1
|
Rosa-Baez C, Borrego-Yaniz G, Rodriguez-Martin I, Kerick M, Acosta-Herrera M, Martín J, Ortiz-Fernández L. Cross-trait GWAS in COVID-19 and systemic sclerosis reveals novel genes implicated in fibrotic and inflammation pathways. Rheumatology (Oxford) 2025; 64:4022-4031. [PMID: 39878951 DOI: 10.1093/rheumatology/keaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
OBJECTIVES Coronavirus disease 2019 (COVID-19) and SSc share multiple similarities in their clinical manifestations, alterations in immune response and therapeutic options. These resemblances have also been identified in other immune-mediated inflammatory diseases where a common genetic component has been found. Thus, we decided to evaluate for the first time this shared genetic architecture with SSc. METHODS For this study, we retrieved genomic data from two European-ancestry cohorts: 2 597 856 individuals from The COVID-19 Host Genetics Initiative consortium, and 26 679 individuals from the largest genomic scan in SSc. We performed a cross-trait meta-analyses including >9.3 million single nucleotide polymorphisms. Finally, we conducted functional annotation to prioritize potential causal genes and performed drug repurposing analysis. RESULTS Our results revealed a total of 19 non-HLA pleiotropic loci, including 2 novel associations for both conditions (BMP1 and PPARG) and 12 emerging as new shared loci. Functional annotation of these regions underscored their potential regulatory role and identified potential causal genes, many of which are implicated in fibrotic and inflammatory pathways. Remarkably, we observed an antagonistic pleiotropy model of the IFN signalling between COVID-19 and SSc, including the well-known TYK2 P1104A missense variant, showing a protective effect for SSc while being a risk factor for COVID-19, along with two additional novel pleiotropic associations (IRF8 and SENP7). Finally, our findings provide new therapeutic options that could potentially benefit both conditions. CONCLUSION Our study confirms the genetic resemblance between susceptibility to and severity of COVID-19 and SSc, revealing a novel common genetic contribution affecting fibrotic and immune pathways.
Collapse
Affiliation(s)
- Carlos Rosa-Baez
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Gonzalo Borrego-Yaniz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Inmaculada Rodriguez-Martin
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Martin Kerick
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Marialbert Acosta-Herrera
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
- Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Javier Martín
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| | - Lourdes Ortiz-Fernández
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine López-Neyra, CSIC, Granada, Spain
| |
Collapse
|
2
|
Weiss M, Hammersen J, Rudolphi S, Formann I, Träger K, Rücker FG, Grüner B, Allgöwer A, Birndt S, Fabisch C, Hochhaus A, Döhner K, Rosée PL, Stegelmann F. Prognostic Impact of COVID-19 Inflammation Score Response: A Sub-Group Analysis on Critically Ill Patients of the RuxCoFlam Trial. Life (Basel) 2025; 15:781. [PMID: 40430208 PMCID: PMC12113520 DOI: 10.3390/life15050781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
This study aims to identify parameters predicting COVID-19 inflammation score (CIS) response and survival probability in critically ill patients with hyperinflammation treated with the Janus kinase (JAK) 1/2 inhibitor ruxolitinib. This is a single arm, non-randomized, open-label, phase-II study for frontline treatment in adults in the intensive care unit (ICU). Ninety-two critically ill COVID-19 patients with CIS ≥ 10 were treated in the RuxCoFlam trial (NCT04338958) with ruxolitinib between April 2020 and June 2021. Median ICU treatment duration was 15 days (range, 2-73). Out of 81 evaluable patients, 62 (77%) showed CIS reduction ≥ 25% on day 7 (CIS response). In multiple logistic regression analyses, higher CIS on day 0 (odds ratio (OR), 1.56; 95% confidence interval (CI), 1.01-2.41; p = 0.046) and male gender (OR, 4.76; 95% CI, 1.22-16.67; p = 0.024) were significantly associated with CIS response. Sixty-day survival probability was higher in CIS-responders compared to non-responders (74% vs. 32%; p < 0.001). Multiple Cox regression analysis revealed younger age (10-year difference) (hazard ratio (HR), 0.65; 95% CI, 0.46-0.91; p = 0.012) and CIS response (HR, 0.19; 95% CI, 0.08-0.45; p < 0.001) as significant parameters for survival probability. In conclusion, reduced risk of death in CIS-responders underlines the usefulness of CIS for the assessment of hyperinflammatory disorders, such as COVID-19, under JAK1/2 inhibitor therapy.
Collapse
Affiliation(s)
- Manfred Weiss
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, 89081 Ulm, Germany; (S.R.); (I.F.); (K.T.)
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Augsburg, 86156 Augsburg, Germany
| | - Jakob Hammersen
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, 07743 Jena, Germany; (J.H.); (S.B.); (C.F.); (A.H.)
| | - Sebastian Rudolphi
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, 89081 Ulm, Germany; (S.R.); (I.F.); (K.T.)
| | - Isabell Formann
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, 89081 Ulm, Germany; (S.R.); (I.F.); (K.T.)
| | - Karl Träger
- Klinik für Anästhesiologie und Intensivmedizin, Universitätsklinikum Ulm, 89081 Ulm, Germany; (S.R.); (I.F.); (K.T.)
| | - Frank G. Rücker
- Klinik für Innere Medizin III, Hämatologie, Onkologie, Palliativmedizin, Rheumatologie und Infektionskrankheiten, Universitätsklinikum Ulm, 89081 Ulm, Germany; (F.G.R.); (B.G.); (K.D.); (F.S.)
| | - Beate Grüner
- Klinik für Innere Medizin III, Hämatologie, Onkologie, Palliativmedizin, Rheumatologie und Infektionskrankheiten, Universitätsklinikum Ulm, 89081 Ulm, Germany; (F.G.R.); (B.G.); (K.D.); (F.S.)
| | - Andreas Allgöwer
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany;
| | - Sebastian Birndt
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, 07743 Jena, Germany; (J.H.); (S.B.); (C.F.); (A.H.)
| | - Christian Fabisch
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, 07743 Jena, Germany; (J.H.); (S.B.); (C.F.); (A.H.)
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, 07743 Jena, Germany; (J.H.); (S.B.); (C.F.); (A.H.)
| | - Konstanze Döhner
- Klinik für Innere Medizin III, Hämatologie, Onkologie, Palliativmedizin, Rheumatologie und Infektionskrankheiten, Universitätsklinikum Ulm, 89081 Ulm, Germany; (F.G.R.); (B.G.); (K.D.); (F.S.)
| | - Paul La Rosée
- Klinik für Innere Medizin II, Hämatologie, Onkologie, Immunologie, Infektiologie und Palliativmedizin, Schwarzwald-Baar Klinikum, 78052 Villingen-Schwenningen, Germany;
| | - Frank Stegelmann
- Klinik für Innere Medizin III, Hämatologie, Onkologie, Palliativmedizin, Rheumatologie und Infektionskrankheiten, Universitätsklinikum Ulm, 89081 Ulm, Germany; (F.G.R.); (B.G.); (K.D.); (F.S.)
| |
Collapse
|
3
|
Ma W, Tang S, Yao P, Zhou T, Niu Q, Liu P, Tang S, Chen Y, Gan L, Cao Y. Advances in acute respiratory distress syndrome: focusing on heterogeneity, pathophysiology, and therapeutic strategies. Signal Transduct Target Ther 2025; 10:75. [PMID: 40050633 PMCID: PMC11885678 DOI: 10.1038/s41392-025-02127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 12/27/2024] [Accepted: 12/27/2024] [Indexed: 03/09/2025] Open
Abstract
In recent years, the incidence of acute respiratory distress syndrome (ARDS) has been gradually increasing. Despite advances in supportive care, ARDS remains a significant cause of morbidity and mortality in critically ill patients. ARDS is characterized by acute hypoxaemic respiratory failure with diffuse pulmonary inflammation and bilateral edema due to excessive alveolocapillary permeability in patients with non-cardiogenic pulmonary diseases. Over the past seven decades, our understanding of the pathology and clinical characteristics of ARDS has evolved significantly, yet it remains an area of active research and discovery. ARDS is highly heterogeneous, including diverse pathological causes, clinical presentations, and treatment responses, presenting a significant challenge for clinicians and researchers. In this review, we comprehensively discuss the latest advancements in ARDS research, focusing on its heterogeneity, pathophysiological mechanisms, and emerging therapeutic approaches, such as cellular therapy, immunotherapy, and targeted therapy. Moreover, we also examine the pathological characteristics of COVID-19-related ARDS and discuss the corresponding therapeutic approaches. In the face of challenges posed by ARDS heterogeneity, recent advancements offer hope for improved patient outcomes. Further research is essential to translate these findings into effective clinical interventions and personalized treatment approaches for ARDS, ultimately leading to better outcomes for patients suffering from ARDS.
Collapse
Affiliation(s)
- Wen Ma
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Songling Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Yao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tingyuan Zhou
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China
| | - Qingsheng Niu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Liu
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Shiyuan Tang
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yao Chen
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Yu Cao
- Department of Emergency Medicine, Institute of Disaster Medicine and Institute of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, China.
| |
Collapse
|
4
|
Tavaci T, Halici Z, Cadirci E, Ozkaraca M, Kasali K. The impact of tocilizumab treatment on the severity of inflammation and survival rates in sepsis is significantly influence by the timing of administration. Inflammopharmacology 2025; 33:1393-1405. [PMID: 39955435 PMCID: PMC11914034 DOI: 10.1007/s10787-025-01649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/06/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response to infection. Due to the high mortality rates and treatment costs associated with sepsis, research is focusing on innovative treatment strategies to replace one dimensional approaches. Recent studies are being conducted on the use of immunotherapeutics in sepsis and the impact of treatment timing. This study aimed to elucidate the significance of treatment timing in sepsis immunotherapy with Tocilizumab (TCZ) and the implications of differences in treatment timing. METHODS LPS-induced sepsis model was established in rats to assess the changes in interleukin-6 (IL-6) over a 24-h sepsis period and its correlation with lung and kidney injury. The impact of TCZ treatments at various time points was evaluated by molecular and histopathological methods. The effect of TCZ treatment timing on survival was analyzed using Kaplan-Meier survival analysis. RESULTS IL-6 reached peak concentrations in the early stages of sepsis, whereas lung damage peaked subsequent to the IL-6 peak, and kidney damage manifested considerably later. The early treatment group, receiving intervention one hour post-sepsis induction, exhibited the most favorable molecular and histopathological outcomes. Conversely, the group receiving the latest treatment, at sixteen hours post-sepsis induction, demonstrated the poorest results. Survival analysis indicated that the group treated at the tenth hour exhibited the highest survival rate. CONCLUSION Variations in the timing of sepsis treatment with TCZ yield significantly different molecular outcomes, histopathological results, and survival rates. A thorough investigation of the timing of immunotherapeutic applications in sepsis treatment will enhance the efficiency of sepsis treatments.
Collapse
Affiliation(s)
- Taha Tavaci
- Faculty of Medicine, Sakarya University, Sakarya, Türkiye.
| | - Zekai Halici
- Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Elif Cadirci
- Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| | - Mustafa Ozkaraca
- Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, Türkiye
| | - Kamber Kasali
- Faculty of Medicine, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
5
|
Spalinger MR, Sanati G, Chatterjee P, Hai R, Li J, Santos AN, Nordgren TM, Tremblay ML, Eckmann L, Hanson E, Scharl M, Wu X, Boland BS, McCole DF. Tofacitinib Mitigates the Increased SARS-CoV-2 Infection Susceptibility Caused by an IBD Risk Variant in the PTPN2 Gene. Cell Mol Gastroenterol Hepatol 2025; 19:101447. [PMID: 39756517 PMCID: PMC11953972 DOI: 10.1016/j.jcmgh.2024.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND & AIMS Coronavirus disease (COVID-19), caused by severe acquired respiratory syndrome-Coronavirus-2 (SARS-CoV-2), triggered a global pandemic with severe medical and socioeconomic consequences. Although fatality rates are higher among the elderly and those with underlying comorbidities, host factors that promote susceptibility to SARS-CoV-2 infection and severe disease are poorly understood. Although individuals with certain autoimmune/inflammatory disorders show increased susceptibility to viral infections, there is incomplete knowledge of SARS-CoV-2 susceptibility in these diseases. The aim of our study was to investigate whether the autoimmunity risk gene, PTPN2, which also confers elevated risk to develop inflammatory bowel disease, affects susceptibility to SARS-CoV-2 viral uptake. METHODS Using samples from PTPN2 genotyped patients with inflammatory bowel disease, PTPN2-deficient mice, and human intestinal and lung epithelial cell lines, we investigated how PTPN2 affects expression of the SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2), and uptake of virus-like particles expressing the SARS-CoV2 spike protein and live SARS-CoV-2 virus. RESULTS We report that the autoimmune PTPN2 loss-of-function risk variant rs1893217 promotes expression of the SARS-CoV-2 receptor, ACE2, and increases cellular entry of SARS-CoV-2 spike protein and live virus. Elevated ACE2 expression and viral entry were mediated by increased Janus kinase-signal transducers and activators of transcription signaling and were reversed by the Janus kinase inhibitor, tofacitinib. CONCLUSION Collectively, our findings uncover a novel risk biomarker for increased expression of the SARS-CoV-2 receptor and viral entry, and identify a clinically approved therapeutic agent to mitigate this risk.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California; Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Golshid Sanati
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Pritha Chatterjee
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California
| | - Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Alina N Santos
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California; Current position: College of Veterinary Medicine, Colorado State University, Fort Collins, Colorado
| | - Michel L Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, Quebec, Canada
| | - Lars Eckmann
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Elaine Hanson
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, and University of Zurich, Zurich, Switzerland
| | - Xiwei Wu
- Integrative Genomics Core, Beckman Research Institute of City of Hope, Monrovia, California
| | - Brigid S Boland
- Division of Gastroenterology, University of California San Diego, La Jolla, California
| | - Declan F McCole
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California.
| |
Collapse
|
6
|
Biwott K, Singh P, Baráth S, Nyariki JN, Hevessy Z, Bacso Z. Dynamic P-glycoprotein expression in early and late memory states of human CD8 + T cells and the protective role of ruxolitinib. Biomed Pharmacother 2025; 182:117780. [PMID: 39740391 DOI: 10.1016/j.biopha.2024.117780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025] Open
Abstract
ABCB1/MDR-1/P-glycoprotein (Pgp) is an ABC transporter responsible for cancer cell multi-drug resistance. It is expressed in cytotoxic T lymphocytes (CTL). Eliminating sensitive cancer cells during high-dose chemotherapy can also damage immune cells. Our study aimed to assess which maturing human CD8 + CTL memory subsets may be affected based on their Pgp protein expression. In an in vitro CTL differentiation model system, we tracked the maturation of naive, effector, and memory cells and the expression of Pgp. This system involves co-culturing blood lymphocytes with proliferation-inhibited JY antigen-presenting B-lymphoblastoid cells expressing HLA-I A2. These JY-primed maturing CTLs were TCR-activated using beads, and the effect of the maturation-modifying JAK1/2 inhibitor ruxolitinib was examined. Multidimensional analysis identified six major CTL subsets: naive, young memory (Tym), stem cell memory (Tscm), central memory (Tcm), effector memory (Tem), and effectors (Te). These subsets were further divided into thirteen specific subsets: TymCD127 + , TymCD127-, Tscm, TcmCD95 + , TcmCD73 +CD95 + , TcmCD95+CD127 + , TcmPD1 + , TemCD95 + , TemraCD127 + , TemraCD127-, TeCD95 + , and TeCD73 +CD95 + . Pgp expression was detectable in naïve cells and dynamically changed across the thirteen identified subsets. Increased Pgp was detected in young memory T cells and in Tscm, TcmCD95 + , and TcmPD1 + human CTL subsets. Unlike other transiently appearing memory cells, the number of cells in these core Pgp-expressing memory subsets stabilized by the end of the contraction phase. Ruxolitinib treatment downregulated effector T-cell polarization while upregulating small memory subsets expressing Pgp. In conclusion, activation increased Pgp expression, whereas ruxolitinib treatment preserved small early and late memory subset core that primarily expressed Pgp.
Collapse
Affiliation(s)
- Kipchumba Biwott
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen 4032, Hungary; Department of Biochemistry and Biotechnology, Technical University of Kenya, Kenya.
| | - Parvind Singh
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary.
| | - Sándor Baráth
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary.
| | | | - Zsuzsanna Hevessy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary.
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary; Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen 4032, Hungary; Dean's office, Faculty of Pharmacy, University of Debrecen, Debrecen 4032, Hungary.
| |
Collapse
|
7
|
Wen S, Xu N, Zhao L, Yang L, Yang H, Chang C, Wang S, Qu C, Song L, Zou W, He Y, Wang G. Ruxolitinib plus standard of care in severe hospitalized adults with severe fever with thrombocytopenia syndrome (SFTS): an exploratory, single-arm trial. BMC Med 2024; 22:204. [PMID: 38764059 PMCID: PMC11103999 DOI: 10.1186/s12916-024-03421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 05/09/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infectious disease, and its morbidity and mortality are increasing. At present, there is no specific therapy available. An exacerbated IFN-I response and cytokine storm are related to the mortality of patients with SFTS. Ruxolitinib is a Janus kinase (JAK) 1/2 inhibitor that can block proinflammatory cytokines and inhibit the type I IFN pathway. We aimed to explore the use of ruxolitinib plus standard of care for severe SFTS. METHODS We conducted a prospective, single-arm study of severe SFTS. We recruited participants aged 18 years or older who were admitted to the hospital with laboratory-confirmed severe SFTS and whose clinical score exceeded 8 points within 6 days of symptom onset. Participants received oral ruxolitinib (10 mg twice a day) for up to 10 days. The primary endpoint was 28-day overall survival. The secondary endpoints included the proportion of participants who needed intensive care unit (ICU) admission, total cost, changes in neurologic symptoms and clinical laboratory parameters, and adverse events (AEs) within 28 days. A historical control group (HC group, n = 26) who met the upper criteria for inclusion and hospitalized from April 1, 2021, to September 16, 2022, was selected and 1:1 matched for baseline characteristics by propensity score matching. RESULTS Between Sep 16, 2022, and Sep 16, 2023, 26 participants were recruited into the ruxolitinib treatment group (RUX group). The 28-day overall mortality was 7.7% in the RUX group and 46.2% in the HC group (P = 0.0017). There was a significantly lower proportion of ICU admissions (15.4% vs 65.4%, p < 0.001) and total hospitalization cost in the RUX group. Substantial improvements in neurologic symptoms, platelet counts, hyperferritinemia, and an absolute decrease in the serum SFTS viral load were observed in all surviving participants. Treatment-related adverse events were developed in 6 patients (23.2%) and worsened in 8 patients (30.8%), and no treatment-related serious adverse events were reported. CONCLUSIONS Our findings indicate that ruxolitinib has the potential to increase the likelihood of survival as well as reduce the proportion of ICU hospitalization and being tolerated in severe SFTS. Further trials are needed. TRAIL REGISTRATION ChiCTR2200063759, September 16, 2022.
Collapse
Affiliation(s)
- Sai Wen
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, P. R. China
| | - Nannan Xu
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, P. R. China
| | - Lianhui Zhao
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, P. R. China
| | - Lulu Yang
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, P. R. China
| | - Hui Yang
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, P. R. China
| | - Caiyun Chang
- Jinan Center for Disease Control and Prevention, Jinan, 250021, Shandong, China
| | - Shanshan Wang
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, P. R. China
| | - Chunmei Qu
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, P. R. China
| | - Li Song
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, P. R. China
| | - Wenlu Zou
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, P. R. China
| | - Yishan He
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, P. R. China
| | - Gang Wang
- Department of Infectious Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong Province, P. R. China.
| |
Collapse
|
8
|
Zhang C, Peng Q, Tang Y, Wang C, Wang S, Yu D, Hou S, Wang Y, Zhang L, Lin N. Resveratrol ameliorates glioblastoma inflammatory response by reducing NLRP3 inflammasome activation through inhibition of the JAK2/STAT3 pathway. J Cancer Res Clin Oncol 2024; 150:168. [PMID: 38546908 PMCID: PMC10978631 DOI: 10.1007/s00432-024-05625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/13/2024] [Indexed: 04/01/2024]
Abstract
OBJECTIVES The aim of this study was to investigate the anti-tumor effect of resveratrol (RSV) on glioblastoma (GBM) and its specific mechanism in improving the inflammatory response of the tumor microenvironment. The tumor microenvironment of GBM is highly neuroinflammatory, inducing tumor immunosuppression. Therefore, ameliorating the inflammatory response is an important focus for anti-tumor research. METHODS The anti-tumor effect of RSV on GBM was demonstrated through in vitro cellular assays, including CCK-8, EdU, PI staining, Transwell, wound healing assay, and flow cytometry. Potential mechanisms of RSV's anti-GBM effects were identified through network pharmacological analysis. In addition, the relationship of RSV with the JAK2/STAT3 signaling pathway and the inflammasome NLRP3 was verified using Western blot. RESULTS RSV significantly inhibited cell viability in GBM cell lines LN-229 and U87-MG. Furthermore, it inhibited the proliferation and invasive migration ability of GBM cells, while promoting apoptosis. Network pharmacological analysis revealed a close association between the anti-GBM effects of RSV and the JAK/STAT signaling pathway, as well as inflammatory responses. Western blot analysis confirmed that RSV inhibited the over-activation of the inflammasome NLRP3 through the JAK2/STAT3 signaling pathway. Partial reversal of RSV's inhibition of inflammasome NLRP3 was observed with the addition of the JAK/STAT agonist RO8191. CONCLUSIONS In vitro, RSV can exert anti-tumor effects on GBM and improve the inflammatory response in the GBM microenvironment by inhibiting the activation of the JAK2/STAT3 signaling pathway. These findings provide new insights into potential therapeutic targets for GBM.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Qian Peng
- Hematology Department, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Hematologic Diseases Research Center of Anhui Medical University, Hefei, 230601, China
| | - Yuhang Tang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Chengcheng Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Shuai Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Dong Yu
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Shiqiang Hou
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Yu Wang
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China
| | - Lanlan Zhang
- Department of Science and Education, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China.
| | - Ning Lin
- Department of Neurosurgery, The First People's Hospital of Chuzhou, The Affiliated Chuzhou Hospital of Anhui Medical University, 12 Zhongyou road, Chuzhou, 239001, China.
| |
Collapse
|
9
|
Suriya U, Mahalapbutr P, Geronikaki A, Kartsev V, Zubenko A, Divaeva L, Chekrisheva V, Petrou A, Oopkaew L, Somngam P, Choowongkomon K, Rungrotmongkol T. Discovery of furopyridine-based compounds as novel inhibitors of Janus kinase 2: In silico and in vitro studies. Int J Biol Macromol 2024; 260:129308. [PMID: 38218283 DOI: 10.1016/j.ijbiomac.2024.129308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/29/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Janus kinase 2 (JAK2), one of the JAK isoforms participating in a JAK/STAT signaling cascade, has been considered a potential clinical target owing to its critical role in physiological processes involved in cell growth, survival, development, and differentiation of various cell types, especially immune and hematopoietic cells. Substantial studies have proven that the inhibition of this target could disrupt the JAK/STAT pathway and provide therapeutic outcomes for cancer, immune disorders, inflammation, and COVID-19. Herein, we performed docking-based virtual screening of 63 in-house furopyridine-based compounds and verified the first-round screened compounds by in vitro enzyme- and cell-based assays. By shedding light on the integration of both in silico and in vitro methods, we could elucidate two promising compounds. PD19 showed cytotoxic effects on human erythroblast cell lines (TF-1 and HEL) with IC50 values of 57.27 and 27.28 μM, respectively, while PD12 exhibited a cytotoxic effect on TF-1 with an IC50 value of 83.47 μM by suppressing JAK2/STAT5 autophosphorylation. In addition, all screened compounds were predicted to meet drug-like criteria based on Lipinski's rule of five, and none of the extreme toxicity features were found. Molecular dynamic simulations revealed that PD12 and PD19 could form stable complexes with JAK2 in an aqueous environment, and the van der Waals interactions were the main force driving the complex formation. Besides, all compounds sufficiently interacted with surrounding amino acids in all crucial regions, including glycine, catalytic, and activation loops. Altogether, PD12 and PD19 identified here could potentially be developed as novel therapeutic inhibitors disrupting the JAK/STAT pathway.
Collapse
Affiliation(s)
- Utid Suriya
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khan Kaen 40002, Thailand.
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | | | - Alexsander Zubenko
- North-Caucasian Zonal Research Veterinary Institute, 346406 Novocherkassk, Russia
| | - Liudmila Divaeva
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Victoria Chekrisheva
- North-Caucasian Zonal Research Veterinary Institute, 346406 Novocherkassk, Russia
| | - Anthi Petrou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, 54124, Greece
| | - Lipika Oopkaew
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phitchakorn Somngam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
10
|
Polastri M, Daniele F, Tagariello F. Assisted mobilisation in critical patients with COVID-19. Pulmonology 2024; 30:152-158. [PMID: 33582124 PMCID: PMC7846233 DOI: 10.1016/j.pulmoe.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 01/05/2023] Open
Abstract
The therapeutic value of early physiotherapeutic treatment in critical respiratory settings has already been clearly outlined in the last fifteen years by several authors. However, there is still a controversial perception of mobilisation by healthcare professions. In-bed cycling has attracted increasing attention having been demonstrated as a feasible and safe intervention in critical settings. Patients with respiratory diseases are typically prone to fatigue and exertional dyspnoea, as we observe in COVID-19 pandemic; in fact, these patients manifest respiratory and motor damage that can even be associated with cognitive and mental limitations. COVID-19 is at risk of becoming a chronic disease if the clinical sequelae such as pulmonary fibrosis are confirmed as permanent outcomes by further analysis, particularly in those cases with overlapping pre-existent pulmonary alterations. In the present article, we propose a practical analysis of the effects of in-bed cycling, and further discuss its potential advantages if used in critical patients with COVID-19 in intensive care settings.
Collapse
Affiliation(s)
- M Polastri
- Department of Continuity of Care and Disability, Physical Medicine and Rehabilitation, St Orsola University Hospital, Bologna, Italy; Department of Clinical, Integrated and Experimental Medicine (DIMES), Respiratory and Critical Care Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy.
| | - F Daniele
- Department of Clinical, Integrated and Experimental Medicine (DIMES), Respiratory and Critical Care Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - F Tagariello
- Department of Clinical, Integrated and Experimental Medicine (DIMES), Respiratory and Critical Care Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Ashok D, Liu T, Criscione J, Prakash M, Kim B, Chow J, Craney M, Papanicolaou KN, Sidor A, Brian Foster D, Pekosz A, Villano J, Kim DH, O'Rourke B. Innate Immune Activation and Mitochondrial ROS Invoke Persistent Cardiac Conduction System Dysfunction after COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574280. [PMID: 38260287 PMCID: PMC10802485 DOI: 10.1101/2024.01.05.574280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Cardiac risk rises during acute SARS-CoV-2 infection and in long COVID syndrome in humans, but the mechanisms behind COVID-19-linked arrhythmias are unknown. This study explores the acute and long term effects of SARS-CoV-2 on the cardiac conduction system (CCS) in a hamster model of COVID-19. Methods Radiotelemetry in conscious animals was used to non-invasively record electrocardiograms and subpleural pressures after intranasal SARS-CoV-2 infection. Cardiac cytokines, interferon-stimulated gene expression, and macrophage infiltration of the CCS, were assessed at 4 days and 4 weeks post-infection. A double-stranded RNA mimetic, polyinosinic:polycytidylic acid (PIC), was used in vivo and in vitro to activate viral pattern recognition receptors in the absence of SARS-CoV-2 infection. Results COVID-19 induced pronounced tachypnea and severe cardiac conduction system (CCS) dysfunction, spanning from bradycardia to persistent atrioventricular block, although no viral protein expression was detected in the heart. Arrhythmias developed rapidly, partially reversed, and then redeveloped after the pulmonary infection was resolved, indicating persistent CCS injury. Increased cardiac cytokines, interferon-stimulated gene expression, and macrophage remodeling in the CCS accompanied the electrophysiological abnormalities. Interestingly, the arrhythmia phenotype was reproduced by cardiac injection of PIC in the absence of virus, indicating that innate immune activation was sufficient to drive the response. PIC also strongly induced cytokine secretion and robust interferon signaling in hearts, human iPSC-derived cardiomyocytes (hiPSC-CMs), and engineered heart tissues, accompanied by alterations in electrical and Ca 2+ handling properties. Importantly, the pulmonary and cardiac effects of COVID-19 were blunted by in vivo inhibition of JAK/STAT signaling or by a mitochondrially-targeted antioxidant. Conclusions The findings indicate that long term dysfunction and immune cell remodeling of the CCS is induced by COVID-19, arising indirectly from oxidative stress and excessive activation of cardiac innate immune responses during infection, with implications for long COVID Syndrome.
Collapse
|
12
|
Wang W, Chen Z, Zhang W, Lin Y, Sun Y, Yao Q, Lu J, Zheng J. Shared diagnostic genes and potential mechanisms between COVID-19 and sepsis revealed by bioinformatics analysis. World J Emerg Med 2024; 15:410-412. [PMID: 39290613 PMCID: PMC11402875 DOI: 10.5847/wjem.j.1920-8642.2024.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/10/2024] [Indexed: 09/19/2024] Open
Affiliation(s)
- Weifei Wang
- Department of Gerontology, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Zhong Chen
- Department of Anesthesiology, Beilun District People's Hospital, Ningbo 315800, China
- Meigu County People's Hospital, Meigu 616450, China
| | - Wenyuan Zhang
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Yuan Lin
- Department of Anesthesiology, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Yaqi Sun
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Qi Yao
- Department of Gerontology, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Jian Lu
- Department of Ultrasound in Medicine, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Jungang Zheng
- Department of Anesthesiology, the First Affiliated Hospital of Ningbo University, Ningbo 315010, China
- The First People's Hospital of Yuexi County, Yuexi 616650, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
13
|
Tian Q, Li Y, Feng S, Liu C, Guo Y, Wang G, Wei H, Chen Z, Gu L, Li M. Inhibition of CCR1 attenuates neuroinflammation via the JAK2/STAT3 signaling pathway after subarachnoid hemorrhage. Int Immunopharmacol 2023; 125:111106. [PMID: 37925951 DOI: 10.1016/j.intimp.2023.111106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND AND PURPOSE Neuroinflammation is an important mechanism underlying brain injury caused by subarachnoid hemorrhage (SAH). C-C chemokine receptor type 1 (CCR1)-mediated inflammation is involved in the pathology of many central nervous system diseases. Herein, we investigated whether inhibition of CCR1 alleviated neuroinflammation after experimental SAH and aimed to elucidate the mechanisms of its potential protective effects. METHODS To analyze SAH transcriptome data R studio was used, and a mouse model of SAH was established using endovascular perforations. In this model, the selective CCR1 antagonist Met-RANTES (Met-R) and the CCR1 agonist recombinant CCL5 (rCCL5) were administered 1 h after SAH induction. To investigate the possible downstream mechanisms of CCR1, the JAK2 inhibitor AG490 and the JAK2 activator coumermycin A1 (C-A1) were administered 1 h after SAH induction. Furthermore, post-SAH evaluation, including SAH grading, neurological function tests, Western blot, the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and Fluoro-Jade B and fluorescent immunohistochemical staining were performed. Cerebrospinal fluid (CSF) samples were detected by ELISA. RESULTS CCL5 and CCR1 expression levels increased significantly following SAH. Met-R significantly improved neurological deficits in mice, decreased apoptosis and degeneration of ipsilateral cerebral cortex neurons, reduced infiltrating neutrophils, and promoted microglial activation after SAH induction. Furthermore, Met-R inhibited the expression of p-JAK2, p-STAT3, interleukin-1β, and tumor necrosis factor-α. However, the protective effects of Met-R were abolished by C-A1 treatment. Furthermore, rCCL5 injection aggravated neurological dysfunction and increased the expression of p-JAK2, p-STAT3, interleukin-1β, and tumor necrosis factor-α in SAH mice, all of which were reversed by the administration of AG490. Finally, the levels of CCL5 and CCR1 were elevate in the CSF of SAH patient and high level of CCL5 and CCR1 levels were associated with poor outcome. CONCLUSION The present results suggested that inhibition of CCR1 attenuates neuroinflammation after SAH via the JAK2/STAT3 signaling pathway, which may provide a new target for the treatment of SAH.
Collapse
Affiliation(s)
- Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Shi Feng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yujia Guo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Heng Wei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
14
|
Asghari F, Asghary A, Majidi Zolbanin N, Faraji F, Jafari R. Immunosenescence and Inflammaging in COVID-19. Viral Immunol 2023; 36:579-592. [PMID: 37797216 DOI: 10.1089/vim.2023.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Despite knowledge gaps in understanding the full spectrum of the hyperinflammatory phase caused by SARS-CoV-2, according to the World Health Organization (WHO), COVID-19 is still the leading cause of death worldwide. Susceptible people to severe COVID-19 are those with underlying medical conditions or those with dysregulated and senescence-associated immune responses. As the immune system undergoes aging in the elderly, such drastic changes predispose them to various diseases and affect their responsiveness to infections, as seen in COVID-19. At-risk groups experience poor prognosis in terms of disease recovery. Changes in the quantity and quality of immune cell function have been described in numerous literature sites. Impaired immune cell function along with age-related metabolic changes can lead to features such as hyperinflammatory response, immunosenescence, and inflammaging in COVID-19. Inflammaging is related to the increased activity of the most inflammatory factors and is the main cause of age-related diseases and tissue failure in the elderly. Since hyperinflammation is a common feature of most severe cases of COVID-19, this pathway, which is not fully understood, leads to immunosenescence and inflammaging in some individuals, especially in the elderly and those with comorbidities. In this review, we shed some light on the age-related abnormalities of innate and adaptive immune cells and how hyperinflammatory immune responses contribute to the inflammaging process, leading to clinical deterioration. Further, we provide insights into immunomodulation-based therapeutic approaches, which are potentially important considerations in vaccine design for elderly populations.
Collapse
Affiliation(s)
- Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
15
|
Hammersen J, Birndt S, Döhner K, Reuken P, Stallmach A, Sauerbrey P, La Rosée F, Pfirrmann M, Fabisch C, Weiss M, Träger K, Bremer H, Russo S, Illerhaus G, Drömann D, Schneider S, La Rosée P, Hochhaus A. The JAK1/2 inhibitor ruxolitinib in patients with COVID-19 triggered hyperinflammation: the RuxCoFlam trial. Leukemia 2023; 37:1879-1886. [PMID: 37507425 PMCID: PMC10457200 DOI: 10.1038/s41375-023-01979-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Dysregulated hyperinflammatory response is key in the pathogenesis in patients with severe COVID-19 leading to acute respiratory distress syndrome and multiorgan failure. Whilst immunosuppression has been proven to be effective, potential biological targets and optimal timing of treatment are still conflicting. We sought to evaluate efficacy and safety of the Janus Kinase 1/2 inhibitor ruxolitinib, employing the previously developed COVID-19 Inflammation Score (CIS) in a prospective multicenter open label phase II trial (NCT04338958). Primary objective was reversal of hyperinflammation (CIS reduction of ≥25% at day 7 in ≥20% of patients). In 184 patients with a CIS of ≥10 (median 12) ruxolitinib was commenced at an initial dose of 10 mg twice daily and applied over a median of 14 days (range, 2-31). On day 7, median CIS declined to 6 (range, 1-13); 71% of patients (CI 64-77%) achieved a ≥25% CIS reduction accompanied by a reduction of markers of inflammation. Median cumulative dose was 272.5 mg/d. Treatment was well tolerated without any grade 3-5 adverse events related to ruxolitinib. Forty-four patients (23.9%) died, all without reported association to study drug. In conclusion, ruxolitinib proved to be safe and effective in a cohort of COVID-19 patients with defined hyperinflammation.
Collapse
Affiliation(s)
- J Hammersen
- Universitätsklinikum Jena, Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Jena, Germany
| | - S Birndt
- Universitätsklinikum Jena, Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Jena, Germany
| | - K Döhner
- Universitätsklinikum Ulm, Klinik für Innere Medizin III, Hämatologie, Onkologie, Palliativmedizin, Rheumatologie und Infektionskrankheiten, Ulm, Germany
| | - P Reuken
- Universitätsklinikum Jena, Klinik für Innere Medizin IV, Gastroenterologie, Hepatologie, Infektiologie, Interdisziplinäre Endoskopie, Jena, Germany
| | - A Stallmach
- Universitätsklinikum Jena, Klinik für Innere Medizin IV, Gastroenterologie, Hepatologie, Infektiologie, Interdisziplinäre Endoskopie, Jena, Germany
| | - P Sauerbrey
- Universitätsklinikum Jena, Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Jena, Germany
| | - F La Rosée
- Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - M Pfirrmann
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), Medizinische Fakultät, Ludwig-Maximilians-Universität München, München, Germany
| | - C Fabisch
- Universitätsklinikum Jena, Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Jena, Germany
| | - M Weiss
- Universitätsklinikum Ulm, Klinik für Anästhesiologie und Intensivmedizin, Ulm, Germany
| | - K Träger
- Universitätsklinikum Ulm, Klinik für Anästhesiologie und Intensivmedizin, Ulm, Germany
| | - H Bremer
- Schwarzwald-Baar Klinikum, Lungenzentrum Donaueschingen, Donaueschingen, Germany
| | - S Russo
- Schwarzwald-Baar Klinikum, Klinik für Anästhesiologie, Intensiv-, Notfall- und Schmerzmedizin, Villingen-Schwenningen, Germany
| | - G Illerhaus
- Klinikum Stuttgart, Klinik für Hämatologie, Onkologie, Stammzelltransplantation und Palliativmedizin, Stuttgart, Germany
| | - D Drömann
- Universitätsklinikum Schleswig-Holstein, Medizinische Klinik III, Pulmologie, Lübeck, Germany
| | - S Schneider
- SRH Klinikum Gera, Klinik für Pneumologie/Infektiologie, Hämatologie/Onkologie, Rheumatologie, Gera, Germany
| | - P La Rosée
- Schwarzwald-Baar Klinikum, Klinik für Innere Medizin II, Hämatologie, Onkologie, Immunologie, Infektiologie und Palliativmedizin, Villingen-Schwenningen, Germany
| | - A Hochhaus
- Universitätsklinikum Jena, Klinik für Innere Medizin II, Hämatologie und Internistische Onkologie, Jena, Germany.
| |
Collapse
|
16
|
Zhang X, Ahn S, Qiu P, Datta S. Identification of shared biological features in four different lung cell lines infected with SARS-CoV-2 virus through RNA-seq analysis. Front Genet 2023; 14:1235927. [PMID: 37662846 PMCID: PMC10468990 DOI: 10.3389/fgene.2023.1235927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has resulted in millions of confirmed cases and deaths worldwide. Understanding the biological mechanisms of SARS-CoV-2 infection is crucial for the development of effective therapies. This study conducts differential expression (DE) analysis, pathway analysis, and differential network (DN) analysis on RNA-seq data of four lung cell lines, NHBE, A549, A549.ACE2, and Calu3, to identify their common and unique biological features in response to SARS-CoV-2 infection. DE analysis shows that cell line A549.ACE2 has the highest number of DE genes, while cell line NHBE has the lowest. Among the DE genes identified for the four cell lines, 12 genes are overlapped, associated with various health conditions. The most significant signaling pathways varied among the four cell lines. Only one pathway, "cytokine-cytokine receptor interaction", is found to be significant among all four cell lines and is related to inflammation and immune response. The DN analysis reveals considerable variation in the differential connectivity of the most significant pathway shared among the four lung cell lines. These findings help to elucidate the mechanisms of SARS-CoV-2 infection and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Seungjun Ahn
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peihua Qiu
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Chen S, Zhang C, Chen D, Dong L, Chang T, Tang ZH. Advances in attractive therapeutic approach for macrophage activation syndrome in COVID-19. Front Immunol 2023; 14:1200289. [PMID: 37483597 PMCID: PMC10358730 DOI: 10.3389/fimmu.2023.1200289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Nowadays, people have relaxed their vigilance against COVID-19 due to its declining infection numbers and attenuated virulence. However, COVID-19 still needs to be concern due to its emerging variants, the relaxation of restrictions as well as breakthrough infections. During the period of the COVID-19 infection, the imbalanced and hyper-responsive immune system plays a critical role in its pathogenesis. Macrophage Activation Syndrome (MAS) is a fatal complication of immune system disease, which is caused by the excessive activation and proliferation of macrophages and cytotoxic T cells (CTL). COVID-19-related hyperinflammation shares common clinical features with the above MAS symptoms, such as hypercytokinemia, hyperferritinemia, and coagulopathy. In MAS, immune exhaustion or defective anti-viral responses leads to the inadequate cytolytic capacity of CTL which contributes to prolonged interaction between CTL, APCs and macrophages. It is possible that the same process also occurred in COVID-19 patients, and further led to a cytokine storm confined to the lungs. It is associated with the poor prognosis of severe patients such as multiple organ failure and even death. The main difference of cytokine storm is that in COVID-19 pneumonia is mainly the specific damage of the lung, while in MAS is easy to develop into a systemic. The attractive therapeutic approach to prevent MAS in COVID-19 mainly includes antiviral, antibiotics, convalescent plasma (CP) therapy and hemadsorption, extensive immunosuppressive agents, and cytokine-targeted therapies. Here, we discuss the role of the therapeutic approaches mentioned above in the two diseases. And we found that the treatment effect of the same therapeutic approach is different.
Collapse
Affiliation(s)
- Shunyao Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Zhang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng Chen
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Dong
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Teding Chang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Tang
- Department of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Wuhan, China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Xue Y, Mei H, Chen Y, Griffin JD, Liu Q, Weisberg E, Yang J. Repurposing clinically available drugs and therapies for pathogenic targets to combat SARS-CoV-2. MedComm (Beijing) 2023; 4:e254. [PMID: 37193304 PMCID: PMC10183156 DOI: 10.1002/mco2.254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/11/2023] [Accepted: 03/07/2023] [Indexed: 05/18/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected a large portion of the global population, both physically and mentally. Current evidence suggests that the rapidly evolving coronavirus subvariants risk rendering vaccines and antibodies ineffective due to their potential to evade existing immunity, with enhanced transmission activity and higher reinfection rates that could lead to new outbreaks across the globe. The goal of viral management is to disrupt the viral life cycle as well as to relieve severe symptoms such as lung damage, cytokine storm, and organ failure. In the fight against viruses, the combination of viral genome sequencing, elucidation of the structure of viral proteins, and identifying proteins that are highly conserved across multiple coronaviruses has revealed many potential molecular targets. In addition, the time- and cost-effective repurposing of preexisting antiviral drugs or approved/clinical drugs for these targets offers considerable clinical advantages for COVID-19 patients. This review provides a comprehensive overview of various identified pathogenic targets and pathways as well as corresponding repurposed approved/clinical drugs and their potential against COVID-19. These findings provide new insight into the discovery of novel therapeutic strategies that could be applied to the control of disease symptoms emanating from evolving SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Yiying Xue
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
| | - Yisa Chen
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - James D. Griffin
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
- University of Science and Technology of ChinaHefeiAnhuiChina
- Hefei Cancer HospitalChinese Academy of SciencesHefeiChina
| | - Ellen Weisberg
- Department of Medical Oncology, Dana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jing Yang
- Department of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
| |
Collapse
|
19
|
McManus D, Davis MW, Ortiz A, Britto-Leon C, Dela Cruz CS, Topal JE. Immunomodulatory Agents for Coronavirus Disease-2019 Pneumonia. Clin Chest Med 2023; 44:299-319. [PMID: 37085221 PMCID: PMC9678826 DOI: 10.1016/j.ccm.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Morbidity and mortality from COVID-19 is due to severe inflammation and end-organ damage caused by a hyperinflammatory response. Multiple immunomodulatory agents to attenuate this response have been studied. Corticosteroids, specifically dexamethasone, have been shown to reduce mortality in hospitalized patients who require supplemental oxygen. Interleukin-6 antagonist, tocilizimab, and Janus kinase inhibitors have also been shown to reduce mortality. However, patients who have severe pulmonary end-organ damage requiring mechanical ventilation or extracorporeal membrane oxygenation appear not to benefit from immunomodulatory therapies. This highlights the importance of appropriate timing to initiate immunomodulatory therapies in the management of severe COVID-19 disease.
Collapse
Affiliation(s)
- Dayna McManus
- Department of Pharmacy Services, Yale New Haven Hospital, 20 York Street, New Haven, CT 06510, USA.
| | - Matthew W Davis
- Department of Pharmacy Services, Yale New Haven Hospital, 20 York Street, New Haven, CT 06510, USA
| | - Alex Ortiz
- Pulmonary, Critical Care & Sleep Medicine, 300 Cedar Street, P.O. Box 208057, New Haven, CT 06520-8057, USA
| | - Clemente Britto-Leon
- Pulmonary, Critical Care & Sleep Medicine, 300 Cedar Street, P.O. Box 208057, New Haven, CT 06520-8057, USA
| | - Charles S Dela Cruz
- Pulmonary, Critical Care & Sleep Medicine, 300 Cedar Street, P.O. Box 208057, New Haven, CT 06520-8057, USA
| | - Jeffrey E Topal
- Department of Pharmacy Services, Yale New Haven Hospital, 20 York Street, New Haven, CT 06510, USA.
| |
Collapse
|
20
|
Sacchi A, Giannessi F, Sabatini A, Percario ZA, Affabris E. SARS-CoV-2 Evasion of the Interferon System: Can We Restore Its Effectiveness? Int J Mol Sci 2023; 24:ijms24119353. [PMID: 37298304 DOI: 10.3390/ijms24119353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Type I and III Interferons (IFNs) are the first lines of defense in microbial infections. They critically block early animal virus infection, replication, spread, and tropism to promote the adaptive immune response. Type I IFNs induce a systemic response that impacts nearly every cell in the host, while type III IFNs' susceptibility is restricted to anatomic barriers and selected immune cells. Both IFN types are critical cytokines for the antiviral response against epithelium-tropic viruses being effectors of innate immunity and regulators of the development of the adaptive immune response. Indeed, the innate antiviral immune response is essential to limit virus replication at the early stages of infection, thus reducing viral spread and pathogenesis. However, many animal viruses have evolved strategies to evade the antiviral immune response. The Coronaviridae are viruses with the largest genome among the RNA viruses. Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) caused the coronavirus disease 2019 (COVID-19) pandemic. The virus has evolved numerous strategies to contrast the IFN system immunity. We intend to describe the virus-mediated evasion of the IFN responses by going through the main phases: First, the molecular mechanisms involved; second, the role of the genetic background of IFN production during SARS-CoV-2 infection; and third, the potential novel approaches to contrast viral pathogenesis by restoring endogenous type I and III IFNs production and sensitivity at the sites of infection.
Collapse
Affiliation(s)
- Alessandra Sacchi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Flavia Giannessi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Andrea Sabatini
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Zulema Antonia Percario
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Elisabetta Affabris
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| |
Collapse
|
21
|
Völkel S, Tarawneh TS, Sacher L, Bhagwat AM, Karim I, Mack HID, Wiesmann T, Beutel B, Hoyer J, Keller C, Renz H, Burchert A, Neubauer A, Graumann J, Skevaki C, Mack EKM. Serum proteomics hint at an early T-cell response and modulation of SARS-CoV-2-related pathogenic pathways in COVID-19-ARDS treated with Ruxolitinib. Front Med (Lausanne) 2023; 10:1176427. [PMID: 37293294 PMCID: PMC10244732 DOI: 10.3389/fmed.2023.1176427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 06/10/2023] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) in corona virus disease 19 (COVID-19) is triggered by hyperinflammation, thus providing a rationale for immunosuppressive treatments. The Janus kinase inhibitor Ruxolitinib (Ruxo) has shown efficacy in severe and critical COVID-19. In this study, we hypothesized that Ruxo's mode of action in this condition is reflected by changes in the peripheral blood proteome. Methods This study included 11 COVID-19 patients, who were treated at our center's Intensive Care Unit (ICU). All patients received standard-of-care treatment and n = 8 patients with ARDS received Ruxo in addition. Blood samples were collected before (day 0) and on days 1, 6, and 10 of Ruxo treatment or, respectively, ICU admission. Serum proteomes were analyzed by mass spectrometry (MS) and cytometric bead array. Results Linear modeling of MS data yielded 27 significantly differentially regulated proteins on day 1, 69 on day 6 and 72 on day 10. Only five factors (IGLV10-54, PSMB1, PGLYRP1, APOA5, WARS1) were regulated both concordantly and significantly over time. Overrepresentation analysis revealed biological processes involving T-cells only on day 1, while a humoral immune response and complement activation were detected at day 6 and day 10. Pathway enrichment analysis identified the NRF2-pathway early under Ruxo treatment and Network map of SARS-CoV-2 signaling and Statin inhibition of cholesterol production at later time points. Conclusion Our results indicate that the mechanism of action of Ruxo in COVID-19-ARDS can be related to both known effects of this drug as a modulator of T-cells and the SARS-CoV-2-infection.
Collapse
Affiliation(s)
- Sara Völkel
- Institute of Laboratory Medicine, Philipps-University Marburg, Marburg, Germany
| | - Thomas S. Tarawneh
- Department of Hematology, Oncology and Immunology, University Hospital Gießen and Marburg, Philipps-University Marburg, Marburg, Germany
| | - Laura Sacher
- Institute of Laboratory Medicine, Philipps-University Marburg, Marburg, Germany
| | - Aditya M. Bhagwat
- Institute of Translational Proteomics, Philipps-University Marburg, Marburg, Germany
| | - Ihab Karim
- Department of Hematology, Oncology and Immunology, University Hospital Gießen and Marburg, Philipps-University Marburg, Marburg, Germany
| | - Hildegard I. D. Mack
- Institute for Biomedical Aging Research, Leopold-Franzens-Universität Innsbruck, Innsbruck, Austria
| | - Thomas Wiesmann
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Gießen and Marburg, Philipps-University Marburg, Marburg, Germany
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Diakonie-Klinikum Schwäbisch Hall, Schwäbisch Hall, Germany
| | - Björn Beutel
- Department of Pulmonary and Critical Care Medicine, University Hospital Gießen and Marburg, Philipps-University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Member of the Universities of Gießen and Marburg Lung Center, Gießen, Germany
| | - Joachim Hoyer
- Department of Nephrology, University Hospital Gießen and Marburg, Philipps-University Marburg, Marburg, Germany
| | - Christian Keller
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Philipps-University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Member of the Universities of Gießen and Marburg Lung Center, Gießen, Germany
| | - Andreas Burchert
- Department of Hematology, Oncology and Immunology, University Hospital Gießen and Marburg, Philipps-University Marburg, Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology and Immunology, University Hospital Gießen and Marburg, Philipps-University Marburg, Marburg, Germany
| | - Johannes Graumann
- Institute of Translational Proteomics, Philipps-University Marburg, Marburg, Germany
- Biomolecular Mass Spectrometry, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Chrysanthi Skevaki
- Institute of Laboratory Medicine, Philipps-University Marburg, Marburg, Germany
- German Center for Lung Research (DZL), Member of the Universities of Gießen and Marburg Lung Center, Gießen, Germany
| | - Elisabeth K. M. Mack
- Department of Hematology, Oncology and Immunology, University Hospital Gießen and Marburg, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
22
|
Priyandoko D, Widowati W, Kusuma HSW, Afifah E, Wijayanti CR, Rizal R, Sholihah IA, Permatasari GW, Ramadhani A, Utomo DH. Inflammation inhibitory activity of green tea, soybean, and guava extracts during Sars-Cov-2 infection through TNF protein in cytokine storm. Comput Biol Chem 2023; 105:107898. [PMID: 37247574 DOI: 10.1016/j.compbiolchem.2023.107898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/05/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Coronavirus disease is caused by the pathogen severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) known as COVID-19. COVID-19 has caused the deaths of 6,541,936 people worldwide as of September 27th, 2022. SARS-CoV-2 severity is determined by a cytokine storm condition, in which the innate immune system creates an unregulated and excessive production of pro-inflammatory such IL-1, IL-6, NF Kappa B, and TNF alpha signaling molecules known as cytokines. The patient died due to respiratory organ failure and an acute complication because of the hyper-inflammation phenomenon. Green tea, soybean, and guava bioactive substances are well-known to act as anti-inflammation, and antioxidants become prospective COVID-19 illness candidates to overcome the cytokine storm. Our research aims to discover the bioactivity, bioavailability, and protein targets of green tea, soybean, and guava bioactive compounds as anti-inflammatory agents via the TNF inhibition pathway. The experiment uses in silico methods and harnesses the accessible datasets. Samples of 3D structure and SMILE identity of bioactive compounds were retrieved from the KNApSAck and Dr Duke databases. The QSAR analysis was done by WAY2DRUG web server, while the ADME prediction was performed using SWISSADME web server, following the Lipinsky rules of drugs. The target protein and protein-protein interaction were analyzed using STRING DB and Cytoscape software. Lastly, molecular docking was performed using Autodock 4.2 and visualization with BioVia Discovery Studio 2019. The identified study showed the potential of green tea, soybean, and guava's bioactive compounds have played an important role as anti-inflammation agents through TNF inhibitor pathway.
Collapse
Affiliation(s)
- Didik Priyandoko
- Biology Study Program, Universitas Pendidikan Indonesia, Indonesia.
| | - Wahyu Widowati
- Faculty of Medical, Maranatha Christian University, Indonesia.
| | | | - Ervi Afifah
- Aretha Medika Utama, Biomolecular and Biomedical Research Center, Indonesia
| | | | - Rizal Rizal
- Aretha Medika Utama, Biomolecular and Biomedical Research Center, Indonesia; Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
| | - Ika Adhani Sholihah
- Aretha Medika Utama, Biomolecular and Biomedical Research Center, Indonesia; School of Life Sciences and Technology, Institut Teknologi Bandung, Indonesia
| | | | - Anggia Ramadhani
- Indonesian Research Institute for Bioinformatics and Biomolecular, Malang, Indonesia
| | | |
Collapse
|
23
|
Lin Q, Li J, Wang Y, Zang J. Design, synthesis, and biological evaluation of novel ruxolitinib and baricitinib analogues for potential use against COVID-19. Chem Biol Drug Des 2023; 101:760-771. [PMID: 36366971 PMCID: PMC9878086 DOI: 10.1111/cbdd.14179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The coronavirus pandemic known as COVID-19 caused by severe acute respiratory syndrome coronavirus 2, threatens public health worldwide. Approval of COVID-19 vaccines and antiviral drugs have greatly reduced the severe cases and mortality rate. However, the continuous mutations of viruses are challenging the efficacies of vaccines and antiviral drugs. A drug repurposing campaign has identified two JAK1/2 inhibitors ruxolitinib and baricitinib as potential antiviral drugs. Ruxolitinib and baricitinib exert dual antiviral effect by modulation of inflammatory response via JAK1/2 and inhibition of viral entry via AAK1 and GAK. Inspired by this, in an effort to diversify chemical space, three analogues ((R)-8, (S)-8, and 9) of ruxolitinib and baricitinb were made using a scaffold hopping strategy. Compound 9 displayed potent and comparable potencies against AAK1, JAK1, and JAK2 compared to baricitinib. Notably, compound 9 showed better selectivity for AAK1, JAK1, and JAK2 over GAK. Besides, compound 9 displayed good druglikeness according to Lipinski's and Veber's rule. We thereby identified a potential lead compound 9, which might be used for the further development of anti-coronaviral therapy.
Collapse
Affiliation(s)
- Qin Lin
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Zhejiang, China
| | - Jun Li
- The Obstetrics and Gynecology Hospital of Medical Center of Fudan University, Shanghai, China
| | - Yinping Wang
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Zhejiang, China
| | - Jie Zang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Bankole AA, Nwaonu J, Saeed J. Impact of SARS-CoV-2/COVID-19 on Provision of Medical Care to Patients With Systemic Autoimmune Rheumatic Disease and the Practice of Rheumatology. Cureus 2023; 15:e35402. [PMID: 36987476 PMCID: PMC10040147 DOI: 10.7759/cureus.35402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 03/30/2023] Open
Abstract
The SARS-CoV-2 pandemic has had a significant impact on the healthcare field that resulted in changes to the way safe and effective medical care is delivered. The effects range from service disruption including ambulatory clinic closure due to both patient and provider concerns, to lack of capacity in hospital services. In rheumatology, there were other effects including viral infection-related autoantibody production, concerns about the use of systemic immunosuppression in the presence of an infectious pandemic and even concerns for viral infection-induced flares of rheumatic disease. Coronavirus disease 2019 (COVID-19) led to the rapid adoption of innovative technologies that permitted the introduction and increased use of telemedicine via a number of platforms. Rapid discoveries and innovations led to the development of diagnostic and therapeutic agents in the management of COVID-19. Scientific advancement and discoveries around COVID-19 infection, symptoms, autoantibody production, chronic sequela and the repurposing of rheumatic immunosuppressive agents led to improved survival and an expanded role for the rheumatologist. Rheumatologists may sometimes be involved in the diagnosis and management of the hospitalized COVID-19 patient. In the ambulatory clinic, a rheumatologist also helps to differentiate between symptoms of long COVID and those of systemic autoimmune rheumatic disease (SARD). Rheumatologists must also grapple with the concerns related to immunosuppressive therapy and the risk of COVID-19 infections. In addition, there are concerns around vaccine effectiveness in people with SARD and those on immunosuppressive medications. Although the SARS-CoV-2 pandemic and the effects on healthcare resulted in difficulties, both patients and providers have risen to the challenge. The long-term outcome of COVID-19 for the medical system and rheumatologists in particular is not yet fully understood and will need further study. This review concentrates on the changing role of the rheumatologists, improved understanding of rheumatic disease and immunosuppressive therapies in the wake of the pandemic and how this has led to an improvement in the care of patients with COVID-19.
Collapse
Affiliation(s)
| | - Jane Nwaonu
- Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, USA
| | | |
Collapse
|
25
|
Han J, Hua Z, Yang WJ, Wang S, Yan F, Wang JN, Sun T. Resveratrol suppresses neuroinflammation to alleviate mechanical allodynia by inhibiting Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway in a rat model of spinal cord injury. Front Mol Neurosci 2023; 16:1116679. [PMID: 36873101 PMCID: PMC9977815 DOI: 10.3389/fnmol.2023.1116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Background Neuropathic pain (NP) is one of intractable complications of spinal cord injury (SCI) and lacks effective treatment. Resveratrol (Res) has been shown to possess potent anti-inflammatory and anti-nociceptive effects. In this study, we investigated the analgesic effect of Res and its underlying mechanism in a rat model of SCI. Methods The rat thoracic (T10) spinal cord contusion injury model was established, and mechanical thresholds were evaluated during an observation period of 21 days. Intrathecal administration with Res (300 μg/10 μl) was performed once a day for 7 days after the operation. On postoperative day 7, the expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were determined by enzyme-linked immunosorbent assay (ELISA) and Real-time quantitative PCR (RT-qPCR), the expression of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway was determined by western blot and RT-qPCR, and the co-labeled phospho-STAT3 (p-STAT3) with neuronal nuclear antigen (NeuN), glial fibrillary acidic protein (GFAP), and ionized calcium-binding adapter molecule 1 (Iba-1) were explored by double immunofluorescence staining in the lumbar spinal dorsal horns. The temporal changes of p-STAT3 were investigated by western blot on the 1st, 3rd, 7th, 14th, and 21st days after the operation. Results Intrathecal administration with Res for 7 successive days alleviated mechanical allodynia of rats during the observation period. Meanwhile, treatment with Res suppressed the production of pro-inflammatory factors TNF-α, IL-1β and IL-6, and inhibited the expressions of phospho-JAK2 and p-STAT3 in the lumbar spinal dorsal horns on postoperative day 7. Additionally, the protein expression of p-STAT3 was significantly increased on the 1st day following the operation and remained elevated during the next 21 days, immunofluorescence suggested that the up-regulated p-STAT3 was co-located with glial cells and neurons. Conclusion Our current results indicated that intrathecal administration with Res effectively alleviated mechanical allodynia after SCI in rats, and its analgesic mechanism might be to suppress neuroinflammation by partly inhibiting JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jie Han
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen Hua
- College of Sports Medicines and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Wen-Jie Yang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shu Wang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fang Yan
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun-Nan Wang
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
26
|
Ruxolitinib for severe fever with thrombocytopenia syndrome (SFTS). Heliyon 2022; 8:e12462. [PMID: 36590553 PMCID: PMC9798169 DOI: 10.1016/j.heliyon.2022.e12462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high mortality. A 73-year-old woman presented to the hospital with fever after being bitten by ticks and was diagnosed with SFTS. Three days after treatment with high-flow oxygen and supportive therapy, her condition deteriorated to septic shock and multiple organ failure. Ruxolitinib, a JAK1/2 inhibitor, was used for the treatment of cytokine release syndrome, and the patient finally recovered. Ruxolitinib and other host-based immunomodulatory drugs may be potential treatments for fatal SFTS.
Collapse
|
27
|
Alipoor R, Ranjbar R. Small-molecule metabolites in SARS-CoV-2 treatment: a comprehensive review. Biol Chem 2022; 404:569-584. [PMID: 36490203 DOI: 10.1515/hsz-2022-0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has quickly spread all over the world. In this respect, traditional medicinal chemistry, repurposing, and computational approaches have been exploited to develop novel medicines for treating this condition. The effectiveness of chemicals and testing methods in the identification of new promising therapies, and the extent of preparedness for future pandemics, have been further highly advantaged by recent breakthroughs in introducing noble small compounds for clinical testing purposes. Currently, numerous studies are developing small-molecule (SM) therapeutic products for inhibiting SARS-CoV-2 infection and replication, as well as managing the disease-related outcomes. Transmembrane serine protease (TMPRSS2)-inhibiting medicinal products can thus prevent the entry of the SARS-CoV-2 into the cells, and constrain its spreading along with the morbidity and mortality due to the coronavirus disease 2019 (COVID-19), particularly when co-administered with inhibitors such as chloroquine (CQ) and dihydroorotate dehydrogenase (DHODH). The present review demonstrates that the clinical-stage therapeutic agents, targeting additional viral proteins, might improve the effectiveness of COVID-19 treatment if applied as an adjuvant therapy side-by-side with RNA-dependent RNA polymerase (RdRp) inhibitors.
Collapse
Affiliation(s)
- Reza Alipoor
- Student Research Committee , Hormozgan University of Medical Sciences , Bandar Abbas , Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
28
|
Targeted therapy in Coronavirus disease 2019 (COVID-19): Implication from cell and gene therapy to immunotherapy and vaccine. Int Immunopharmacol 2022; 111:109161. [PMID: 35998506 PMCID: PMC9385778 DOI: 10.1016/j.intimp.2022.109161] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) is a highly pathogenic and transmissible virus. Infection caused by SARS-CoV-2 known as Coronavirus disease 2019 (COVID-19) can be severe, especially among high risk populations affected of underlying medical conditions. COVID-19 is characterized by the severe acute respiratory syndrome, a hyper inflammatory syndrome, vascular injury, microangiopathy and thrombosis. Antiviral drugs and immune modulating methods has been evaluated. So far, a particular therapeutic option has not been approved for COVID-19 and a variety of treatments have been studied for COVID-19 including, current treatment such as oxygen therapy, corticosteroids, antiviral agents until targeted therapy and vaccines which are diverse in each patient and have various outcomes. According to the findings of different in vitro and in vivo studies, some novel approach such as gene editing, cell based therapy, and immunotherapy may have significant potential in the treatment of COVID-19. Based on these findings, this paper aims to review the different strategies of treatment against COVID-19 and provide a summary from traditional and newer methods in curing COVID-19.
Collapse
|
29
|
Fiorino F, Ciabattini A, Sicuranza A, Pastore G, Santoni A, Simoncelli M, Polvere J, Galimberti S, Baratè C, Sammartano V, Montagnani F, Bocchia M, Medaglini D. The third dose of mRNA SARS-CoV-2 vaccines enhances the spike-specific antibody and memory B cell response in myelofibrosis patients. Front Immunol 2022; 13:1017863. [PMID: 36248803 PMCID: PMC9556722 DOI: 10.3389/fimmu.2022.1017863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Vaccination against SARS-CoV-2 using mRNA-based vaccines has been highly recommended for fragile subjects, including myelofibrosis patients (MF). Available data on the immune responsiveness of MF patients to mRNA SARS-CoV-2 vaccination, and the impact of the therapy with the JAK inhibitor ruxolitinib, are still fragmented. Here, we profile the spike-specific IgG and memory B-cell response in MF patients, treated or not with ruxolitinib, after the second and the third dose of SARS-CoV-2 BNT162b2 (BioNTech) and mRNA-1273 (Moderna) vaccines. Plasma and peripheral blood mononuclear cells samples were collected before vaccination, post the second and the third doses and tested for spike-specific antibodies, ACE2/RBD antibody inhibition binding activity and spike-specific B cells. The third vaccine dose significantly increased the spike-specific IgG titers in both ruxolitinib-treated and untreated patients, and strongly enhanced the percentage of subjects with antibodies capable of in vitro blocking ACE2/RBD interaction, from 50% up to 80%. While a very low frequency of spike-specific B cells was measured in blood 7 days after the second vaccination dose, a strong and significant increase was elicited by the third dose administration, generating a B cell response similar to the one detected in healthy controls. Despite the overall positive impact of the third dose in MF patients, two patients that were under active concomitant immunosuppressive treatment at the time of vaccination, and a patient that received lymphodepleting therapies in the past, remained low responders. The third mRNA vaccine dose strongly increases the SARS-CoV-2 specific humoral and B cell responses in MF patients, promoting a reactivation of the immune response similar to the one observed in healthy controls.
Collapse
Affiliation(s)
- Fabio Fiorino
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Annalisa Ciabattini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anna Sicuranza
- Hematology Unit, Department of Medical Science, Surgery and Neuroscience, Azienda Ospedaliero Universitaria Senese, University of Siena, Siena, Italy
| | - Gabiria Pastore
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Adele Santoni
- Hematology Unit, Department of Medical Science, Surgery and Neuroscience, Azienda Ospedaliero Universitaria Senese, University of Siena, Siena, Italy
| | - Martina Simoncelli
- Hematology Unit, Department of Medical Science, Surgery and Neuroscience, Azienda Ospedaliero Universitaria Senese, University of Siena, Siena, Italy
| | - Jacopo Polvere
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Claudia Baratè
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Vincenzo Sammartano
- Hematology Unit, Department of Medical Science, Surgery and Neuroscience, Azienda Ospedaliero Universitaria Senese, University of Siena, Siena, Italy
| | - Francesca Montagnani
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Department of Medical Sciences, Infectious and Tropical Diseases Unit, Azienda Ospedaliero Universitaria Senese, University Hospital of Siena, Siena, Italy
| | - Monica Bocchia
- Hematology Unit, Department of Medical Science, Surgery and Neuroscience, Azienda Ospedaliero Universitaria Senese, University of Siena, Siena, Italy
- *Correspondence: Donata Medaglini, ; Monica Bocchia,
| | - Donata Medaglini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- *Correspondence: Donata Medaglini, ; Monica Bocchia,
| |
Collapse
|
30
|
Breast Tumor Cell-Stimulated Bone Marrow-Derived Mesenchymal Stem Cells Promote the Sprouting Capacity of Endothelial Cells by Promoting VEGF Expression, Mediated in Part through HIF-1α Increase. Cancers (Basel) 2022; 14:cancers14194711. [PMID: 36230633 PMCID: PMC9562024 DOI: 10.3390/cancers14194711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary ROS and JAK/Stat3 cooperatively upregulate the expression of HIF-1α in bone marrow-derived mesenchymal stem cells under normoxic conditions in response to breast tumor cells. The upregulation of HIF-1α contributes in part to the increase in VEGF expression in the bone marrow-derived mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells improve the angiogenic sprouting capacity of mature endothelial cells in a VEGF-dependent manner. Abstract Breast tumor cells recruit bone marrow-derived mesenchymal stem cells (BM-MSCs) and alter their cellular characteristics to establish a tumor microenvironment. BM-MSCs enhance tumor angiogenesis through various mechanisms. We investigated the mechanisms by which BM-MSCs promote angiogenesis in response to breast tumor. Conditioned media from MDA-MB-231 (MDA CM) and MCF7 (MCF7 CM) breast tumor cells were used to mimic breast tumor conditions. An in vitro spheroid sprouting assay using human umbilical vein endothelial cells (HUVECs) was conducted to assess the angiogenesis-stimulating potential of BM-MSCs in response to breast tumors. The ROS inhibitor N-acetylcysteine (NAC) and JAK inhibitor ruxolitinib attenuated increased HIF-1α in BM-MSCs in response to MDA CM and MCF7 CM. HIF-1α knockdown or HIF-1β only partially downregulated VEGF expression and, therefore, the sprouting capacity of HUVECs in response to conditioned media from BM-MSCs treated with MDA CM or MCF7 CM. Inactivation of the VEGF receptor using sorafenib completely inhibited the HUVECs’ sprouting. Our results suggest that increased HIF-1α expression under normoxia in BM-MSCs in response to breast tumor cells is mediated by ROS and JAK/Stat3, and that both HIF-1α-dependent and -independent mechanisms increase VEGF expression in BM-MSCs to promote the angiogenic sprouting capacity of endothelial cells in a VEGF-dependent manner.
Collapse
|
31
|
Single-cell RNA sequencing uncovers the nuclear decoy lincRNA PIRAT as a regulator of systemic monocyte immunity during COVID-19. Proc Natl Acad Sci U S A 2022; 119:e2120680119. [PMID: 35998224 PMCID: PMC9457492 DOI: 10.1073/pnas.2120680119] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
SARS-CoV-2–infected patients often display characteristic changes in the production of immune mediators that trigger life-threatening courses of COVID-19. The underlying molecular mechanisms are not yet fully understood. Here, we used single-cell RNA sequencing to investigate the involvement of the emerging class of long regulatory RNA in COVID-19. Our data reveal that a previously unknown regulatory RNA in the nucleus of immune cells is altered after SARS-CoV-2 infection. The degradation of this RNA removes a natural brake on the production of critical immune mediators that can promote the development of severe COVID-19. We believe that therapeutic intervention in this nuclear RNA circuit could counteract the overproduction of disease-causing immune mediators and protect against severe COVID-19. The systemic immune response to viral infection is shaped by master transcription factors, such as NF-κB, STAT1, or PU.1. Although long noncoding RNAs (lncRNAs) have been suggested as important regulators of transcription factor activity, their contributions to the systemic immunopathologies observed during SARS-CoV-2 infection have remained unknown. Here, we employed a targeted single-cell RNA sequencing approach to reveal lncRNAs differentially expressed in blood leukocytes during severe COVID-19. Our results uncover the lncRNA PIRAT (PU.1-induced regulator of alarmin transcription) as a major PU.1 feedback-regulator in monocytes, governing the production of the alarmins S100A8/A9, key drivers of COVID-19 pathogenesis. Knockout and transgene expression, combined with chromatin-occupancy profiling, characterized PIRAT as a nuclear decoy RNA, keeping PU.1 from binding to alarmin promoters and promoting its binding to pseudogenes in naïve monocytes. NF-κB–dependent PIRAT down-regulation during COVID-19 consequently releases a transcriptional brake, fueling alarmin production. Alarmin expression is additionally enhanced by the up-regulation of the lncRNA LUCAT1, which promotes NF-κB–dependent gene expression at the expense of targets of the JAK-STAT pathway. Our results suggest a major role of nuclear noncoding RNA networks in systemic antiviral responses to SARS-CoV-2 in humans.
Collapse
|
32
|
Coldewey SM, Neu C, Bloos F, Baumbach P, Schumacher U, Bauer M, Reuken P, Stallmach A. Infliximab in the treatment of patients with severe COVID-19 (INFLIXCOVID): protocol for a randomised, controlled, multicentre, open-label phase II clinical study. Trials 2022; 23:737. [PMID: 36056419 PMCID: PMC9438250 DOI: 10.1186/s13063-022-06566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Despite the intense global research endeavour to improve the treatment of patients with COVID-19, the current therapy remains insufficient, resulting in persisting high mortality. Severe cases are characterised by a systemic inflammatory reaction driven by the release of pro-inflammatory cytokines such as IL-6 and tumour-necrosis-factor alpha (TNF-α). TNF-α-blocking therapies have proved beneficial in patients with chronic inflammatory diseases and could therefore pose a new treatment option in COVID-19. Hitherto, no results from randomised controlled trials assessing the effectiveness and safety of infliximab—a monoclonal antibody targeting TNF-α—in the treatment of COVID-19 have been published. Methods In this phase-2 clinical trial, patients with COVID-19 and clinical and laboratory signs of hyperinflammation will be randomised to receive either one dose of infliximab (5 mg/kg body weight) in addition to the standard of care or the standard of care alone. The primary endpoint is the difference in 28-day mortality. Further assessments concern the safety of infliximab therapy in COVID-19 and the influence of infliximab on morbidity and the course of the disease. For the supplementary scientific programme, blood and urine samples are collected to assess concomitant molecular changes. The Ethics Committee of the Friedrich Schiller University Jena (2021-2236-AMG-ff) and the Paul-Ehrlich-Institute (4513/01) approved the study. Discussion The results of this study could influence the therapy of patients with COVID-19 and affect the course of the disease worldwide, as infliximab is globally available and approved by several international drug agencies. Trial registration The trial was registered at clinicaltrials.gov (NCT04922827, 11 June 2021) and at EudraCT (2021-002098-25, 19 May 2021).
Collapse
Affiliation(s)
- Sina M Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany. .,Septomics Research Centre, Jena University Hospital, Jena, Germany. .,Centre for Sepsis Control & Care (CSCC), Jena University Hospital, Jena, Germany.
| | - Charles Neu
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Frank Bloos
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Centre for Sepsis Control & Care (CSCC), Jena University Hospital, Jena, Germany
| | - Philipp Baumbach
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Ulrike Schumacher
- Centre for Clinical Studies, Jena University Hospital, Jena, Germany
| | - Michael Bauer
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Centre for Sepsis Control & Care (CSCC), Jena University Hospital, Jena, Germany
| | - Philipp Reuken
- Clinic for Internal Medicine IV, Jena University Hospital, Jena, Germany
| | - Andreas Stallmach
- Clinic for Internal Medicine IV, Jena University Hospital, Jena, Germany
| |
Collapse
|
33
|
Khaledi M, Sameni F, Yahyazade S, Radandish M, Owlia P, Bagheri N, Afkhami H, Mahjoor M, Esmaelpour Z, Kohansal M, Aghaei F. COVID-19 and the potential of Janus family kinase (JAK) pathway inhibition: A novel treatment strategy. Front Med (Lausanne) 2022; 9:961027. [PMID: 36111104 PMCID: PMC9469902 DOI: 10.3389/fmed.2022.961027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Recent evidence proposed that the severity of the coronavirus disease 2019 (COVID-19) in patients is a consequence of cytokine storm, characterized by increased IL-1β, IL-6, IL-18, TNF-α, and IFN-γ. Hence, managing the cytokine storm by drugs has been suggested for the treatment of patients with severe COVID-19. Several of the proinflammatory cytokines involved in the pathogenesis of COVID-19 infection recruit a distinct intracellular signaling pathway mediated by JAKs. Consequently, JAK inhibitors, including baricitinib, pacritinib, ruxolitinib, and tofacitinib, may represent an effective therapeutic strategy for controlling the JAK to treat COVID-19. This study indicates the mechanism of cytokine storm and JAK/STAT pathway in COVID-19 as well as the medications used for JAK/STAT inhibitors.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Sheida Yahyazade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Radandish
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center, Faculty of Medicine, Shahed University, Tehran, Iran
- *Correspondence: Parviz Owlia ;
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Nader Bagheri
| | | | - Mohamad Mahjoor
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaelpour
- Reference Laboratory for Bovine Tuberculosis, Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Maryam Kohansal
- Department of Medical Biotechnology, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzad Aghaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
34
|
Lessons from SARS-CoV, MERS-CoV, and SARS-CoV-2 Infections: What We Know So Far. CANADIAN JOURNAL OF INFECTIOUS DISEASES AND MEDICAL MICROBIOLOGY 2022; 2022:1156273. [PMID: 35992513 PMCID: PMC9391183 DOI: 10.1155/2022/1156273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/19/2022] [Indexed: 01/08/2023]
Abstract
Within past decades, human infections with emerging and reemerging zoonotic viral pathogens have raised the eminent public health concern. Since November 2002, three highly pathogenic and major deadly human coronaviruses of the βετα-genera (β-hCoVs), namely, severe acute respiratory distress syndrome-coronavirus (SARS-CoV), middle east respiratory syndrome-coronavirus (MERS-CoV), and SARS-CoV-2, have been globally emerged and culminated in the occurrence of SARS epidemic, MERS outbreak, and coronavirus disease 19 (COVID-19) pandemic, respectively. The global emergence and spread of these three major deadly β-hCoVs have extremely dreadful impacts on human health and become an economic burden. Unfortunately, clear specific and highly efficient medical countermeasures for these three β-hCoVs and their underlying fatal illnesses remain under development. Although they belong to the same family and share many features and convergent evolution, these three deadly β-hCoVs have some important and obvious differences. By utilizing their lessons and gaining a deeper understanding of these β-hCoVs, we can identify areas of improvement and provide preparedness plans for fighting and controlling the future reemerging human infections that might arise from them or from other potential pathogenic hCoVs. Therefore, this review summarizes the state-of-the-art information and compares the similarities and dissimilarities between SARS-CoV, MERS-CoV, and SARS-CoV-2, in terms of their evolution trait, genome organization, host cell entry mechanisms, tissue infectivity tropisms, transmission routes and contagiousness, and the clinical characteristics, laboratory features, and immunological abnormalities of their related illnesses. It also provides an overview of the emerging SARS-CoV-2 variants. Additionally, it discusses the challenges of the most proposed treatment options for SARS-CoV-2 infections.
Collapse
|
35
|
Andaluz-Ojeda D, Vidal-Cortes P, Aparisi Sanz Á, Suberviola B, Del Río Carbajo L, Nogales Martín L, Prol Silva E, Nieto del Olmo J, Barberán J, Cusacovich I. Immunomodulatory therapy for the management of critically ill patients with COVID-19: A narrative review. World J Crit Care Med 2022; 11:269-297. [PMID: 36051937 PMCID: PMC9305685 DOI: 10.5492/wjccm.v11.i4.269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/01/2021] [Accepted: 05/16/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Understanding the physiological and immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and rational design of effective therapies. AIM To describe the interaction of SARS-CoV-2 with the immune system and the subsequent contribution of hyperinflammation and abnormal immune responses to disease progression together with a complete narrative review of the different immunoadjuvant treatments used so far in COVID-19 and their indication in severe and life-threatening subsets. METHODS A comprehensive literature search was developed. Authors reviewed the selected manuscripts following the PRISMA recommendations for systematic review and meta-analysis documents and selected the most appropriate. Finally, a recommendation of the use of each treatment was established based on the level of evidence of the articles and documents reviewed. This recommendation was made based on the consensus of all the authors. RESULTS A brief rationale on the SARS-CoV-2 pathogenesis, immune response, and inflammation was developed. The usefulness of 10 different families of treatments related to inflammation and immunopathogenesis of COVID-19 was reviewed and discussed. Finally, based on the level of scientific evidence, a recommendation was established for each of them. CONCLUSION Although several promising therapies exist, only the use of corticosteroids and tocilizumab (or sarilumab in absence of this) have demonstrated evidence enough to recommend its use in critically ill patients with COVID-19. Endotypes including both, clinical and biological characteristics can constitute specific targets for better select certain therapies based on an individualized approach to treatment.
Collapse
Affiliation(s)
- David Andaluz-Ojeda
- Department of Critical Care, Hospital Universitario HM Sanchinarro, Hospitales Madrid, Madrid 28050, Spain
| | - Pablo Vidal-Cortes
- Department of Intensive Care, Complejo Hospitalario Universitario de Ourense, Ourense 32005, Spain
| | | | - Borja Suberviola
- Department of Intensive Care, Hospital Universitario Marqués de Valdecilla, Santander 39008, Spain
| | - Lorena Del Río Carbajo
- Department of Intensive Care, Complejo Hospitalario Universitario de Ourense, Ourense 32005, Spain
| | - Leonor Nogales Martín
- Department of Intensive Care, Hospital Clínico Universitario de Valladolid, Valladolid 47005, Spain
| | - Estefanía Prol Silva
- Department of Intensive Care, Complejo Hospitalario Universitario de Ourense, Ourense 32005, Spain
| | - Jorge Nieto del Olmo
- Department of Intensive Care, Complejo Hospitalario Universitario de Ourense, Ourense 32005, Spain
| | - José Barberán
- Department of Internal Medicine, Hospital Universitario HM Montepríncipe, Hospitales Madrid, Boadilla del Monte 28860, Madrid, Spain
| | - Ivan Cusacovich
- Department of Internal Medicine, Hospital Clínico Universitario de Valladolid, Valladolid 47005, Spain
| |
Collapse
|
36
|
Huang J, Zhou C, Deng J, Zhou J. JAK Inhibition as a New Treatment Strategy for Patients with COVID-19. Biochem Pharmacol 2022; 202:115162. [PMID: 35787993 PMCID: PMC9250821 DOI: 10.1016/j.bcp.2022.115162] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic continues to spread globally. The rapid dispersion of coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 drives an urgent need for effective treatments, especially for patients who develop severe pneumonia. The excessive and uncontrolled release of pro-inflammatory cytokines has proved to be an essential factor in the rapidity of disease progression, and some cytokines are significantly associated with adverse outcomes. Most of the upregulated cytokines signal through the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway. Therefore, blocking the exaggerated release of cytokines, including IL-2, IL-6, TNF-α, and IFNα/β/γ, by inhibiting JAK/STAT signaling will, presumably, offer favorable pharmacodynamics and present an attractive prospect. JAK inhibitors (JAKi) can also inhibit members of the numb-associated kinase (NAK) family, including AP2-associated kinase 1 (AAK1) and cyclin G-associated kinase (GAK), which regulate the angiotensin-converting enzyme 2 (ACE-2) transmembrane protein and are involved in host viral endocytosis. According to the data released from current clinical trials, JAKi treatment can effectively control the dysregulated cytokine storm and improve clinical outcomes regarding mortality, ICU admission, and discharge. There are still some concerns surrounding thromboembolic events, opportunistic infection such as herpes zoster virus reactivation, and repression of the host's type-I IFN-dependent immune repair for both viral and bacterial infection. However, the current JAKi clinical trials of COVID-19 raised no new safety concerns except a slightly increased risk of herpes virus infection. In the updated WHO guideline, Baricitinb is strongly recommended as an alternative to IL-6 receptor blockers, particularly in combination with corticosteroids, in patients with severe or critical COVID-19. Future studies will explore the application of JAKi to COVID-19 treatment in greater detail, such as the optimal timing and course of JAKi treatment, individualized medication strategies based on pharmacogenomics, and the effect of combined medications.
Collapse
Affiliation(s)
- Jin Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Chi Zhou
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology 1095# Jiefang Ave., Wuhan 430030, People's Rep. of China
| | - Jinniu Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology.
| |
Collapse
|
37
|
Kramer A, Prinz C, Fichtner F, Fischer AL, Thieme V, Grundeis F, Spagl M, Seeber C, Piechotta V, Metzendorf MI, Golinski M, Moerer O, Stephani C, Mikolajewska A, Kluge S, Stegemann M, Laudi S, Skoetz N. Janus kinase inhibitors for the treatment of COVID-19. Cochrane Database Syst Rev 2022; 6:CD015209. [PMID: 35695334 PMCID: PMC9190191 DOI: 10.1002/14651858.cd015209] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND With potential antiviral and anti-inflammatory properties, Janus kinase (JAK) inhibitors represent a potential treatment for symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. They may modulate the exuberant immune response to SARS-CoV-2 infection. Furthermore, a direct antiviral effect has been described. An understanding of the current evidence regarding the efficacy and safety of JAK inhibitors as a treatment for coronavirus disease 2019 (COVID-19) is required. OBJECTIVES To assess the effects of systemic JAK inhibitors plus standard of care compared to standard of care alone (plus/minus placebo) on clinical outcomes in individuals (outpatient or in-hospital) with any severity of COVID-19, and to maintain the currency of the evidence using a living systematic review approach. SEARCH METHODS We searched the Cochrane COVID-19 Study Register (comprising MEDLINE, Embase, ClinicalTrials.gov, World Health Organization (WHO) International Clinical Trials Registry Platform, medRxiv, and Cochrane Central Register of Controlled Trials), Web of Science, WHO COVID-19 Global literature on coronavirus disease, and the US Department of Veterans Affairs Evidence Synthesis Program (VA ESP) Covid-19 Evidence Reviews to identify studies up to February 2022. We monitor newly published randomised controlled trials (RCTs) weekly using the Cochrane COVID-19 Study Register, and have incorporated all new trials from this source until the first week of April 2022. SELECTION CRITERIA We included RCTs that compared systemic JAK inhibitors plus standard of care to standard of care alone (plus/minus placebo) for the treatment of individuals with COVID-19. We used the WHO definitions of illness severity for COVID-19. DATA COLLECTION AND ANALYSIS We assessed risk of bias of primary outcomes using Cochrane's Risk of Bias 2 (RoB 2) tool. We used GRADE to rate the certainty of evidence for the following primary outcomes: all-cause mortality (up to day 28), all-cause mortality (up to day 60), improvement in clinical status: alive and without need for in-hospital medical care (up to day 28), worsening of clinical status: new need for invasive mechanical ventilation or death (up to day 28), adverse events (any grade), serious adverse events, secondary infections. MAIN RESULTS We included six RCTs with 11,145 participants investigating systemic JAK inhibitors plus standard of care compared to standard of care alone (plus/minus placebo). Standard of care followed local protocols and included the application of glucocorticoids (five studies reported their use in a range of 70% to 95% of their participants; one study restricted glucocorticoid use to non-COVID-19 specific indications), antibiotic agents, anticoagulants, and antiviral agents, as well as non-pharmaceutical procedures. At study entry, about 65% of participants required low-flow oxygen, about 23% required high-flow oxygen or non-invasive ventilation, about 8% did not need any respiratory support, and only about 4% were intubated. We also identified 13 ongoing studies, and 9 studies that are completed or terminated and where classification is pending. Individuals with moderate to severe disease Four studies investigated the single agent baricitinib (10,815 participants), one tofacitinib (289 participants), and one ruxolitinib (41 participants). Systemic JAK inhibitors probably decrease all-cause mortality at up to day 28 (95 of 1000 participants in the intervention group versus 131 of 1000 participants in the control group; risk ratio (RR) 0.72, 95% confidence interval (CI) 0.57 to 0.91; 6 studies, 11,145 participants; moderate-certainty evidence), and decrease all-cause mortality at up to day 60 (125 of 1000 participants in the intervention group versus 181 of 1000 participants in the control group; RR 0.69, 95% CI 0.56 to 0.86; 2 studies, 1626 participants; high-certainty evidence). Systemic JAK inhibitors probably make little or no difference in improvement in clinical status (discharged alive or hospitalised, but no longer requiring ongoing medical care) (801 of 1000 participants in the intervention group versus 778 of 1000 participants in the control group; RR 1.03, 95% CI 1.00 to 1.06; 4 studies, 10,802 participants; moderate-certainty evidence). They probably decrease the risk of worsening of clinical status (new need for invasive mechanical ventilation or death at day 28) (154 of 1000 participants in the intervention group versus 172 of 1000 participants in the control group; RR 0.90, 95% CI 0.82 to 0.98; 2 studies, 9417 participants; moderate-certainty evidence). Systemic JAK inhibitors probably make little or no difference in the rate of adverse events (any grade) (427 of 1000 participants in the intervention group versus 441 of 1000 participants in the control group; RR 0.97, 95% CI 0.88 to 1.08; 3 studies, 1885 participants; moderate-certainty evidence), and probably decrease the occurrence of serious adverse events (160 of 1000 participants in the intervention group versus 202 of 1000 participants in the control group; RR 0.79, 95% CI 0.68 to 0.92; 4 studies, 2901 participants; moderate-certainty evidence). JAK inhibitors may make little or no difference to the rate of secondary infection (111 of 1000 participants in the intervention group versus 113 of 1000 participants in the control group; RR 0.98, 95% CI 0.89 to 1.09; 4 studies, 10,041 participants; low-certainty evidence). Subgroup analysis by severity of COVID-19 disease or type of JAK inhibitor did not identify specific subgroups which benefit more or less from systemic JAK inhibitors. Individuals with asymptomatic or mild disease We did not identify any trial for this population. AUTHORS' CONCLUSIONS In hospitalised individuals with moderate to severe COVID-19, moderate-certainty evidence shows that systemic JAK inhibitors probably decrease all-cause mortality. Baricitinib was the most often evaluated JAK inhibitor. Moderate-certainty evidence suggests that they probably make little or no difference in improvement in clinical status. Moderate-certainty evidence indicates that systemic JAK inhibitors probably decrease the risk of worsening of clinical status and make little or no difference in the rate of adverse events of any grade, whilst they probably decrease the occurrence of serious adverse events. Based on low-certainty evidence, JAK inhibitors may make little or no difference in the rate of secondary infection. Subgroup analysis by severity of COVID-19 or type of agent failed to identify specific subgroups which benefit more or less from systemic JAK inhibitors. Currently, there is no evidence on the efficacy and safety of systemic JAK inhibitors for individuals with asymptomatic or mild disease (non-hospitalised individuals).
Collapse
Affiliation(s)
- Andre Kramer
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Carolin Prinz
- Department of Anesthesiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Falk Fichtner
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Anna-Lena Fischer
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Volker Thieme
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Felicitas Grundeis
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Manuel Spagl
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Christian Seeber
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria-Inti Metzendorf
- Institute of General Practice, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Martin Golinski
- Department of Anesthesiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Onnen Moerer
- Department of Anesthesiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Caspar Stephani
- Department of Anesthesiology, University Medical Center Göttingen, Georg August University, Göttingen, Germany
| | - Agata Mikolajewska
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, Medical Center Hamburg Eppendorf (UKE), Hamburg, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sven Laudi
- Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
38
|
Neu C, Baumbach P, Scherag A, Kortgen A, Götze J, Coldewey SM. Identification of cardiovascular and molecular prognostic factors for the morbidity and mortality in COVID-19-sepsis (ICROVID): Protocol for a prospective multi-centre cohort study. PLoS One 2022; 17:e0269247. [PMID: 35658058 PMCID: PMC9165863 DOI: 10.1371/journal.pone.0269247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Severe COVID-19 constitutes a form of viral sepsis. Part of the specific pathophysiological pattern of this condition is the occurrence of cardiovascular events. These include pulmonary embolism, arrhythmias and cardiomyopathy as manifestations of extra-pulmonary organ dysfunction. Hitherto, the prognostic impact of these cardiovascular events and their predisposing risk factors remains unclear. This study aims to explore this question in two cohorts of viral sepsis–COVID-19 and influenza–in order to identify new theragnostic strategies to improve the short- and long-term outcome of these two diseases. Methods and analysis In this prospective multi-centre cohort study, clinical assessment will take place during the acute and post-acute phase of sepsis and be complemented by molecular laboratory analyses. Specifically, echocardiography and cardiovascular risk factor documentation will be performed during the first two weeks after sepsis onset. Aside from routine haematological and biochemical laboratory tests, molecular phenotyping will comprise analyses of the metabolome, lipidome and immune status. The primary endpoint of this study is the difference in 3-month mortality of patients with and without septic cardiomyopathy in COVID-19 sepsis. Patients will be followed up until 6 months after onset of sepsis via telephone interviews and questionnaires. The results will be compared with a cohort of patients with influenza sepsis as well as previous cohorts of patients with bacterial sepsis and healthy controls. Ethics and dissemination Approval was obtained from the Ethics Committee of the Friedrich Schiller University Jena (2020-2052-BO). The results will be published in peer-reviewed journals and presented at appropriate conferences. Trial registration DRKS00024162.
Collapse
Affiliation(s)
- Charles Neu
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Philipp Baumbach
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - André Scherag
- Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany
| | - Andreas Kortgen
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Juliane Götze
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Jena, Germany
| | - Sina M. Coldewey
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Septomics Research Centre, Jena University Hospital, Jena, Germany
- Centre for Sepsis Control and Care, Jena University Hospital, Jena, Germany
- * E-mail:
| |
Collapse
|
39
|
Cho K, Park S, Kim EY, Koyanagi A, Jacob L, Yon DK, Lee SW, Kim MS, Radua J, Elena D, Il Shin J, Smith L. Immunogenicity of COVID-19 Vaccines in Patients with Diverse Health Conditions: a Comprehensive Systematic Review. J Med Virol 2022; 94:4144-4155. [PMID: 35567325 PMCID: PMC9347877 DOI: 10.1002/jmv.27828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 11/08/2022]
Abstract
It remains unclear how effective COVID-19 vaccinations will be in patients with weakened immunity due to diseases, transplantation, and dialysis. We conducted a systematic review comparing the efficacy of COVID-19 vaccination in patients with solid tumor, hematologic malignancy, autoimmune disease, inflammatory bowel disease, and patients who received transplantation or dialysis. A literature search was conducted twice using the Medline/PubMed database. As a result, 21 papers were included in the review, and seropositivity rate was summarized by specific type of disease, transplantation, and dialysis. When different papers studied the same type of patient group, a study with a higher number of participants was selected. Most of the solid tumor patients showed a seropositivity rate of more than 80% after the second inoculation, but a low seropositivity was found in certain tumors such as breast cancer. Research in patients with certain types of hematological malignancy and autoimmune diseases has also reported low seropositivity, and this may have been affected by the immunosuppressive treatment these patients receive. Research in patients receiving dialysis or transplantation has reported lower seropositivity rates than the general population, while all patients with inflammatory bowel disease have converted to be seropositive. Meta-analysis validating these results will be needed, and studies will also be needed on methods to protect patients with reduced immunity from COVID-19. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kyuyeon Cho
- Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Seoyeon Park
- Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Eun-Young Kim
- Evidence-Based and Clinical Research Laboratory, Department of Health, Social and Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul, 06974, Korea
| | - Ai Koyanagi
- ICREA, Pg. Lluis Companys 23, 08010, Barcelona, Spain.,Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830, Barcelona, Spain
| | - Louis Jacob
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, 08830, Barcelona, Spain.,Faculty of Medicine, University of Versailles Saint-Quentin-en-Yvelines, 78180, Montigny-le-Bretonneux, France
| | - Dong Keon Yon
- Department of Pediatrics, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Won Lee
- Department of Data Science, Sejong University College of Software Convergence, Seoul, Republic of Korea
| | - Min Seo Kim
- Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Samsung Medical Center, Seoul, Republic of Korea
| | - Joaquim Radua
- Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AB, UK.,Mental Health Networking Biomedical Research Centre (CIBERSAM), 08036, Barcelona, Spain.,Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institute, 11330, Stockholm, Sweden.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Dragioti Elena
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
40
|
Han MK, Antila M, Ficker JH, Gordeev I, Guerreros A, Bernus AL, Roquilly A, Sifuentes-Osornio J, Tabak F, Teijeiro R, Bandelli L, Bonagura DS, Shu X, Felser JM, Knorr B, Cao W, Langmuir P, Lehmann T, Levine M, Savic S. Ruxolitinib in addition to standard of care for the treatment of patients admitted to hospital with COVID-19 (RUXCOVID): a randomised, double-blind, placebo-controlled, phase 3 trial. THE LANCET. RHEUMATOLOGY 2022; 4:e351-e361. [PMID: 35368384 PMCID: PMC8963773 DOI: 10.1016/s2665-9913(22)00044-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background COVID-19 is associated with acute respiratory distress and cytokine release syndrome. The Janus kinase (JAK)1/JAK2 inhibitor ruxolitinib reduces inflammatory cytokine concentrations in disorders characterised by cytokine dysregulation, including graft-versus-host disease, myelofibrosis, and secondary hemophagocytic lymphohistiocytosis. We assessed whether treatment with the JAK1/JAK2 inhibitor ruxolitinib would be beneficial in patients with COVID-19 admitted to hospital. Methods RUXCOVID was an international, randomised, double-blind, phase 3 trial of ruxolitinib plus standard of care versus placebo plus standard of care in patients with COVID-19. Patients who were hospitalised but not on mechanical ventilation or in the intensive care unit [ICU] were randomly assigned (2:1) to oral ruxolitinib 5 mg twice per day or placebo for 14 days (14 additional days were allowed if no improvement). The primary endpoint was a composite of death, respiratory failure (invasive ventilation), or ICU care by day 29, analysed by logistic regression including region, treatment, baseline clinical status, age, and sex as covariates. This trial is registered with ClinicalTrials.gov, NCT04362137. Findings Between May 4 and Sept 19, 2020, 432 patients were randomly assigned to ruxolitinib (n=287) or placebo (n=145) plus standard of care; the mean age was 56·5 years (SD 13·3), 197 (46%) were female, and 235 (54%) were male. The primary objective was not met: the composite endpoint occurred in 34 (12%) of 284 ruxolitinib-treated patients versus 17 (12%) of 144 placebo-treated patients (odds ratio 0·91, 95% CI 0·48-1·73; p=0·77). By day 29, nine (3%) of 286 ruxolitinib-treated patients had died compared with three (2%) of 145 placebo-treated patients; 22 (8%) of 286 ruxolitinib-treated patients had received invasive ventilation compared with ten (7%) of 145 placebo-treated patients; and 30 (11%) of 284 ruxolitinib-treated patients had received ICU care compared with 17 (12%) of 144 placebo-treated patients. In an exploratory analysis, median time to recovery was 1 day faster with ruxolitinib versus placebo (8 days vs 9 days; hazard ratio 1·10, 95% CI 0·89-1·36). Adverse events included headache (23 [8%] of 281 on ruxolitinib vs 11 [8%] of 143 on placebo) and diarrhoea (21 [7%] vs 12 [8%]). Interpretation Ruxolitinib 5 mg twice per day showed no benefit in the overall study population. A larger sample is required to determine the clinical importance of trends for increased efficacy in patient subgroups. Funding Novartis and Incyte.
Collapse
Affiliation(s)
- MeiLan K Han
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Martti Antila
- Department of Medicine, Clínica de Alergia Martti Antila, Sorocaba, Brazil
| | - Joachim H Ficker
- Department of Respiratory Medicine, Paracelsus Medical University, Nuernberg General Hospital, Nuremberg, Germany
| | - Ivan Gordeev
- Department of Healthcare, City Clinical Hospital n.a. O M Filatov, Moscow, Russia
| | | | - Amparo Lopez Bernus
- Department of Internal Medicine, University Hospital of Salamanca, University of Salamanca, CIETUS, IBSAL, Salamanca, Spain
| | - Antoine Roquilly
- Université de Nantes, CHU Nantes, EA3826 Thérapeutiques Anti-Infectieuses, Service d'Anesthésie Réanimation Chirurgicale, Hôtel Dieu, Nantes, France
| | - José Sifuentes-Osornio
- Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Fehmi Tabak
- Department of Infectious Disease and Clinical Microbiology, Medical School of Cerrahpasa, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ricardo Teijeiro
- Department of Medicine, Hospital General de Agudos Dr Ignacio Pirovano, CABA, Argentina
| | | | - Diane S Bonagura
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Xu Shu
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - James M Felser
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Barbara Knorr
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Weihua Cao
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | | | - Michael Levine
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Sinisa Savic
- Department of Immunology and Allergy, Leeds Teaching Hospitals NHS Trust and National Institute for Health Research-Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
41
|
Levy G, Guglielmelli P, Langmuir P, Constantinescu S. JAK inhibitors and COVID-19. J Immunother Cancer 2022; 10:jitc-2021-002838. [PMID: 35459733 PMCID: PMC9035837 DOI: 10.1136/jitc-2021-002838] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the—possibly altered—response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19. We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.
Collapse
Affiliation(s)
- Gabriel Levy
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium.,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium
| | - Paola Guglielmelli
- Department of Clinical and Experimental Medicine, University of Florence, Firenze, Italy.,Center of Research and Innovation for Myeloproliferative Neoplasms (CRIMM), Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Peter Langmuir
- Oncology Targeted Therapeutics, Incyte Corp, Wilmington, Delaware, USA
| | - Stefan Constantinescu
- Signal Transduction and Molecular Hematology, Ludwig Institute for Cancer Research, Brussels, Belgium .,Signal Transduction on Molecular Hematology, de Duve Institute, Université Catholique de Louvain, Bruxelles, Belgium.,WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Brussels, Belgium.,Nuffield Department of Medicine, Oxford University, Ludwig Institute for Cancer Research, Oxford, UK
| |
Collapse
|
42
|
Ikeda D, Terao T, Miura D, Narita K, Fukumoto A, Kuzume A, Kamura Y, Tabata R, Tsushima T, Takeuchi M, Hosoki T, Matsue K. Impaired Antibody Response Following the Second Dose of the BNT162b2 Vaccine in Patients With Myeloproliferative Neoplasms Receiving Ruxolitinib. Front Med (Lausanne) 2022; 9:826537. [PMID: 35402455 PMCID: PMC8990027 DOI: 10.3389/fmed.2022.826537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Data on the effect of ruxolitinib on antibody response to severe acute respiratory coronavirus 2 (SARS-CoV-2) vaccination in patients with myeloproliferative neoplasms (MPN) is lacking. We prospectively evaluated anti-spike-receptor binding domain antibody (anti-S Ab) levels after the second dose of the BNT162b2 (Pfizer-BioNTech) vaccine in MPN patients. A total of 74 patients with MPN and 81 healthy controls who were vaccinated were enrolled in the study. Of the MPN patients, 27% received ruxolitinib at the time of vaccination. Notably, MPN patients receiving ruxolitinib had a 30-fold lower median anti-S Ab level than those not receiving ruxolitinib (p < 0.001). Further, the anti-S Ab levels in MPN patients not receiving ruxolitinib were significantly lower than those in healthy controls (p < 0.001). Regarding a clinical protective titre that has been shown to correlate with preventing symptomatic infection, only 10% of the MPN patients receiving ruxolitinib had the protective value. Univariate analysis revealed that ruxolitinib, myelofibrosis, and longer time from diagnosis to vaccination had a significantly negative impact on achieving the protective value (p = 0.001, 0.021, and 0.019, respectively). In subgroup analysis, lower numbers of CD3+ and CD4+ lymphocytes were significantly correlated with a lower probability of obtaining the protective value (p = 0.011 and 0.001, respectively). In conclusion, our results highlight ruxolitinib-induced impaired vaccine response and the necessity of booster immunisation in MPN patients. Moreover, T-cell mediated immunity may have an important role in the SARS-CoV-2 vaccine response in patients with MPN, though further studies are warranted.
Collapse
Affiliation(s)
- Daisuke Ikeda
- Division of Hematology/Oncology, Kameda Medical Center, Chiba, Japan
| | - Toshiki Terao
- Division of Hematology/Oncology, Kameda Medical Center, Chiba, Japan
| | - Daisuke Miura
- Division of Hematology/Oncology, Kameda Medical Center, Chiba, Japan
| | - Kentaro Narita
- Division of Hematology/Oncology, Kameda Medical Center, Chiba, Japan
| | - Ami Fukumoto
- Division of Hematology/Oncology, Kameda Medical Center, Chiba, Japan
| | - Ayumi Kuzume
- Division of Hematology/Oncology, Kameda Medical Center, Chiba, Japan
| | - Yuya Kamura
- Division of Hematology/Oncology, Kameda Medical Center, Chiba, Japan
| | - Rikako Tabata
- Division of Hematology/Oncology, Kameda Medical Center, Chiba, Japan
| | - Takafumi Tsushima
- Division of Hematology/Oncology, Kameda Medical Center, Chiba, Japan
| | - Masami Takeuchi
- Division of Hematology/Oncology, Kameda Medical Center, Chiba, Japan
| | - Takaaki Hosoki
- Department of Hematology, Kimitsu Central Hospital, Chiba, Japan
| | - Kosei Matsue
- Division of Hematology/Oncology, Kameda Medical Center, Chiba, Japan
| |
Collapse
|
43
|
Naik RR, Shakya AK, Aladwan SM, El-Tanani M. Kinase Inhibitors as Potential Therapeutic Agents in the Treatment of COVID-19. Front Pharmacol 2022; 13:806568. [PMID: 35444538 PMCID: PMC9014181 DOI: 10.3389/fphar.2022.806568] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Corona virus is quickly spreading around the world. The goal of viral management is to disrupt the virus's life cycle, minimize lung damage, and alleviate severe symptoms. Numerous strategies have been used, including repurposing existing antivirals or drugs used in previous viral outbreaks. One such strategy is to repurpose FDA-approved kinase inhibitors that are potential chemotherapeutic agents and have demonstrated antiviral activity against a variety of viruses, including MERS, SARS-CoV-1, and others, by inhibiting the viral life cycle and the inflammatory response associated with COVID-19. The purpose of this article is to identify licensed kinase inhibitors that have the ability to reduce the virus's life cycle, from entrance through viral propagation from cell to cell. Several of these inhibitors, including imatinib, ruxolitinib, silmitasertib, and tofacitinib (alone and in conjunction with hydroxychloroquine), are now undergoing clinical studies to determine their efficacy as a possible treatment drug. The FDA approved baricitinib (a Janus kinase inhibitor) in combination with remdesivir for the treatment of COVID-19 patients receiving hospital care in November 2020. While in vitro trials with gilteritinib, fedratinib, and osimertinib are encouraging, further research is necessary before these inhibitors may be used to treat COVID-19 patients.
Collapse
Affiliation(s)
- Rajashri R. Naik
- Department of Biopharmaceutics and Clinical Pharmacy, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ashok K. Shakya
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Safwan M. Aladwan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Department of Biopharmaceutics and Clinical Pharmacy, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
44
|
Das T, Mukhopadhyay C. Computational studies suggest compounds restoring function of p53 cancer mutants can bind SARS-CoV-2 spike protein. J Biomol Struct Dyn 2022; 41:3368-3381. [PMID: 35333136 DOI: 10.1080/07391102.2022.2048081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is reasonable to think that cancer patients undergoing chemotherapy or immunotherapy may have a more aggressive course if they are positive for the novel coronavirus disease. Their compulsive condition requires investigation into effective drugs. We applied computational techniques to a series of compounds known for restoring the function of p53 cancer mutant p53R175H and p53G245S. Two potent inhibitors, 1-(3-chlorophenyl)-3-(1, 3 -thiazol-2-yl) urea (CTU, PubChem NSC321792) with the highest binding affinity -6.92 kcal/mol followed by a thiosemicarbazone compound N'-(1-(Pyridin-2-yl)ethylidene) azetidine - 1 -carbothiohydrazide (NPC, PubChem NSC319726) with -6.75 kcal/mol were subjected to Molecular Dynamics simulation with receptor binding domain (RBD) and compared with control ligand dexamethasone. In particular, CTU adheres to pocket 1 with an average free energy of binding -21.65 ± 2.89 kcal/mol at the RBD - angiotensin-converting enzyme 2 binding region with the highest frequency of amino acid residues after reaching a local equilibrium in 100 ns MD simulation trajectory. A significant enthalpy contribution from the independent simulations unfolds the possibility of dual binding sites for NPC as shifted pocket 1 (-15.59 ± 5.98 kcal/mol) and pocket 2 (-18.90 ± 5.02 kcal/mol). The obtained results for these two compounds are in good agreement with dexamethasone (-18.45 ± 2.42 kcal/mol). Taken together our findings could facilitate the discovery of small molecules that restore the function of p53 cancer mutants newly against COVID-19 in cancer patients.
Collapse
Affiliation(s)
- Tanushree Das
- Department of Chemistry, University of Calcutta, Kolkata, India
| | | |
Collapse
|
45
|
Early Use of Low-Dose Ruxolitinib: A Promising Strategy for the Treatment of Acute and Chronic GVHD. Pharmaceuticals (Basel) 2022; 15:ph15030374. [PMID: 35337171 PMCID: PMC8955311 DOI: 10.3390/ph15030374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023] Open
Abstract
Janus kinases (JAK) are a family of tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) that transduce cytokine-mediated signals through the JAK–STAT metabolic pathway. These kinases act by regulating the transcription of specific genes capable of inducing biological responses in several immune cell subsets. Inhibition of Janus kinases interferes with the JAK–STAT signaling pathway. Besides being used in the treatment of cancer and inflammatory diseases, in recent years, they have also been used to treat inflammatory conditions, such as graft-versus-host disease (GVHD) and cytokine release syndrome as complications of allogeneic hematopoietic stem cell transplantation and cell therapy. Recently, the FDA approved the use of ruxolitinib, a JAK1/2 inhibitor, in the treatment of acute steroid-refractory GVHD (SR-aGVHD), highlighting the role of JAK inhibition in this immune deregulation. Ruxolitinib was initially used to treat myelofibrosis and true polycythemia in a high-dose treatment and caused hematological toxicity. Since a lower dosage often could not be effective, the use of ruxolitinib was suspended. Subsequently, ruxolitinib was evaluated in adult patients with SR-aGVHD and was found to achieve a rapid and effective response. In addition, its early low-dose use in pediatric patients affected by GVHD has proved effective, safe, and reasonably preventive. The review aims to describe the potential properties of ruxolitinib to identify new therapeutic strategies.
Collapse
|
46
|
Saeedi-Boroujeni A, Asadi-Samani M. JAK inhibitors as a Barrier to the Destructive Cytokine Storm in COVID-19. Curr Drug Res Rev 2022; 14:85-87. [PMID: 35249523 DOI: 10.2174/2589977514666220304203816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Ali Saeedi-Boroujeni
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Asadi-Samani
- Cellular and Molecular Research Center, Basic Health Sciences Institute,Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
47
|
Oo A, Zandi K, Shepard C, Bassit LC, Musall K, Goh SL, Cho YJ, Kim DH, Schinazi RF, Kim B. Elimination of Aicardi-Goutières syndrome protein SAMHD1 activates cellular innate immunity and suppresses SARS-CoV-2 replication. J Biol Chem 2022; 298:101635. [PMID: 35085552 PMCID: PMC8786443 DOI: 10.1016/j.jbc.2022.101635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/23/2022] Open
Abstract
The lack of antiviral innate immune responses during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is characterized by limited production of interferons (IFNs). One protein associated with Aicardi-Goutières syndrome, SAMHD1, has been shown to negatively regulate the IFN-1 signaling pathway. However, it is unclear whether elevated IFN signaling associated with genetic loss of SAMHD1 would affect SARS-CoV-2 replication. In this study, we established in vitro tissue culture model systems for SARS-CoV-2 and human coronavirus OC43 infections in which SAMHD1 protein expression was absent as a result of CRISPR-Cas9 gene KO or lentiviral viral protein X-mediated proteosomal degradation. We show that both SARS-CoV-2 and human coronavirus OC43 replications were suppressed in SAMHD1 KO 293T and differentiated THP-1 macrophage cell lines. Similarly, when SAMHD1 was degraded by virus-like particles in primary monocyte-derived macrophages, we observed lower levels of SARS-CoV-2 RNA. The loss of SAMHD1 in 293T and differentiated THP-1 cells resulted in upregulated gene expression of IFNs and innate immunity signaling proteins from several pathways, with STAT1 mRNA being the most prominently elevated ones. Furthermore, SARS-CoV-2 replication was significantly increased in both SAMHD1 WT and KO cells when expression and phosphorylation of STAT1 were downregulated by JAK inhibitor baricitinib, which over-rode the activated antiviral innate immunity in the KO cells. This further validates baricitinib as a treatment of SARS-CoV-2-infected patients primarily at the postviral clearance stage. Overall, our tissue culture model systems demonstrated that the elevated innate immune response and IFN activation upon genetic loss of SAMHD1 effectively suppresses SARS-CoV-2 replication.
Collapse
Affiliation(s)
- Adrian Oo
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Keivan Zandi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Caitlin Shepard
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Leda C Bassit
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Katie Musall
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Shu Ling Goh
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Young-Jae Cho
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Dong-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Kyung-Hee University, Seoul, South Korea
| | - Raymond F Schinazi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Baek Kim
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA; Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, Georgia, USA.
| |
Collapse
|
48
|
Kumar A, Sharma A, Tirpude NV, Sharma S, Padwad YS, Kumar S. Pharmaco-immunomodulatory interventions for averting cytokine storm-linked disease severity in SARS-CoV-2 infection. Inflammopharmacology 2022; 30:23-49. [PMID: 35048262 PMCID: PMC8769772 DOI: 10.1007/s10787-021-00903-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
The year 2020 is characterised by the COVID-19 pandemic that has quelled more than half a million lives in recent months. We are still coping with the negative repercussions of COVID-19 pandemic in 2021, in which the 2nd wave in India resulted in a high fatality rate. Regardless of emergency vaccine approvals and subsequent meteoric global vaccination drives in some countries, hospitalisations for COVID-19 will continue to occur due to the propensity of mutation in SARS-CoV-2 virus. The immune response plays a vital role in the control and resolution of infectious diseases. However, an impaired immune response is responsible for the severity of the respiratory distress in many diseases. The severe COVID-19 infection persuaded cytokine storm that has been linked with acute respiratory distress syndrome (ARDS), culminates into vital organ failures and eventual death. Thus, safe and effective therapeutics to treat hospitalised patients remains a significant unmet clinical need. In that state, any clue of possible treatments, which save patients life, can be treasured for this time point. Many cohorts and clinical trial studies demonstrated that timely administration of immunomodulatory drugs on severe COVID-19 patients may mitigate the disease severity, hospital stay and mortality. This article addresses the severity and risk factors of hypercytokinemia in COVID-19 patients, with special emphasis on prospective immunomodulatory therapies.
Collapse
Affiliation(s)
- Arbind Kumar
- COVID-19 Testing facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh India
| | - Aashish Sharma
- COVID-19 Testing facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh India
| | - Narendra Vijay Tirpude
- Animal Facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh India
| | - Suresh Sharma
- COVID-19 Testing facility, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh India
| | - Yogendra S. Padwad
- Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh India
| | - Sanjay Kumar
- CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, Himachal Pradesh India
| |
Collapse
|
49
|
Abstract
The global coronavirus disease-19 (COVID-19) has affected more than 140 million and killed more than 3 million people worldwide as of April 20, 2021. The novel human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been identified as an etiological agent for COVID-19. Several kinases have been proposed as possible mediators of multiple viral infections, including life-threatening coronaviruses like SARS-CoV-1, Middle East syndrome coronavirus (MERS-CoV), and SARS-CoV-2. Viral infections hijack abundant cell signaling pathways, resulting in drastic phosphorylation rewiring in the host and viral proteins. Some kinases play a significant role throughout the viral infection cycle (entry, replication, assembly, and egress), and several of them are involved in the virus-induced hyperinflammatory response that leads to cytokine storm, acute respiratory distress syndrome (ARDS), organ injury, and death. Here, we highlight kinases that are associated with coronavirus infections and their inhibitors with antiviral and potentially anti-inflammatory, cytokine-suppressive, or antifibrotic activity.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry
and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University
Tübingen, Auf der Morgenstelle 8, 72076 Tübingen,
Germany
| | - Stefan Laufer
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry
and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University
Tübingen, Auf der Morgenstelle 8, 72076 Tübingen,
Germany
| |
Collapse
|
50
|
Guo Y, Esfahani F, Shao X, Srinivasan V, Thomo A, Xing L, Zhang X. Integrative COVID-19 biological network inference with probabilistic core decomposition. Brief Bioinform 2022; 23:6425808. [PMID: 34791019 PMCID: PMC8689992 DOI: 10.1093/bib/bbab455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/15/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for millions of deaths around the world. To help contribute to the understanding of crucial knowledge and to further generate new hypotheses relevant to SARS-CoV-2 and human protein interactions, we make use of the information abundant Biomine probabilistic database and extend the experimentally identified SARS-CoV-2-human protein-protein interaction (PPI) network in silico. We generate an extended network by integrating information from the Biomine database, the PPI network and other experimentally validated results. To generate novel hypotheses, we focus on the high-connectivity sub-communities that overlap most with the integrated experimentally validated results in the extended network. Therefore, we propose a new data analysis pipeline that can efficiently compute core decomposition on the extended network and identify dense subgraphs. We then evaluate the identified dense subgraph and the generated hypotheses in three contexts: literature validation for uncovered virus targeting genes and proteins, gene function enrichment analysis on subgraphs and literature support on drug repurposing for identified tissues and diseases related to COVID-19. The major types of the generated hypotheses are proteins with their encoding genes and we rank them by sorting their connections to the integrated experimentally validated nodes. In addition, we compile a comprehensive list of novel genes, and proteins potentially related to COVID-19, as well as novel diseases which might be comorbidities. Together with the generated hypotheses, our results provide novel knowledge relevant to COVID-19 for further validation.
Collapse
Affiliation(s)
- Yang Guo
- Department of Mathematics and Statistics, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada
| | - Fatemeh Esfahani
- Department of Computer Science, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada
| | - Xiaojian Shao
- Digital Technologies Research Centre, National Research Council Canada, 1200 Montreal Road, K1A 0R6, Ottawa, ON, Canada
| | - Venkatesh Srinivasan
- Department of Computer Science, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada
| | - Alex Thomo
- Department of Computer Science, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada
| | - Li Xing
- Department of Mathematics and Statistics, University of Saskatchewan, 110 Science Place, S7N 5A2, Saskatoon, SK, Canada
| | - Xuekui Zhang
- Corresponding author: Xuekui Zhang, Department of Mathematics and Statistics, University of Victoria, 3800 Finnerty Road, V8P 5C2, Victoria, BC, Canada.
| |
Collapse
|