1
|
Li S, Yu Y, Xu Y, Zhou Y, Huang J, Jia J. Clinicopathological characteristics and the relationship of PD-L1 status, tumor mutation burden, and microsatellite instability in patients with esophageal carcinoma. BMC Cancer 2025; 25:576. [PMID: 40165109 PMCID: PMC11956183 DOI: 10.1186/s12885-025-13938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Despite significant advancements in the field of immunotherapy for esophageal cancer in recent years, only a minority of patients respond to these treatments, and effective predictive biomarkers remain elusive. Biomarkers such as programmed cell death 1 ligand 1 (PD-L1), tumor mutational burden (TMB), and microsatellite instability (MSI) are pivotal in guiding immune checkpoint inhibitor therapies. This study aimed to explore the correlation between the three biomarkers in patients with esophageal carcinoma. METHODS We collected one hundred esophageal squamous cell carcinoma (ESCC) tumor samples from patients who have been undergoing radical resection of esophageal carcinoma. Each tissue sample was divided into two parts for next-generation sequencing (NGS) and immunohistochemical staining. Mutations were identified using the NGS database, and TMB was calculated. Multiplex PCR targeting five loci (NR21, NR24, NR27, BAT25, and BAT26) was used to evaluate MSI. PD-L1 expression was determined through immunohistochemical analysis. RESULTS Among the 100 ESCC patients, 54% (54/100) exhibited positive PD-L1 expression, 57% (57/100) demonstrated high TMB (TMB-H), and only 1% (1/100) had high MSI (MSI-H). Within the subset of TMB-H cases, 32 showed positive PD-L1 expression, with a single case displaying high expression of all three biomarkers, and 21 cases displaying low expression of all three biomarkers. There was no statistical association between PD-L1 expression levels and TMB. Further analysis showed a significant correlation between TNM staging and PD-L1 expression levels in ESCC tissues, with higher positive rates of PD-L1 expression observed in advanced stages. Similarly, a significant relationship was observed between TMB and lymph node metastasis. CONCLUSIONS Based on our preliminary results, TMB and PD-L1 can serve as potential early screening clinical biomarkers and molecular targets for immune treatment in ESCC. However, there is no apparent statistical association between TMB and PD-L1 expression levels. Furthermore, PD-L1 and TMB may independently influence the efficacy of immunotherapy, highlighting the inadequacy of single-marker detection in effectively predicting treatment outcomes.
Collapse
Affiliation(s)
- Suyao Li
- The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China
| | - Yongling Yu
- The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China
| | - Yirong Xu
- Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Yue Zhou
- Wuxi People's Hospital, Wuxi, Jiangsu, China
| | - Junxing Huang
- The Affilitated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu, China.
| | - Jinghao Jia
- The Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
2
|
Jin L, Yang Z, Tang W, Yu P, Chen R, Xu Y, Zhang J. The evolving landscape of genetic biomarkers for immunotherapy in primary and metastatic breast cancer. Front Oncol 2025; 15:1522262. [PMID: 40182039 PMCID: PMC11966456 DOI: 10.3389/fonc.2025.1522262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/30/2025] [Indexed: 04/05/2025] Open
Abstract
Background Major advances have been achieved in the characterization of primary breast cancer genomic profiles. Limited information is available on the genomic profile of tumors originating from different metastatic locations in recurrent/metastatic (R/M) breast cancer, especially in Asian patients. This study aims to decipher the mutational profiles of primary and R/M breast cancer in Chinese patients using next-generation sequencing. Methods A total of 563 breast cancer patients were enrolled, and 590 tumor tissues and matched peripheral blood samples were collected and subjected to targeted sequencing with a panel of 1,021 cancer-related genes. The mutation spectrum, DNA damage response (DDR) genes, commonly altered signal pathways, and immunotherapy-related markers were compared between primary and R/M breast cancer. The molecular differences between our cohort and the Memorial Sloan Kettering Cancer Center (MSKCC) dataset were also explored. Results A total of 361 samples from primary and 229 samples from R/M breast cancer were analyzed. BRCA2, ATRX, and ATM were more frequently observed in R/M lesions among the 36 DDR genes. An ESR1 mutation and PD-L1 and PD-L2 amplification were enriched in R/M breast cancer (all p<0.05). Compared with the MSKCC dataset, we recruited more patients diagnosed at age 50 or younger and more patients with triple-negative breast cancer (TNBC) subtypes. The TNBC patients in our dataset had a higher percentage of PD-L1 amplification in metastasis tumors (p<0.05). Conclusions This study revealed the distinctive mutational features of primary and R/M tumors in Chinese breast cancer patients, which are different from those from Western countries. The enrichment of PD-L1 amplification in metastatic TNBC indicates the necessity to re-biopsy metastatic tumors for immunotherapy.
Collapse
Affiliation(s)
- Liang Jin
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zijian Yang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Tang
- Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pengli Yu
- Medical Department, Geneplus-Beijing, Beijing, China
| | - Rongrong Chen
- Medical Department, Geneplus-Beijing, Beijing, China
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Military Medical University, Chongqing, China
| | - Jun Zhang
- Department of Thyroid and Breast Surgery, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| |
Collapse
|
3
|
Gandara DR, Agarwal N, Gupta S, Klempner SJ, Andrews MC, Mahipal A, Subbiah V, Eskander RN, Carbone DP, Riess JW, Sammons S, Snider J, Bouzit L, Cho-Phan C, Price M, Li G, Quintanilha JCF, Huang RSP, Ross JS, Fabrizio D, Oxnard GR, Graf RP. Tumor mutational burden and survival on immune checkpoint inhibition in >8000 patients across 24 cancer types. J Immunother Cancer 2025; 13:e010311. [PMID: 39915003 PMCID: PMC11815411 DOI: 10.1136/jitc-2024-010311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/26/2024] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND There is uncertainty around clinical applicability of tumor mutational burden (TMB) across cancer types, in part because of inconsistency between TMB measurements from different platforms. The KEYNOTE 158 trial supported United States Food and Drug Administration (FDA) approval of the Foundation Medicine test (FoundationOneCDx) at TMB≥10 mut/Mb as a companion diagnostic (CDx) for single-agent pembrolizumab in second+line. Using a large real-world dataset with validated survival endpoint data, we evaluated clinical validity of TMB measurement by the test in over 8000 patients across 24 cancer types who received single-agent immune checkpoint inhibitor (ICI). METHODS Patients with advanced-stage cancers from 24 cancer types treated with single-agent anti-PD(L)1 therapy in standard-of-care settings were included. Deidentified data from electronic health records from approximately 280 cancer treatment facilities were captured into a clinico-genomic database. This study used the TMB algorithm from the FDA-approved test supporting solid tumor CDx and composite mortality variable validated against the national death index: real-world overall survival (rwOS). Following a prespecified analysis plan, rwOS by TMB level was assessed using Cox PH models adjusted for Eastern Cooperative Oncology Group performance status, prior treatment, microsatellite instability, sex, age, opioid rx pretherapy, and socioeconomic assessment. RESULTS 8440 patients met inclusion criteria. Adjusting for aforementioned factors, increasing TMB was significantly associated with rwOS across tumor types; HRs (95% CIs) relative to TMB<5: TMB 5 to <10: 0.95 (0.89 to 1.02), TMB 10 to <20: 0.79 (0.73 to 0.85), TMB≥20: 0.52 (0.47 to 0.58). For individual cancer types with prespecified statistical power, adjusted rwOS comparing TMB≥10 vs TMB<10 significantly favored TMB≥10 in 9 of 10 cancer types. In microsatellite stable subcohorts (except colorectal cancer), TMB≥10 remained associated with enriched ICI benefit. Exploratory assessments of patients receiving ICI+chemotherapy (n=4369) observed more favorable rwOS only in TMB≥20. CONCLUSIONS Across >8000 patients treated with single-agent ICI, and within individual cancer types with sufficient power, elevated TMB based on the FDA-approved CDx was associated with more favorable rwOS compared with similar patients with lower TMB levels. This biomarker deserves further clinical investigation to potentially guide the use of immunotherapy in expanded clinical contexts.
Collapse
Affiliation(s)
- David R Gandara
- Department of Medicine, Cancer Ctr So./Division of Hematologic & Oncology, UC Davis, Sacramento, California, USA
| | - Neeraj Agarwal
- Department of Medical Oncology, University of Utah Health Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Shilpa Gupta
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, Ohio, USA
| | - Samuel J Klempner
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| | - Miles C Andrews
- Department of Medicine, Monash University Central Clinical School, Melbourne, Victoria, Australia
| | - Amit Mahipal
- Lake Health University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | - Vivek Subbiah
- Sarah Cannon Research Institute, Nashville, Tennessee, USA
| | - Ramez N Eskander
- Department of Obstetrics, Gynecology and Reproductive Sciences, UC San Diego Health Moores Cancer Center, La Jolla, California, USA
| | - David P Carbone
- The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Jonathan W Riess
- UC Davis Comprehensive Cancer Center, Sacramento, California, USA
| | - Sarah Sammons
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | - Megan Price
- Flatiron Health Inc, New York, New York, USA
| | - Gerald Li
- Foundation Medicine Inc, Boston, Massachusetts, USA
| | | | | | | | | | | | - Ryon P Graf
- Foundation Medicine Inc, San Diego, California, USA
| |
Collapse
|
4
|
Houcine Y, Moussa C, Ben Abdelaziz A, Ayadi A. PD-L1 and molecular biomarker expression in non-small cell lung cancer in Tunisian patients. Monaldi Arch Chest Dis 2024; 94. [PMID: 37930659 DOI: 10.4081/monaldi.2023.2778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023] Open
Abstract
In cancer treatment, PD-1 and PD-L1 inhibitors are thriving. Activated T lymphocytes express PD-1; it works with its ligand PD-L1 to limit T lymphocyte activation and prevent autoimmune disease. The expression of molecular biomarkers and PD-L1 in lung cancer determines the appropriate treatment strategy for patients with lung cancer. The purpose of this study was to look at the prevalence of molecular biomarkers and PD-L1 expression in a large group of Tunisian patients with advanced non-small cell lung cancer. We conducted an observational retrospective study in which medical/treatment history data were extracted retrospectively from medical records and archived tissue samples between January 1, 2019, and December 31, 2021. We gathered 157 patients who had recently been diagnosed with non-small cell lung carcinoma. In 36.9% of the cases, there was no molecular genotyping. EGFR (28.6%), KRAS (5.73%), and ALK gene rearrangement were the most common genotyping mutations (3.8%). ROS1 rearrangement was not present. There was a link between EGFR and gender, HER and age, and KRAS and biopsy tissue origin. Six of the tested cases with PD-L1 met the cut-off (350%). PD-L1 positivity was more common in solid-type adenocarcinoma (1.9%) than in acinar or papillary adenocarcinoma. There were no significant differences in PD-L1 expression across clinical and demographic parameters. High PD-L1 expression and molecular abnormalities were found in one case of EGFR, one case of BRAF, and one case of KRAS (three cases). All of the other specimens with abnormalities had a PD-L1<50%. ALK, ROS1, BRAF, KRAS, and MET were found to be significantly associated with PD-L1 expression. Our study is one of the country's largest, describing a large panel of biomarkers and their clinicopathologic/histopathologic associations in Tunisian lung cancer patients. We have the same molecular profile as European patients with an EGFR mutation, which is not the most common genotype abnormality in Tunisian patients. There is only one mutation at any given time. The expression of PD-L1 is determined by the histologic type and the origin of the biopsy tissue.
Collapse
Affiliation(s)
- Yoldez Houcine
- Pathology Department, Salah Azaiz Institute, Tunis; Faculty of Medicine of Tunis, El Manar University, Tunis
| | - Chirine Moussa
- Faculty of Medicine of Tunis, El Manar University, Tunis; Pneumology Department 1, Abderrahmen Mami Hospital, Ariana
| | | | - Aida Ayadi
- Faculty of Medicine of Tunis, El Manar University, Tunis; Pathology Department, Abderrahmen Mami Hospital, Ariana
| |
Collapse
|
5
|
Giannoudis A, Sokol ES, Bhogal T, Ramkissoon SH, Razis ED, Bartsch R, Shaw JA, McGregor K, Clark A, Huang RSP, Palmieri C. Breast cancer brain metastases genomic profiling identifies alterations targetable by immune-checkpoint and PARP inhibitors. NPJ Precis Oncol 2024; 8:282. [PMID: 39706915 DOI: 10.1038/s41698-024-00761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/11/2024] [Indexed: 12/23/2024] Open
Abstract
Understanding the genomic landscape of breast cancer brain metastases (BCBMs) is key to developing targeted treatments. In this study, targetable genomic profiling was performed on 822 BCBMs, 11,988 local breast cancer (BC) biopsies and 15,516 non-central nervous system (N-CNS) metastases (all unpaired samples) collected during the course of routine clinical care by Foundation Medicine Inc (Boston, MA). Clinically relevant genomic alterations were significantly enriched in BCBMs compared to local BCs and N-CNS metastases. Homologous recombination deficiency as measured by BRCA1/2 alteration prevalence and loss-of-heterozygosity and immune checkpoint inhibitor (ICI) biomarkers [Tumor mutation burden (TMB)-High, Microsatellite instability (MSI)-High, PD-L1/L2)] were significantly more prevalent in BCBM than local BC and N-CNS. High PD-L1 protein expression was observed in ER-negative/HER2-negative BCBMs (48.3% vs 50.0% in local BCs, 21.4% in N-CNS). Our data highlights that a high proportion of BCBMs are potentially amenable to treatment with targeted therapeutic agents including PARP inhibitors and ICIs.
Collapse
Affiliation(s)
- A Giannoudis
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - E S Sokol
- Foundation Medicine, Inc., Boston, MA, USA
| | - T Bhogal
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | | | - E D Razis
- Hygeia Hospital, 3rd Oncology Department, Marousi, Athens, Greece
| | - R Bartsch
- Medical University of Vienna, Department of Medicine I, Division of Oncology, Vienna, Austria
| | - J A Shaw
- Leicester Cancer Research Centre, Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - K McGregor
- Foundation Medicine, Inc., Boston, MA, USA
| | | | | | - C Palmieri
- Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
6
|
Nakayama T, Takahama T, Chiba Y, Shiraishi N, Kawakami H, Yonesaka K, Nakagawa K, Hayashi H. Evaluation of immune checkpoint inhibitor efficacy for solid tumors with CD274 (PD-L1 gene) amplification identified by comprehensive genomic profiling: retrospective study based on a nationwide database. J Immunother Cancer 2024; 12:e010130. [PMID: 39694703 PMCID: PMC11667388 DOI: 10.1136/jitc-2024-010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Amplification of the programmed cell death-ligand 1 gene (CD274) is highly prevalent and associated with a high response rate to immune checkpoint inhibitors (ICIs) in lymphomas, and is also a potential biomarker for ICI treatment of solid tumors. However, the efficacy of ICIs for solid tumors with CD274 amplification identified by comprehensive genomic profiling (CGP) has been unclear. We here examined ICI efficacy for solid tumors with CD274 amplification identified by CGP in a national database. METHODS We retrospectively analyzed data from the Center for Cancer Genomics and Advanced Therapeutics database containing 60,155 CGP test results for individuals with solid tumors. Only clinical data from patients treated with ICIs alone (not those undergoing concomitant therapy with molecularly targeted or cytotoxic chemotherapeutic agents) were evaluated. We matched 48 patients in the CD274 amplification-positive group with 170 patients in the CD274 amplification-negative group in a 1:4 ratio based on tumor type, histology, treatment, and age. Overall survival (OS), time to next treatment (TTNT), and response rate were evaluated as treatment outcomes in the two groups. RESULTS OS was similar in the CD274-amplified and matched CD274-non-amplified groups (median of 22.1 vs 26.3 months, respectively; HR of 0.92 with a 95% CI of 0.55 to 1.54; p=0.075). TTNT tended to be longer in the CD274-amplified group than in the matched CD274-non-amplified group (median of 16.5 vs 14.0 months; HR of 0.63 with a 95% CI of 0.37 to 1.08; p=0.091). The objective response rate was 33.3% and 18.4% (difference of 14.9%, with a 95% CI of -0.2% to 31.6%), and the disease control rate was 63.9% and 41.1% (difference of 22.8%, with a 95% CI of 5.1% to 40.4%), in the CD274-amplified and matched CD274-non-amplified groups, respectively. CONCLUSIONS The number of patients with solid tumors positive for CD274 amplification in this analysis is the largest to date, and our results suggest that such gene amplification may be associated with the outcome of ICI treatment in such individuals. CD274 amplification identified by CGP may therefore be a predictor of ICI efficacy for solid tumors. TRIAL REGISTRATION NUMBER UMIN000029779.
Collapse
Affiliation(s)
- Tomohiro Nakayama
- Medical Oncology, Kishiwada City Hospital, Kishiwada, Japan
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Takayuki Takahama
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Genome Medical Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Yasutaka Chiba
- Clinical Research Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Naoki Shiraishi
- Genome Medical Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Hisato Kawakami
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Kimio Yonesaka
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Genome Medical Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Cancer Center, Kindai University Hospital, Osaka-Sayama, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
7
|
Kim JH, Hong J, Lee JA, Jung M, Choi E, Cho NY, Kang GH, Kim S. Immune microenvironmental heterogeneity according to tumor DNA methylation phenotypes in microsatellite instability-high colorectal cancers. Cancer Immunol Immunother 2024; 73:215. [PMID: 39235590 PMCID: PMC11377388 DOI: 10.1007/s00262-024-03805-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
The detailed association between tumor DNA methylation, including CpG island methylation, and tumor immunity is poorly understood. CpG island methylator phenotype (CIMP) is observed typically in sporadic colorectal cancers (CRCs) with microsatellite instability-high (MSI-H). Here, we investigated the differential features of the tumor immune microenvironment according to CIMP status in MSI-H CRCs. CIMP-high (CIMP-H) or CIMP-low/negative (CIMP-L/0) status was determined using MethyLight assay in 133 MSI-H CRCs. All MSI-H CRCs were subjected to digital pathology-based quantification of CD3 + /CD8 + /CD4 + /FoxP3 + /CD68 + /CD204 + /CD177 + tumor-infiltrating immune cells using whole-slide immunohistochemistry. Programmed death-ligand 1 (PD-L1) immunohistochemistry was evaluated using the tumor proportion score (TPS) and combined positive score (CPS). Representative cases were analyzed using whole-exome and RNA-sequencing. In 133 MSI-H CRCs, significantly higher densities of CD8 + tumor-infiltrating lymphocytes (TILs) were observed in CIMP-H tumors compared with CIMP-L/0 tumors. PD-L1 TPS and CPS in CIMP-H tumors were higher than in CIMP-L/0 tumors. Next-generation sequencing revealed that, compared with CIMP-L/0 tumors, CIMP-H tumors had higher fractions of CD8 + T cells/cytotoxic lymphocytes, higher cytolytic activity scores, and activated immune-mediated cell killing pathways. In contrast to CIMP-L/0 tumors, most CIMP-H tumors were identified as consensus molecular subtype 1, an immunogenic transcriptomic subtype of CRC. However, there were no differences in tumor mutational burden (TMB) between CIMP-H and CIMP-L/0 tumors in MSI-H CRCs. In conclusion, CIMP-H is associated with abundant cytotoxic CD8 + TILs and PD-L1 overexpression independent of TMB in MSI-H CRCs, suggesting that CIMP-H tumors represent a typical immune-hot subtype and are optimal candidates for immunotherapy in MSI-H tumors.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Jiyun Hong
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Ae Lee
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Minsun Jung
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunwoo Choi
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam-Yun Cho
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Sangwoo Kim
- Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
8
|
Zhu C, Lai Y, Liu C, Teng L, Zhu Y, Lin X, Fu X, Lai Q, Liu S, Zhou X, Fang Y. Comprehensively prognostic and immunological analyses of GLP-1 signaling-related genes in pan-cancer and validation in colorectal cancer. Front Pharmacol 2024; 15:1387243. [PMID: 39104385 PMCID: PMC11298396 DOI: 10.3389/fphar.2024.1387243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
Background: Glucagon-like peptide-1 (GLP-1) has crucial impact on glycemic control and weight loss physiologically. GLP-1 receptor agonists have been approved for treatment of diabetes and obesity. Emerging evidence suggests that GLP-1 receptor agonists exert anticancer effect in tumorigenesis and development. However, the role and mechanism of GLP-1 signaling-related genes in pan-cancer still need further study. Methods: We comprehensively investigated the aberrant expression and genetic alterations of GLP-1 signaling-related genes in 33 cancer types. Next, GLP-1 signaling score of each patient in The Cancer Genome Atlas were established by the single-sample gene set enrichment analysis. In addition, we explored the association of GLP-1 signaling score with prognostic significance and immune characteristics. Furthermore, qRT-PCR and immunohistochemistry staining were applied to verify the expression profiling of GLP-1 signaling-related genes in colorectal cancer (CRC) tissues. Wound-healing assays and migration assays were carried out to validate the role of GLP-1 receptor agonist in CRC cell lines. Results: The expression profiling of GLP-1 signaling-related genes is commonly altered in pan-cancer. The score was decreased in cancer tissues compared with normal tissues and the lower expression score was associated with worse survival in most of cancer types. Notably, GLP-1 signaling score was strongly correlated with immune cell infiltration, including T cells, neutrophils, dendritic cells and macrophages. In addition, GLP-1 signaling score exhibited close association with tumor mutation burden, microsatellite instability and immunotherapy response in patients with cancer. Moreover, we found that the expression of GLP-1 signaling-related genes ITPR1 and ADCY5 were significantly reduced in CRC tissues, and GLP-1 receptor agonist semaglutide impaired the migration capacity of CRC cells, indicating its protective role. Conclusion: This study provided a preliminary understanding of the GLP-1 signaling-related genes in pan-cancer, showing the prognosis significance and potential immunotherapeutic values in most cancer types, and verified the potential anticancer effect of GLP-1 receptor agonist in CRC.
Collapse
Affiliation(s)
- Chaojun Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihong Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengdong Liu
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lan Teng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyu Lin
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xinyi Fu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiuhua Lai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xiaohan Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Kaneko T, Sekine A, Komatsu S, Otoshi R, Haga S, Tagami Y, Kaneko T, Ogura T. Successful pembrolizumab treatment for microsatellite instability-high thymoma: A case report. Respir Investig 2024; 62:517-519. [PMID: 38631274 DOI: 10.1016/j.resinv.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024]
Abstract
Microsatellite instability (MSI) is a valuable biomarker for immune checkpoint inhibitors. We report the first case of MSI-high thymoma successfully treated with pembrolizumab. This patient had pleural dissemination and was treated with two cytotoxic chemotherapy regimens including carboplatin and paclitaxel combination therapy and pemetrexed, which did not have the desired effect. Because MSI status was high by using the surgical specimen, pembrolizumab was administered as 3rd line chemotherapy. After three courses, the pleural lesions dramatically shrunk, which confirmed a partial response. Although MSI-high thymoma is rare, our results suggest the necessity to evaluate MSI status in patients with thymoma.
Collapse
Affiliation(s)
- Taichi Kaneko
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan.
| | - Akimasa Sekine
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Shigeru Komatsu
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Ryota Otoshi
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Sanshiro Haga
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Yoichi Tagami
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| | - Takeshi Kaneko
- Department of Respiratory Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular and Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama, 236-0051, Japan
| |
Collapse
|
10
|
Hou X, Liu S, Zeng Z, Wang Z, Ding J, Chen Y, Gao X, Wang J, Xiao G, Li B, Zhu H, Yang Z. Preclinical imaging evaluation of a bispecific antibody targeting hPD1/CTLA4 using humanized mice. Biomed Pharmacother 2024; 175:116669. [PMID: 38677243 DOI: 10.1016/j.biopha.2024.116669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND The lack of an efficient way to screen patients who are responsive to immunotherapy challenges PD1/CTLA4-targeting cancer treatment. Immunotherapeutic efficacy cannot be clearly determined by peripheral blood analyses, tissue gene markers or CT/MR value. Here, we used a radionuclide and imaging techniques to investigate the novel dual targeted antibody cadonilimab (AK104) in PD1/CTLA4-positive cells in vivo. METHODS First, humanized PD1/CTLA4 mice were purchased from Biocytogen Pharmaceuticals (Beijing) Co., Ltd. to express hPD1/CTLA4 in T-cells. Then, mouse colon cancer MC38-hPD-L1 cell xenografts were established in humanized mice. A bispecific antibody targeting PD1/CTLA4 (AK104) was labeled with radio-nuclide iodine isotopes. Immuno-PET/CT imaging was performed using a bispecific monoclonal antibody (mAb) probe 124I-AK104, developed in-house, to locate PD1+/CTLA4+ tumor-infiltrating T cells and monitor their distribution in mice to evaluate the therapeutic effect. RESULTS The 124I-AK104 dual-antibody was successfully constructed with ideal radiochemical characteristics, in vitro stability and specificity. The results of immuno-PET showed that 124I-AK104 revealed strong hPD1/CTLA4-positive responses with high specificity in humanized mice. High uptake of 124I-AK104 was observed not only at the tumor site but also in the spleen. Compared with PD1- or CTLA4-targeting mAb imaging, 124I-AK104 imaging had excellent standard uptake values at the tumor site and higher tumor to nontumor (T/NT) ratios. CONCLUSIONS The results demonstrated the potential of translating 124I-AK104 into a method for screening patients who benefit from immunotherapy and the efficacy, as well as the feasibility, of this method was verified by immuno-PET imaging of humanized mice.
Collapse
Affiliation(s)
- Xingguo Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Song Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ziqing Zeng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; Guizhou University School of Medicine, Guiyang, Guizhou 550025, China
| | - Xiangyu Gao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jianghua Wang
- Research and Development Department, Akeso Biopharma Inc., Zhongshan, Guangdong 528437, China
| | - Guanxi Xiao
- Research and Development Department, Akeso Biopharma Inc., Zhongshan, Guangdong 528437, China
| | - Baiyong Li
- Research and Development Department, Akeso Biopharma Inc., Zhongshan, Guangdong 528437, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China; Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
11
|
Santoro A, Angelico G, Inzani F, Arciuolo D, d'Amati A, Addante F, Travaglino A, Scaglione G, D'Alessandris N, Valente M, Tinnirello G, Raffone A, Narducci N, Piermattei A, Cianfrini F, Bragantini E, Zannoni GF. The emerging and challenging role of PD-L1 in patients with gynecological cancers: An updating review with clinico-pathological considerations. Gynecol Oncol 2024; 184:57-66. [PMID: 38295614 DOI: 10.1016/j.ygyno.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
Over recent years, there has been significant progress in the development of immunotherapeutic molecules designed to block the PD-1/PD-L1 axis. These molecules have demonstrated their ability to enhance the immune response by prompting T cells to identify and suppress neoplastic cells. PD-L1 is a type 1 transmembrane protein ligand expressed on T lymphocytes, B lymphocytes, and antigen-presenting cells and is considered a key inhibitory checkpoint involved in cancer immune regulation. PD-L1 immunohistochemical expression in gynecological malignancies is extremely variable based on tumor stage and molecular subtypes. As a result, a class of monoclonal antibodies targeting the PD-1 receptor and PD-L1, known as immune checkpoint inhibitors, has found successful application in clinical settings. In clinical practice, the standard method for identifying suitable candidates for immune checkpoint inhibitor therapy involves immunohistochemical assessment of PD-L1 expression in neoplastic tissues. The most commonly used PD-L1 assays in clinical trials are SP142, 28-8, 22C3, and SP263, each of which has been rigorously validated on specific platforms. Gynecologic cancers encompass a wide spectrum of malignancies originating from the ovaries, uterus, cervix, and vulva. These neoplasms have shown variable response to immunotherapy which appears to be influenced by genetic and protein expression profiles, including factors such as mismatch repair status, tumor mutational burden, and checkpoint ligand expression. In the present paper, an extensive review of PD-L1 expression in various gynecologic cancer types is discussed, providing a guide for their pathological assessment and reporting.
Collapse
Affiliation(s)
- Angela Santoro
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy; Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Giuseppe Angelico
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Frediano Inzani
- Anatomic Pathology Unit, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Hospital, 27100 Pavia, Italy
| | - Damiano Arciuolo
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Antonio d'Amati
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Francesca Addante
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Antonio Travaglino
- Pathology Unit, Department of Medicine and Technological Innovation, University of Insubria, Varese, Italy
| | - Giulia Scaglione
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Nicoletta D'Alessandris
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Michele Valente
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", Anatomic Pathology, University of Catania, Catania, Italy
| | - Antonio Raffone
- Gynecology and Obstetrics Unit, Department of Neuroscience, Reproductive Sciences and Dentistry, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Nadine Narducci
- Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Alessia Piermattei
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Federica Cianfrini
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Emma Bragantini
- Department of Pathology, Santa Chiara Hospital, Trento, Italy
| | - Gian Franco Zannoni
- Unità Operativa Complessa Anatomia Patologica Generale, Dipartimento di scienze della salute della donna, del bambino e di sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy; Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Roma, Italy.
| |
Collapse
|
12
|
Papadopoulou E, Rigas G, Fountzilas E, Boutis A, Giassas S, Mitsimponas N, Daliani D, Ziogas DC, Liontos M, Ramfidis V, Christophilakis C, Matthaios D, Floros T, Florou-Chatzigiannidou C, Agiannitopoulos K, Meintani A, Tsantikidi A, Katseli A, Potska K, Tsaousis G, Metaxa-Mariatou V, Nasioulas G. Microsatellite Instability Is Insufficiently Used as a Biomarker for Lynch Syndrome Testing in Clinical Practice. JCO Precis Oncol 2024; 8:e2300332. [PMID: 38271656 PMCID: PMC10830089 DOI: 10.1200/po.23.00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/06/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024] Open
Abstract
PURPOSE The pan-cancer presence of microsatellite instability (MSI)-positive tumors demonstrates its clinical utility as an agnostic biomarker for identifying immunotherapy-eligible patients. Additionally, MSI is a hallmark of Lynch syndrome (LS), the most prevalent cancer susceptibility syndrome among patients with colorectal and endometrial cancer. Therefore, MSI-high results should inform germline genetic testing for cancer-predisposing genes. However, in clinical practice, such analysis is frequently disregarded. METHODS A next-generation sequencing (NGS)-based technique was used for MSI analysis in 4,553 patients with various tumor types. Upon request, somatic BRAF gene analysis was conducted. In addition, hereditary testing of cancer-associated genes was performed in MSI-high cases using a capture-based NGS protocol. MLH1 promoter methylation analysis was conducted retrospectively in patients with colorectal and endometrial cancer to further investigate the origin of MSI at the tumor level. RESULTS The MSI positivity rate for the entire cohort was 5.27%. Endometrial, gastric, colorectal, urinary tract, and prostate cancers showed the highest proportion of MSI-high cases (15.69%, 8.54%, 7.40%, 4.55%, and 3.19%, respectively). A minority of 45 patients (22.73%) among the MSI-high cases underwent germline testing to determine whether the mismatch repair pathway deficiency was inherited. 24.44% of those who performed the genetic test carried a pathogenic variant in an LS-associated gene. Three MSI-high individuals had non-LS gene alterations, including BRCA1, BRCA2, and CDKN2A pathogenic variants, indicating the presence of non-LS-associated gene alterations among MSI-high patients. CONCLUSION Although MSI analysis is routinely performed in clinical practice, as many as 77% of MSI-high patients do not undergo LS genetic testing, despite international guidelines strongly recommending it. BRAF and MLH1 methylation analysis could shed light on the somatic origin of MSI in 42.50% of the MSI-high patients; however, MLH1 analysis is barely ever requested in clinical practice.
Collapse
Affiliation(s)
| | - George Rigas
- Medical Oncology Unit, General Hospital of Volos, Volos, Greece
| | - Elena Fountzilas
- Second Department of Medical Oncology, Euromedica General Clinic, Thessaloniki, Greece
| | - Anastasios Boutis
- First Department of Clinical Oncology, Theagenio Hospital, Thessaloniki, Greece
| | - Stylianos Giassas
- Second Oncology Clinic IASO, General Maternity and Gynecology Clinic, Athens, Greece
| | | | - Danai Daliani
- Department of Medical Oncology, Euroclinic, Athens, Greece
| | - Dimitrios C Ziogas
- First Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Michalis Liontos
- Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, “Alexandra” General Hospital of Athens, Athens, Greece
| | | | | | | | - Theofanis Floros
- Oncology Department, Athens Naval and Veterans Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kong S, Liu Q, Chen Y, Liang B, Zhou Y, Lin J, Xie M, Qiu L. Multifunctional Probe Based on "Chemical Antibody-Aptamer" for Noninvasive Detection of PD-L1 Expression in Cancer. Mol Pharm 2024; 21:255-266. [PMID: 38093483 DOI: 10.1021/acs.molpharmaceut.3c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2024]
Abstract
Immune checkpoint inhibitors (ICIs) therapy based on programmed cell death ligand 1 (PD-L1) has shown significant development in treating several carcinomas, but not all patients respond to this therapy due to the heterogeneity of PD-L1 expression. The sensitive and accurate quantitative analysis of in vivo PD-L1 expression is critical for treatment decisions and monitoring therapy. In the present study, an aptamer-based dual-modality positron emission tomography/near-infrared fluorescence (PET/NIRF) imaging probe was developed, and its specificity and sensitivity to PD-L1 were assessed in vitro and in vivo. The probe precursor NOTA-Cy5-R1 was prepared by using automated solid-phase oligonucleotide synthesis. PET/NIRF dual-modality probe [68Ga]Ga-NOTA-Cy5-R1 was successfully synthesized and radiolabeled. The binding specificity of [68Ga]Ga-NOTA-Cy5-R1 to PD-L1 was evaluated by flow cytometry, fluorescence imaging, and cellular uptake in A375-hPD-L1 and A375 cells, and it showed good fluorescence properties and stability in vitro. In vivo PET/NIRF imaging studies illustrated that [68Ga]Ga-NOTA-Cy5-R1 can sensitively and specifically bind to PD-L1 positive tumors. Meanwhile, the rapid clearance of probes from nontarget tissues achieved a high signal-to-noise ratio. In addition, changes of PD-L1 expression in NCI-H1299 xenografts treated with cisplatin (CDDP) were sensitivity monitored by [68Ga]Ga-NOTA-Cy5-R1 PET imaging, and ex vivo autoradiography and western blot analyses correlated well with the change of PD-L1 expression in vivo. Overall, [68Ga]Ga-NOTA-Cy5-R1 showed notable potency as a dual-modality PET/NIRF imaging probe for visualizing tumors and monitoring the dynamic changes of PD-L1 expression, which can help to direct and promote the clinical practice of ICIs therapy.
Collapse
Affiliation(s)
- Sudong Kong
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Yinfei Chen
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Beibei Liang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Yuxuan Zhou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Minhao Xie
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Ling Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| |
Collapse
|
14
|
Chandran EBA, Iannantuono GM, Atiq SO, Akbulut D, Sinaii N, Simon NI, Banday AR, Boudjadi S, Gurram S, Nassar AH, Rosenberg JE, Butera G, Teo MY, Sonpavde G, Coleman JA, Apolo AB. Mismatch repair deficiency and microsatellite instability in urothelial carcinoma: a systematic review and meta-analysis. BMJ ONCOLOGY 2024; 3:e000335. [PMID: 39086924 PMCID: PMC11203074 DOI: 10.1136/bmjonc-2024-000335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/03/2024] [Indexed: 08/02/2024]
Abstract
Background Mismatch repair deficiency (dMMR) and microsatellite instability-high (MSI-H) occur in a subset of cancers and have been shown to confer sensitivity to immune checkpoint inhibition (ICI); however, there is a lack of prospective data in urothelial carcinoma (UC). Methods and analysis We performed a systematic review to estimate the prevalence of dMMR and MSI-H in UC, including survival and clinical outcomes. We searched for studies published up to 26 October 2022 in major scientific databases. We screened 1745 studies and included 110. Meta-analyses were performed if the extracted data were suitable. Results The pooled weighted prevalences of dMMR in bladder cancer (BC) and upper tract UC (UTUC) were 2.30% (95% CI 1.12% to 4.65%) and 8.95% (95% CI 6.81% to 11.67%), respectively. The pooled weighted prevalences of MSI-H in BC and UTUC were 2.11% (95% CI 0.82% to 5.31%) and 8.36% (95% CI 5.50% to 12.53%), respectively. Comparing localised versus metastatic disease, the pooled weighted prevalences for MSI-H in BC were 5.26% (95% CI 0.86% to 26.12%) and 0.86% (95% CI 0.59% to 1.25%), respectively; and in UTUC, they were 18.04% (95% CI 13.36% to 23.91%) and 4.96% (95% CI 2.72% to 8.86%), respectively. Cumulatively, the response rate in dMMR/MSI-H metastatic UC treated with an ICI was 22/34 (64.7%) compared with 1/9 (11.1%) with chemotherapy. Conclusion Both dMMR and MSI-H occur more frequently in UTUC than in BC. In UC, MSI-H occurs more frequently in localised disease than in metastatic disease. These biomarkers may predict sensitivity to ICI in metastatic UC and resistance to cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Elias B A Chandran
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Saad O Atiq
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Dilara Akbulut
- Laboratory of Pathology, National Institutes of Health, Bethesda, Maryland, USA
| | - Ninet Sinaii
- Biostatistics and Clinical Epidemiology Service, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas I Simon
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Abdul Rouf Banday
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Salah Boudjadi
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Sandeep Gurram
- Urologic Oncology Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Amin H Nassar
- Department of Hematology/Oncology, Yale New Haven Hospital, New Haven, Connecticut, USA
| | | | - Gisela Butera
- Division of Library Services, National Institutes of Health, Bethesda, Maryland, USA
| | - Min Yuen Teo
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Guru Sonpavde
- Medical Oncology, AdventHealth Central Florida, Orlando, Florida, USA
| | | | - Andrea B Apolo
- Genitourinary Malignancies Branch, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Lea D, Zaharia C, Søreide K. Programmed death ligand-1 (PD-L1) clone 22C3 expression in resected colorectal cancer as companion diagnostics for immune checkpoint inhibitor therapy: A comparison study and inter-rater agreement evaluation across proposed cut-offs and predictive (TPS, CPS and IC) scores. Cancer Treat Res Commun 2023; 38:100788. [PMID: 38150845 DOI: 10.1016/j.ctarc.2023.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Expression of programmed death ligand-1 (PD-L1) guides the use of immune checkpoint inhibitors (ICI) in several cancers. In colorectal cancer (CRC), ICI are only approved for metastatic CRC, while several studies suggest high efficacy even in operable CRC. The aim of this study was to investigate the inter-rater agreement of PD-L1 as a companion diagnostic marker. METHODS Specimens from resected stage I-III CRC (n = 166 tumors) were stained with PD-L1 22C3 clone. PD-L1 expression was scored by two pathologists as tumor proportion score (TPS), combined positive score (CPS) and immune cell score (IC). Inter-rater agreement was tested using three different agreement coefficients. RESULTS Raw scores of the two pathologists had 'good' to 'excellent' correlation. Spearman's rho for TPS=0.917 (95 %CI 0.839-0.995), for CPS=0.776 (95 %CI 0.726-0.826) and IC=0.818 (95 %CI 0.761-0.875). For TPS, kappa (κ)-agreements for both the ≥1 % and ≥10 % cutoffs had excellent correlation. For CPS the ≥1 % and ≥10 % cutoffs demonstrated κ=0.32 (95 %CI 0.12-0.51) and κ=0.36 (95 %CI 0.25-0.48) respectively. Cutoffs for IC showed κ=0.53 (95 %CI 0.18-0.79) for the ≥1 % cutoff, and κ=0.61 (95 %CI 0.48-0.73) for the ≥10 % cutoff. Gwet's agreement coefficient (AC1) showed higher agreement coefficients than κ-values for most, but not all cut-offs. CONCLUSION Agreement for PD-L1 was good to excellent for raw scores. Agreement variation across several criteria and cut-offs suggests the need for more robust criteria for PD-L1 as a companion diagnostic marker.
Collapse
Affiliation(s)
- Dordi Lea
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Claudia Zaharia
- Department of Pathology, Stavanger University Hospital, Stavanger, Norway; Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Kjetil Søreide
- Gastrointestinal Translational Research Group, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway; Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
16
|
Okuma HS, Watanabe K, Tsuchihashi K, Machida R, Sadachi R, Hirakawa A, Ariyama H, Kanai M, Kamikura M, Anjo K, Hiramitsu A, Sekine S, Okita N, Mano H, Nishikawa H, Nakamura K, Yonemori K. Phase II Trial of Nivolumab in Metastatic Rare Cancer with dMMR or MSI-H and Relation with Immune Phenotypic Analysis (the ROCK Trial). Clin Cancer Res 2023; 29:5079-5086. [PMID: 37819940 PMCID: PMC10722134 DOI: 10.1158/1078-0432.ccr-23-1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Mismatch repair deficiency (dMMR)/microsatellite instability-high (MSI-H) are positive predictive markers for immune checkpoint inhibitors. However, data on the activity of nivolumab in advanced dMMR/MSI-H rare cancers and more accurate biomarkers are worth exploring. PATIENTS AND METHODS We conducted a multicenter phase II, open-label, single-arm clinical trial to explore the effectiveness and safety of nivolumab monotherapy in patients with advanced rare cancers with dMMR/MSI-H, in parallel with immune phenotype analysis, to explore new biomarkers. A Bayesian adaptive design was applied. Characterization of peripheral blood mononuclear cells (PBMC) was characterized by multicolor flow cytometric analysis and CyTOF using samples collected before and after the intervention. The dMMR was identified by the complete loss of MLH1/MSH2/MSH6/PMS2. RESULTS From May 2018 to March 2021, 242 patients were screened, and 11 patients were enrolled, of whom 10 were included in the full analysis. Median follow-up was 24.7 months (interquartile range, 12.4-31.5). Objective response rate was 60% [95% confidence interval (CI), 26.2-87.8] by central assessment and 70% (95% CI, 34.8-93.3) by local investigators. Median progression-free survival was 10.1 months (95% CI, 0.9-11.1). No treatment-related adverse events of grade 3 or higher were observed. Patients with a tumor mutation burden of ≥10/Mb showed a 100% response rate (95% CI, 47.8-100). Responders had increased T-bet+ PD-1+ CD4+ T cells in PBMC compared with nonresponders (P < 0.05). CONCLUSIONS The trial met its primary endpoint with nivolumab, demonstrating clinical benefit in advanced dMMR/MSI-H rare solid cancers. Besides, the proportion of T-bet+ PD-1+ CD4+ T-cells may serve as a novel predictive biomarker.
Collapse
Affiliation(s)
- Hitomi S. Okuma
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Keisuke Watanabe
- Division of Cancer Immunology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kenji Tsuchihashi
- Department of Hematology, Oncology & Cardiovascular Medicine, Kyushu University Hospital, Maidashi Higashi-ku, Fukuoka, Japan
| | - Ryunosuke Machida
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Ryo Sadachi
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Akihiro Hirakawa
- Department of Clinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Hiroshi Ariyama
- Department of Hematology, Oncology & Cardiovascular Medicine, Kyushu University Hospital, Maidashi Higashi-ku, Fukuoka, Japan
| | - Masashi Kanai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Shogoin-kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Masahisa Kamikura
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kenta Anjo
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Akari Hiramitsu
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Shigeki Sekine
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Natsuko Okita
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kenichi Nakamura
- Clinical Research Support Office, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Kan Yonemori
- Department of Medical Oncology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, Japan
| |
Collapse
|
17
|
Rha SY, Oh DY, Yañez P, Bai Y, Ryu MH, Lee J, Rivera F, Alves GV, Garrido M, Shiu KK, Fernández MG, Li J, Lowery MA, Çil T, Cruz FM, Qin S, Luo S, Pan H, Wainberg ZA, Yin L, Bordia S, Bhagia P, Wyrwicz LS. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for HER2-negative advanced gastric cancer (KEYNOTE-859): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 2023; 24:1181-1195. [PMID: 37875143 DOI: 10.1016/s1470-2045(23)00515-6] [Citation(s) in RCA: 221] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND PD-1 inhibitors combined with chemotherapy have shown efficacy in gastric or gastro-esophageal junction cancer. We compared the efficacy and safety of pembrolizumab plus chemotherapy with placebo plus chemotherapy in participants with locally advanced or metastatic HER2-negative gastric or gastro-esophageal junction adenocarcinoma. METHODS KEYNOTE-859 is a multicentre, double-blind, placebo-controlled, randomised, phase 3 trial, done at 207 medical centres across 33 countries. Eligible participants were aged 18 years and older with previously untreated histologically or cytologically confirmed locally advanced or metastatic HER2-negative gastric or gastro-esophageal junction adenocarcinoma and an Eastern Cooperative Oncology Group performance status of 0 or 1. Patients were randomly assigned (1:1) to receive pembrolizumab or placebo 200 mg, administered intravenously every 3 weeks for up to 35 cycles. All participants received investigator's choice of fluorouracil (intravenous, 800 mg/m2 per day) administered continuously on days 1-5 of each 3-week cycle plus cisplatin (intravenous, 80 mg/m2) administered on day 1 of each 3-week cycle or capecitabine (oral, 1000 mg/m2) administered twice daily on days 1-14 of each 3-week cycle plus oxaliplatin (intravenous, 130 mg/m2) administered on day 1 of each 3-week cycle. Randomisation was done using a central interactive voice-response system and stratified by geographical region, PD-L1 status, and chemotherapy in permuted block sizes of four. The primary endpoint was overall survival, assessed in the intention-to-treat (ITT) population, and the populations with a PD-L1 combined positive score (CPS) of 1 or higher, and PD-L1 CPS of 10 or higher. Safety was assessed in the as-treated population, which included all randomly assigned participants who received at least one dose of study intervention. Here, we report the results of the interim analysis. This study is registered with ClinicalTrials.gov, NCT03675737, and recruitment is complete. FINDINGS Between Nov 8, 2018, and June 11, 2021, 1579 (66%) of 2409 screened participants were randomly assigned to receive pembrolizumab plus chemotherapy (pembrolizumab group; n=790) or placebo plus chemotherapy (placebo group; n=789). Most participants were male (527 [67%] of 790 participants in the pembrolizumab plus chemotherapy group; 544 [69%] of 789 participants in the placebo plus chemotherapy group) and White (426 [54%]; 435 [55%]). Median follow-up at the data cutoff was 31·0 months (IQR 23·0-38·3). Median overall survival was longer in the pembrolizumab group than in the placebo group in the ITT population (12·9 months [95% CI 11·9-14·0] vs 11·5 months [10·6-12·1]; hazard ratio [HR] 0·78 [95% CI 0·70-0·87]; p<0·0001), in participants with a PD-L1 CPS of 1 or higher (13·0 months [11·6-14·2] vs 11·4 months [10·5-12·0]; 0·74 [0·65-0·84]; p<0·0001), and in participants with a PD-L1 CPS of 10 or higher (15·7 months [13·8-19·3] vs 11·8 months [10·3-12·7]; 0·65 [0·53-0·79]; p<0·0001). The most common grade 3-5 adverse events of any cause were anaemia (95 [12%] of 785 participants in the pembrolizumab group vs 76 [10%] of 787 participants in the placebo group) and decreased neutrophil count (77 [10%] vs 64 [8%]). Serious treatment-related adverse events occurred in 184 (23%) participants in the pembrolizumab group and 146 (19%) participants in the placebo group. Treatment-related deaths occurred in eight (1%) participants in the pembrolizumab group and 16 (2%) participants in the placebo group. No new safety signals were identified. INTERPRETATION Participants in the pembrolizumab plus chemotherapy group had a significant and clinically meaningful improvement in overall survival with manageable toxicity compared with participants in the placebo plus chemotherapy group. Therefore, pembrolizumab with chemotherapy might be a first-line treatment option for patients with locally advanced or metastatic HER2-negative gastric or gastro-esophageal junction adenocarcinoma. FUNDING Merck Sharp and Dohme.
Collapse
Affiliation(s)
- Sun Young Rha
- Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea.
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Patricio Yañez
- Department of Internal Medicine, James Lind Cancer Research Center, Universidad de La Frontera, Temuco, Chile
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jeeyun Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Fernando Rivera
- Department of Medical Oncology, University Hospital Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Gustavo Vasconcelos Alves
- Centro Integrado de Pesquisa em Oncologia, Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil
| | - Marcelo Garrido
- Department of Hemato-Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kai-Keen Shiu
- Gastrointestinal Oncology Service, University College London Hospitals, University College London Cancer Institute, NHS Foundation Trust, London, UK
| | | | - Jin Li
- Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Maeve A Lowery
- Department of Medical Oncology, Trinity St James Cancer Institute, Dublin, Ireland
| | - Timuçin Çil
- Department of Medical Oncology, Health and Science University, Adana City Hospital, Adana, Turkey
| | - Felipe Melo Cruz
- Department of Medical Oncology, Instituto Brasileiro de Controle do Câncer, São Paulo, Brazil
| | - Shukui Qin
- Department of Medical Oncology, Cancer Center of People's Liberation Army, Nanjing, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hongming Pan
- Department of Medical Oncology, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou, China
| | - Zev A Wainberg
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lina Yin
- Biostatistics and Research Decision Sciences, Merck, Rahway, NJ, USA
| | - Sonal Bordia
- Global Clinical Development, Merck, Rahway, NJ, USA
| | - Pooja Bhagia
- Global Clinical Development, Merck, Rahway, NJ, USA
| | - Lucjan S Wyrwicz
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
18
|
Lau APY, Khavkine Binstock SS, Thu KL. CD47: The Next Frontier in Immune Checkpoint Blockade for Non-Small Cell Lung Cancer. Cancers (Basel) 2023; 15:5229. [PMID: 37958404 PMCID: PMC10649163 DOI: 10.3390/cancers15215229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The success of PD-1/PD-L1-targeted therapy in lung cancer has resulted in great enthusiasm for additional immunotherapies in development to elicit similar survival benefits, particularly in patients who do not respond to or are ineligible for PD-1 blockade. CD47 is an immunosuppressive molecule that binds SIRPα on antigen-presenting cells to regulate an innate immune checkpoint that blocks phagocytosis and subsequent activation of adaptive tumor immunity. In lung cancer, CD47 expression is associated with poor survival and tumors with EGFR mutations, which do not typically respond to PD-1 blockade. Given its prognostic relevance, its role in facilitating immune escape, and the number of agents currently in clinical development, CD47 blockade represents a promising next-generation immunotherapy for lung cancer. In this review, we briefly summarize how tumors disrupt the cancer immunity cycle to facilitate immune evasion and their exploitation of immune checkpoints like the CD47-SIRPα axis. We also discuss approved immune checkpoint inhibitors and strategies for targeting CD47 that are currently being investigated. Finally, we review the literature supporting CD47 as a promising immunotherapeutic target in lung cancer and offer our perspective on key obstacles that must be overcome to establish CD47 blockade as the next standard of care for lung cancer therapy.
Collapse
Affiliation(s)
- Asa P. Y. Lau
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Sharon S. Khavkine Binstock
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| | - Kelsie L. Thu
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
19
|
Xu JZ, Xia QD, Sun JX, Liu CQ, Lu JL, Xu MY, An Y, Xun Y, Liu Z, Hu J, Li C, Wang SG. Establishment of a novel indicator of pyroptosis regulated gene transcription level and its application in pan-cancer. Sci Rep 2023; 13:17911. [PMID: 37863886 PMCID: PMC10589244 DOI: 10.1038/s41598-023-44700-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Pyroptosis is a type of programmed cell death and plays a dual role in distinct cancers. It is elusive to evaluate the activation level of pyroptosis and to appraise the involvement of pyroptosis in the occurrence and development of diverse tumors. Accordingly, we herein established an indicator to evaluate pyroptosis related gene transcription levels based on the expression level of genes involved in pyroptosis and tried to elaborated on the association between pyroptosis and tumors across diverse tumor types. We found that pyroptosis related gene transcription levels could predict the prognosis of patients, which could act as either a favorable or a dreadful factor in diverse cancers. According to signaling pathway analyses we observed that pyroptosis played a significant role in immune regulation and tumorigenesis and had strong links with other forms of cell death. We also performed analysis on the crosstalk between pyroptosis and immune status and further investigated the predictive potential of pyroptosis level for the efficacy of immunotherapy. Lastly, we manifested that pyroptosis status could serve as a biomarker to the efficacy of chemotherapy across various cancers. In summary, this study established a quantitative indicator to evaluate pyroptosis related gene transcription levels, systematically explored the role of pyroptosis in pan-cancer. These results could provide potential research directions targeting pyroptosis, and highlighted that pyroptosis may be used to develop a novel strategy for the treatment of cancer.
Collapse
Affiliation(s)
- Jin-Zhou Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi-Dong Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Xuan Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Qian Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Lin Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Yao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye An
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shao-Gang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
20
|
Zhang C, Wang M, Wu Y. Features of the immunosuppressive tumor microenvironment in endometrial cancer based on molecular subtype. Front Oncol 2023; 13:1278863. [PMID: 37927462 PMCID: PMC10622971 DOI: 10.3389/fonc.2023.1278863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Endometrial cancer (EC) is one of the three most prevalent gynecological tumors affecting women and is the most prevalent gynecological malignancy in the developed world. Its incidence is rapidly increasing worldwide, mostly affecting postmenopausal women, whereas recently its prevalence has increased in younger people. EC is an immune gene disease and many studies have shown that the tumor-immunosuppressive microenvironment plays an important role in cancer progression. In recent years, findings regarding the immunosuppressive tumor microenvironment (ITME) of EC have included immune evasion mechanisms and immunotherapy, which are mostly immune checkpoint inhibitors (ICI) for EC. Recently studies on the ITME of different molecular types of EC have found that different molecular types may have different ITME. With the research on the immune microenvironment of EC, a new immunophenotype classification based on the immune microenvironment has been carried out in recent years. However, the impact of the ITME on EC remains unclear, and the immunophenotype of EC remains limited to the research stage. Our review describes recent findings regarding the ITME features of different EC molecular types. The advent of immunotherapy has brought hope for improved efficacy and prognosis in patients with advanced or recurrent EC. The efficacy and safety of ICIs combination therapy remains the focus of future research.
Collapse
Affiliation(s)
- Chong Zhang
- Departments of Obstetrics, Beijing You’an Hospital of Capital Medical University, Beijing, China
| | - Ming Wang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yumei Wu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
21
|
Wang D, Elenbaas B, Murugesan K, Shah K, Montesion M, Gounaris I, Scheuenpflug J, Locatelli G, Feng Z. Relationship among DDR gene mutations, TMB and PD-L1 in solid tumour genomes identified using clinically actionable biomarker assays. NPJ Precis Oncol 2023; 7:103. [PMID: 37821580 PMCID: PMC10567713 DOI: 10.1038/s41698-023-00442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/31/2023] [Indexed: 10/13/2023] Open
Abstract
The DNA damage response (DDR) pathway regulates DNA repair and cell survival, and inactivating mutations in DDR genes can increase tumour mutational burden (TMB), a predictive biomarker of treatment benefit from anti-PD-1/PD-L1 immunotherapies. However, a better understanding of the relationship among specific DDR mutations, TMB and PD-L1 expression is needed to improve translational strategies. Here, we determined genomic alteration frequencies in selected DDR genes that are clinically actionable biomarkers and investigated their association with TMB and PD-L1 in bladder, colorectal, non-small cell lung, ovarian and prostate cancers using the FoundationInsights® web portal. Our results not only confirm known associations, such as mismatch repair and POLE gene mutations with high TMB, but also identify significant associations between mutations in the SWI/SNF chromatin remodelling genes ARID1A and SMARCA4 and high TMB in multiple tumour types. Mutations in the ATR gene were associated with high TMB in colorectal and prostate cancers; however, associations between individual DDR mutations and high PD-L1 expression were uncommon and tumour-type specific. Finally, we found that high TMB and high PD-L1 expression were poorly associated, emphasising their independence as predictive biomarkers for immune checkpoint inhibitor use.
Collapse
Affiliation(s)
- Danyi Wang
- Clinical Measurements Sciences, Global Research & Development, EMD Serono Research & Development Institute, Inc., an affiliate of Merck KGaA, Billerica, MA, USA
| | - Brian Elenbaas
- Research Unit Oncology, EMD Serono Research & Development Institute, Inc., an affiliate of Merck KGaA, Billerica, MA, USA
| | | | | | | | - Ioannis Gounaris
- Global Clinical Development, Merck Serono Ltd., an affiliate of Merck KGaA, Feltham, UK
| | - Juergen Scheuenpflug
- Clinical Measurements Sciences, Global Research & Development, Merck Healthcare KGaA, Darmstadt, Germany
| | - Giuseppe Locatelli
- Clinical Measurements Sciences, Global Research & Development, Merck Healthcare KGaA, Darmstadt, Germany
| | - Zheng Feng
- Clinical Measurements Sciences, Global Research & Development, EMD Serono Research & Development Institute, Inc., an affiliate of Merck KGaA, Billerica, MA, USA.
| |
Collapse
|
22
|
Rani B, Ignatz-Hoover JJ, Rana PS, Driscoll JJ. Current and Emerging Strategies to Treat Urothelial Carcinoma. Cancers (Basel) 2023; 15:4886. [PMID: 37835580 PMCID: PMC10571746 DOI: 10.3390/cancers15194886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Urothelial cell carcinoma (UCC, bladder cancer, BC) remains a difficult-to-treat malignancy with a rising incidence worldwide. In the U.S., UCC is the sixth most incident neoplasm and ~90% of diagnoses are made in those >55 years of age; it is ~four times more commonly observed in men than women. The most important risk factor for developing BC is tobacco smoking, which accounts for ~50% of cases, followed by occupational exposure to aromatic amines and ionizing radiation. The standard of care for advanced UCC includes platinum-based chemotherapy and programmed cell death (PD-1) or programmed cell death ligand 1 (PD-L1) inhibitors, administered as frontline, second-line, or maintenance therapy. UCC remains generally incurable and is associated with intrinsic and acquired drug and immune resistance. UCC is lethal in the metastatic state and characterized by genomic instability, high PD-L1 expression, DNA damage-response mutations, and a high tumor mutational burden. Although immune checkpoint inhibitors (ICIs) achieve long-term durable responses in other cancers, their ability to achieve similar results with metastatic UCC (mUCC) is not as well-defined. Here, we discuss therapies to improve UCC management and how comprehensive tumor profiling can identify actionable biomarkers and eventually fulfill the promise of precision medicine for UCC patients.
Collapse
Affiliation(s)
- Berkha Rani
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
| | - James J. Ignatz-Hoover
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Priyanka S. Rana
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - James J. Driscoll
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.R.); (J.J.I.-H.); (P.S.R.)
- Division of Hematology & Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Adult Hematologic Malignancies & Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
23
|
Necchi A, Faltas BM, Slovin SF, Meeks JJ, Pal SK, Schwartz LH, Huang RSP, Li R, Manley B, Chahoud J, Ross JS, Spiess PE. Immunotherapy in the Treatment of Localized Genitourinary Cancers. JAMA Oncol 2023; 9:1447-1454. [PMID: 37561425 PMCID: PMC11429659 DOI: 10.1001/jamaoncol.2023.2174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Importance A true revolution in the management of advanced genitourinary cancers has occurred with the discovery and adoption of immunotherapy (IO). The therapeutic benefits of IO were recently observed not to be solely confined to patients with disseminated disease but also in select patients with localized and locally advanced genitourinary neoplasms. Observations KEYNOTE-057 demonstrated the benefit of pembrolizumab monotherapy for treating high-risk nonmuscle invasive bladder cancer unresponsive to bacillus Calmette-Guérin (BCG), resulting in recent US Food and Drug Administration approval. Furthermore, a current phase 3 trial (Checkmate274) demonstrated a disease-free survival benefit with the administration of adjuvant nivolumab vs placebo in muscle-invasive urothelial carcinoma after radical cystectomy. In addition, the recent highly publicized phase 3 KEYNOTE 564 trial demonstrated a recurrence-free survival benefit of adjuvant pembrolizumab in patients with high-risk localized/locally advanced kidney cancer. Conclusions and Relevance The adoption and integration of IO in the management of localized genitourinary cancers exhibiting aggressive phenotypes are becoming an emerging therapeutic paradigm. Clinical oncologists and scientists should become familiar with these trials and indications because they are likely to dramatically change our treatment strategies in the months and years to come.
Collapse
Affiliation(s)
- Andrea Necchi
- Vita-Salute San Raffaele University; IRCCS San Raffaele Hospital, Milan, Italy
| | - Bishoy M Faltas
- Englander Institute for Precision Medicine, Weill Cornell Medicine-NewYork Presbyterian Hospital. New York, New York
| | - Susan F Slovin
- Genitourinary Oncology Service, Department of Medicine, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua J Meeks
- Departments of Pathology, Urology, Biochemistry and Molecular Genetics, Northwestern University School of Medicine, Chicago, Illinois
| | - Sumanta K Pal
- Department of Medical Oncology & Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Lawrence H Schwartz
- Department of Radiology, Columbia University College of Physicians and Surgeons, New York, New York
- Department of Radiology, New York Presbyterian Hospital, New York, New York
| | | | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Brandon Manley
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Jeffrey S Ross
- Foundation Medicine, Cambridge, Massachusetts
- Departments of Pathology, Urology and Medicine (Oncology), Upstate Medical University, Syracuse, NY USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
24
|
Mo S, Zou L, Hu Y, Chang X, Chen J. Expression of PD-L1 and VISTA in Intraductal Papillary Mucinous Neoplasm With Associated Invasive Carcinoma of the Pancreas. Mod Pathol 2023; 36:100223. [PMID: 37244388 DOI: 10.1016/j.modpat.2023.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Early detection and treatment of invasive carcinoma arising in association with intraductal papillary mucinous neoplasm (IPMN), which is biologically and (epi)genetically distinct from conventional pancreatic ductal adenocarcinoma, provide an opportunity to improve the prognosis of this lethal disease. Despite the successful application of programmed death (ligand) 1 (PD-[L]1)-blocking strategies in numerous cancers, the immune microenvironment of IPMN with associated invasive carcinoma remains elusive. Here, we investigated CD8+ T cells, CD68+ macrophages, PD-L1, and V-domain immunoglobulin suppressor of T-cell activation (VISTA) in 60 patients with IPMN with associated invasive carcinoma using immunohistochemistry, explored their correlations with clinicopathologic variables and prognosis, and compared them with those in 76 patients with IPMN without invasive carcinoma (60 low-grade and 16 high-grade lesions). Using antibodies against CD8, CD68, and VISTA, we evaluated tumor-infiltrating immune cells in 5 high-power fields (×400) and calculated the corresponding mean counts. PD-L1 with a combined positive score of ≥1 was regarded as positive, and VISTA expression on tumor cells (TCs) was deemed positive when ≥1% of TCs showed membranous/cytoplasmic staining. A reduction of CD8+ T cells and an increase of macrophages were observed during carcinogenesis. Positive PD-L1 combined positive score and VISTA expression on TCs were 13% and 11% in the intraductal component of IPMN with associated invasive carcinoma, 15% and 12% in the associated invasive carcinoma, and 6% and 4% in IPMN without an invasive carcinoma, respectively. Interestingly, the PD-L1 positivity rate was the highest in a subset of associated invasive carcinomas (predominantly gastric-type-derived) and was associated with higher counts of CD8+ T cells, macrophages, and VISTA+ immune cells. Accumulation of VISTA+ immune cells was observed in the intraductal component of IPMN with associated invasive carcinoma compared with that of low-grade IPMN, whereas in intestinal-type IPMN with associated invasive carcinoma, the number of these cells decreased during the transition from the intraductal component to the associated invasive carcinoma. Survival analysis revealed that a higher number of macrophages predicted poorer prognosis. In conclusion, our results might help in individualized immunotherapeutic strategies for these patients.
Collapse
Affiliation(s)
- Shengwei Mo
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Long Zou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya Hu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
25
|
Tian J, Wang H, Lu C, Liu L, Zhang X, Xie Y, Li R, Lv X, Fu D, Zhang L, Fang X, Wang X, Hu J, Liu X, Huang X, Zhao Q, Luo N, Tang H, Zhong Z, He Y, Li L. Genomic characteristics and prognosis of lung cancer patients with MSI-H: A cohort study. Lung Cancer 2023; 181:107255. [PMID: 37244039 DOI: 10.1016/j.lungcan.2023.107255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Microsatellite instability (MSI) is the first pan-cancer biomarker approved to guide immune checkpoint inhibitor therapy for MSI-high (MSI-H) solid tumors. In lung cancer, the MSI-H frequency is very low, and the genetic characteristics and prognosis of lung cancer with MSI-H were rarely reported. METHODS Next-generation sequencing and immunohistochemistry were used detect MSI status, tumor mutation burden (TMB) and PD-L1 expression. RESULTS Among 12,484 lung cancer patients screened, 66 were found with MSI-H, the proportion was as low as 0.5%. Compared with Microsatellite stability (MSS), TMB was higher in MSI-H lung cancer patients, while PD-L1 expression showed no considerable difference between MSI-H and MSS. After propensity score matching, compared with MSS, the most common companion mutations in MSI-H were TP53, BRCA2, TGFBR2, PTEN and KMT2C. In MSI-H lung adenocarcinoma with EGFR mutation, TGFBR2 and ERBB2 had higher mutation frequency than in MSS. CONCLUSION The current study reveals the genetic characteristics of MSI-H lung cancer, which advanced our understanding of MSI-H lung cancer.
Collapse
Affiliation(s)
- Jie Tian
- Department of Respiratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hongdan Wang
- Department of Respiratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Conghua Lu
- Department of Respiratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Liu
- Department of Respiratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xianquan Zhang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunbo Xie
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rutian Li
- Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Xin Lv
- Nanjing Drum Tower Hospital The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Dan Fu
- 3D Medicines Inc., Shanghai, China
| | - Ling Zhang
- The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xisheng Fang
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Xuming Wang
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jing Hu
- Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | | | | | - Qian Zhao
- Department of Respiratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Nuo Luo
- Department of Respiratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Huan Tang
- Department of Respiratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhaoyang Zhong
- Department of Cancer Center, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Yong He
- Department of Respiratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Li Li
- Department of Respiratory Medicine, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
26
|
Ito T, Takayanagi D, Sekine S, Hashimoto T, Shimada Y, Matsuda M, Yamada M, Hamamoto R, Kato T, Shida D, Kanemitsu Y, Boku N, Kohno T, Takashima A, Shiraishi K. Comparison of clinicopathological and genomic profiles in anal squamous cell carcinoma between Japanese and Caucasian cohorts. Sci Rep 2023; 13:3587. [PMID: 36869079 PMCID: PMC9984524 DOI: 10.1038/s41598-023-30624-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Anal squamous cell carcinoma (ASCC) is a rare tumor of the gastrointestinal tract. We aimed to compare the genetic backgrounds and their effect on clinical outcomes between Japanese and Caucasian patients with ASCC. Forty-one patients diagnosed with ASCC at the National Cancer Center Hospital were enrolled and evaluated for clinicopathological features, human papillomavirus (HPV) infection, HPV genotypes, p16 expression, PD-L1, and association of p16 status with the efficacy of concurrent chemoradiotherapy (CCRT). Target sequencing for hotspot mutations in 50 cancer-related genes was performed using genomic DNA from 30 available samples. Of 41 patients, 34 were HPV-positive (among them, HPV 16 was predominant; 73.2%); 38 patients were p16-positive (92.7%); and 39 patients received CCRT, of whom 36 were p16-positive and three p16-negative. p16-positive patients showed better complete response than p16-negative patients. Among 28 samples, 15 showed mutations in PIK3CA, FBXW7, ABL1, TP53, and PTEN; no difference in mutation profiles between the Japanese and Caucasian cohorts was observed. Actionable mutations were detected in both Japanese and Caucasian patients with ASCC. Genetic backgrounds, such as the HPV 16 genotype and PIK3CA mutations, were common regardless of ethnicity. p16 status may be a prognostic biomarker for CCRT in Japanese patients with ASCC.
Collapse
Affiliation(s)
- Takahiko Ito
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Daisuke Takayanagi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shigeki Sekine
- Department of Clinical Pathology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Taiki Hashimoto
- Department of Clinical Pathology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoko Shimada
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Maiko Matsuda
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- RIKEN Center for Advanced Intelligence Project, Cancer Translational Research Team, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Dai Shida
- Department of Colorectal Surgery, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Division of Frontier Surgery, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Yukihide Kanemitsu
- Department of Colorectal Surgery, National Cancer Center Hospital, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Narikazu Boku
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Atsuo Takashima
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tsukiji 5-1-1, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
27
|
Dabbs DJ, Huang RS, Ross JS. Novel markers in breast pathology. Histopathology 2023; 82:119-139. [PMID: 36468266 DOI: 10.1111/his.14770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022]
Abstract
Breast pathology is an ever-expanding database of information which includes markers, or biomarkers, that detect or help treat the disease as prognostic or predictive information. This review focuses on these aspects of biomarkers which are grounded in immunohistochemistry, liquid biopsies and next-generation sequencing.
Collapse
Affiliation(s)
- David J Dabbs
- PreludeDx, Laguna Hills, CA, USA.,Department of Pathology, University of Pittsburgh, Board Member, CASI (Consortium for Analytical Standardization in Immunohistochemistry), Pittsburgh, PA, USA
| | - Richard S Huang
- Clinical Development, Foundation Medicine, Cambridge, MA, USA
| | | |
Collapse
|
28
|
Xue Y, Balci S, Pehlivanoglu B, Muraki T, Memis B, Saka B, Kim G, Bandyopadhyay S, Knight J, El-Rayes B, Kooby D, Maithel SK, Sarmiento J, Basturk O, Reid MD, Adsay V. Medullary carcinoma of the ampulla has distinct clinicopathologic characteristics including common association with microsatellite instability and PD-L1 expression. Hum Pathol 2023; 131:38-46. [PMID: 36502926 DOI: 10.1016/j.humpath.2022.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/13/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Medullary carcinomas have not yet been fully characterized in the ampulla. Here, 359 ampullary carcinomas (ACs) were reviewed and 11 medullary-type carcinomas (3%) were found and analyzed. In addition to the diagnostic medullary pattern, 6 showed focal mucinous and 8 had focal abortive gland-like formations. They occurred in younger patients (57 versus 65 y; P = .02), had larger invasion size (mean, 3.2 versus 1.9 cm; P = .01), formed nodular polypoid or plaque-like tumors, and often lacked preinvasive component. In addition to the lymphoplasmacytic infiltrates, they also had prominent eosinophils in 5 of 11 cases. Eight were papilla Vateri-NOS (not otherwise specified) tumors, 2 were ampullary-duodenal origin, 1 had a minor intra-ampullary papillary tubular neoplasm component, and none were ampullary-ductal. Although they had pushing-border infiltration, perineural and vascular invasion was common. They were strongly associated with DNA mismatch repair (MMR) protein deficient (7/11, 64%). The 5-yr survival rate (53%) appeared to be comparable with, and perhaps even better than that of nonmedullary ACs (47%), although this did not reach statistical significance (P = .47). Programmed cell death ligand-1 (PD-L1) expression levels were assessed in 8, and all 4 that were MMR deficient were positive both by combined positive score (CPS) ≥1 and tumor proportion score (TPS) ≥1, and of the 4 MMR proficient cases, 3 were positive by CPS; 2 by TPS. Overall, only 1 of the 8 available for analysis failed to show PD-L1 positivity by CPS. In contrast, nonmedullary MMR-deficient carcinomas expressed PD-L1 in only 33% of tumors by CPS, and none by TPS. One medullary carcinoma was also EBV associated. Unlike 'medullary carcinomas' of the kidney, INI1 was retained in all 8 cases tested. In conclusion, medullary carcinomas are 3% of ACs, have a strong association with MMR-D, and may be less aggressive despite their larger size. PD-L1 expression appears to be closely associated with medullary ACs regardless of MMR status, and thus targeted therapies can be considered for all medullary carcinomas of this site.
Collapse
Affiliation(s)
- Yue Xue
- Department of Pathology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Serdar Balci
- Department of Pathology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Burcin Pehlivanoglu
- Department of Pathology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Takashi Muraki
- Department of Pathology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Bahar Memis
- Department of Pathology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Burcu Saka
- Department of Pathology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Grace Kim
- Department of Pathology, University of California San Francisco, San Francisco, CA, 94143, USA
| | | | - Jessica Knight
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, 30606, USA
| | - Bassel El-Rayes
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - David Kooby
- Department of Surgery, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Shishir K Maithel
- Department of Surgery, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Juan Sarmiento
- Department of Surgery, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Olca Basturk
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, 10065, USA
| | - Michelle D Reid
- Department of Pathology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Volkan Adsay
- Department of Pathology, Koc University Hospital, Davutpasa Caddesi No. 4, 34010 Topkapi, Istanbul, Turkey.
| |
Collapse
|
29
|
Möller K, Knöll M, Bady E, Schmerder MJ, Rico SD, Kluth M, Hube-Magg C, Blessin NC, Mandelkow T, Lennartz M, Menz A, Luebke AM, Höflmayer D, Fraune C, Bernreuther C, Lebok P, Uhlig R, Contreras H, Weidemann S, Gorbokon N, Jacobsen F, Clauditz TS, Steurer S, Burandt E, Minner S, Sauter G, Simon R, Marx AH, Krech T. PD-L1 expression and CD8 positive lymphocytes in human neoplasms: A tissue microarray study on 11,838 tumor samples. Cancer Biomark 2023; 36:177-191. [PMID: 36683495 PMCID: PMC9986704 DOI: 10.3233/cbm-220030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Programmed death ligand 1 (PD-L1) is the target of immune checkpoint inhibitor therapies in a growing number of tumor types, but a unanimous picture on PD-L1 expression across cancer types is lacking. MATERIALS AND METHODS We analyzed immunohistochemical PD-L1 expression in 11,838 samples from 118 human tumor types and its relationship with tumor infiltrating CD8 positive lymphocytes. RESULTS At a cut-off level of 10% positive tumor cells, PD-L1 positivity was seen in 85 of 118 (72%) tumor types, including thymoma (100% positive), Hodgkin's lymphoma (93%), anaplastic thyroid carcinoma (76%), Kaposi sarcoma (71%), sarcomatoid urothelial carcinoma (71%), and squamous cell carcinoma of the penis (67%), cervix (65%), floor of the mouth (61%), the lung (53%), and pharynx (50%). In immune cells, PD-L1 positivity was detectable in 103 (87%) tumor types, including tumors of haematopoetic and lymphoid tissues (75% to 100%), Warthin tumors of the parotid glands (95%) and Merkel cell carcinoma (82%). PD-L1 positivity in tumor cells was significantly correlated with the number of intratumoral CD8 positive lymphocytes across all tumor types as well as in individual tumor types, including serous carcinoma of the ovary, invasive breast carcinoma of no special type, intestinal gastric adenocarcinoma, and liposarcoma (p< 0.0001 each). CONCLUSIONS PD-L1 expression in tumor and inflammatory cells is found in a wide range of human tumor types. Higher rates of tumor infiltrating CD8 positive lymphocytes in PD-L1 positive than in PD-L1 negative cancers suggest that the antitumor immune response may trigger tumoral PD-L1 expression.
Collapse
Affiliation(s)
- Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Madeleine Knöll
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Bady
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Niclas C Blessin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Mandelkow
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrina Contreras
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalia Gorbokon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| |
Collapse
|
30
|
Kang YJ, O'Haire S, Franchini F, IJzerman M, Zalcberg J, Macrae F, Canfell K, Steinberg J. A scoping review and meta-analysis on the prevalence of pan-tumour biomarkers (dMMR, MSI, high TMB) in different solid tumours. Sci Rep 2022; 12:20495. [PMID: 36443366 PMCID: PMC9705554 DOI: 10.1038/s41598-022-23319-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/29/2022] [Indexed: 11/29/2022] Open
Abstract
Immune checkpoint inhibitors have been approved in the USA for tumours exhibiting mismatch repair deficiency (dMMR), microsatellite instability (MSI), or high tumour mutational burden (TMB), with regulatory and reimbursement applications in multiple other countries underway. As the estimated budget impacts of future reimbursements depend on the size of the potential target population, we performed a scoping review and meta-analysis of the prevalence of these pan-tumour biomarkers in different cancers. We systematically searched Medline/Embase and included studies reporting the prevalence of dMMR/MSI/high TMB in solid tumours published 01/01/2018-31/01/2021. Meta-analyses were performed separately for the pan-cancer prevalence of each biomarker, and by cancer type and stage where possible. The searches identified 3890 papers, with 433 prevalence estimates for 32 different cancer types from 201 studies included in meta-analyses. The pooled overall prevalence of dMMR, MSI and high TMB (≥ 10 mutations/Mb) in pan-cancer studies was 2.9%, 2.7% and 14.0%, respectively. The prevalence profiles of dMMR/MSI and high TMB differed across cancer types. For example, endometrial, colorectal, small bowel and gastric cancers showed high prevalence of both dMMR and MSI (range: 8.7-26.8% and 8.5-21.9%, respectively) and high TMB (range: 8.5-43.0%), while cervical, esophageal, bladder/urothelial, lung and skin cancers showed low prevalence of dMMR and MSI (< 5%), but high prevalence of high TMB (range: 23.7-52.6%). For other cancer types, prevalence of all three biomarkers was generally low (< 5%). This structured review of dMMR/MSI/high TMB prevalence across cancers and for specific cancer types and stages provide timely evidence to inform budget impact forecasts in health technology assessments for drug approvals based on these pan-tumour biomarkers.
Collapse
Affiliation(s)
- Yoon-Jung Kang
- The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council NSW, Sydney, NSW, 2060, Australia
| | - Sophie O'Haire
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3053, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Fanny Franchini
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3053, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Maarten IJzerman
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3053, Australia
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - John Zalcberg
- Department of Medical Oncology, Alfred Health and School of Public Health and Preventive Medicine, Faculty of Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Finlay Macrae
- Colorectal Medicine and Genetics, and Department of Medicine, University of Melbourne, The Royal Melbourne Hospital, Parkville, VIC, 3050, Australia
| | - Karen Canfell
- The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council NSW, Sydney, NSW, 2060, Australia
| | - Julia Steinberg
- The Daffodil Centre, The University of Sydney, a Joint Venture with Cancer Council NSW, Sydney, NSW, 2060, Australia.
| |
Collapse
|
31
|
Dai Y, Zhao L, Hua D, Cui L, Zhang X, Kang N, Qu L, Li L, Li H, Shen D, Wang Z, Wang J. Tumor immune microenvironment in endometrial cancer of different molecular subtypes: evidence from a retrospective observational study. Front Immunol 2022; 13:1035616. [PMID: 36532042 PMCID: PMC9756131 DOI: 10.3389/fimmu.2022.1035616] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Tumor immune microenvironmental features may predict survival and guide treatment. This study aimed to comprehensively decipher the immunological features of different molecular subtypes of endometrial cancer. Methods In this retrospective study, 26 patients with primary endometrial cancer and four with recurrent disease treated in our center from December 2018 to November 2021 were included. Next-generation sequencing was performed on tumor samples. Patients were classified into four subtypes, including POLE mutant, microsatellite instability high (MSI-H), no specific molecular profile (NSMP) and TP53 mutant subtypes. Tumor-infiltrating immune cells were quantified using multiplex immunofluorescence assays. Results Of the 26 primary endometrial cancer cases, three were POLE mutant, six were MSI-H, eight were NSMP and nine were TP53 mutant. Of the four recurrent cases, two belonged to the NSMP subtype and two belonged to the TP53 mutant subtype. The tumor mutation burden (TMB) levels of POLE mutant and MSI-H cases were significantly higher than that of the other two subtypes (p< 0.001). We combined POLE mutant and MSI-H subtypes into the TMB high (TMB-H) subtype. The TMB-H subtype showed a high degree of infiltration of CD8+ T cells. In the NSMP subtype, the overall degree of intra-tumoral infiltrating immune cells was low. In the TP53 mutant subtype, the densities of both PD-L1+ macrophages (p = 0.047) and PD-1+ T cells (p = 0.034) in tumor parenchyma were the highest among the four subtypes. Conclusion Endometrial cancer of TMB-H, NSMP and TP53 mutant subtypes displayed phenotypes of normal immune response, absence of immune infiltration, and suppressed immune response, respectively. These features may provide mechanistic explanations for the differences in patients' prognosis and efficacy of immune checkpoint blockade therapies among different endometrial cancer subtypes.
Collapse
Affiliation(s)
- Yibo Dai
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Luyang Zhao
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Dingchao Hua
- Department of Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Lina Cui
- Department of Medical Affairs, 3D Medicines Inc., Shanghai, China
| | - Xiaobo Zhang
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Nan Kang
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Linlin Qu
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Liwei Li
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - He Li
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| | - Danhua Shen
- Department of Pathology, Peking University People’s Hospital, Beijing, China
| | - Zhiqi Wang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China,*Correspondence: Zhiqi Wang,
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
32
|
Deng X, Zheng C, Tang F, Rosol TJ, Shao ZM. Editorial: Triple-negative breast cancer: Heterogeneity, tumor microenvironment and targeted therapy. Front Oncol 2022; 12:1026566. [PMID: 36483047 PMCID: PMC9725095 DOI: 10.3389/fonc.2022.1026566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Affiliation(s)
- Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Chanjuan Zheng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Faqing Tang
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, Hunan, China
| | - Thomas J. Rosol
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Nicolini A, Ferrari P, Carpi A. Immune Checkpoint Inhibitors and Other Immune Therapies in Breast Cancer: A New Paradigm for Prolonged Adjuvant Immunotherapy. Biomedicines 2022; 10:biomedicines10102511. [PMID: 36289773 PMCID: PMC9599105 DOI: 10.3390/biomedicines10102511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Breast cancer is the most common form of cancer in women worldwide. Advances in the early diagnosis and treatment of cancer in the last decade have progressively decreased the cancer mortality rate, and in recent years, immunotherapy has emerged as a relevant tool against cancer. HER2+ and triple-negative breast cancers (TNBCs) are considered more immunogenic and suitable for this kind of treatment due to the higher rate of tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression. In TNBC, genetic aberrations further favor immunogenicity due to more neo-antigens in cancer cells. Methods: This review summarizes the principal ongoing conventional and investigational immunotherapies in breast cancer. Particularly, immune checkpoint inhibitors (ICIs) and their use alone or combined with DNA damage repair inhibitors (DDRis) are described. Then, the issue on immunotherapy with monoclonal antibodies against HER-2 family receptors is updated. Other investigational immunotherapies include a new schedule based on the interferon beta-interleukin-2 sequence that was given in ER+ metastatic breast cancer patients concomitant with anti-estrogen therapy, which surprisingly showed promising results. Results: Based on the scientific literature and our own findings, the current evaluation of tumor immunogenicity and the conventional model of adjuvant chemotherapy (CT) are questioned. Conclusions: A novel strategy based on additional prolonged adjuvant immunotherapy combined with hormone therapy or alternated with CT is proposed.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Paola Ferrari
- Unit of Oncology, Department of Medical and Oncological Area, Azienda Ospedaliera-Universitaria Pisana, 56125 Pisa, Italy
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
34
|
Yang C, Yu T, Lin Q. A signature based on chromatin regulation and tumor microenvironment infiltration in clear cell renal cell carcinoma. Epigenomics 2022; 14:995-1013. [PMID: 36154213 DOI: 10.2217/epi-2022-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: This research aimed to construct a signature based on chromatin regulation in localized clear cell renal cell carcinoma (ccRCC). Materials & methods: Non-negative matrix factorization clustering was performed on 438 localized ccRCC cases. The immune infiltration was generated by the single-sample gene set enrichment analysis algorithm. Survival analyses were performed using the Kaplan-Meier method, and the significance of the differences was determined using the log-rank test. The risk score was constructed based on the expression of chromatin regulators to quantify chromatin modification. Results: A score system based on chromatin modification was established. The high-risk subtype was characterized by increased tumor mutation burden, whereas a low-risk score was characterized by an increase in chromatin regulator expression and better overall survival. Conclusion: This research has constructed a signature based on chromatin regulation in localized ccRCC.
Collapse
Affiliation(s)
- Chen Yang
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, China
| | - Tian Yu
- Graduate School, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.,Department of General Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Beijing, 100730, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361003, China
| |
Collapse
|
35
|
Wang F, Wang X, Liu L, Deng S, Ji W, Liu Y, Wang X, Wang R, Zhao X, Gao E. Comprehensive analysis of PTPN gene family revealing PTPN7 as a novel biomarker for immuno-hot tumors in breast cancer. Front Genet 2022; 13:981603. [PMID: 36226189 PMCID: PMC9548886 DOI: 10.3389/fgene.2022.981603] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background: The non-receptor protein tyrosine phosphatase (PTPN) gene family has been considered to be involved in the oncogenesis and development of multiple cancers. However, its prognostic utility and immunological relevance in breast cancer (BrCa) have not been clarified. Methods: A transcriptional level interpretation of the expressions and prognostic values was analyzed using the data from The Cancer Genome Atlas (TCGA) cohort. In addition, GO and DAVID pinpoint the functional enrichment of PTPNs. Moreover, the immune correlations of PTPN7 in BrCa and pan-cancer were further investigated based on the TCGA cohort and were testified using the in-house and the Gene Expression Omnibus (GEO) cohorts. Results: For systematic analysis of the PTPN family, we found that the expression levels of PTPN1, PTPN6, PTPN7, PTPN18, PTPN20, and PTPN22 was promoted in tumor tissues while comparing with paraneoplastic tissues during our study. We further investigated their functions and protein-protein interactions (PPI), and these results strongly suggested that PTPN family was associated with protein dephosphorylation. Next, we performed an immunological relevance analysis and found that PTPN7 was correlated with immune infiltration, suggesting a stronger association of PTPN7 with immuno-hot tumors in BrCa. In addition, results from the in-house cohort confirmed the positive correlation between PTPN7 and PD-L1. The pan-cancer analysis revealed that PTPN7 was related to PD-L1 and CTLA-4 expression in almost all cancer types. Finally, the predictive value of PTPN7 for immunotherapy was significant in two independent GEO cohorts. Conclusion: In conclusion, this is the first extensive research on the correlation between PTPN family expression and immune characterization in BrCa. As results, PTPN7 expression is associated with immuno-hot tumors and could be a promising predictive biomarker for immunotherapy in not only BrCa but multiple cancers.
Collapse
Affiliation(s)
- Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Siyuan Deng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Wenqian Ji
- College of International Studies, Southwest University, Chongqing, China
| | - Yang Liu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xiangdong Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
- *Correspondence: Xinyuan Zhao, ; Erli Gao,
| | - Erli Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Xinyuan Zhao, ; Erli Gao,
| |
Collapse
|
36
|
Stanowska O, Kuczkiewicz-Siemion O, Dębowska M, Olszewski WP, Jagiełło-Gruszfeld A, Tysarowski A, Prochorec-Sobieszek M. PD-L1-Positive High-Grade Triple-Negative Breast Cancer Patients Respond Better to Standard Neoadjuvant Treatment-A Retrospective Study of PD-L1 Expression in Relation to Different Clinicopathological Parameters. J Clin Med 2022; 11:jcm11195524. [PMID: 36233396 PMCID: PMC9573147 DOI: 10.3390/jcm11195524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 02/05/2023] Open
Abstract
Triple negative breast cancer (TNBC) is typically a high-grade breast cancer with poorest clinical outcome despite available treatment modalities with chemo-, immuno- and radiotherapy. The status of tumor-infiltrating lymphocytes (TILs) is a prognostic factor closely related to programmed death ligand 1 (PD-L1) expressed on T lymphocytes modulating antitumor immunity. Immune-checkpoint inhibitors (ICI) are showing promising results in a subset of breast cancer patients in both neo- and adjuvant settings. Pathologic complete response (pCR) after neoadjuvant treatment was found to be associated with better prognosis. We analyzed the prognostic and predictive significance of PD-L1 (SP142 assay) immunohistochemical expression on TNBC patients' samples as illustrated by pCR with regard to its relation to treatment regimen, stage, BRCA mutational status and outcome. Furthermore, we analyzed a few other clinicopathological parameters such as age, TILs and proliferation index. The study highlighted a positive role of PD-L1 evaluation for personalized pCR probability assessment. Although considerable research was made on comparison of PD-L1 level in TNBC with different patient parameters, to our best knowledge, the relation of PD-L1 status to pCR while taking treatment regimen and stage into consideration was so far not investigated.
Collapse
Affiliation(s)
- Olga Stanowska
- Department of Tumor Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5, 02-781 Warsaw, Poland
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland
- Correspondence: (O.S.); (M.P.-S.)
| | - Olga Kuczkiewicz-Siemion
- Department of Tumor Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5, 02-781 Warsaw, Poland
| | - Małgorzata Dębowska
- Department of Computational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5, 02-781 Warsaw, Poland
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Wojciech P. Olszewski
- Department of Tumor Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5, 02-781 Warsaw, Poland
| | - Agnieszka Jagiełło-Gruszfeld
- Department of Breast Tumors and Reconstruction Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5, 02-781 Warsaw, Poland
| | - Andrzej Tysarowski
- Department of Translational and Molecular Oncology, Maria Sklodowska-National Research Institute of Oncology, W. K. Roentgena 5, 02-781 Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Department of Tumor Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, W. K. Roentgena 5, 02-781 Warsaw, Poland
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland
- Correspondence: (O.S.); (M.P.-S.)
| |
Collapse
|
37
|
Young RB, Panchal H, Ma W, Chen S, Steele A, Iannucci A, Li T. Hospitalized cancer patients with comorbidities and low lymphocyte counts had poor clinical outcomes to immune checkpoint inhibitors. Front Oncol 2022; 12:980181. [PMID: 36185315 PMCID: PMC9515784 DOI: 10.3389/fonc.2022.980181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 01/26/2023] Open
Abstract
Background Immune checkpoint inhibitor (ICI) therapy has improved survivals with a favorable toxicity profile in a variety of cancer patients. We hypothesized that hospitalized cancer patients who have acute or chronic comorbidities may have suppressed immune systems and poor clinical outcomes to ICIs. The objective of this study was to explore clinical outcomes and predictive factors of hospitalized cancer patients who received ICI therapy at an NCI-designated Comprehensive Cancer Center. Methods A retrospective review of electronic medical records was conducted for adult cancer patients who received an FDA-approved ICI during admission from 08/2016 to 01/2022. For each patient we extracted demographics, cancer histology, comorbidities, reasons for hospitalization, ICI administered, time from treatment to discharge, time from treatment to progression or death, and complete blood counts. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method and compared using the log-rank test. The 95% confidence interval for survival was calculated using the exact binomial distribution. Statistical significance was defined as 2-sided p<0.05. Results Of 37 patients identified, 2 were excluded due to lack of complete blood counts on admission. Average hospital stay was 24.2 (95% CI 16.5, 31.9) days. Ten (27.0%) patients died during the same hospitalization as treatment. Of those who followed up, 22 (59.5%) died within 90 days of inpatient therapy. The median PFS was 0.86 (95% CI 0.43, 1.74) months and median OS was 1.55 (95% CI 0.76, 3.72) months. Patients with ≥3 comorbidities had poorer PFS (2.4 vs. 0.4 months; p=0.0029) and OS (5.5 vs. 0.6 months; p=0.0006). Pre-treatment absolute lymphocyte counts (ALC) <600 cells/µL were associated with poor PFS (0.33 vs. 1.35 months; p=0.0053) and poor OS (0.33 vs. 2.34 months; p=0.0236). Pre-treatment derived neutrophil to lymphocyte ratio (dNLR) <4 was associated with good median PFS (1.6 vs. 0.4 months; p=0.0157) and OS (2.8 vs. 0.9 months; p=0.0375). Conclusions Administration of ICI therapy was associated with poor clinical outcomes and high rates of both inpatient mortality and 90-day mortality after inpatient ICI therapy. The presence of ≥3 comorbidities, ALC <600/μL, or dNLR >4 in hospitalized patients was associated with poor survival outcomes.
Collapse
Affiliation(s)
- Richard Benjamin Young
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Hemali Panchal
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Shuai Chen
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, CA, United States
| | - Aaron Steele
- Department of Pharmacy Services, University of California (UC) Davis Health, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Andrea Iannucci
- Department of Pharmacy Services, University of California (UC) Davis Health, University of California (UC) Davis Comprehensive Cancer Center, Sacramento, CA, United States
| | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, United States
| |
Collapse
|
38
|
Sun Z, Zhao Y, Wei Y, Ding X, Tan C, Wang C. Identification and validation of an anoikis-associated gene signature to predict clinical character, stemness, IDH mutation, and immune filtration in glioblastoma. Front Immunol 2022; 13:939523. [PMID: 36091049 PMCID: PMC9452727 DOI: 10.3389/fimmu.2022.939523] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlioblastoma (GBM) is the most prominent and aggressive primary brain tumor in adults. Anoikis is a specific form of programmed cell death that plays a key role in tumor invasion and metastasis. The presence of anti-anoikis factors is associated with tumor aggressiveness and drug resistance.MethodsThe non-negative matrix factorization algorithm was used for effective dimension reduction for integrated datasets. Differences in the tumor microenvironment (TME), stemness indices, and clinical characteristics between the two clusters were analyzed. Difference analysis, weighted gene coexpression network analysis (WGCNA), univariate Cox regression, and least absolute shrinkage and selection operator regression were leveraged to screen prognosis-related genes and construct a risk score model. Immunohistochemistry was performed to evaluate the expression of representative genes in clinical specimens. The relationship between the risk score and the TME, stemness, clinical traits, and immunotherapy response was assessed in GBM and pancancer.ResultsTwo definite clusters were identified on the basis of anoikis-related gene expression. Patients with GBM assigned to C1 were characterized by shortened overall survival, higher suppressive immune infiltration levels, and lower stemness indices. We further constructed a risk scoring model to quantify the regulatory patterns of anoikis-related genes. The higher risk score group was characterized by a poor prognosis, the infiltration of suppressive immune cells and a differentiated phenotype, whereas the lower risk score group exhibited the opposite effects. In addition, patients in the lower risk score group exhibited a higher frequency of isocitrate dehydrogenase (IDH) mutations and a more sensitive response to immunotherapy. Drug sensitivity analysis was performed, revealing that the higher risk group may benefit more from drugs targeting the PI3K/mTOR signaling pathway.ConclusionWe revealed potential relationships between anoikis-related genes and clinical features, TME, stemness, IDH mutation, and immunotherapy and elucidated their therapeutic value.
Collapse
Affiliation(s)
- Zhongzheng Sun
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Yongquan Zhao
- Department of Neurosurgery, Dongying City District People’s Hospital, Dongying, China
| | - Yan Wei
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Xuan Ding
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Chenyang Tan
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Chengwei Wang
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
- *Correspondence: Chengwei Wang,
| |
Collapse
|
39
|
Zheng Y, Yuan D, Zhang F, Tang R. A systematic pan-cancer analysis of the gasdermin (GSDM) family of genes and their correlation with prognosis, the tumor microenvironment, and drug sensitivity. Front Genet 2022; 13:926796. [PMID: 36003332 PMCID: PMC9393220 DOI: 10.3389/fgene.2022.926796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Pyroptosis is a programmed cell death process mediated by the gasdermin (GSDM) protein. However, limited research has been conducted to comprehensively analyze the contribution of the GSDM family in a pan-cancer setting. Methods: We systematically evaluated the gene expression, genetic variations, and prognostic values of the GSDM family members. Furthermore, we investigated the association between the expression of GSDM genes and immune subtypes, the tumor microenvironment (TME), the stemness index, and cancer drug sensitivities by means of a pan-cancer analysis. Results: GSDM genes were highly upregulated in most of the tested cancers. Low-level mutation frequencies within GSDM genes were common across the examined types of cancer, and their expression levels were associated with prognosis, clinical characteristics, TME features, and stemness scores in several cancer types, particularly those of the urinary system. Importantly, we found that the expressions of GSDMB, GSDMC, and GSDMD were higher in kidney carcinomas, and specifically kidney renal clear cell carcinoma (KIRC); which adversely impacted the patient outcome. We showed that GSDMD was potentially the most useful biomarker for KIRC. The drug sensitivity analysis demonstrated that the expressions of GSDM genes were correlated with the sensitivity of tumor cells to treatment with chemotherapy drugs nelarabine, fluphenazine, dexrazoxane, bortezomib, midostaurin, and vincristine. Conclusion: GSDM genes were associated with tumor behaviors and may participate in carcinogenesis. The results of this study may therefore provide new directions for further investigating the role of GSDM genes as therapeutic targets in a pan-cancer setting.
Collapse
|
40
|
Myer NM, Shitara K, Chung HC, Lordick F, Kelly RJ, Szabo Z, Cao ZA, Leong S, Ilson DH, Weichert W. Evolution of predictive and prognostic biomarkers in the treatment of advanced gastric cancer. J Cancer Res Clin Oncol 2022; 148:2023-2043. [PMID: 35551464 PMCID: PMC11110882 DOI: 10.1007/s00432-021-03902-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022]
Abstract
Despite new therapeutic options, advanced gastric cancer remains associated with a poor prognosis compared with other cancers. Recent gains in the treatment of gastric cancer were accompanied by the identification of novel biomarkers associated with various cellular pathways and corresponding diagnostic technologies. It is expected that the standardization of clinical workflow and technological refinements in biomarker assessment will support greater personalization and further improve treatment outcomes. In this article, we review the current state of prognostic and predictive biomarkers in gastric cancer.
Collapse
Affiliation(s)
- Nicole M Myer
- Merck & Co., Inc., 90 E. Scott Avenue, Rahway, NJ, 07065, USA.
| | - Kohei Shitara
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Hyun C Chung
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Florian Lordick
- Medical Department (Oncology, Gastroenterology, Hepatology, Pulmonology, and Infectious Diseases), University Cancer Center Leipzig (UCCL), Leipzig University Medical Center, Leipzig, Germany
| | - Ronan J Kelly
- Charles A. Sammons Cancer Center, Baylor University Medical Center, Dallas, TX, USA
| | - Zsolt Szabo
- Merck & Co., Inc., Ringstrasse 27 Kriens, LUZERN, 6010, Switzerland
| | - Z Alexander Cao
- Merck & Co., Inc., 90 E. Scott Avenue, Rahway, NJ, 07065, USA
| | - Stephen Leong
- Merck & Co., Inc., 351 N Sumneytown Pike, North Wales, PA, 19454, USA
| | - David H Ilson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
41
|
Lee JY, Kannan B, Lim BY, Li Z, Lim AH, Loh JW, Ko TK, Ng CCY, Chan JY. The Multi-Dimensional Biomarker Landscape in Cancer Immunotherapy. Int J Mol Sci 2022; 23:7839. [PMID: 35887186 PMCID: PMC9323480 DOI: 10.3390/ijms23147839] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
The field of immuno-oncology is now at the forefront of cancer care and is rapidly evolving. The immune checkpoint blockade has been demonstrated to restore antitumor responses in several cancer types. However, durable responses can be observed only in a subset of patients, highlighting the importance of investigating the tumor microenvironment (TME) and cellular heterogeneity to define the phenotypes that contribute to resistance as opposed to those that confer susceptibility to immune surveillance and immunotherapy. In this review, we summarize how some of the most widely used conventional technologies and biomarkers may be useful for the purpose of predicting immunotherapy outcomes in patients, and discuss their shortcomings. We also provide an overview of how emerging single-cell spatial omics may be applied to further advance our understanding of the interactions within the TME, and how these technologies help to deliver important new insights into biomarker discovery to improve the prediction of patient response.
Collapse
Affiliation(s)
- Jing Yi Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Bavani Kannan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Boon Yee Lim
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Zhimei Li
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Abner Herbert Lim
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Jui Wan Loh
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Cedric Chuan-Young Ng
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore 169610, Singapore; (J.Y.L.); (B.K.); (B.Y.L.); (Z.L.); (A.H.L.); (J.W.L.); (T.K.K.); (C.C.-Y.N.)
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
42
|
Masaoutis C, Palamaris K, Kokkali S, Levidou G, Theocharis S. Unraveling the Immune Microenvironment of Thymic Epithelial Tumors: Implications for Autoimmunity and Treatment. Int J Mol Sci 2022; 23:ijms23147864. [PMID: 35887212 PMCID: PMC9323059 DOI: 10.3390/ijms23147864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Thymic Epithelial Tumors (TETs) represent a rare tumor family, originating from the epithelial component of the thymus gland. Clinicopathologically, they are segregated into six major subtypes, associated with distinct histological features and clinical outcomes. Their emergence and evolution are accompanied by the generation of a complex tumor microenvironment (TME), dominated by phenotypically and functionally divergent immune cellular subsets, in different maturation states and in analogies that vary significantly among different subtypes. These heterogenous leukocyte populations exert either immune-permissive and tumor-suppressive functions or vice versa, and the dynamic equilibrium established among them either dictates the tumor immune milieu towards an immune-tolerance state or enables the development of a productive spontaneous tumoricidal response. The immunologically “hot” microenvironment, defining a significant proportion of TETs, makes them a promising candidate for the implementation of immune checkpoint inhibitors (ICIs). A number of phase I and II clinical trials have already demonstrated significant, type-specific clinical efficacy of PD-L1 inhibitors, even though substantial limitations in their utilization derive from their immune-mediated adverse effects. Moreover, the completed clinical studies involved relatively restricted patient samples and an expansion in the enrolled cohorts is required, so that more trustworthy conclusions regarding the benefit from ICIs in TETs can be extracted.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Str., Bld 10, Goudi, GR11527 Athens, Greece; (C.M.); (K.P.); (G.L.)
| | - Kostas Palamaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Str., Bld 10, Goudi, GR11527 Athens, Greece; (C.M.); (K.P.); (G.L.)
| | - Stefania Kokkali
- Oncology Unit, 2nd Department of Medicine, Medical School, National and Kapodistrian University of Athens, Hippocratio General Hospital of Athens, 114, V. Sofias Str., GR11527 Athens, Greece;
| | - Georgia Levidou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Str., Bld 10, Goudi, GR11527 Athens, Greece; (C.M.); (K.P.); (G.L.)
- Second Department of Pathology, Paracelsus Medical University, 90419 Nurenberg, Germany
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Str., Bld 10, Goudi, GR11527 Athens, Greece; (C.M.); (K.P.); (G.L.)
- Correspondence:
| |
Collapse
|
43
|
Xu L, Zou C, Zhang S, Chu TSM, Zhang Y, Chen W, Zhao C, Yang L, Xu Z, Dong S, Yu H, Li B, Guan X, Hou Y, Kong FM. Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. J Hematol Oncol 2022; 15:87. [PMID: 35799264 PMCID: PMC9264569 DOI: 10.1186/s13045-022-01307-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/22/2022] [Indexed: 02/07/2023] Open
Abstract
The development of combination immunotherapy based on the mediation of regulatory mechanisms of the tumor immune microenvironment (TIME) is promising. However, a deep understanding of tumor immunology must involve the systemic tumor immune environment (STIE) which was merely illustrated previously. Here, we aim to review recent advances in single-cell transcriptomics and spatial transcriptomics for the studies of STIE, TIME, and their interactions, which may reveal heterogeneity in immunotherapy responses as well as the dynamic changes essential for the treatment effect. We review the evidence from preclinical and clinical studies related to TIME, STIE, and their significance on overall survival, through different immunomodulatory pathways, such as metabolic and neuro-immunological pathways. We also evaluate the significance of the STIE, TIME, and their interactions as well as changes after local radiotherapy and systemic immunotherapy or combined immunotherapy. We focus our review on the evidence of lung cancer, hepatocellular carcinoma, and nasopharyngeal carcinoma, aiming to reshape STIE and TIME to enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Liangliang Xu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China.,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, Guangdong, 518020, China.,Key Laboratory of Medical Electrophysiology of Education Ministry, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, China
| | - Shanshan Zhang
- Department of Chemical Biology, School of Life and Marine Sciences, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Timothy Shun Man Chu
- Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.,Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Yan Zhang
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Weiwei Chen
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Caining Zhao
- Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Yang
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Zhiyuan Xu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China
| | - Shaowei Dong
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Hao Yu
- Chinese Academy of Sciences Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, 518055, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, 518107, China
| | - Xinyuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China. .,Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, Guangdong, 528200, China.
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Feng-Ming Kong
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, 518053, China. .,Department of Clinical Oncology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine. Cancers (Basel) 2022; 14:cancers14122860. [PMID: 35740526 PMCID: PMC9220825 DOI: 10.3390/cancers14122860] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Recently, radiogenomics has played a significant role and offered a new understanding of cancer’s biology and behavior in response to standard therapy. It also provides a more precise prognosis, investigation, and analysis of the patient’s cancer. Over the years, Artificial Intelligence (AI) has provided a significant strength in radiogenomics. In this paper, we offer computational and oncological prospects of the role of AI in radiogenomics, as well as its offers, achievements, opportunities, and limitations in the current clinical practices. Abstract Radiogenomics, a combination of “Radiomics” and “Genomics,” using Artificial Intelligence (AI) has recently emerged as the state-of-the-art science in precision medicine, especially in oncology care. Radiogenomics syndicates large-scale quantifiable data extracted from radiological medical images enveloped with personalized genomic phenotypes. It fabricates a prediction model through various AI methods to stratify the risk of patients, monitor therapeutic approaches, and assess clinical outcomes. It has recently shown tremendous achievements in prognosis, treatment planning, survival prediction, heterogeneity analysis, reoccurrence, and progression-free survival for human cancer study. Although AI has shown immense performance in oncology care in various clinical aspects, it has several challenges and limitations. The proposed review provides an overview of radiogenomics with the viewpoints on the role of AI in terms of its promises for computational as well as oncological aspects and offers achievements and opportunities in the era of precision medicine. The review also presents various recommendations to diminish these obstacles.
Collapse
|
45
|
Nimmagadda S. Imaging PD-L1 Expression in Melanoma Brain Metastases. J Nucl Med 2022; 63:897-898. [PMID: 34740950 PMCID: PMC9157733 DOI: 10.2967/jnumed.121.263209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/01/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sridhar Nimmagadda
- Russell H. Morgan Department of Radiology and Radiological Science, Sidney Kimmel Comprehensive Cancer Center and Bloomberg-Kimmel Institute for Cancer Immunotherapy, Department of Pharmacology and Molecular Sciences, and Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, Maryland
| |
Collapse
|
46
|
Rha SY, Ku GY, Kim HS, Chung HC, Amlashi FG, Maru DM, Fein CA, Tang LH, Zhou W, Wu T, Peter SA, Kelsen DP, Ajani JA. PD-L1 expression and overall survival in Asian and western patients with gastric cancer. Future Oncol 2022; 18:2623-2634. [PMID: 35616013 DOI: 10.2217/fon-2022-0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Data are limited on PD-L1 expression and its association with overall survival (OS) in gastric cancer (GC) patients receiving routine care in different regions. Materials & methods: In a retrospective study, PD-L1 expression was assayed using the 22C3 pharmDx on GC tumor samples collected between 2003 and 2017 at South Korean and US cancer centers. PD-L1 positivity was defined as combined positive score (CPS) ≥1. The relationship between PD-L1 and OS was analyzed. Results: Of 574 GC tumor samples, 67.4% were CPS ≥1 (68.7% in Korean and 65.7% in US patients). PD-L1 expression was not associated with OS (adjusted hazard ratio: 0.94; 95% CI: 0.75-1.17). Conclusion: PD-L1 prevalence and its association with OS was similar between South Korean and US GC patients.
Collapse
Affiliation(s)
- Sun Young Rha
- Yonsei Cancer Center, Yonsei University Health System, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Songdang Institute for Cancer Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Geoffrey Y Ku
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Hyo Song Kim
- Yonsei Cancer Center, Yonsei University Health System, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyun Cheol Chung
- Yonsei Cancer Center, Yonsei University Health System, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.,Songdang Institute for Cancer Research, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | | | | | - Carly A Fein
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Laura H Tang
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Wei Zhou
- Merck & Co., Inc., 126 E. Lincoln Ave. Rahway, 07065, USA
| | - Ting Wu
- Merck & Co., Inc., 126 E. Lincoln Ave. Rahway, 07065, USA
| | - Senaka A Peter
- Merck & Co., Inc., 126 E. Lincoln Ave. Rahway, 07065, USA
| | - David P Kelsen
- Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | - Jaffer A Ajani
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
47
|
Wang T, Denman D, Bacot SM, Feldman GM. Challenges and the Evolving Landscape of Assessing Blood-Based PD-L1 Expression as a Biomarker for Anti-PD-(L)1 Immunotherapy. Biomedicines 2022; 10:1181. [PMID: 35625917 PMCID: PMC9138337 DOI: 10.3390/biomedicines10051181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
While promising, PD-L1 expression on tumor tissues as assessed by immunohistochemistry has been shown to be an imperfect biomarker that only applies to a limited number of cancers, whereas many patients with PD-L1-negative tumors still respond to anti-PD-(L)1 immunotherapy. Recent studies using patient blood samples to assess immunotherapeutic responsiveness suggests a promising approach to the identification of novel and/or improved biomarkers for anti-PD-(L)1 immunotherapy. In this review, we discuss the advances in our evolving understanding of the regulation and function of PD-L1 expression, which is the foundation for developing blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy. We further discuss current knowledge and clinical study results for biomarker identification using PD-L1 expression on tumor and immune cells, exosomes, and soluble forms of PD-L1 in the peripheral blood. Finally, we discuss key challenges for the successful development of the potential use of blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy.
Collapse
Affiliation(s)
- Tao Wang
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (D.D.); (S.M.B.); (G.M.F.)
| | | | | | | |
Collapse
|
48
|
Yoshimoto D, Taguchi A, Tanikawa M, Sone K, Shimoi T, Tsuruga T, Oda K, Osuga Y. Recurrent cervical cancer with
PD‐L1
amplification treated with nivolumab: A case enrolled in the
BELIEVE
trial. J Obstet Gynaecol Res 2022; 48:2010-2014. [DOI: 10.1111/jog.15240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Daisuke Yoshimoto
- Department of Obstetrics and Gynecology Graduate School of Medicine, The University of Tokyo Tokyo Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology Graduate School of Medicine, The University of Tokyo Tokyo Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology Graduate School of Medicine, The University of Tokyo Tokyo Japan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology Graduate School of Medicine, The University of Tokyo Tokyo Japan
| | - Tatsunori Shimoi
- Department of Medical Oncology National Cancer Center Hospital Tokyo Japan
| | - Tetsushi Tsuruga
- Department of Obstetrics and Gynecology Graduate School of Medicine, The University of Tokyo Tokyo Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics Graduate School of Medicine, The University of Tokyo Tokyo Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology Graduate School of Medicine, The University of Tokyo Tokyo Japan
| |
Collapse
|
49
|
Hoes LR, van Berge Henegouwen JM, van der Wijngaart H, Zeverijn LJ, van der Velden DL, van de Haar J, Roepman P, de Leng WJ, Jansen AM, van Werkhoven E, van der Noort V, Huitema AD, Gort EH, de Groot JWB, Kerver ED, de Groot DJ, Erdkamp F, Beerepoot LV, Hendriks MP, Smit EF, van der Graaf WT, van Herpen CM, Labots M, Hoeben A, Morreau H, Lolkema MP, Cuppen E, Gelderblom H, Verheul HM, Voest EE. Patients with Rare Cancers in the Drug Rediscovery Protocol (DRUP) Benefit from Genomics-Guided Treatment. Clin Cancer Res 2022; 28:1402-1411. [PMID: 35046062 PMCID: PMC9365364 DOI: 10.1158/1078-0432.ccr-21-3752] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Patients with rare cancers (incidence less than 6 cases per 100,000 persons per year) commonly have less treatment opportunities and are understudied at the level of genomic targets. We hypothesized that patients with rare cancer benefit from approved anticancer drugs outside their label similar to common cancers. EXPERIMENTAL DESIGN In the Drug Rediscovery Protocol (DRUP), patients with therapy-refractory metastatic cancers harboring an actionable molecular profile are matched to FDA/European Medicines Agency-approved targeted therapy or immunotherapy. Patients are enrolled in parallel cohorts based on the histologic tumor type, molecular profile and study drug. Primary endpoint is clinical benefit (complete response, partial response, stable disease ≥ 16 weeks). RESULTS Of 1,145 submitted cases, 500 patients, including 164 patients with rare cancers, started one of the 25 available drugs and were evaluable for treatment outcome. The overall clinical benefit rate was 33% in both the rare cancer and nonrare cancer subgroup. Inactivating alterations of CDKN2A and activating BRAF aberrations were overrepresented in patients with rare cancer compared with nonrare cancers, resulting in more matches to CDK4/6 inhibitors (14% vs. 4%; P ≤ 0.001) or BRAF inhibitors (9% vs. 1%; P ≤ 0.001). Patients with rare cancer treated with small-molecule inhibitors targeting BRAF experienced higher rates of clinical benefit (75%) than the nonrare cancer subgroup. CONCLUSIONS Comprehensive molecular testing in patients with rare cancers may identify treatment opportunities and clinical benefit similar to patients with common cancers. Our findings highlight the importance of access to broad molecular diagnostics to ensure equal treatment opportunities for all patients with cancer.
Collapse
Affiliation(s)
- Louisa R. Hoes
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute Amsterdam, the Netherlands
- Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jade M. van Berge Henegouwen
- Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hanneke van der Wijngaart
- Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Laurien J. Zeverijn
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute Amsterdam, the Netherlands
- Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Daphne L. van der Velden
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute Amsterdam, the Netherlands
| | - Joris van de Haar
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute Amsterdam, the Netherlands
- Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Wendy J. de Leng
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Anne M.L. Jansen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Erik van Werkhoven
- Biometrics Department, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Alwin D.R. Huitema
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Pharmacy & Pharmacology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Pharmacology, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Eelke H. Gort
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Emile D. Kerver
- Department of Medical Oncology, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | - Derk Jan de Groot
- Medical Oncology, University Medical Centre Groningen, Groningen, the Netherlands
| | - Frans Erdkamp
- Department of Medical Oncology, Zuyderland Hospital, Sittard-Geleen, the Netherlands
| | - Laurens V. Beerepoot
- Department of Medical Oncology, Elisabeth-Tweesteden Hospital, Tilburg, the Netherlands
| | | | - Egbert F. Smit
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Carla M.L. van Herpen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mariette Labots
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ann Hoeben
- Division of Medical Oncology, Department of Internal Medicine, GROW-School of Oncology and Developmental Biology, Maastricht University Medical Center, the Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Martijn P. Lolkema
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, the Netherlands
| | - Edwin Cuppen
- Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
- Hartwig Medical Foundation, Amsterdam, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Henk M.W. Verheul
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Emile E. Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute Amsterdam, the Netherlands
- Oncode Institute, the Netherlands Cancer Institute, Amsterdam, the Netherlands
- Center for Personalized Cancer Treatment, Rotterdam, the Netherlands
- Corresponding Author: Emile E. Voest, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands. Phone: 312-0512-9111; E-mail:
| |
Collapse
|
50
|
Targeting immune checkpoints in gynecologic cancer: updates & perspectives for pathologists. Mod Pathol 2022; 35:142-151. [PMID: 34493822 DOI: 10.1038/s41379-021-00882-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Checkpoint inhibitor-based immunotherapy is increasingly used in the treatment of gynecologic cancers, and most often targets the PD-1/PD-L1 axis. Pathologists should be familiar with the biomarkers required to determine candidacy for these treatments based on existing FDA approvals, including mismatch repair protein immunohistochemistry, microsatellite instability testing, tumor mutation burden testing, and PD-L1 immunohistochemistry. This review summarizes the rationale behind these treatments and their associated biomarkers and delivers guidance on how to utilize and readout these tests. It also introduces additional biomarkers which may provide information regarding immunotherapeutic vulnerability in the future such as neoantigen load; POLE mutation status; and immunohistochemical expression of immunosuppressive checkpoints like LAG-3, TIM-3, TIGIT, and VISTA; immune-activating checkpoints such as CD27, CD40, CD134, and CD137; enzymes such as IDO-1 and adenosine-related compounds; and MHC class I.
Collapse
|