1
|
Teng T, Huang F, Xu M, Li X, Zhang L, Yin B, Cai Y, Chen F, Zhang L, Zhang J, Geng A, Chen C, Yu X, Sui J, Zhu ZJ, Guo K, Zhang C, Zhou X. Microbiota alterations leading to amino acid deficiency contribute to depression in children and adolescents. MICROBIOME 2025; 13:128. [PMID: 40390033 PMCID: PMC12087099 DOI: 10.1186/s40168-025-02122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/22/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND Major depressive disorder (MDD) in children and adolescents is a growing global public health concern. Metabolic alterations in the microbiota-gut-brain (MGB) axis have been implicated in MDD pathophysiology, but their specific role in pediatric populations remains unclear. RESULTS We conducted a multi-omics study on 256 MDD patients and 307 healthy controls in children and adolescents, integrating plasma metabolomics, fecal metagenomics, and resting-state functional magnetic resonance imaging (rs-fMRI) of the brain. KEGG enrichment analysis of 360 differential expressed metabolites (DEMs) indicated significant plasma amino acid (AA) metabolism deficiencies (p-value < 0.0001). We identified 58 MDD-enriched and 46 MDD-depleted strains, as well as 6 altered modules in amino acid metabolism in fecal metagenomics. Procrustes analysis revealed the association between the altered gut microbiome and circulating AA metabolism (p-value = 0.001, M2 = 0.932). Causal analyses suggested that plasma AAs might mediate the impact of altered gut microbiota on depressive and anxious symptoms. Additionally, rs-fMRI revealed that connectivity deficits in the frontal lobe are associated with depression and 22 DEMs in AA metabolism. Furthermore, transplantation of fecal microbiota from MDD patients to adolescent rats induced depressive-like behaviors and 14 amino acids deficiency in the prefrontal cortex (PFC). Moreover, the dietary lysine restriction increased depression susceptibility in adolescent rats by reducing the expression of excitatory amino acid transporters in the PFC. CONCLUSIONS Our findings highlight that gut microbiota alterations contribute to AAs deficiency, particularly lysine, which plays a crucial role in MDD pathogenesis in children and adolescents. Targeting AA metabolism may offer novel therapeutic strategies for pediatric depression. Video Abstract.
Collapse
Affiliation(s)
- Teng Teng
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Fang Huang
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- China Mobile Research Institute, Beijing, 100032, China
| | - Xuemei Li
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lige Zhang
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bangmin Yin
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yuping Cai
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fei Chen
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Luman Zhang
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jushuang Zhang
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Aoyi Geng
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Research Center for Environment and Human Health, School of Public Health, Chongqing, 400016, China
| | - Xiaofei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center On Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Kai Guo
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xinyu Zhou
- Department of Psychiatry, Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
2
|
Huang D, Lv J, Gong W, Tian J, Gao X, Qin X, Du G, Zhou Y. Combining Metabolomics and Quantitative Analysis to Investigate Purine Metabolism Disorders in Depression and the Therapeutic Effect of Chaigui Granules. ACS Chem Neurosci 2025; 16:1749-1766. [PMID: 40209102 DOI: 10.1021/acschemneuro.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025] Open
Abstract
Depression is a complex mental disorder. Studies have shown that purine metabolism disorders in depression and regulation of purine metabolites and related purinergic receptors may be an effective way to alleviate depression. Chaigui granules (CG) are a Chinese medicine prescription with antidepressant effects. Its antidepressant effect has been shown to be related to the improvement of purine metabolism disorders in depression. In this study, exogenous purine metabolite adenosine supplementation and adenosine A1 receptor antagonist (DPCPX) were employed to investigate the potential of Chaigui granules to exert an antidepressant effect by examining the behavioral indices of CUMS rats. The aim of this study was to determine whether the antidepressant effect of Chaigui granules is mediated by A1R receptors using DPCPX, an A1R receptor antagonist. Nontargeted metabolomic analysis was employed to compare and analyze the alterations in the metabolic profile of plasma and peripheral blood mononuclear cells (PBMCs) in each experimental group. Subsequently, combining the results from the metabolomics profile, targeted metabolomics was employed to identify key metabolites for purine metabolism. The objective was to investigate the effects of Chaigui granules, exogenous adenosine supplementation, and DPCPX on purine metabolism in depressed rats. Finally, the relevant signal pathways were validated by molecular biological means. The results of the depression-like behavior indicate that the antidepressant efficacy of Chaigui granules was associated with the modulation of adenosine and adenosine A1 receptor. Metabolomic analysis demonstrated that the Chaigui granule and adenosine exerted a pronounced regulatory effect on purine metabolism, and the regulatory effect on peripheral blood mononuclear cells (PBMCs) was markedly superior to that observed in plasma. In addition, targeted quantitative analysis showed that all eight purine metabolites were reversed after the administration of Chaigui granules and adenosine. Concurrently, the administration of an adenosine A1 receptor antagonist may serve to mitigate the regulatory impact of Chaigui granules on purine metabolites. Finally, the molecular biological results indicate that the antidepressant effect of Chaigui granules may be mediated by the A1R receptor, and it can play an antidepressant role by regulating the CAMP-PKA-CREB-BDNF pathway.
Collapse
Affiliation(s)
- Dehua Huang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Jiale Lv
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Wenxia Gong
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, No. 92, Wucheng Road, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
3
|
Wang J, Li S, Wang D, Gao Y, Wang Q, Wang T, Wang G, Peng D, Qiao Y, Zhou J, Feng L, Hu X, Wan C. Effects of Omega-3 PUFAs on lipid profiles and antioxidant response in depressed adolescents: A metabolomic and lipidomic study. Redox Biol 2025; 82:103617. [PMID: 40158256 PMCID: PMC11997347 DOI: 10.1016/j.redox.2025.103617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Adolescent depression is a significant global health challenge, with many patients responding inadequately to antidepressant treatments. Omega-3 polyunsaturated fatty acids (ω3 PUFAs) have been proposed as a potential adjunctive treatment, but their precise mechanisms remain poorly understood. This study aimed to explore the mechanisms through which ω3 PUFAs exert their antidepressant effects and to identify potential biomarkers for their therapeutic response. A comprehensive assessment of plasma metabolomic and erythrocyte membrane lipidomic was performed on 51 depressed adolescents who were randomly assigned to received either ω3 PUFAs plus paroxetine (n = 27) or paroxetine alone (n = 24) for 12 weeks. Following ω3 PUFA supplementation, phospholipid metabolism emerged as the most significantly altered pathway. ω3 PUFAs markedly influenced the composition of membrane fatty acids, significantly increasing the ω3 PUFA content, decreasing the ω6/ω3 PUFA ratio, and increasing membrane fluidity. Notably, ω3 PUFAs reduced lipid peroxidation in both plasma and cell membranes while enhancing antioxidant capacity in the membranes. Moreover, alterations in phospholipids and membrane function were significantly correlated with improvements in depressive symptoms and cognitive function. Importantly, ω3 PUFA supplementation resulted in greater improvement in clinical symptoms compared to the non-supplemented group exclusively in the subgroup with high baseline oxidative damage levels. This study suggests that ω3 PUFAs promoted phospholipid integration and alleviated oxidative stress, which may account for their antidepressant effects. Lipid oxidation biomarkers could help identify patients likely to benefit from ω3 PUFA supplementation. These findings advance our understanding of the mechanism and clinical application of ω3 PUFAs in treating adolescent depression.
Collapse
Affiliation(s)
- Jinfeng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Shuhui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Yan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Qian Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Tianqi Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Guanghai Wang
- Department of Developmental and Behavioral Pediatrics, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Daihui Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yi Qiao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Li Y, Zhong S, Huang S, Zhong W, Zheng B, Guo Q, Liu J, Guo X, Su R. Application of metabolomics in the classification of traditional Chinese medicine syndromes in rheumatoid arthritis. Clin Rheumatol 2025; 44:1493-1504. [PMID: 40011356 DOI: 10.1007/s10067-025-07373-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 01/01/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is frequently treated with traditional Chinese medicine (TCM), where patients are classified into distinct syndromes, such as heat-dampness syndrome (HD) and kidney-liver deficiency syndrome (KLD). However, an objective and systematic approach to differentiate these TCM syndromes remains lacking. This study is aimed at analyzing serum metabolomics to identify differential metabolites and pathways associated with HD and GS syndromes in RA patients and at evaluating their potential as diagnostic biomarkers. METHODS Serum samples from RA patients classified into HD and KLD groups were analyzed using metabolomics. Partial least squares discriminant analysis was employed to identify significant metabolites, while pathway analysis was conducted using the Kyoto Encyclopedia of Genes and Genomes database. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic potential of key metabolites. RESULTS Fifteen differential metabolites and two perturbed pathways-sphingolipid and D-amino acid metabolism-were identified between the KLD and HD groups. Notably, several metabolites, including C17-sphinganine and leucyl-alanine, demonstrated high diagnostic efficacy, with area under the curve (AUC) values exceeding 0.90. Correlation analysis revealed significant associations between certain metabolites and clinical indices, further substantiating their role in syndrome differentiation. CONCLUSION This study presents a comprehensive analysis of serum metabolites in RA patients under different TCM syndromes. The identified metabolites hold potential as biomarkers for distinguishing HD and KLD groups, paving the way for more objective and evidence-based diagnostic approaches in TCM. Key Points • Differential metabolites were identified in the serum of RA patients with heat-dampness syndrome and kidney-liver deficiency syndrome, with their metabolic pathways primarily involving sphingolipid metabolism and D-amino acid metabolism. • Serum metabolites demonstrate high efficacy in distinguishing RA patients with different TCM syndromes. • Significant correlations were observed between serum differential metabolites and clinical indicators in RA patients with varying TCM syndromes.
Collapse
Affiliation(s)
- Yao Li
- Department of Laboratory Medicine, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
- Foshan Engineering and Technology Research Center for Innovative and Precise Inspection Technology, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Shuqi Zhong
- Department of Laboratory Medicine, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Shengchun Huang
- Department of Laboratory Medicine, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Wanying Zhong
- Department of Laboratory Medicine, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Baolin Zheng
- Nephrology and Rheumatology Department, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Qihong Guo
- Nephrology and Rheumatology Department, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Jihong Liu
- Prevention and Treatment Center, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Xueyan Guo
- Department of Laboratory Medicine, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
- Foshan Engineering and Technology Research Center for Innovative and Precise Inspection Technology, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Rong Su
- Department of Laboratory Medicine, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China.
- Foshan Engineering and Technology Research Center for Innovative and Precise Inspection Technology, Foshan Hospital of Traditional Chinese Medicine, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China.
| |
Collapse
|
5
|
Liu Y, Chen Y, Zhang Q, Zhang Y, Xu F. A double blinded randomized placebo trial of Bifidobacterium animalis subsp. lactis BLa80 on sleep quality and gut microbiota in healthy adults. Sci Rep 2025; 15:11095. [PMID: 40169760 PMCID: PMC11961682 DOI: 10.1038/s41598-025-95208-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Human sleep quality is intricately linked to gut health. Emerging research indicates that Bifidobacterium animalis subsp. lactis BLa80 has the potential to ameliorate gut microbiota dysbiosis. This randomized, placebo-controlled study evaluated the impact of BLa80 supplementation on sleep quality and gut microbiota in healthy individuals. One hundred and six participants were randomly assigned to receive either a placebo (maltodextrin) or BLa80 (maltodextrin + BLa80 at 10 billion CFU/day) for 8 weeks. Sleep quality was evaluated using the Pittsburgh Sleep Quality Index (PSQI), a validated tool consisting of 18 items assessing seven components of sleep quality over a one-month period, and the Insomnia Severity Index (ISI), a secondary measure of insomnia severity. Gut microbiota changes were assessed using 16S rRNA sequencing, while the in vitro gamma-aminobutyric acid (GABA) production capacity of BLa80 was analyzed by HPLC. After 8 weeks, the intervention group exhibited a significant reduction in the PSQI total score compared to the placebo group, suggesting improved sleep quality. While no significant changes in alpha diversity were noted, beta diversity differed markedly between groups. The gut microbiota predominantly consisted of Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Fusobacteria, collectively accounting for over 99.9% of the gut microbiota. Statistical analysis showed that BLa80 significantly decreased the relative abundance of Proteobacteria phylum and increased the abundance of Bacteroidetes, Fusicatenbacter, and Parabacteroides compared to placebo. PICRUSt2 analysis indicated noteworthy enhancements in the pathways of purine metabolism, glycolysis/gluconeogenesis, and arginine biosynthesis due to BLa80 intervention. Moreover, BLa80 demonstrated notable GABA production, potentially contributing to its effects on sleep quality modulation. These results demonstrate the ability of BLa80 to improve sleep quality through modulating gut microbiota and GABA synthesis, highlighting its potential as a beneficial probiotic strain.
Collapse
Affiliation(s)
- Yinhua Liu
- College of Food Science and Technology, Henan University of Technology, 100, Lianhua Street, High-tech, Zhengzhou, 450001, People's Republic of China
| | - Yanyan Chen
- College of Food Science and Technology, Henan University of Technology, 100, Lianhua Street, High-tech, Zhengzhou, 450001, People's Republic of China
| | - Qingya Zhang
- College of Food Science and Technology, Henan University of Technology, 100, Lianhua Street, High-tech, Zhengzhou, 450001, People's Republic of China
| | - Yanyan Zhang
- Department of Food Quality and Safety, Shanghai Business School, Shanghai, 200235, China
| | - Fei Xu
- College of Food Science and Technology, Henan University of Technology, 100, Lianhua Street, High-tech, Zhengzhou, 450001, People's Republic of China.
- Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Yu Q, Li H, Chen M, Pan Y, Zhou L, An L, Zhao J, Bai S, Liang Q, Zhang R, Deng D. GPR120 internalization: a key mechanism for EPA in antidepressant action. Food Funct 2025; 16:2893-2908. [PMID: 40125583 DOI: 10.1039/d5fo00252d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
The incidence of depression is on the rise, and currently available antidepressants often exhibit limited efficacy in many patients. Additionally, the underlying mechanisms of depression remain poorly understood. Research has shown that neuroinflammation, driven by M1 microglial phenotypic polarization, contributes to neuronal abnormalities implicated in the development of depression. Eicosapentaenoic acid (EPA) has emerged as a promising therapeutic agent for depression. However, the specific target of EPA's anti-stress effects is yet to be identified. This study aimed to explore the pathogenesis of depression and elucidate the central regulatory mechanisms underlying EPA's antidepressant efficacy. In this study, mice were orally administered EPA for five consecutive weeks. During this period, they were subjected to daily chronic unpredictable mild stress (CUMS) and treated with lipopolysaccharide (LPS, 0.5 mg kg-1, intraperitoneally) every other week. The results demonstrated that EPA significantly alleviated neuronal degeneration in the medial prefrontal cortex. Furthermore, EPA improved synaptic plasticity impairments induced by CUMS combined with LPSs, as indicated by the increased protein levels of Nlgn1, PSD95, GAP43, and Syn. EPA also reduced neuroinflammation by inhibiting M1 microglial polarization and NLRP3 inflammasome activation. Notably, EPA exerted antidepressant-like effects by modulating GPR120. These findings suggest that EPA intake can mitigate abnormal mood and behavior induced by elevated immune-inflammatory signals. These findings suggest that EPA intake can attenuate abnormal moods and behaviors induced by elevated immune-inflammatory signals. Therefore, EPA may be a promising strategy for the clinical treatment of inflammatory depression.
Collapse
Affiliation(s)
- Qingying Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Huan Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Mengxue Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Yanan Pan
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, 518000, China
| | - Liuchang Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Lin An
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Jinlan Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Shasha Bai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Qi Liang
- The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, Shenzhen, 518000, China
| | - Rong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| | - Di Deng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
- Chinese Medicine Guangdong Laboratory, Hengqin, Guangdong, China
| |
Collapse
|
7
|
Wang K, Lan Z, Zhou H, Fan R, Chen H, Liang H, You Q, Liang X, Zeng G, Deng R, Lan Y, Shen S, Chen P, Hou J, Bu P, Sun J. Long-chain acylcarnitine deficiency promotes hepatocarcinogenesis. Acta Pharm Sin B 2025; 15:1383-1396. [PMID: 40370557 PMCID: PMC12069247 DOI: 10.1016/j.apsb.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 05/16/2025] Open
Abstract
Despite therapy with potent antiviral agents, chronic hepatitis B (CHB) patients remain at high risk of hepatocellular carcinoma (HCC). While metabolites have been rediscovered as active drivers of biological processes including carcinogenesis, the specific metabolites modulating HCC risk in CHB patients are largely unknown. Here, we demonstrate that baseline plasma from CHB patients who later developed HCC during follow-up exhibits growth-promoting properties in a case-control design nested within a large-scale, prospective cohort. Metabolomics analysis reveals a reduction in long-chain acylcarnitines (LCACs) in the baseline plasma of patients with HCC development. LCACs preferentially inhibit the proliferation of HCC cells in vitro at a physiological concentration and prevent the occurrence of HCC in vivo without hepatorenal toxicity. Uptake and metabolism of circulating LCACs increase the intracellular level of acetyl coenzyme A, which upregulates histone H3 Lys14 acetylation at the promoter region of KLF6 gene and thereby activates KLF6/p21 pathway. Indeed, blocking LCAC metabolism attenuates the difference in KLF6/p21 expression induced by baseline plasma of HCC/non-HCC patients. The deficiency of circulating LCACs represents a driver of HCC in CHB patients with viral control. These insights provide a promising direction for developing therapeutic strategies to reduce HCC risk further in the antiviral era.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhixian Lan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Heqi Zhou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rong Fan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huiyi Chen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongyan Liang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiuhong You
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xieer Liang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ge Zeng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rui Deng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Lan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sheng Shen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
You Z, Lan X, Wang C, Liu H, Li W, Mai S, Liu H, Zhang F, Liu G, Chen X, Ye Y, Zhou Y, Ning Y. The Restoration of Energy Pathways Indicates the Efficacy of Ketamine Treatment in Depression: A Metabolomic Analysis. CNS Neurosci Ther 2025; 31:e70324. [PMID: 40059071 PMCID: PMC11890978 DOI: 10.1111/cns.70324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/10/2025] [Accepted: 02/20/2025] [Indexed: 05/13/2025] Open
Abstract
AIMS Despite the clinical benefits of ketamine in treating major depressive disorder (MDD), some patients exhibit drug resistance, and the intricate mechanisms underlying this await comprehensive explication. We used metabolomics to find biomarkers for ketamine efficacy and uncover its mechanisms of action. METHODS The study included 40 MDD patients treated with ketamine in the discovery cohort and 24 patients in the validation cohort. Serum samples from the discovery cohort receiving ketamine were analyzed using ultra performance liquid chromatography-mass spectrometry to study metabolomic changes and identify potential biomarkers. Metabolic alterations were evaluated pre- and post-ketamine treatment. Spearman correlation was applied to examine the relationship between metabolite alterations and depressive symptom changes. In addition, potential biomarkers, particularly thyroxine, were investigated through quantitative measurements in the validation cohort. RESULTS We found that energy metabolite changes (adenosine triphosphate, adenosine diphosphate [ADP], pyruvate) were different in responders versus non-responders. The magnitude of the ADP shift was strongly correlated with the rate of reduction in Montgomery-Asberg Depression Rating Scale (MADRS) scores (Rho = 0.48, pFDR = 0.018). Additionally, baseline free triiodothyronine (FT3) levels are inversely associated with the rate of MADRS reduction (Rho = -0.645, p = 0.017). CONCLUSIONS Ketamine ameliorates depressive symptoms by modulating metabolic pathways linked to energy metabolism. Low baseline FT3 levels appear to predict a positive response in MDD patients, suggesting FT3 has potential as a biological marker for clinical ketamine treatment. TRIAL REGISTRATION ChiCTR-OOC-17012239.
Collapse
Affiliation(s)
- Zerui You
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Department of Child and Adolescent PsychiatryThe Affiliated Brain Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Xiaofeng Lan
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Department of Child and Adolescent PsychiatryThe Affiliated Brain Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Chengyu Wang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Department of Child and Adolescent PsychiatryThe Affiliated Brain Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Haiying Liu
- Clinical LaboratoryThe Affiliated Brain Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Weicheng Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Department of Child and Adolescent PsychiatryThe Affiliated Brain Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Siming Mai
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Department of Child and Adolescent PsychiatryThe Affiliated Brain Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Haiyan Liu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Department of Child and Adolescent PsychiatryThe Affiliated Brain Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Fan Zhang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Department of Child and Adolescent PsychiatryThe Affiliated Brain Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Guanxi Liu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Department of Child and Adolescent PsychiatryThe Affiliated Brain Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Xiaoyu Chen
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Department of Child and Adolescent PsychiatryThe Affiliated Brain Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Yanxiang Ye
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Department of Child and Adolescent PsychiatryThe Affiliated Brain Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Yanling Zhou
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Department of Child and Adolescent PsychiatryThe Affiliated Brain Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Yuping Ning
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of ChinaGuangzhou Medical UniversityGuangzhouChina
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental DisordersGuangzhouChina
- Department of Child and Adolescent PsychiatryThe Affiliated Brain Hospital, Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Wang J, Hu X, Li Y, Li S, Wang T, Wang D, Gao Y, Wang Q, Zhou J, Wan C. Impaired lipid homeostasis and elevated lipid oxidation of erythrocyte membrane in adolescent depression. Redox Biol 2025; 80:103491. [PMID: 39809016 PMCID: PMC11780951 DOI: 10.1016/j.redox.2025.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Adolescent depression is a globally concerned mental health issue, the pathophysiological mechanisms of which remain elusive. Membrane lipids play a crucial role in brain development and function, potentially serving as a crossroad for the abnormalities in neurotransmitters, neuroendocrine, inflammation, oxidative stress, and energy metabolism observed in depressed adolescents. The primary aim of this study was to investigate the erythrocyte membrane lipid profile in adolescent depression. A total of 2838 erythrocyte membrane lipids were detected and quantified in 81 adolescents with depression and 67 matched healthy adolescents using ultra-high performance liquid chromatography-mass spectrometry. Depressed adolescents exhibited significantly different membrane lipid characteristics compared to healthy controls. Specifically, the levels of cholesterol, sphingomyelins, and ceramides were increased, while ether lipids were decreased in patients. Moreover, the patients showed reduced polyunsaturated fatty acids and elevated lipophilic index in membrane, suggesting diminished membrane fluidity. The higher oxidized membrane lipids and plasma malondialdehyde were observed in adolescent depression, indicating the presence of oxidative stress. Importantly, membrane lipid damage was associated with more severe depressive symptoms and worse cognitive function in patients. In addition, reduced polyunsaturated fatty acids and membrane fluidity may be partly responsible for the blunted niacin skin flushing response found in depressed adolescents. In conclusion, our results reveal impaired erythrocyte membrane lipid homeostasis in adolescents with depression, which may implicate membrane dysfunction in the brain. These findings offer new insights into the underlying molecular mechanisms of adolescent depression, highlighting the potential of counteracting membrane damage as a promising avenue for future therapeutic interventions.
Collapse
Affiliation(s)
- Jinfeng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiaowen Hu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Ya Li
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China.
| | - Shuhui Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Tianqi Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Dandan Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Yan Gao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Qian Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China; Shanghai Mental Health Center, Shanghai Key Laboratory of Psychiatry Disorders, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Wang Z, Xiang Y, Dang R, Wang P, Du X, Xie P. Sex-specific differences in peripheral blood metabolites and biological functions in major depressive disorder: A systematic review and meta-analysis. Neurosci Biobehav Rev 2025; 170:106052. [PMID: 39920925 DOI: 10.1016/j.neubiorev.2025.106052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/09/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
To explore the sex-specific peripheral blood metabolites and biological functions altered in patients with major depressive disorder (MDD). A search was conducted on PubMed, Cochrane, Embase, Web of Science, and other databases published up to 11/2023. To maximize the search, we also reviewed systematic reviews and meta-analyses on the same topic. We included studies that conducted metabolic characterizations during current depressive episodes or after antidepressant treatments, with all data stratified by sex. Fifty-eight studies involving 83 cohorts with 5285 MDD participants were included in this meta-analysis. Random effects meta-analysis was conducted for data from ≥3 cohorts. We identified 5 sex-specific metabolites from 22 candidate peripheral blood metabolites. In males with MDD, we observed lower levels of estradiol and progesterone, alongside higher levels of androstenedione, dihydrotestosterone, and uric acid compared with female MDD patients. In addition, steroid hormone biosynthesis has been identified as a potentially sex-specific pathway. Our findings highlight significant evidence for targeting sex hormones as a broad understanding of MDD, providing potentially objective diagnostic and therapeutic insights.
Collapse
Affiliation(s)
- Zhengyang Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruozhi Dang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Du
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Liu F, Zhong X, Wang C. Lower creatinine levels are associated with an increased risk of depression: evidence from the China Health and Retirement Longitudinal Study. Front Psychiatry 2025; 16:1446897. [PMID: 40071279 PMCID: PMC11894454 DOI: 10.3389/fpsyt.2025.1446897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Previous studies have found that depressive patients tend to have low levels of creatinine; however, the extent to which creatinine levels are associated with depression has been poorly investigated. Therefore, this study aimed to explore the relationship between creatinine levels and depression. Methods The participants and follow-up data from the China Health and Retirement Longitudinal Study (CHARLS), as well as metabolomics data from the Metabolite Network of Depression Database (MENDA), were collected. The 10-item Center for Epidemiologic Studies Depression Scale (CESD-10) was used to assess the severity of depression. Spearman correlation analysis, spline regression, and binary logistic regression models were employed to explore the relationship between creatinine levels and depression. Results A total of 7,826 participants and 3,886 follow-up participants were included in the CHARLS 2011 and 2015 surveys. Of these, 37.9% (2,966/7,826) and 34.6% (13,44/3,886) of participants experienced depression in CHARLS 2011 and 2015, respectively. The creatinine level was negatively correlated with the total CESD-10 score and dimensions scores, showing an inverse dose-response relationship between creatinine levels and depression. Compared with participants with high creatinine levels, those with middle creatinine levels were associated with a higher risk of depression (OR = 1.22, 95% CI = 1.08-1.38), while participants with low creatinine levels had the highest risk of depression (OR = 1.30, 95% CI = 1.13-1.49) in the fully adjusted model. Similar results were observed in the follow-up data, and the MENDA metabolomics data validated the negative correlation between creatinine levels and the severity of depression. Conclusion Lower levels of creatinine were closely associated with a higher risk of depression, and it could serve as a potential marker for identifying individuals at high risk of depression.
Collapse
Affiliation(s)
- Fajin Liu
- Department of Neurological Rehabilitation, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- College of Rehabilitation Medicine, Chongqing Medical University, Chongqing, China
- Department of Neurological Rehabilitation, Rehabilitation Hospital of, Chongqing, China
| | - Xiaogang Zhong
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cuiting Wang
- Department of Neurological Rehabilitation, The Affiliated Rehabilitation Hospital of Chongqing Medical University, Chongqing, China
- College of Rehabilitation Medicine, Chongqing Medical University, Chongqing, China
- Department of Neurological Rehabilitation, Rehabilitation Hospital of, Chongqing, China
| |
Collapse
|
12
|
Zumbi CN, Choi HHT, Huang HS, Panyod S, Wang TW, Huang SJ, Tsou HH, Ho CT, Sheen LY. Amino acid metabolites profiling in unpredictable chronic mild stress-induced depressive rats and the protective effects of Gastrodia elata Blume and gastrodin. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118906. [PMID: 39395763 DOI: 10.1016/j.jep.2024.118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Major depressive disorder (MDD) is a prevalent condition that affects approximately 350 million people worldwide. Several studies have identified changes in amino acids in the blood of MDD patients, suggesting their potential as biomarkers to better understand their role in depression. Gastrodia elata Blume (GEB) and its active compound gastrodin (GAS) are recognized for their antidepressant properties. However, their effects on amino acid profiles and their potential role in alleviating depression remain poorly understood. Understanding how GEB and GAS influence amino acid metabolism may offer novel insights into their mechanisms in alleviating depression, potentially leading to more targeted therapeutic strategies. AIM OF THE STUDY This study aimed to investigate the potential role of supplementing GEB and its active compound GAS to reverse altered amino acid profiles in depressed rats. MATERIALS AND METHODS To achieve this, six-week-old SD rats were induced depressive-like behaviors by the UCMS rat model for 5 weeks. Groups receiving GEB or GAS were administered orally via gavage daily within the UCMS model. Serum samples were collected and analyzed using a targeted metabolomics approach employing LC-MS for amino acid profiling. RESULTS A total of 38 amino acid metabolites were identified, 17 of which were significantly altered following UCMS. UCMS rats exhibited perturbed arginine biosynthesis, arginine and proline metabolism pathways. Changes in key amino acids in these metabolic pathways were reversed following supplementation with GEB and GAS, which also alleviated depressive symptoms. CONCLUSIONS In conclusion, UCMS-induced depression in rats causes changes in some amino acid metabolites similar to those found in human depression, validating its relevance as a model for studying depression. Additionally, the research suggests that GEB and GAS may exert antidepressant effects by regulating amino acid metabolism.
Collapse
Affiliation(s)
- Crystal Ngofi Zumbi
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Hailey Hei Tung Choi
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Huai-Syuan Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Suraphan Panyod
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Tse-Wen Wang
- Metabolomics Core Laboratory, KimForest Enterprise Co., LTD., New Taipei, Taiwan.
| | - Shyh-Jer Huang
- Department of Biomedical Big Data R&D, KimForest Enterprise Co., LTD., New Taipei, Taiwan.
| | - Han-Hsing Tsou
- Metabolomics Core Laboratory, KimForest Enterprise Co., LTD., New Taipei, Taiwan; Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, NJ, USA.
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan; Center for Food and Biomolecules, National Taiwan University, Taipei, Taiwan; National Center for Food Safety Education and Research, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
13
|
Huang Y, You Y, Wang W, Chen YH, Zhang H, Li QP, Liu L, Tong K, Sun N, Hao JR, Gao C. Adenosine regulates depressive behavior in mice with chronic social defeat stress through gut microbiota. Neuropharmacology 2025; 262:110209. [PMID: 39510376 DOI: 10.1016/j.neuropharm.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Major depressive disorder (MDD) is recognized as the most prevalent affective disorder worldwide. Metagenomic studies increasingly support a critical role for dysbiosis of gut microbiota in the development of depression. Previous studies have demonstrated that adenosine alleviates gut dysbiosis, suggesting that elevating adenosine levels could be a novel intervention for MDD; however, the mechanisms underlying this effect remain unclear. This study utilized 16S rRNA gene sequencing, fecal microbiota transplantation (FMT) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to test the hypothesis that increased adenosine alleviates depressive behaviors in male mice subjected to chronic social defeat stress (CSDS) through alterations to gut microbiota. The data showed that depression-susceptible (SUS) mice exhibited gut dysbiosis, and FMT from SUS mice increased depression-like behaviors in healthy recipients. In SUS mice, adenosine supplementation ameliorated both depression-like behaviors and abnormalities in gut microbiota, and co-administration of probiotics and adenosine not only mitigated depression-like behaviors but also enhanced gut barrier integrity. By including 83 depressed adolescents and 67 healthy controls, this study found that the level of short-chain fatty acids (SCFAs) in the depression group was reduced, this finding parallels reductions seen in SUS mice and in recipient mice after FMT from SUS donors. Conversely, supplementation with either adenosine or probiotics led increased SCFAs concentrations in the serum of SUS mice. These findings suggest that adenosine may alleviate depression-like behaviors in CSDS mice by modulating the gut microbiota. This effect is likely associated with increased serum SCFAs, metabolites produced by the gut microbiota, following adenosine supplementation. This article is part of the Special Issue on "Personality Disorders".
Collapse
Affiliation(s)
- Yao Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yue You
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Wei Wang
- School of Public Health, Xuzhou Medical University, Jiangsu, 221004, China
| | - Yuan-Hao Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Hao Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Qu-Peng Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Le Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Kun Tong
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Nan Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Jing-Ru Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Can Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
14
|
Poplawski J, Montina T, Metz GAS. Early life stress shifts critical periods and causes precocious visual cortex development. PLoS One 2024; 19:e0316384. [PMID: 39739746 DOI: 10.1371/journal.pone.0316384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
The developing nervous system displays remarkable plasticity in response to sensory stimulation during critical periods of development. Critical periods may also increase the brain's vulnerability to adverse experiences. Here we show that early-life stress (ELS) in mice shifts the timing of critical periods in the visual cortex. ELS induced by animal transportation on postnatal day 12 accelerated the opening and closing of the visual cortex critical period along with earlier maturation of visual acuity. Staining of a molecular correlate that marks the end of critical period plasticity revealed premature emergence of inhibitory perineuronal nets (PNNs) following ELS. ELS also drove lasting changes in visual cortex mRNA expression affecting genes linked to psychiatric disease risk, with hemispheric asymmetries favoring the right side. NMR spectroscopy and a metabolomics approach revealed that ELS was accompanied by activated energy metabolism and protein biosynthesis. Thus, ELS may accelerate visual system development, resulting in premature opening and closing of critical period plasticity. Overall, the data suggest that ELS desynchronizes the orchestrated temporal sequence of regional brain development potentially leading to long-term functional deficiencies. These observations provide new insights into a neurodevelopmental expense to adaptative brain plasticity. These findings also suggest that shipment of laboratory animals during vulnerable developmental ages may result in long lasting phenotypes, introducing critical confounds to the experimental design.
Collapse
Affiliation(s)
- Janet Poplawski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
15
|
Takekawa D, Kinoshita H, Nikaido Y, Kudo T, Mikami T, Hirota K. Lower serum uric acid levels are associated with depressive symptoms in a Japanese general population: A population-based cross-sectional study. PLoS One 2024; 19:e0311971. [PMID: 39661619 PMCID: PMC11633994 DOI: 10.1371/journal.pone.0311971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/27/2024] [Indexed: 12/13/2024] Open
Abstract
Uric acid (UA) is a final product of purine metabolism and has neuroprotective effects. It has not been established whether serum UA levels are associated with depressive disorder. Thus, we investigated whether serum UA levels are associated with depressive symptoms in a Japanese general population. We used the Iwaki Health Promotion Project 2022 data (737 subjects) in this cross-sectional study. The Center for Epidemiologic Studies Depression Scale (CES-D) was used to assess the prevalence of depressive symptoms. Subjects with CES-D scores ≥16 were assigned to the Depression group. We compared characteristics and laboratory data (including serum UA) between the Depression and Non-depression groups and performed a multivariable logistic regression analysis to investigate whether their serum UA levels were associated with depressive symptoms, after adjusting for possible confounding factors. We analyzed the cases of 705 subjects: the Depression group (n = 142) and the Non-depression group (n = 563). The Depression group's serum UA levels were significantly lower than those of the Non-depression group. The multivariable logistic regression analysis demonstrated that lower serum UA levels were significantly associated with the depressive symptoms. In conclusion, lower serum UA levels in this Japanese general population were significantly associated with the depressive symptoms.
Collapse
Affiliation(s)
- Daiki Takekawa
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hirotaka Kinoshita
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yoshikazu Nikaido
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Metabolomics Innovation, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takashi Kudo
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
- Department of Anesthesiology, Aomori Prefectural Central Hospital, Aomori, Japan
| |
Collapse
|
16
|
Castro-Martínez JA, Vargas E, Díaz-Beltrán L, Esteban FJ. Enhancing Transcriptomic Insights into Neurological Disorders Through the Comparative Analysis of Shapley Values. Curr Issues Mol Biol 2024; 46:13583-13606. [PMID: 39727940 PMCID: PMC11726880 DOI: 10.3390/cimb46120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Neurological disorders such as Autism Spectrum Disorder (ASD), Schizophrenia (SCH), Bipolar Disorder (BD), and Major Depressive Disorder (MDD) affect millions of people worldwide, yet their molecular mechanisms remain poorly understood. This study describes the application of the Comparative Analysis of Shapley values (CASh) to transcriptomic data from nine datasets associated with these complex disorders, demonstrating its effectiveness in identifying differentially expressed genes (DEGs). CASh, which combines Game Theory with Bootstrap resampling, offers a robust alternative to traditional statistical methods by assessing the contribution of each gene in the broader context of the complete dataset. Unlike conventional approaches, CASh is highly effective at detecting subtle but meaningful molecular patterns that are often missed. These findings highlight the potential of CASh to enhance the precision of transcriptomic analysis, providing a deeper understanding of the molecular mechanisms underlying these disorders and establishing a solid basis to improve diagnostic techniques and developing more targeted therapeutic interventions.
Collapse
Affiliation(s)
- José A. Castro-Martínez
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| | - Eva Vargas
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| | - Leticia Díaz-Beltrán
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
- Clinical Research Unit, Department of Medical Oncology, University Hospital of Jaén, 23007 Jaén, Spain
| | - Francisco J. Esteban
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| |
Collapse
|
17
|
Dong Z, Han K, Xie Q, Lin C, Shen X, Hao Y, Li J, Xu H, He L, Yu T, Kuang W. Core antibiotic resistance genes mediate gut microbiota to intervene in the treatment of major depressive disorder. J Affect Disord 2024; 363:507-519. [PMID: 39033825 DOI: 10.1016/j.jad.2024.07.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/20/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION The relationship between depression and gut microbiota remains unclear, but an important role of gut microbiota has been verified. The relationship between gut microbiota and antibiotic resistance genes (ARGs) may be a potential new explanatory pathway. METHODS We collected samples from 63 depressed patients and 30 healthy controls for metagenomic sequencing. The two groups' microbiota characteristics, functional characteristics, and ARG differences were analyzed. RESULTS We obtained 30 differential KEGG orthologs (KOs) and their producers in 5 genera and 7 species by HUMAnN3. We found 6 KOs from Weissella_cibaria and Lactobacillus_plantaru are potentially coring functional mechanism of gut microbiota. Different metabolites including sphingolipids, pyrans, prenol lipids, and isoflavonoids also showed significance between MDD and HC. We detected 48 significantly different ARGs: 5 ARGs up-regulated and 43 ARGs down-regulated in MDD compared to HC. Based on Cox model results, Three ARGs significantly affected drug efficacy (ARG29, ARG105, and ARG111). Eggerthella, Weissella, and Lactobacillus were correlated with different core ARGs, which indicated different mechanisms in affecting MDD. LIMITATIONS The present study needs to be replicated in different ethnic groups. At the same time, a larger Chinese cohort study and detailed experimental verification are also the key to further discussion. CONCLUSION Our findings suggest that ARGs play a role in the interplay between major depressive disorder and gut microbiota. The role of ARGs should be taken into account when understanding the relationship between depression and gut microbiota.
Collapse
Affiliation(s)
- Zaiquan Dong
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Psychiatry, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Qinglian Xie
- Department of outpatient, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chunting Lin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Xiaoling Shen
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yanni Hao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jin Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Haizhen Xu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, PR China; Shanghai Center for Women and Children's Health, 339 Luding Road, Shanghai 200062, PR China
| | - Weihong Kuang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China; Department of Psychiatry, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
18
|
Yang H, Jia S, Guo X, Chen J, Zou T. Metabolic profiling of blood plasma in depression in pregnant women during early pregnancy. Australas Psychiatry 2024:10398562241286679. [PMID: 39382592 DOI: 10.1177/10398562241286679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
OBJECTIVE The study aimed to perform metabolic profiling of serum samples using liquid chromatography with mass spectroscopy (LC-MS) and to explore potential biomarkers of early trimester depression. METHOD Using the Edinburgh Postnatal Depression Scale (EPDS), participants were randomly divided into study and control groups. Serum metabolic profiles of the two groups were analysed by using LC-MS. Differential metabolite and pathway analysis were identified by using orthogonal projections to latent structure-discriminant analysis (OPLS-DA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Additionally, least absolute shrinkage and selection operator (LASSO) logistic and receiver operating characteristic (ROC) curve analyses were also conducted to explore potential biomarkers of antenatal depression (AD). RESULTS The study included 41 participants, consisting of 16 subjects with AD and 25 controls. A total of 22 different metabolites were identified (p < .005), mainly affecting glycerophospholipid metabolism, linoleic acid metabolism, synthesis and degradation of ketone bodies, phenylalanine metabolism, and butanoate metabolism. The area under the ROC curve (AUC) for the LysoPC (24:0) was 0.858. This suggests that LysoPC (24:0) may be a potentially effective predictor of risk factors for AD. CONCLUSIONS The study suggests that LysoPC (24:0) may be an effective and specific lipid biomarker for early trimester depression.
Collapse
Affiliation(s)
- Hui Yang
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Shuqin Jia
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xunyi Guo
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Jin Chen
- Department of Psychiatry, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Zou
- Department of Psychiatry, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
19
|
Wang Q, Zhao Y, Qin X, Tian J. Deciphering relationship between depression and microbial molecules based on multi-omics: A case study of Chaigui Granules. CHINESE HERBAL MEDICINES 2024; 16:612-621. [PMID: 39606256 PMCID: PMC11589482 DOI: 10.1016/j.chmed.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 12/16/2023] [Indexed: 11/29/2024] Open
Abstract
Objective To decipher the antidepression effect of Chaigui Granules (CGKL) from the relationship between depression and microbial molecules based on multi-omics. Methods Male SD rats were subjected to chronic unpredictable mild stress (CUMS) for seven weeks. The antidepressants CGKL extract and CGKL were administered for the following four weeks. The behavior test and the content of monoamine neurotransmitters were used to evaluate the efficacy of CGKL. The 16S rRNA sequencing, LC-MS technology and molecular biological techniques were used to explore the pharmacological mechanism of CGKL. Results CGKL treatment obviously alleviated the depressive behavioral indicators and regulated the content of monoamine neurotransmitters, and presented dose-dependent manner. CGKL could also improve the arginine metabolism disorder of gut microbiota in the jejunum. Meanwhile, the contents of arginine and its metabolites in the serum and hippocampus were regulated to normal levels. Further investigation indicated that the expression of related rate-limiting enzyme genes and proteins in the hippocampus was validated by qRT-PCR and Western blotting. The results showed that the gut microbiota, metabolites, and genes or proteins of rate-limiting enzymes involved in the arginine pathway were significantly regulated by CGKL. Conclusion The present study demonstrates that CGKL might exert antidepressant effects through regulating arginine metabolism, and its mechanism may be related to modulating the gut microbiota and related metabolic enzyme.
Collapse
Affiliation(s)
- Qi Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Yingxia Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
20
|
Zhao T, Luo J, Liu T, Xie K, Tang M. Secondary analysis of neurotransmitter metabolism and cognitive function in first-diagnosed, drug-naïve adult patients with major depressive disorder. Behav Brain Res 2024; 473:115193. [PMID: 39122091 DOI: 10.1016/j.bbr.2024.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND & AIMS Growing evidence suggests that neurotransmitters may be associated with cognitive decline in MDD. This study primarily investigated the differences in cognitive functions between MDD patients and healthy controls, and explored the potential association between neurotransmitters and cognitive function of MDD patients. METHODS This cross-sectional study enrolled 87 first-diagnosed and drug-naïve patients with MDD and 50 healthy controls. Neurotransmitters (glutamine, glutamic acid, γ-2Aminobutiric acid, kainate, vanillylmandelic acid (VMA), 3-methoxy 4-hydroxyphenyl ethylene glycol (MHPG), noradrenaline (NE), homovanillic acid, dihydroxy-phenyl acetic acid (DOPAC), dopamine (DA), tryptophane, kynurenine, 5-HT, 5-hydroxyindoleacetic acid) were measured using LC-MS/MS and cognitive functions were assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Then associative analyses with adjustment (female, age, BMI, education) by multiple linear regression between neurotransmitters and cognitive functions especially in MDD patients were performed. RESULTS MDD patients had lower RBANS scores in immediate memory, delayed memory and RBANS scores after adjustment. Neurotransmitters were associated with the cognitive levels of MDD patients after adjustment: DOPAC and DOPAC/DA had positive association with immediate memory score; DOPAC, DOPAC/DA and (VMA+MHPG)/NE were positively associated with attention score; NE was negatively associated with language score; DOPAC/DA was positively associated with both delayed memory and RBANS scores. CONCLUSION Patients had greater cognitive impairment especially in memory. Furthermore, plasma neurotransmitter may be related to MDD and play an important role in cognitive impairment in MDD, especially in memory and attention.
Collapse
Affiliation(s)
- Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Junhao Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ting Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaiqiang Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
21
|
Gan X, Li X, Cai Y, Yin B, Pan Q, Teng T, He Y, Tang H, Wang T, Li J, Zhu Z, Zhou X, Li J. Metabolic features of adolescent major depressive disorder: A comparative study between treatment-resistant depression and first-episode drug-naive depression. Psychoneuroendocrinology 2024; 167:107086. [PMID: 38824765 DOI: 10.1016/j.psyneuen.2024.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/12/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
Major depressive disorder (MDD) is a psychiatric illness that can jeopardize the normal growth and development of adolescents. Approximately 40% of adolescent patients with MDD exhibit resistance to conventional antidepressants, leading to the development of Treatment-Resistant Depression (TRD). TRD is associated with severe impairments in social functioning and learning ability and an elevated risk of suicide, thereby imposing an additional societal burden. In this study, we conducted plasma metabolomic analysis on 53 adolescents diagnosed with first-episode drug-naïve MDD (FEDN-MDD), 53 adolescents with TRD, and 56 healthy controls (HCs) using hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) and reversed-phase liquid chromatography-mass spectrometry (RPLC-MS). We established a diagnostic model by identifying differentially expressed metabolites and applying cluster analysis, metabolic pathway analysis, and multivariate linear support vector machine (SVM) algorithms. Our findings suggest that adolescent TRD shares similarities with FEDN-MDD in five amino acid metabolic pathways and exhibits distinct metabolic characteristics, particularly tyrosine and glycerophospholipid metabolism. Furthermore, through multivariate receiver operating characteristic (ROC) analysis, we optimized the area under the curve (AUC) and achieved the highest predictive accuracy, obtaining an AUC of 0.903 when comparing FEDN-MDD patients with HCs and an AUC of 0.968 when comparing TRD patients with HCs. This study provides new evidence for the identification of adolescent TRD and sheds light on different pathophysiologies by delineating the distinct plasma metabolic profiles of adolescent TRD and FEDN-MDD.
Collapse
Affiliation(s)
- Xieyu Gan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiyuan Pan
- The First People's Hospital of Zaoyang City, Hubei, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqian He
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Tang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Wang
- Department of Psychology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jinfang Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Dong T, Yu C, Mao Q, Han F, Yang Z, Yang Z, Pires N, Wei X, Jing W, Lin Q, Hu F, Hu X, Zhao L, Jiang Z. Advances in biosensors for major depressive disorder diagnostic biomarkers. Biosens Bioelectron 2024; 258:116291. [PMID: 38735080 DOI: 10.1016/j.bios.2024.116291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Depression is one of the most common mental disorders and is mainly characterized by low mood or lack of interest and pleasure. It can be accompanied by varying degrees of cognitive and behavioral changes and may lead to suicide risk in severe cases. Due to the subjectivity of diagnostic methods and the complexity of patients' conditions, the diagnosis of major depressive disorder (MDD) has always been a difficult problem in psychiatry. With the discovery of more diagnostic biomarkers associated with MDD in recent years, especially emerging non-coding RNAs (ncRNAs), it is possible to quantify the condition of patients with mental illness based on biomarker levels. Point-of-care biosensors have emerged due to their advantages of convenient sampling, rapid detection, miniaturization, and portability. After summarizing the pathogenesis of MDD, representative biomarkers, including proteins, hormones, and RNAs, are discussed. Furthermore, we analyzed recent advances in biosensors for detecting various types of biomarkers of MDD, highlighting representative electrochemical sensors. Future trends in terms of new biomarkers, new sample processing methods, and new detection modalities are expected to provide a complete reference for psychiatrists and biomedical engineers.
Collapse
Affiliation(s)
- Tao Dong
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Chenghui Yu
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China.
| | - Qi Mao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Han
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhenwei Yang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Nuno Pires
- Chongqing Key Laboratory of Micro-Nano Transduction and Intelligent Systems, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Nan'an District, Chongqing, 400067, China
| | - Xueyong Wei
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Weixuan Jing
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Fei Hu
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiao Hu
- Engineering Research Center of Ministry of Education for Smart Justice, School of Criminal Investigation, Southwest University of Political Science and Law, Chongqing, 401120, China.
| | - Libo Zhao
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangde Jiang
- X Multidisciplinary Research Institute, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
23
|
Jiang Y, Cai Y, Teng T, Wang X, Yin B, Li X, Yu Y, Liu X, Wang J, Wu H, He Y, Zhu ZJ, Zhou X. Dysregulations of amino acid metabolism and lipid metabolism in urine of children and adolescents with major depressive disorder: a case-control study. Psychopharmacology (Berl) 2024; 241:1691-1703. [PMID: 38605232 DOI: 10.1007/s00213-024-06590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
RATIONALE The mechanisms underlying major depressive disorder (MDD) in children and adolescents are unclear. Metabolomics has been utilized to capture metabolic signatures of various psychiatric disorders; however, urinary metabolic profile of MDD in children and adolescents has not been studied. OBJECTIVES We analyzed urinary metabolites in children and adolescents with MDD to identify potential biomarkers and metabolic signatures. METHODS Here, liquid chromatography-mass spectrometry was used to profile metabolites in urine samples from 192 subjects, comprising 80 individuals with antidepressant-naïve MDD (AN-MDD), 37 with antidepressant-treated MDD (AT-MDD) and 75 healthy controls (HC). We performed orthogonal partial least squares discriminant analysis to identify differential metabolites and employed logistic regression and receiver operating characteristic analysis to establish a diagnostic panel. RESULTS In total, 143 and 71 differential metabolites were identified in AN-MDD and AT-MDD, respectively. These were primarily linked to lipid metabolism, molecular transport, and small molecule biochemistry. AN-MDD additionally exhibited dysregulated amino acid metabolism. Compared to HC, a diagnostic panel of seven metabolites displayed area under the receiver operating characteristic curves of 0.792 for AN-MDD, 0.828 for AT-MDD, and 0.799 for all MDD. Furthermore, the urinary metabolic profiles of children and adolescents with MDD significantly differed from those of adult MDD. CONCLUSIONS Our research suggests dysregulated amino acid metabolism and lipid metabolism in the urine of children and adolescents with MDD, similar to results in plasma metabolomics studies. This contributes to the comprehension of mechanisms underlying children and adolescents with MDD.
Collapse
Affiliation(s)
- Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuping Cai
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolin Wang
- Health Management Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuqian He
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
24
|
Wang X, Peng R, Zhao L. Multiscale metabolomics techniques: Insights into neuroscience research. Neurobiol Dis 2024; 198:106541. [PMID: 38806132 DOI: 10.1016/j.nbd.2024.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
The field of metabolomics examines the overall composition and dynamic patterns of metabolites in living organisms. The primary methods used in metabolomics include liquid chromatography (LC), nuclear magnetic resonance (NMR), and mass spectrometry (MS) analysis. These methods enable the identification and examination of metabolite types and contents within organisms, as well as modifications to metabolic pathways and their connection to the emergence of diseases. Research in metabolomics has extensive value in basic and applied sciences. The field of metabolomics is growing quickly, with the majority of studies concentrating on biomedicine, particularly early disease diagnosis, therapeutic management of human diseases, and mechanistic knowledge of biochemical processes. Multiscale metabolomics is an approach that integrates metabolomics techniques at various scales, including the holistic, tissue, cellular, and organelle scales, to enable more thorough and in-depth studies of metabolic processes in organisms. Multiscale metabolomics can be combined with methods from systems biology and bioinformatics. In recent years, multiscale metabolomics approaches have become increasingly important in neuroscience research due to the nervous system's high metabolic demands. Multiscale metabolomics can offer novel concepts and approaches for the diagnosis, treatment, and development of medication for neurological illnesses in addition to a more thorough understanding of brain metabolism and nervous system function. In this review, we summarize the use of multiscale metabolomics techniques in neuroscience, address the promise and constraints of these techniques, and provide an overview of the metabolome and its applications in neuroscience.
Collapse
Affiliation(s)
- Xiaoya Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
25
|
Chi LK, Yuan Q, Wang MY, Guo CR, Zhu XD, Jiang HB, Zhang QH, Zhao Y, Li L, Yan H. Metabolomics reveals that ferroptosis participates in bisphenol A-induced testicular injury. Heliyon 2024; 10:e31667. [PMID: 38882385 PMCID: PMC11177062 DOI: 10.1016/j.heliyon.2024.e31667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Bisphenol A (BPA) is a common environmental endocrine disruptor that negatively impairs male reproductive ability. This study aimed to explore the alterations in serum metabolomics that occur following BPA exposure and the mechanism via which BPA induces the death of testicular cells in a male mouse model. Methods The mice were classified into two groups: BPA-exposed and control groups, and samples were collected for metabolomic determination, semen quality analysis, electron microscopy, enzyme-linked immunosorbent assay, quantitative real-time PCR, pathological staining, and Western blot analysis. Results BPA exposure caused testicular damage and significantly decreased sperm quality in mice. Combined with non-target metabolomic analysis, this was closely related to ferroptosis induced by abnormal metabolites of arachidonic acid and phosphatidylcholine, and the expression of its related genes, acyl CoA synthetase 4, glutathione peroxidase 4, lysophosphatidylcholine acyltransferase 3, and phosphatidylethanolamine-binding protein 1 were altered. Conclusion BPA induced ferroptosis, caused testicular damage, and reduced fertility by affecting lipid metabolism in male mice. Inhibiting ferroptosis may potentially function as a therapeutic strategy to mitigate the male reproductive toxicity induced by BPA.
Collapse
Affiliation(s)
- Ling Kan Chi
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Yuan
- Department of Gynecology, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201203, China
| | - Min Yan Wang
- Department of Pathology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chun Rong Guo
- Teaching Experimental Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xian Dan Zhu
- Laboratory Animal Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hua Bo Jiang
- Department of Gynecology, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201203, China
| | - Qin Hua Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Zhao
- Laboratory Animal Center, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hua Yan
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
26
|
Ling K, Hong M, Jin L, Wang J. Blood metabolomic and postpartum depression: a mendelian randomization study. BMC Pregnancy Childbirth 2024; 24:429. [PMID: 38877415 PMCID: PMC11177545 DOI: 10.1186/s12884-024-06628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Postpartum depression is a complex mental health condition that often occurs after childbirth and is characterized by persistent sadness, anxiety, and fatigue. Recent research suggests a metabolic component to the disorder. This study aims to investigate the causal relationship between blood metabolites and postpartum depression using mendelian randomization (MR). METHODS This study used a bi-directional MR framework to investigate the causal relationship between 1,400 metabolic biomarkers and postpartum depression. We used two specific genome-wide association studies datasets: one with single nucleotide polymorphisms data from mothers diagnosed with postpartum depression and another with blood metabolite data, both of which focused on people of European ancestry. Genetic variants were chosen as instrumental variables from both datasets using strict criteria to improve the robustness of the MR analysis. The combination of these datasets enabled a thorough examination of genetic influences on metabolic profiles associated with postpartum depression. Statistical analyses were conducted using techniques such as inverse variance weighting, weighted median, and model-based estimation, which enabled rigorous causal inference from the observed associations. postpartum depression was defined using endpoint definitions approved by the FinnGen study's clinical expert groups, which included leading experts in their respective medical fields. RESULTS The MR analysis identified seven metabolites that could be linked to postpartum depression. Out of these, one metabolite was found to be protective, while six were associated with an increased risk of developing the condition. The results were consistent across multiple MR methods, indicating a significant correlation. CONCLUSIONS This study emphasizes the potential of metabolomics for understanding postpartum depression. The discovery of specific metabolites associated with the condition sheds new insights on its pathophysiology and opens up possibilities for future research into targeted treatment strategies.
Collapse
Affiliation(s)
- Keng Ling
- Jiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing, China
| | - Minping Hong
- Jiaxing Hospital of Traditional Chinese Medical, Jiaxing, China
| | - Liqin Jin
- Jiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing, China
| | - Jianguo Wang
- Jiaxing Women and Children's Hospital, Wenzhou Medical University, Jiaxing, China.
- Central Laboratory, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children Hospital, Jiaxing University, Jiaxing, 314000, China.
| |
Collapse
|
27
|
Oharazawa A, Maimaituxun G, Watanabe K, Nishiyasu T, Fujii N. Metabolome analyses of skin dialysate: Insights into skin interstitial fluid biomarkers. J Dermatol Sci 2024; 114:141-147. [PMID: 38740531 DOI: 10.1016/j.jdermsci.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Metabolites in biofluids can serve as biomarkers for diagnosing diseases and monitoring body conditions. Among the available biofluids, interstitial fluid (ISF) in the skin has garnered considerable attention owing to its advantages, which include inability to clot, easy access to the skin, and possibility of incorporating wearable devices. However, the scientific understanding of skin ISF composition is limited. OBJECTIVE In this study, we aimed to compare metabolites between skin dialysate containing metabolites from the skin ISF and venous blood (plasma) samples, both collected under resting states. METHODS We collected forearm skin dialysate using intradermal microdialysis alongside venous blood (plasma) samples from 12 healthy young adults. We analyzed these samples using capillary electrophoresis-fourier transform mass spectrometry-based metabolomics (CE-FTMS). RESULTS Significant positive correlations were observed in 39 metabolites between the skin dialysate and plasma, including creatine (a mitochondrial disease biomarker), 1-methyladenosine (an early detection of cancer biomarker), and trimethylamine N-oxide (a posterior predictor of heart failure biomarker). Based on the Human Metabolome Technologies database, we identified 12 metabolites unique to forearm skin dialysate including nucleic acids, benzoate acids, fatty acids, amino acids, ascorbic acid, 3-methoxy-4-hydroxyphenylethyleneglycol (an Alzheimer's disease biomarker), and cysteic acid (an acute myocardial infarction biomarker). CONCLUSION We show that some venous blood biomarkers may be predicted from skin dialysate or skin ISF, and that these fluids may serve as diagnostic and monitoring tools for health and clinical conditions.
Collapse
Affiliation(s)
| | - Gulinu Maimaituxun
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Koichi Watanabe
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan; Advanced Research Initiative for Human High Performance (ARIHHP), Japan
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan; Advanced Research Initiative for Human High Performance (ARIHHP), Japan.
| |
Collapse
|
28
|
Lou F, Luo S, Kang N, Yan L, Long H, Yang L, Wang H, Liu Y, Pu J, Xie P, Ji P, Jin X. Oral microbiota dysbiosis alters chronic restraint stress-induced depression-like behaviors by modulating host metabolism. Pharmacol Res 2024; 204:107214. [PMID: 38763328 DOI: 10.1016/j.phrs.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
Studies have shown that the microbiota-gut-brain axis is highly correlated with the pathogenesis of depression in humans. However, whether independent oral microbiome that do not depend on gut microbes could affect the progression of depression in human beings remains unclear, neither does the presence and underlying mechanisms of the microbiota-oral-brain axis in the development of the condition. Hence this study that encompasses clinical and animal experiments aims at investigating the correlation between oral microbiota and the onset of depression via mediating the microbiota-oral-brain axis. We compared the oral microbial compositions and metabolomes of 87 patients with depressive symptoms versus 70 healthy controls. We found that the oral microbial and metabolic signatures were significantly different between the two groups. Significantly, germ-free (GF) mice transplanted with saliva from mice exposing to chronic restraint stress (CRS) displayed depression-like behavior and oral microbial dysbiosis. This was characterized by a significant differential abundance of bacterial species, including the enrichment of Pseudomonas, Pasteurellaceae, and Muribacter, as well as the depletion of Streptococcus. Metabolomic analysis showed the alternation of metabolites in the plasma of CRS-exposed GF mice, especially Eicosapentaenoic Acid. Furthermore, oral and gut barrier dysfunction caused by CRS-induced oral microbiota dysbiosis may be associated with increased blood-brain barrier permeability. Pseudomonas aeruginosa supplementation exacerbated depression-like behavior, while Eicosapentaenoic Acid treatment conferred protection against depression-like states in mice. These results suggest that oral microbiome and metabolic function dysbiosis may be relevant to the pathogenesis and pathophysiology of depression. The proposed microbiota-oral-brain axis provides a new way and targets for us to study the pathogenesis of depression.
Collapse
Affiliation(s)
- Fangzhi Lou
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Shihong Luo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Ning Kang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Li Yan
- College of Medical Informatics, Chongqing Medical University, Chongqing 400016, China
| | - Huiqing Long
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Lu Yang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Xin Jin
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China.
| |
Collapse
|
29
|
Zhang Y, Wang H, Liu L, Mo X, He D, Chen X, Xiao R, Cheng Q, Fatima M, Du Y, Xie P. Maternal separation regulates sensitivity of stress-induced depression in mice by affecting hippocampal metabolism. Physiol Behav 2024; 279:114530. [PMID: 38552706 DOI: 10.1016/j.physbeh.2024.114530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Depression is a serious mental illness. Previous studies found that early life stress (ELS) plays a vital role in the onset and progression of depression. However, relevant studies have not yet been able to explain the specific effects of early stress on stress-induced depression sensitivity and individual behavior during growth. Therefore, we constructed a maternal separation (MS) model and administered chronic social frustration stress at different stages of their growth while conducting metabolomics analysis on the hippocampus of mice. Our results showed that the immobility time of mice in the forced swimming test was significantly reduced at the end of MS. Meanwhile, mice with MS experience significantly decreased total movement distance in the open field test and sucrose preference ratio in the sucrose preference test when subjected to chronic social defeat stress (CSDS) during adolescence. In adulthood, the results were the opposite. In addition, we found that level changes in metabolites such as Beta-alanine, l-aspartic acid, 2-aminoadipic acid, and Glycine are closely related to behavioral changes. These metabolites are mainly enriched in Pantothenate, CoA biosynthesis, and Beta Alanine metabolism pathways. Our experiment revealed that the effects of ELS vary across different age groups. It will increase an individual's sensitivity to depression when facing CSDS in adolescence, but it will reduce their sensitivity to depression when facing CSDS in adulthood. This may be achieved by regulating the hippocampus's Pantothenate and CoA biosynthesis and Beta Alanine metabolism pathways represented by Beta-alanine, l-Aspartic acid, 2-aminoadipic acid, and Glycine metabolites.
Collapse
Affiliation(s)
- Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Xiaolong Mo
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dian He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Faculty of Basic Medicine, Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Rui Xiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Faculty of Basic Medicine, Department of Pathology, Chongqing Medical University, Chongqing, 400016, China
| | - Qisheng Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Madiha Fatima
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yamei Du
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
30
|
Guo J, Han P, Zheng Y, Wu Y, Zheng K, Huang C, Wang Y, Chen C, Qi Y, Chen X, Tao Q, Zhai J, Guo Q. Study on plasma metabolomics profiling of depression in Chinese community-dwelling older adults based on untargeted LC/GC‒MS. Sci Rep 2024; 14:10303. [PMID: 38705886 PMCID: PMC11070417 DOI: 10.1038/s41598-024-60836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/28/2024] [Indexed: 05/07/2024] Open
Abstract
Depression is a serious psychiatric illness that causes great inconvenience to the lives of elderly individuals. However, the diagnosis of depression is somewhat subjective. Nontargeted gas chromatography (GC)/liquid chromatography (LC)-mass spectrometry (MS) was used to study the plasma metabolic profile and identify objective markers for depression and metabolic pathway variation. We recruited 379 Chinese community-dwelling individuals aged ≥ 65. Plasma samples were collected and detected by GC/LC‒MS. Orthogonal partial least squares discriminant analysis and a heatmap were utilized to distinguish the metabolites. Receiver operating characteristic curves were constructed to evaluate the diagnostic value of these differential metabolites. Additionally, metabolic pathway enrichment was performed to reveal metabolic pathway variation. According to our standard, 49 people were included in the depression cohort (DC), and 49 people age- and sex-matched individuals were included in the non-depression cohort (NDC). 64 metabolites identified via GC‒MS and 73 metabolites identified via LC‒MS had significant contributions to the differentiation between the DC and NDC, with VIP values > 1 and p values < 0.05. Three substances were detected by both methods: hypoxanthine, phytosphingosine, and xanthine. Furthermore, 1-(sn-glycero-3-phospho)-1D-myo-inositol had the largest area under the curve (AUC) value (AUC = 0.842). The purine metabolic pathway is the most important change in metabolic pathways. These findings show that there were differences in plasma metabolites between the depression cohort and the non-depression cohort. These identified differential metabolites may be markers of depression and can be used to study the changes in depression metabolic pathways.
Collapse
Affiliation(s)
- Jiangling Guo
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Han
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | | | - Yahui Wu
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Kai Zheng
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chuanjun Huang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Wang
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Cheng Chen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
- School of Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yiqiong Qi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xiaoyu Chen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China
| | - Qiongying Tao
- Jiading Subdistrict Community Health Center, Shanghai, China
| | - Jiayi Zhai
- Jiading Subdistrict Community Health Center, Shanghai, China
| | - Qi Guo
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, 279 Zhouzhu Highway, Pudong New Area, Shanghai, 201318, China.
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
31
|
Wang J, Fan L, Teng T, Wu H, Liu X, Yin B, Li X, Jiang Y, Zhao J, Wu Q, Guo Y, Zhou X, Xie P. Adolescent male rats show altered gut microbiota composition associated with depressive-like behavior after chronic unpredictable mild stress: Differences from adult rats. J Psychiatr Res 2024; 173:183-191. [PMID: 38547740 DOI: 10.1016/j.jpsychires.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024]
Abstract
Accumulating evidence reveals the metabolism and neurotransmitter systems are different in major depressive disorder (MDD) between adolescent and adult patients; however, much is still unknown from the gut microbiome perspective. To minimize confounding factors such as geographical location, ethnicity, diet, and drugs, we investigated the gut microbial differences between adolescent and adult male Sprague-Dawley rats. We exposed the adolescent rats to chronic unpredictable mild stress (CUMS) for 3 weeks and assessed their behavior using the sucrose preference test (SPT), open field test (OFT), and forced swimming test (FST). We collected and sequenced fecal samples after the behavioral tests and compared them with our previous data on adult rats. Both adolescent and adult CUMS rats exhibited reduced sucrose preference in SPT, reduced total distance in OFT, and increased immobility time in FST. Moreover, compared to their respective controls, the adolescent CUMS rats had distinct amplicon sequence variants (ASVs) mainly in the Muribaculaceae family, Bacteroidetes phylum, while the adult CUMS rats had those in the Lachnospiraceae family, Firmicutes phylum. In the adolescent group, the Muribaculaceae negatively correlated with FST and positively correlated with SPT and OFT. In the adult group, the different genera in the Lachnospiraceae showed opposite correlations with FST. Furthermore, the adolescent CUMS rats showed disrupted microbial functions, such as "Xenobiotics biodegradation and metabolism" and "Immune system", while the adult CUMS rats did not. These results confirmed the gut microbiota differences between adolescent and adult rats after CUMS modeling and provided new insight into the age-related influence on depression models.
Collapse
Affiliation(s)
- Jie Wang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Fan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Teng Teng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Wu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueer Liu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangmin Yin
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Li
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanliang Jiang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianting Zhao
- Department of Neurology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical College, Xinxiang, China
| | - Qingyuan Wu
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Yi Guo
- Department of Neurology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xinyu Zhou
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
32
|
Mulder RH, Kraaij R, Schuurmans IK, Frances-Cuesta C, Sanz Y, Medina-Gomez C, Duijts L, Rivadeneira F, Tiemeier H, Jaddoe VWV, Felix JF, Cecil CAM. Early-life stress and the gut microbiome: A comprehensive population-based investigation. Brain Behav Immun 2024; 118:117-127. [PMID: 38402916 PMCID: PMC7615798 DOI: 10.1016/j.bbi.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024] Open
Abstract
Early-life stress (ELS) has been robustly associated with a range of poor mental and physical health outcomes. Recent studies implicate the gut microbiome in stress-related mental, cardio-metabolic and immune health problems, but research on humans is scarce and thus far often based on small, selected samples, often using retrospective reports of ELS. We examined associations between ELS and the human gut microbiome in a large, population-based study of children. ELS was measured prospectively from birth to 10 years of age in 2,004 children from the Generation R Study. We studied overall ELS, as well as unique effects of five different ELS domains, including life events, contextual risk, parental risk, interpersonal risk, and direct victimization. Stool microbiome was assessed using 16S rRNA sequencing at age 10 years and data were analyzed at multiple levels (i.e. α- and β-diversity indices, individual genera and predicted functional pathways). In addition, we explored potential mediators of ELS-microbiome associations, including diet at age 8 and body mass index at 10 years. While no associations were observed between overall ELS (composite score of five domains) and the microbiome after multiple testing correction, contextual risk - a specific ELS domain related to socio-economic stress, including risk factors such as financial difficulties and low maternal education - was significantly associated with microbiome variability. This ELS domain was associated with lower α-diversity, with β-diversity, and with predicted functional pathways involved, amongst others, in tryptophan biosynthesis. These associations were in part mediated by overall diet quality, a pro-inflammatory diet, fiber intake, and body mass index (BMI). These results suggest that stress related to socio-economic adversity - but not overall early life stress - is associated with a less diverse microbiome in the general population, and that this association may in part be explained by poorer diet and higher BMI. Future research is needed to test causality and to establish whether modifiable factors such as diet could be used to mitigate the negative effects of socio-economic adversity on the microbiome and related health consequences.
Collapse
Affiliation(s)
- Rosa H Mulder
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Isabel K Schuurmans
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Carlos Frances-Cuesta
- Microbiome, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Severo Ochoa Centre of Excellence, National Research Council (IATA-CSIC), Valencia, Spain.
| | - Yolanda Sanz
- Microbiome, Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology, Severo Ochoa Centre of Excellence, National Research Council (IATA-CSIC), Valencia, Spain.
| | - Carolina Medina-Gomez
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
33
|
Liu GX, Li ZL, Lin SY, Luo ZY, Yin YN, Zhou YL, Ning YP. NEFA can serve as good biological markers for the diagnosis of depression in adolescents. J Affect Disord 2024; 352:342-348. [PMID: 38364978 DOI: 10.1016/j.jad.2024.01.274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND The incidence of adolescent depression has markedly risen in recent years, with a high recurrence rate into adulthood. Diagnosis in adolescents is challenging due to subjective factors, highlighting the crucial need for objective diagnostic markers. METHODS Our study enrolled 204 participants, including healthy controls (n = 88) and first-episode adolescent depression patients (n = 116). Serum samples underwent gas chromatography-mass spectrometry (GC-MS) analysis to assess non-esterified fatty acids (NEFA) expression. Machine learning and ROC analysis were employed to identify potential biomarkers, followed by bioinformatics analysis to explore underlying mechanisms. RESULTS Nearly all differentially expressed NEFA exhibited significant downregulation. Notably, nonanoic acid, cis-10-pentadecenoic acid, cis-10-carboenoic acid, and cis-11-eicosenoic acid demonstrated excellent performance in distinguishing adolescent depression patients. Metabolite-gene interaction analysis revealed these NEFAs interacted with multiple genes. KEGG pathway analysis on these genes suggested that differentially expressed NEFA may impact PPAR and cAMP signaling pathways. LIMITATIONS Inclusion of diverse populations for evaluation is warranted. Biomarkers identified in this study require samples that are more in line with the experimental design for external validation, and further basic research is necessary to validate the potential depressive mechanisms of NEFA. CONCLUSIONS The overall reduction in NEFA expression in first-episode adolescent depression patients suggests a potential mediation of depression symptoms through cAMP and PPAR signaling pathways. NEFA levels show promise as a diagnostic tool for identifying first-episode adolescent depression patients.
Collapse
Affiliation(s)
- Guan-Xi Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Ze-Lin Li
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Su-Yan Lin
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng-Yi Luo
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Ya-Nan Yin
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China
| | - Yan-Ling Zhou
- The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| | - Yu-Ping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
34
|
Chen H, Wang J, Chen S, Chen X, Liu J, Tang H, Zhou J, Tian Y, Wang X, Cao X, Zhou J. Abnormal energy metabolism, oxidative stress, and polyunsaturated fatty acid metabolism in depressed adolescents associated with childhood maltreatment: A targeted metabolite analysis. Psychiatry Res 2024; 335:115795. [PMID: 38460351 DOI: 10.1016/j.psychres.2024.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/11/2024]
Abstract
The purpose of this study was to explore the metabolomic differences between Major depressive disorder (MDD) and healthy individuals among adolescents and the association between childhood maltreatment (CM) and differentially abundant metabolites. The exploratory study included 40 first-episode drug-naïve adolescents with MDD and 20 healthy volunteers. We used the Beck Depression Inventory (BDI-13) to assess the severity of depression and the Childhood Trauma Questionnaire (CTQ) to assess the presence of childhood maltreatment. The plasma samples from all participants were collected for targeted metabolomics analysis using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC‒MS/MS) methods. Spearman correlation was applied to analyse the correlations between clinical variables and metabolites. We found 11 increased metabolites and 37 decreased metabolites that differed between adolescents with MDD and healthy individuals. Pathway enrichment analysis of differentially abundant metabolites showed abnormalities in energy metabolism and oxidative stress in MDD. Importantly, we found that creatine, valine, isoleucine, glutamic acid and pyroglutamic acid were negatively correlated with the BDI-13, while isocitric acid, fatty acid and acylcarnitine were negatively associated with CTQ, and 4-hydroxyproline was positively related to CTQ in adolescents with MDD. These studies provide new ideas for the pathogenesis and potential treatment of adolescents with MDD.
Collapse
Affiliation(s)
- Hui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jinfeng Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Shurui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xianliang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiali Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Huajia Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiawei Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yusheng Tian
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xia Cao
- Health Management Center, Health Management Research Center of Central South University, The Third Xiangya Hospital, Central South University, Hunan Province, 410013, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
35
|
Wu D, Zhao P, Wang C, Huasai S, Chen H, Chen A. Differences in the intestinal microbiota and association of host metabolism with hair coat status in cattle. Front Microbiol 2024; 15:1296602. [PMID: 38711970 PMCID: PMC11071169 DOI: 10.3389/fmicb.2024.1296602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/11/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction The hair coat status of cattle serves as an easily observed indicator of economic value in livestock production; however, the underlying mechanism remains largely unknown. Therefore, the objective of the current study was to determine differences in the intestinal microbiota and metabolome of cattle based on a division of with either slick and shining (SHC) or rough and dull (MHC) hair coat in Simmental cows. Methods Eight SHC and eight MHC late-pregnancy Simmental cows (with similar parities, body weights, and body conditions) were selected based on their hair coat status, and blood samples (plasma) from coccygeal venipuncture and fecal samples from the rectum were collected. The intestinal microbiota (in the fecal samples) was characterized by employing 16S rRNA gene sequencing targeting the V3-V4 hypervariable region on the Illumina MiSeq PE300 platform, and plasma samples were subjected to LC-MS/MS-based metabolomics with Progenesis QI 2.3. Plasma macromolecular metabolites were examined for differences in the metabolism of lipids, proteins, mineral elements, and hormones. Results Notable differences between the SHC and MHC groups related to host hair coat status were observed in the host metabolome and intestinal microbiota (P < 0.05). The host metabolome was enriched in histidine metabolism, cysteine and methionine metabolism, and purine metabolism in the SHC group, and the intestinal microbiota were also enriched in histidine metabolism (P < 0.05). In the MHC group, the symbiotic relationship transitioned from cooperation to competition in the MHC group, and an uncoupling effect was present in the microbe-metabolite association of intestine microbiota-host interactions. The hubs mediating the relationships between intestinal microbiota and plasma metabolites were the intestinal bacterial genus g__norank_f__Eubacterium_coprostanoligenes_group, plasma inosine, triiodothyronine, and phosphorus, which could be used to differentiate cows' hair coat status (P < 0.05). Conclusion Overall, the present study identified the relationships between the features of the intestinal microbiota and host hair coat status, thereby providing evidence and a new direction (intestine microbiota-host interplay) for future studies aimed at understanding the hair coat status of cattle.
Collapse
Affiliation(s)
- Donglin Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Pengfei Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Simujide Huasai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hao Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
36
|
Zhao T, Liu T, Wang L, Xie K, Tang H, Tang M. Dysfunction of neurotransmitter metabolism is associated with the severity of depression in first-diagnosed, drug-naïve depressed patients. J Affect Disord 2024; 349:332-341. [PMID: 38199403 DOI: 10.1016/j.jad.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND & AIMS Biochemical changes of neurotransmitters underlying major depressive disorder (MDD) are unknown. This study preliminarily explored the association between neurotransmitters with MDD and the possibility of objective laboratory prediction of neurotransmitter involvement in MDD. METHODS A total of 87 first-diagnosed, drug-naïve patients with depression and 50 healthy controls (HCs) were included in the cross-sectional study. The levels and turnovers of neurotransmitters (glutamine (GLN), glutamic acid (GLU), γ-2Aminobutiric acid (GABA), kainate (KA), vanillylmandelic acid (VMA), 3-methoxy 4-hydroxyphenyl ethylene glycol (MHPG), noradrenaline (NE), homovanillic acid (HVA), dihydroxy-phenyl acetic acid (DOPAC), dopamine (DA), tryptophane (TRP), kynurenine (KYN), serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA)) were determined and the confounding factors were adjusted. Then a correlation and a predictive analysis towards neurotransmitters for MDD were performed. RESULTS After adjusting confounding factors, GLU (OR = 1.159), (GLU+ GABA)/GLN (OR = 1.217), DOPAC (OR = 1.106), DOPAC/DA (OR = 1.089) and (DOPAC+ HVA)/DA (OR = 1.026) enacted as risk factors of MDD, while KYN (OR = 0.992) was a protective factor. GABAergic and TRPergic pathways were associated with severity of depressive and anxiety symptoms in patients with depression. The predictive model for MDD (AUC = 0.775, 95%CI 0.683-0.860) consisted of KYN (OR = 0.990) and (GLU + GABA)/GLN (OR = 4.101). CONCLUSIONS First-diagnosed, drug-naïve depression patients showed abnormal neurotransmitter composition. GLU, (GLU + GABA)/GLN, DOPAC, DOPAC/DA and (DOPAC + HVA)/DA were risk factors of MDD, while KYN was a protective factor. GABAergic and TRPergic pathways were correlated with MDD clinical characteristics. KYN and (GLU + GABA)/GLN may have a predictive value for MDD.
Collapse
Affiliation(s)
- Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lu Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders and Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Kaiqiang Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
37
|
Pan Y, Li Y, Chhetri JK, Liu P, Li B, Liu Z, Shui G, Ma L. Dysregulation of acyl carnitines, pentose phosphate pathway and arginine and ornithine metabolism are associated with decline in intrinsic capacity in Chinese older adults. Aging Clin Exp Res 2024; 36:36. [PMID: 38345670 PMCID: PMC10861606 DOI: 10.1007/s40520-023-02654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/03/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND Intrinsic capacity is the combination of individual physical and mental abilities, reflecting the aging degree of the older adults. However, the mechanisms and metabolic characteristics of the decline in intrinsic capacity are still unclear. AIMS To identify metabolic signatures and associated pathways of decline in intrinsic capacity based on the metabolite features. METHODS We recruited 70 participants aged 77.19 ± 8.31 years. The five domains of intrinsic capacity were assessed by Short Physical Performance Battery (for mobility), Montreal cognition assessment (for cognition), 30-Item Geriatric Depression Scale (for psychology), self-reported hearing/visual impairment (for sensory) and Nutritional risk screening (for vitality), respectively. The serum samples of participants were analyzed by liquid chromatography-mass spectrometry-based metabolomics, followed by metabolite set enrichment analysis and metabolic pathway analysis. RESULTS There were 50 participants with a decline in intrinsic capacity in at least one of the domains. A total of 349 metabolites were identified from their serum samples. Overall, 24 differential metabolites, 5 metabolite sets and 13 pathways were associated with the decline in intrinsic capacity. DISCUSSION Our results indicated that decline in intrinsic capacity had unique metabolomic profiles. CONCLUSION The specific change of acyl carnitines was observed to be a feature of decline in intrinsic capacity. Dysregulation of the pentose phosphate pathway and of arginine and ornithine metabolism was strongly associated with the decline in intrinsic capacity.
Collapse
Affiliation(s)
- Yiming Pan
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yun Li
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Jagadish K Chhetri
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China
- Department of Neurology and Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Pan Liu
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Bowen Li
- LipidALL Technologies Company Limited, Changzhou, 213022, Jiangsu, China
| | - Zuyun Liu
- Center for Clinical Big Data and Analytics, Second Affiliated Hospital and Department of Big Data in Health Science, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital, Capital Medical University, National Research Center for Geriatric Medicine, 45 Changchun Street, Beijing, 100053, China.
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
38
|
Fang J, Xiao C, Qi Y, Hong W, Wang M. Influence of pancreaticoduodenectomy for periampullary carcinoma on intestinal microbiome and metabolites. Heliyon 2024; 10:e24393. [PMID: 38304782 PMCID: PMC10831615 DOI: 10.1016/j.heliyon.2024.e24393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Recent growing evidence suggests a role for intestinal microbiome and metabolites in patients' postoperative recovery. Therefore, there is a need to gain insight into the impact of pancreaticoduodenectomy for periampullary carcinoma on microbiome and metabolites and the potential impact of their changes on patients' condition. Based on 16S rDNA gene sequencing and untargeted metabolomic analysis, we found that the diversity and abundance of intestinal microbiome were significantly higher in patients preoperatively than postoperatively, and the level of intestinal probiotics was significantly lower after surgery compared with preoperatively. In addition, the choline metabolism level was increased and the amino acid metabolism level was decreased after surgery. A total of 53 differential microbiome and 52 differential metabolites were detected, and the differential metabolites were mapped to approximately 60 different KEGG metabolic pathways, of which 13 KEGG metabolic pathways had a differential metabolite number greater than 5. A total of 88 colony-metabolite pairs with significant positive correlation and 69 colony-metabolite pairs with significant negative correlation were identified. Our results reveal alterations in intestinal microbiome after pancreaticoduodenectomy, suggesting its association with postoperative complications. Moreover, the elevated choline metabolism level in postoperative patients may predict their poorer prognosis. At the same time, the decreased abundance of such probiotic bacteria as Prevotella spp. in the postoperative intestine of patients will affect the amino acid metabolism of the organism to some extent.
Collapse
Affiliation(s)
| | | | - Yafeng Qi
- Department of General Surgery, 900th Hospital of Joint Logistics Support Force of People's Liberation Army, Fuzhou, Fujian, 350000, China
| | - Weixuan Hong
- Department of General Surgery, 900th Hospital of Joint Logistics Support Force of People's Liberation Army, Fuzhou, Fujian, 350000, China
| | - Meiping Wang
- Department of General Surgery, 900th Hospital of Joint Logistics Support Force of People's Liberation Army, Fuzhou, Fujian, 350000, China
| |
Collapse
|
39
|
Qian X, Jiang J, Yang B, Zhao J, Wang G, Tian P, Chen W. Psychobiotics Regulate Purine Metabolism to Influence Host Emotional Behavior. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1561-1570. [PMID: 38197881 DOI: 10.1021/acs.jafc.3c06422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Purine metabolism plays a pivotal role in numerous biological processes with potential implications for brain function and emotional regulation. This study utilizes gene-edited probiotics and pseudo-germ-free mice to unravel this intricate interplay. Transcriptomic analysis identified a ribonucleoside-diphosphate reductase β chain (nrdB) as a pivotal gene in purine metabolism within Bifidobacterium breve CCFM1025. Comparative evaluation between the wild-type and nrdB mutant strains revealed CCFM1025's effective reduction of xanthine and xanthosine levels in the serum and brain of stressed mice. Concomitantly, it downregulated the expression of the adenosine receptor gene (Adora2b) and inhibited the overactivation of microglia. These findings emphasize the potential of psychobiotics in modulating emotional responses by regulating purine metabolites and adenosine receptors. This study sheds light on novel pathways that influence emotional well-being through gut microbiota interactions and purine metabolic processes.
Collapse
Affiliation(s)
- Xin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jiahao Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, P. R. China
| | - Peijun Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122 P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
40
|
Zorkina Y, Ushakova V, Ochneva A, Tsurina A, Abramova O, Savenkova V, Goncharova A, Alekseenko I, Morozova I, Riabinina D, Kostyuk G, Morozova A. Lipids in Psychiatric Disorders: Functional and Potential Diagnostic Role as Blood Biomarkers. Metabolites 2024; 14:80. [PMID: 38392971 PMCID: PMC10890164 DOI: 10.3390/metabo14020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024] Open
Abstract
Lipids are a crucial component of the human brain, serving important structural and functional roles. They are involved in cell function, myelination of neuronal projections, neurotransmission, neural plasticity, energy metabolism, and neuroinflammation. Despite their significance, the role of lipids in the development of mental disorders has not been well understood. This review focused on the potential use of lipids as blood biomarkers for common mental illnesses, such as major depressive disorder, anxiety disorders, bipolar disorder, and schizophrenia. This review also discussed the impact of commonly used psychiatric medications, such as neuroleptics and antidepressants, on lipid metabolism. The obtained data suggested that lipid biomarkers could be useful for diagnosing psychiatric diseases, but further research is needed to better understand the associations between blood lipids and mental disorders and to identify specific biomarker combinations for each disease.
Collapse
Affiliation(s)
- Yana Zorkina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Ushakova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Aleksandra Ochneva
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Anna Tsurina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Olga Abramova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| | - Valeria Savenkova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Goncharova
- Moscow Center for Healthcare Innovations, 123473 Moscow, Russia;
| | - Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academi of Science, 142290 Moscow, Russia
- Russia Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 2, Kurchatov Square, 123182 Moscow, Russia
| | - Irina Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Daria Riabinina
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Georgy Kostyuk
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
| | - Anna Morozova
- Mental-Health Clinic No. 1 Named after N.A. Alekseev, Zagorodnoe Highway 2, 115191 Moscow, Russia; (V.U.); (A.O.); (A.T.); (O.A.); (V.S.); (I.M.); (D.R.); (G.K.); (A.M.)
- Department of Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Kropotkinsky per. 23, 119034 Moscow, Russia
| |
Collapse
|
41
|
You Z, Wang C, Lan X, Li W, Shang D, Zhang F, Ye Y, Liu H, Zhou Y, Ning Y. The contribution of polyamine pathway to determinations of diagnosis for treatment-resistant depression: A metabolomic analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110849. [PMID: 37659714 DOI: 10.1016/j.pnpbp.2023.110849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
OBJECTIVES Approximately one-third of major depressive disorder (MDD) patients do not respond to standard antidepressants and develop treatment-resistant depression (TRD). We aimed to reveal metabolic differences and discover promising potential biomarkers in TRD. METHODS Our study recruited 108 participants including healthy controls (n = 40) and patients with TRD (n = 35) and first-episode drug-naive MDD (DN-MDD) (n = 33). Plasma samples were presented to ultra performance liquid chromatography-tandem mass spectrometry. Then, a machine-learning algorithm was conducted to facilitate the selection of potential biomarkers. RESULTS TRD appeared to be a distinct metabolic disorder from DN-MDD and healthy controls (HCs). Compared to HCs, 199 and 176 differentially expressed metabolites were identified in TRD and DN-MDD, respectively. Of all the metabolites that were identified, spermine, spermidine, and carnosine were considered the most promising biomarkers for diagnosing TRD and DN-MDD patients, with the resulting area under the ROC curve of 0.99, 0.99, and 0.93, respectively. Metabolic pathway analysis yielded compelling evidence of marked changes or imbalances in both polyamine metabolism and energy metabolism, which could potentially represent the primary altered pathways associated with MDD. Additionally, L-glutamine, Beta-alanine, and spermine were correlated with HAMD score. CONCLUSIONS A more disordered metabolism structure is found in TRD than in DN-MDD and HCs. Future investigations should prioritize the comprehensive analysis of potential roles played by these differential metabolites and disturbances in polyamine pathways in the pathophysiology of TRD and depression.
Collapse
Affiliation(s)
- Zerui You
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chengyu Wang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Weicheng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Dewei Shang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Fan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanxiang Ye
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haiyan Liu
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Yuping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
42
|
Liu X, Zhang B, Tian J, Han Y. Plasma metabolomics reveals the intervention mechanism of different types of exercise on chronic unpredictable mild stress-induced depression rat model. Metab Brain Dis 2024; 39:1-13. [PMID: 37999885 DOI: 10.1007/s11011-023-01310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/25/2023]
Abstract
OBJECTIVE To study the effects of different types of exercise on the plasma metabolomics of chronic unpredictable mild stress (CUMS)-induced depressed rats based on 1H-NMR metabolomics techniques, and to explore the potential mechanisms of exercise for the treatment of depression. Rats were randomly divided into blank control group (C), CUMS control group (D), pre-exercise with CUMS group (P), CUMS with aerobic exercise group, CUMS with resistance exercise group (R), and CUMS with aerobic + resistance exercise group (E). The corresponding protocol intervention was applied to each group of rats. Body weight, sucrose preference and open field tests were performed weekly during the experiment to evaluate the extent of depression in rats. Plasma samples from each group of rats were collected at the end of the experiment, and then the plasma was analyzed by 1H-NMR metabolomics combined with multivariate statistical analysis methods to identify differential metabolites and perform metabolic pathway analysis. (1) Compared with the group D, the body weight, sucrose preference rate, and the number of crossings and standings in the different types of exercise groups were significantly improved (p < 0.05 or p < 0.01). (2) Compared to group C, a total of 15 differential metabolites associated with depression were screened in the plasma of rats in group D, involving 6 metabolic pathways. Group P can regulate the levels of 6 metabolites: valine, lactate, inositol, glucose, phosphocreatine, acetoacetic acid. Group A can regulate the levels of 6 metabolites: N-acetylglycoprotein, leucine, lactate, low density lipoprotein, glucose and acetoacetic acid. Group R can regulate the levels of 6 metabolites: choline, lactate, inositol, glucose, phosphocreatine and acetoacetic acid. Group E can regulate the levels of 5 metabolites: choline, citric acid, glucose, acetone and acetoacetic acid. The different types of exercise groups can improve the depressive symptoms in CUMS rats, and there are common metabolites and metabolic pathways for their mechanism of effects. This study provides a powerful analytical tool to study the mechanism of the antidepressant effect of exercise, and provides an important method and basis for the early diagnosis, prevention and treatment of depression.
Collapse
Affiliation(s)
- Xiangyu Liu
- School of Physical Education, Huainan Normal University, Huainan, China.
| | - Bo Zhang
- Changji Vocational and Technical College, Xinjiang, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Yumei Han
- School of Physical Education, Shanxi University, Taiyuan, China
| |
Collapse
|
43
|
Jaber M, Kahwaji H, Nasr S, Baz R, Kim YK, Fakhoury M. Precision Medicine in Depression: The Role of Proteomics and Metabolomics in Personalized Treatment Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:359-378. [PMID: 39261438 DOI: 10.1007/978-981-97-4402-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Depression, or major depressive disorder (MDD), is a widespread mental health condition marked by enduring feelings of sorrow and loss of interest. Treatment of depression frequently combines psychotherapy, medication, and lifestyle modifications. However, the occurrence of treatment resistance in certain individuals makes it difficult for physicians to effectively manage this disorder, calling for the implementation of alternative therapeutic strategies. Recently, precision medicine has gained increased attention in the field of mental health, paving the way for more personalized and effective therapeutic interventions in depression. Also known as personalized medicine, this approach relies on genetic composition, molecular profiles, and environmental variables to customize therapies to individual patients. In particular, precision medicine has offered novel viewpoints on depression through two specific domains: proteomics and metabolomics. On one hand, proteomics is the thorough study of proteins in a biological system, while metabolomics focuses on analyzing the complete set of metabolites in a living being. In the past few years, progress in research has led to the identification of numerous depression-related biomarkers using proteomics and metabolomics techniques, allowing for early identification, precise diagnosis, and improved clinical outcome. However, despite significant progress in these techniques, further efforts are required for advancing precision medicine in the diagnosis and treatment of depression. The overarching goal of this chapter is to provide the current state of knowledge regarding the use of proteomics and metabolomics in identifying biomarkers related to depression. It also highlights the potential of proteomics and metabolomics in elucidating the intricate processes underlying depression, opening the door for tailored therapies that could eventually enhance clinical outcome in depressed patients. This chapter finally discusses the main challenges in the use of proteomics and metabolomics and discusses potential future research directions.
Collapse
Affiliation(s)
- Mohamad Jaber
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hamza Kahwaji
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Sirine Nasr
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Reine Baz
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
44
|
Zu X, Xin J, Xie H, Xu X, Shen Y, Wang J, Tian S, Wen Y, Li H, Yang J, Fang Y. Characteristics of gut microbiota and metabolic phenotype in patients with major depressive disorder based on multi-omics analysis. J Affect Disord 2024; 344:563-576. [PMID: 37863362 DOI: 10.1016/j.jad.2023.10.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/13/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Depression is a chronic, relapsing mental illness, often accompanied by loss of appetite, increased fatigue, insomnia and poor concentration. Here, we performed serum and urine metabolomics and fecal 16S rDNA sequencing studies on 57 unmedicated patients with major depressive disorder (MDD) and 57 healthy controls to characterize the metabolic and flora profile of MDD patients. We observed significant differences in serum and urinary metabolome between MDD patients and healthy individuals. Specifically, glycerophospholipid metabolism, primary bile acid biosynthesis and linoleic acid metabolism were significantly disordered in serum, and aminoacyl-tRNA biosynthesis, arginine biosynthesis, purine metabolism, phenylalanine metabolism, alanine, aspartate and glutamate metabolism, and pyrimidine metabolism were significantly impaired in urine. On this basis, we identified four potential diagnostic biomarkers for carnitine and four fatty acid classes in serum and urine, respectively. In addition, we observed significant disturbances of the gut microbiota in MDD patients. Spearman correlation analysis showed that imbalances in the gut microbiota were associated with metabolic disturbances, suggesting an important role of the gut microbiota in the pathogenesis of MDD. Our study provides a theoretical basis for further understanding of the pathogenesis of depression and for future clinical diagnosis and screening, as well as a basis for targeting the gut flora to optimize its structure for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Xianpeng Zu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jiayun Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Haisheng Xie
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Xike Xu
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yunheng Shen
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Jinxin Wang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Saisai Tian
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yukun Wen
- Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University, Shanghai 200433, China
| | - Hongxia Li
- Department of Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, China.
| | - Jishun Yang
- Medical Security Center, Naval Medical Center, Naval Medical University, Shanghai 200433, China.
| | - Yiqun Fang
- Department of Diving and Hyperbaric Medical Research, Naval Medical Center, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
45
|
Konjevod M, Gredicak M, Vuic B, Tudor L, Nikolac Perkovic M, Milos T, Svob Strac D, Pivac N, Nedic Erjavec G. Overview of metabolomic aspects in postpartum depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110836. [PMID: 37541332 DOI: 10.1016/j.pnpbp.2023.110836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Along with the typical biochemical alterations that occur during pregnancy, certain metabolic changes might be associated with the development of several psychiatric disorders, including postpartum depression (PPD), which is the most common type of psychiatric disorder during pregnancy or first postpartum year, and it develops in about 15% of women. Metabolomics is a rapidly developing discipline that deals with the metabolites as the final products of all genetically controlled biochemical pathways, highly influenced by external and internal changes. The aim of this paper was to review the published studies whose results suggest or deny a possible association between the fine regulation of the metabolome and PPD, enabling conclusions about whether metabolomics could be a useful tool in defining the biochemical pathways directly involved in the etiology, diagnosis and course of PPD. Beside numerous hormonal changes, a lot of different metabolic pathways have been discovered to be affected in women with PPD or associated with its development, including alterations in the energy metabolism, tryptophan and amino acid metabolism, steroid metabolism, purine cycle, as well as neurotransmitter metabolism. Additionally, metabolomics helped in defining the association between PPD and the exposure to various endocrine disrupting metabolites during pregnancy. Finally, metabolome reflects different PPD therapies and exposure of fetus or breastfed infants to pharmacotherapy prescribed to a mother suffering from PPD. This review can help in creating the picture about metabolomics' broad application in PPD studies, but it also implies that its potential is still not completely used.
Collapse
Affiliation(s)
| | - Martin Gredicak
- General Hospital Zabok and Hospital for the Croatian Veterans, Bracak 8, p.p. 36, 49210 Zabok, Croatia
| | - Barbara Vuic
- Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | - Lucija Tudor
- Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | | | - Tina Milos
- Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia.
| | | | - Nela Pivac
- Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; University of Applied Sciences Hrvatsko Zagorje Krapina, Setaliste hrvatskog narodnog preporoda 6, 49000 Krapina, Croatia.
| | | |
Collapse
|
46
|
Xi C, He L, Huang Z, Zhang J, Zou K, Guo Q, Huang C. Combined metabolomics and transcriptomics analysis of rats under neuropathic pain and pain-related depression. Front Pharmacol 2023; 14:1320419. [PMID: 38143492 PMCID: PMC10739318 DOI: 10.3389/fphar.2023.1320419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023] Open
Abstract
Neuropathic pain often leads to negative emotions, which in turn can enhance the sensation of pain. This study aimed to investigate the molecular mechanisms mediating neuropathic pain and negative emotions. Chronic constriction injury (CCI) rats were used as model animals and behavioral tests were conducted to assess pain and negative emotions. Then, the rat anterior cingulate cortex (ACC) was analyzed using UPLC-MS/MS and subsequently integrated with our previously published transcriptome data. Metabolomics analysis revealed that 68 differentially expressed metabolites (DEMs) were identified, mainly in amino acid metabolites and fatty acyls. Combined with our previously published transcriptome data, we predicted two genes that potentially exhibited associations with these metabolites, respectively Apolipoprotein L domain containing 1 (Apold1) and WAP four-disulfide core domain 1 (Wfdc1). Taken together, our results indicated that peripheral nerve injury contributing to neuropathic pain and pain-related depression may be associated with these metabolites and genes. This research provides new insights into the molecular regulatory mechanism, which could serve as a reference for the treatment of neuropathic pain and pain-related depression.
Collapse
Affiliation(s)
- Caiyun Xi
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Liqiong He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhifeng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianxi Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Kailu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
47
|
Chan HHY, Siu PLK, Choy CT, Chan UK, Zhou J, Wong CH, Lee YW, Chan HW, Tsui JCC, Loo SKF, Tsui SKW. Novel Multi-Strain E3 Probiotic Formulation Improved Mental Health Symptoms and Sleep Quality in Hong Kong Chinese. Nutrients 2023; 15:5037. [PMID: 38140296 PMCID: PMC10745623 DOI: 10.3390/nu15245037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Mental health issues have emerged as a significant concern in public health, given their association with physical and psychological comorbidities and the resultant socioeconomic burdens. Recent studies have highlighted the interplay between gut microbes and brain functions through the gut-brain axis. To investigate this further, we conducted a targeted 16S rRNA sequencing and comprehensive bioinformatic analysis among Southern Chinese individuals to explore the role of the gut microbiome in depression, anxiety, and sleep disturbance. We analyzed the differences in the gut microbiome profile of 68 participants with sleep disturbance and mood symptoms before and after an 8-week course of a novel oral E3 multi-strain probiotics formula. The results revealed a significant improvement in subjective sleep quality (PSQI: mean 8.79 at baseline vs. 7.10 at week 8, p < 0.001), depressive symptoms (PHQ9: mean 6.17 at baseline vs. 4.76 at week 8, p < 0.001), and anxious symptoms (GAD7: mean 4.90 at baseline vs. 3.76 at week 8, p < 0.001). Additionally, there were notable differences in beta diversity (weighted UniFrac; p = 0.045) and increased Firmicutes/Bacteroidetes (F/B) ratio (p = 4 × 10-4) were observed in the gut microbiome analysis. Furthermore, the relative abundance of Bifidobacterium bifidum (p < 0.001), Lactobacillus acidophilus (p < 0.001), Lactobacillus helveticus (p < 0.001) and Lactobacillus plantarum (p < 0.001) were significantly increased after the 8-week probiotic supplementation. Our study suggests that the gut microbial landscape varies between responders and non-responders at multiple levels, including genera, species, functional, and network interaction. Notably, the use of probiotics in populations with depressive or anxious symptoms and poor sleeping quality remodeled the gut microbiome and demonstrated improved mood and sleep quality.
Collapse
Affiliation(s)
- Helen Hoi Yin Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Pui Ling Kella Siu
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Chi Tung Choy
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Un Kei Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Junwei Zhou
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Chi Ho Wong
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Yuk Wai Lee
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Ho Wang Chan
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Joseph Chi Ching Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
| | - Steven King Fan Loo
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
- Hong Kong Institute of Integrative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Dermatology Centre, CUHK Medical Centre, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- Microbiome Research Centre, BioMed Laboratory Company Limited, Hong Kong, China (P.L.K.S.); (U.K.C.); (J.Z.); (C.H.W.); (Y.W.L.); (H.W.C.); (J.C.C.T.)
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Centre for Microbial Genomics and Proteomics, The Chinese University of Hong Kong, Hong Kong, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
48
|
Chen J, Li T, Huang D, Gong W, Tian J, Gao X, Qin X, Du G, Zhou Y. Integrating UHPLC-MS/MS quantitative analysis and exogenous purine supplementation to elucidate the antidepressant mechanism of Chaigui granules by regulating purine metabolism. J Pharm Anal 2023; 13:1562-1576. [PMID: 38223448 PMCID: PMC10785246 DOI: 10.1016/j.jpha.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024] Open
Abstract
Chaigui granules (CG) are a compound composed of six herbal medicines with significant antidepressant effects. However, the antidepressant mechanism of CG remains unclear. In the present study, we attempted to elucidate the antidepressant mechanism of CG by regulating purine metabolism and purinergic signaling. First, the regulatory effect of CG on purine metabolites in the prefrontal cortex (PFC) of chronic unpredictable mild stress (CUMS) rats was analyzed by ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) targeted quantitative analysis. Meanwhile, purinergic receptors (P2X7 receptor (P2X7R), A1 receptor (A1R) and A2A receptor (A2AR)) and signaling pathways (nod-like receptor protein 3 (NLRP3) inflammasome pathway and cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway) associated with purine metabolism were analyzed by western blotting and enzyme-linked immunosorbent assay (ELISA). Besides, antidepressant mechanism of CG by modulating purine metabolites to activate purinergic receptors and related signaling pathways was dissected by exogenous supplementation of purine metabolites and antagonism of purinergic receptors in vitro. An in vivo study showed that the decrease in xanthine and the increase in four purine nucleosides were closely related to the antidepressant effects of CG. Additionally, purinergic receptors (P2X7R, A1R and A2AR) and related signaling pathways (NLRP3 inflammasome pathway and cAMP-PKA pathway) were also significantly regulated by CG. The results of exogenous supplementation of purine metabolites and antagonism of purinergic receptors showed that excessive accumulation of xanthine led to activation of the P2X7R-NLRP3 inflammasome pathway, and the reduction of adenosine and inosine inhibited the A1R-cAMP-PKA pathway, which was significantly ameliorated by CG. Overall, CG could promote neuroprotection and ultimately play an antidepressant role by inhibiting the xanthine-P2X7R-NLRP3 inflammasome pathway and activating the adenosine/inosine-A1R-cAMP-PKA pathway.
Collapse
Affiliation(s)
- Jiajun Chen
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Tian Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Dehua Huang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Wenxia Gong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| | - Guanhua Du
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, 030006, China
| |
Collapse
|
49
|
Hao M, Qin Y, Li Y, Tang Y, Ma Z, Tan J, Jin L, Wang F, Gong X. Metabolome subtyping reveals multi-omics characteristics and biological heterogeneity in major psychiatric disorders. Psychiatry Res 2023; 330:115605. [PMID: 38006718 DOI: 10.1016/j.psychres.2023.115605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/27/2023]
Abstract
Growing evidence suggests that major psychiatric disorders (MPDs) share common etiologies and pathological processes. However, the diagnosis is currently based on descriptive symptoms, which ignores the underlying pathogenesis and hinders the development of clinical treatments. This highlights the urgency of characterizing molecular biomarkers and establishing objective diagnoses of MPDs. Here, we collected untargeted metabolomics, proteomics and DNA methylation data of 327 patients with MPDs, 131 individuals with genetic high risk and 146 healthy controls to explore the multi-omics characteristics of MPDs. First, differential metabolites (DMs) were identified and we classified MPD patients into 3 subtypes based on DMs. The subtypes showed distinct metabolomics, proteomics and DNA methylation signatures. Specifically, one subtype showed dysregulation of complement and coagulation proteins, while the DNA methylation showed abnormalities in chemical synapses and autophagy. Integrative analysis in metabolic pathways identified the important roles of the citrate cycle, sphingolipid metabolism and amino acid metabolism. Finally, we constructed prediction models based on the metabolites and proteomics that successfully captured the risks of MPD patients. Our study established molecular subtypes of MPDs and elucidated their biological heterogeneity through a multi-omics investigation. These results facilitate the understanding of pathological mechanisms and promote the diagnosis and prevention of MPDs.
Collapse
Affiliation(s)
- Meng Hao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China
| | - Yue Qin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China
| | - Yi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China; International Human Phenome Institutes, Shanghai, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zehan Ma
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jingze Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China; Zhangjiang Fudan International Innovation Center, Fudan Zhangjiang Institute, Obstetrics and Gynecology Hospital, Human Phenome Institute, Fudan University, China; International Human Phenome Institutes, Shanghai, China
| | - Fei Wang
- Early Intervention Unit, Department of Psychiatry, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China; Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, China.
| | - Xiaohong Gong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
50
|
Yin J, Li S, Li J, Gong R, Jia Z, Liu J, Jin Z, Yang J, Liu Y. Association of serum oleic acid level with depression in American adults: a cross-sectional study. BMC Psychiatry 2023; 23:845. [PMID: 37974120 PMCID: PMC10652490 DOI: 10.1186/s12888-023-05271-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND As the most abundant fatty acid in plasma, oleic acid has been found to be associated with multiple neurological diseases; however, results from studies of the relationship between oleic acid and depression are inconsistent. METHODS This cross-sectional study analyzed 4,459 adults from the National Health and Nutrition Examination Survey 2011-2014. The following covariates were adjusted in multivariable logistic regression models: age, sex, race/ethnicity, education level, marital status, body mass index, physical activity, smoking status, alcohol status, metabolic syndrome, omega-3 polyunsaturated fatty acids, and total cholesterol. RESULTS Serum oleic acid levels were positively associated with depression. After adjusting for all covariates, for every 1 mmol/L increase in oleic acid levels, the prevalence of depression increased by 40% (unadjusted OR: 1.35, 95%CI: 1.16-1.57; adjusted OR: 1.40, 95% CI: 1.03-1.90). CONCLUSIONS Our study suggests that oleic acid may play a role in depression. Further research is needed to investigate the potential benefits of changing oleic acid levels for the treatment and prevention of depression.
Collapse
Affiliation(s)
- Jiahui Yin
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siyuan Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinling Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Zhixia Jia
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junjun Liu
- Nanjing Meishan Hospital, Nanjing, China
| | - Zhi Jin
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jiguo Yang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Yuanxiang Liu
- Department of Neurology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China.
| |
Collapse
|