1
|
Wu S, Chen Q, Yang X, Zhang L, Huang X, Huang J, Wu J, Sun C, Zhang W, Wang J. The KSR1/MEK/ERK signaling pathway promotes the progression of intrauterine adhesions. Cell Signal 2025; 131:111730. [PMID: 40089092 DOI: 10.1016/j.cellsig.2025.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Kinase suppressor of Ras 1 (KSR1) serves as a scaffold protein within the RAS-RAF pathway and plays a role in tumorigenesis, immune regulation, cell proliferation, and apoptosis. However, the specific role of KSR1 in the formation and progression of fibrotic diseases, such as intrauterine adhesions (IUA), remains unclear. This study aims to investigate KSR1 expression in IUA and the mechanisms underlying its role in promoting IUA progression. KSR1 was found to be significantly overexpressed in the endometrium of both IUA model rats and patients with IUA. KSR1 is positively involved in the regulation of proliferation, migration, and fibrosis (FN1, Collagen I, α-SMA) in immortalized human endometrial stromal cells (THESCs). Furthermore, KSR1 knockdown was observed to inhibit the fibrosis, proliferation, and migration of transforming growth factor-β1 (TGF-β1)-induced THESCs. Further studies demonstrated that the key proteins of the MEK/ERK signaling pathway, p-MEK1 and p-ERK1/2, were significantly overexpressed in the uterus of IUA rats. In vitro rescue experiments confirmed that the MEK/ERK pathway inhibitor U0126 (An ERK inhibitor) effectively suppressed the enhanced fibrosis, proliferation, and migration induced by KSR1 overexpression. In conclusion, this study demonstrates that KSR1 promotes IUA by enhancing proliferation, migration, and fibrosis of endometrial stromal cells via the MEK/ERK signaling pathway.
Collapse
Affiliation(s)
- Shasha Wu
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Qiuhong Chen
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Xiao Yang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Lulu Zhang
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Xiyue Huang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jinglin Huang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jiangling Wu
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Congcong Sun
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| | - Wenwen Zhang
- Department of Pathology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| | - Jia Wang
- Department of Obstetrics and Gynecology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| |
Collapse
|
2
|
Zhou Y, Yang G, Liu J, Yao S, Jia J, Tang X, Gong X, Wan F, Wu R, Zhao Z, Liang H, Liu L, Liu Q, Xie S, Long X, Xiang X, Wang G, Xiao B. MBD2 promotes epithelial-to-mesenchymal transition (EMT) and ARDS-related pulmonary fibrosis by modulating FZD2. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167798. [PMID: 40081619 DOI: 10.1016/j.bbadis.2025.167798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
OBJECTIVE To investigate the role and underlying mechanism of Methyl-CpG binding domain protein 2 (MBD2) in the pathogenesis of acute respiratory distress syndrome (ARDS)-related pulmonary fibrosis. METHODS Murine models for ARDS-related pulmonary fibrosis were established in wildtype or MBD2 knockout mice, expressions of MBD2 were determined with immunohistochemistry (IHC), immunofluorescence, and western blot. Epithelial-to-mesenchymal transition (EMT) was detected with determined with decreased expression of E-cadherin and increased expressions of N-cadherin, Vimentin, and α-smooth muscle actin (α-SMA). Transforming growth factor β (TGF-β) treated mouse lung epithelial-12 (MLE-12) cells and primary human type II alveolar epithelial cells were applied to establish in vitro model for EMT. Transcriptional sequencing with RNA-Seq and Chromatin immunoprecipitation (ChIP) assay were used to explore the potential targets of MBD2. Single cell sequencing data and Human pulmonary fibrosis samples were analyzed. RESULTS Bleomycin (BLM) and lipopolysaccharide (LPS) induced EMT, pulmonary fibrosis, and increased expression of MBD2 in alveolar epithelial cells of mice, and MBD2 knockout significantly alleviated BLM- and LPS-induced pulmonary fibrosis and EMT. TGF-β induced EMT and elevated MBD2 expressions in alveolar epithelial cells, which was mitigated by MBD2 knockdown and aggravated by MBD2 overexpression. Frizzled 2 (FZD2) was found to be the potential target of MBD2. Single-cell sequencing analysis of ARDS patients suggested elevated expression of MBD2 in alveolar epithelial cells, and MBD2 expression was elevated in the lungs of patients with pulmonary fibrosis. CONCLUSION Our results indicated that MBD2 could promote EMT and ARDS-related pulmonary fibrosis, potentially by modulating the expression of FZD2.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China; Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Guifang Yang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Jiqiang Liu
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Shuo Yao
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Jingsi Jia
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Xianming Tang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Xun Gong
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Fang Wan
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China
| | - Ren Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hengxing Liang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Thoracic Surgery, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Linxia Liu
- Department of Respiratory and Critical Care Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Qimi Liu
- Department of Respiratory and Critical Care Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Shanshan Xie
- Department of Emergency Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Xian Long
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan, China
| | - Xudong Xiang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China; Department of Respiratory and Critical Care Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China
| | - Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Bing Xiao
- Department of Emergency Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, China; Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Fu TE, Zhou Z. Senescent cells as a target for anti-aging interventions: From senolytics to immune therapies. J Transl Int Med 2025; 13:33-47. [PMID: 40115034 PMCID: PMC11921816 DOI: 10.1515/jtim-2025-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Aging and age-related diseases are major drivers of multimorbidity and mortality worldwide. Cellular senescence is a hallmark of aging. The accumulation of senescent cells is causally associated with pathogenesis of various age-associated disorders. Due to their promise for alleviating age-related disorders and extending healthspan, therapeutic strategies targeting senescent cells (senotherapies) as a means to combat aging have received much attention over the past decade. Among the conventionally used approaches, one is the usage of small-molecule compounds to specifically exhibit cytotoxicity toward senescent cells or inhibit deleterious effects of the senescence-associated secretory phenotype (SASP). Alternatively, there are immunotherapies directed at surface antigens specifically upregulated in senescent cells (seno-antigens), including chimeric antigen receptor (CAR) therapies and senolytic vaccines. This review gives an update of the current status in the discovery and development of senolytic therapies, and their translational progress from preclinical to clinical trials. We highlight the current challenges faced by senotherapeutic development in the context of senescence heterogeneity, with the aim of offering novel perspectives for future anti-aging interventions aimed at enhancing healthy longevity.
Collapse
Affiliation(s)
- Tianlu Esther Fu
- Faculty of Science, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Ma Y, Chen M, Huang K, Chang W. The impact of cysteine on lifespan in three model organisms: A systematic review and meta-analysis. Aging Cell 2025; 24:e14392. [PMID: 39478327 PMCID: PMC11822635 DOI: 10.1111/acel.14392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 02/14/2025] Open
Abstract
Cysteine is an amino acid present in thiol proteins and often dictates their secondary structures. Although considered nonessential, cysteine may be essential for patients with certain metabolic diseases and can reduce the requirement for dietary methionine. Cysteine and some of its derivatives, such as N-acetylcysteine, are considered antioxidants and widely used in animal aging studies. To provide insights into the potential anti-aging effects of cysteine, we systematically reviewed and performed a meta-analysis to investigate the impact of cysteine supplementation on lifespan using three model organisms: mice, nematodes, and fruit flies. A total of 13 mouse studies, 13 C. elegans studies, and 5 Drosophila studies were included in the analysis. The findings revealed that cysteine supplementation significantly reduced the risk of mortality in mice and C. elegans. Subgroup analysis showed consistent results across different starting times and administration methods and revealed adverse effects of high doses on worms and a lack of effect in nondisease mouse models. Similar to mice, the effects of cysteine supplementation on Drosophila were not statistically significant, except in transgenic flies. The study identified certain limitations, including the quality of the included studies and the potential for publication bias. We also discussed uncertainties in the underlying molecular mechanisms and the clinical application of dietary cysteine.
Collapse
Affiliation(s)
- Yue Ma
- Faculty of Health SciencesUniversity of MacauTaipaMacauChina
- MOE Frontier Science Centre for Precision OncologyUniversity of MacauTaipaMacauChina
| | - Mengqi Chen
- Faculty of Health SciencesUniversity of MacauTaipaMacauChina
- MOE Frontier Science Centre for Precision OncologyUniversity of MacauTaipaMacauChina
| | - Kaiyao Huang
- Key Laboratory of Algal BiologyInstitute of Hydrobiology, Chinese Academy of SciencesWuhanHubeiChina
| | - Wakam Chang
- Faculty of Health SciencesUniversity of MacauTaipaMacauChina
- MOE Frontier Science Centre for Precision OncologyUniversity of MacauTaipaMacauChina
| |
Collapse
|
5
|
Zheng H, Zhong ZJ, Wang YC, Sun YB, Li FF. Downregulation of interleukin 11 regulates the transforming growth factor-β/ERK1/2 signaling pathway to inhibit articular capsule fibrosis and alleviate post-traumatic articular capsule contracture. J Shoulder Elbow Surg 2025; 34:584-594. [PMID: 39089417 DOI: 10.1016/j.jse.2024.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Post-traumatic capsular contracture is a common complication of joint injury and surgery. Post-traumatic capsular contracture is associated with fibrosis characterized by excessive differentiation and proliferation of myofibroblasts and abnormal secretion and accumulation of extracellular matrix. Previous studies have suggested that interleukin 11 (IL11) plays a role in myocardial fibrosis. We thus hypothesized that IL11 may play a fibrotic role during capsular contracture, in order to discover new targets for preventing joint capsule contracture. METHODS We constructed a post-traumatic contracture model by excessively extending the knee joint and fixing the joint in the flexion position, and a post-traumatic joint capsule contracture model was constructed in the wild-type, IL11-/-, IL11 R -/-, α-SMA-cre-IL11fl/fl, α-SMA-cre-IL11Rfl/fl mouse strain, with wild-type mice without any treatment of the knee joint as the control group. Fibrotic markers and the expression of IL11 and IL11 R in knee joint tissue were detected in each group of mice. The NIH3T3 cell line was used for in vitro analyses. The expression of fibrosis markers, IL11, transforming growth factor-β, and ERK1/2 were detected by western blot, enzyme-linked immunosorbent assay, and real time quantitative polymerase chain reaction. RESULTS Inhibition of IL11 inhibited ERK1/2 phosphorylation, reduced the secretion of collagen in the joint capsule, and inhibited the excessive differentiation and proliferation of myofibroblasts in the post-traumatic joint capsule contracture, thus alleviating the joint capsule contracture and obtaining better joint mobility. CONCLUSION Downregulation of IL11 in traumatic joint capsule contracture inhibits ERK1/2 phosphorylation, thus significantly relieving joint capsule contracture. Our findings indicate the transforming growth factor-β/IL11/ERK1/2 axis is an important pathway for the differentiation of fibroblasts into myofibroblasts. Anti-IL11 treatment is an effective means to prevent traumatic joint capsule contracture.
Collapse
Affiliation(s)
- Heng Zheng
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Zhen-Jia Zhong
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi-Chong Wang
- The 7th People's Hospital of Zhengzhou, Zhengzhou, China
| | - Yang-Bai Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng-Feng Li
- Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024; 25:1001-1023. [PMID: 38831121 PMCID: PMC11578798 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Zhao J, Chen A, Wang R, Qiu D, Chen H, Li J, Zhang J, Wang T, Wang Y, Lin Y, Zhou J, Du Y, Yuan H, Zhang Y, Miao D, Wang Y, Jin J. Bmi-1 Epigenetically Orchestrates Osteogenic and Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells to Delay Bone Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404518. [PMID: 39225325 PMCID: PMC11633582 DOI: 10.1002/advs.202404518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
With the increase in the aging population, senile osteoporosis (SOP) has become a major global public health concern. Here, it is found that Prx1 and Bmi-1 co-localized in trabecular bone, bone marrow cavity, endosteum, and periosteum. Prx1-driven Bmi-1 knockout in bone-marrow mesenchymal stem cells (BMSCs) reduced bone mass and increased bone marrow adiposity by inhibiting osteoblastic bone formation, promoting osteoclastic bone resorption, downregulating the proliferation and osteogenic differentiation of BMSCs, and upregulating the adipogenic differentiation of BMSCs. However, Prx1-driven Bmi-1 overexpression showed a contrasting phenotype to Prx1-driven Bmi-1 knockout in BMSCs. Regarding mechanism, Bmi-1-RING1B bound to DNMT3A and promoted its ubiquitination and inhibited DNA methylation of Runx2 at the region from 45047012 to 45047313 bp, thus promoting the osteogenic differentiation of BMSCs. Moreover, Bmi-1-EZH2 repressed the transcription of Cebpa by promoting H3K27 trimethylation at the promoter region -1605 to -1596 bp, thus inhibiting the adipogenic differentiation of BMSCs. It is also found that Prx1-driven Bmi-1 overexpression rescued the SOP induced by Prx1-driven Bmi-1 knockout in BMSCs. Thus, Bmi-1 functioned as a hub protein in the epigenetic regulation of BMSCs differentiation to delay bone aging. The Prx1-driven Bmi-1 overexpression in BMSCs can be used as an approach for the translational therapy of SOP.
Collapse
Affiliation(s)
- Jingyu Zhao
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Ao Chen
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Rong Wang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Dong Qiu
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Haiyun Chen
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Jiyu Li
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Jin'ge Zhang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Tianxiao Wang
- School of PharmacyNanjing Medical UniversityNanjingJiangsu211166China
| | - Yue Wang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Yujie Lin
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Jiawen Zhou
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Yifei Du
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Hua Yuan
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Yongjie Zhang
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Dengshun Miao
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| | - Yuli Wang
- Department of Oral and Maxillofacial SurgeryThe Affiliated Stomatological Hospital of Nanjing Medical UniversityState Key Laboratory Cultivation Base of ResearchPrevention and Treatment for Oral DiseasesJiangsu Province Engineering Research Centre of Stomatological Translational MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Jianliang Jin
- Department of Human AnatomyResearch Centre for Bone and Stem CellsSchool of Basic Medical SciencesKey Laboratory for Aging & DiseaseSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjingJiangsu211166China
| |
Collapse
|
8
|
Fu R, Zhou S, Liu C, Zhou J, Li Q. Administration of a combination of COX-2/TGF-β1 siRNAs induces hypertrophic scar fibroblast apoptosis through a TP53 mediated caspase pathway. Sci Rep 2024; 14:26427. [PMID: 39488600 PMCID: PMC11531465 DOI: 10.1038/s41598-024-77756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Hypertrophic scar (HTS) formation is a pathological fibrotic skin disease, with no satisfactory treatments available currently. Inducing apoptosis of HTS-derived fibroblasts (HSFs) are becoming promising approaches. In this research, we aim to improve the technology with co-delivery COX-2 and TGF-β1 siRNAs and further investigate the underlying mechanism. Firstly, the HSFs were transfected with 1 µg/ml COX-2 and/or TGF-β1 siRNAs, and proved that the apoptosis of HSFs was greater induced by COX-2/TGF-β1 siRNAs than either COX-2 or TGF-β1 siRNA alone by flow cytometry. To investigate the impact of co-silencing TGF-β1 and COX-2 mRNA expression in vivo, we established HTSs model in rat tails. Our results confirmed that co-silencing of TGF-β1 and COX-2 mRNA expression could significantly alleviate the HTS formation in vivo. Furthermore, we explored the potential molecular mechanism and revealed that the protein levels of TP53, Bcl-2 and Caspase-3 were downregulated while Bax and Cleaved Caspase-3 were upregulated in the COX-2/TGF-β1 siRNA groups compared with HKP group. Taken together, our results demonstrated that simultaneous silencing of COX-2 and TGF-β1 expression by siRNAs induced HSF apoptosis through a TP53 mediated caspase pathway. Therefore, COX-2/TGF-β1 siRNAs might serve as a novel and effective therapeutic alternative for HTSs treatments.
Collapse
Affiliation(s)
- Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Sizheng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chuanqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jia Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
9
|
Yan J, Chen S, Yi Z, Zhao R, Zhu J, Ding S, Wu J. The role of p21 in cellular senescence and aging-related diseases. Mol Cells 2024; 47:100113. [PMID: 39304134 PMCID: PMC11564947 DOI: 10.1016/j.mocell.2024.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
During the aging process or disease progression, normal cells and tissues in the body undergo various stresses, leading to cell damage and the need for repair, adaptation, apoptosis, or defense responses. Cellular senescence is a key player in this process, influencing the rate of aging and disease progression. It can be triggered by different stress factors, resulting in irreversible cell cycle arrest and functional decline. Senescent cells often show high expression of cell cycle factors such as p21 and p16, which are involved in cell cycle arrest. p16 has long been recognized as a significant marker of aging. Recent evidence suggests that p21high cells and p16high cells represent distinct cell populations in terms of cell type, tissue location, accumulation kinetics, and physiological functions. This article focuses on recent advancements in understanding p21-dependent cellular senescence. It starts by providing an overview of the role of p21 in 3 primary cellular senescence phenotypes where it plays a crucial role. It then delves into the pathogenesis of diseases closely linked to p21-dependent cellular senescence, particularly metabolic disorders and cardiovascular diseases. The article also discusses progress in p21-related animal models and outlines strategies for utilizing p21 to intervene in cellular senescence by delaying aging, eliminating senescent cells, and rejuvenating senescent cells. This review systematically examines the pathogenesis of p21-dependent cellular senescence, emphasizing its importance in studying aging heterogeneity and developing new senolytic therapies. It aims to stimulate future research on leveraging p21 to enhance the characteristics of senescent cells, allowing more precise methods for eliminating harmful senescent cells at the right time, thereby delaying aging and potentially achieving rejuvenation.
Collapse
Affiliation(s)
- Jiayu Yan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Siyi Chen
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Zimei Yi
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Ruowen Zhao
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Jiayu Zhu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Shuwen Ding
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Junhua Wu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Research Institute of Stomatology & Stomatological Hospital and Dental School, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Xie Y, Yang S, Xu Y, Gu P, Zhang Y, You X, Yin H, Shang B, Yao Y, Li W, Wang D, Zhou T, Song Y, Chen W, Ma J. Interleukin-11 drives fibroblast metabolic reprogramming in crystalline silica-induced lung fibrosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:174976. [PMID: 39047838 DOI: 10.1016/j.scitotenv.2024.174976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Environmental exposure to crystalline silica (CS) particles is common and occurs during natural, industrial, and agricultural activities. Prolonged inhalation of CS particles can cause silicosis, a serious and incurable pulmonary fibrosis disease. However, the underlying mechanisms remain veiled. Herein, we aim to elucidate the novel mechanisms of interleukin-11 (IL-11) driving fibroblast metabolic reprogramming during the development of silicosis. We observed that CS exposure induced lung fibrosis in mice and activated fibroblasts, accompanied by increased IL-11 expression and metabolic reprogramming switched from mitochondrial respiration to glycolysis. Besides, we innovatively uncovered that elevated IL-11 promoted the glycolysis process, thereby facilitating the fibroblast-myofibroblast transition (FMT). Mechanistically, CS-stimulated IL-11 activated the extracellular signal-regulated kinase (ERK) pathway and the latter increased the expression of hypoxia inducible factor-1α (HIF-1α) via promoting the translation and delaying the degradation of the protein. HIF-1α further facilitated glycolysis, driving the FMT process and ultimately the formation of silicosis. Moreover, either silence or neutralization of IL-11 inhibited glycolysis augmentation and attenuated CS-induced lung myofibroblast generation and fibrosis. Overall, our findings elucidate the role of IL-11 in promoting fibroblast metabolic reprogramming through the ERK-HIF-1α axis during CS-induced lung fibrosis, providing novel insights into the molecular mechanisms and potential therapeutic targets of silicosis.
Collapse
Affiliation(s)
- Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyu Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiju Xu
- Chongchuan Center for Disease Control and Prevention, Nantong 226000, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaojie You
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haoyu Yin
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bingxin Shang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuxin Yao
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Li
- Key Laboratory of Environment and Health, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuanchao Song
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei 230041, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
11
|
Ng B, Huang KY, Pua CJ, Viswanathan S, Lim WW, Kuthubudeen FF, Liu YN, Hii AA, George BL, Widjaja AA, Petretto E, Cook SA. Interleukin-11 causes alveolar type 2 cell dysfunction and prevents alveolar regeneration. Nat Commun 2024; 15:8530. [PMID: 39358385 PMCID: PMC11448503 DOI: 10.1038/s41467-024-52810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
In lung disease, persistence of KRT8-expressing aberrant basaloid cells in the alveolar epithelium is associated with impaired tissue regeneration and pathological tissue remodeling. We analyzed single cell RNA sequencing datasets of human interstitial lung disease and found the profibrotic Interleukin-11 (IL11) cytokine to be highly and specifically expressed in aberrant KRT8+ basaloid cells. IL11 is similarly expressed by KRT8+ alveolar epithelial cells lining fibrotic lesions in a mouse model of interstitial lung disease. Stimulation of alveolar epithelial cells with IL11 causes epithelial-to-mesenchymal transition and promotes a KRT8-high state, which stalls the beneficial differentiation of alveolar type 2 (AT2)-to-AT1 cells. Inhibition of IL11-signaling in AT2 cells in vivo prevents the accumulation of KRT8+ cells, enhances AT1 cell differentiation and blocks fibrogenesis, which is replicated by anti-IL11 therapy. These data show that IL11 inhibits reparative AT2-to-AT1 differentiation in the damaged lung to limit endogenous alveolar regeneration, resulting in fibrotic lung disease.
Collapse
Affiliation(s)
- Benjamin Ng
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore, Singapore.
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
| | - Kevin Y Huang
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Chee Jian Pua
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Wei-Wen Lim
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Fathima F Kuthubudeen
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Yu-Ning Liu
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - An An Hii
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore, Singapore
| | - Benjamin L George
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Enrico Petretto
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- Center for Computational Biology, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Stuart A Cook
- National Heart Research Institute Singapore, National Heart Center Singapore, Singapore, Singapore.
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, United Kingdom.
| |
Collapse
|
12
|
Zhang B, Wang E, Zhou S, Han R, Wu W, Sun G, Cao C, Wang R. RELA-mediated upregulation of LINC03047 promotes ferroptosis in silica-induced pulmonary fibrosis via SLC39A14. Free Radic Biol Med 2024; 223:250-262. [PMID: 39111583 DOI: 10.1016/j.freeradbiomed.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Long non-coding RNAs play a key role in silicosis, a fatal fibrotic lung disease, and there is an urgent need to develop new treatment targets. Long intergenic non-protein-coding RNA 3047 (LINC03047) is associated with cancer, but its role and mechanism in the progression of silicosis require further elucidation. This study investigated the function of LINC03047 in the epithelial-mesenchymal transition (EMT) during silicosis progression. LINC03047 expression was upregulated in SiO2-treated BEAS-2B and A549 cells, promoting SiO2-induced ferroptosis and subsequent EMT. Moreover, knockdown of LINC03047 significantly decreased the expression of solute carrier family 39 member 14 (SLC39A14), a ferrous iron transporter, and inhibition of SLC39A14 alleviated the ferroptosis and EMT caused by LINC03047 overexpression. We further investigated that NF-κB p65 (RELA) was critical for LINC03047 transcription in SiO2-treated BEAS-2B and A549 cells. In vivo experiments showed that SLC39A14 deficiency improved SiO2-induced lipid peroxidation and EMT. Collectively, our study reveals the function of the RELA/LINC03047/SLC39A14 axis in SiO2-induced ferroptosis and EMT, thereby contributing to the identification of novel drug targets for silicosis therapy.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Enze Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wenlong Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
13
|
Jankowski K, Lemay SE, Lozano-Ojalvo D, Perez Rodriguez L, Sauvaget M, Breuils-Bonnet S, Formoso K, Jagana V, Zhang S, Milara J, Cortijo J, Turnbull IC, Provencher S, Bonnet S, Orchando J, Lezoualc'h F, Bisserier M, Hadri L. Pharmacological Inhibition of Epac1 Protects against Pulmonary Fibrosis by Blocking FoxO3a Neddylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612935. [PMID: 39345579 PMCID: PMC11429716 DOI: 10.1101/2024.09.13.612935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Background Idiopathic Pulmonary fibrosis (IPF) is characterized by progressive scarring and fibrosis within the lungs. There is currently no cure for IPF; therefore, there is an urgent need to identify novel therapeutic targets that can prevent the progression of IPF. Compelling evidence indicates that the second messenger, cyclic adenosine monophosphate (cAMP), inhibits lung fibroblast proliferation and differentiation through the classical PKA pathway. However, the contribution of the e xchange p rotein directly a ctivated by c AMP 1 (Epac1) to IPF pathophysiological processes is yet to be investigated. Objective To determine the role of the cAMP-binding protein Epac1 in the progression of IPF. Methods We used lung samples from IPF patients or healthy controls, mouse lung samples, or lung fibroblast isolated from a preclinical mouse model of PF induced by bleomycin intratracheal injection. The effect of bleomycin (BLM) treatment was determined in Epac1 knock-out mice or wild-type littermates. Epac1 expression was modulated in vitro by using lentiviral vectors or adenoviruses. The therapeutic potential of the Epac1-selective pharmacological inhibitor, AM-001, was tested in vivo and in vitro, using a bleomycin mouse model of PF and an ex vivo precision-cut lung slices (PCLs) model of human lung fibrosis. Results Epac1 expression was increased in the lung tissue of IPF patients, in IPF-diseased fibroblasts and in BLM-challenged mice. Furthermore, Epac1 genetic or pharmacological inhibition with AM-001 decreased normal and IPF fibroblast proliferation and the expression of profibrotic markers, αSMA, TGF-β/SMAD2/3, and interleukin-6 (IL-6)/STAT3 signaling pathways. Consistently, blocking Epac1 protected against BLM-induced lung injury and fibrosis, suggesting a therapeutic effect of Epac1 inhibition on PF pathogenesis and progression. Global gene expression profiling revealed a decrease in the key components of the profibrotic gene signature and neddylation pathway in Epac1-deficient lung fibroblasts and IPF human-derived PLCs. Mechanistically, the protective effect of Epac1 inhibition against PF development involves the inhibition of FoxO3a neddylation and its subsequent degradation by NEDD8, and in part, by limiting the proliferative capacity of lung-infiltrating monocytes. Conclusions We demonstrated that Epac1 is an important regulator of the pathological state of fibroblasts in PF and that small molecules targeting Epac1 can serve as novel therapeutic drugs against PF.
Collapse
|
14
|
Zhu W, Tan C, Zhang J. Aging of alveolar type 2 cells induced by Lonp1 deficiency exacerbates pulmonary fibrosis. BIOMOLECULES & BIOMEDICINE 2024; 24:1258-1272. [PMID: 38625722 PMCID: PMC11378998 DOI: 10.17305/bb.2024.10429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and chronic disease that significantly impacts patient quality of life, and its incidence is on the rise. The pathogenesis of IPF remains poorly understood. Alveolar type 2 (AT2) cells are crucial in the onset and progression of IPF, yet the specific mechanisms involved are not well defined. Lon protease 1 (LONP1), known for its critical roles in various diseases, has an unclear function in IPF. Our research investigated the impact of Lonp1 gene deletion on AT2 cell functionality and its subsequent effect on IPF development. We generated a bleomycin-induced pulmonary fibrosis mouse model with a targeted Lonp1 knockout in AT2 cells and assessed the consequences on AT2 cell function and fibrosis progression. Additionally, we constructed the MLE12 cells with stable Lonp1 knockdown and utilized transcriptome sequencing to identify pathways altered by the Lonp1 knockdown. Our results indicated that mice with AT2 cell-specific Lonp1 knockout exhibited more severe fibrosis compared to controls. These mice exhibited a reduction in AT2 and AT1 cell populations, along with an increase in p53- and p21-positive AT2 cells. Lonp1 knockdown in MLE12 cells led to the upregulation of aging-associated pathways, with fibroblast growth factor 2 (Fgf2) gene emerging as a central gene interconnecting these pathways. Therefore, loss of Lonp1 appears to promote AT2 cell aging and exacerbate bleomycin-induced pulmonary fibrosis. Fgf2 emerges as a pivotal downstream gene associated with cellular senescence. This study uncovers the role of the Lonp1 gene in pulmonary fibrosis, presenting a novel target for investigating the pathological mechanisms and potential therapeutic approaches for IPF.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunting Tan
- Department of Pulmonary and Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jie Zhang
- Department of Pulmonary and Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Widjaja AA, Lim WW, Viswanathan S, Chothani S, Corden B, Dasan CM, Goh JWT, Lim R, Singh BK, Tan J, Pua CJ, Lim SY, Adami E, Schafer S, George BL, Sweeney M, Xie C, Tripathi M, Sims NA, Hübner N, Petretto E, Withers DJ, Ho L, Gil J, Carling D, Cook SA. Inhibition of IL-11 signalling extends mammalian healthspan and lifespan. Nature 2024; 632:157-165. [PMID: 39020175 PMCID: PMC11291288 DOI: 10.1038/s41586-024-07701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
For healthspan and lifespan, ERK, AMPK and mTORC1 represent critical pathways and inflammation is a centrally important hallmark1-7. Here we examined whether IL-11, a pro-inflammatory cytokine of the IL-6 family, has a negative effect on age-associated disease and lifespan. As mice age, IL-11 is upregulated across cell types and tissues to regulate an ERK-AMPK-mTORC1 axis to modulate cellular, tissue- and organismal-level ageing pathologies. Deletion of Il11 or Il11ra1 protects against metabolic decline, multi-morbidity and frailty in old age. Administration of anti-IL-11 to 75-week-old mice for 25 weeks improves metabolism and muscle function, and reduces ageing biomarkers and frailty across sexes. In lifespan studies, genetic deletion of Il11 extended the lives of mice of both sexes, by 24.9% on average. Treatment with anti-IL-11 from 75 weeks of age until death extends the median lifespan of male mice by 22.5% and of female mice by 25%. Together, these results demonstrate a role for the pro-inflammatory factor IL-11 in mammalian healthspan and lifespan. We suggest that anti-IL-11 therapy, which is currently in early-stage clinical trials for fibrotic lung disease, may provide a translational opportunity to determine the effects of IL-11 inhibition on ageing pathologies in older people.
Collapse
Affiliation(s)
- Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
| | - Wei-Wen Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sonia Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Ben Corden
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Cibi Mary Dasan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Joyce Wei Ting Goh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Radiance Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Brijesh K Singh
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jessie Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Chee Jian Pua
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Sze Yun Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sebastian Schafer
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Benjamin L George
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | | | - Chen Xie
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Natalie A Sims
- Bone Biology and Disease Unit, St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medicine, St Vincent's Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Norbert Hübner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin, Berlin, Germany
| | - Enrico Petretto
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University, Nanjing, China
| | - Dominic J Withers
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Lena Ho
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jesus Gil
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - David Carling
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Stuart A Cook
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
- MRC Laboratory of Medical Sciences, London, UK.
| |
Collapse
|
16
|
Gu Y, Qiu Y, Li Y, Wen W. Research progress on the regulatory mechanism of cell senescence in arsenic toxicity: a systematic review. Toxicol Res (Camb) 2024; 13:tfae136. [PMID: 39184219 PMCID: PMC11339171 DOI: 10.1093/toxres/tfae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/12/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
As an element with metalloid properties, arsenic is pervasively present in the environment and is recognized as a potent carcinogen. Consequently, the issue of human arsenic exposure has become a significant concern within the global public health sector. Numerous studies have indicated that arsenic induces cellular senescence through various mechanisms, including triggering epigenetic alterations, inducing the senescence-associated secretory phenotype (SASP), promoting telomere shortening, and causing mitochondrial dysfunction. This article collates and summarizes the latest research advancements on the involvement of cellular senescence in arsenic toxicity and explores the mechanisms of arsenic-induced toxicity. This study aims to provide new perspectives and directions for future research on arsenic toxicity and the development of prevention and treatment strategies.
Collapse
Affiliation(s)
- Yun Gu
- The School of Public Health, Dali University, Dali, China
| | - Ying Qiu
- The Second People’s Hospital of Yunnan Province, Kunming, China
- Kunming Medical University, Kunming, China
| | - Yujian Li
- The Second People’s Hospital of Yunnan Province, Kunming, China
- Kunming Medical University, Kunming, China
| | - Weihua Wen
- Yunnan Center for Disease Control and Prevention, Kunming, China
| |
Collapse
|
17
|
Hu Y, Huang Y, Zong L, Lin J, Liu X, Ning S. Emerging roles of ferroptosis in pulmonary fibrosis: current perspectives, opportunities and challenges. Cell Death Discov 2024; 10:301. [PMID: 38914560 PMCID: PMC11196712 DOI: 10.1038/s41420-024-02078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disorder characterized by abnormal myofibroblast activation, accumulation of extracellular matrix (ECM), and thickening of fibrotic alveolar walls, resulting in deteriorated lung function. PF is initiated by dysregulated wound healing processes triggered by factors such as excessive inflammation, oxidative stress, and coronavirus disease (COVID-19). Despite advancements in understanding the disease's pathogenesis, effective preventive and therapeutic interventions are currently lacking. Ferroptosis, an iron-dependent regulated cell death (RCD) mechanism involving lipid peroxidation and glutathione (GSH) depletion, exhibits unique features distinct from other RCD forms (e.g., apoptosis, necrosis, and pyroptosis). Imbalance between reactive oxygen species (ROS) production and detoxification leads to ferroptosis, causing cellular dysfunction through lipid peroxidation, protein modifications, and DNA damage. Emerging evidence points to the crucial role of ferroptosis in PF progression, driving macrophage polarization, fibroblast proliferation, and ECM deposition, ultimately contributing to alveolar cell death and lung tissue scarring. This review provides a comprehensive overview of the latest findings on the involvement and signaling mechanisms of ferroptosis in PF pathogenesis, emphasizing potential novel anti-fibrotic therapeutic approaches targeting ferroptosis for PF management.
Collapse
Affiliation(s)
- Yixiang Hu
- Department of Clinical Pharmacy, The Affiliated Xiangtan Center Hospital of Hunan University, Xiangtan, 411100, China
| | - Ying Huang
- Zhongshan Hospital of Traditional Chinese Medicine Afflilated to Guangzhou University of Chinese Medicine, Zhongshan, 528400, China
| | - Lijuan Zong
- Department of Rehabilitation Medicine, Zhongda Hospital of Southeast University, Nanjing, 210096, China
| | - Jiaxin Lin
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China
| | - Xiang Liu
- Department of Clinical Pharmacy, The Affiliated Xiangtan Center Hospital of Hunan University, Xiangtan, 411100, China.
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, China.
| |
Collapse
|
18
|
Zhou Y, Ling T, Shi W. Current state of signaling pathways associated with the pathogenesis of idiopathic pulmonary fibrosis. Respir Res 2024; 25:245. [PMID: 38886743 PMCID: PMC11184855 DOI: 10.1186/s12931-024-02878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) represents a chronic and progressive pulmonary disorder distinguished by a notable mortality rate. Despite the elusive nature of the pathogenic mechanisms, several signaling pathways have been elucidated for their pivotal roles in the progression of this ailment. This manuscript aims to comprehensively review the existing literature on the signaling pathways linked to the pathogenesis of IPF, both within national and international contexts. The objective is to enhance the comprehension of the pathogenic mechanisms underlying IPF and offer a scholarly foundation for the advancement of more efficacious therapeutic strategies, thereby fostering research and clinical practices within this domain.
Collapse
Affiliation(s)
- Yang Zhou
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Tingting Ling
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Weihong Shi
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China.
| |
Collapse
|
19
|
Somanader DVN, Zhao P, Widdop RE, Samuel CS. The involvement of the Wnt/β-catenin signaling cascade in fibrosis progression and its therapeutic targeting by relaxin. Biochem Pharmacol 2024; 223:116130. [PMID: 38490518 DOI: 10.1016/j.bcp.2024.116130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Organ scarring, referred to as fibrosis, results from a failed wound-healing response to chronic tissue injury and is characterised by the aberrant accumulation of various extracellular matrix (ECM) components. Once established, fibrosis is recognised as a hallmark of stiffened and dysfunctional tissues, hence, various fibrosis-related diseases collectively contribute to high morbidity and mortality in developed countries. Despite this, these diseases are ineffectively treated by currently-available medications. The pro-fibrotic cytokine, transforming growth factor (TGF)-β1, has emerged as the master regulator of fibrosis progression, owing to its ability to promote various factors and processes that facilitate rapid ECM synthesis and deposition, whilst negating ECM degradation. TGF-β1 signal transduction is tightly controlled by canonical (Smad-dependent) and non-canonical (MAP kinase- and Rho-associated protein kinase-dependent) intracellular protein activity, whereas its pro-fibrotic actions can also be facilitated by the Wnt/β-catenin pathway. This review outlines the pathological sequence of events and contributing roles of TGF-β1 in the progression of fibrosis, and how the Wnt/β-catenin pathway contributes to tissue repair in acute disease settings, but to fibrosis and related tissue dysfunction in synergy with TGF-β1 in chronic diseases. It also outlines the anti-fibrotic and related signal transduction mechanisms of the hormone, relaxin, that are mediated via its negative modulation of TGF-β1 and Wnt/β-catenin signaling, but through the promotion of Wnt/β-catenin activity in acute disease settings. Collectively, this highlights that the crosstalk between TGF-β1 signal transduction and the Wnt/β-catenin cascade may provide a therapeutic target that can be exploited to broadly treat and reverse established fibrosis.
Collapse
Affiliation(s)
- Deidree V N Somanader
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Peishen Zhao
- Drug Discovery Biology Program, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
20
|
Elshoff D, Mehta P, Ziouzenkova O. Chronic Kidney Disease Diets for Kidney Failure Prevention: Insights from the IL-11 Paradigm. Nutrients 2024; 16:1342. [PMID: 38732588 PMCID: PMC11085624 DOI: 10.3390/nu16091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Nearly every fifth adult in the United States and many older adults worldwide are affected by chronic kidney disease (CKD), which can progress to kidney failure requiring invasive kidney replacement therapy. In this review, we briefly examine the pathophysiology of CKD and discuss emerging mechanisms involving the physiological resolution of kidney injury by transforming growth factor beta 1 (TGFβ1) and interleukin-11 (IL-11), as well as the pathological consequences of IL-11 overproduction, which misguides repair processes, ultimately culminating in CKD. Taking these mechanisms into account, we offer an overview of the efficacy of plant-dominant dietary patterns in preventing and managing CKD, while also addressing their limitations in terms of restoring kidney function or preventing kidney failure. In conclusion, this paper outlines novel regeneration strategies aimed at developing a reno-regenerative diet to inhibit IL-11 and promote repair mechanisms in kidneys affected by CKD.
Collapse
Affiliation(s)
- Denise Elshoff
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA;
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Priyanka Mehta
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
21
|
Xiang P, Jiang M, Chen X, Chen L, Cheng Y, Luo X, Zhou H, Zheng Y. Targeting Grancalcin Accelerates Wound Healing by Improving Angiogenesis in Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305856. [PMID: 38308197 PMCID: PMC11005700 DOI: 10.1002/advs.202305856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Indexed: 02/04/2024]
Abstract
Chronic diabetic wounds are a serious complication of diabetes and often result in limb amputations and confer high mortality rates. The proinflammatory secretome in the wound perpetuates defective neovascularization and contributes to dysregulated tissue repair. This study aims to design a gelatin methacrylamide (GelMA) hydrogel to sustained the release of grancalcin-neutralizing antibody (GCA-NAb) and evaluate it as a potential scaffold to promote diabetic wound healing. Results show that the expression of grancalcin(GCA), a protein secreted by bone marrow-derived immune cells, is elevated in the wound sites of individuals and animals with diabetic ulcers. Genetic inhibition of grancalcin expression accelerates vascularization and healing in an animal model. Mechanistic studies show that grancalcin binds to transient receptor potential melastatin 8(TRPM8) and partially inactivates its downstream signaling pathways, thereby impairing angiogenesis in vitro and ex vivo. Systemic or topical administration of a GCA-NAb accelerate wound repair in mice with diabetes. The data suggest that GCA is a potential therapeutic target for the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Peng Xiang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Meng Jiang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Xin Chen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Linyun Chen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Yalun Cheng
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Xianghang Luo
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Haiyan Zhou
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Yongjun Zheng
- Department of Burn Surgerythe First Affiliated Hospital of Naval Medical UniversityShanghai200433China
| |
Collapse
|
22
|
Sato S, Ogawa Y, Shimizu E, Asai K, Okazaki T, Rusch R, Hirayama M, Shimmura S, Negishi K, Tsubota K. Cellular senescence promotes meibomian gland dysfunction in a chronic graft-versus-host disease mouse model. Ocul Surf 2024; 32:198-210. [PMID: 38499288 DOI: 10.1016/j.jtos.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/27/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE Aging is a well-established risk factor for meibomian gland dysfunction (MGD). We previously reported an accelerated cellular senescence phenomenon in the lacrimal glands of a murine model of chronic graft-versus-host disease (cGVHD). Herein, we aimed to elucidate the relationship between cellular senescence and MGD in cGVHD mice, utilizing the senolytic agent ABT-263. METHODS A cGVHD mouse model was established through allogeneic bone marrow transplantation (BMT) from B10.D2 to BALB/c mice. Subsequently, cGVHD mice were treated with either ABT-263 or vehicle. The eyelids of recipients were analyzed at 4-week intervals post-BMT in both groups. RESULTS Meibomian gland (MG) area was significantly smaller in cGVHD mice than in syngeneic control mice. ABT-263-treated mice retained a significantly larger MG area than their vehicle-treated counterparts. Pathological and immunohistochemical examinations revealed significant reductions in eyelid tissue inflammation and pathological fibrosis in the ABT-263 group compared to that in the vehicle-treated group. Additionally, expression of DNA damage markers, senescent cell markers, and senescence-associated secretory phenotype (SASP) factors was elevated in the eyelids of cGVHD mice compared with that in syngeneic mice. The expression of these cellular senescence-associated molecules was considerably suppressed in ABT-263-treated eyelids compared to that in vehicle-treated ones. CONCLUSIONS Cellular senescence, along with expression of SASP factors, exhibited increased activity in the eyelids, particularly in the MGs of cGVHD mice. ABT-263 mitigated the severity of MGD. These findings highlight the potential of targeting cellular senescence as an effective approach for MGD treatment in cGVHD.
Collapse
Affiliation(s)
- Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Asai
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Takahiro Okazaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Robert Rusch
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan; Fujita Medical Innovation Center Tokyo, Fujita Health University, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
23
|
Lu J, Sun W, Liu B, Zhang J, Wang R, Goltzman D, Miao D. Chk2 Modulates Bmi1-Deficiency-Induced Renal Aging and Fibrosis via Oxidative Stress, DNA Damage, and p53/TGFβ1-Induced Epithelial-Mesenchymal Transition. Int J Biol Sci 2024; 20:2008-2026. [PMID: 38617548 PMCID: PMC11008269 DOI: 10.7150/ijbs.93598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/03/2024] [Indexed: 04/16/2024] Open
Abstract
Renal aging may lead to fibrosis and dysfunction, yet underlying mechanisms remain unclear. We explored whether deficiency of the Polycomb protein Bmi1 causes renal aging via DNA damage response (DDR) activation, inducing renal tubular epithelial cell (RTEC) senescence and epithelial-mesenchymal transition (EMT). Bmi1 knockout mice exhibited oxidative stress, DDR activation, RTEC senescence, senescence-associated secretory phenotype (SASP), and age-related fibrosis in kidneys. Bmi1 deficiency impaired renal structure and function, increasing serum creatinine/urea, reducing creatinine clearance, and decreasing cortical thickness and glomerular number. However, knockout of the serine-threonine kinase Chk2 alleviated these aging phenotypes. Transcriptomics identified transforming growth factor beta 1 (TGFβ1) upregulation in Bmi1-deficient RTECs, but TGFβ1 was downregulated upon Chk2 knockout. The tumor suppressor protein p53 transcriptionally activated TGFβ1, promoting EMT in RTECs. Bmi1 knockout or oxidative stress (induced with H2O2) increased TGFβ1 expression, and EMT in RTECs and was partly reversed by p53 inhibition. Together, Bmi1 deficiency causes oxidative stress and DDR-mediated RTEC senescence/SASP, thus activating p53 and TGFβ1 to induce EMT and age-related fibrosis. However, blocking DDR (via Chk2 knockout) or p53 ameliorates these changes. Our study reveals mechanisms whereby Bmi1 preserves renal structure and function during aging by suppressing DDR and p53/TGFβ1-mediated EMT. These pathways represent potential targets for detecting and attenuating age-related renal decline.
Collapse
Affiliation(s)
- Jinhong Lu
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Weiwei Sun
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Boyang Liu
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jinge Zhang
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Wang F, Gu X, Lin S, Wu Q, Sun Y, Zhang Q, Luo A, Feng X, Wang L, Xu L, Sun W, Tan W. Peptidase inhibitor 16 promotes inflammatory arthritis by suppressing Foxp3 expression via regulating K48-linked ubiquitin degradation Bmi-1 in regulatory T cells. Clin Immunol 2024; 259:109883. [PMID: 38147957 DOI: 10.1016/j.clim.2023.109883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Abnormalities of regulatory T cells (Tregs) has been suggested in rheumatoid arthritis (RA), and Forkhead box P3 (Foxp3) is the key transcriptional factor of Tregs expression. However, the underlying molecular mechanism remains unclear. Here, we demonstrated peptidase inhibitor 16 (PI16) was significantly increased in the peripheral blood, synovial fluid, and synovial tissue from RA patients. PI16 transgenic mice (PI16Tg) aggravated arthritis severity partly through suppressing Foxp3 expression. Mechanistically, PI16 could interact with and stabilize Bmi-1 in Tregs via inhibiting K48-linked polyubiquitin of Bmi-1, which promotes the enrichment of repressive histone mark in Foxp3 promoter. Furthermore, Bmi-1 specific inhibitor PTC209 could restore Foxp3 expression and alleviate arthritis progression in PI16Tg mice, accompanied by increased recruitment of active histone mark in the promoter of Tregs. Our results suggest that PI16-Bmi-1 axis plays an important role in RA and other autoimmune diseases by suppressing Foxp3 expression in Tregs via Bmi-1-mediated histone modification.
Collapse
Affiliation(s)
- Fang Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin Gu
- Department of Cardiology, the Affiliated Hospital of Jiangnan University, Wuxi 214125, China
| | - Shiyu Lin
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qin Wu
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuankai Sun
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qian Zhang
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Aishu Luo
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Integrated Traditional Chinese and Western Medicine Institute of Nanjing Medical University, Nanjing 210029, China
| | - Lei Wang
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingxiao Xu
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Wenfeng Tan
- Department of Rheumatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
25
|
Wei F, Yin Y, Li J, Chang Y, Zhang S, Zhao W, Ma X. Essential oil from Inula japonica Thunb. And its phenolic constituents ameliorate pulmonary injury and fibrosis in bleomycin-treated mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117169. [PMID: 37704119 DOI: 10.1016/j.jep.2023.117169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary injury and fibrosis can be caused by various factors because of their inflammatory nature, both can lead to serious clinical consequences. Inula japonica Thunb. is used in traditional Chinese medicine for the treatment of lung diseases. However, the effect and mechanism of action of the essential oil of I. japonica (EOI) on pulmonary injury and fibrosis are not well understood. AIM OF THE STUDY To investigate the therapeutic effects of EOI on mice with bleomycin (BLM)-induced acute pulmonary injury and chronic fibrosis formation, as well as its potential mechanism. MATERIALS AND METHODS A short-term mouse model of pulmonary injury was established by intratracheal injection of BLM to investigate the anti-inflammatory effect of EOI, and a long-term model of pulmonary fibrosis was used to explore the anti-fibrosis effect of EOI. High-dose EOI (200 mg/kg) was administered intragastrically, and low-dose (50 mg/kg) was administered by intratracheal injection. Gas chromatography-mass spectrometry (GC-MS) was used to identify the ingredients in EOI, and high-performance liquid chromatography (HPLC) was performed for the preparation of EOI compounds. Western blot and real-time qPCR were used to verify the effects of EOI and its active composition on inflammation, oxidative stress and fibrosis signaling pathway. RESULTS Treatment with EOI significantly reduced the inflammation and oxidative stress by reducing the levels of inflammatory and oxidative cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and malondialdehyde in BLM-treated mice with acute pulmonary injury. EOI treatment could also suppress the formation of fibrous tissue in mice with BLM-induced pulmonary fibrosis through inhibiting TGF-β/Smad and PI3K/Akt pathways. Chromatographic analysis and preparation suggested that fatty acid and phenol derivatives are present in EOI. Based on cellular inflammation and fibrosis models, the phenolic compounds in EOI can represent the anti-inflammatory and anti-fibrotic effects of EOI by regulating pro-inflammatory and pro-fibrotic cytokines such as NO, TNF-α, IL-6, TGF-β1, and α-SMA. CONCLUSION EOI ameliorated BLM-induced pulmonary injury and fibrosis in mice by inhibiting the inflammatory response and regulating the redox equilibrium, as well as by mediating TGFβ/Smad and PI3K/Akt, which suggested that EOI has potential to treat pulmonary diseases.
Collapse
Affiliation(s)
- Fan Wei
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuzhen Yin
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China; Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Li
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yibo Chang
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China; Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shuyuan Zhang
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Wenyu Zhao
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, China.
| | - Xiaochi Ma
- Pharmaceutical Research Center, Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| |
Collapse
|
26
|
Han Y, Gao H, Gan X, Liu J, Bao C, He C. Roles of IL-11 in the regulation of bone metabolism. Front Endocrinol (Lausanne) 2024; 14:1290130. [PMID: 38352248 PMCID: PMC10862480 DOI: 10.3389/fendo.2023.1290130] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024] Open
Abstract
Bone metabolism is the basis for maintaining the normal physiological state of bone, and imbalance of bone metabolism can lead to a series of metabolic bone diseases. As a member of the IL-6 family, IL-11 acts primarily through the classical signaling pathway IL-11/Receptors, IL-11 (IL-11R)/Glycoprotein 130 (gp130). The regulatory role of IL-11 in bone metabolism has been found earlier, but mainly focuses on the effects on osteogenesis and osteoclasis. In recent years, more studies have focused on IL-11's roles and related mechanisms in different bone metabolism activities. IL-11 regulates osteoblasts, osteoclasts, BM stromal cells, adipose tissue-derived mesenchymal stem cells, and chondrocytes. It's involved in bone homeostasis, including osteogenesis, osteolysis, bone marrow (BM) hematopoiesis, BM adipogenesis, and bone metastasis. This review exams IL-11's role in pathology and bone tissue, the cytokines and pathways that regulate IL-11 expression, and the feedback regulations of these pathways.
Collapse
Affiliation(s)
| | | | - Xinling Gan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Wang XL, Xu YT, Zhang SL, Zhu XY, Zhang HX, Liu YJ. Hydrogen sulfide inhibits alveolar type II cell senescence and limits pulmonary fibrosis via promoting MDM2-mediated p53 degradation. Acta Physiol (Oxf) 2024; 240:e14059. [PMID: 37987182 DOI: 10.1111/apha.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
AIM Senescence of alveolar type II (AT2) cells is an important driver of pulmonary fibrosis. This study aimed to investigate whether and how dysregulation of hydrogen sulfide (H2 S) production affected AT2 cell senescence, and then explored the effect of H2 S on the communication between AT2 and fibroblasts. METHODS ICR mice were intratracheally administered with bleomycin (3 mg/kg). Sodium hydrosulfide (NaHS, 28 μmol/kg/d) was intraperitoneally injected for 2 weeks. The H2 S-generating enzyme cystathionine-β-synthase (CBS) knockout heterozygous (CBS+/- ) mice were used as a low H2 S production model. RESULTS Analysis of microarray datasets revealed downregulation of H2 S-generating enzymes in lung tissues of patients with pulmonary fibrosis. Decreased H2 S production was correlated with higher levels of cell senescence markers p53 and p21 in bleomycin-induced lung fibrosis. CBS+/- mice exhibited increased levels of p53 and p21. The numbers of AT2 cells positive for p53 and p21 were increased in CBS+/- mice as compared to control mice. H2 S donor NaHS attenuated bleomycin-induced AT2 cell senescence both in vivo and in vitro. H2 S donor suppressed bleomycin-induced senescence-associated secretory phenotype (SASP) of AT2 cells via inhibiting p53/p21 pathway, consequently suppressing proliferation and myofibroblast transdifferentiation of fibroblasts. Mechanically, H2 S suppressed p53 expression by enhancing the mouse double-minute 2 homologue (MDM2)-mediated ubiquitination and degradation of p53. CONCLUSION H2 S inactivated p53-p21 pathway, consequently suppressing AT2 cell senescence as well as cell communication between senescent AT2 cells and fibroblasts. Aberrant H2 S synthesis may contribute to the development of pulmonary fibrosis through promoting the activation loop involving senescent AT2 cells and activated fibroblasts.
Collapse
Affiliation(s)
- Xiu-Li Wang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Second Hospital of Lanzhou University, Lanzhou, Gansu Province, China
| | - Yi-Tong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Shu-Li Zhang
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Hong-Xia Zhang
- Department of Geriatrics, Kongjiang Hospital, Shanghai, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
28
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
29
|
O’Reilly S. Interleukin-11 and its eminent role in tissue fibrosis: a possible therapeutic target. Clin Exp Immunol 2023; 214:154-161. [PMID: 37724596 PMCID: PMC10714194 DOI: 10.1093/cei/uxad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
Interleukin-11 is a cytokine from the IL-6 family of cytokines that includes IL-6 and oncostatin-M. Initially described for its role in platelet generation, it is now appreciated that this cytokine has multiple functions. Recently it has been found that IL-11 is critical in fibrosis in multiple different organ systems and systemically as in the autoimmune disease systemic sclerosis. Animal models of fibrosis have determined that animals with IL-11 receptor deletions have retarded fibrosis and that in wild-type animals IL-11 is found at the organ of fibrosis. Recent evidence suggests that IL-11 may be a master regulator of fibrosis regardless of end target organ. With the development of neutralizing antibodies targeting the cytokine in pre-clinical models this could be a possible therapeutic, in a disease in which no specific therapies exist. This review appraises the evidence of the role of IL-11 in tissue fibrosis, its signalling properties, and therapeutic targeting. The review ends with an appraisal of indications for which IL-11 modulation is targeted.
Collapse
|
30
|
Chen H, Wang Q, Li J, Li Y, Chen A, Zhou J, Zhao J, Mao Z, Zhou Z, Zhang J, Wang Y, Wang R, Li Q, Zhang Y, Jiang R, Miao D, Jin J. IFNγ Transcribed by IRF1 in CD4+ Effector Memory T Cells Promotes Senescence-Associated Pulmonary Fibrosis. Aging Dis 2023; 14:2215-2237. [PMID: 37199578 PMCID: PMC10676796 DOI: 10.14336/ad.2023.0320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/20/2023] [Indexed: 05/19/2023] Open
Abstract
Physiologically aged lungs are prone to senescence-associated pulmonary diseases (SAPD). This study aimed to determine the mechanism and subtype of aged T cells affecting alveolar type II epithelial (AT2) cells, which promote the pathogenesis of senescence-associated pulmonary fibrosis (SAPF). Cell proportions, the relationship between SAPD and T cells, and the aging- and senescence-associated secretory phenotype (SASP) of T cells between young and aged mice were analyzed using lung single-cell transcriptomics. SAPD was monitored by markers of AT2 cells and found to be induced by T cells. Furthermore, IFNγ signaling pathways were activated and cell senescence, SASP, and T cell activation were shown in aged lungs. Physiological aging led to pulmonary dysfunction and TGF-β1/IL-11/MEK/ERK (TIME) signaling-mediated SAPF, which was induced by senescence and SASP of aged T cells. Especially, IFNγ was produced by the accumulated CD4+ effector memory T (TEM) cells in the aged lung. This study also found that physiological aging increased pulmonary CD4+ TEM cells, IFNγ was produced mainly by CD4+ TEM cells, and pulmonary cells had increased responsiveness to IFNγ signaling. Specific regulon activity was increased in T cell subclusters. IFNγ transcriptionally regulated by IRF1 in CD4+ TEM cells promoted the epithelial-to-mesenchymal transition by activating TIME signaling and cell senescence of AT2 cells with aging. Accumulated IRF1+CD4+ TEM produced IFNγ in lung with aging and anti-IRF1 primary antibody treatment inhibited the expression of IFNγ. Aging might drive T cell differentiation toward helper T cells with developmental trajectories and enhance cell interactions of pulmonary T cells with other surrounding cells. Thus, IFNγ transcribed by IRF1 in CD4+ effector memory T cells promotes SAPF. IFNγ produced by CD4+ TEM cells in physiologically aged lungs could be a therapeutic target for preventing SAPF.
Collapse
Affiliation(s)
- Haiyun Chen
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
- Key Laboratory for Aging & Disease;
- Nanjing Medical University, Nanjing, Jiangsu, China. Medical School of Nanjing University, Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China. Department of Orthopaedics, Xuzhou Central Hospital
| | - Qiuyi Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Jie Li
- The State Key Laboratory of Reproductive Medicine
| | - Yuan Li
- The Xuzhou Clinical School of Xuzhou Medical University
| | - Ao Chen
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Jiawen Zhou
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Jingyu Zhao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Zhiyuan Mao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Zihao Zhou
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Jin’ge Zhang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Yue Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Rong Wang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | - Qing Li
- The Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, China. The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, China. Department of cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China. Department of Science and Technology, Jiangsu Jiankang Vocational College, Nanjing, China.
| | - Yongjie Zhang
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| | | | - Dengshun Miao
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
- Nanjing Medical University, Nanjing, Jiangsu, China. Medical School of Nanjing University, Jiangsu Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, China. Department of Orthopaedics, Xuzhou Central Hospital
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells
| |
Collapse
|
31
|
Giriyappagoudar M, Vastrad B, Horakeri R, Vastrad C. Study on Potential Differentially Expressed Genes in Idiopathic Pulmonary Fibrosis by Bioinformatics and Next-Generation Sequencing Data Analysis. Biomedicines 2023; 11:3109. [PMID: 38137330 PMCID: PMC10740779 DOI: 10.3390/biomedicines11123109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/24/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with reduced quality of life and earlier mortality, but its pathogenesis and key genes are still unclear. In this investigation, bioinformatics was used to deeply analyze the pathogenesis of IPF and related key genes, so as to investigate the potential molecular pathogenesis of IPF and provide guidance for clinical treatment. Next-generation sequencing dataset GSE213001 was obtained from Gene Expression Omnibus (GEO), and the differentially expressed genes (DEGs) were identified between IPF and normal control group. The DEGs between IPF and normal control group were screened with the DESeq2 package of R language. The Gene Ontology (GO) and REACTOME pathway enrichment analyses of the DEGs were performed. Using the g:Profiler, the function and pathway enrichment analyses of DEGs were performed. Then, a protein-protein interaction (PPI) network was constructed via the Integrated Interactions Database (IID) database. Cytoscape with Network Analyzer was used to identify the hub genes. miRNet and NetworkAnalyst databaseswereused to construct the targeted microRNAs (miRNAs), transcription factors (TFs), and small drug molecules. Finally, receiver operating characteristic (ROC) curve analysis was used to validate the hub genes. A total of 958 DEGs were screened out in this study, including 479 up regulated genes and 479 down regulated genes. Most of the DEGs were significantly enriched in response to stimulus, GPCR ligand binding, microtubule-based process, and defective GALNT3 causes HFTC. In combination with the results of the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network, hub genes including LRRK2, BMI1, EBP, MNDA, KBTBD7, KRT15, OTX1, TEKT4, SPAG8, and EFHC2 were selected. Cyclothiazide and rotigotinethe are predicted small drug molecules for IPF treatment. Our findings will contribute to identification of potential biomarkers and novel strategies for the treatment of IPF, and provide a novel strategy for clinical therapy.
Collapse
Affiliation(s)
- Muttanagouda Giriyappagoudar
- Department of Radiation Oncology, Karnataka Institute of Medical Sciences (KIMS), Hubballi 580022, Karnataka, India;
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. Socitey’s College of Pharmacy, Gadag 582101, Karnataka, India;
| | - Rajeshwari Horakeri
- Department of Computer Science, Govt First Grade College, Hubballi 580032, Karnataka, India;
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India
| |
Collapse
|
32
|
Wan R, Wang L, Zhu M, Li W, Duan Y, Yu G. Cellular Senescence: A Troy Horse in Pulmonary Fibrosis. Int J Mol Sci 2023; 24:16410. [PMID: 38003600 PMCID: PMC10671822 DOI: 10.3390/ijms242216410] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Pulmonary fibrosis (PF) is a chronic interstitial lung disease characterized by myofibroblast abnormal activation and extracellular matrix deposition. However, the pathogenesis of PF remains unclear, and treatment options are limited. Epidemiological studies have shown that the average age of PF patients is estimated to be over 65 years, and the incidence of the disease increases with age. Therefore, PF is considered an age-related disease. A preliminary study on PF patients demonstrated that the combination therapy of the anti-senescence drugs dasatinib and quercetin improved physical functional indicators. Given the global aging population and the role of cellular senescence in tissue and organ aging, understanding the impact of cellular senescence on PF is of growing interest. This article systematically summarizes the causes and signaling pathways of cellular senescence in PF. It also objectively analyzes the impact of senescence in AECs and fibroblasts on PF development. Furthermore, potential intervention methods targeting cellular senescence in PF treatment are discussed. This review not only provides a strong theoretical foundation for understanding and manipulating cellular senescence, developing new therapies to improve age-related diseases, and extending a healthy lifespan but also offers hope for reversing the toxicity caused by the massive accumulation of senescence cells in humans.
Collapse
Affiliation(s)
- Ruyan Wan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Miaomiao Zhu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Wenwen Li
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Yudi Duan
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China; (R.W.); (L.W.); (M.Z.); (W.L.); (Y.D.)
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
33
|
Sun W, Yang X, Chen L, Guo L, Huang H, Liu X, Yang Y, Xu Z. FSTL1 promotes alveolar epithelial cell aging and worsens pulmonary fibrosis by affecting SENP1-mediated DeSUMOylation. Cell Biol Int 2023; 47:1716-1727. [PMID: 37369969 DOI: 10.1002/cbin.12062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/06/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Alveolar epithelial cell (AEC) senescence-induced changes of lung mesenchymal cells are key to starting the progress of pulmonary fibrosis. Follistatin-like 1 (FSTL1) plays a central regulatory role in the complex process of senescence and pulmonary fibrosis by enhancing transforming growth factor-β1 (TGF-β1) signal pathway activity. Activation of Smad4 and Ras relies on SUMO-specific peptidase 1 (SENP1)-mediated deSUMOylation during TGF-β signaling pathway activation. We hypothesized that SENP1-mediated deSUMOylation may be a potential therapeutic target by modulating FSTL1-regulated cellular senescence in pulmonary fibrosis. In verifying this hypothesis, we found that FSTL1 expression was upregulated in the lung tissues of patients with idiopathic pulmonary fibrosis and that SENP1 was overexpressed in senescent AECs. TGF-β1-induced FSTL1 not only promoted AEC senescence but also upregulated SENP1 expression. Interfering with SENP1 expression inhibited FSTL1-dependent promotion of AEC senescence and improved pulmonary fibrosis in mouse lungs. FSTL1 enhancement of TGF-β1 signaling pathway activation was dependent on SENP1 in senescent AEC. Our work identifies a novel mechanism by which FSTL1 is involved in AEC senescence. Inhibition of SENP1 in epithelial cells alleviated pulmonary fibrosis by blocking FSTL1-enhanced TGF signaling.
Collapse
Affiliation(s)
- Wei Sun
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xiaoyu Yang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijuan Chen
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Lu Guo
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Hui Huang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoshu Liu
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Zuojun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Ren LL, Miao H, Wang YN, Liu F, Li P, Zhao YY. TGF-β as A Master Regulator of Aging-Associated Tissue Fibrosis. Aging Dis 2023; 14:1633-1650. [PMID: 37196129 PMCID: PMC10529747 DOI: 10.14336/ad.2023.0222] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 05/19/2023] Open
Abstract
Fibrosis is the abnormal accumulation of extracellular matrix proteins such as collagen and fibronectin. Aging, injury, infections, and inflammation can cause different types of tissue fibrosis. Numerous clinical investigations have shown a correlation between the degree of liver and pulmonary fibrosis in patients and telomere length and mitochondrial DNA content, both of which are signs of aging. Aging involves the gradual loss of tissue function over time, which results in the loss of homeostasis and, ultimately, an organism's fitness. A major feature of aging is the accumulation of senescent cells. Senescent cells abnormally and continuously accumulate in the late stages of life, contributing to age-related fibrosis and tissue deterioration, among other aging characteristics. Furthermore, aging generates chronic inflammation, which results in fibrosis and decreases organ function. This finding suggests that fibrosis and aging are closely related. The transforming growth factor-beta (TGF-β) superfamily plays a crucial role in the physiological and pathological processes of aging, immune regulation, atherosclerosis, and tissue fibrosis. In this review, the functions of TGF-β in normal organs, aging, and fibrotic tissues is discussed: TGF-β signalling is altered with age and is an indicator of pathology associated with tissue fibrosis. In addition, this review discusses the potential targeting of noncoding.
Collapse
Affiliation(s)
- Li-Li Ren
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Hua Miao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Yan-Ni Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Fei Liu
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Science, Department of Nephrology, China-Japan Friendship Hospital, Beijing, China.
| | - Ying-Yong Zhao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
35
|
Jiang Y, Wang Z, Hu J, Wang W, Zhang N, Gao L. Core fucosylation regulates alveolar epithelial cells senescence through activating of transforming growth factor-β pathway in pulmonary fibrosis. Aging (Albany NY) 2023; 15:9572-9589. [PMID: 37724903 PMCID: PMC10564423 DOI: 10.18632/aging.205036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF), a fatal disorder associated with aging, has a terrible prognosis. However, the potential causes of IPF remain a riddle. In this study, we designed to explore whether the modification of the core fucosylation (CF) can ameliorate pulmonary fibrosis by targeting alveolar epithelial cells (AECs) senescence. First, we verified that cellular senescence occurs in the bleomycin-induced lung fibrosis mice models and CF modifications accompanying senescent AECs in pulmonary fibrosis. Next, both gain- and loss- of function research on CF were performed to elucidate its role in promoting AECs senescence and triggering pulmonary fibrosis in vitro. Notably, using alveolar epithelial cell-specific FUT8 conditional knockout mouse models, however, inhibition of cellular senescence by deleting the FUT8 gene could attenuate pulmonary fibrosis in vivo. Finally, blocking the CF modification of transforming growth factor -β type I receptor (TGF-βR I) could reduce the activation of downstream transforming growth factor -β (TGF-β) pathways in AECs senescence both in vivo and in vitro. This study reveals that CF is a crucial interventional target for the treatment of pulmonary fibrosis. Blocking CF modification contributes importantly to inhibiting AECs senescence resulting in pulmonary fibrosis lessen.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhongzhen Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinying Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Wang
- Department of Nephrology, Affiliated Xinhua Hospital of Dalian University, Dalian, China
| | - Na Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lili Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
36
|
Zalay O, Bontempi D, Bitterman DS, Birkbak N, Shyr D, Haugg F, Qian JM, Roberts H, Perni S, Prudente V, Pai S, Dekker A, Haibe-Kains B, Guthier C, Balboni T, Warren L, Krishan M, Kann BH, Swanton C, Ruysscher DD, Mak RH, Aerts HJWL. Decoding biological age from face photographs using deep learning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295132. [PMID: 37745558 PMCID: PMC10516042 DOI: 10.1101/2023.09.12.23295132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Because humans age at different rates, a person's physical appearance may yield insights into their biological age and physiological health more reliably than their chronological age. In medicine, however, appearance is incorporated into medical judgments in a subjective and non-standardized fashion. In this study, we developed and validated FaceAge, a deep learning system to estimate biological age from easily obtainable and low-cost face photographs. FaceAge was trained on data from 58,851 healthy individuals, and clinical utility was evaluated on data from 6,196 patients with cancer diagnoses from two institutions in the United States and The Netherlands. To assess the prognostic relevance of FaceAge estimation, we performed Kaplan Meier survival analysis. To test a relevant clinical application of FaceAge, we assessed the performance of FaceAge in end-of-life patients with metastatic cancer who received palliative treatment by incorporating FaceAge into clinical prediction models. We found that, on average, cancer patients look older than their chronological age, and looking older is correlated with worse overall survival. FaceAge demonstrated significant independent prognostic performance in a range of cancer types and stages. We found that FaceAge can improve physicians' survival predictions in incurable patients receiving palliative treatments, highlighting the clinical utility of the algorithm to support end-of-life decision-making. FaceAge was also significantly associated with molecular mechanisms of senescence through gene analysis, while age was not. These findings may extend to diseases beyond cancer, motivating using deep learning algorithms to translate a patient's visual appearance into objective, quantitative, and clinically useful measures.
Collapse
Affiliation(s)
- Osbert Zalay
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Division of Radiation Oncology, Queen’s University, Kingston, Canada
| | - Dennis Bontempi
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
- Department of Radiation Oncology (MAASTRO), Maastricht University, Maastricht, The Netherlands
| | - Danielle S Bitterman
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Nicolai Birkbak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Derek Shyr
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston
| | - Fridolin Haugg
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Jack M Qian
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Hannah Roberts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Subha Perni
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Vasco Prudente
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
| | - Suraj Pai
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (MAASTRO), Maastricht University, Maastricht, The Netherlands
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christian Guthier
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Tracy Balboni
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Laura Warren
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Monica Krishan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Benjamin H Kann
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), Maastricht University, Maastricht, The Netherlands
| | - Raymond H Mak
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Hugo JWL Aerts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States of America
| |
Collapse
|
37
|
Mokra D, Mokry J, Barosova R, Hanusrichterova J. Advances in the Use of N-Acetylcysteine in Chronic Respiratory Diseases. Antioxidants (Basel) 2023; 12:1713. [PMID: 37760016 PMCID: PMC10526097 DOI: 10.3390/antiox12091713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
N-acetylcysteine (NAC) is widely used because of its mucolytic effects, taking part in the therapeutic protocols of cystic fibrosis. NAC is also administered as an antidote in acetaminophen (paracetamol) overdosing. Thanks to its wide antioxidative and anti-inflammatory effects, NAC may also be of benefit in other chronic inflammatory and fibrotizing respiratory diseases, such as chronic obstructive pulmonary disease, bronchial asthma, idiopathic lung fibrosis, or lung silicosis. In addition, NAC exerts low toxicity and rare adverse effects even in combination with other treatments, and it is cheap and easily accessible. This article brings a review of information on the mechanisms of inflammation and oxidative stress in selected chronic respiratory diseases and discusses the use of NAC in these disorders.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia;
| | - Romana Barosova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| | - Juliana Hanusrichterova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, SK-03601 Martin, Slovakia; (R.B.); (J.H.)
| |
Collapse
|
38
|
Angelini A, Trial J, Saltzman AB, Malovannaya A, Cieslik KA. A defective mechanosensing pathway affects fibroblast-to-myofibroblast transition in the old male mouse heart. iScience 2023; 26:107283. [PMID: 37520701 PMCID: PMC10372839 DOI: 10.1016/j.isci.2023.107283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
The cardiac fibroblast interacts with an extracellular matrix (ECM), enabling myofibroblast maturation via a process called mechanosensing. Although in the aging male heart, ECM is stiffer than in the young mouse, myofibroblast development is impaired, as demonstrated in 2-D and 3-D experiments. In old male cardiac fibroblasts, we found a decrease in actin polymerization, α-smooth muscle actin (α-SMA), and Kindlin-2 expressions, the latter an effector of the mechanosensing. When Kindlin-2 levels were manipulated via siRNA interference, young fibroblasts developed an old-like fibroblast phenotype, whereas Kindlin-2 overexpression in old fibroblasts reversed the defective phenotype. Finally, inhibition of overactivated extracellular regulated kinases 1 and 2 (ERK1/2) in the old male fibroblasts rescued actin polymerization and α-SMA expression. Pathological ERK1/2 overactivation was also attenuated by Kindlin-2 overexpression. In contrast, old female cardiac fibroblasts retained an operant mechanosensing pathway. In conclusion, we identified defective components of the Kindlin/ERK/actin/α-SMA mechanosensing axis in aged male fibroblasts.
Collapse
Affiliation(s)
- Aude Angelini
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - JoAnn Trial
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alexander B. Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Katarzyna A. Cieslik
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
39
|
Parimon T, Chen P, Stripp BR, Liang J, Jiang D, Noble PW, Parks WC, Yao C. Senescence of alveolar epithelial progenitor cells: a critical driver of lung fibrosis. Am J Physiol Cell Physiol 2023; 325:C483-C495. [PMID: 37458437 PMCID: PMC10511168 DOI: 10.1152/ajpcell.00239.2023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Pulmonary fibrosis comprises a range of chronic interstitial lung diseases (ILDs) that impose a significant burden on patients and public health. Among these, idiopathic pulmonary fibrosis (IPF), a disease of aging, is the most common and most severe form of ILD and is treated largely by lung transplantation. The lack of effective treatments to stop or reverse lung fibrosis-in fact, fibrosis in most organs-has sparked the need to understand causative mechanisms with the goal of identifying critical points for potential therapeutic intervention. Findings from many groups have indicated that repeated injury to the alveolar epithelium-where gas exchange occurs-leads to stem cell exhaustion and impaired alveolar repair that, in turn, triggers the onset and progression of fibrosis. Cellular senescence of alveolar epithelial progenitors is a critical cause of stemness failure. Hence, senescence impairs repair and thus contributes significantly to fibrosis. In this review, we discuss recent evidence indicating that senescence of epithelial progenitor cells impairs alveolar homeostasis and repair creating a profibrotic environment. Moreover, we discuss the impact of senescent alveolar epithelial progenitors, alveolar type 2 (AT2) cells, and AT2-derived transitional epithelial cells in fibrosis. Emerging evidence indicates that transitional epithelial cells are prone to senescence and, hence, are a new player involved in senescence-associated lung fibrosis. Understanding the complex interplay of cell types and cellular regulatory factors contributing to alveolar epithelial progenitor senescence will be crucial to developing targeted therapies to mitigate their downstream profibrotic sequelae and to promote normal alveolar repair.NEW & NOTEWORTHY With an aging population, lung fibrotic diseases are becoming a global health burden. Dysfunctional repair of the alveolar epithelium is a key causative process that initiates lung fibrosis. Normal alveolar regeneration relies on functional progenitor cells; however, the senescence of these cells, which increases with age, hinders their ability to contribute to repair. Here, we discuss studies on the control and consequence of progenitor cell senescence in fibrosis and opportunities for research.
Collapse
Affiliation(s)
- Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Peter Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Barry R Stripp
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jiurong Liang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Dianhua Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Paul W Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - William C Parks
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Changfu Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
40
|
Wan R, Srikaram P, Guntupalli V, Hu C, Chen Q, Gao P. Cellular senescence in asthma: from pathogenesis to therapeutic challenges. EBioMedicine 2023; 94:104717. [PMID: 37442061 PMCID: PMC10362295 DOI: 10.1016/j.ebiom.2023.104717] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a heterogeneous chronic respiratory disease that impacts nearly 10% of the population worldwide. While cellular senescence is a normal physiological process, the accumulation of senescent cells is considered a trigger that transforms physiology into the pathophysiology of a tissue/organ. Recent advances have suggested the significance of cellular senescence in asthma. With this review, we focus on the literature regarding the physiology and pathophysiology of cellular senescence and cellular stress responses that link the triggers of asthma to cellular senescence, including telomere shortening, DNA damage, oncogene activation, oxidative-related senescence, and senescence-associated secretory phenotype (SASP). The association of cellular senescence to asthma phenotypes, airway inflammation and remodeling, was also reviewed. Importantly, several approaches targeting cellular senescence, such as senolytics and senomorphics, have emerged as promising strategies for asthma treatment. Therefore, cellular senescence might represent a mechanism in asthma, and the senescence-related molecules and pathways could be targeted for therapeutic benefit.
Collapse
Affiliation(s)
- Rongjun Wan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Prakhyath Srikaram
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Vineeta Guntupalli
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Qiong Chen
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
41
|
Zheng YY, Hu ZN, Liu Z, Jiang YC, Guo RP, Ding SJ, Zhou GH. The Effect of Long-Term Passage on Porcine SMCs' Function and the Improvement of TGF-β1 on Porcine SMCs' Secretory Function in Late Passage. Foods 2023; 12:2682. [PMID: 37509774 PMCID: PMC10378609 DOI: 10.3390/foods12142682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cultured meat is one of the meat substitutes produced through tissue engineering and other technologies. Large-scale cell culture is the key for cultured meat products to enter the market. Therefore, this study is aimed to explore the effect of long-term passage in vitro on smooth muscle cells (SMCs) and the effect of transforming growth factor-β1 (TGF-β1) on SMCs in the late passage. Multiple passages lead to the decline of the proliferation rate of SMCs in the proliferation stage and the differentiation ability in the differentiation stage. Transcriptome results showed that the ECM pathway and aging-related signaling pathways were significantly up-regulated in the late passage period. TGF-β1 did not promote SMCs of late passage proliferation at the proliferation stage but promoted the gene and protein expression of collagen as the main protein of the extracellular matrix proteins at the differentiation stage. In addition, proteomic analysis revealed that TGF-β1 promoted the expression of cell adhesion molecules which activate the Hippo signaling pathway and the HIF-1 signaling pathway and further promoted the production of collagen-containing extracellular matrix proteins. This could provide ideas for large-scale production of cultured meat products using SMCs.
Collapse
Affiliation(s)
- Yan-Yan Zheng
- National Center of Meat Quality and Safety Nanjing, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing 210095, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ze-Nan Hu
- National Center of Meat Quality and Safety Nanjing, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing 210095, China
| | - Zheng Liu
- National Center of Meat Quality and Safety Nanjing, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing 210095, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi-Chen Jiang
- National Center of Meat Quality and Safety Nanjing, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing 210095, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ren-Peng Guo
- National Center of Meat Quality and Safety Nanjing, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing 210095, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shi-Jie Ding
- National Center of Meat Quality and Safety Nanjing, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing 210095, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guang-Hong Zhou
- National Center of Meat Quality and Safety Nanjing, Key Laboratory of Meat Processing and Quality Control, Key Laboratory of Meat Processing, Nanjing 210095, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
42
|
Tan X, Qi C, Zhao X, Sun L, Wu M, Sun W, Gu L, Wang F, Feng H, Huang X, Xie B, Shi Z, Xie P, Wu M, Zhang Y, Chen G. ERK Inhibition Promotes Engraftment of Allografts by Reprogramming T-Cell Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206768. [PMID: 37013935 DOI: 10.1002/advs.202206768] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Indexed: 06/04/2023]
Abstract
Extracellular regulated protein kinases (ERK) signaling is a master regulator of cell behavior, life, and fate. Although ERK pathway is shown to be involved in T-cell activation, little is known about its role in the development of allograft rejection. Here, it is reported that ERK signaling pathway is activated in allograft-infiltrating T cells. On the basis of surface plasmon resonance technology, lycorine is identified as an ERK-specific inhibitor. ERK inhibition by lycorine significantly prolongs allograft survival in a stringent mouse cardiac allotransplant model. As compared to untreated mice, lycorine-treated mice show a decrease in the number and activation of allograft-infiltrated T cells. It is further confirmed that lycorine-treated mouse and human T cells are less responsive to stimulation in vitro, as indicated by their low proliferative rates and decreased cytokine production. Mechanistic studies reveal that T cells treated with lycorine exhibit mitochondrial dysfunction, resulting in metabolic reprogramming upon stimulation. Transcriptome analysis of lycorine-treated T cells reveals an enrichment in a series of downregulated terms related to immune response, the mitogen-activated protein kinase cascade, and metabolic processes. These findings offer new insights into the development of immunosuppressive agents by targeting the ERK pathway involved in T-cell activation and allograft rejection.
Collapse
Affiliation(s)
- Xiaosheng Tan
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Changxing Qi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Xiangli Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Lingjuan Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Mi Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Fengqing Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Xia Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Bin Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Zhengyi Shi
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Peiling Xie
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Meng Wu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, P. R. China
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei Province, 430030, P. R. China
| |
Collapse
|
43
|
Ruan P, Todd JL, Zhao H, Liu Y, Vinisko R, Soellner JF, Schmid R, Kaner RJ, Luckhardt TR, Neely ML, Noth I, Porteous M, Raj R, Safdar Z, Strek ME, Hesslinger C, Palmer SM, Leonard TB, Salisbury ML. Integrative multi-omics analysis reveals novel idiopathic pulmonary fibrosis endotypes associated with disease progression. Respir Res 2023; 24:141. [PMID: 37344825 PMCID: PMC10283254 DOI: 10.1186/s12931-023-02435-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is characterized by the accumulation of extracellular matrix in the pulmonary interstitium and progressive functional decline. We hypothesized that integration of multi-omics data would identify clinically meaningful molecular endotypes of IPF. METHODS The IPF-PRO Registry is a prospective registry of patients with IPF. Proteomic and transcriptomic (including total RNA [toRNA] and microRNA [miRNA]) analyses were performed using blood collected at enrollment. Molecular data were integrated using Similarity Network Fusion, followed by unsupervised spectral clustering to identify molecular subtypes. Cox proportional hazards models tested the relationship between these subtypes and progression-free and transplant-free survival. The molecular subtypes were compared to risk groups based on a previously described 52-gene (toRNA expression) signature. Biological characteristics of the molecular subtypes were evaluated via linear regression differential expression and canonical pathways (Ingenuity Pathway Analysis [IPA]) over-representation analyses. RESULTS Among 232 subjects, two molecular subtypes were identified. Subtype 1 (n = 105, 45.3%) and Subtype 2 (n = 127, 54.7%) had similar distributions of age (70.1 +/- 8.1 vs. 69.3 +/- 7.6 years; p = 0.31) and sex (79.1% vs. 70.1% males, p = 0.16). Subtype 1 had more severe disease based on composite physiologic index (CPI) (55.8 vs. 51.2; p = 0.002). After adjusting for CPI and antifibrotic treatment at enrollment, subtype 1 experienced shorter progression-free survival (HR 1.79, 95% CI 1.28,2.56; p = 0.0008) and similar transplant-free survival (HR 1.30, 95% CI 0.87,1.96; p = 0.20) as subtype 2. There was little agreement in the distribution of subjects to the molecular subtypes and the risk groups based on 52-gene signature (kappa = 0.04, 95% CI= -0.08, 0.17), and the 52-gene signature risk groups were associated with differences in transplant-free but not progression-free survival. Based on heatmaps and differential expression analyses, proteins and miRNAs (but not toRNA) contributed to classification of subjects to the molecular subtypes. The IPA showed enrichment in pulmonary fibrosis-relevant pathways, including mTOR, VEGF, PDGF, and B-cell receptor signaling. CONCLUSIONS Integration of transcriptomic and proteomic data from blood enabled identification of clinically meaningful molecular endotypes of IPF. If validated, these endotypes could facilitate identification of individuals likely to experience disease progression and enrichment of clinical trials. TRIAL REGISTRATION NCT01915511.
Collapse
Affiliation(s)
- Peifeng Ruan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Jamie L Todd
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Yi Liu
- Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | - Richard Vinisko
- Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT, USA
| | | | - Ramona Schmid
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Tracy R Luckhardt
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Megan L Neely
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mary Porteous
- Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Rishi Raj
- Stanford University School of Medicine, Stanford, CA, USA
| | | | - Mary E Strek
- Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, IL, USA
| | | | - Scott M Palmer
- Duke Clinical Research Institute, Durham, NC, USA
- Duke University Medical Center, Durham, NC, USA
| | | | - Margaret L Salisbury
- Department of Medicine, Vanderbilt University Medical Center, 1211 Medical Center Drive, 37232, Nashville, TN, USA.
| |
Collapse
|
44
|
Wang L, Donahue G, Zhang C, Havas A, Lei X, Xu C, Wang W, Vahedi G, Adams PD, Berger SL. Dynamic enhancer interactome promotes senescence and aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541769. [PMID: 37292952 PMCID: PMC10245931 DOI: 10.1101/2023.05.22.541769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gene expression programs are regulated by enhancers which act in a context-specific manner, and can reside at great distances from their target genes. Extensive three-dimensional (3D) genome reorganization occurs in senescence, but how enhancer interactomes are reconfigured during this process is just beginning to be understood. Here we generated high-resolution contact maps of active enhancers and their target genes, assessed chromatin accessibility, and established one-dimensional maps of various histone modifications and transcription factors to comprehensively understand the regulation of enhancer configuration during senescence. Hyper-connected enhancer communities/cliques formed around genes that are highly expressed and within essential gene pathways in each cell state. In addition, motif analysis indicates the involvement of specific transcription factors in hyper-connected regulatory elements in each condition; importantly, MafK, a bZIP family transcription factor, was upregulated in senescence, and reduced expression of MafK ameliorated the senescence phenotypes. Because the accumulation of senescent cells is a key feature of aging, we further investigated enhancer connectomes in the liver of young and aged mice. Hyper-connected enhancer communities were identified during aging, which regulate essential genes that maintain cell differentiation and homeostasis. These findings reveal that hyper-connected enhancer communities correlate with high gene expression in senescence and aging and provide potential hotspots for therapeutic intervention in aging and age-associated diseases.
Collapse
|
45
|
Wei L, Hongping H, Chufang L, Cuomu M, Jintao L, Kaiyin C, Lvyi C, Weiwu C, Zuguang Y, Nanshan Z. Effects of Shiwei Longdanhua formula on LPS induced airway mucus hypersecretion, cough hypersensitivity, oxidative stress and pulmonary inflammation. Biomed Pharmacother 2023; 163:114793. [PMID: 37121151 DOI: 10.1016/j.biopha.2023.114793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Shiwei Longdanhua Granule (SWLDH) is a classic Tibetan medicine (TM) ranking in the top 20 Chinese patent medicines in prescription rate to treat respiratory diseases like pneumonia, acute and chronic tracheobronchitis, acute exacerbation of COPD and bronchial asthma in solution of inflammation, cough and phlegm obstruction in clinical practice. However, its systematic pharmacological mechanisms have not been elucidated yet. Here, we studied the therapeutic efficacy of SWLDH in treatment of acute respiratory diseases in BALB/c mice by comprehensive analysis of airway inflammation, oxidative stress, mucus hypersecretion, cough hypersensitivities and indicators associated with the development of chronic diseases. Our results show that SWLDH might exhibit its inhibitory effects on pulmonary inflammation by interference with arachidonic acid (AA) metabolism pathways. Oxidative stress that highly related to the degree of tissue injury could be alleviated by enhancing the reductive activities of glutathione redox system, thioredoxin system and the catalytic activities of catalase and superoxide dismutase (SOD) after SWLDH treatment. In addition, SWLDH could significantly abrogate the mucus hypersecretion induced bronchiole obstruction by inactivate the globlet cells and decrease the secretion of gel-forming mucins (MUC5AC and MUC5B) under pathological condition, demonstrating its mucoactive potency. SWLDH also showed reversed effects on the release of neuropeptides that are responsible for airway sensory hypersensitivity. Simultaneously observed inhibition of calcium influx, reduction in in vivo biosynthesis of acetylcholine and the recovery of the content of cyclic adenosine monophosphate (cAMP) might collaboratively contribute to cause airway smooth muscle cells (ASMCs) relexation. These findings indicated that SWLDH might exhibited antitussive potency via suppression of the urge to cough and ASMCs contraction. Moreover, SWLDH might affect airway remodeling. We found SWLDH could retard the elevation of TGF-β1 and α-SMA, which are important indicators for hyperplasia and contraction during the progression of the chronic airway inflammatory diseases like COPD and asthma.
Collapse
Affiliation(s)
- Liu Wei
- Guangzhou Laboratory, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hou Hongping
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Mingji Cuomu
- The University of Tibetan Medicine, Lhasa, China
| | - Li Jintao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Cai Kaiyin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Tibet Cheezheng Tibet Medicine Co.,Ltd., Beijing, China
| | - Chen Lvyi
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Weiwu
- Tibet Cheezheng Tibet Medicine Co.,Ltd., Beijing, China
| | - Ye Zuguang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zhong Nanshan
- Guangzhou Laboratory, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
46
|
Ma J, Xie Y, Xu Y, Gu P, Zhang Y, Fan L, Zhou Y, Wang H, Zhou T, He J, Wang D, Chen W. Neutralization of interleukin-11 attenuates silica particles-induced pulmonary inflammation and fibrosis in vivo. J Environ Sci (China) 2023; 126:772-783. [PMID: 36503802 DOI: 10.1016/j.jes.2022.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 06/17/2023]
Abstract
Environmental exposure to crystalline silica particles can lead to silicosis, which is one of the most serious pulmonary interstitial fibrosis around the world. Unfortunately, the exact mechanism on silicosis is unclear, and the effective treatments are lacking to date. In this study, we aim to explore the molecular mechanism by which interleukin-11 (IL-11) affects silica particles-induced lung inflammation and fibrosis. We observed that IL-11 expressions in mouse lungs were significantly increased after silica exposure, and maintained at high levels across both inflammation and fibrosis phase. Immunofluorescent dual staining further revealed that the overexpression of IL-11 mainly located in mouse lung epithelial cells and fibroblasts. Using neutralizing anti-IL-11 antibody could effectively alleviate the overexpression of pro-inflammatory cytokines (i.e., interleukin-6 and tumor necrosis factor-α) and fibrotic proteins (i.e., collagen type I and matrix metalloproteinase-2) induced by silica particles. Most importantly, the expressions of IL-11 receptor subunit α (IL-11Rα), Glycoprotein 130 (GP130), and phosphorylated extracellular signal-regulated kinase (p-ERK) were significantly increased in response to silica, whereas blocking of IL-11 markedly reduced their levels. All findings suggested that the overexpression of IL-11 was involved in the pathological of silicosis, while neutralizing IL-11 antibody could effectively alleviate the silica-induced lung inflammation and fibrosis by inhibiting the IL-11Rα/GP130/ERK signaling pathway. IL-11 might be a promising therapeutic target for lung inflammation and fibrosis caused by silica particles exposure.
Collapse
Affiliation(s)
- Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujia Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiju Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei Gu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingdie Zhang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Zhou
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 511436, China
| | - Haijiao Wang
- National Center of Occupational Safety and Health, National Health Commission, Beijing 102300, China
| | - Ting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jintong He
- Zhuhai Center for Chronic Disease Control, Zhuhai 519000, China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
47
|
Sweeney M, Cook SA, Gil J. Therapeutic opportunities for senolysis in cardiovascular disease. FEBS J 2023; 290:1235-1255. [PMID: 35015342 PMCID: PMC10952275 DOI: 10.1111/febs.16351] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022]
Abstract
Cellular senescence within the cardiovascular system has, until recently, been understudied and unappreciated as a factor in the development of age-related cardiovascular diseases such as heart failure, myocardial infarction and atherosclerosis. This is in part due to challenges with defining senescence within post-mitotic cells such as cardiomyocytes. However, recent evidence has demonstrated senescent-like changes, including a senescence-associated secretory phenotype (SASP), in cardiomyocytes in response to ageing and cell stress. Other replicating cells, including fibroblasts and vascular smooth muscle cells, within the cardiovascular system have also been shown to undergo senescence and contribute to disease pathogenesis. These findings coupled with the emergence of senolytic therapies, to target and eliminate senescent cells, have provided fascinating new avenues for management of several age-related cardiovascular diseases with high prevalence. In this review, we discuss the role of senescent cells within the cardiovascular system and highlight the contribution of senescence cells to common cardiovascular diseases. We discuss the emerging role for senolytics in cardiovascular disease management while highlighting important aspects of senescence biology which must be clarified before the potential of senolytics can be fully realized.
Collapse
Affiliation(s)
- Mark Sweeney
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
- Wellcome Trust / National Institute of Health Research 4i Clinical Research FellowLondonUK
| | - Stuart A. Cook
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
| | - Jesús Gil
- MRC London Institute of Medical Sciences (LMS)LondonUK
- Institute of Clinical Sciences (ICS)Faculty of MedicineImperial College LondonUK
| |
Collapse
|
48
|
hucMSC-Ex Alleviates IBD-Associated Intestinal Fibrosis by Inhibiting ERK Phosphorylation in Intestinal Fibroblasts. Stem Cells Int 2023; 2023:2828981. [PMID: 36845967 PMCID: PMC9957621 DOI: 10.1155/2023/2828981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/03/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
Background Intestinal fibrosis, one of the complications of inflammatory bowel disease (IBD), is associated with fistula and intestinal stricture formation. There are currently no treatments for fibrosis. Mesenchymal stem cell-derived exosomes have been proven to exert inhibitory and reversal effects in IBD and other organ fibrosis. In this study, we explored the role of human umbilical cord mesenchymal stem cell-derived exosomes (hucMSC-Ex) in IBD-related fibrosis and its associated mechanism to provide new ideas for the prevention and treatment of IBD-related intestinal fibrosis. Methods We established a DSS-induced mouse IBD-related intestinal fibrosis model and observed the effect of hucMSC-Ex on the mouse model. We also used the TGF-induced human intestinal fibroblast CCD-18Co to observe the role of hucMSC-Ex in the proliferation, migration, and activation of intestinal fibroblasts. Having observed that the extracellular-signal-regulated kinase (ERK) pathway in intestinal fibrosis can be inhibited by hucMSC-Ex, we treated intestinal fibroblasts with an ERK inhibitor to emphasize the potential target of ERK phosphorylation in the treatment of IBD-associated intestinal fibrosis. Results In the animal model of IBD-related fibrosis, hucMSC-Ex alleviated inflammation-related fibrosis as evident in the thinning of the mice's intestinal wall and decreased expression of related molecules. Moreover, hucMSC-Ex inhibited TGF-β-induced proliferation, migration, and activation of human intestinal fibroblasts, and ERK phosphorylation played a key role in IBD-associated fibrosis. The inhibition of ERK decreased the expression of fibrosis-related indicators such as α-SMA, fibronectin, and collagen I. Conclusion hucMSC-Ex alleviates DSS-induced IBD-related intestinal fibrosis by inhibiting profibrotic molecules and intestinal fibroblast proliferation and migration by decreasing ERK phosphorylation.
Collapse
|
49
|
Dong W, Zhang K, Gong Z, Luo T, Li J, Wang X, Zou H, Song R, Zhu J, Ma Y, Liu G, Liu Z. N-acetylcysteine delayed cadmium-induced chronic kidney injury by activating the sirtuin 1-P53 signaling pathway. Chem Biol Interact 2023; 369:110299. [PMID: 36493885 DOI: 10.1016/j.cbi.2022.110299] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
With the development of modern industrial civilization, cadmium (Cd), a known nephrotoxic metal, has become a growing public safety issue due to its ability to induce various types of kidney disease. Maladaptive proximal tubule repair is a significant cause of Cd-induced chronic kidney disease (CKD), which is characterized by premature senescence and pro-fibrosis. Previously, we demonstrated that cadmium causes DNA damage and cycle arrest in renal tubular epithelial cells, which may be relevant to premature senescence regulated by sirtuin 1 (SIRT1). In this study, in vivo and in vitro studies were conducted to elucidate the role of SIRT1-mediated premature renal senescence in Cd-induced CKD. As oxidative stress is a significant cause of aging, we evaluated whether N-acetylcysteine (NAC) would inhibit Cd-induced premature aging and dysfunction in rat renal tubular epithelial cells. Cadmium induced premature renal senescence and fibrosis, and NAC inhibited premature renal senescence and fibrosis through the SIRT1-P53 pathway and delayed CKD progression. Overall, the results suggested that the SIRT1-P53 pathway mediates oxidative stress, premature renal senescence, and renal fibrosis during cadmium exposure, which may be a potential therapeutic target for Cd-induced CKD.
Collapse
Affiliation(s)
- Wenxuan Dong
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Zhonggui Gong
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Tongwang Luo
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang Agriculture and Forestry University, Hangzhou, 311300, PR China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Xueru Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China.
| |
Collapse
|
50
|
TREM-1 exacerbates bleomycin-induced pulmonary fibrosis by aggravating alveolar epithelial cell senescence in mice. Int Immunopharmacol 2022; 113:109339. [DOI: 10.1016/j.intimp.2022.109339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|