1
|
Shu L, Tao T, Xiao D, Liu S, Tao Y. The role of B cell immunity in lung adenocarcinoma. Genes Immun 2025:10.1038/s41435-025-00331-9. [PMID: 40360749 DOI: 10.1038/s41435-025-00331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 04/07/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Lung cancer is the deadliest cancer globally. Non-small cell lung cancer (NSCLC), including adenocarcinoma, squamous cell carcinoma, and large cell carcinoma, constitutes a significant portion of cases. Adenocarcinoma, the most prevalent type, has seen a rising incidence. Immune checkpoint inhibitors (ICIs) have improved outcomes in lung adenocarcinoma (LUAD), yet response rates remain unsatisfactory. PD-1/PD-L1 inhibitors are primary ICIs for LUAD, targeting the PD-1/PD-L1 pathway between CD8+ T cells and tumor cells. However, LUAD presents a "cold tumor" phenotype with fewer CD8+ T cells and lower PD-1 expression, leading to resistance to ICIs. Thus, understanding the function of other immune cell in tumor microenvironment is crucial for developing novel immunotherapies for LUAD. B cells, which is part of the adaptive immune system, have gained attention for its role in cancer immunology. While research on B cells lags behind T cells, recent studies reveal their close correlation with prognosis and immunotherapy effectiveness in various solid tumors, including lung cancer. B cells show higher abundance, activity, and prognostic significance in LUAD than that in LUSC. This review summarizes the difference of B cell immunity between LUAD and other lung cancers, outlines the role of B cell immunity in LUAD.
Collapse
Affiliation(s)
- Long Shu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Tania Tao
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Qin Y, Li M, Liu H. Regulatory T cells: a promising new therapeutic target in ventricular remodeling after myocardial infarction. Front Immunol 2025; 16:1514335. [PMID: 40260235 PMCID: PMC12009920 DOI: 10.3389/fimmu.2025.1514335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death worldwide. It is triggered by thrombosis or vascular occlusion. After MI, damaged cardiomyocytes are replaced by scar tissue, leading to systolic and diastolic dysfunction, followed by adverse remodeling. Regulatory T cells (Tregs), as major immune cells, play a crucial role in post-MI inflammation and immunomodulation. Tregs improve cardiac remodeling after MI through various mechanisms, including inhibiting inflammatory cell infiltration, inducing anti-inflammatory macrophages, suppressing cell apoptosis, regulating fibroblast function, and promoting angiogenesis. The modulation of Tregs number or function may provide novel methods for improving post-MI remodeling. This review describes the immunoregulatory roles of Tregs, their regulatory mechanisms in post-MI ventricular remodeling, and the prospects and challenges for clinical application. However, the exact molecular mechanisms of Tregs in ventricular remodeling remain to be investigated. Although most of the current studies are at the preclinical stage, they hold great potential for further application in the future.
Collapse
Affiliation(s)
- Yiran Qin
- Department of Cardiology, Qingpu Hospital Affiliated to Fudan University, Shanghai, China
| | - Mingxuan Li
- Department of Cardiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Haibo Liu
- Department of Cardiology, Qingpu Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
3
|
Ismail AH, Khormi MA, Mawkili W, Albaqami A, Areshi S, Aborasain AM, Hegazy MM, Amin AH, Abo-Zaid MA. Harnessing the potential of gene-editing technology to overcome the current bottlenecks of CAR-T cell therapy in T-cell malignancies. Exp Hematol 2025; 146:104762. [PMID: 40122371 DOI: 10.1016/j.exphem.2025.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
T-cell malignancies (TCMs) include a diverse spectrum of hematologic cancers marked by complex biology and aggressive nature. Treating TCMs remains a critical unmet need in oncology with poor response to standard therapies. Chimeric antigen receptor (CAR)-T cell therapy is one of the most successful types of immunotherapy that has revolutionized cancer treatment, as evidenced by various approved products for CD19 B-cell malignancies and multiple myeloma. Nonetheless, due to some unique hurdles, such as the risk of CAR-T cell fratricide, product contamination with malignant cells, and severe T-cell aplasia, the translation of this treatment approach to TCMs has not been particularly successful. Moreover, irrespective of the type of treated cancer, CAR-T cell therapy can also present some complexities and potential side effects, such as cumbersome and costly manufacturing processes, impaired in vivo function, cytokine release syndrome (CRS), neurotoxicity, and leukemic transformation of CAR-T cells. Recent groundbreaking advances in gene-editing technology and the evolution of precise gene-editing tools such as the CRISPR/Cas9 system and its derivatives have opened a new way to overcoming the mentioned bottlenecks and paving the way for CAR-T cell therapy in TCMs. This review sheds light on how gene editing is being incorporated into CAR-T cell therapy to address current hurdles, enhance therapeutic efficacy, and improve the safety profile of CAR-T cell therapy in TCMs. Ongoing/conducted clinical trials are also discussed to provide a comprehensive view of the evolving landscape of genome-edited CAR-T cell therapy for TCMs.
Collapse
Affiliation(s)
- Ahmed H Ismail
- Department of Biology, College of Science, Jazan University, P.O. Box 114, 45142 Jazan, Kingdom of Saudi Arabia
| | - Mohsen A Khormi
- Department of Biology, College of Science, Jazan University, P.O. Box 114, 45142 Jazan, Kingdom of Saudi Arabia
| | - Wedad Mawkili
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Amirah Albaqami
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, 21944, Saudi Arabia
| | - Sultan Areshi
- Department of Biology, College of Science, Jazan University, P.O. Box 114, 45142 Jazan, Kingdom of Saudi Arabia
| | - Ali M Aborasain
- Department of Biology, College of Science, Jazan University, P.O. Box 114, 45142 Jazan, Kingdom of Saudi Arabia
| | - Maysa M Hegazy
- Department of Biology, College of Science, Jazan University, P.O. Box 114, 45142 Jazan, Kingdom of Saudi Arabia
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mabrouk A Abo-Zaid
- Department of Biology, College of Science, Jazan University, P.O. Box 114, 45142 Jazan, Kingdom of Saudi Arabia.
| |
Collapse
|
4
|
Gong E, Zawacki L, Fan X, Hippe DS, Menon AA, Remington AJ, Lachance K, Akaike T, Tachiki L, Park SY, Nghiem P. Immunotherapy response in immunosuppressed patients with Merkel cell carcinoma: analysis of 183 patients. BMJ ONCOLOGY 2025; 4:e000654. [PMID: 40099002 PMCID: PMC11911694 DOI: 10.1136/bmjonc-2024-000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
Objective Merkel cell carcinoma (MCC) is an aggressive skin cancer with poor outcomes in immunosuppressed patients. While immune checkpoint inhibitors (ICIs) achieve ~60% response rates in immunocompetent MCC patients, their efficacy in immunosuppressed patients remains unclear due to exclusion from trials. This study compares ICI outcomes, safety and the impact of immunosuppression subtypes between these groups. Methods and analysis This retrospective study analysed 183 advanced MCC patients on first-line ICIs from a Seattle-based data repository. Of these, 147 were immunocompetent, and 36 were immunosuppressed (chronic lymphocytic leukaemia (CLL) n=10, autoimmune disorders n=10, other haematologic malignancies n=9, solid organ transplants n=4 and HIV/AIDS n=3). Outcomes included objective response rate, disease progression, MCC-specific and overall survival probability, adjusted for age, sex and stage at ICI initiation. Results Initial ICI response rates at 6 months were 50% in immunosuppressed and 61.5% in immunocompetent patients (HR=0.71, p=0.17). Immunosuppressed patients had higher risks of disease progression (2 years: 53.9% vs 42.1%, HR=1.65, p=0.05) and MCC-specific mortality (2 years: 38.7% vs 24.4%, HR=1.85, p=0.04). CLL patients (n=10) had a particularly low response rate (response rate: 20.0% vs 61.5%, HR=0.18, p=0.02) and high progression risk (2 years: 80.0% vs 42.1%, HR=4.09, p=0.01). Immunosuppressed patients faced higher rates of ICI toxicity (6-month risk: 51.6% vs 36.6%, HR=1.79, p=0.03). Conclusions ICIs provide meaningful benefits to immunosuppressed MCC patients, though their response rates are lower, and progression risk is higher compared with immunocompetent patients.
Collapse
Affiliation(s)
- Emily Gong
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Lauren Zawacki
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Xinyi Fan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Daniel S Hippe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ankita A Menon
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Allison J Remington
- Department of Dermatology, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Kristina Lachance
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Tomoko Akaike
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Lisa Tachiki
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Medicine, Division of Hematology/Oncology, University of Washington, Seattle, Washington, USA
| | - Song Y Park
- Department of Dermatology, University of Washington, Seattle, Washington, USA
| | - Paul Nghiem
- Department of Dermatology, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
5
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
6
|
Kheirkhah AH, Habibi S, Yousefi MH, Mehri S, Ma B, Saleh M, Kavianpour M. Finding potential targets in cell-based immunotherapy for handling the challenges of acute myeloid leukemia. Front Immunol 2024; 15:1460437. [PMID: 39411712 PMCID: PMC11474923 DOI: 10.3389/fimmu.2024.1460437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hostile hematological malignancy under great danger of relapse and poor long-term survival rates, despite recent therapeutic advancements. To deal with this unfulfilled clinical necessity, innovative cell-based immunotherapies have surfaced as promising approaches to improve anti-tumor immunity and enhance patient outcomes. In this comprehensive review, we provide a detailed examination of the latest developments in cell-based immunotherapies for AML, including chimeric antigen receptor (CAR) T-cell therapy, T-cell receptor (TCR)-engineered T-cell therapy, and natural killer (NK) cell-based therapies. We critically evaluate the unique mechanisms of action, current challenges, and evolving strategies to improve the efficacy and safety of these modalities. The review emphasizes how promising these cutting-edge immune-based strategies are in overcoming the inherent complexities and heterogeneity of AML. We discuss the identification of optimal target antigens, the importance of mitigating on-target/off-tumor toxicity, and the need to enhance the persistence and functionality of engineered immune effector cells. All things considered, this review offers a thorough overview of the rapidly evolving field of cell-based immunotherapy for AML, underscoring the significant progress made and the ongoing efforts to translate these innovative approaches into more effective and durable treatments for this devastating disease.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/immunology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Killer Cells, Natural/immunology
- Immunotherapy/methods
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Amir Hossein Kheirkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Sara Mehri
- Department of Biotechnology, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Bin Ma
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- Clinical Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mahshid Saleh
- Wisconsin National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, United States
| | - Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
7
|
Heidari-Foroozan M, Rezalotfi A, Rezaei N. The molecular landscape of T cell exhaustion in the tumor microenvironment and reinvigoration strategies. Int Rev Immunol 2024; 43:419-440. [PMID: 39257319 DOI: 10.1080/08830185.2024.2401352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2023] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for cancer treatment by harnessing the immune system to target cancer cells. However, the efficacy of immunotherapy is hindered by the tumor microenvironment (TME), comprising regulatory T cells (Tregs), macrophages, myeloid-derived suppressor cells (MDSCs), neutrophils, soluble factors (TGF-β, IL-35, IL-10), and hypoxia. These components interact with inhibitory receptors (IRs) on T cells, leading to alterations in T cell transcriptomes, epigenomes, and metabolism, ultimately resulting in T cell exhaustion and compromising the effectiveness of immunotherapy. T cell exhaustion occurs in two phases: pre-exhaustion and exhaustion. Pre-exhausted T cells exhibit reversibility and distinct molecular properties compared to terminally exhausted T cells. Understanding these differences is crucial for designing effective interventions. This comprehensive review summarizes the characteristics of pre-exhausted and exhausted T cells and elucidates the influence of TME components on T cell activity, transcriptomes, epigenomes, and metabolism, ultimately driving T cell exhaustion in cancer. Additionally, potential intervention strategies for reversing exhaustion are discussed. By gaining insights into the mechanisms underlying T cell exhaustion and the impact of the TME, this review aims to inform the development of innovative approaches for combating T cell exhaustion and enhancing the efficacy of immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Mahsa Heidari-Foroozan
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Lopresti L, Tatangelo V, Baldari CT, Patrussi L. Rewiring the T cell-suppressive cytokine landscape of the tumor microenvironment: a new frontier for precision anti-cancer therapy. Front Immunol 2024; 15:1418527. [PMID: 39281678 PMCID: PMC11392891 DOI: 10.3389/fimmu.2024.1418527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
T lymphocytes that infiltrate the tumor microenvironment (TME) often fail to function as effective anti-cancer agents. Within the TME, cell-to-cell inhibitory interactions play significant roles in dampening their anti-tumor activities. Recent studies have revealed that soluble factors released in the TME by immune and non-immune cells, as well as by tumor cells themselves, contribute to the exacerbation of T cell exhaustion. Our understanding of the cytokine landscape of the TME, their interrelationships, and their impact on cancer development is still at its early stages. In this review, we aim to shed light on Interleukin (IL) -6, IL-9, and IL-10, a small group of JAK/STAT signaling-dependent cytokines harboring T cell-suppressive effects in the TME and summarize their mechanisms of action. Additionally, we will explore how advancements in scientific research can help us overcoming the obstacles posed by cytokines that suppress T cells in tumors, with the ultimate objective of stimulating further investigations for the development of novel therapeutic strategies to counteract their tumor-promoting activities.
Collapse
Affiliation(s)
| | | | | | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
9
|
Li F, Wang J, Li M, Zhang X, Tang Y, Song X, Zhang Y, Pei L, Liu J, Zhang C, Li X, Xu Y, Zhang Y. Identifying cell type-specific transcription factor-mediated activity immune modules reveal implications for immunotherapy and molecular classification of pan-cancer. Brief Bioinform 2024; 25:bbae368. [PMID: 39082649 PMCID: PMC11289680 DOI: 10.1093/bib/bbae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024] Open
Abstract
Systematic investigation of tumor-infiltrating immune (TII) cells is important to the development of immunotherapies, and the clinical response prediction in cancers. There exists complex transcriptional regulation within TII cells, and different immune cell types display specific regulation patterns. To dissect transcriptional regulation in TII cells, we first integrated the gene expression profiles from single-cell datasets, and proposed a computational pipeline to identify TII cell type-specific transcription factor (TF) mediated activity immune modules (TF-AIMs). Our analysis revealed key TFs, such as BACH2 and NFKB1 play important roles in B and NK cells, respectively. We also found some of these TF-AIMs may contribute to tumor pathogenesis. Based on TII cell type-specific TF-AIMs, we identified eight CD8+ T cell subtypes. In particular, we found the PD1 + CD8+ T cell subset and its specific TF-AIMs associated with immunotherapy response. Furthermore, the TII cell type-specific TF-AIMs displayed the potential to be used as predictive markers for immunotherapy response of cancer patients. At the pan-cancer level, we also identified and characterized six molecular subtypes across 9680 samples based on the activation status of TII cell type-specific TF-AIMs. Finally, we constructed a user-friendly web interface CellTF-AIMs (http://bio-bigdata.hrbmu.edu.cn/CellTF-AIMs/) for exploring transcriptional regulatory pattern in various TII cell types. Our study provides valuable implications and a rich resource for understanding the mechanisms involved in cancer microenvironment and immunotherapy.
Collapse
Affiliation(s)
- Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Jingwen Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Mengyue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Xiaomeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Yongjuan Tang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Xinyu Song
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Yifang Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Liying Pei
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Jiaqi Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road, Harbin, China
| |
Collapse
|
10
|
Zhang H, Zheng W, Chen X, Sa L, Huo Y, Zhang L, Shan L, Wang T. DNAJC1 facilitates glioblastoma progression by promoting extracellular matrix reorganization and macrophage infiltration. J Cancer Res Clin Oncol 2024; 150:315. [PMID: 38909166 PMCID: PMC11193832 DOI: 10.1007/s00432-024-05823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Glioblastoma (GBM) is a high-grade and heterogeneous subtype of glioma that presents a substantial challenge to human health, characterized by a poor prognosis and low survival rates. Despite its known involvement in regulating leukemia and melanoma, the function and mechanism of DNAJC1 in GBM remain poorly understood. METHODS Utilizing data from the TCGA, CGGA, and GEO databases, we investigated the expression pattern of DNAJC1 and its correlation with clinical characteristics in GBM specimens. Loss-of-function experiments were conducted to explore the impact of DNAJC1 on GBM cell lines, with co-culture experiments assessing macrophage infiltration and functional marker expression. RESULTS Our analysis demonstrated frequent overexpression of DNAJC1 in GBM, significantly associated with various clinical characteristics including WHO grade, IDH status, chromosome 1p/19q codeletion, and histological type. Moreover, Kaplan‒Meier and ROC analyses revealed DNAJC1 as a negative prognostic predictor and a promising diagnostic biomarker for GBM patients. Functional studies indicated that silencing DNAJC1 impeded cell proliferation and migration, induced cell cycle arrest, and enhanced apoptosis. Mechanistically, DNAJC1 was implicated in stimulating extracellular matrix reorganization, triggering the epithelial-mesenchymal transition (EMT) process, and initiating immunosuppressive macrophage infiltration. CONCLUSIONS Our findings underscore the pivotal role of DNAJC1 in GBM pathogenesis, suggesting its potential as a diagnostic and therapeutic target for this challenging disease.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Wenjing Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xu Chen
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Longqi Sa
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yi Huo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lingling Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Lequn Shan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| | - Tao Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
11
|
Mouhssine S, Maher N, Kogila S, Cerchione C, Martinelli G, Gaidano G. Current Therapeutic Sequencing in Chronic Lymphocytic Leukemia. Hematol Rep 2024; 16:270-282. [PMID: 38804280 PMCID: PMC11130833 DOI: 10.3390/hematolrep16020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/20/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
The treatment landscape of chronic lymphocytic leukemia (CLL), the most frequent leukemia in adults, is constantly changing. CLL patients can be divided into three risk categories, based on their IGHV mutational status and the occurrence of TP53 disruption and/or complex karyotype. For the first-line treatment of low- and intermediate-risk CLL, both the BCL2 inhibitor venetoclax plus obinutuzumab and the second generation BTK inhibitors (BTKi), namely acalabrutinib and zanubrutinib, are valuable and effective options. Conversely, venetoclax-based fixed duration therapies have not shown remarkable results in high-risk CLL patients, while continuous treatment with acalabrutinib and zanubrutinib displayed favorable outcomes, similar to those obtained in TP53 wild-type patients. The development of acquired resistance to pathway inhibitors is still a clinical challenge, and the optimal treatment sequencing of relapsed/refractory CLL is not completely established. Covalent BTKi-refractory patients should be treated with venetoclax plus rituximab, whereas venetoclax-refractory CLL may be treated with second generation BTKi in the case of early relapse, while venetoclax plus rituximab might be used if late relapse has occurred. On these grounds, here we provide an overview of the current state-of-the-art therapeutic algorithms for treatment-naïve patients, as well as for relapsed/refractory disease.
Collapse
Affiliation(s)
- Samir Mouhssine
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (S.M.); (N.M.); (S.K.)
| | - Nawar Maher
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (S.M.); (N.M.); (S.K.)
| | - Sreekar Kogila
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (S.M.); (N.M.); (S.K.)
| | - Claudio Cerchione
- Hematology Unit, Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”—IRST IRCCS, 47014 Meldola, Italy;
| | - Giovanni Martinelli
- Department of Hematology and Sciences Oncology, Institute of Haematology “L. and A. Seràgnoli”, S. Orsola University Hospital, 40138 Bologna, Italy;
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (S.M.); (N.M.); (S.K.)
| |
Collapse
|
12
|
Chen Y, Yu D, Qian H, Shi Y, Tao Z. CD8 + T cell-based cancer immunotherapy. J Transl Med 2024; 22:394. [PMID: 38685033 PMCID: PMC11057112 DOI: 10.1186/s12967-024-05134-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system in humans is a defense department against both exogenous and endogenous hazards, where CD8+ T cells play a crucial role in opposing pathological threats. Various immunotherapies based on CD8+ T cells have emerged in recent decades, showing their promising results in treating intractable diseases. However, in the fight against the constantly changing and evolving cancers, the formation and function of CD8+ T cells can be challenged by tumors that might train a group of accomplices to resist the T cell killing. As cancer therapy stepped into the era of immunotherapy, understanding the physiological role of CD8+ T cells, studying the machinery of tumor immune escape, and thereby formulating different therapeutic strategies become the imperative missions for clinical and translational researchers to fulfill. After brief basics of CD8+ T cell-based biology is covered, this review delineates the mechanisms of tumor immune escape and discusses different cancer immunotherapy regimens with their own advantages and setbacks, embracing challenges and perspectives in near future.
Collapse
Affiliation(s)
- Yanxia Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dingning Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Department of Laboratory Medicine, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yinghong Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Zhimin Tao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
- Department of Emergency Medicine, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| |
Collapse
|
13
|
Luan F, Wang J, Liu L, Liu B, Li F, Zhao J, Lai J, Jiang F, Xu W, Zhang Z, Ran P, Shu Y, Yang Z, Fu G. Serum iron element: A novel biomarker for predicting PD-1 immunotherapy efficacy. Int Immunopharmacol 2024; 131:111823. [PMID: 38508094 DOI: 10.1016/j.intimp.2024.111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
This study aims to explore the relationship between serum iron by inductively coupled plasma-mass spectrometry (ICP-MS) and the efficacy of immune checkpoint inhibitors (ICIs) and potential mechanism. Totally 113 patients from 233 patients with advanced metastatic lung cancer, esophageal cancer, gastric cancer and colorectal cancer who treated with immunotherapy in Shandong Provincial Hospital were divided into training group (n=68) and validation group (n=45), whose patients were divided into clinical benefit response (CBR) and non-clinical benefit (NCB) by RECIST (v1.1) respectively. We found for the first time that high serum iron level (>1036 μg/L) was a novel biomarker of better PFS (10.13 months vs 7.37 months; p = 0.0015) and OS(16.00 months vs 11.00 months; p = 0.0235) by ROC curve (sensitivity: 78.13 %; Specificity: 80.56 %; p < 0.0001) of CBR (n=32) and NCB (n=36) patients in training group. Interestingly, consistently stable and high serum iron level predicted better efficacy during immunotherapy. Noteworthy, the predictive efficacy of PD-L1 expression was significantly inferior than serum iron (accuracy:63.49% vs 79.41%, p=0.0432), while serum iron detected by spectrophotometry did not predict the efficacy of immunotherapy (p=0.0671) indicating higher sensitivity of ICP-MS. Bioinformatics analysis showed that serum iron could enhance innate immunity and cytokine release and was verified by proteomics that KEGG and GO analysis enriched innate immune and cytokine signaling pathways. Flow cytometry showed that IL-17 (p=0.0002) increased and IL-6 (p=0.0112) decreased after immunotherapy. Based on this, Nomogram with better prediction was constructed by multiple clinical and independent factors. Our results revealed that serum iron is positively associated with ICIs efficacy by enhancing innate immunity and cytokine release in advanced metastatic cancers, and can be a biomarker for predicting ICIs response.
Collapse
Affiliation(s)
- Fang Luan
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jingliang Wang
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Lei Liu
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Department of Oncology, Jinan People's Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250102, China
| | - Bin Liu
- Department of Biomedical Engineering, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Fuxia Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jing Zhao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jingjiang Lai
- Innovative Institute of Chinese Medicine, Shandong University of Traditional Chinese 24 Medicine, Jinan 250002, China
| | - Fengxian Jiang
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Wei Xu
- Department of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250012, China
| | - Zhizhao Zhang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Pancen Ran
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yang Shu
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Zhe Yang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guobin Fu
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; The Third Affiliated Hospital of Shandong First Medical University, Jinan 250031, China.
| |
Collapse
|
14
|
Volk-Draper L, Athaiya S, Espinosa Gonzalez M, Bhattarai N, Wilber A, Ran S. Tumor microenvironment restricts IL-10 induced multipotent progenitors to myeloid-lymphatic phenotype. PLoS One 2024; 19:e0298465. [PMID: 38640116 PMCID: PMC11029653 DOI: 10.1371/journal.pone.0298465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/24/2024] [Indexed: 04/21/2024] Open
Abstract
Lymphangiogenesis is induced by local pro-lymphatic growth factors and bone marrow (BM)-derived myeloid-lymphatic endothelial cell progenitors (M-LECP). We previously showed that M-LECP play a significant role in lymphangiogenesis and lymph node metastasis in clinical breast cancer (BC) and experimental BC models. We also showed that differentiation of mouse and human M-LECP can be induced through sequential activation of colony stimulating factor-1 (CSF-1) and Toll-like receptor-4 (TLR4) pathways. This treatment activates the autocrine interleukin-10 (IL-10) pathway that, in turn, induces myeloid immunosuppressive M2 phenotype along with lymphatic-specific proteins. Because IL-10 is implicated in differentiation of numerous lineages, we sought to determine whether this pathway specifically promotes the lymphatic phenotype or multipotent progenitors that can give rise to M-LECP among other lineages. Analyses of BM cells activated either by CSF-1/TLR4 ligands in vitro or orthotopic breast tumors in vivo showed expansion of stem/progenitor population and coincident upregulation of markers for at least four lineages including M2-macrophage, lymphatic endothelial, erythroid, and T-cells. Induction of cell plasticity and multipotency was IL-10 dependent as indicated by significant reduction of stem cell markers and those for multiple lineages in differentiated cells treated with anti-IL-10 receptor (IL-10R) antibody or derived from IL-10R knockout mice. However, multipotent CD11b+/Lyve-1+/Ter-119+/CD3e+ progenitors detected in BM appeared to split into a predominant myeloid-lymphatic fraction and minor subsets expressing erythroid and T-cell markers upon establishing tumor residence. Each sub-population was detected at a distinct intratumoral site. This study provides direct evidence for differences in maturation status between the BM progenitors and those reaching tumor destination. The study results suggest preferential tumor bias towards expansion of myeloid-lymphatic cells while underscoring the role of IL-10 in early BM production of multipotent progenitors that give rise to both hematopoietic and endothelial lineages.
Collapse
Affiliation(s)
- Lisa Volk-Draper
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Shaswati Athaiya
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Maria Espinosa Gonzalez
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Nihit Bhattarai
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Sophia Ran
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
- Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| |
Collapse
|
15
|
Boncompagni G, Tatangelo V, Lopresti L, Ulivieri C, Capitani N, Tangredi C, Finetti F, Marotta G, Frezzato F, Visentin A, Ciofini S, Gozzetti A, Bocchia M, Calzada-Fraile D, Martin Cofreces NB, Trentin L, Patrussi L, Baldari CT. Leukemic cell-secreted interleukin-9 suppresses cytotoxic T cell-mediated killing in chronic lymphocytic leukemia. Cell Death Dis 2024; 15:144. [PMID: 38360867 PMCID: PMC10869739 DOI: 10.1038/s41419-024-06528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
The tumor microenvironment (TME) plays a central role in the pathogenesis of chronic lymphocytic leukemia (CLL), contributing to disease progression and chemoresistance. Leukemic cells shape the TME into a pro-survival and immunosuppressive niche through contact-dependent and contact-independent interactions with the cellular components of the TME. Immune synapse (IS) formation is defective in CLL. Here we asked whether soluble factors released by CLL cells contribute to their protection from cytotoxic T cell (CTL)-mediated killing by interfering with this process. We found that healthy CTLs cultured in media conditioned by leukemic cells from CLL patients or Eμ-TCL1 mice upregulate the exhaustion marker PD-1 and become unable to form functional ISs and kill target cells. These defects were more pronounced when media were conditioned by leukemic cells lacking p66Shc, a proapoptotic adapter whose deficiency has been implicated in disease aggressiveness both in CLL and in the Eμ-TCL1 mouse model. Multiplex ELISA assays showed that leukemic cells from Eμ-TCL1 mice secrete abnormally elevated amounts of CCL22, CCL24, IL-9 and IL-10, which are further upregulated in the absence of p66Shc. Among these, IL-9 and IL-10 were also overexpressed in leukemic cells from CLL patients, where they inversely correlated with residual p66Shc. Using neutralizing antibodies or the recombinant cytokines we show that IL-9, but not IL-10, mediates both the enhancement in PD-1 expression and the suppression of effector functions in healthy CTLs. Our results demonstrate that IL-9 secreted by leukemic cells negatively modulates the anti-tumor immune abilities of CTLs, highlighting a new suppressive mechanism and a novel potential therapeutical target in CLL.
Collapse
Affiliation(s)
| | | | | | | | - Nagaja Capitani
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | | | - Giuseppe Marotta
- Stem Cell Transplant and Cellular Therapy Unit, University Hospital, Siena, Italy
| | - Federica Frezzato
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Andrea Visentin
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Sara Ciofini
- Department of Medical Science, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandro Gozzetti
- Department of Medical Science, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Monica Bocchia
- Department of Medical Science, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Diego Calzada-Fraile
- Immunology Unit from Hospital Universitario de la Princesa, Universidad Autónoma de Madrid and Instituto de investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Noa B Martin Cofreces
- Immunology Unit from Hospital Universitario de la Princesa, Universidad Autónoma de Madrid and Instituto de investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Laura Patrussi
- Department of Life Sciences, University of Siena, Siena, Italy.
| | | |
Collapse
|
16
|
Jiménez-Cortegana C, Palomares F, Alba G, Santa-María C, de la Cruz-Merino L, Sánchez-Margalet V, López-Enríquez S. Dendritic cells: the yin and yang in disease progression. Front Immunol 2024; 14:1321051. [PMID: 38239364 PMCID: PMC10794555 DOI: 10.3389/fimmu.2023.1321051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
Dendritic cells (DCs) are antigen presenting cells that link innate and adaptive immunity. DCs have been historically considered as the most effective and potent cell population to capture, process and present antigens to activate naïve T cells and originate favorable immune responses in many diseases, such as cancer. However, in the last decades, it has been observed that DCs not only promote beneficial responses, but also drive the initiation and progression of some pathologies, including inflammatory bowel disease (IBD). In line with those notions, different therapeutic approaches have been tested to enhance or impair the concentration and role of the different DC subsets. The blockade of inhibitory pathways to promote DCs or DC-based vaccines have been successfully assessed in cancer, whereas the targeting of DCs to inhibit their functionality has proved to be favorable in IBD. In this review, we (a) described the general role of DCs, (b) explained the DC subsets and their role in immunogenicity, (c) analyzed the role of DCs in cancer and therapeutic approaches to promote immunogenic DCs and (d) analyzed the role of DCs in IBD and therapeutic approaches to reduced DC-induced inflammation. Therefore, we aimed to highlight the "yin-yang" role of DCs to improve the understand of this type of cells in disease progression.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisca Palomares
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Gonzalo Alba
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Consuelo Santa-María
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Clinical Oncology Dept. Medicine Department, University of Seville, Virgen Macarena University Hospital, Seville, Spain
| | - Victor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Soledad López-Enríquez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
17
|
Liang EC, Albittar A, Huang JJ, Hirayama AV, Kimble EL, Portuguese AJ, Chapuis A, Shadman M, Till BG, Cassaday RD, Milano F, Kiem HP, Riddell SR, Turtle CJ, Maloney DG, Gauthier J. Factors associated with long-term outcomes of CD19 CAR T-cell therapy for relapsed/refractory CLL. Blood Adv 2023; 7:6990-7005. [PMID: 37774014 PMCID: PMC10690558 DOI: 10.1182/bloodadvances.2023011399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023] Open
Abstract
High response rates have been reported after CD19-targeted chimeric antigen receptor-modified (CD19 CAR) T-cell therapy for relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL), yet the factors associated with duration of response in this setting are poorly characterized. We analyzed long-term outcomes in 47 patients with R/R CLL and/or Richter transformation treated on our phase 1/2 clinical trial of CD19 CAR T-cell therapy with an updated median follow-up of 79.6 months. Median progression-free survival (PFS) was 8.9 months, and the 6-year PFS was 17.8%. Maximum standardized uptake value (hazard ratio [HR], 1.15; 95% confidence interval [CI], 1.07-1.23; P < .001) and bulky disease (≥5 cm; HR, 2.12; 95% CI, 1.06-4.26; P = .034) before lymphodepletion were associated with shorter PFS. Day +28 complete response by positron emission tomography-computed tomography (HR, 0.13; 95% CI, 0.04-0.40; P < .001), day +28 measurable residual disease (MRD) negativity by multiparameter flow cytometry (HR, 0.08; 95% CI, 0.03-0.22; P < .001), day +28 MRD negativity by next-generation sequencing (HR, 0.21; 95% CI, 0.08-0.51; P < .001), higher peak CD8+ CAR T-cell expansion (HR, 0.49; 95% CI; 0.36-0.68; P < .001), higher peak CD4+ CAR T-cell expansion (HR, 0.47; 95% CI; 0.33-0.69; P < .001), and longer CAR T-cell persistence (HR, 0.56; 95% CI, 0.44-0.72; P < .001) were associated with longer PFS. The 6-year duration of response and overall survival were 26.4% and 31.2%, respectively. CD19 CAR T-cell therapy achieved durable responses with curative potential in a subset of patients with R/R CLL. This trial was registered at www.clinicaltrials.gov as #NCT01865617.
Collapse
Affiliation(s)
- Emily C. Liang
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Aya Albittar
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Jennifer J. Huang
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Alexandre V. Hirayama
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Erik L. Kimble
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Andrew J. Portuguese
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Aude Chapuis
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Mazyar Shadman
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Brian G. Till
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Ryan D. Cassaday
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Filippo Milano
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Stanley R. Riddell
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Cameron J. Turtle
- Faculity of Medicine and Health, University of Sydney, Sydney, Australia
| | - David G. Maloney
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Jordan Gauthier
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA
- Division of Hematology and Oncology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
18
|
Silva FS, Barros-Lima A, Souza-Barros M, Crespo-Neto JA, Santos VGR, Pereira DS, Alves-Hanna FS, Magalhães-Gama F, Faria JAQA, Costa AG. A dual-role for IL-10: From leukemogenesis to the tumor progression in acute lymphoblastic leukemia. Cytokine 2023; 171:156371. [PMID: 37725872 DOI: 10.1016/j.cyto.2023.156371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer in the world, and accounts for 25% of all childhood cancers among children under 15 years of age. Longitudinal studies have shown that children with ALL are born with a deregulated immune response that, together with postnatal environmental exposures, favor the onset of the disease. In this context, IL-10, a key cytokine in the regulation of the immune response, presents itself as a paradoxical mediator, initially influencing the development of ALL through the regulation of inflammatory processes and later on the progression of malignancy, with the increase of this molecule in the leukemia microenvironment. According to the literature, this cytokine plays a critical role in the natural history of the disease and plays an important role in two different though complex scenarios. Thus, in this review, we explore the dual role of IL-10 in ALL, and describe its biological characteristics, immunological mechanisms and genetics, as well as its impact on the leukemia microenvironment and its clinical implications.
Collapse
Affiliation(s)
- Flavio Souza Silva
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Amanda Barros-Lima
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Mateus Souza-Barros
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Juniel Assis Crespo-Neto
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | | | - Daniele Sá Pereira
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Fabíola Silva Alves-Hanna
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Jerusa Araújo Quintão Arantes Faria
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil.
| |
Collapse
|
19
|
Cerreto M, Foà R, Natoni A. The Role of the Microenvironment and Cell Adhesion Molecules in Chronic Lymphocytic Leukemia. Cancers (Basel) 2023; 15:5160. [PMID: 37958334 PMCID: PMC10647257 DOI: 10.3390/cancers15215160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy whose progression largely depends on the lymph node and bone marrow microenvironment. Indeed, CLL cells actively proliferate in specific regions of these anatomical compartments, known as proliferation centers, while being quiescent in the blood stream. Hence, CLL cell adhesion and migration into these protective niches are critical for CLL pathophysiology. CLL cells are lodged in their microenvironment through a series of molecular interactions that are mediated by cellular adhesion molecules and their counter receptors. The importance of these adhesion molecules in the clinic is demonstrated by the correlation between the expression levels of some of them, in particular CD49d, and the prognostic likelihood. Furthermore, novel therapeutic agents, such as ibrutinib, impair the functions of these adhesion molecules, leading to an egress of CLL cells from the lymph nodes and bone marrow into the circulation together with an inhibition of homing into these survival niches, thereby preventing disease progression. Several adhesion molecules have been shown to participate in CLL adhesion and migration. Their importance also stems from the observation that they are involved in promoting, directly or indirectly, survival signals that sustain CLL proliferation and limit the efficacy of standard and novel chemotherapeutic drugs, a process known as cell adhesion-mediated drug resistance. In this respect, many studies have elucidated the molecular mechanisms underlying cell adhesion-mediated drug resistance, which have highlighted different signaling pathways that may represent potential therapeutic targets. Here, we review the role of the microenvironment and the adhesion molecules that have been shown to be important in CLL and their impact on transendothelial migration and cell-mediated drug resistance. We also discuss how novel therapeutic compounds modulate the function of this important class of molecules.
Collapse
Affiliation(s)
| | | | - Alessandro Natoni
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00100 Rome, Italy; (M.C.); (R.F.)
| |
Collapse
|
20
|
Goral A, Sledz M, Manda-Handzlik A, Cieloch A, Wojciechowska A, Lachota M, Mroczek A, Demkow U, Zagozdzon R, Matusik K, Wachowska M, Muchowicz A. Regulatory T cells contribute to the immunosuppressive phenotype of neutrophils in a mouse model of chronic lymphocytic leukemia. Exp Hematol Oncol 2023; 12:89. [PMID: 37817276 PMCID: PMC10563345 DOI: 10.1186/s40164-023-00452-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Impaired neutrophil activity is an important issue in chronic lymphocytic leukemia (CLL), as it contributes to a dysfunctional immune response leading to life-threatening infections in patients. Some features typical of CLL neutrophils, e.g., the B-cell-supportive secretion profile, have already been described. However, most of these studies were performed on cells isolated from peripheral blood. It is still unclear which molecular factors and cell types are involved in shaping neutrophil function and phenotype in the CLL microenvironment. Since regulatory T cells (Treg) play an important role in CLL progression and influence the activity of neutrophils, we investigated the crosstalk between Treg and neutrophils in the spleen using a murine model of CLL. METHODS In this work, we used an Eµ-TCL1 mouse model of human CLL. For our in vivo and ex vivo experiments, we inoculated wild-type mice with TCL1 leukemic cells isolated from Eµ-TCL1 transgenic mice and then monitored disease progression by detecting leukemic cells in peripheral blood. We analyzed both the phenotype and activity of neutrophils isolated from the spleens of TCL1 leukemia-bearing mice. To investigate the interrelation between Treg and neutrophils in the leukemia microenvironment, we performed experiments using TCL1-injected DEREG mice with Treg depletion or RAG2KO mice with adoptively transferred TCL1 cells alone or together with Treg. RESULTS The obtained results underline the plasticity of the neutrophil phenotype, observed under the influence of leukemic cells alone and depending on the presence of Treg. In particular, Treg affect the expression of CD62L and IL-4 receptor in neutrophils, both of which are crucial for the function of these cells. Additionally, we show that Treg depletion and IL-10 neutralization induce changes in the leukemia microenvironment, partially restoring the "healthy" phenotype of neutrophils. CONCLUSIONS Altogether, the results indicate that the crosstalk between Treg and neutrophils in CLL may play an important role in CLL progression by interfering with the immune response.
Collapse
Affiliation(s)
- Agnieszka Goral
- Department of Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Marta Sledz
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Aneta Manda-Handzlik
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Adrianna Cieloch
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Alicja Wojciechowska
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Mieszko Lachota
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
- Department of Ophthalmology, Children's Memorial Health Institute, Warsaw, 04-730, Poland
| | - Agnieszka Mroczek
- Doctoral School, Medical University of Warsaw, Warsaw, 02-091, Poland
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Radoslaw Zagozdzon
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland
| | - Katarzyna Matusik
- Doctoral School, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Malgorzata Wachowska
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, 02-091, Poland
| | - Angelika Muchowicz
- Department of Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland.
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, 02-097, Poland.
| |
Collapse
|
21
|
Cao H, Wu T, Zhou X, Xie S, Sun H, Sun Y, Li Y. Progress of research on PD-1/PD-L1 in leukemia. Front Immunol 2023; 14:1265299. [PMID: 37822924 PMCID: PMC10562551 DOI: 10.3389/fimmu.2023.1265299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023] Open
Abstract
Leukemia cells prevent immune system from clearing tumor cells by inducing the immunosuppression of the bone marrow (BM) microenvironment. In recent years, further understanding of the BM microenvironment and immune landscape of leukemia has resulted in the introduction of several immunotherapies, including checkpoint inhibitors, T-cell engager, antibody drug conjugates, and cellular therapies in clinical trials. Among them, the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is a significant checkpoint for controlling immune responses, the PD-1 receptor on tumor-infiltrating T cells is bound by PD-L1 on leukemia cells. Consequently, the activation of tumor reactive T cells is inhibited and their apoptosis is promoted, preventing the rejection of the tumor by immune system and thus resulting in the occurrence of immune tolerance. The PD-1/PD-L1 axis serves as a significant mechanism by which tumor cells evade immune surveillance, and PD-1/PD-L1 checkpoint inhibitors have been approved for the treatment of lymphomas and varieties of solid tumors. However, the development of drugs targeting PD-1/PD-L1 in leukemia remains in the clinical-trial stage. In this review, we tally up the basic research and clinical trials on PD-1/PD-L1 inhibitors in leukemia, as well as discuss the relevant toxicity and impacts of PD-1/PD-L1 on other immunotherapies such as hematopoietic stem cell transplantation, bi-specific T-cell engager, chimeric antigen receptor T-cell immunotherapy.
Collapse
Affiliation(s)
- Huizhen Cao
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Tianyu Wu
- Department of Gastrointestinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xue Zhou
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shuyang Xie
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Hongfang Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yunxiao Sun
- Department of Pediatrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Youjie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| |
Collapse
|
22
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
23
|
Romeo MA, Gilardini Montani MS, Santarelli R, Benedetti R, Arena A, Cirone M. Acetylation increases expression, interaction with TRAPPC4 and surface localization of PD-L1. Discov Oncol 2023; 14:152. [PMID: 37603071 PMCID: PMC10442048 DOI: 10.1007/s12672-023-00766-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
PD-L1 is an immune checkpoint inhibitor, whose surface expression may be exploited by cancer cells to escape T cell-mediated immune recognition. PD-L1 expression and nuclear localization can be affected by epigenetic modifications, such as acetylation. In this study, we showed that VPA, a class I/IIa HDAC inhibitor, upregulated PD-L1 expression on the surface of pancreatic cancer cells. To this effect contributed the increased transcription, in correlation with histone acetylation of the PD-L1 gene and the acetylation of PD-L1 protein, which led to an increased interaction with TRAPPC4, molecule involved in PD-L1 recycling to the cell membrane. Interestingly, the BRD4 inhibitor JQ-1, counteracted PD-L1 transcription and reduced its surface expression, suggesting that such a combination could improve the outcome of VPA treatment, also because it increased the cytotoxic effect of VPA. Also considering that this HDACi did not upregulate PD-L2 and that the supernatant of VPA-treated cancer cells did not increase PD-L1 expression on the surface of macrophages exposed to it.
Collapse
Affiliation(s)
- Maria Anele Romeo
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | | | - Roberta Santarelli
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Rossella Benedetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Andrea Arena
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Mara Cirone
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
24
|
Wang H, Qiu D, Su X, Chen L, Qin Y, Li L, Li Z. Value of T lymphocyte subset detection in cervical intraepithelial neoplasia. Am J Transl Res 2023; 15:5323-5330. [PMID: 37692971 PMCID: PMC10492069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/02/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE This study aimed to explore the value of T lymphocyte subset detection in cervical intraepithelial neoplasia (CIN). METHODS In this retrospective analysis, T lymphocyte subsets in 186 CIN patients were detected. Venous blood T lymphocyte subsets were analyzed in patients with different CIN grades, and Spearman correlation analysis was conducted between CIN grade and T lymphocyte subsets. RESULTS (1) There were significant differences in the CD3+, CD4+, CD8+, and CD4+/CD8+ levels before and 1, 2, and 3 months after treatment (P<0.05). Furthermore, significant differences were found in CD3+, CD4+, CD8+, and CD4+/CD8+ between every pair of time points (P<0.05). (2) Comparison of human papillomavirus distribution in patients with different CIN grades showed P<0.05. (3) The level of T lymphocyte subsets in the venous blood of patients with different CIN grades was compared, and significant differences were found, P<0.05. Higher CIN grade was associated with lower levels of CD3+, CD4+ and CD4+/CD8+, as well as higher level of CD8+. (4) Spearman analysis showed that CIN grade was negatively correlated with the levels of CD3+, CD4+, and CD4+/CD8+ (P<0.05) and positively correlated with the level of CD8+ (P<0.05). CONCLUSION The levels of T lymphocyte subsets were found to be closely associated with the severity of CIN. Therefore, the detection of T lymphocyte subsets in venous blood could be a valuable clinical tool for predicting the presence and degree of CIN.
Collapse
Affiliation(s)
- Huifang Wang
- Department of Obstetrics and Gynecology, Quanzhou Medical CollegeQuanzhou 362010, Fujian, China
| | - Donghai Qiu
- Department of Obstetrics and Gynecology, Quanzhou Medical CollegeQuanzhou 362010, Fujian, China
| | - Xiaojuan Su
- Maternity Nursing Teaching and Research Office, Quanzhou Medical CollegeQuanzhou 362010, Fujian, China
| | - Li Chen
- Department of Gynecology, People’s Hospital Affiliated of Quanzhou Medical CollegeQuanzhou 362010, Fujian, China
| | - Yongtao Qin
- Department of Gynecology, Quanzhou First HospitalQuanzhou 362010, Fujian, China
| | - Lihong Li
- Department of Gynecology, People’s Hospital Affiliated of Quanzhou Medical CollegeQuanzhou 362010, Fujian, China
| | - Zhaodi Li
- Department of Gynecology, People’s Hospital Affiliated of Quanzhou Medical CollegeQuanzhou 362010, Fujian, China
| |
Collapse
|
25
|
Wang B, Han Y, Zhang Y, Zhao Q, Wang H, Wei J, Meng L, Xin Y, Jiang X. Overcoming acquired resistance to cancer immune checkpoint therapy: potential strategies based on molecular mechanisms. Cell Biosci 2023; 13:120. [PMID: 37386520 DOI: 10.1186/s13578-023-01073-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting CTLA-4 and PD-1/PD-L1 to boost tumor-specific T lymphocyte immunity have opened up new avenues for the treatment of various histological types of malignancies, with the possibility of durable responses and improved survival. However, the development of acquired resistance to ICI therapy over time after an initial response remains a major obstacle in cancer therapeutics. The potential mechanisms of acquired resistance to ICI therapy are still ambiguous. In this review, we focused on the current understanding of the mechanisms of acquired resistance to ICIs, including the lack of neoantigens and effective antigen presentation, mutations of IFN-γ/JAK signaling, and activation of alternate inhibitory immune checkpoints, immunosuppressive tumor microenvironment, epigenetic modification, and dysbiosis of the gut microbiome. Further, based on these mechanisms, potential therapeutic strategies to reverse the resistance to ICIs, which could provide clinical benefits to cancer patients, are also briefly discussed.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yin Han
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
| | - Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- Cancer Prevention and Treatment Institute of Chengdu, Department of Pathology, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu, 611137, China
| | - Huanhuan Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, China.
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
26
|
Maher N, Mouhssine S, Matti BF, Alwan AF, Gaidano G. Treatment Refractoriness in Chronic Lymphocytic Leukemia: Old and New Molecular Biomarkers. Int J Mol Sci 2023; 24:10374. [PMID: 37373521 PMCID: PMC10299596 DOI: 10.3390/ijms241210374] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Despite its indolent clinical course, therapy refractoriness and disease progression still represent an unmet clinical need. Before the advent of pathway inhibitors, chemoimmunotherapy (CIT) was the commonest option for CLL treatment and is still widely used in areas with limited access to pathway inhibitors. Several biomarkers of refractoriness to CIT have been highlighted, including the unmutated status of immunoglobulin heavy chain variable genes and genetic lesions of TP53, BIRC3 and NOTCH1. In order to overcome resistance to CIT, targeted pathway inhibitors have become the standard of care for the treatment of CLL, with practice-changing results obtained through the inhibitors of Bruton tyrosine kinase (BTK) and BCL2. However, several acquired genetic lesions causing resistance to covalent and noncovalent BTK inhibitors have been reported, including point mutations of both BTK (e.g., C481S and L528W) and PLCG2 (e.g., R665W). Multiple mechanisms are involved in resistance to the BCL2 inhibitor venetoclax, including point mutations that impair drug binding, the upregulation of BCL2-related anti-apoptotic family members, and microenvironmental alterations. Recently, immune checkpoint inhibitors and CAR-T cells have been tested for CLL treatment, obtaining conflicting results. Potential refractoriness biomarkers to immunotherapy were identified, including abnormal levels of circulating IL-10 and IL-6 and the reduced presence of CD27+CD45RO- CD8+ T cells.
Collapse
Affiliation(s)
- Nawar Maher
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (N.M.); (S.M.)
| | - Samir Mouhssine
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (N.M.); (S.M.)
| | - Bassam Francis Matti
- Department of Hematology and Bone Marrow Transplant, Hematology and Bone Marrow Transplant Center, Baghdad 00964, Iraq;
| | - Alaa Fadhil Alwan
- Department of Clinical Hematology, The National Center of Hematology, Mustansiriyah University, Baghdad 10015, Iraq;
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università del Piemonte Orientale and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (N.M.); (S.M.)
| |
Collapse
|
27
|
Gamal W, Sahakian E, Pinilla-Ibarz J. The role of Th17 cells in chronic lymphocytic leukemia: friend or foe? Blood Adv 2023; 7:2401-2417. [PMID: 36574293 PMCID: PMC10238851 DOI: 10.1182/bloodadvances.2022008985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/18/2022] [Indexed: 12/28/2022] Open
Abstract
T helper 17 (Th17) cells have a prominent role in autoimmune diseases. In contrast, the nature of these cells in cancer is controversial, with either pro- or antitumorigenic activities depending on various cancer settings. Chronic lymphocytic leukemia (CLL), a B-cell malignancy, is characterized by an imbalance in T-cell immune responses that contributes to disease progression and increased mortality. Many clinical reports indicate an increase in Th17 cells and/or interleukin 17 serum cytokine levels in patients with CLL compared with healthy individuals, which correlates with various prognostic markers and significant changes in the tumor microenvironment. The exact mechanisms by which Th17 cells might contribute to CLL progression remain poorly investigated. In this review, we provide an updated presentation of the clinical information related to the significance of Th17 cells in CLL and their interaction with the complex leukemic microenvironment, including various mediators, immune cells, and nonimmune cells. We also address the available data regarding the effects of CLL-targeted therapies on Th17 cells and the potential of using these cells in adoptive cell therapies. Having a sound understanding of the role played by Th17 cells in CLL is crucial for designing novel therapies that can achieve immune homeostasis and maximize clinical benefits.
Collapse
Affiliation(s)
- Wael Gamal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| |
Collapse
|
28
|
Coyne V, Mead HL, Mongini PKA, Barker BM. B Cell Chronic Lymphocytic Leukemia Development in Mice with Chronic Lung Exposure to Coccidioides Fungal Arthroconidia. Immunohorizons 2023; 7:333-352. [PMID: 37195872 PMCID: PMC10579974 DOI: 10.4049/immunohorizons.2300013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
Links between repeated microbial infections and B cell chronic lymphocytic leukemia (B-CLL) have been proposed but not tested directly. This study examines how prolonged exposure to a human fungal pathogen impacts B-CLL development in Eµ-hTCL1-transgenic mice. Monthly lung exposure to inactivated Coccidioides arthroconidia, agents of Valley fever, altered leukemia development in a species-specific manner, with Coccidioides posadasii hastening B-CLL diagnosis/progression in a fraction of mice and Coccidioides immitis delaying aggressive B-CLL development, despite fostering more rapid monoclonal B cell lymphocytosis. Overall survival did not differ significantly between control and C. posadasii-treated cohorts but was significantly extended in C. immitis-exposed mice. In vivo doubling time analyses of pooled B-CLL showed no difference in growth rates of early and late leukemias. However, within C. immitis-treated mice, B-CLL manifests longer doubling times, as compared with B-CLL in control or C. posadasii-treated mice, and/or evidence of clonal contraction over time. Through linear regression, positive relationships were noted between circulating levels of CD5+/B220low B cells and hematopoietic cells previously linked to B-CLL growth, albeit in a cohort-specific manner. Neutrophils were positively linked to accelerated growth in mice exposed to either Coccidioides species, but not in control mice. Conversely, only C. posadasii-exposed and control cohorts displayed positive links between CD5+/B220low B cell frequency and abundance of M2 anti-inflammatory monocytes and T cells. The current study provides evidence that chronic lung exposure to fungal arthroconidia affects B-CLL development in a manner dependent on fungal genotype. Correlative studies suggest that fungal species differences in the modulation of nonleukemic hematopoietic cells are involved.
Collapse
Affiliation(s)
- Vanessa Coyne
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | - Heather L. Mead
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| | | | - Bridget M. Barker
- Pathogen Microbiome Institute, Northern Arizona University, Flagstaff, AZ
| |
Collapse
|
29
|
Guzman G, Pellot K, Reed MR, Rodriguez A. CAR T-cells to treat brain tumors. Brain Res Bull 2023; 196:76-98. [PMID: 36841424 DOI: 10.1016/j.brainresbull.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tremendous success using CAR T therapy in hematological malignancies has garnered significant interest in developing such treatments for solid tumors, including brain tumors. This success, however, has yet to be mirrored in solid organ neoplasms. CAR T function has shown limited efficacy against brain tumors due to several factors including the immunosuppressive tumor microenvironment, blood-brain barrier, and tumor-antigen heterogeneity. Despite these considerations, CAR T-cell therapy has the potential to be implemented as a treatment modality for brain tumors. Here, we review adult and pediatric brain tumors, including glioblastoma, diffuse midline gliomas, and medulloblastomas that continue to portend a grim prognosis. We describe insights gained from different preclinical models using CAR T therapy against various brain tumors and results gathered from ongoing clinical trials. Furthermore, we outline the challenges limiting CAR T therapy success against brain tumors and summarize advancements made to overcome these obstacles.
Collapse
Affiliation(s)
- Grace Guzman
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Megan R Reed
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
30
|
Vignali PDA, DePeaux K, Watson MJ, Ye C, Ford BR, Lontos K, McGaa NK, Scharping NE, Menk AV, Robson SC, Poholek AC, Rivadeneira DB, Delgoffe GM. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. Nat Immunol 2023; 24:267-279. [PMID: 36543958 PMCID: PMC10402660 DOI: 10.1038/s41590-022-01379-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
CD8+ T cells are critical for elimination of cancer cells. Factors within the tumor microenvironment (TME) can drive these cells to a hypofunctional state known as exhaustion. The most terminally exhausted T (tTex) cells are resistant to checkpoint blockade immunotherapy and might instead limit immunotherapeutic efficacy. Here we show that intratumoral CD8+ tTex cells possess transcriptional features of CD4+Foxp3+ regulatory T cells and are similarly capable of directly suppressing T cell proliferation ex vivo. tTex cell suppression requires CD39, which generates immunosuppressive adenosine. Restricted deletion of CD39 in endogenous CD8+ T cells resulted in slowed tumor progression, improved immunotherapy responsiveness and enhanced infiltration of transferred tumor-specific T cells. CD39 is induced on tTex cells by tumor hypoxia, thus mitigation of hypoxia limits tTex suppression. Together, these data suggest tTex cells are an important regulatory population in cancer and strategies to limit their generation, reprogram their immunosuppressive state or remove them from the TME might potentiate immunotherapy.
Collapse
Affiliation(s)
- Paolo D A Vignali
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kristin DePeaux
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - McLane J Watson
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chenxian Ye
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - B Rhodes Ford
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Konstantinos Lontos
- Division of Hematology/Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nicole K McGaa
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Nicole E Scharping
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ashley V Menk
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Simon C Robson
- Center for Inflammation Research, Department of Anesthesia, Critical Care & Pain Medicine and Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dayana B Rivadeneira
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumor Microenvironment Center, University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
31
|
Spaner DE, Luo TY, Wang G, Schreiber G, Harari D, Shi Y. Paradoxical activation of chronic lymphocytic leukemia cells by ruxolitinib in vitro and in vivo. Front Oncol 2023; 13:1043694. [PMID: 37114129 PMCID: PMC10126367 DOI: 10.3389/fonc.2023.1043694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Chronic lymphocytic leukemia (CLL) is characterized by an aberrant cytokine network that can support tumor growth by triggering janus kinase (JAK)/STAT pathways. Targeting cytokine-signaling should then be a rational therapeutic strategy but the JAK inhibitor ruxolitinib failed to control and seemingly accelerated the disease in clinical trials. Methods The effect of ruxolitinib on primary human CLL cells was studied in vitro and in vivo. Results Ruxolitinib increased phosphorylation of IRAK4, an important toll-like receptor (TLR)- signaling intermediate, in circulating CLL cells in vitro. It also enhanced p38 and NFKB1 phosphorylation while lowering STAT3 phosphorylation in CLL cells activated with TLR-7/8 agonists and IL-2. Among the cytokines made by activated CLL cells, high levels of IL-10 contributed strongly to STAT3 phosphorylation and inhibited TLR7 activity. Ruxolitinib limited TLR-mediated IL10 transcription and markedly reduced IL-10 production in vitro. It also decreased blood levels of IL-10 while increasing TNFα along with phospho-p38 expression and gene sets associated with TLR-activation in CLL cells in vivo. The bruton's tyrosine kinase inhibitor ibrutinib decreased IL-10 production in vitro but, in contrast to ruxolitinib, blocked initial IL10 transcription induced by TLR-signaling in vitro, decreased TNFα production, and deactivates CLL cells in vivo. Discussion These findings suggest the possible benefits of inhibiting growth factors with JAK inhibitors in CLL are outweighed by negative effects on potential tumor suppressors such as IL-10 that allow unrestrained activation of NFκB by drivers such as TLRs. Specific inhibition of growth-promoting cytokines with blocking antibodies or infusing suppressive cytokines like IL-10 might be better strategies to manipulate cytokines in CLL.
Collapse
Affiliation(s)
- David E. Spaner
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Hematology, Sunnybrook Odette Cancer Center, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- *Correspondence: David E. Spaner,
| | - Tina YuXuan Luo
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Guizhi Wang
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Harari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yonghong Shi
- Biology Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
32
|
Hay J, Tarafdar A, Holroyd AK, Moka HA, Dunn KM, Alshayeb A, Lloyd BH, Cassels J, Malik N, Khan AF, Sou I, Lees J, Almuhanna HNB, Kalakonda N, Slupsky JR, Michie AM. PKCβ Facilitates Leukemogenesis in Chronic Lymphocytic Leukaemia by Promoting Constitutive BCR-Mediated Signalling. Cancers (Basel) 2022; 14:cancers14236006. [PMID: 36497487 PMCID: PMC9735720 DOI: 10.3390/cancers14236006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
B cell antigen receptor (BCR) signalling competence is critical for the pathogenesis of chronic lymphocytic leukaemia (CLL). Defining key proteins that facilitate these networks aid in the identification of targets for therapeutic exploitation. We previously demonstrated that reduced PKCα function in mouse hematopoietic stem/progenitor cells (HPSCs) resulted in PKCβII upregulation and generation of a poor-prognostic CLL-like disease. Here, prkcb knockdown in HSPCs leads to reduced survival of PKCα-KR-expressing CLL-like cells, concurrent with reduced expression of the leukemic markers CD5 and CD23. SP1 promotes elevated expression of prkcb in PKCα-KR expressing cells enabling leukemogenesis. Global gene analysis revealed an upregulation of genes associated with B cell activation in PKCα-KR expressing cells, coincident with upregulation of PKCβII: supported by activation of key signalling hubs proximal to the BCR and elevated proliferation. Ibrutinib (BTK inhibitor) or enzastaurin (PKCβII inhibitor) treatment of PKCα-KR expressing cells and primary CLL cells showed similar patterns of Akt/mTOR pathway inhibition, supporting the role for PKCβII in maintaining proliferative signals in our CLL mouse model. Ibrutinib or enzastaurin treatment also reduced PKCα-KR-CLL cell migration towards CXCL12. Overall, we demonstrate that PKCβ expression facilitates leukemogenesis and identify that BCR-mediated signalling is a key driver of CLL development in the PKCα-KR model.
Collapse
Affiliation(s)
- Jodie Hay
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Paul O’Gorman Leukaemia Research Centre, Gartnavel General Hospital, 21 Shelley Road, Glasgow G12 0ZD, UK
| | - Anuradha Tarafdar
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ailsa K. Holroyd
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Hothri A. Moka
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Karen M. Dunn
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Paul O’Gorman Leukaemia Research Centre, Gartnavel General Hospital, 21 Shelley Road, Glasgow G12 0ZD, UK
| | - Alzahra Alshayeb
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Bryony H. Lloyd
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Jennifer Cassels
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Paul O’Gorman Leukaemia Research Centre, Gartnavel General Hospital, 21 Shelley Road, Glasgow G12 0ZD, UK
| | - Natasha Malik
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ashfia F. Khan
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - IengFong Sou
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jamie Lees
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Paul O’Gorman Leukaemia Research Centre, Gartnavel General Hospital, 21 Shelley Road, Glasgow G12 0ZD, UK
| | - Hassan N. B. Almuhanna
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Paul O’Gorman Leukaemia Research Centre, Gartnavel General Hospital, 21 Shelley Road, Glasgow G12 0ZD, UK
| | - Nagesh Kalakonda
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Joseph R. Slupsky
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Alison M. Michie
- School of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Paul O’Gorman Leukaemia Research Centre, Gartnavel General Hospital, 21 Shelley Road, Glasgow G12 0ZD, UK
- Correspondence: ; Tel.: +44-(0)141-301-7885
| |
Collapse
|
33
|
Alahdal M, Elkord E. Exhaustion and over-activation of immune cells in COVID-19: Challenges and therapeutic opportunities. Clin Immunol 2022; 245:109177. [PMID: 36356848 PMCID: PMC9640209 DOI: 10.1016/j.clim.2022.109177] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022]
Abstract
Exhaustion of immune cells in COVID-19 remains a serious concern for infection management and therapeutic interventions. As reported, immune cells such as T effector cells (Teff), T regulatory cells (Tregs), natural killer cells (NKs), and antigen-presenting cells (APCs) exhibit uncontrolled functions in COVID-19. Unfortunately, the mechanisms that orchestrate immune cell functionality and virus interaction are still unknown. Recent studies linked adaptive immune cell exhaustion to underlying epigenetic mechanisms that regulate the epigenetic transcription of inhibitory immune checkpoint receptors (ICs). Further to that, the over-activation of T cells accompanied by the dysfunctionality of DCs and Tregs may enhance uncontrollable alveoli inflammation and cytokine storm in COVID-19. This might explain the reasons behind the failure of DC-based vaccines in inducing sufficient anti-viral responses. This review explains the processes behind the over-activation and exhaustion of innate and adaptive immune cells in COVID-19, which may contribute to developing novel immune intervention strategies.
Collapse
Affiliation(s)
- Murad Alahdal
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33 Birkat Al Mouz, Nizwa 616, Oman.
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33 Birkat Al Mouz, Nizwa 616, Oman; Department of Biological Sciences and Chemistry, Faculty of Arts and Sciences, University of Nizwa, Birkat Al Mouz, Nizwa 616, Oman; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, United Kingdom.
| |
Collapse
|
34
|
Collard JP, McKenna MK, Noothi SK, Alhakeem SS, Rivas JR, Rangnekar VM, Muthusamy N, Bondada S. Role of the splenic microenvironment in chronic lymphocytic leukemia development in Eµ-TCL1 transgenic mice. Leuk Lymphoma 2022; 63:1810-1822. [DOI: 10.1080/10428194.2022.2045596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- James P. Collard
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Mary K. McKenna
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Sunil K. Noothi
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Sara S. Alhakeem
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Jacqueline R. Rivas
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Vivek M. Rangnekar
- Department of Radiation Medicine and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Natarajan Muthusamy
- Division of Hematology, James Cancer Center, Ohio State University, Columbus, OH, USA
| | - Subbarao Bondada
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
35
|
Allard D, Chrobak P, Bareche Y, Allard B, Tessier P, Bergeron MA, Johnson NA, Stagg J. CD73 Promotes Chronic Lymphocytic Leukemia. Cancers (Basel) 2022; 14:cancers14133130. [PMID: 35804900 PMCID: PMC9264813 DOI: 10.3390/cancers14133130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Many patients with chronic lymphocytic leukemia (CLL) still fail current therapies. CD73 is a novel therapeutic target for solid tumors, but its role in CLL remains unclear. The aim of our study was to investigate the therapeutic potential of targeting CD73 in CLL. Using genetically engineered mice, our study reports a pro-leukemic role for CD73 in an autochthonous mouse model of CLL. Furthermore, we observed an association between PD-L1 expression on CLL cells and adenosine signaling according to sex. Our findings provide a rationale for targeting CD73 in CLL in combination with anti-PD-1/PD-L1 immunotherapies and suggest that sex may contribute to responses to adenosine-targeting agents. Abstract The ecto-nucleotidase CD73 is an important immune checkpoint in tumor immunity that cooperates with CD39 to hydrolyze pro-inflammatory extracellular ATP into immunosuppressive adenosine. While the role of CD73 in immune evasion of solid cancers is well established, its role in leukemia remains unclear. To investigate the role of CD73 in the pathogenesis of chronic lymphocytic leukemia (CLL), Eµ-TCL1 transgenic mice that spontaneously develop CLL were crossed with CD73−/− mice. Disease progression in peripheral blood and spleen, and CLL markers were evaluated by flow cytometry and survival was compared to CD73-proficient Eµ-TCL1 transgenic mice. We observed that CD73 deficiency significantly delayed CLL progression and prolonged survival in Eµ-TCL1 transgenic mice, and was associated with increased accumulation of IFN-γ+ T cells and effector-memory CD8+ T cells. Neutralizing IFN-γ abrogated the survival advantage of CD73-deficient Eµ-TCL1 mice. Intriguingly, the beneficial effects of CD73 deletion were restricted to male mice. In females, CD73 deficiency was uniquely associated with the upregulation of CD39 in normal lymphocytes and sustained high PD-L1 expression on CLL cells. In vitro studies revealed that adenosine signaling via the A2a receptor enhanced PD-L1 expression on Eµ-TCL1-derived CLL cells, and a genomic analysis of human CLL samples found that PD-L1 correlated with adenosine signaling. Our study, thus, identified CD73 as a pro-leukemic immune checkpoint in CLL and uncovered a previously unknown sex bias for the CD73-adenosine pathway.
Collapse
Affiliation(s)
- David Allard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
- Faculté de Pharmacie, l’Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Pavel Chrobak
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Yacine Bareche
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
- Faculté de Pharmacie, l’Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Bertrand Allard
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Priscilla Tessier
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
| | - Marjorie A. Bergeron
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
- Faculté de Pharmacie, l’Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Nathalie A. Johnson
- Department of Medicine, Jewish General Hospital, Montréal, QC H3T 1E2, Canada;
| | - John Stagg
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montréal, QC H2X 0A9, Canada; (D.A.); (P.C.); (Y.B.); (B.A.); (P.T.); (M.A.B.)
- Institut du Cancer de Montréal, Montréal, QC H2X 0A9, Canada
- Faculté de Pharmacie, l’Université de Montréal, Montréal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
36
|
Qu N, Wang R, Meng Y, Liu N, Zhai J, Shan F. Methionine enkephalin inhibited cervical carcinoma via apoptosis promotion and reduction of myeloid derived suppressor cell infiltrated in tumor. Int Immunopharmacol 2022; 110:108933. [PMID: 35738090 DOI: 10.1016/j.intimp.2022.108933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023]
Abstract
Immunotherapy for cervical carcinoma is becoming increasingly important recently. In these studies methionine enkephalin (menk) is shown to inhibit cervical tumor cell proliferation in vitro in association with an increase in the expression of apoptosis markers and mediators, including an increase in fas, caspase 8, and caspase 3 expression and intrinsic expression of the signaling pathway mediator bax. In vivo, tumor growth was restrained in mice xenotransplant model with typical pathological features of apoptosis. Furthermore, myeloid derived suppressor cells (MDSCs) had a significant decrease in circulation and in tumor site. In brief, these findings showed menk could inhibit tumor growth in vitro and in vivo, providing direction of further research and clinical application prospect.
Collapse
Affiliation(s)
- Na Qu
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenyang 110122, Liaoning Province, China; Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Ruizhe Wang
- Department of Gynecology, No. 1 Teaching Hospital, China Medical University, No. 155, North Nanjing Street, Shenyang 110001, Liaoning Province, China
| | - Yiming Meng
- Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Shenyang 110042, Liaoning Province, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao 028000, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao 028000, China
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
37
|
Kennedy PR, Felices M, Miller JS. Challenges to the broad application of allogeneic natural killer cell immunotherapy of cancer. Stem Cell Res Ther 2022; 13:165. [PMID: 35414042 PMCID: PMC9006579 DOI: 10.1186/s13287-022-02769-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
Natural killer (NK) cells are innate immune cells that recognize malignant cells through a wide array of germline-encoded receptors. Triggering of activating receptors results in cytotoxicity and broad immune system activation. The former is achieved through release of cytotoxic granules and presentation of death receptor ligands, while the latter is mediated by inflammatory cytokines, such as interferon-γ and tumor necrosis factor α. Early success with ex vivo activation of NK cells and adoptive transfer suggest they are a safe therapeutic with promising responses in advanced hematologic malignancies. In particular, adoptive NK cell therapies can serve as a 'bridge' to potentially curative allogeneic stem cell transplantation. In addition, strategies are being developed that expand large numbers of cells from limited starting material and mature NK cells from precursors. Together, these make 'off-the-shelf' NK cells possible to treat a wide range of cancers. Research efforts have focused on creating a range of tools that increase targeting of therapeutic NK cells toward cancer-from therapeutic antibodies that drive antibody-dependent cellular cytotoxicity, to chimeric antigen receptors. As these novel therapies start to show promise in clinical trials, the field is rapidly moving toward addressing other challenges that limit NK cell therapeutics and the goal to treat solid tumors. This review describes the state of therapeutic NK cell targeting of tumors; discusses the challenges that need to be addressed before NK cells can be applied as a wide-ranging treatment for cancer; and points to some of the innovations that are being developed to surmount these challenges. Suppressive cells in the tumor microenvironment pose a direct threat to therapeutic NK cells, through presentation of inhibitory ligands and secretion of suppressive cytokines and metabolites. The nutrient- and oxygen-starved conditions under which NK cells must function necessitate an understanding of therapeutic NK cell metabolism that is still emerging. Prior to these challenges, NK cells must find their way into and persist in the tumor itself. Finally, the desirability of a 'single-shot' NK cell treatment and the problems and benefits of a short-lived rejection-prone NK cellular product are discussed.
Collapse
Affiliation(s)
- Philippa R Kennedy
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, MCRB Rm 520, 425 E River Rd Parkway, Minneapolis, MN, 55455, USA
| | - Martin Felices
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, MCRB Rm 520, 425 E River Rd Parkway, Minneapolis, MN, 55455, USA
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, MCRB Rm 520, 425 E River Rd Parkway, Minneapolis, MN, 55455, USA.
| |
Collapse
|
38
|
Kang S, Li Y, Qiao J, Meng X, He Z, Gao X, Yu L. Antigen-Specific TCR-T Cells for Acute Myeloid Leukemia: State of the Art and Challenges. Front Oncol 2022; 12:787108. [PMID: 35356211 PMCID: PMC8959347 DOI: 10.3389/fonc.2022.787108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
The cytogenetic abnormalities and molecular mutations involved in acute myeloid leukemia (AML) lead to unique treatment challenges. Although adoptive T-cell therapies (ACT) such as chimeric antigen receptor (CAR) T-cell therapy have shown promising results in the treatment of leukemias, especially B-cell malignancies, the optimal target surface antigen has yet to be discovered for AML. Alternatively, T-cell receptor (TCR)-redirected T cells can target intracellular antigens presented by HLA molecules, allowing the exploration of a broader territory of new therapeutic targets. Immunotherapy using adoptive transfer of WT1 antigen-specific TCR-T cells, for example, has had positive clinical successes in patients with AML. Nevertheless, AML can escape from immune system elimination by producing immunosuppressive factors or releasing several cytokines. This review presents recent advances of antigen-specific TCR-T cells in treating AML and discusses their challenges and future directions in clinical applications.
Collapse
Affiliation(s)
- Synat Kang
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Yisheng Li
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Jingqiao Qiao
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xiangyu Meng
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Ziqian He
- Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Xuefeng Gao
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China.,Central Laboratory, Shenzhen University General Hospital, Shenzhen, China
| | - Li Yu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
39
|
Xu C, Bai Y, An Z, Hu Y, Zhang C, Zhong X. IL-13Rα2 humanized scFv-based CAR-T cells exhibit therapeutic activity against glioblastoma. Mol Ther Oncolytics 2022; 24:443-451. [PMID: 35141400 PMCID: PMC8810302 DOI: 10.1016/j.omto.2022.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cells have exhibited impressive anti-tumor effects in both B cell malignancies and some types of solid tumors. However, single-chain variable fragment (scFv) of a murine monoclonal antibody will induce immune responses, limit CAR-T cell persistence, and thus increase the risk of relapse. This study successfully constructed a CAR-targeting interleukin-13 receptor α2 (IL-13Rα2) according to a murine antibody, and then humanized the scFv sequence to generate another CAR. T cells expressing any of these two CARs demonstrated superior tumor inhibitory effects in vitro and in two xenograft mouse models. However, T cells transduced with humanized CAR have an increased expansion and reduced cytokines, including interleukin-6 and interferon-γ. The top expressed genes clustered in leukocyte-mediated cytotoxicity, and T cell migration and immunological synapse formation contributed to the anti-glioblastoma (GBM) activity of the humanized CAR. In conclusion, we successfully generated a humanized third-generation CAR-targeting IL-13Rα2 and confirmed its anti-GBM efficacy, which provide a candidate method for clinical GBM treatment.
Collapse
Affiliation(s)
- Chang Xu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, China
| | - Yue Bai
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, China
| | - Zhijing An
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, China
| | - Yi Hu
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, China
| | - Can Zhang
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, China
| | - Xiaosong Zhong
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, No. 10, Iron Medicine Road, Yang Fang Dian, Haidian District, Beijing, China
| |
Collapse
|
40
|
Kim J, Choi Y, Yang S, Lee J, Choi J, Moon Y, Kim J, Shim N, Cho H, Shim MK, Jeon S, Lim DK, Yoon HY, Kim K. Sustained and Long-Term Release of Doxorubicin from PLGA Nanoparticles for Eliciting Anti-Tumor Immune Responses. Pharmaceutics 2022; 14:pharmaceutics14030474. [PMID: 35335852 PMCID: PMC8954063 DOI: 10.3390/pharmaceutics14030474] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Immunogenic cell death (ICD) is a powerful trigger eliciting strong immune responses against tumors. However, traditional chemoimmunotherapy (CIT) does not last long enough to induce sufficient ICD, and also does not guarantee the safety of chemotherapeutics. To overcome the disadvantages of the conventional approach, we used doxorubicin (DOX) as an ICD inducer, and poly(lactic-co-glycolic acid) (PLGA)-based nanomedicine platform for controlled release of DOX. The diameter of 138.7 nm of DOX-loaded PLGA nanoparticles (DP-NPs) were stable for 14 days in phosphate-buffered saline (PBS, pH 7.4) at 37 °C. Furthermore, DOX was continuously released for 14 days, successfully inducing ICD and reducing cell viability in vitro. Directly injected DP-NPs enabled the remaining of DOX in the tumor site for 14 days. In addition, repeated local treatment of DP-NPs actually lasted long enough to maintain the enhanced antitumor immunity, leading to increased tumor growth inhibition with minimal toxicities. Notably, DP-NPs treated tumor tissues showed significantly increased maturated dendritic cells (DCs) and cytotoxic T lymphocytes (CTLs) population, showing enhanced antitumor immune responses. Finally, the therapeutic efficacy of DP-NPs was maximized in combination with an anti-programmed death-ligand 1 (PD-L1) antibody (Ab). Therefore, we expect therapeutic efficacies of cancer CIT can be maximized by the combination of DP-NPs with immune checkpoint blockade (ICB) by achieving proper therapeutic window and continuously inducing ICD, with minimal toxicities.
Collapse
Affiliation(s)
- Jeongrae Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Yongwhan Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Suah Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Jaewan Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Jiwoong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Yujeong Moon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Jinseong Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Nayeon Shim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Hanhee Cho
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Man Kyu Shim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Sangmin Jeon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
| | - Kwangmeyung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (J.K.); (Y.C.); (S.Y.); (J.L.); (J.C.); (J.K.); (N.S.); (D.-K.L.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.M.); (H.C.); (M.K.S.); (S.J.); (H.Y.Y.)
- Correspondence: ; Tel.: +82-2-958-5916
| |
Collapse
|
41
|
Domagala M, Ysebaert L, Ligat L, Lopez F, Fournié JJ, Laurent C, Poupot M. IL-10 Rescues CLL Survival through Repolarization of Inflammatory Nurse-like Cells. Cancers (Basel) 2021; 14:cancers14010016. [PMID: 35008174 PMCID: PMC8750769 DOI: 10.3390/cancers14010016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary In in vitro co-cultures of CLL cells and nurse-like cells (NLC), protection against apoptosis is only provided by M2-like NLC, and not M1-like NLC. In this study, we propose that fine-tuning of NLC polarization (and therefore survival of leukemic cells) is dictated by a balance between IL-10 and TNF. Abstract Tumor-associated macrophages (TAMs) in chronic lymphocytic leukemia (CLL) are also called nurse-like cells (NLC), and confer survival signals through the release of soluble factors and cellular contacts. While in most patient samples the presence of NLC in co-cultures guarantees high viability of leukemic cells in vitro, in some cases this protective effect is absent. These macrophages are characterized by an “M1-like phenotype”. We show here that their reprogramming towards an M2-like phenotype (tumor-supportive) with IL-10 leads to an increase in leukemic cell survival. Inflammatory cytokines, such as TNF, are also able to depolarize M2-type protective NLC (decreasing CLL cell viability), an effect which is countered by IL-10 or blocking antibodies. Interestingly, both IL-10 and TNF are implied in the pathophysiology of CLL and their elevated level is associated with bad prognosis. We propose that the molecular balance between these two cytokines in CLL niches plays an important role in the maintenance of the protective phenotype of NLCs, and therefore in the survival of CLL cells.
Collapse
Affiliation(s)
- Marcin Domagala
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Loïc Ysebaert
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
- IUCT-O, 31000 Toulouse, France
| | - Laetitia Ligat
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Frederic Lopez
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
- IUCT-O, 31000 Toulouse, France
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
- Correspondence: ; Tel.: +33-582741662
| |
Collapse
|
42
|
IL-10 Signaling Elicited by Nivolumab-Induced Activation of the MAP Kinase Pathway Does Not Fully Contribute to Nivolumab-Modulated Heterogeneous T Cell Responses. Int J Mol Sci 2021; 22:ijms222111848. [PMID: 34769278 PMCID: PMC8584131 DOI: 10.3390/ijms222111848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy has revolutionized anti-cancer treatment for many late-stage cancer patients. However, ICI therapy has thus far demonstrated limited efficacy for most patients, and it remains unclear why this is so. Interleukin 10 (IL-10) is a cytokine that has been recognized as a central player in cancer biology with its ability to inhibit anti-tumor T cell responses. Recent studies suggest that IL-10 might also exert some intrinsic anti-tumor T cell responses, and clinical studies using recombinant IL-10 alone or in combination with ICI are underway. This paradoxical effect of IL-10 and its underlying mechanisms impacting ICI-modulated T cell responses remain poorly understood. In this study, using an in vitro mixed lymphocyte reaction assay, we found that treatment with ICIs such as the anti-programmed cell death receptor-1 (PD-1) mAb nivolumab elicits a strong expression of IL-10. While neutralization of IL-10 signaling with an anti-IL-10 specific mAb significantly decreases the production of IFN-γ by T cells in a cohort of donor cells, the opposite effect was observed in other donor cells. Similarly, neutralization of IL-10 signaling significantly decreases the expression of T cell activation markers Ki67 and CD25, as well as the production of Granzyme B in a cohort of donor cells, whereas the opposite effect was observed in others. Furthermore, we found that nivolumab and IL-10 differentially modulate the signal transducer and activator of transcription 3 (STAT3) and AKT serine–threonine kinase pathways. Finally, we found that nivolumab activates the mitogen-activated protein kinase (MAPK) pathway, which in turn is responsible for the observed induction of IL-10 production by nivolumab. These findings provide new insights into the mechanisms underlying anti-PD-1-modulated T cell responses by IL-10, which could lead to the discovery of novel combination treatments that target IL-10 and immune checkpoint molecules.
Collapse
|
43
|
BTLA/HVEM Axis Induces NK Cell Immunosuppression and Poor Outcome in Chronic Lymphocytic Leukemia. Cancers (Basel) 2021; 13:cancers13081766. [PMID: 33917094 PMCID: PMC8067870 DOI: 10.3390/cancers13081766] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Chronic lymphocytic leukemia (CLL) represents the most frequent B cell malignancy in Western countries and still remains as an incurable disease. Despite recent advances in targeted therapies including ibrutinib, idelalisib or venetoclax, resistance mechanisms have been described and patients develop a progressive immunosuppression. Since immune checkpoint blockade has demonstrated to reinvigorate T and NK cell-mediated anti-tumor responses, the aim of this work was to elucidate whether this immunosuppression relies, at least in part, in BTLA/HVEM axis in patients with CLL. Our results demonstrate that BTLA and HVEM expression is deeply dysregulated on leukemic and NK cells and correlates with poor outcome. Moreover, soluble BTLA levels correlated with adverse cytogenetics and shorter time to treatment. BTLA blockade restored, at least in part, NK cell-mediated responses in patients with CLL. Altogether, our results provide the rationale to further investigate the role of BTLA/HVEM axis in the pathogenesis of CLL. Abstract Chronic lymphocytic leukemia (CLL) is characterized by progressive immunosuppression and diminished cancer immunosurveillance. Immune checkpoint blockade (ICB)-based therapies, a major breakthrough against cancer, have emerged as a powerful tool to reinvigorate antitumor responses. Herein, we analyzed the role of the novel inhibitory checkpoint BTLA and its ligand, HVEM, in the regulation of leukemic and natural killer (NK) cells in CLL. Flow cytometry analyses showed that BTLA expression is upregulated on leukemic cells and NK cells from patients with CLL, whereas HVEM is downregulated only in leukemic cells, especially in patients with advanced Rai-Binet stage. In silico analysis revealed that increased HVEM, but not BTLA, mRNA expression in leukemic cells correlated with diminished overall survival. Further, soluble BTLA (sBTLA) was found to be increased in the sera of patients with CLL and highly correlated with poor prognostic markers and shorter time to treatment. BTLA blockade with an anti-BTLA monoclonal antibody depleted leukemic cells and boosted NK cell-mediated responses ex vivo by increasing their IFN-γ production, cytotoxic capability, and antibody-dependent cytotoxicity (ADCC). In agreement with an inhibitory role of BTLA in NK cells, surface BTLA expression on NK cells was associated with poor outcome in patients with CLL. Overall, this study is the first to bring to light a role of BTLA/HVEM in the suppression of NK cell-mediated immune responses in CLL and its impact on patient’s prognosis, suggesting that BTLA/HVEM axis may be a potential therapeutic target in this disease.
Collapse
|