1
|
Hayat M, Syed RA, Qaiser H, Uzair M, Al-Regaiey K, Khallaf R, Albassam LAM, Kaleem I, Wang X, Wang R, Bhatti MS, Bashir S. Decoding molecular mechanisms: brain aging and Alzheimer's disease. Neural Regen Res 2025; 20:2279-2299. [PMID: 39104174 PMCID: PMC11759015 DOI: 10.4103/nrr.nrr-d-23-01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/23/2024] [Accepted: 07/04/2024] [Indexed: 08/07/2024] Open
Abstract
The complex morphological, anatomical, physiological, and chemical mechanisms within the aging brain have been the hot topic of research for centuries. The aging process alters the brain structure that affects functions and cognitions, but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease. Beyond these observable, mild morphological shifts, significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain. Understanding these changes is important for maintaining cognitive health, especially given the increasing prevalence of age-related conditions that affect cognition. This review aims to explore the age-induced changes in brain plasticity and molecular processes, differentiating normal aging from the pathogenesis of Alzheimer's disease, thereby providing insights into predicting the risk of dementia, particularly Alzheimer's disease.
Collapse
Affiliation(s)
- Mahnoor Hayat
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rafay Ali Syed
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hammad Qaiser
- Department of Biological Sciences, Faculty of Basic & Applied Sciences, International Islamic University Islamabad (IIUI), Islamabad, Pakistan
| | - Mohammad Uzair
- Department of Bioengineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Khalid Al-Regaiey
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Roaa Khallaf
- Department of Neurology, Neuroscience Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Imdad Kaleem
- Department of Biosciences, Commission on Science and Technology for Sustainable Development in the South (COMSATS University), Islamabad, Pakistan
| | - Xueyi Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Ran Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
- Mental Health Institute of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Mehwish S. Bhatti
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Shahid Bashir
- Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Feng Y, Zhou Q, Hu B, Wang S, Chen L, Cai W, Zhu Q, Qin X, Zhou W, Wu Y, Song W. Unveiling the role of KLF9-mediated IFITM3 regulation in amyloidogenesis. FASEB J 2025; 39:e70403. [PMID: 39953787 DOI: 10.1096/fj.202401584rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is implicated in the pathogenesis of Alzheimer's Disease (AD) by regulating γ-secretase activity and subsequent amyloid β (Aβ) generation. However, the regulation of IFITM3 gene expression and the underlying mechanisms remain exclusive. In this study, we aimed to investigate the regulation of the IFITM3 and its role in amyloidogenesis. The functional active promoter of the IFITM3 gene was identified within the 1047 bp of 5'-flanking regions by luciferase assays. Through chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA), we successfully identified a specific Krüppel-like factor 9 (KLF9) binding site within the promoter region. Moreover, KLF9 overexpression significantly upregulates IFITM3 expression in vitro and in vivo, which promotes Aβ generation in the hippocampus of mice. Consistently, reduced IFITM3 expression results in a notable decrease of Aβ production. Together, we demonstrate that KLF9 plays a critical role in regulating IFITM3 expression and subsequent Aβ production. It highly suggests that inhibiting KLF9-mediated IFITM3 expression may have therapeutic potential for AD by reducing Aβ production.
Collapse
Affiliation(s)
- Yijia Feng
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Qian Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bolang Hu
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Shengya Wang
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lifen Chen
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wantong Cai
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Qinxin Zhu
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuemei Qin
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yili Wu
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Weihong Song
- Center for Geriatric Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Basic and Translational Research for Mental Disorders, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Feng Y, Wang S, Yang D, Zheng W, Xia H, Zhu Q, Wang Z, Hu B, Jiang X, Qin X, Ni C, Pan W, Zhao Y, Pan S, Zhang Y, Song W. Inhibition of IFITM3 in cerebrovascular endothelium alleviates Alzheimer's-related phenotypes. Alzheimers Dement 2025; 21:e14543. [PMID: 39807629 PMCID: PMC11851164 DOI: 10.1002/alz.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Interferon-induced transmembrane protein 3 (IFITM3) modulates γ-secretase in Alzheimer's Disease (AD). Although IFITM3 knockout reduces amyloid β protein (Aβ) production, its cell-specific effect on AD remains unclear. METHODS Single nucleus RNA sequencing (snRNA-seq) was used to assess IFITM3 expression. Adeno-associated virus-BI30 (AAV-BI30) was injected to reduce IFITM3 expression in the cerebrovascular endothelial cells (CVECs). The effects on AD phenotypes in cells and AD mice were examined through behavioral tests, two-photon imaging, flow cytometry, Western blot, immunohistochemistry, and quantitative polymerase chain reaction assay (qPCR). RESULTS IFITM3 expression was increased in the CVECs of patients with AD. Overexpression of IFITM3 in primary endothelial cells enhanced Aβ generation through regulating beta-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Aβ further increased IFITM3 expression, creating a vicious cycle. Knockdown of IFITM3 in CVECs decreased Aβ accumulation within cerebrovascular walls, reduced Alzheimer's-related pathology, and improved cognitive performance in AD transgenic mice. DISCUSSION Knockdown of IFITM3 in CVECs alleviates AD pathology and cognitive impairment. Targeting cerebrovascular endothelial IFITM3 holds promise for AD treatment. HIGHLIGHTS Interferon-induced transmembrane protein 3 (IFITM3) expression was increased in the cerebrovascular endothelial cells (CVECs) of patients with Alzheimer's Disease (AD). Cerebrovascular endothelial IFITM3 regulates amyloid β protein (Aβ) generation through regulating beta-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Knockdown of IFITM3 in CVECs reduces Aβ deposits and improves cognitive impairments in AD transgenic mice. Cerebrovascular endothelial IFITM3 could be a potential target for the treatment of AD.
Collapse
Affiliation(s)
- Yijia Feng
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Shengya Wang
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Danlu Yang
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wu Zheng
- Neuroscience Medical CenterNingbo Medical Center Lihuili HospitalNingbo UniversityNingboZhejiangChina
| | - Huwei Xia
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Qinxin Zhu
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Zhipeng Wang
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Bolang Hu
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xinyi Jiang
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Xuemei Qin
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Chenkang Ni
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wenhao Pan
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yifan Zhao
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
| | - Sipei Pan
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Yun Zhang
- Department of NeurologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Weihong Song
- Center for Geriatric MedicineKey Laboratory of Alzheimer's Disease of Zhejiang ProvinceThe First Affiliated Hospital and Institute of AgingWenzhou Medical UniversityWenzhouZhejiangChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| |
Collapse
|
4
|
Liu X, Chen P, Wu W, Zhong M, Dong S, Lin H, Dai C, Zhang Z, Lin S, Che C, Xu J, Li C, Li H, Pan X, Chen Z, Chen X, Ye ZC. Compound (E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one downregulation of Galectin-3 ameliorates Aβ pathogenesis-induced neuroinflammation in 5 × FAD mice. Life Sci 2024; 357:123085. [PMID: 39362584 DOI: 10.1016/j.lfs.2024.123085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
AIMS Alzheimer's disease (AD) is characterized by β-amyloid (Aβ) aggregation and neuroinflammation, leading to progressive synaptic loss and cognitive decline. Recent evidence suggests that Galectin-3 (Gal-3) plays a critical role in Aβ pathogenesis. However, strategies to simultaneously target Gal-3 and Aβ are currently insufficient. This study evaluates the therapeutic efficacy of (E)-2-(3,4-dihydroxystyryl)-3-hydroxy-4H-pyran-4-one (D30), in reducing Gal-3 and Aβ pathogenesis. MATERIALS AND METHODS We applied exogenous oligomeric Aβ and used 5 × FAD mice to assess the impact of Aβ on Gal-3 deposition, microglial activation, and cognitive function. Thy1-EGFP mice were employed to observe dendritic spines. Comprehensive evaluations of D30's effects included behavioral studies, transcriptomic analysis, Western blotting, and immunofluorescent staining. The interaction between D30 and Gal-3 was examined using fluorescence resonance energy transfer (FRET) and microscale thermophoresis (MST). KEY FINDINGS D30 effectively reduced Aβ monomer production by inhibiting Amyloid Precursor Protein (APP) and presenilin 1 (PS1) expression, and decreased Aβ aggregation. Treatment with D30 improved cognitive functions, reversed dendritic spine loss, and increased PSD95 expression in 5 × FAD mice. Additionally, D30 significantly lowered Gal-3 levels in both plasma and hippocampal tissues. D30 binds to Gal-3 and disrupts the interaction between Gal-3 and TREM2, as confirmed by FRET and MST. SIGNIFICANCE Our findings underscore the interaction between Gal-3 and Aβ in AD and its role in systemic inflammation using the 5 × FAD mouse model. Being able to target and regulate Gal-3 together with Aβ is crucial for preventing neuroinflammation and protecting synapses, D30 emerged as a novel compound with promising potential for AD treatment.
Collapse
Affiliation(s)
- Xueyan Liu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China; School of Pharmacy, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Ping Chen
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China; Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian Province, China
| | - Wei Wu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Meihua Zhong
- School of Pharmacy, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Shiyu Dong
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Huiling Lin
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Chaoxian Dai
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Zhile Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou 350112, Fujian Province, China; Ningde Rehabilitation Hospital, Ningde 352105, Fujian Province, China
| | - Shiqi Lin
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Cuilan Che
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Jiexin Xu
- School of Pharmacy, Fujian Medical University, Fuzhou 350112, Fujian Province, China
| | - Chenlu Li
- Department of Hyperbaric Oxygen, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, Fujian Province, China
| | - Hongwei Li
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, Jilin Province, China
| | - Xiaodong Pan
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fujian Province, China
| | - Zhou Chen
- Overseas Education College of Fujian Medical University, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Xiaochun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University, Fujian Province, China.
| | - Zu-Cheng Ye
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350112, Fujian Province, China.
| |
Collapse
|
5
|
Maksour S, Finol-Urdaneta RK, Hulme AJ, Cabral-da-Silva MEC, Targa Dias Anastacio H, Balez R, Berg T, Turner C, Sanz Muñoz S, Engel M, Kalajdzic P, Lisowski L, Sidhu K, Sachdev PS, Dottori M, Ooi L. Alzheimer's disease induced neurons bearing PSEN1 mutations exhibit reduced excitability. Front Cell Neurosci 2024; 18:1406970. [PMID: 39444394 PMCID: PMC11497635 DOI: 10.3389/fncel.2024.1406970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition that affects memory and cognition, characterized by neuronal loss and currently lacking a cure. Mutations in PSEN1 (Presenilin 1) are among the most common causes of early-onset familial AD (fAD). While changes in neuronal excitability are believed to be early indicators of AD progression, the link between PSEN1 mutations and neuronal excitability remains to be fully elucidated. This study examined iPSC-derived neurons (iNs) from fAD patients with PSEN1 mutations S290C or A246E, alongside CRISPR-corrected isogenic cell lines, to investigate early changes in excitability. Electrophysiological profiling revealed reduced excitability in both PSEN1 mutant iNs compared to their isogenic controls. Neurons bearing S290C and A246E mutations exhibited divergent passive membrane properties compared to isogenic controls, suggesting distinct effects of PSEN1 mutations on neuronal excitability. Additionally, both PSEN1 backgrounds exhibited higher current density of voltage-gated potassium (Kv) channels relative to their isogenic iNs, while displaying comparable voltage-gated sodium (Nav) channel current density. This suggests that the Nav/Kv imbalance contributes to impaired neuronal firing in fAD iNs. Deciphering these early cellular and molecular changes in AD is crucial for understanding disease pathogenesis.
Collapse
Affiliation(s)
- Simon Maksour
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Rocio K. Finol-Urdaneta
- School of Medical and Indigenous Health Science and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Amy J. Hulme
- School of Medical and Indigenous Health Science and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | | | - Helena Targa Dias Anastacio
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Rachelle Balez
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Tracey Berg
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Calista Turner
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Martin Engel
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Predrag Kalajdzic
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Australian Genome Therapeutics Centre, Children’s Medical Research Institute and Sydney Children’s Hospitals Network, Westmead, NSW, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Kuldip Sidhu
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Mirella Dottori
- School of Medical and Indigenous Health Science and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
6
|
Xu J, Gu J, Pei W, Zhang Y, Wang L, Gao J. The role of lysosomal membrane proteins in autophagy and related diseases. FEBS J 2024; 291:3762-3785. [PMID: 37221945 DOI: 10.1111/febs.16820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
As a self-degrading and highly conserved survival mechanism, autophagy plays an important role in maintaining cell survival and recycling. The discovery of autophagy-related (ATG) genes has revolutionized our understanding of autophagy. Lysosomal membrane proteins (LMPs) are important executors of lysosomal function, and increasing evidence has demonstrated their role in the induction and regulation of autophagy. In addition, the functional dysregulation of the process mediated by LMPs at all stages of autophagy is closely related to neurodegenerative diseases and cancer. Here, we review the role of LMPs in autophagy, focusing on their roles in vesicle nucleation, vesicle elongation and completion, the fusion of autophagosomes and lysosomes, and degradation, as well as their broad association with related diseases.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Jing Gu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
| | - Wenjun Pei
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Yao Zhang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, China
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Department of Endocrinology and Genetic Metabolism, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Anhui Province Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, China
- Anhui Provincial College Key Laboratory of Non-coding RNA Transformation Research on Critical Diseases, Wannan Medical College, Wuhu, China
| |
Collapse
|
7
|
Flieger J, Forma A, Flieger W, Flieger M, Gawlik PJ, Dzierżyński E, Maciejewski R, Teresiński G, Baj J. Carotenoid Supplementation for Alleviating the Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:8982. [PMID: 39201668 PMCID: PMC11354426 DOI: 10.3390/ijms25168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by, among other things, dementia and a decline in cognitive performance. In AD, dementia has neurodegenerative features and starts with mild cognitive impairment (MCI). Research indicates that apoptosis and neuronal loss occur in AD, in which oxidative stress plays an important role. Therefore, reducing oxidative stress with antioxidants is a natural strategy to prevent and slow down the progression of AD. Carotenoids are natural pigments commonly found in fruits and vegetables. They include lipophilic carotenes, such as lycopene, α- and β-carotenes, and more polar xanthophylls, for example, lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin. Carotenoids can cross the blood-brain barrier (BBB) and scavenge free radicals, especially singlet oxygen, which helps prevent the peroxidation of lipids abundant in the brain. As a result, carotenoids have neuroprotective potential. Numerous in vivo and in vitro studies, as well as randomized controlled trials, have mostly confirmed that carotenoids can help prevent neurodegeneration and alleviate cognitive impairment in AD. While carotenoids have not been officially approved as an AD therapy, they are indicated in the diet recommended for AD, including the consumption of products rich in carotenoids. This review summarizes the latest research findings supporting the potential use of carotenoids in preventing and alleviating AD symptoms. A literature review suggests that a diet rich in carotenoids should be promoted to avoid cognitive decline in AD. One of the goals of the food industry should be to encourage the enrichment of food products with functional substances, such as carotenoids, which may reduce the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Wojciech Flieger
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Piotr J. Gawlik
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Eliasz Dzierżyński
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Ryszard Maciejewski
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
8
|
Ji L, Meng Z, Dong X, Wang Q, Jiang Y, Zhang J, Hu D, Guo S, Zhou W, Song W. ICA1 affects APP processing through the PICK1-PKCα signaling pathway. CNS Neurosci Ther 2024; 30:e14754. [PMID: 38884369 PMCID: PMC11181291 DOI: 10.1111/cns.14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024] Open
Abstract
AIMS Islet cell autoantigen 1 (ICA1) is involved in autoimmune diseases and may affect synaptic plasticity as a neurotransmitter. Databases related to Alzheimer's disease (AD) have shown decreased ICA1 expression in patients with AD. However, the role of ICA1 in AD remains unclear. Here, we report that ICA1 expression is decreased in the brains of patients with AD and an AD mouse model. RESULTS The ICA1 increased the expression of amyloid precursor protein (APP), disintegrin and metalloprotease 10 (ADAM10), and disintegrin and metalloprotease 17 (ADAM17), but did not affect protein half-life or mRNA levels. Transcriptome sequencing analysis showed that ICA1 regulates the G protein-coupled receptor signaling pathway. The overexpression of ICA1 increased PKCα protein levels and phosphorylation. CONCLUSION Our results demonstrated that ICA1 shifts APP processing to non-amyloid pathways by regulating the PICK1-PKCα signaling pathway. Thus, this study suggests that ICA1 is a novel target for the treatment of AD.
Collapse
Affiliation(s)
- Liangye Ji
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - ZiJun Meng
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiangjun Dong
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Qunxian Wang
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yanshuang Jiang
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Jie Zhang
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Dongjie Hu
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Shipeng Guo
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Weihui Zhou
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Weihong Song
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| |
Collapse
|
9
|
Lin EY, Hsu SX, Wu BH, Deng YC, Wuli W, Li YS, Lee JH, Lin SZ, Harn HJ, Chiou TW. Engineered Exosomes Containing microRNA-29b-2 and Targeting the Somatostatin Receptor Reduce Presenilin 1 Expression and Decrease the β-Amyloid Accumulation in the Brains of Mice with Alzheimer's Disease. Int J Nanomedicine 2024; 19:4977-4994. [PMID: 38828204 PMCID: PMC11144417 DOI: 10.2147/ijn.s442876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Exosomes are membrane vesicles secreted by various cells and play a crucial role in intercellular communication. They can be excellent delivery vehicles for oligonucleotide drugs, such as microRNAs, due to their high biocompatibility. MicroRNAs have been shown to be more stable when incorporated into exosomes; however, the lack of targeting and immune evasion is still the obstacle to the use of these microRNA-containing nanocarriers in clinical settings. Our goal was to produce functional exosomes loaded with target ligands, immune evasion ligand, and oligonucleotide drug through genetic engineering in order to achieve more precise medical effects. Methods To address the problem, we designed engineered exosomes with exogenous cholecystokinin (CCK) or somatostatin (SST) as the targeting ligand to direct the exosomes to the brain, as well as transduced CD47 proteins to reduce the elimination or phagocytosis of the targeted exosomes. MicroRNA-29b-2 was the tested oligonucleotide drug for delivery because our previous research showed that this type of microRNA was capable of reducing presenilin 1 (PSEN1) gene expression and decreasing the β-amyloid accumulation for Alzheimer's disease (AD) in vitro and in vivo. Results The engineered exosomes, containing miR29b-2 and expressing SST and CD47, were produced by gene-modified dendritic cells and used in the subsequent experiments. In comparison with CD47-CCK exosomes, CD47-SST exosomes showed a more significant increase in delivery efficiency. In addition, CD47-SST exosomes led to a higher delivery level of exosomes to the brains of nude mice when administered intravenously. Moreover, it was found that the miR29b-2-loaded CD47-SST exosomes could effectively reduce PSEN1 in translational levels, which resulted in an inhibition of beta-amyloid oligomers production both in the cell model and in the 3xTg-AD animal model. Conclusion Our results demonstrated the feasibility of the designed engineered exosomes. The application of this exosomal nanocarrier platform can be extended to the delivery of other oligonucleotide drugs to specific tissues for the treatment of diseases while evading the immune system.
Collapse
Affiliation(s)
- En-Yi Lin
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shao-Xi Hsu
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Bing-Hua Wu
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | - Yu-Chen Deng
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
- Everfront Biotech Inc, Taipei, Taiwan
| | - Wei Wuli
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| | | | | | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Pathology, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien, Taiwan
| |
Collapse
|
10
|
Zhang Q, Xing M, Bao Z, Xu L, Bai Y, Chen W, Pan W, Cai F, Wang Q, Guo S, Zhang J, Wang Z, Wu Y, Zhang Y, Li JD, Song W. Contactin-associated protein-like 2 (CNTNAP2) mutations impair the essential α-secretase cleavages, leading to autism-like phenotypes. Signal Transduct Target Ther 2024; 9:51. [PMID: 38424048 PMCID: PMC10904759 DOI: 10.1038/s41392-024-01768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in the Contactin-associated protein-like 2 (CNTNAP2) gene are associated with autism spectrum disorder (ASD), and ectodomain shedding of the CNTNAP2 protein plays a role in its function. However, key enzymes involved in the C-terminal cleavage of CNTNAP2 remain largely unknown, and the effect of ASD-associated mutations on this process and its role in ASD pathogenesis remain elusive. In this report we showed that CNTNAP2 undergoes sequential cleavages by furin, ADAM10/17-dependent α-secretase and presenilin-dependent γ-secretase. We identified that the cleavage sites of ADAM10 and ADAM17 in CNTNAP2 locate at its C-terminal residue I79 and L96, and the main α-cleavage product C79 by ADAM10 is required for the subsequent γ-secretase cleavage to generate CNTNAP2 intracellular domain (CICD). ASD-associated CNTNAP2 mutations impair the α-cleavage to generate C79, and the inhibition leads to ASD-like repetitive and social behavior abnormalities in the Cntnap2-I1254T knock-in mice. Finally, exogenous expression of C79 improves autism-like phenotypes in the Cntnap2-I1254T knock-in and Cntnap2-/- knockout mice. This data demonstrates that the α-secretase is essential for CNTNAP2 processing and its function. Our study indicates that inhibition of the cleavage by pathogenic mutations underlies ASD pathogenesis, and upregulation of its C-terminal fragments could have therapeutical potentials for ASD treatment.
Collapse
Affiliation(s)
- Qing Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mengen Xing
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhengkai Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lu Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yang Bai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wanqi Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenhao Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fang Cai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jing Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yili Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Jia-Da Li
- Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Zhejiang Key Laboratory of Alzheimer's Disease, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and Wenzhou Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
11
|
Wang Q, Guo S, Hu D, Dong X, Meng Z, Jiang Y, Feng Z, Zhou W, Song W. Enhanced Gasdermin-E-mediated Pyroptosis in Alzheimer's Disease. Neuroscience 2024; 536:1-11. [PMID: 37944579 DOI: 10.1016/j.neuroscience.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Amyloid β protein (Aβ) is a critical factor in the pathogenesis of Alzheimer's disease (AD). Aβ induces apoptosis, and gasdermin-E (GSDME) expression can switch apoptosis to pyroptosis. In this study, we demonstrated that GSDME was highly expressed in the hippocampus of APP23/PS45 mouse models compared to that in age-matched wild-type mice. Aβ treatment induced pyroptosis by active caspase-3/GSDME in SH-SY5Y cells. Furthermore, the knockdown of GSDME improved the cognitive impairments of APP23/PS45 mice by alleviating inflammatory response. Our findings reveal that GSDME, as a modulator of Aβ and pyroptosis, plays a potential role in Alzheimer's disease pathogenesis and shows that GSDME is a therapeutic target for AD.
Collapse
Affiliation(s)
- Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shipeng Guo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanshuang Jiang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
12
|
Coimbra JRM, Resende R, Custódio JBA, Salvador JAR, Santos AE. BACE1 Inhibitors for Alzheimer's Disease: Current Challenges and Future Perspectives. J Alzheimers Dis 2024; 101:S53-S78. [PMID: 38943390 DOI: 10.3233/jad-240146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Disease-modifying therapies (DMT) for Alzheimer's disease (AD) are highly longed-for. In this quest, anti-amyloid therapies take center stage supported by genetic facts that highlight an imbalance between production and clearance of amyloid-β peptide (Aβ) in AD patients. Indeed, evidence from basic research, human genetic and biomarker studies, suggests the accumulation of Aβ as a driver of AD pathogenesis and progression. The aspartic protease β-site AβPP cleaving enzyme (BACE1) is the initiator for Aβ production. Underpinning a critical role for BACE1 in AD pathophysiology are the elevated BACE1 concentration and activity observed in the brain and body fluids of AD patients. Therefore, BACE1 is a prime drug target for reducing Aβ levels in early AD. Small-molecule BACE1 inhibitors have been extensively developed for the last 20 years. However, clinical trials with these molecules have been discontinued for futility or safety reasons. Most of the observed adverse side effects were due to other aspartic proteases cross-inhibition, including the homologue BACE2, and to mechanism-based toxicity since BACE1 has substrates with important roles for synaptic plasticity and synaptic homeostasis besides amyloid-β protein precursor (AβPP). Despite these setbacks, BACE1 persists as a well-validated therapeutic target for which a specific inhibitor with high substrate selectivity may yet to be found. In this review we provide an overview of the evolution in BACE1 inhibitors design pinpointing the molecules that reached advanced phases of clinical trials and the liabilities that precluded adequate trial effects. Finally, we ponder on the challenges that anti-amyloid therapies must overcome to achieve clinical success.
Collapse
Affiliation(s)
- Judite R M Coimbra
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Rosa Resende
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - José B A Custódio
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Armanda E Santos
- Center for Innovative Biomedicine and Biotechnology (CIBB), Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
- Laboratory of Biochemistry and Biology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Paul D, Agrawal R, Singh S. Alzheimer's disease and clinical trials. J Basic Clin Physiol Pharmacol 2024; 35:31-44. [PMID: 38491747 DOI: 10.1515/jbcpp-2023-0264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD) is spreading its root disproportionately among the worldwide population. Many genes have been identified as the hallmarks of AD. Based upon the knowledge, many clinical trials have been designed and conducted. Attempts have been made to alleviate the pathology associated with AD by targeting the molecular products of these genes. Irrespective of the understanding on the genetic component of AD, many clinical trials have failed and imposed greater challenges on the path of drug discovery. Therefore, this review aims to identify research and review articles to pinpoint the limitations of drug candidates (thiethylperazine, CT1812, crenezumab, CNP520, and lecanemab), which are under or withdrawn from clinical trials. Thorough analysis of the cross-talk pathways led to the identification of many confounding factors, which could interfere with the success of clinical trials with drug candidates such as thiethylperazine, CT1812, crenezumab, and CNP520. Though these drug candidates were enrolled in clinical trials, yet literature review shows many limitations. These limitations raise many questions on the rationale behind the enrollments of these drug candidates in clinical trials. A meticulous prior assessment of the outcome of clinical studies may stop risky clinical trials at their inceptions. This may save time, money, and resources.
Collapse
Affiliation(s)
- Deepraj Paul
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| | - Rohini Agrawal
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| | - Swati Singh
- Department of Pharmacology, 621320 College of Pharmacy JSS Academy of Technical Education , Noida, Uttar Pradesh, India
| |
Collapse
|
14
|
Yao J, Wang Z, Song W, Zhang Y. Targeting NLRP3 inflammasome for neurodegenerative disorders. Mol Psychiatry 2023; 28:4512-4527. [PMID: 37670126 DOI: 10.1038/s41380-023-02239-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Neuroinflammation is a key pathological feature in neurological diseases, including Alzheimer's disease (AD). The nucleotide-binding domain leucine-rich repeat-containing proteins (NLRs) belong to the pattern recognition receptors (PRRs) family that sense stress signals, which play an important role in inflammation. As a member of NLRs, the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) is predominantly expressed in microglia, the principal innate immune cells in the central nervous system (CNS). Microglia release proinflammatory cytokines to cause pyroptosis through activating NLRP3 inflammasome. The active NLRP3 inflammasome is involved in a variety of neurodegenerative diseases (NDs). Recent studies also indicate the key role of neuronal NLRP3 in the pathogenesis of neurological disorders. In this article, we reviewed the mechanisms of NLRP3 expression and activation and discussed the role of active NLRP3 inflammasome in the pathogenesis of NDs, particularly focusing on AD. The studies suggest that targeting NLRP3 inflammasome could be a novel approach for the disease modification.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
15
|
Quan M, Cao S, Wang Q, Wang S, Jia J. Genetic Phenotypes of Alzheimer's Disease: Mechanisms and Potential Therapy. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:333-349. [PMID: 37589021 PMCID: PMC10425323 DOI: 10.1007/s43657-023-00098-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 08/18/2023]
Abstract
Years of intensive research has brought us extensive knowledge on the genetic and molecular factors involved in Alzheimer's disease (AD). In addition to the mutations in the three main causative genes of familial AD (FAD) including presenilins and amyloid precursor protein genes, studies have identified several genes as the most plausible genes for the onset and progression of FAD, such as triggering receptor expressed on myeloid cells 2, sortilin-related receptor 1, and adenosine triphosphate-binding cassette transporter subfamily A member 7. The apolipoprotein E ε4 allele is reported to be the strongest genetic risk factor for sporadic AD (SAD), and it also plays an important role in FAD. Here, we reviewed recent developments in genetic and molecular studies that contributed to the understanding of the genetic phenotypes of FAD and compared them with SAD. We further reviewed the advancements in AD gene therapy and discussed the future perspectives based on the genetic phenotypes.
Collapse
Affiliation(s)
- Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shuman Cao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shiyuan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053 China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053 China
- Center of Alzheimer’s Disease, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100053 China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053 China
| |
Collapse
|
16
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 313] [Impact Index Per Article: 156.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Hu D, Dong X, Wang Q, Liu M, Luo S, Meng Z, Feng Z, Zhou W, Song W. PCP4 Promotes Alzheimer's Disease Pathogenesis by Affecting Amyloid-β Protein Precursor Processing. J Alzheimers Dis 2023:JAD230192. [PMID: 37302034 DOI: 10.3233/jad-230192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND Down syndrome (DS) is caused by an extra copy of all or part of chromosome 21. The patients with DS develop typical Alzheimer's disease (AD) neuropathology, indicating the role of genes on human chromosome 21 (HSA21) in the pathogenesis of AD. Purkinje cell protein 4 (PCP4), also known as brain-specific protein 19, is a critical gene located on HSA21. However, the role of PCP4 in DS and AD pathogenesis is not clear. OBJECTIVE To explore the role of PCP4 in amyloid-β protein precursor (AβPP) processing in AD. METHODS In this study, we investigated the role of PCP4 in AD progression in vitro and in vivo. In vitro experiments, we overexpressed PCP4 in human Swedish mutant AβPP stable expression or neural cell lines. In vitro experiments, APP23/PS45 double transgenic mice were selected and treated with AAV-PCP4. Multiple topics were detected by western blot, RT-PCR, immunohistochemical and behavioral test. RESULTS We found that PCP4 expression was altered in AD. PCP4 was overexpressed in APP23/PS45 transgenic mice and PCP4 affected the processing of AβPP. The production of amyloid-β protein (Aβ) was also promoted by PCP4. The upregulation of endogenous AβPP expression and the downregulation of ADAM10 were due to the transcriptional regulation of PCP4. In addition, PCP4 increased Aβ deposition and neural plaque formation in the brain, and exuberated learning and memory impairment in transgenic AD model mice. CONCLUSION Our finding reveals that PCP4 contributes to the pathogenesis of AD by affecting AβPP processing and suggests PCP4 as a novel therapeutic target for AD by targeting Aβ pathology.
Collapse
Affiliation(s)
- Dongjie Hu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qunxian Wang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjing Liu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Shuyue Luo
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijuan Feng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| |
Collapse
|
18
|
Zhang J, Cai F, Lu R, Xing X, Xu L, Wu K, Gong Z, Zhang Q, Zhang Y, Xing M, Song W, Li JD. CNTNAP2 intracellular domain (CICD) generated by γ-secretase cleavage improves autism-related behaviors. Signal Transduct Target Ther 2023; 8:219. [PMID: 37271769 DOI: 10.1038/s41392-023-01431-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/03/2023] [Accepted: 03/24/2023] [Indexed: 06/06/2023] Open
Abstract
As the most prevalent neurodevelopmental disorders in children, autism spectrum disorders (ASD) are characterized by deficits in language development, social interaction, and repetitive behaviors or inflexible interests. Contactin associated protein like 2 (CNTNAP2), encoding a single transmembrane protein (CNTNAP2) with 1331 amino acid residues, is a widely validated ASD-susceptible gene. Cntnap2-deficient mice also show core autism-relevant behaviors, including the social deficits and repetitive behavior. However, the cellular mechanisms underlying dysfunction CNTNAP2 and ASD remain elusive. In this study, we found a motif within the transmembrane domain of CNTNAP2 was highly homologous to the γ-secretase cleavage site of amyloid-β precursor protein (APP), suggesting that CNTNAP2 may undergo proteolytic cleavage. Further biochemical analysis indicated that CNTNAP2 is cleaved by γ-secretase to produce the CNTNAP2 intracellular domain (CICD). Virally delivery of CICD to the medial prefrontal cortex (mPFC) in Cntnap2-deficient (Cntnap2-/-) mice normalized the deficit in the ASD-related behaviors, including social deficit and repetitive behaviors. Furthermore, CICD promoted the nuclear translocation of calcium/calmodulin-dependent serine protein kinase (CASK) to regulate the transcription of genes, such as Prader Willi syndrome gene Necdin. Whereas Necdin deficiency led to reduced social interaction in mice, virally expression of Necdin in the mPFC normalized the deficit in social preference of Cntnap2-/- mice. Our results thus reveal a critical function of CICD and highlight a role of the CNTNAP2-CASK-Necdin signaling pathway in ASD.
Collapse
Affiliation(s)
- Jing Zhang
- Furong Laboratory, Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Fang Cai
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Renbin Lu
- Furong Laboratory, Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Xiaoliang Xing
- Furong Laboratory, Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Lu Xu
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Kunyang Wu
- Furong Laboratory, Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zishan Gong
- Furong Laboratory, Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Qing Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yun Zhang
- Advanced Innovation Center for Human Brain Protection, The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mengen Xing
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Jia-Da Li
- Furong Laboratory, Center for Medical Genetics, Hunan Key Laboratory of Animal Models for Human Diseases, Hunan Key Laboratory of Medical Genetics, Hunan International Scientific and Technological Cooperation Base of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
19
|
Fang X, Zhang X, Zhang Y, Zhang X, Shan M, Guan S, Qiu Z, Zhu D, Luo H. Exploring the potential of ginseng glycoprotein to improve learning and memory in mice via Notch signaling pathway and structural analysis using multi-information fusion based on liquid chromatography-mass spectrometry. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115978. [PMID: 36519753 DOI: 10.1016/j.jep.2022.115978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C.A. Meyer reportedly exhibits various beneficial pharmacological activities. Panax ginseng glycoproteins (PGG) are a class of glycosylated protein components extracted from ginseng and can exert significant activity for improving learning and memory abilities. AIM OF THE STUDY The objective of the present study was to investigate the PGG-mediated protective mechanism against neurodegenerative diseases via the Notch signaling pathway using proteomic methods. MATERIALS AND METHODS We examined learning and memory in mice using the Morris water maze and nest-building paradigms. The PGG structure was determined using multi-information fusion based on liquid chromatography-mass spectrometry (LC/MS). Accurate glycosylation sites of glycoproteins were identified using the advanced glycosylation analysis software Byonic. Furthermore, connection modes of the oligosaccharide chain were clarified by methylation analysis of sugar residues. The differentially expressed proteins (DEPs) between wild-type (WT) and APP/APS1 mice were measured and compared using label-free quantitative proteomics, and related signaling pathways were identified. For validation, we performed a series of in vitro tests, including an assessment of cell viability, apoptosis assay, quantitative real-time polymerase chain reaction, and western blotting. RESULTS In the Morris water maze and nesting experiments, PGG-treated WT mice exhibited significantly improved learning and memory. The structures of 171 glycoprotein fragments in PGG matched the credible score, and typical structures were identified using LC/MS data analysis. According to the proteomic analysis results, 188 DEPs were detected between the model and administration groups, and two downregulated DEPs were related to the Notch signaling pathway. Based on the in vitro verification tests, PGG significantly inhibited the expression of key proteins in the Notch signaling pathway in microglia. CONCLUSIONS PGG could prevent the development of neuroinflammation by inhibiting excessive activation of the Notch signaling pathway, thereby inhibiting neuroapoptosis.
Collapse
Affiliation(s)
- Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiaoying Zhang
- The First Hospital of Jilin University, Changchun, 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xun Zhang
- Changchun Customs District P.R. China, The Former Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun, 130062, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Shuguang Guan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130117, China; Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
20
|
Tian Z, Wang P, Huang K, Yu J, Zhang M, Liu Y, Zhao H, Zhu B, Huang X, Tong Z. Photobiomodulation for Alzheimer's disease: photoelectric coupling effect on attenuating Aβ neurotoxicity. Lasers Med Sci 2023; 38:39. [PMID: 36633696 PMCID: PMC9837011 DOI: 10.1007/s10103-022-03692-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/12/2022] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) and dementia are the most worrying health problems faced by people globally today. Although the pathological features of AD consisting of amyloid-beta (Aβ) plaques in the extracellular space (ECS) and intracellular tau tangles are well established, the developed medicines targeting these two proteins have not obtained the expected clinical effects. Photobiomodulation (PBM) describes the therapeutic use of red light (RL) or near-infrared light (NIR) to serve as a noninvasive neuroprotective strategy for brain diseases. The present review discusses the mechanisms of the photoelectric coupling effect (light energy-induced special electronic transition-related alterations in protein structure) of PBM on reducing Aβ toxicity. On the one hand, RL or NIR can directly disassemble Aβ in vitro and in vivo. On the other hand, formaldehyde (FA)-inhibited catalase (CAT) and H2O2-inactived formaldehyde dehydrogenase (FDH) are formed a vicious circle in AD; however, light energy not only activates FDH to degrade excessive FA (which crosslinks Aβ monomer to form Aβ oligomers and senile plaques) but also sensitizes CAT to reduce hydrogen peroxide levels (H2O2, which can facilitate Aβ aggregation and enhance FA generation). In addition, it also activates mitochondrial cytochrome-c to produce ATP in the neurons. Clinical trials of phototherapeutics or oral coenzyme Q10 have shown positive effects in AD patients. Hence, a promising strategy combined PBM with nanopacked Q10 has been proposed to apply for treating AD.
Collapse
Affiliation(s)
- Zixi Tian
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Panpan Wang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
- Department Neurology, Wenzhou Medical University Affiliated Hospital 3, Wenzhou, 325200, China
| | - Kai Huang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Yu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Mange Zhang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yanming Liu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hang Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Beilei Zhu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xuerong Huang
- Department Neurology, Wenzhou Medical University Affiliated Hospital 3, Wenzhou, 325200, China.
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
21
|
Song C, Pan S, Li D, Hao B, Lu Z, Lai K, Li N, Geng Q. Comprehensive analysis reveals the potential value of inflammatory response genes in the prognosis, immunity, and drug sensitivity of lung adenocarcinoma. BMC Med Genomics 2022; 15:198. [PMID: 36117156 PMCID: PMC9484176 DOI: 10.1186/s12920-022-01340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background Although the relationship between inflammatory response and tumor has been gradually recognized, the potential implications of of inflammatory response genes in lung adenocarcinoma (LUAD) remains poorly investigated. Methods RNA sequencing and clinical data were obtained from multiple independent datasets (GSE29013, GSE30219, GSE31210, GSE37745, GSE42127, GSE50081, GSE68465, GSE72094, TCGA and GTEx). Unsupervised clustering analysis was used to identify different tumor subtypes, and LASSO and Cox regression analysis were applied to construct a novel scoring tool. We employed multiple algorithms (ssGSEA, CIBERSORT, MCP counter, and ESTIMATE) to better characterize the LUAD tumor microenvironment (TME) and immune landscapes. GSVA and Metascape analysis were performed to investigate the biological processes and pathway activity. Furthermore, ‘pRRophetic’ R package was used to evaluate the half inhibitory concentration (IC50) of each sample to infer drug sensitivity. Results We identified three distinct tumor subtypes, which were related to different clinical outcomes, biological pathways, and immune characteristics. A scoring tool called inflammatory response gene score (IRGS) was established and well validated in multiple independent cohorts, which could well divide patients into two subgroups with significantly different prognosis. High IRGS patients, characterized by increased genomic variants and mutation burden, presented a worse prognosis, and might show a more favorable response to immunotherapy and chemotherapy. Additionally, based on the cross-talk between TNM stage, IRGS and patients clinical outcomes, we redefined the LUAD stage, which was called ‘IRGS-Stage’. The novel staging system could distinguish patients with different prognosis, with better predictive ability than the conventional TNM staging. Conclusions Inflammatory response genes present important potential value in the prognosis, immunity and drug sensitivity of LUAD. The proposed IRGS and IRGS-Stage may be promising biomarkers for estimating clinical outcomes in LUAD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01340-7.
Collapse
|
22
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 508] [Impact Index Per Article: 169.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
23
|
Gao L, Zhang Y, Sterling K, Song W. Brain-derived neurotrophic factor in Alzheimer's disease and its pharmaceutical potential. Transl Neurodegener 2022; 11:4. [PMID: 35090576 PMCID: PMC8796548 DOI: 10.1186/s40035-022-00279-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/01/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic abnormalities are a cardinal feature of Alzheimer's disease (AD) that are known to arise as the disease progresses. A growing body of evidence suggests that pathological alterations to neuronal circuits and synapses may provide a mechanistic link between amyloid β (Aβ) and tau pathology and thus may serve as an obligatory relay of the cognitive impairment in AD. Brain-derived neurotrophic factors (BDNFs) play an important role in maintaining synaptic plasticity in learning and memory. Considering AD as a synaptic disorder, BDNF has attracted increasing attention as a potential diagnostic biomarker and a therapeutical molecule for AD. Although depletion of BDNF has been linked with Aβ accumulation, tau phosphorylation, neuroinflammation and neuronal apoptosis, the exact mechanisms underlying the effect of impaired BDNF signaling on AD are still unknown. Here, we present an overview of how BDNF genomic structure is connected to factors that regulate BDNF signaling. We then discuss the role of BDNF in AD and the potential of BDNF-targeting therapeutics for AD.
Collapse
Affiliation(s)
- Lina Gao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, College of Pharmacy, Jining Medical University, Jining, 272067, Shandong, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, Zhejiang, China.
| |
Collapse
|
24
|
Rabaneda-Bueno R, Mena-Montes B, Torres-Castro S, Torres-Carrillo N, Torres-Carrillo NM. Advances in Genetics and Epigenetic Alterations in Alzheimer's Disease: A Notion for Therapeutic Treatment. Genes (Basel) 2021; 12:1959. [PMID: 34946908 PMCID: PMC8700838 DOI: 10.3390/genes12121959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a disabling neurodegenerative disorder that leads to long-term functional and cognitive impairment and greatly reduces life expectancy. Early genetic studies focused on tracking variations in genome-wide DNA sequences discovered several polymorphisms and novel susceptibility genes associated with AD. However, despite the numerous risk factors already identified, there is still no fully satisfactory explanation for the mechanisms underlying the onset of the disease. Also, as with other complex human diseases, the causes of low heritability are unclear. Epigenetic mechanisms, in which changes in gene expression do not depend on changes in genotype, have attracted considerable attention in recent years and are key to understanding the processes that influence age-related changes and various neurological diseases. With the recent use of massive sequencing techniques, methods for studying epigenome variations in AD have also evolved tremendously, allowing the discovery of differentially expressed disease traits under different conditions and experimental settings. This is important for understanding disease development and for unlocking new potential AD therapies. In this work, we outline the genomic and epigenomic components involved in the initiation and development of AD and identify potentially effective therapeutic targets for disease control.
Collapse
Affiliation(s)
- Rubén Rabaneda-Bueno
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 37005 České Budějovice, Czech Republic
- School of Biological Sciences, James Clerk Maxwell Building, The King’s Buildings Campus, University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Beatriz Mena-Montes
- Laboratorio de Biología del Envejecimiento, Departamento de Investigación Básica, Instituto Nacional de Geriatría, Mexico City 10200, Mexico;
| | - Sara Torres-Castro
- Departamento de Epidemiología Demográfica y Determinantes Sociales, Instituto Nacional de Geriatría, Mexico City 10200, Mexico;
| | - Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Nora Magdalena Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (N.T.-C.); (N.M.T.-C.)
| |
Collapse
|
25
|
Fei X, Zhang Y, Mei Y, Yue X, Jiang W, Ai L, Yu Y, Luo H, Li H, Luo W, Yang X, Lyv J, He R, Song W, Tong Z. Degradation of FA reduces Aβ neurotoxicity and Alzheimer-related phenotypes. Mol Psychiatry 2021; 26:5578-5591. [PMID: 33328587 DOI: 10.1038/s41380-020-00929-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023]
Abstract
Dysregulation of formaldehyde (FA) has been implicated in the development of Alzheimer's Disease (AD). Elevated FA levels in Alzheimer's patients and animal models are associated with impaired cognitive functions. However, the exact role of FA in AD remains unknown. We now identified that oxidative demethylation at serine8/26 of amyloid-beta protein (Aβ) induced FA generation and FA cross-linked with the lysine28 residue in the β-turn of Aβ monomer to form Aβ dimers, and then accelerated Aβ oligomerization and fibrillogenesis in vitro. However, Aβ42 mutation in serine8/26, lysine28 abolished Aβ self-aggregation. Furthermore, Aβ inhibited the activity of formaldehyde dehydrogenase (FDH), the enzyme for FA degradation, resulting in FA accumulation. In turn, excess of FA stimulated Aβ aggregation both in vitro and in vivo by increasing the formation of Aβ oligomers and fibrils. We found that degradation of FA by formaldehyde scavenger-NaHSO3 or coenzyme Q10 reduced Aβ aggregation and ameliorated the neurotoxicity, and improved the cognitive performance in APP/PS1 mice. Our study provides evidence that endogenous FA is essential for Aβ self-aggregation and scavenging FA could be an effective strategy for treating AD.
Collapse
Affiliation(s)
- Xuechao Fei
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Yun Zhang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yufei Mei
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiangpei Yue
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Wenjing Jiang
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
- Center for Cognitive Disorders, Beijing Geriatric Hospital, 100095, Beijing, China
| | - Li Ai
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
| | - Yan Yu
- Chinese institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, 100068, Beijing, China
| | - Hongjun Luo
- Central Laboratory, Shantou University Medical College, Guangdong, 515041, China
| | - Hui Li
- Central Laboratory, Shantou University Medical College, Guangdong, 515041, China
| | - Wenhong Luo
- Central Laboratory, Shantou University Medical College, Guangdong, 515041, China
| | - Xu Yang
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jihui Lyv
- Center for Cognitive Disorders, Beijing Geriatric Hospital, 100095, Beijing, China
| | - Rongqiao He
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China
- State Key Lab of Brain and Cognitive Science and Key Lab of Mental Health, IBP, UCAS, Beijing, China
| | - Weihong Song
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Zhiqian Tong
- Alzheimer's disease Center, Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
26
|
Barthelson K, Dong Y, Newman M, Lardelli M. PRESENILIN 1 Mutations Causing Early-Onset Familial Alzheimer's Disease or Familial Acne Inversa Differ in Their Effects on Genes Facilitating Energy Metabolism and Signal Transduction. J Alzheimers Dis 2021; 82:327-347. [PMID: 34024832 DOI: 10.3233/jad-210128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The most common cause of early-onset familial Alzheimer's disease (EOfAD) is mutations in PRESENILIN 1 (PSEN1) allowing production of mRNAs encoding full-length, but mutant, proteins. In contrast, a single known frameshift mutation in PSEN1 causes familial acne inversa (fAI) without EOfAD. The molecular consequences of heterozygosity for these mutation types, and how they cause completely different diseases, remains largely unexplored. OBJECTIVE To analyze brain transcriptomes of young adult zebrafish to identify similarities and differences in the effects of heterozygosity for psen1 mutations causing EOfAD or fAI. METHODS RNA sequencing was performed on mRNA isolated from the brains of a single family of 6-month-old zebrafish siblings either wild type or possessing a single, heterozygous EOfAD-like or fAI-like mutation in their endogenous psen1 gene. RESULTS Both mutations downregulate genes encoding ribosomal subunits, and upregulate genes involved in inflammation. Genes involved in energy metabolism appeared significantly affected only by the EOfAD-like mutation, while genes involved in Notch, Wnt and neurotrophin signaling pathways appeared significantly affected only by the fAI-like mutation. However, investigation of direct transcriptional targets of Notch signaling revealed possible increases in γ-secretase activity due to heterozygosity for either psen1 mutation. Transcriptional adaptation due to the fAI-like frameshift mutation was evident. CONCLUSION We observed both similar and contrasting effects on brain transcriptomes of the heterozygous EOfAD-like and fAI-like mutations. The contrasting effects may illuminate how these mutation types cause distinct diseases.
Collapse
Affiliation(s)
- Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Yang Dong
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| |
Collapse
|
27
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
28
|
Xiao X, Liu H, Liu X, Zhang W, Zhang S, Jiao B. APP, PSEN1, and PSEN2 Variants in Alzheimer's Disease: Systematic Re-evaluation According to ACMG Guidelines. Front Aging Neurosci 2021; 13:695808. [PMID: 34220489 PMCID: PMC8249733 DOI: 10.3389/fnagi.2021.695808] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/31/2021] [Indexed: 01/18/2023] Open
Abstract
The strategies of classifying APP, PSEN1, and PSEN2 variants varied substantially in the previous studies. We aimed to re-evaluate these variants systematically according to the American college of medical genetics and genomics and the association for molecular pathology (ACMG-AMP) guidelines. In our study, APP, PSEN1, and PSEN2 variants were collected by searching Alzforum and PubMed database with keywords “PSEN1,” “PSEN2,” and “APP.” These variants were re-evaluated based on the ACMG-AMP guidelines. We compared the number of pathogenic/likely pathogenic variants of APP, PSEN1, and PSEN2. In total, 66 APP variants, 323 PSEN1 variants, and 63 PSEN2 variants were re-evaluated in our study. 94.91% of previously reported pathogenic variants were re-classified as pathogenic/likely pathogenic variants, while 5.09% of them were variants of uncertain significance (VUS). PSEN1 carried the most prevalent pathogenic/likely pathogenic variants, followed by APP and PSEN2. Significant statistically difference was identified among these three genes when comparing the number of pathogenic/likely pathogenic variants (P < 2.2 × 10–16). Most of the previously reported pathogenic variants were re-classified as pathogenic/likely pathogenic variants while the others were re-evaluated as VUS, highlighting the importance of interpreting APP, PSEN1, and PSEN2 variants with caution according to ACMG-AMP guidelines.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Sizhe Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Engineering Research Center of Hunan Province in Cognitive Impairment Disorders, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
29
|
Zhang X, Bao G, Liu D, Yang Y, Li X, Cai G, Liu Y, Wu Y. The Association Between Folate and Alzheimer's Disease: A Systematic Review and Meta-Analysis. Front Neurosci 2021; 15:661198. [PMID: 33935641 PMCID: PMC8079632 DOI: 10.3389/fnins.2021.661198] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of neurodegenerative disease leading to dementia in the elderly. Increasing evidence indicates that folate plays an important role in the pathogenesis of AD. To investigate the role of folate deficiency/possible deficiency in the risk of AD and the benefical effect of sufficient folate intake on the prevention of AD, a systematic review and meta-analysis were performed. The Web of Science, PubMed, CENTRAL, EBSCO, CNKI, CQVIP, and Wanfang databases were searched. The analysis of cross-sectional studies showed that the standardized mean difference (SMD) was −0.60 (95% confidence interval (CI): −0.65, −0.55), indicating that plasma/serum folate level is lower in AD patients than that in controls. Moreover, the combined odds ratio (OR) of case-control studies was 0.96 (95% CI: 0.93, 0.99), while the combined ORs were 0.86 (95% CI: 0.46, 1.26) and 1.94 (95% CI: 1.02, 2.86) in populations with normal levels of folate (≥13.5 nmol/L) and folate deficiency/possible deficiency (<13.5 nmol/L), respectively. In addition, the risk ratio (RR) of the cohort studies was 1.88 (95% CI: 1.20, 2.57) in populations with folate deficiency/possible deficiency. Furthermore, when the intake of folate was equal to or higher than the recommended daily allowance, the combined RR and hazard ratio (HR) were 0.44 (95% CI: 0.18, 0.71) and 0.76 (95% CI: 0.52, 0.99), respectively. These results indicate that folate deficiency/possible deficiency increases the risk for AD, while sufficient intake of folate is a protective factor against AD.
Collapse
Affiliation(s)
- Xiaohong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Guangyi Bao
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Debiao Liu
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Yu Yang
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Center of Evidence-Based Medicine, Jining Medical University, Jining, China
| | - Xuezhi Li
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Center of Evidence-Based Medicine, Jining Medical University, Jining, China
| | - Gaomei Cai
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Yan Liu
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Center of Evidence-Based Medicine, Jining Medical University, Jining, China
| | - Yili Wu
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Center of Evidence-Based Medicine, Jining Medical University, Jining, China
| |
Collapse
|
30
|
Regulator of calcineurin 1 is a novel RNA-binding protein to regulate neuronal apoptosis. Mol Psychiatry 2021; 26:1361-1375. [PMID: 31451750 DOI: 10.1038/s41380-019-0487-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/16/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Posttranscriptional regulation of gene expression plays an important role in the maturation, transport, stability and translation of coding and noncoding RNAs. RNA-binding protein (RBP) is a key factor of the regulation. Regulator of calcineurin 1 (RCAN1) is a multifunctional protein involved in neurodegeneration, mitochondrial dysfunction, inflammation and protein glycosylation, and plays an important role in the pathogenesis of Down syndrome and Alzheimer's disease. In this report, we discovered that RCNA1 is a novel RNA-binding protein. A 23 nucleotide sequence of adenine nucleotide translocator (ANT1) mRNA was identified as the binding motif of RCAN1. Furthermore, we found that R1SR13, as the RNA aptamer of RCAN1 identified by SELEX, blocked RCAN1-induced inhibition of the nuclear factor of activated T cells (NFAT) and NF-κB signaling pathways, and reduced neuronal apoptosis. Taken together, our results demonstrate that RCAN1 is a novel RNA-binding protein and the RNA aptamer of RCAN1 plays a neuroprotective role.
Collapse
|
31
|
Mentis AFA, Dardiotis E, Chrousos GP. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol Psychiatry 2021; 26:1075-1097. [PMID: 32355332 PMCID: PMC7985019 DOI: 10.1038/s41380-020-0731-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
The potential existence and roles of the meningeal lymphatic system in normal and pathological brain function have been a long-standing enigma. Recent evidence suggests that meningeal lymphatic vessels are present in both the mouse and human brain; in mice, they seem to play a role in clearing toxic amyloid-beta peptides, which have been connected with Alzheimer disease (AD). Here, we review the evidence linking the meningeal lymphatic system with human AD. Novel findings suggest that the recently described meningeal lymphatic vessels could be linked to, and possibly drain, the efferent paravascular glial lymphatic (glymphatic) system carrying cerebrospinal fluid, after solute and immune cell exchange with brain interstitial fluid. In so doing, the glymphatic system could contribute to the export of toxic solutes and immune cells from the brain (an exported fluid we wish to describe as glymph, similarly to lymph) to the meningeal lymphatic system; the latter, by being connected with downstream anatomic regions, carries the glymph to the conventional cervical lymphatic vessels and nodes. Thus, abnormal function in the meningeal lymphatic system could, in theory, lead to the accumulation, in the brain, of amyloid-beta, cellular debris, and inflammatory mediators, as well as immune cells, resulting in damage of the brain parenchyma and, in turn, cognitive and other neurologic dysfunctions. In addition, we provide novel insights into APOE4-the leading genetic risk factor for AD-and its relation to the meningeal lymphatic system. In this regard, we have reanalyzed previously published RNA-Seq data to show that induced pluripotent stem cells (iPSCs) carrying the APOE4 allele (either as APOE4 knock-in or stemming from APOE4 patients) express lower levels of (a) genes associated with lymphatic markers, and (b) genes for which well-characterized missense mutations have been linked to peripheral lymphedema. Taking into account this evidence, we propose a new conceptual framework, according to which APOE4 could play a novel role in the premature shrinkage of meningeal lymphatic vessels (meningeal lymphosclerosis), leading to abnormal meningeal lymphatic functions (meningeal lymphedema), and, in turn, reduction in the clearance of amyloid-beta and other macromolecules and inflammatory mediators, as well as immune cells, from the brain, exacerbation of AD manifestations, and progression of the disease. Altogether, these findings and their potential interpretations may herald novel diagnostic tools and therapeutic approaches in patients with AD.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece.
- Department of Microbiology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece.
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece
- UNESCO Chair on Adolescent Health Care, Athens, Greece
| |
Collapse
|
32
|
Tao W, Yu L, Shu S, Liu Y, Zhuang Z, Xu S, Bao X, Gu Y, Cai F, Song W, Xu Y, Zhu X. miR-204-3p/Nox4 Mediates Memory Deficits in a Mouse Model of Alzheimer's Disease. Mol Ther 2021; 29:396-408. [PMID: 32950103 PMCID: PMC7791017 DOI: 10.1016/j.ymthe.2020.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/25/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder leading to dementia in the elderly, and the mechanisms of AD are not fully defined. MicroRNAs (miRNAs) have been shown to contribute to memory deficits in AD. In this study, we identified that miR-204-3p was downregulated in the hippocampus and plasma of 6-month-old APPswe/PS1dE9 (APP/PS1) mice. miR-204-3p overexpression attenuated memory and synaptic deficits in APP/PS1 mice. The amyloid levels and oxidative stress were decreased in the hippocampus of APP/PS1 mice after miR-204-3p overexpression. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (Nox4) was a target of miR-204-3p, and Nox4 inhibition by GLX351322 protected neuronal cells against Aβ1-42-induced neurotoxicity. Furthermore, GLX351322 treatment rescued synaptic and memory deficits, and decreased oxidative stress and amyloid levels in the hippocampus of APP/PS1 mice. These results revealed that miR-204-3p attenuated memory deficits and oxidative stress in APP/PS1 mice by targeting Nox4, and miR-204-3p overexpression and/or Nox4 inhibition might be a potential therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Wenyuan Tao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Ying Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Zi Zhuang
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Siyi Xu
- Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210008, PR China; Institute of Brain Sciences, Nanjing University, Nanjing, Jiangsu 210093, PR China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, PR China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu 210008, PR China; Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu 210008, PR China; Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
33
|
Cummings J. Innovative Therapeutic Development Programme for the Treatment of Early Alzheimer's Disease: Lecanemab (BAN2401). Neurology 2021. [DOI: 10.17925/usn.2021.17.2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Ramachandran AK, Das S, Joseph A, Gurupur Gautham S, Alex AT, Mudgal J. Neurodegenerative Pathways in Alzheimer's Disease: A Review. Curr Neuropharmacol 2021; 19:679-692. [PMID: 32851951 PMCID: PMC8573750 DOI: 10.2174/1570159x18666200807130637] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/26/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that leads to insidious deterioration of brain functions and is considered the sixth leading cause of death in the world. Alzheimer's patients suffer from memory loss, cognitive deficit and behavioral changes; thus, they eventually follow a low-quality life. AD is considered as a multifactorial disorder involving different neuropathological mechanisms. Recent research has identified more than 20 pathological factors that are promoting disease progression. Three significant hypotheses are said to be the root cause of disease pathology, which include acetylcholine deficit, the formation of amyloid-beta senile plaques and tau protein hyperphosphorylation. Apart from these crucial factors, pathological factors such as apolipoprotein E (APOE), glycogen synthase kinase 3β, notch signaling pathway, Wnt signaling pathway, etc., are considered to play a role in the advancement of AD and therefore could be used as targets for drug discovery and development. As of today, there is no complete cure or effective disease altering therapies for AD. The current therapy is assuring only symptomatic relief from the disease, and progressive loss of efficacy for these symptomatic treatments warrants the discovery of newer drugs by exploring these novel drug targets. A comprehensive understanding of these therapeutic targets and their neuropathological role in AD is necessary to identify novel molecules for the treatment of AD rationally.
Collapse
Affiliation(s)
- Anu Kunnath Ramachandran
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Shenoy, Gurupur Gautham
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Angel Treasa Alex
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
35
|
Liang JJH, McKinnon IA, Rankin CH. The contribution of C. elegans neurogenetics to understanding neurodegenerative diseases. J Neurogenet 2020; 34:527-548. [DOI: 10.1080/01677063.2020.1803302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joseph J. H. Liang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Issa A. McKinnon
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
36
|
Liu Y, Wang J, Hsiung GYR, Song W. Trehalose Inhibits Aβ Generation and Plaque Formation in Alzheimer's Disease. Mol Neurobiol 2020; 57:3150-3157. [PMID: 32488697 DOI: 10.1007/s12035-020-01942-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/13/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and there has been no disease-modifying treatment for AD. Recent studies suggest that trehalose may have beneficial effect on neurodegenerative diseases through regulating autophagy and facilitating aggregated protein clearance. However, the effects of trehalose on AD-related neuropathologies are still unknown. Western blot was performed to examine the effects of trehalose on APP processing in vitro and in vivo. ELISA and immunohistochemical staining were conducted to measure Aβ production in vitro and neuritic plaque formation in APP23 transgenic mice, respectively. Trehalose treatment significantly decreased Aβ generation in HAW and 20E2 cells. Furthermore, trehalose treatment increased the levels of APP and its CTFs, and significantly reduced Aβ generation and neuritic plaque formation in APP23 mice. Our study showed that trehalose affected the APP processing both in vitro and in vivo and suggests that trehalose treatment may offer as a therapeutic strategy to ameliorate AD pathology by inhibiting Aβ generation and neuritic plaque formation.
Collapse
Affiliation(s)
- Yuhang Liu
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Juelu Wang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ging-Yuek Robin Hsiung
- Division of Neurology, The University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada. .,Centre for Brain Health, The University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Weihong Song
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), Children's Hospital of Chongqing Medical University, Chongqing, China. .,Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada. .,Centre for Brain Health, The University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
37
|
Liao X, Cai F, Sun Z, Zhang Y, Wang J, Jiao B, Guo J, Li J, Liu X, Guo L, Zhou Y, Wang J, Yan X, Jiang H, Xia K, Li J, Tang B, Shen L, Song W. Identification of Alzheimer's disease-associated rare coding variants in the ECE2 gene. JCI Insight 2020; 5:135119. [PMID: 32102983 DOI: 10.1172/jci.insight.135119] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/29/2020] [Indexed: 11/17/2022] Open
Abstract
Accumulation of amyloid β protein (Aβ) due to increased generation and/or impaired degradation plays an important role in Alzheimer's disease (AD) pathogenesis. In this report, we describe the identification of rare coding mutations in the endothelin-converting enzyme 2 (ECE2) gene in 1 late-onset AD family, and additional case-control cohort analysis indicates ECE2 variants associated with the risk of developing AD. The 2 mutations (R186C and F751S) located in the peptidase domain in the ECE2 protein were found to severely impair the enzymatic activity of ECE2 in Aβ degradation. We further evaluated the effect of the R186C mutation in mutant APP-knockin mice. Overexpression of wild-type ECE2 in the hippocampus reduced amyloid load and plaque formation, and improved learning and memory deficits in the AD model mice. However, the effect was abolished by the R186C mutation in ECE2. Taken together, the results demonstrated that ECE2 peptidase mutations contribute to AD pathogenesis by impairing Aβ degradation, and overexpression of ECE2 alleviates AD phenotypes. This study indicates that ECE2 is a risk gene for AD development and pharmacological activation of ECE2 could be a promising strategy for AD treatment.
Collapse
Affiliation(s)
- Xinxin Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, Canada.,National Clinical Research Center for Geriatric Disorders
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| | - Zhanfang Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| | - Juelu Wang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders
| | - Yafang Zhou
- National Clinical Research Center for Geriatric Disorders
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Kun Xia
- School of Life Sciences, and
| | | | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
38
|
Wang D, Hu D, Guo Z, Hu R, Wang Q, Liu Y, Liu M, Meng Z, Yang H, Zhang Y, Cai F, Zhou W, Song W. A novel de novo nonsense mutation in ZC4H2 causes Wieacker-Wolff Syndrome. Mol Genet Genomic Med 2019; 8:e1100. [PMID: 31885220 PMCID: PMC7005642 DOI: 10.1002/mgg3.1100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/28/2019] [Accepted: 12/10/2019] [Indexed: 02/02/2023] Open
Abstract
Background Wieacker‐Wolff syndrome (WWS) is a congenital X‐linked neuromuscular disorder, which was firstly reported in 1985. Zinc finger C4H2‐type containing (ZC4H2) gene has been found to be associated with the disease pathogenesis. However, the underlying mechanism remains elusive. Methods Whole‐exome sequencing was performed to identify the mutations. Expression plasmids were constructed and cell culture and immune‐biochemical assays were used to examine the effects of the mutation. Results We reported a female patient with classical symptoms of WWS and discovered a novel nonsense heterozygous mutation (p.R67X; c.199C>T) in ZC4H2 gene in the patient but not in her parents. The mutation resulted in a 66 amino‐acid truncated ZC4H2 protein. The mutation is located in the key helix domain and it altered the subcellular locations of the mutant ZC4H2 protein. X‐chromosome inactivation (XCI) pattern analysis revealed that the XCI ratio of the proband was 22:78. Conclusion Female heterozygous carriers with nonsense mutation with a truncated ZC4H2 protein could lead to the pathogenesis of Wieacker‐Wolff syndrome and our study provides a potential new target for the disease treatment.
Collapse
Affiliation(s)
- Dan Wang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dongjie Hu
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhichao Guo
- Department of Internal Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Rong Hu
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qunxian Wang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yannan Liu
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjing Liu
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Huan Yang
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Zhang
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Weihui Zhou
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihong Song
- Chongqing City Key Lab of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, and Ministry of Education Key Lab of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
39
|
Fei X, Yu Y, Di Y, Ai L, Yao D, Bai S, Zhao S, Lyu J, Cai X, He R, Tong Z. A rapid and non-invasive fluorescence method for quantifying coenzyme Q10 in blood and urine in clinical analysis. J Clin Lab Anal 2019; 34:e23130. [PMID: 31876061 PMCID: PMC7171321 DOI: 10.1002/jcla.23130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 12/27/2022] Open
Abstract
Background Coenzyme Q10 (CoQ10) supplementation can improve cognition in patients with Alzheimer's disease (AD) and AD transgenic model mice. To ameliorate the discomfort that patients with AD suffer after several blood extractions, a non‐invasive method for detecting urine CoQ10 levels needs to be established. Methods Here, we developed a new technique of fluorescence spectrophotometry with ethyl cyanoacetate (FS‐ECA), on the basis of the principle that the chemical derivative obtained from the interaction between CoQ10 and ECA was detected by a fluorescence detector at λex/em = 450/515 nm. As a standard reference method, the same batches of the clinical samples were analyzed by high‐performance liquid chromatography with an ultraviolet detector (HPLC‐UV) at 275 nm. Results The limits of detection (LOD) and limits of quantization (LOQ) (serum: 0.021 and 0.043 mg/L; urine: 0.012 and 0.025 mg/L) determined by the FS‐ECA method were similar to that obtained through HPLC‐UV (serum: 0.017 and 0.035 mg/L; urine: 0.012 and 0.025 mg/L). More importantly, this new FS‐ECA technique as well as the conventional HPLC‐UV method could detect a marked difference in urine CoQ10 levels between AD and controls. Conclusion Our findings suggest that this non‐invasive method for quantifying urine CoQ10 potentially replaces HPLC to detect blood CoQ10.
Collapse
Affiliation(s)
- Xuechao Fei
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Yan Yu
- Chinese institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yalan Di
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Li Ai
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| | - Dandan Yao
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China.,Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Shangying Bai
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China.,The Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Shengjie Zhao
- Chinese institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jihui Lyu
- Center for Cognitive Disorders, Beijing Geriatric Hospital, Beijing, China
| | - Xiang Cai
- The Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois
| | - Rongqiao He
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China.,State Key Laboratory of Brain & Cognitive Science, Institute of Biophysics, CAS Key Laboratory of Mental Health, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Zhiqian Tong
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's disease Center, Beijing Institute of Brain Disorders, Center for Brain Disorders Research, Capital Medical University, Beijing, China
| |
Collapse
|
40
|
Ji B, Wang Q, Xue Q, Li W, Li X, Wu Y. The Dual Role of Kinin/Kinin Receptors System in Alzheimer's Disease. Front Mol Neurosci 2019; 12:234. [PMID: 31632239 PMCID: PMC6779775 DOI: 10.3389/fnmol.2019.00234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/13/2019] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by progressive spatial disorientation, learning and memory deficits, responsible for 60%–80% of all dementias. However, the pathological mechanism of AD remains unknown. Numerous studies revealed that kinin/kinin receptors system (KKS) may be involved in the pathophysiology of AD. In this review article, we summarized the roles of KKS in neuroinflammation, cerebrovascular impairment, tau phosphorylation, and amyloid β (Aβ) generation in AD. Moreover, we provide new insights into the mechanistic link between KKS and AD, and highlight the KKS as a potential therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Bingyuan Ji
- Neurobiology Institute, School of Mental Health, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Institute, School of Mental Health, Jining Medical University, Jining, China
| | - Qingjie Xue
- Department of Pathogenic Biology, Jining Medical University, Jining, China
| | - Wenfu Li
- Neurobiology Institute, School of Mental Health, Jining Medical University, Jining, China
| | - Xuezhi Li
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
41
|
Tian Y, Wang S, Jiao F, Kong Q, Liu C, Wu Y. Telomere Length: A Potential Biomarker for the Risk and Prognosis of Stroke. Front Neurol 2019; 10:624. [PMID: 31263449 PMCID: PMC6585102 DOI: 10.3389/fneur.2019.00624] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide. Age is associated with increased risk of stroke, while telomere length shortening plays a pivotal role in the process of aging. Moreover, telomere length shortening is associated with many risk factors of stroke in addition to age. Accumulated evidence shows that short leukocyte telomere length is not only associated with stroke occurrence but also associated with post-stroke recovery in the elderly population. In this review, we aimed to summarize the association between leukocyte telomere length and stroke, and discuss that telomere length might serve as a potential biomarker to predict the risk and prognosis of stroke.
Collapse
Affiliation(s)
- Yanjun Tian
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Fengjuan Jiao
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Qingsheng Kong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Chuanxin Liu
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
| | - Yili Wu
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.,Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China.,Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
42
|
Zhang X, Wu Y, Cai F, Song W. Regulation of global gene expression in brain by TMP21. Mol Brain 2019; 12:39. [PMID: 31036051 PMCID: PMC6489340 DOI: 10.1186/s13041-019-0460-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/16/2019] [Indexed: 12/18/2022] Open
Abstract
TMP21, a type I transmembrane protein of thep24 protein family, mediates protein trafficking and maturation. Dysregulation of TMP21 is implicated in the pathogenesis of Alzheimer’s disease (AD). However, underlying mechanisms remain elusive. To reveal the function of TMP21 in the brain and the pathogenic role of TMP21 in the brain of AD, the global gene expression was profiled in the brain of TMP21 knockdown mice. We found that 8196 and 8195 genes are significantly altered in the hippocampus and cortex, respectively. The genes are involved in a number of brain function-related pathways, including glutamatergic synapse pathway, serotonergic synapse pathway, synaptic vesicle pathway, and long-term depression pathway. Moreover, the network analysis suggests that the TMP21 may contribute to the pathogenesis of AD by regulatingPI3K/Akt/GSK3β signalling pathway. Our study provides an insight into the physiological function of TMP21 in the brain and pathological role of TMP21 in AD.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Mental Disorders, Changsha, Hunan, China.,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Yili Wu
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, Shandong, China
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
43
|
Wang Z, Xu Q, Cai F, Liu X, Wu Y, Song W. BACE2, a conditional β-secretase, contributes to Alzheimer's disease pathogenesis. JCI Insight 2019; 4:123431. [PMID: 30626751 DOI: 10.1172/jci.insight.123431] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
Deposition of amyloid-β protein (Aβ) to form neuritic plaques is the characteristic neuropathology of Alzheimer's disease (AD). Aβ is generated from amyloid precursor protein (APP) by β- and γ-secretase cleavages. BACE1 is the β-secretase and its inhibition induces severe side effects, whereas its homolog BACE2 normally suppresses Aβ by cleaving APP/Aβ at the θ-site (Phe20) within the Aβ domain. Here, we report that BACE2 also processes APP at the β site, and the juxtamembrane helix (JH) of APP inhibits its β-secretase activity, enabling BACE2 to cleave nascent APP and aggravate AD symptoms. JH-disrupting mutations and clusterin binding to JH triggered BACE2-mediated β-cleavage. Both BACE2 and clusterin were elevated in aged mouse brains, and enhanced β-cleavage during aging. Therefore, BACE2 contributes to AD pathogenesis as a conditional β-secretase and could be a preventive and therapeutic target for AD without the side effects of BACE1 inhibition.
Collapse
Affiliation(s)
- Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China.,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qin Xu
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Cai
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Xi Liu
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Yili Wu
- Department of Psychiatry, Jining Medical University, Jining, Shandong, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, China.,Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, British Columbia, Canada.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
Yue X, Mei Y, Zhang Y, Tong Z, Cui D, Yang J, Wang A, Wang R, Fei X, Ai L, Di Y, Luo H, Li H, Luo W, Lu Y, Li R, Duan C, Gao G, Yang H, Sun B, He R, Song W, Han H, Tong Z. New insight into Alzheimer's disease: Light reverses Aβ-obstructed interstitial fluid flow and ameliorates memory decline in APP/PS1 mice. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2019; 5:671-684. [PMID: 31720368 PMCID: PMC6838540 DOI: 10.1016/j.trci.2019.09.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Pharmacological therapies to treat Alzheimer's disease (AD) targeting "Aβ" have failed for over 100 years. Low levels of laser light can disassemble Aβ. In this study, we investigated the mechanisms that Aβ-blocked extracellular space (ECS) induces memory disorders in APP/PS1 transgenic mice and addressed whether red light (RL) at 630 nm rescues cognitive decline by reducing Aβ-disturbed flow of interstitial fluid (ISF). METHODS We compared the heating effects on the brains of rats illuminated with laser light at 630, 680, and 810 nm for 40 minutes, respectively. Then, a light-emitting diode with red light at 630 nm (LED-RL) was selected to illuminate AD mice. The changes in the structure of ECS in the cortex were examined by fluorescent double labeling. The volumes of ECS and flow speed of ISF were quantified by magnetic resonance imaging. Spatial memory behaviors in mice were evaluated by the Morris water maze. Then, the brains were sampled for biochemical analysis. RESULTS RL at 630 nm had the least heating effects than other wavelengths associated with ~49% penetration ratio into the brains. For the molecular mechanisms, Aβ could induce formaldehyde (FA) accumulation by inactivating FA dehydrogenase. Unexpectedly, in turn, FA accelerated Aβ deposition in the ECS. However, LED-RL treatment not only directly destroyed Aβ assembly in vitro and in vivo but also activated FA dehydrogenase to degrade FA and attenuated FA-facilitated Aβ aggregation. Subsequently, LED-RL markedly smashed Aβ deposition in the ECS, recovered the flow of ISF, and rescued cognitive functions in AD mice. DISCUSSION Aβ-obstructed ISF flow is the direct reason for the failure of the developed medicine delivery from superficial into the deep brain in the treatment of AD. The phototherapy of LED-RL improves memory by reducing Aβ-blocked ECS and suggests that it is a promising noninvasive approach to treat AD.
Collapse
Affiliation(s)
- Xiangpei Yue
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yufei Mei
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Yun Zhang
- Department of Psychiatry, Townsend Family Laboratories, The University of British Columbia, Vancouver, Canada
| | - Zheng Tong
- School of Engineering, Mechanical Engineering with Renewable Energy. Old College, The University of Edinburgh, Edinburgh, United Kingdom
- Nanjing University of Aeronautics and Astronautics, Institute of Aeronautics and Astronautics, Aircraft Design and Engineering, Nanjing, China
| | - Dehua Cui
- Department of Radiology, Peking University Third Hospital, Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
| | - Jun Yang
- Department of Radiology, Peking University Third Hospital, Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
| | - Aibo Wang
- Department of Radiology, Peking University Third Hospital, Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
| | - Rui Wang
- Department of Radiology, Peking University Third Hospital, Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
| | - Xuechao Fei
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Li Ai
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yalan Di
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Hongjun Luo
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Hui Li
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Wenhong Luo
- Central Laboratory, Shantou University Medical College, Guangdong, China
| | - Yu Lu
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Rui Li
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, China
| | - Chunli Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ge Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hui Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Binggui Sun
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Rongqiao He
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- State Key Laboratory of Brain & Cognitive Science, Institute of Biophysics, CAS Key Laboratory of Mental Health, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Weihong Song
- Department of Psychiatry, Townsend Family Laboratories, The University of British Columbia, Vancouver, Canada
- Corresponding author. Tel: 604-822-8019; Fax: 604-822-7981.
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, Beijing, China
- Corresponding author. Tel: +86-010-82266972; Fax: +86-010-82265962.
| | - Zhiqian Tong
- Laboratory of Alzheimer's Optoelectric Therapy, Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Corresponding author. Tel: +86-010-83950362; Fax: +86-010-83950363.
| |
Collapse
|