs abolished the protective effects of hUC-MSC on mitochondrial mass and function, while leading to an increase in cellular apoptosis. CONCLUSIONS hUC-MSC contribute to the recovery of erectile function in CNI-ED rats by restoring mitochondrial mass and function of CCSMCs through the SIRT1/PGC-1α/TFAM pathway. Our present study offers new insights into the role and molecular mechanisms of hUC-MSC in regulating mitochondrial homeostasis, thereby facilitating the restoration of the erectile function in CNI-ED.
Collapse
Affiliation(s)
- Mengbo Yang
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Xinda Chen
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ming Zhang
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Xiaolin Zhang
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Dongdong Xiao
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Huiming Xu
- State Laboratory of Systems Medicine for Cancer, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Mujun Lu
- Department of Urology and Andrology, Renji Hospital, Shanghai Institute of Andrology, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| |
Collapse
|
29
|
Fan Z, Wei X, Zhu X, Du Y. Sirtuins in kidney homeostasis and disease: where are we now? Front Endocrinol (Lausanne) 2025; 15:1524674. [PMID: 39911234 PMCID: PMC11794115 DOI: 10.3389/fendo.2024.1524674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/31/2024] [Indexed: 02/07/2025] Open
Abstract
Sirtuins, identified as (NAD+)- dependent class III histone deacetylases, engage in a spectrum of biological functions, encompassing DNA damage repair, oxidative stress, immune modulation, mitochondrial homeostasis, apoptosis and autophagy. Sirtuins play an apoptosis role in regulating cellular operations and overall organism health. Mounting data indicate that dysregulated sirtuin expression is linked to the onset of renal diseases. Effective modulation of sirtuins expression and activity has been shown to improve renal function and attenuate the advancement of kidney diseases. In this review, we present a comprehensive overview of the biological impacts of sirtuins and their molecular targets in regulating renal diseases. Additionally, we detail advancements in elucidating sirtuin roles in the pathophysiology of both chronic and acute renal disorders. We review compounds that modulate sirtuin activity through activation or inhibition, potentially improving outcomes in renal disease. In summary, strategic manipulation of sirtuin activity represents a prospective therapeutic approach for renal diseases.
Collapse
Affiliation(s)
| | | | | | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Kaushal A. A central role of stimulator of interferon genes' adaptor protein in defensive immune response. Immunol Res 2025; 73:39. [PMID: 39836303 DOI: 10.1007/s12026-024-09587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Cytotoxic DNAs, methylation, histones and histones binding proteins are speculated to induce DNA sensors. Under stressed condition, the antigenic patterns, PAMPs and DAMPs, trigger the hyperactive innate response through DNA, DNA-RNA hybrids, oligonucleotides, histones and mtDNA to initiate cGAMP-STING-IFN I cascade. HSV -1&2, HIV, Varicella- Zoster virus, Polyomavirus, Cytomegalovirus, and KSHV negatively regulate the STING-MAVS-TBK-1/1KKE pathway. Implications in STING-PKR-ER regulation often run into causing senescence and organ fibrosis. Post-translational modifications such as, phosphorylation, ubiquitination, SUMOylation, hydrolysis etc. downstream the processing of cGAS-STING that determine the fate of disease prognosis. Self-DNA under normal circumstances is removed through DNase III action; however, its deficiency is the great cause of RA diseases. Regular STING activation in chronic diseases could lead to exacerbate the neurodegenerative disorders due to constant mtDNA leakage. 2' 3' cGAMP or CDN or its associates are being explored as STING agonist therapeutics to treat solid/metastatic tumors to help infiltrate the immune cells, cytokines and chemokines to regulate the protective response. Liposomes, polymer nanoparticles, and cell-derived nanoparticles are also meant to increase the drug efficiency and stability for desired immune response to enhance the IFN I production. This review highlights the implications of cGAMP-STING- IFN I cascade and related pathways involved in the disease prognosis, therapeutics and considering the gaps on different aspects to utilize its greater potential in disease control.
Collapse
|
31
|
Bray A, Sahai V. IDH Mutant Cholangiocarcinoma: Pathogenesis, Management, and Future Therapies. Curr Oncol 2025; 32:44. [PMID: 39851960 PMCID: PMC11763940 DOI: 10.3390/curroncol32010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH) genes are among the most frequently encountered molecular alterations in cholangiocarcinoma (CCA). These neomorphic point mutations endow mutant IDH (mIDH) with the ability to generate an R-enantiomer of 2-hydroxyglutarate (R2HG), a metabolite that drives malignant transformation through aberrant epigenetic signaling. As a result, pharmacologic inhibition of mIDH has become an attractive therapeutic strategy in CCAs harboring this mutation. One such inhibitor, ivosidenib, has already undergone clinical validation and received FDA approval in this disease, but there is still much work to be done to improve outcomes in mIDH CCA patients. In this publication we will review the pathogenesis and treatment of mIDH CCA with special emphasis on novel agents and combinations currently under investigation.
Collapse
Affiliation(s)
| | - Vaibhav Sahai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
32
|
Fang H, Zhang Y, Zhu L, Lyu J, Li Q. In-depth proteomics and Phosphoproteomics reveal biomarkers and molecular pathways of chronic intermittent hypoxia in mice. J Proteomics 2025; 311:105334. [PMID: 39433155 DOI: 10.1016/j.jprot.2024.105334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/28/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Obstructive sleep apnea (OSA) syndrome is characterized by Chronic Intermittent Hypoxia (CIH). In this study, we employed Data-independent acquisition (DIA) Mass Spectrometry to conduct comprehensive proteomic and phosphoproteomic profiling of a murine model subjected to Chronic Intermittent Hypoxia (CIH), a model we had previously established. Utilizing three CIH and three normal control genioglossus samples, we gathered valuable insights into the molecular alterations associated with CIH. Our analyses identified a total of 4576 protein groups and 13,867 phosphosites. Differential analysis of the proteomic data highlighted a significant upregulation of Ras signaling (Egf, Ngf, and Fyb1) and calcium signaling (Tnn, Thbs4, and Ppp2r2d) in CIH samples, contrasting with a notable decrease in oxidative phosphorylation (Atp5mf, Atp5me, and Atp5mg). Additionally, we observed a substantial increase in the phosphorylation of PI3K-AKT signaling (Ptk2_Y861, Mapk3_T203, and Eif4b_S230) and HIF-1 signaling (Gapdh_S208, Eno3_T229, and Camk2b_T382) in CIH samples. These findings prompted a deeper investigation into the association of the characterized proteins and phosphoproteins with Obstructive Sleep Apnea (OSA). The comprehensive profiling revealed molecular signatures that may serve as valuable insights into the pathophysiology of chronic intermittent hypoxia and its link to obstructive sleep apnea. Our observations provide a foundation for future research endeavors, offering potential avenues for advancing our understanding and treatment strategies for these conditions. SIGNIFICANCE: The significance of this study lies in its comprehensive exploration of the molecular mechanisms underpinning Chronic Intermittent Hypoxia (CIH), a key feature of Obstructive Sleep Apnea (OSA). By employing Data-independent acquisition (DIA) Mass Spectrometry, this research provides an in-depth proteomic and phosphoproteomic analysis, uncovering critical signaling pathways and molecular alterations associated with CIH. The identification of significant changes in Ras and calcium signaling pathways, along with increased phosphorylation in PI3K-AKT and HIF-1 signaling, offers novel insights into the pathophysiological processes involved in CIH and OSA. These findings not only enhance our understanding of the molecular basis of OSA but also pave the way for the development of targeted therapeutic strategies, ultimately contributing to better management and treatment of OSA and related conditions.
Collapse
Affiliation(s)
- Huanhuan Fang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu,Anhui, China
| | - Ye Zhang
- Department of Stomatology Center, The First People's Hospital of Yunnan Province,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Liangming Zhu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu,Anhui, China
| | - Jinzhao Lyu
- Department of Orthodontics, Shanghai Stomatological Hospital and School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| | - Qiang Li
- Department of Orthodontics, Shanghai Stomatological Hospital and School of Stomatology, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Liu FF, Yan YX, Zhang HF, Li K. Gene Expression Signatures of Smoking and Acute Myocardial Infarction: A Blood Transcriptome Analysis. Mediators Inflamm 2025; 2025:2431090. [PMID: 39845197 PMCID: PMC11753852 DOI: 10.1155/mi/2431090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
Background: Tobacco smoke is known to contain numerous harmful chemicals, and epidemiological evidence has firmly established smoking as a potent risk factor for hypertension and myocardial infarction (MI). However, the precise mechanisms by which smoking contributes to cardiovascular disease are not fully understood. The aim of this study is to identify common molecular signatures in blood that link smoking to acute MI (AMI). Methods: We extracted transcriptome data from seven blood microarray datasets in the Gene Expression Omnibus (GEO) database, encompassing a total of 403 patients. Employing both individual dataset analysis and a combined meta-analysis approach, we conducted a thorough examination of blood transcriptome profiles associated with AMI and smoking, uncovering numerous differentially expressed genes (DEGs). Results: Functional enrichment analysis indicated that DEGs associated with AMI and smoking were significantly enriched in overlapping biological processes, such as immune response and inflammation. Moreover, three genes-PTGDR, PYHIN1, and PRSS23-were consistently altered in both conditions and were validated as dysregulated in AMI using an independent GEO dataset. Furthermore, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) validation further confirmed the differential expression of PYHIN1 and PRSS23 in AMI patients. Conclusions: Our findings suggest that gene expression changes induced by smoking in blood may contribute to the heightened risk of AMI. These identified genes are likely to play critical roles in the pathogenesis of AMI. Given the accessibility of peripheral blood samples, the expression levels of these genes could potentially serve as biomarkers for assessing cardiovascular health, particularly in individuals with a history of long-term exposure to cigarette smoke.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yi-Xuan Yan
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong-Feng Zhang
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
34
|
Xiong Y, Yi C, Zheng H, Ni Y, Xue Y, Li K. Protein palmitoylation is involved in regulating mouse sperm motility via the signals of calcium, protein tyrosine phosphorylation and reactive oxygen species. Biol Res 2025; 58:3. [PMID: 39810241 PMCID: PMC11734517 DOI: 10.1186/s40659-024-00580-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Protein palmitoylation, a critical posttranslational modification, plays an indispensable role in various cellular processes, including the regulation of protein stability, mediation of membrane fusion, facilitation of intracellular protein trafficking, and participation in cellular signaling pathways. It is also implicated in the pathogenesis of diseases, such as cancer, neurological disorders, inflammation, metabolic disorders, infections, and neurodegenerative diseases. However, its regulatory effects on sperm physiology, particularly motility, remain unclear. This study aimed to elucidate the mechanism by which protein palmitoylation governs sperm motility. METHODS Protein palmitoylation in situ in mouse sperm was observed using innovative click chemistry. Sperm motility and motion parameters were evaluated using a computer-assisted sperm analyzer (CASA) after treatment with 2-bromopalmitic acid (2BP), a specific inhibitor of protein palmitoylation. Protein palmitoylation levels were confirmed by the acyl-biotin exchange (ABE) method. The interplay between protein palmitoylation, protein tyrosine phosphorylation, and intracellular calcium was investigated using Western blotting, ABE method, and fluorescent probes. The regulation of reactive oxygen species was also examined using fluorescent probes. RESULTS Localized patterns and dynamics of protein palmitoylation in distinct sperm regions were revealed, including the midpiece, post-acrosomal region, acrosome, and head. Alterations in protein palmitoylation in sperm were observed under in vitro physiological conditions. Treatment with 2BP significantly affected sperm motility and motion parameters. The study revealed interactions between protein palmitoylation, including heat shock protein 90, and protein kinase A/protein kinase C-associated protein tyrosine phosphorylation and intracellular calcium. Additionally, protein palmitoylation was found to be involved in reactive oxygen species regulation. CONCLUSIONS Protein palmitoylation regulates sperm motility through calcium signaling, protein tyrosine phosphorylation, and reactive oxygen species. This study revealed the characteristics of protein palmitoylation in sperm and its role in regulating sperm motility, thereby providing novel insights into the causes of asthenozoospermia associated with sperm motility in humans.
Collapse
Affiliation(s)
- Yuping Xiong
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chenchen Yi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haixia Zheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yamei Xue
- Department of Obstetrics and Gynecology, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Zhang Y, Yang Z, Liu Y, Pei J, Li R, Yang Y. Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment. Lipids Health Dis 2025; 24:12. [PMID: 39806478 PMCID: PMC11727729 DOI: 10.1186/s12944-024-02426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Lipid metabolism in cancer is characterized by dysregulated lipid regulation and utilization, critical for promoting tumor growth, survival, and resistance to therapy. Pancreatic cancer (PC) is a highly aggressive malignancy of the gastrointestinal tract that has a dismal 5-year survival rate of less than 10%. Given the essential function of the pancreas in digestion, cancer progression severely disrupts its function. Standard treatments for PC such as surgical resection, chemotherapy, and radiotherapy. However, these therapies often face significant challenges, including biochemical recurrence and drug resistance.Given these limitations, new therapeutic approaches are being developed to target tumor metabolism. Dysregulation of cholesterol biosynthesis and alterations in fatty acids (FAs), such as palmitate, stearate, omega-3, and omega-6, have been observed in pancreatic cancer. These lipids serve as energy sources, signaling molecules, and essential components of cell membranes. Their accumulation fosters an immunosuppressive tumor microenvironment that supports cancer cell proliferation and metastasis.Moreover, lipid metabolism dysregulation within immune cells, particularly T cells, impairs immune surveillance and weakens the body's defenses against cancer. Abnormal lipid metabolism also contributes to drug resistance in PC. Despite these challenges, targeting lipid metabolism may offer a promising therapeutic strategy. By enhancing lipid peroxidation, the induction of ferroptosis-a form of regulated cell death-could impair the survival of PC cells and hinder disease progression.
Collapse
Affiliation(s)
- Yanyan Zhang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Zhichao Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
| | - Yuchen Liu
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Ruojie Li
- Interventional Therapy Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, P.R. China.
| | - Yanhui Yang
- Emergency surgery Dapartment (Trauma center), The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.
| |
Collapse
|
36
|
Choi Y, Park JH, Jo A, Lim CW, Park JM, Hwang JW, Lee KS, Kim YS, Lee H, Moon J. Blood-derived APLP1 + extracellular vesicles are potential biomarkers for the early diagnosis of brain diseases. SCIENCE ADVANCES 2025; 11:eado6894. [PMID: 39742488 DOI: 10.1126/sciadv.ado6894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025]
Abstract
The early detection of neurodegenerative diseases necessitates the identification of specific brain-derived biomolecules in peripheral blood. In this context, our investigation delineates the role of amyloid precursor-like protein 1 (APLP1)-a protein predominantly localized in oligodendrocytes and neurons-as a previously unidentified biomarker in extracellular vesicles (EVs). Through rigorous analysis, APLP1+ EVs from human sera were unequivocally determined to be of cerebral origin. This assertion was corroborated by distinctive small RNA expression patterns of APLP1+ EVs. The miRNAs' putative targets within these EVs manifested pronounced expression in the brain, fortifying their neurospecific provenance. We subjected our findings to stringent validation using Thy-1 GFP M line mice, transgenic models wherein GFP expression is confined to hippocampal neurons. An amalgamation of these results with an exhaustive data analysis accentuates the potential of APLP1+ EVs as cerebrally originated biomarkers. Synthesizing our findings, APLP1+ EVs are postulated not merely as diagnostic markers but as seminal entities shaping the future trajectory of neurodegenerative disease diagnostics.
Collapse
Affiliation(s)
- Yuri Choi
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Jae Hyun Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ala Jo
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chul-Woo Lim
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Ji-Min Park
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Jin Woo Hwang
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| | - Kang Soo Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University College of Medicine, Gyeonggi-do 13496, Republic of Korea
| | - Young-Sang Kim
- Department of Family Medicine, CHA Bundang Medical Center, CHA University College of Medicine, Gyeonggi-do 13496, Republic of Korea
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jisook Moon
- Department of Biotechnology, College of Life Science, CHA University, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
37
|
Xiao Q, Zhang X, Chen ZL, Zou YY, Tang CF. An Evidence-Based Narrative Review of Scleral Hypoxia Theory in Myopia: From Mechanisms to Treatments. Int J Mol Sci 2025; 26:332. [PMID: 39796188 PMCID: PMC11719898 DOI: 10.3390/ijms26010332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Myopia is one of the dominant causes of visual impairment in the world. Pathological myopia could even lead to other serious eye diseases. Researchers have reached a consensus that myopia could be caused by both environmental and genetic risk factors. Exploring the pathological mechanism of myopia can provide a scientific basis for developing measures to delay the progression of myopia or even treat it. Recent advances highlight that scleral hypoxia could be an important factor in promoting myopia. In this review, we summarized the role of scleral hypoxia in the pathology of myopia and also provided interventions for myopia that target scleral hypoxia directly or indirectly. We hope this review will aid in the development of novel therapeutic strategies and drugs for myopia.
Collapse
Affiliation(s)
- Qin Xiao
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
- College of Physical Education, Hunan First Normal University, Changsha 410205, China
| | - Xiang Zhang
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Zhang-Lin Chen
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Yun-Yi Zou
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| | - Chang-Fa Tang
- College of Physical Education, Hunan Normal University, Changsha 410012, China; (Q.X.); (X.Z.); (Z.-L.C.)
| |
Collapse
|
38
|
Castillo-Galán S, Parra V, Cuenca J. Unraveling the pathogenesis of viral-induced pulmonary arterial hypertension: Possible new therapeutic avenues with mesenchymal stromal cells and their derivatives. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167519. [PMID: 39332781 DOI: 10.1016/j.bbadis.2024.167519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Pulmonary hypertension (PH) is a severe condition characterized by elevated pressure in the pulmonary artery, where metabolic and mitochondrial dysfunction may contribute to its progression. Within the PH spectrum, pulmonary arterial hypertension (PAH) stands out with its primary pulmonary vasculopathy. PAH's prevalence varies from 0.4 to 1.4 per 100,000 individuals and is associated with diverse conditions, including viral infections such as HIV. Notably, recent observations highlight an increased occurrence of PAH among COVID-19 patients, even in the absence of pre-existing cardiopulmonary disorders. While current treatments offer partial relief, there's a pressing need for innovative therapeutic strategies, among which mesenchymal stromal cells (MSCs) and their derivatives hold promise. This review critically evaluates recent investigations into viral-induced PAH, encompassing pathogens like human immunodeficiency virus, herpesvirus, Cytomegalovirus, Hepatitis B and C viruses, SARS-CoV-2, and Human endogenous retrovirus K (HERKV), with a specific emphasis on mitochondrial dysfunction. Furthermore, we explore the underlying rationale driving novel therapeutic modalities, including MSCs, extracellular vesicles, and mitochondrial interventions, within the framework of PAH management.
Collapse
Affiliation(s)
- Sebastián Castillo-Galán
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Valentina Parra
- Laboratory of Differentiation and Cell Metabolism (D&M), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; SYSTEMIX Center for Systems Biology, O'Higgins University, Rancagua, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile; Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile.
| |
Collapse
|
39
|
Bo T, Fujii J. Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders. Molecules 2024; 30:56. [PMID: 39795113 PMCID: PMC11721030 DOI: 10.3390/molecules30010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate. BCKDH performs an oxidative decarboxylation of BCKAs, which produces their coenzyme A-conjugates and NADH. BCAT2 in skeletal muscle dominantly catalyzes the transamination of BCAAs. Low BCAT activity in the liver reduces the metabolization of BCAAs, but the abundant presence of BCKDH promotes the metabolism of muscle-derived BCKAs, which leads to the production of glucose and ketone bodies. While mutations in the genes responsible for BCAA catabolism are involved in rare inherited disorders, an aberrant regulation of their enzymatic activities is associated with major metabolic disorders such as diabetes, cardiovascular disease, and cancer. Therefore, an understanding of the regulatory process of metabolic enzymes, as well as the functions of the BCAAs and their metabolites, make a significant contribution to our health.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
40
|
Zhang Z, Wang D, Xu R, Li X, Wang Z, Zhang Y. The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification. Biomolecules 2024; 14:1592. [PMID: 39766299 PMCID: PMC11674127 DOI: 10.3390/biom14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process. The interaction between HIF-1α and other signaling pathways, such as nuclear factor-κB, Notch, and Wnt/β-catenin, creates a complex regulatory network that serves as a critical driving force in VC. Therefore, a deeper understanding of the role and regulatory mechanism of the HIF-1α signaling during the development and progression of VC is of great significance, as it is not only a key molecular marker for understanding the pathological mechanisms of VC but also represents a promising target for future anti-calcification therapies.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
41
|
Blömeke L, Rehn F, Pils M, Kraemer-Schulien V, Cousin A, Kutzsche J, Bujnicki T, Freiesleben SD, Schneider LS, Preis L, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Hansen N, Rostamzadeh A, Düzel E, Glanz W, Incesoy EI, Buerger K, Janowitz D, Ewers M, Perneczky R, Rauchmann BS, Teipel S, Kilimann I, Laske C, Munk MH, Spottke A, Roy N, Heneka MT, Brosseron F, Wagner M, Roeske S, Ramirez A, Schmid M, Jessen F, Bannach O, Peters O, Willbold D. Blood-based quantification of Aβ oligomers indicates impaired clearance from brain in ApoE ε4 positive subjects. COMMUNICATIONS MEDICINE 2024; 4:262. [PMID: 39658587 PMCID: PMC11631981 DOI: 10.1038/s43856-024-00690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Quantification of Amyloid beta (Aβ) oligomers in plasma enables early diagnosis of Alzheimer's Disease (AD) and improves our understanding of underlying pathologies. However, quantification necessitates an extremely sensitive and selective technology because of very low Aβ oligomer concentrations and possible interference from matrix components. METHODS In this report, we developed and validated a surface-based fluorescence distribution analysis (sFIDA) assay for quantification of Aβ oligomers in plasma. RESULTS The blood-based sFIDA assay delivers a sensitivity of 1.8 fM, an inter- and intra-assay variation below 20% for oligomer calibration standards and no interference with matrix components. Quantification of Aβ oligomers in 359 plasma samples from the DELCODE cohort reveals lower oligomer concentrations in subjective cognitive decline and AD patients than healthy Control participants. CONCLUSIONS Correlation analysis between CSF and plasma oligomer concentrations indicates an impaired clearance of Aβ oligomers that is dependent on the ApoE ε4 status.
Collapse
Affiliation(s)
- Lara Blömeke
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- attyloid GmbH, 40225, Düsseldorf, Germany
| | - Fabian Rehn
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- attyloid GmbH, 40225, Düsseldorf, Germany
| | - Marlene Pils
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- attyloid GmbH, 40225, Düsseldorf, Germany
| | - Victoria Kraemer-Schulien
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Anneliese Cousin
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Janine Kutzsche
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Tuyen Bujnicki
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Silka D Freiesleben
- German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
- Department of Psychiatry and Neuroscience, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203, Berlin, Germany
| | - Luisa-Sophie Schneider
- German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
- Department of Psychiatry and Neuroscience, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203, Berlin, Germany
| | - Lukas Preis
- German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
- Department of Psychiatry and Neuroscience, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
- School of Medicine, Technical University of Munich; Department of Psychiatry and Psychotherapy, 81675, Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh, UK
| | - Eike J Spruth
- German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Bonn, Germany
- University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, 53127, Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Bonn, Germany
- University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, 53127, Bonn, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), 37075, Goettingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, 37075, Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, 37075, Goettingen, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, University of Cologne, Medical Faculty, 50924, Cologne, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
| | - Enise I Incesoy
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, 39106, Magdeburg, Germany
- Department for Psychiatry and Psychotherapy, University Clinic Magdeburg, 39120, Magdeburg, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE, Munich), 81377, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE, Munich), 81377, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE, Munich), 81377, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, 81377, Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 81377, Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- Department of Neuroradiology, University Hospital LMU, 81377, Munich, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), 18147, Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, 18147, Rostock, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), 18147, Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, 18147, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076, Tübingen, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, 72076, Tübingen, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Bonn, Germany
- University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, 53127, Bonn, Germany
- University of Bonn Medical Center, Dept. of Neurology, 53217, Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Bonn, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Bonn, Germany
- University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, 53127, Bonn, Germany
| | - Sandra Roeske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Bonn, Germany
| | - Alfredo Ramirez
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Bonn, Germany
- University of Bonn Medical Center, Dept. of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, 53127, Bonn, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Bonn, Germany
- Institute for Medical Biometry, University Hospital Bonn, 53127, Bonn, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, 53127, Bonn, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, 37075, Goettingen, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Oliver Bannach
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany
- attyloid GmbH, 40225, Düsseldorf, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
- Department of Psychiatry and Neuroscience, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203, Berlin, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing (Structural Biochemistry: IBI-7), Forschungszentrum Jülich, 52428, Jülich, Germany.
- attyloid GmbH, 40225, Düsseldorf, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
42
|
Wang C, Li L, Zhai X, Chang H, Liu H. Evasion of the Antiviral Innate Immunity by PRV. Int J Mol Sci 2024; 25:13140. [PMID: 39684850 DOI: 10.3390/ijms252313140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Pseudorabies virus (PRV) establishes persistent latent infections by effectively evading the host's antiviral innate immune response. PRV has developed sophisticated strategies to bypass immune surveillance through coevolution with its host. Currently, no effective vaccine exists to prevent or treat infections caused by emerging PRV variants, and the interactions between PRV and the host's innate immune defenses remain incompletely understood. Nevertheless, ongoing research is uncovering insights that may lead to novel treatments and preventive approaches for herpesvirus-related diseases. This review summarizes recent advances in understanding how PRV disrupts key adaptors in immune signaling pathways to evade antiviral immunity. Additionally, we explored the intrinsic cellular defenses that play crucial roles in combating viral invasion. A deeper understanding of the immune evasion strategies of PRV could inform the development of new therapeutic targets and vaccines.
Collapse
Affiliation(s)
- Chenlong Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Longxi Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinyu Zhai
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongtao Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huimin Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
43
|
Gladka MM, Kohela A, de Leeuw AE, Molenaar B, Versteeg D, Kooijman L, van Geldorp M, van Ham WB, Caliandro R, Haigh JJ, van Veen TAB, van Rooij E. Hypoxia-responsive zinc finger E-box-binding homeobox 2 (ZEB2) regulates a network of calcium-handling genes in the injured heart. Cardiovasc Res 2024; 120:1869-1883. [PMID: 39308239 PMCID: PMC11630050 DOI: 10.1093/cvr/cvae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 12/11/2024] Open
Abstract
AIMS Intracellular calcium (Ca2+) overload is known to play a critical role in the development of cardiac dysfunction. Despite the remarkable improvement in managing the progression of heart disease, developing effective therapies for heart failure (HF) remains a challenge. A better understanding of molecular mechanisms that maintain proper Ca2+ levels and contractility in the injured heart could be of therapeutic value. METHODS AND RESULTS Here, we report that transcription factor zinc finger E-box-binding homeobox 2 (ZEB2) is induced by hypoxia-inducible factor 1-alpha (HIF1α) in hypoxic cardiomyocytes and regulates a network of genes involved in Ca2+ handling and contractility during ischaemic heart disease. Gain- and loss-of-function studies in genetic mouse models revealed that ZEB2 expression in cardiomyocytes is necessary and sufficient to protect the heart against ischaemia-induced diastolic dysfunction and structural remodelling. Moreover, RNA sequencing of ZEB2-overexpressing (Zeb2 cTg) hearts post-injury implicated ZEB2 in regulating numerous Ca2+-handling and contractility-related genes. Mechanistically, ZEB2 overexpression increased the phosphorylation of phospholamban at both serine-16 and threonine-17, implying enhanced activity of sarcoplasmic reticulum Ca2+-ATPase (SERCA2a), thereby augmenting SR Ca2+ uptake and contractility. Furthermore, we observed a decrease in the activity of Ca2+-dependent calcineurin/NFAT signalling in Zeb2 cTg hearts, which is the main driver of pathological cardiac remodelling. On a post-transcriptional level, we showed that ZEB2 expression can be regulated by the cardiomyocyte-specific microRNA-208a (miR-208a). Blocking the function of miR-208a with anti-miR-208a increased ZEB2 expression in the heart and effectively protected from the development of pathological cardiac hypertrophy. CONCLUSION Together, we present ZEB2 as a central regulator of contractility and Ca2+-handling components in the mammalian heart. Further mechanistic understanding of the role of ZEB2 in regulating Ca2+ homeostasis in cardiomyocytes is an essential step towards the development of improved therapies for HF.
Collapse
Affiliation(s)
- Monika M Gladka
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Arwa Kohela
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- School of Biotechnology, Nile University, Giza, Egypt
| | - Anne E de Leeuw
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bas Molenaar
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Danielle Versteeg
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Lieneke Kooijman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Mariska van Geldorp
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Willem B van Ham
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Rocco Caliandro
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jody J Haigh
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Centre Utrecht (UMCU), Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Department of Cardiology, University Medical Centre Utrecht (UMCU), Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
44
|
Barutta F, Corbetta B, Bellini S, Gambino R, Bruno S, Kimura S, Hase K, Ohno H, Gruden G. Protective effect of mesenchymal stromal cells in diabetic nephropathy: the In vitro and In vivo role of the M-Sec-tunneling nanotubes. Clin Sci (Lond) 2024; 138:1537-1559. [PMID: 39535903 DOI: 10.1042/cs20242064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Mitochondrial dysfunction plays an important role in the development of podocyte injury in diabetic nephropathy (DN). Tunnelling nanotubes (TNTs) are long channels that connect cells and allow organelle exchange. Mesenchymal stromal cells (MSCs) can transfer mitochondria to other cells through the M-Sec-TNTs system. However, it remains unexplored whether MSCs can form heterotypic TNTs with podocytes, thereby enabling the replacement of diabetes-damaged mitochondria. In this study, we analysed TNT formation, mitochondrial transfer, and markers of cell injury in podocytes that were pre-exposed to diabetes-related insults and then co-cultured with diabetic or non-diabetic MSCs. Furthermore, to assess the in vivo relevance, we treated DN mice with exogenous MSCs, either expressing or lacking M-Sec, carrying fluorescent-tagged mitochondria. MSCs formed heterotypic TNTs with podocytes, allowing mitochondrial transfer, via a M-Sec-dependent mechanism. This ameliorated mitochondrial function, nephrin expression, and reduced apoptosis in recipient podocytes. However, MSCs isolated from diabetic mice failed to confer cytoprotection due to Miro-1 down-regulation. In experimental DN, treatment with exogenous MSCs significantly improved DN, but no benefit was observed in mice treated with MSCs lacking M-Sec. Mitochondrial transfer from exogenous MSCs to podocytes occurred in vivo in a M-Sec-dependent manner. These findings demonstrate that the M-Sec-TNT-mediated transfer of mitochondria from healthy MSCs to diabetes-injured podocytes can ameliorate podocyte damage. Moreover, M-Sec expression in exogenous MSCs is essential for providing renoprotection in vivo in experimental DN.
Collapse
Affiliation(s)
- Federica Barutta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Stefania Bellini
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Gabriella Gruden
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
45
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 PMCID: PMC11640421 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
46
|
Akbay B, Omarova Z, Trofimov A, Sailike B, Karapina O, Molnár F, Tokay T. Double-Edge Effects of Leucine on Cancer Cells. Biomolecules 2024; 14:1401. [PMID: 39595578 PMCID: PMC11591885 DOI: 10.3390/biom14111401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Leucine is an essential amino acid that cannot be produced endogenously in the human body and therefore needs to be obtained from dietary sources. Leucine plays a pivotal role in stimulating muscle protein synthesis, along with isoleucine and valine, as the group of branched-chain amino acids, making them one of the most popular dietary supplements for athletes and gym-goers. The individual effects of leucine, however, have not been fully clarified, as most of the studies so far have focused on the grouped effects of branched-chain amino acids. In recent years, leucine and its metabolites have been shown to stimulate muscle protein synthesis mainly via the mammalian target of the rapamycin complex 1 signaling pathway, thereby improving muscle atrophy in cancer cachexia. Interestingly, cancer research suggests that leucine may have either anti-cancer or pro-tumorigenic effects. In the current manuscript, we aim to review leucine's roles in muscle protein synthesis, tumor suppression, and tumor progression, specifically summarizing the molecular mechanisms of leucine's action. The role of leucine is controversial in hepatocellular carcinoma, whereas its pro-tumorigenic effects have been demonstrated in breast and pancreatic cancers. In summary, leucine being used as nutritional supplement for athletes needs more attention, as its pro-oncogenic effects may have been identified by recent studies. Anti-cancer or pro-tumorigenic effects of leucine in various cancers should be further investigated to achieve clear conclusions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tursonjan Tokay
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan; (B.A.); (Z.O.); (A.T.); (B.S.); (O.K.); (F.M.)
| |
Collapse
|
47
|
Bick F, Brenis Gómez CM, Lammens I, Van Moorleghem J, De Wolf C, Dupont S, Dumoutier L, Smith NP, Villani AC, Browaeys R, Alladina J, Haring AM, Medoff BD, Cho JL, Bigirimana R, Vieira J, Hammad H, Blanchetot C, Schuijs MJ, Lambrecht BN. IL-2 family cytokines IL-9 and IL-21 differentially regulate innate and adaptive type 2 immunity in asthma. J Allergy Clin Immunol 2024; 154:1129-1145. [PMID: 39147327 DOI: 10.1016/j.jaci.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Asthma is often accompanied by type 2 immunity rich in IL-4, IL-5, and IL-13 cytokines produced by TH2 lymphocytes or type 2 innate lymphoid cells (ILC2s). IL-2 family cytokines play a key role in the differentiation, homeostasis, and effector function of innate and adaptive lymphocytes. OBJECTIVE IL-9 and IL-21 boost activation and proliferation of TH2 and ILC2s, but the relative importance and potential synergism between these γ common chain cytokines are currently unknown. METHODS Using newly generated antibodies, we inhibited IL-9 and IL-21 alone or in combination in various murine models of asthma. In a translational approach using segmental allergen challenge, we recently described elevated IL-9 levels in human subjects with allergic asthma compared with nonasthmatic controls. Here, we also measured IL-21 in both groups. RESULTS IL-9 played a central role in controlling innate IL-33-induced lung inflammation by promoting proliferation and activation of ILC2s in an IL-21-independent manner. Conversely, chronic house dust mite-induced airway inflammation, mainly driven by adaptive immunity, was solely dependent on IL-21, which controlled TH2 activation, eosinophilia, total serum IgE, and formation of tertiary lymphoid structures. In a model of innate on adaptive immunity driven by papain allergen, a clear synergy was found between both pathways, as combined anti-IL-9 or anti-IL-21 blockade was superior in reducing key asthma features. In human bronchoalveolar lavage samples we measured elevated IL-21 protein within the allergic asthmatic group compared with the allergic control group. We also found increased IL21R transcripts and predicted IL-21 ligand activity in various disease-associated cell subsets. CONCLUSIONS IL-9 and IL-21 play important and nonredundant roles in allergic asthma by boosting ILC2s and TH2 cells, revealing a dual IL-9 and IL-21 targeting strategy as a new and testable approach.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, Zwijnaarde, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Claudia M Brenis Gómez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Inés Lammens
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sam Dupont
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Laure Dumoutier
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Robin Browaeys
- Bioinformatics Expertise Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jehan Alladina
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Alexis M Haring
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Josalyn L Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | | | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | - Martijn J Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
48
|
Casco-Robles MM, Ikeda R, Maruo F, Chiba C. Development of a ZRS Reporter System for the Newt ( Cynops pyrrhogaster) During Terrestrial Limb Regeneration. Biomedicines 2024; 12:2505. [PMID: 39595071 PMCID: PMC11591917 DOI: 10.3390/biomedicines12112505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Newts, a type of urodele amphibian, offer remarkable insights into regenerative medicine due to their extraordinary tissue regeneration capabilities-a challenging feat in humans. During limb regeneration of adult newts, fascinating cellular and molecular processes are revealed, including scarless healing, de-differentiation of mature cells, and regeneration of limbs and digits. Sonic hedgehog (Shh), crucial for vertebrate limb development, is regulated by the zone of polarizing activity regulatory sequence (ZRS) in the limb bud zone of polarizing activity (ZPA). The metamorphosed (terrestrial) newt can reactivate Shh during regeneration, facilitating proper limb patterning. Cell types capable of regulating the ZRS in metamorphosed newts remain unknown. The identification of such cell types provides invaluable insight into novel regenerative mechanisms. OBJECTIVE In this study, we developed the first newt ZRS reporter. METHODS We isolated and characterized the newt ZRS enhancer (nZRS), identifying conserved DNA binding sites. Several binding sites with medical relevance were conserved in the newt ZRS. In functional analysis, we developed a system composed of a transgenic nZRS reporter newt and a new newt anti-Shh antibody, which allowed Shh monitoring during limb regeneration. RESULTS We identified a group of Schwann cells capable of ZRS reporter and Shh protein expression during terrestrial limb regeneration. CONCLUSIONS This system provides a valuable in vivo approach for future genetic studies of patterning during limb regeneration.
Collapse
Affiliation(s)
- Martin Miguel Casco-Robles
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan; (F.M.); (C.C.)
| | - Ryosuke Ikeda
- Graduate School of Science and Technology, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan;
| | - Fumiaki Maruo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan; (F.M.); (C.C.)
| | - Chikafumi Chiba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8572, Ibaraki, Japan; (F.M.); (C.C.)
| |
Collapse
|
49
|
Shin SW, Mudvari P, Thaploo S, Wheeler MA, Douek DC, Quintana FJ, Boritz EA, Abate AR, Clark IC. FIND-seq: high-throughput nucleic acid cytometry for rare single-cell transcriptomics. Nat Protoc 2024; 19:3191-3218. [PMID: 39039320 PMCID: PMC11537836 DOI: 10.1038/s41596-024-01021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 05/09/2024] [Indexed: 07/24/2024]
Abstract
Rare cells have an important role in development and disease, and methods for isolating and studying cell subsets are therefore an essential part of biology research. Such methods traditionally rely on labeled antibodies targeted to cell surface proteins, but large public databases and sophisticated computational approaches increasingly define cell subsets on the basis of genomic, epigenomic and transcriptomic sequencing data. Methods for isolating cells on the basis of nucleic acid sequences powerfully complement these approaches by providing experimental access to cell subsets discovered in cell atlases, as well as those that cannot be otherwise isolated, including cells infected with pathogens, with specific DNA mutations or with unique transcriptional or splicing signatures. We recently developed a nucleic acid cytometry platform called 'focused interrogation of cells by nucleic acid detection and sequencing' (FIND-seq), capable of isolating rare cells on the basis of RNA or DNA markers, followed by bulk or single-cell transcriptomic analysis. This platform has previously been used to characterize the splicing-dependent activation of the transcription factor XBP1 in astrocytes and HIV persistence in memory CD4 T cells from people on long-term antiretroviral therapy. Here, we outline the molecular and microfluidic steps involved in performing FIND-seq, including protocol updates that allow detection and whole transcriptome sequencing of rare HIV-infected cells that harbor genetically intact virus genomes. FIND-seq requires knowledge of microfluidics, optics and molecular biology. We expect that FIND-seq, and this comprehensive protocol, will enable mechanistic studies of rare HIV+ cells, as well as other cell subsets that were previously difficult to recover and sequence.
Collapse
Affiliation(s)
- Seung Won Shin
- Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA, USA
| | - Prakriti Mudvari
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shravan Thaploo
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eli A Boritz
- Virus Persistence and Dynamics Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA
| | - Iain C Clark
- Department of Bioengineering, College of Engineering, California Institute for Quantitative Biosciences (QB3), University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
50
|
Xiao W, Shrimali N, Vigder N, Oldham WM, Clish CB, He H, Wong SJ, Wertheim BM, Arons E, Haigis MC, Leopold JA, Loscalzo J. Branched-chain α-ketoacids aerobically activate HIF1α signalling in vascular cells. Nat Metab 2024; 6:2138-2156. [PMID: 39472756 PMCID: PMC11786732 DOI: 10.1038/s42255-024-01150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2024] [Indexed: 11/06/2024]
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a master regulator of biological processes in hypoxia. Yet, the mechanisms and biological consequences of aerobic HIF1α activation by intrinsic factors, particularly in normal (primary) cells, remain elusive. Here we show that HIF1α signalling is activated in several human primary vascular cells in normoxia and in vascular smooth muscle cells of normal human lungs. Mechanistically, aerobic HIF1α activation is mediated by paracrine secretion of three branched-chain α-ketoacids (BCKAs), which suppress PHD2 activity via direct inhibition and via LDHA-mediated generation of L-2-hydroxyglutarate. BCKA-mediated HIF1α signalling activation stimulated glycolytic activity and governed a phenotypic switch of pulmonary artery smooth muscle cells, which correlated with BCKA metabolic dysregulation and pathophenotypic changes in pulmonary arterial hypertension patients and male rat models. We thus identify BCKAs as previously unrecognized signalling metabolites that aerobically activate HIF1α and that the BCKA-HIF1α pathway modulates vascular smooth muscle cell function, an effect that may be relevant to pulmonary vascular pathobiology.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing, China
| | - Nishith Shrimali
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Niv Vigder
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Huamei He
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Samantha J Wong
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Bradley M Wertheim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elena Arons
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|