1
|
Li H, Zhao Z, Jiang S, Wu H. Brain circuits that regulate social behavior. Mol Psychiatry 2025:10.1038/s41380-025-03037-6. [PMID: 40287553 DOI: 10.1038/s41380-025-03037-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Social interactions are essential for the survival of individuals and the reproduction of populations. Social stressors, such as social defeat and isolation, can lead to emotional disorders and cognitive impairments. Furthermore, dysfunctional social behaviors are hallmark symptoms of various neuropsychiatric disorders, including autism spectrum disorder (ASD) and post-traumatic stress disorder (PTSD). Consequently, understanding the neural circuit mechanisms underlying social behaviors has become a major focus in neuroscience. Social behaviors, which encompass a wide range of expressions and phases, are regulated by complex neural networks. In this review, we summarize recent progress in identifying the circuits involved in different types of social behaviors, including general social investigation, social preference, mating, aggression, parenting, prosocial behaviors, and dominance behaviors. We also outline the circuit mechanisms associated with social deficits in neuropsychiatric disorders, such as ASD, schizophrenia, and PTSD. Given the pivotal role of rodents in social behavior research, our review primarily focuses on neural circuits in these animals. Finally, we propose future research directions, including the development of specific behavioral paradigms, the identification of circuits involved in motor output, the integration of activity, transcriptome, and connectome data, the multifunctional roles of neurons with multiple targets, and the interactions among multiple brain regions.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
2
|
Cui J, Wang XR, Yu J, Zhang BR, Shi YF, So KF, Zhang L, Wei JA. Neuropeptide-mediated activation of astrocytes improves stress resilience in mice by modulating cortical neural synapses. Acta Pharmacol Sin 2025; 46:867-879. [PMID: 39643639 PMCID: PMC11950203 DOI: 10.1038/s41401-024-01420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/28/2024] [Indexed: 12/09/2024]
Abstract
Astrocytes are known to modulate synaptogenesis or neuronal activities, thus participating in mental functions. It has been shown that astrocytes are involved in the antidepressant mechanism. In this study we investigated the potential hormonal mediator governing the astrocyte-neuron interplay for stress-coping behaviors. Mice were subjected to chronic restraint stress (CRS) for 14 days, and then brain tissue was harvested for analyses. We found that the expression of pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor PAC1 was significantly decreased in astrocytes of the prelimbic (PrL) cortex. By conducting a combination of genetics, in vivo imaging and behavioral assays we demonstrated that PAC1 in cortical astrocytes was necessary for maintaining normal resilience of mice against chronic environmental stress like restraint stress. Furthermore, we showed the enhancement of de novo cortical spine formation and synaptic activity under PACAP-mediated astrocytic activation possibly via the ATP release. The molecular mechanisms suggested that the vesicle homeostasis mediated by PACAP-PAC1 axis in astrocytes was involved in regulating synaptic functions. This study identifies a previously unrecognized route by which neuropeptide modulates cortical functions via local regulation of astrocytes.
Collapse
Affiliation(s)
- Jing Cui
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Ran Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Jie Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Bo-Rui Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Ya-Fei Shi
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Kwok-Fai So
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266114, China
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China
| | - Li Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266114, China.
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, China.
| | - Ji-An Wei
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
3
|
Orso R, Viola TW, Heberle BA, Creutzberg KC, Lumertz FS, Grassi-Oliveira R. Sex-Specific Effects of Early-Life Stress Exposure on Memory Performance and the Medial Prefrontal Cortex Transcriptomic Pattern in Adolescent Mice. Mol Neurobiol 2025:10.1007/s12035-025-04803-x. [PMID: 40038196 DOI: 10.1007/s12035-025-04803-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Early life stress (ELS) is considered a risk factor for the development of cognitive and executive dysfunctions throughout development. The medial portion of the prefrontal cortex (mPFC) is directly implicated in short-term working memory. Furthermore, due to its late development compared to other brain regions, the mPFC is considered a vulnerable brain region to ELS exposure. Here, we investigated the effects of the ELS on PFC-dependent memory and mPFC transcriptomic profiles. From postnatal day (PND) 2 to PND 15, BALB/cJ mice were exposed to maternal separation (MS) for 3 h per day combined with limited bedding (ELS group) or left undisturbed (CT group). During the period of stress, maternal behavior was recorded pre-MS and post-MS. From PND 45 to PND 47, males and females were tested for working memory performance in the Y-maze and short-term recognition memory in the object in place task (OIP). Later, we assessed mRNA level alterations in the mPFC by RNA-seq. Here, we showed that ELS increases maternal care post-MS and the number of nest exits pre-MS and post-MS. Furthermore, males and females exposed to ELS exhibited impairments in the OIP, while only females performed worse in the Y-maze. With respect to the mPFC transcriptome, we identified 13 DEGs in the females, which were significantly influenced by chaperone-mediated protein folding processes, while 4 genes were altered in males. In conclusion, we showed that, compared with male sex, ELS alters maternal behavior and leads to more extensive impairments in memory function and transcriptomic alterations in females.
Collapse
Affiliation(s)
- Rodrigo Orso
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Thiago Wendt Viola
- School of Medicine, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, Brazil
| | | | | | | | - Rodrigo Grassi-Oliveira
- School of Medicine, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, Brazil.
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, A701-129, 8200, Aarhus, Denmark.
| |
Collapse
|
4
|
Zeng Z, Ding S, Liu S, Wang H, Yang Q, Hu Y, Liu Y. Mechanism of adolescent depression and Non-Suicidal Self-Injury: Interaction between interpersonal relationship and the OXTR gene. J Psychiatr Res 2025; 182:66-73. [PMID: 39799665 DOI: 10.1016/j.jpsychires.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Based on ecosystem theory and genetic and environmental research paradigms, the current research explored the influence mechanism of interpersonal relationship and OXTR gene rs1042778, rs2254298 and rs53576 polymorphisms on adolescent depression and NSSI. METHOD The main study investigation explored the effect of the interaction between interpersonal relationship and OXTR gene on adolescent depression and Non-Suicidal Self-Injury (NSSI). Concurrently, a supplementary examination investigated oxytocin's physiological impact on the social-emotional behaviors of mice subjected to post-weaning social isolation. RESULTS OXTR gene rs2254298 and rs53576 moderated the influence of interpersonal relationship on adolescent depression, and rs2254298 also moderated the influence of interpersonal relationship on adolescent NSSI. PWSI reduced the mice's emotional social ability and affected the expression and transcription of OXT and OXTR mRNA, which could be reversed after an appropriate dose of oxytocin treatment. CONCLUSION Interaction between interpersonal relationship and the OXTR gene affects adolescent depression and NSSI. The OXTR gene heterozygous genotype individuals were more sensitive to environmental stimuli, supporting the differential susceptibility model.
Collapse
Affiliation(s)
- Zihao Zeng
- School of Educational Science, Hunan Normal University, China; Department of Clinical, Neuro and Developmental Psychology, Vrije Universiteit Amsterdam, the Netherlands
| | - Shan Ding
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, China
| | - Shuangjin Liu
- School of Educational Science, Hunan Normal University, China
| | - Hongcai Wang
- School of Educational Science, Hunan Normal University, China
| | - Qin Yang
- School of Educational Science, Hunan Normal University, China
| | - Yiqiu Hu
- School of Educational Science, Hunan Normal University, China; Research Center for Mental Health Education of Hunan Province, China; Cognition and Human Behavior Key Laboratory of Hunan Province, China.
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, China; China National Clinical Research Center on Mental Disorders (Xiangya) & China National Technology Institute on Mental Disorders, China.
| |
Collapse
|
5
|
Wilmes L, Caputi V, Bastiaanssen TF, Collins JM, Crispie F, Cotter PD, Dinan TG, Cryan JF, Clarke G, O'Mahony SM. Sex specific gut-microbiota signatures of resilient and comorbid gut-brain phenotypes induced by early life stress. Neurobiol Stress 2024; 33:100686. [PMID: 39583744 PMCID: PMC11582825 DOI: 10.1016/j.ynstr.2024.100686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/23/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024] Open
Abstract
Background Alterations in gut-brain axis communication pathways and the gut microbiota ecosystem caused by early life stress have been extensively described as critical players in the pathophysiology of stress-induced disorders. However, the extent to which stress-induced gut microbiota alterations manifest in early life and contribute to the sex-specific susceptibility to distinct gut-brain phenotypes in adulthood has yet to be defined. Methods Male and female Sprague-Dawley rat offspring underwent maternal separation (3h/day from postnatal day 2-12). Faecal samples were collected before weaning for gut microbiota 16S rRNA sequencing and metabolomic analysis. Visceral pain sensitivity and negative valence behaviours were assessed in adulthood using colorectal distension and the forced swim test respectively. Behavioural data were processed in a two-step cluster analysis to identify groupings within the dataset. Multi-omics analysis was carried out to investigate if the microbial signatures following early life stress were already defined according to the membership of the adult behavioural phenotypes. Results Maternal separation resulted in increased visceral hypersensitivity while showing a trend for a sex-dependent increase in negative valence behaviour in adulthood. The cluster analysis revealed four clusters within the dataset representing distinct pathophysiological domains reminiscent of the behavioural consequences of early-life stress: 1. resilient, 2. pain, 3. immobile and 4. comorbid. The early life gut microbiota of each of these clusters show distinct alterations in terms of diversity, genus level differential abundance, and functional modules. Multi-omic integrations points towards a role for different metabolic pathways underlying each cluster-specific phenotype. Conclusion Our study is the first to identify distinct phenotypes defined by susceptibility or resilience to gut-brain dysfunction induced by early life stress. The gut microbiota in early life shows sex-dependent alterations in each cluster that precede specific behavioural phenotypes in adulthood. Future research is warranted to determine the causal relationship between early-life stress-induced changes in the gut microbiota and to understand the trajectory leading to the manifestation of different behavioural phenotypes in adulthood.
Collapse
Affiliation(s)
- Lars Wilmes
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Thomaz F.S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - James M. Collins
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Fiona Crispie
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Siobhain M. O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Wang W, Liu Z, Peng D, Lin GN, Wang Z. Genomic insights into genes expressed specifically during infancy highlight their dominant influence on the neuronal system. BMC Genomics 2024; 25:1012. [PMID: 39472790 PMCID: PMC11520499 DOI: 10.1186/s12864-024-10911-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Elucidating the dynamics of gene expression across developmental stages, including the genomic characteristics of brain expression during infancy, is pivotal in deciphering human psychiatric and neurological disorders and providing insights into developmental disorders. RESULTS Leveraging comprehensive human GWAS associations with temporal and spatial brain expression data, we discovered a distinctive co-expression cluster comprising 897 genes highly expressed specifically during infancy, enriched in functions related to the neuronal system. This gene cluster notably harbors the highest ratio of genes linked to psychiatric and neurological disorders. Through computational analysis, MYT1L emerged as a potential central transcription factor governing these genes. Remarkably, the infancy-specific expressed genes, including SYT1, exhibit prominent colocalization within human accelerated regions. Additionally, chromatin state analysis unveiled prevalent epigenetic markers associated with enhancer-specific modifications. In addition, this cluster of genes has demonstrated to be specifically highly expressed in cell-types including excitatory neurons, medial ganglionic eminence and caudal ganglionic eminence. CONCLUSIONS This study comprehensively characterizes the genomics and epigenomics of genes specifically expressed during infancy, identifying crucial hub genes and transcription factors. These findings offer valuable insights into early detection strategies and interventions for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Weidi Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhe Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Daihui Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 201108, China.
- Shanghai Intelligent Psychological Evaluation and Intervention Engineering Technology Research Center, Shanghai, 200030, China.
| |
Collapse
|
7
|
Zhang Y, Wang S, Hei M. Maternal separation as early-life stress: Mechanisms of neuropsychiatric disorders and inspiration for neonatal care. Brain Res Bull 2024; 217:111058. [PMID: 39197670 DOI: 10.1016/j.brainresbull.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The establishment of positive early parent-infant relationships provide essential nourishment and social stimulation for newborns. During the early stages of postnatal brain development, events such as synaptogenesis, neuronal maturation and glial differentiation occur in a highly coordinated manner. Maternal separation, as an early-life stress introducer, can disrupt the formation of parent-child bonds and exert long-term adverse effects throughout life. When offspring are exposed to maternal separation, the body regulates the stress of maternal separation through multiple mechanisms, including neuroinflammatory responses, neuroendocrinology, and neuronal electrical activity. In adulthood, early maternal separation has long-term effects, such as the induction of neuropsychiatric disorders such as anxiety, depression, and cognitive dysfunction. This review summarized the application of maternal separation models and the mechanisms of stress system response in neuropsychiatric disorders, serving as both a reminder and inspiration for approaches to improve neonatal care, "from bench to bedside".
Collapse
Affiliation(s)
- Yuan Zhang
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China
| | - Shu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Mingyan Hei
- Neonatal Center, Beijing Children's Hospital Capital Medical University, National Center of Children's Health, Beijing 100045, China.
| |
Collapse
|
8
|
Wang L, Li S, Hao Y, Liu X, Liu Y, Zuo L, Tai F, Yin L, Young LJ, Li D. Exposure to polystyrene microplastics reduces sociality and brain oxytocin levels through the gut-brain axis in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174026. [PMID: 38885706 DOI: 10.1016/j.scitotenv.2024.174026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The rising global prevalence of microplastics (MPs) has highlighted their diverse toxicological effects. The oxytocin (OT) system in mammals, deeply intertwined with social behaviors, is recognized to be vulnerable to environmental stressors. We hypothesized that MP exposure might disrupt this system, a topic not extensively studied. We investigated the effects of MPs on behavioral neuroendocrinology via the gut-brain axis by exposing adolescent male C57BL/6 mice to varied sizes (5 μm and 50 μm) and concentrations (100 μg/L and 1000 μg/L) of polystyrene MPs over 10 weeks. The results demonstrated that exposure to 50 μm MPs significantly reduced colonic mucin production and induced substantial alterations in gut microbiota. Notably, the 50 μm-100 μg/L group showed a significant reduction in OT content within the medial prefrontal cortex and associated deficits in sociality, along with damage to the blood-brain barrier. Importantly, blocking the vagal pathway ameliorated these behavioral impairments, emphasizing the pivotal role of the gut-brain axis in mediating neurobehavioral outcomes. Our findings confirm the toxicity of MPs on sociality and the corresponding neuroendocrine systems, shedding light on the potential hazards and adverse effects of environmental MPs exposure on social behavior and neuroendocrine frameworks in social mammals, including humans.
Collapse
Affiliation(s)
- Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Ecology Postdoctoral Research Station at Hebei Normal University, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Shuxin Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao, Hebei 066003, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yaqing Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lirong Zuo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Liyun Yin
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 3032, United States; Center for Social Neural Networks, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-857, Japan
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
9
|
Værøy H, Skar-Fröding R, Hareton E, Fetissov SO. Possible roles of neuropeptide/transmitter and autoantibody modulation in emotional problems and aggression. Front Psychiatry 2024; 15:1419574. [PMID: 39381606 PMCID: PMC11458397 DOI: 10.3389/fpsyt.2024.1419574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
The theoretical foundations of understanding psychiatric disorders are undergoing changes. Explaining behaviour and neuroendocrine cell communication leaning towards immunology represents a different approach compared to previous models for understanding complex central nervous system processes. One such approach is the study of immunoglobulins or autoantibodies, and their effect on peptide hormones in the neuro-endocrine system. In the present review, we provide an overview of the literature on neuropeptide/transmitter and autoantibody modulation in psychiatric disorders featuring emotional problems and aggression, including associated illness behaviour. Finally, we discuss the role of psycho-immunology as a growing field in the understanding of psychiatric disorders, and that modulation and regulation by IgG autoAbs represent a relatively new subcategory in psycho-immunology, where studies are currently being conducted.
Collapse
Affiliation(s)
- Henning Værøy
- R&D Department, Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway
| | - Regina Skar-Fröding
- R&D Department, Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway
| | - Elin Hareton
- Department of Multidiciplinary Laboratory Medicine and Medical Biochemistry, (TLMB), Akershus University Hospital, Lørenskog, Norway
| | - Sergueï O. Fetissov
- Neuroendocrine, Endocrine and Germinal Differentiation and Communication Laboratory, Inserm UMR1239, University of Rouen Normandie, Rouen, France
| |
Collapse
|
10
|
Ojha RK, Dongre S, Singh P, Srivastava RK. Late maternal separation provides resilience to chronic variable stress-induced anxiety- and depressive-like behaviours in male but not female mice. World J Biol Psychiatry 2024; 25:393-407. [PMID: 39155532 DOI: 10.1080/15622975.2024.2390411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Maternal separation can have long-lasting effects on an individual's susceptibility to stress later in life. Maternal separation during the postnatal period is a commonly used paradigm in rodents to investigate the effects of early life stress on neurobehavioural changes and stress responsiveness. However, maternal separation during stress hyporesponsive and responsive periods of postnatal development may differ in its effects on stress resilience. Therefore, we hypothesised that late maternal separation (LMS) from postnatal day 10 to 21 in mice may have different effect on resilience than early maternal separation during the first week of postnatal life. Our results suggested that male LMS mice are more resilient to chronic variable stress (CVS)-induced anxiety and depressive-like behaviour as confirmed by the open field, light-dark field, elevated plus maze, sucrose preference and tail suspension tests. In contrast, female LMS mice were equally resilient as non-LMS female mice. We found increased expression of NPY, NPY1R, NPY2R, NPFFR1, and NPFFR2 in the hypothalamus of male LMS mice whereas the opposite effect was observed in the hippocampus. LMS in male and female mice did not affect circulating corticosterone levels in response to psychological or physiological stressors. Thus, LMS renders male mice resilient to CVS-induced neurobehavioural disorders in adulthood.
Collapse
Affiliation(s)
- Rajesh Kumar Ojha
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
| | - Shweta Dongre
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
| | - Padmasana Singh
- Department of Zoology, University of Allahabad, Prayagraj, India
| | | |
Collapse
|
11
|
Joushi S, Taherizadeh Z, Eghbalian M, Esmaeilpour K, Sheibani V. Boosting decision-making in rat models of early-life adversity with environmental enrichment and intranasal oxytocin. Psychoneuroendocrinology 2024; 165:107050. [PMID: 38677097 DOI: 10.1016/j.psyneuen.2024.107050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Impaired decision-making constitutes a fundamental issue in numerous psychiatric disorders. Extensive research has established that early life adversity (ELA) increases vulnerability to psychiatric disorders later in life. ELA in human neonates is associated with changes in cognitive, emotional, as well as reward-related processing. Maternal separation (MS) is an established animal model of ELA and has been shown to be associated with decision-making deficits. On the other hand, enriched environment (EE) and intranasal oxytocin (OT) administration have been demonstrated to have beneficial effects on decision-making in humans or animals. Given these considerations, our investigation sought to explore the impact of brief exposure to EE and intranasal OT administration on the decision-making abilities of adolescent rats that had experienced MS during infancy. The experimental protocol involved subjecting rat pups to the MS regimen for 180 min per day from postnatal day (PND) 1 to PND 21. Then, from PND 22 to PND 34, the rats were exposed to EE and/or received intranasal OT (2 μg/μl) for seven days. The assessment of decision-making abilities, using a rat gambling task (RGT), commenced during adolescence. Our findings revealed that MS led to impaired decision-making and a decreased percentage of advantageous choices. However, exposure to brief EE or intranasal OT administration mitigated the deficits induced by MS and improved the decision-making skills of maternally-separated rats. Furthermore, combination of these treatments did not yield additional benefits. These results suggest that EE and OT may hold promise as therapeutic interventions to enhance certain aspects of cognitive performance.
Collapse
Affiliation(s)
- Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Taherizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mostafa Eghbalian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Avgana H, Toledano RS, Akirav I. Examining the Role of Oxytocinergic Signaling and Neuroinflammatory Markers in the Therapeutic Effects of MDMA in a Rat Model for PTSD. Pharmaceuticals (Basel) 2024; 17:846. [PMID: 39065697 PMCID: PMC11279644 DOI: 10.3390/ph17070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
MDMA-assisted psychotherapy has shown potential as an effective treatment for post-traumatic stress disorder (PTSD). Preclinical studies involving rodents have demonstrated that MDMA can facilitate the extinction of fear memories. It has been noted that MDMA impacts oxytocin neurons and pro-inflammatory cytokines. Thus, the aim of this study was to explore the role of oxytocinergic signaling and neuroinflammatory markers in the therapeutic effects of MDMA. To achieve this, male rats were subjected to a model of PTSD involving exposure to shock and situational reminders. MDMA was microinjected into the medial prefrontal cortex (mPFC) before extinction training, followed by behavioral tests assessing activity levels, anxiety, and social function. Our findings indicate that MDMA treatment facilitated fear extinction and mitigated the shock-induced increase in freezing, as well as deficits in social behavior. Shock exposure led to altered expression of the gene coding for OXT-R and neuroinflammation in the mPFC and basolateral amygdala (BLA), which were restored by MDMA treatment. Importantly, the OXT-R antagonist L-368,899 prevented MDMA's therapeutic effects on extinction and freezing behavior. In conclusion, MDMA's therapeutic effects in the PTSD model are associated with alterations in OXT-R expression and neuroinflammation, and MDMA's effects on extinction and anxiety may be mediated by oxytocinergic signaling.
Collapse
Affiliation(s)
- Haron Avgana
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Roni Shira Toledano
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel; (H.A.); (R.S.T.)
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
13
|
Hao Y, Niu Y, Shi F, Zhang L, Peng C, Yan Z, Chen X, Xu H. A single 24 h maternal separation at PND 9 promotes behavioral resilience of female C57BL/6J mice and the possible role of hippocampal Homer1a. Heliyon 2024; 10:e27037. [PMID: 38455582 PMCID: PMC10918190 DOI: 10.1016/j.heliyon.2024.e27037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Early life stress (ELS) has been thought to increase vulnerability to developing psychiatric disorders later in life, while some researchers have found that adversity early in life may promote stress resilience. Studies investigating the resilient effect of maternal separation (MS) are still relatively few, and the underlying mechanisms remain unknown. In the current study, the effect of a single 24 h MS paradigm at postnatal day 9 (PND 9) in female C57BL/6J mice was investigated by assessing behavioral performance in middle adolescence. We demonstrated that, mice in MS group displayed decreased anxiety-like behavior and increased exploratory behavior than controls in the open field test and elevated plus maze test. Furthermore, MS mice exhibited improved hippocampal-dependent spatial learning in the Morris water maze test. This performance indicated behavioral resilience to early life stress. The protein expression levels of Homer1 isoforms, which are implicated in a variety of neuropsychiatric disorders, were evaluated using Western blot analysis. A significant increase in hippocampal Homer1a protein expression was observed immediately after MS, which subsequently decreased until adolescence (PND 27-42), when a significant increase was observed again. This distinctive change of hippocampal Homer1a protein expression pattern indicated that hippocampal Homer1a might play a role in behavioral resilience to MS in female C57BL/6J mice. In conclusion, this study demonstrated that exposure to a single 24 h MS at PND 9 promoted behavioral resilience of female C57BL/6J mice in middle adolescence. This behavioral resilience might be related to increased expression of hippocampal Homer1a.
Collapse
Affiliation(s)
- Yelu Hao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Neurosurgery, The 940 Hospital of PLA Joint Logistic Support Force, Lanzhou, Gansu, China
| | - Yujie Niu
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lei Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Cheng Peng
- Department of Neurosurgery, The 984 Hospital of PLA Joint Logistic Support Force, Beijing, China
| | - Zhiqiang Yan
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoyan Chen
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hongyu Xu
- College of Science and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang, China
- Wenzhou Municipal Key Lab of Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| |
Collapse
|
14
|
Zhu J, Zhong Z, Shi L, Huang L, Lin C, He Y, Xia X, Zhang T, Ding W, Yang Y. Gut microbiota mediate early life stress-induced social dysfunction and anxiety-like behaviors by impairing amino acid transport at the gut. Gut Microbes 2024; 16:2401939. [PMID: 39259834 PMCID: PMC11404583 DOI: 10.1080/19490976.2024.2401939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Early life stress alters gut microbiota and increases the risk of neuropsychiatric disorders, including social deficits and anxiety, in the host. However, the role of gut commensal bacteria in early life stress-induced neurobehavioral abnormalities remains unclear. Using the maternally separated (MS) mice, our research has unveiled a novel aspect of this complex relationship. We discovered that the reduced levels of amino acid transporters in the intestine of MS mice led to low glutamine (Gln) levels in the blood and synaptic dysfunction in the medial prefrontal cortex (mPFC). Abnormally low blood Gln levels limit the brain's availability of Gln, which is required for presynaptic glutamate (Glu) and γ-aminobutyric acid (GABA) replenishment. Furthermore, MS resulted in gut microbiota dysbiosis characterized by a reduction in the relative abundance of Lactobacillus reuteri (L. reuteri). Notably, supplementation with L. reuteri ameliorates neurobehavioral abnormalities in MS mice by increasing intestinal amino acid transport and restoring synaptic transmission in the mPFC. In conclusion, our findings on the role of L. reuteri in regulating intestinal amino acid transport and buffering early life stress-induced behavioral abnormalities provide a novel insight into the microbiota-gut-brain signaling basis for emotional behaviors.
Collapse
Affiliation(s)
- Jiushuang Zhu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Zhuoting Zhong
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Lijie Shi
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Ling Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Chunqiao Lin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Yan He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Xiuwen Xia
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Tiane Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| | - Youjun Yang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, P. R. China
| |
Collapse
|
15
|
Chen CM, Wu CC, Kim Y, Hsu WY, Tsai YC, Chiu SL. Enhancing social behavior in an autism spectrum disorder mouse model: investigating the underlying mechanisms of Lactiplantibacillus plantarum intervention. Gut Microbes 2024; 16:2359501. [PMID: 38841895 PMCID: PMC11164232 DOI: 10.1080/19490976.2024.2359501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder affecting over 1% of the global population. Individuals with ASD often exhibit complex behavioral conditions, including significant social difficulties and repetitive behaviors. Moreover, ASD often co-occurs with several other conditions, including intellectual disabilities and anxiety disorders. The etiology of ASD remains largely unknown owing to its complex genetic variations and associated environmental risks. Ultimately, this poses a fundamental challenge for the development of effective ASD treatment strategies. Previously, we demonstrated that daily supplementation with the probiotic Lactiplantibacillus plantarum PS128 (PS128) alleviates ASD symptoms in children. However, the mechanism underlying this improvement in ASD-associated behaviors remains unclear. Here, we used a well-established ASD mouse model, induced by prenatal exposure to valproic acid (VPA), to study the physiological roles of PS128 in vivo. Overall, we showed that PS128 selectively ameliorates behavioral abnormalities in social and spatial memory in VPA-induced ASD mice. Morphological examination of dendritic architecture further revealed that PS128 facilitated the restoration of dendritic arborization and spine density in the hippocampus and prefrontal cortex of ASD mice. Notably, PS128 was crucial for restoring oxytocin levels in the paraventricular nucleus and oxytocin receptor signaling in the hippocampus. Moreover, PS128 alters the gut microbiota composition and increases the abundance of Bifidobacterium spp. and PS128-induced changes in Bifidobacterium abundance positively correlated with PS128-induced behavioral improvements. Together, our results show that PS128 treatment can effectively ameliorate ASD-associated behaviors and reinstate oxytocin levels in VPA-induced mice, thereby providing a promising strategy for the future development of ASD therapeutics.
Collapse
Affiliation(s)
- Chih-Ming Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Research and Development Department, Bened Biomedical Co. Ltd, Taipei, Taiwan
| | - Chien-Chen Wu
- Research and Development Department, Bened Biomedical Co. Ltd, Taipei, Taiwan
| | - Yebeen Kim
- Institute of Cellular and Organismic Biology and Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Wei-Yu Hsu
- Institute of Cellular and Organismic Biology and Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Ling Chiu
- Institute of Cellular and Organismic Biology and Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
16
|
Bridgeland-Stephens L, Thorpe SKS, Chappell J. Potential resilience treatments for orangutans ( Pongo spp.): Lessons from a scoping review of interventions in humans and other animals. Anim Welf 2023; 32:e77. [PMID: 38487448 PMCID: PMC10937215 DOI: 10.1017/awf.2023.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/25/2023] [Accepted: 11/02/2023] [Indexed: 03/17/2024]
Abstract
Wild orangutans (Pongo spp.) rescued from human-wildlife conflict must be adequately rehabilitated before being returned to the wild. It is essential that released orangutans are able to cope with stressful challenges such as food scarcity, navigating unfamiliar environments, and regaining independence from human support. Although practical skills are taught to orangutans in rehabilitation centres, post-release survival rates are low. Psychological resilience, or the ability to 'bounce back' from stress, may be a key missing piece of the puzzle. However, there is very little knowledge about species-appropriate interventions which could help captive orangutans increase resilience to stress. This scoping review summarises and critically analyses existing human and non-human animal resilience literature and provides suggestions for the development of interventions for orangutans in rehabilitation. Three scientific databases were searched in 2021 and 2023, resulting in 63 human studies and 266 non-human animal studies. The first section brings together human resilience interventions, identifying common themes and assessing the applicability of human interventions to orangutans in rehabilitation. The second section groups animal interventions into categories of direct stress, separation stress, environmental conditions, social stress, and exercise. In each category, interventions are critically analysed to evaluate their potential for orangutans in rehabilitation. The results show that mild and manageable forms of intervention have the greatest potential benefit with the least amount of risk. The study concludes by emphasising the need for further investigation and experimentation, to develop appropriate interventions and measure their effect on the post-release survival rate of orangutans.
Collapse
Affiliation(s)
| | | | - Jackie Chappell
- School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Jiang J, Tan S, Feng X, Peng Y, Long C, Yang L. Distinct ACC Neural Mechanisms Underlie Authentic and Transmitted Anxiety Induced by Maternal Separation in Mice. J Neurosci 2023; 43:8201-8218. [PMID: 37845036 PMCID: PMC10697407 DOI: 10.1523/jneurosci.0558-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/18/2023] Open
Abstract
It is known that humans and rodents are capable of transmitting stress to their naive partners via social interaction. However, a comprehensive understanding of transmitted stress, which may differ from authentic stress, thus revealing unique neural mechanisms of social interaction resulting from transmitted stress and the associated anxiety, is missing. We used, in the present study, maternal separation (MS) as a stress model to investigate whether MS causes abnormal behavior in adolescence. A key concern in the analysis of stress transmission is whether the littermates of MS mice who only witness MS stress ("Partners") exhibit behavioral abnormalities similar to those of MS mice themselves. Of special interest is the establishment of the neural mechanisms underlying transmitted stress and authentic stress. The results show that Partners, similar to MS mice, exhibit anxiety-like behavior and hyperalgesia after witnessing littermates being subjected to early-life repetitive MS. Electrophysiological analysis revealed that mice subjected to MS demonstrate a reduction in both the excitatory and inhibitory synaptic activities of parvalbumin interneurons (PVINs) in the anterior cingulate cortex (ACC). However, Partners differed from MS mice in showing an increase in the number and excitability of GABAergic PVINs in the ACC and in the ability of chemogenetic PVIN inactivation to eliminate abnormal behavior. Furthermore, the social transfer of anxiety-like behavior required intact olfactory, but not visual, perception. This study suggests a functional involvement of ACC PVINs in mediating the distinct neural basis of transmitted anxiety.SIGNIFICANCE STATEMENT The anterior cingulate cortex (ACC) is a critical brain area in physical and social pain and contributes to the exhibition of abnormal behavior. ACC glutamatergic neurons have been shown to encode transmitted stress, but it remains unclear whether inhibitory ACC neurons also play a role. We evaluate, in this study, ACC neuronal, synaptic and network activities and uncover a critical role of parvalbumin interneurons (PVINs) in the expression of transmitted stress in adolescent mice who had witnessed MS of littermates in infancy. Furthermore, inactivation of ACC PVINs blocks transmitted stress. The results suggest that emotional contagion has a severe effect on brain function, and identify a potential target for the treatment of transmitted anxiety.
Collapse
Affiliation(s)
- Jinxiang Jiang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shuyi Tan
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoyi Feng
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yigang Peng
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Li Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
18
|
Zhang S, Zhang YD, Shi DD, Wang Z. Therapeutic uses of oxytocin in stress-related neuropsychiatric disorders. Cell Biosci 2023; 13:216. [PMID: 38017588 PMCID: PMC10683256 DOI: 10.1186/s13578-023-01173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
Oxytocin (OXT), produced and secreted in the paraventricular nucleus and supraoptic nucleus of magnocellular and parvocellular neurons. The diverse presence and activity of oxytocin suggests a potential for this neuropeptide in the pathogenesis and treatment of stress-related neuropsychiatric disorders (anxiety, depression and post-traumatic stress disorder (PTSD)). For a more comprehensive understanding of the mechanism of OXT's anti-stress action, the signaling cascade of OXT binding to targeting stress were summarized. Then the advance of OXT treatment in depression, anxiety, PTSD and the major projection region of OXT neuron were discussed. Further, the efficacy of endogenous and exogenous OXT in stress responses were highlighted in this review. To augment the level of OXT in stress-related neuropsychiatric disorders, current biological strategies were summarized to shed a light on the treatment of stress-induced psychiatric disorders. We also conclude some of the major puzzles in the therapeutic uses of OXT in stress-related neuropsychiatric disorders. Although some questions remain to be resolved, OXT has an enormous potential therapeutic use as a hormone that regulates stress responses.
Collapse
Affiliation(s)
- Sen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Shi DD, Zhang YD, Zhang S, Liao BB, Chu MY, Su S, Zhuo K, Hu H, Zhang C, Wang Z. Stress-induced red nucleus attenuation induces anxiety-like behavior and lymph node CCL5 secretion. Nat Commun 2023; 14:6923. [PMID: 37903803 PMCID: PMC10616295 DOI: 10.1038/s41467-023-42814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Previous studies have speculated that brain activity directly controls immune responses in lymphoid organs. However, the upstream brain regions that control lymphoid organs and how they interface with lymphoid organs to produce stress-induced anxiety-like behavior remain elusive. Using stressed human participants and rat models, we show that CCL5 levels are increased in stressed individuals compared to controls. Stress-inducible CCL5 is mainly produced from cervical lymph nodes (CLN). Retrograde tracing from CLN identifies glutamatergic neurons in the red nucleus (RN), the activities of which are tightly correlated with CCL5 levels and anxiety-like behavior in male rats. Ablation or chemogenetic inhibition of RN glutamatergic neurons increases anxiety levels and CCL5 expression in the serum and CLNs, whereas pharmacogenetic activation of these neurons reduces anxiety levels and CCL5 synthesis after restraint stress exposure. Chemogenetic inhibition of the projection from primary motor cortex to RN elicits anxiety-like behavior and CCL5 synthesis. This brain-lymph node axis provides insights into lymph node tissue as a stress-responsive endocrine organ.
Collapse
Affiliation(s)
- Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing-Bing Liao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Yi Chu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanshan Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiming Zhuo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Liu S, Huang R, Li A, Yu S, Yao S, Xu J, Tang L, Li W, Gan C, Cheng H. The role of the oxytocin system in the resilience of patients with breast cancer. Front Oncol 2023; 13:1187477. [PMID: 37781188 PMCID: PMC10534028 DOI: 10.3389/fonc.2023.1187477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Breast cancer is a grave traumatic experience that can profoundly compromise patients' psychological resilience, impacting their overall quality of life. The oxytocin system represents one of the essential neurobiological bases of psychological resilience and plays a critical role in regulating resilience in response to social or traumatic events during adulthood. Oxytocin, through its direct interaction with peripheral or central oxytocin receptors, has been found to have a significant impact on regulating social behavior. However, the precise mechanism by which the activation of peripheral oxytocin receptors leads to improved social is still not completely comprehended and requires additional research. Its activation can modulate psychological resilience by influencing estrogen and its receptors, the hypothalamic-pituitary-adrenal axis, thyroid function, 5-hydroxytryptamine metabolism levels, and arginine pressure release in breast cancer patients. Various interventions, including psychotherapy and behavioral measures, have been employed to improve the psychological resilience of breast cancer patients. The potential effectiveness of such interventions may be underpinned by their ability to modulate oxytocin release levels. This review provides an overview of the oxytocin system and resilience in breast cancer patients and identifies possible future research directions and interventions.
Collapse
Affiliation(s)
- Shaochun Liu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Runze Huang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Anlong Li
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sheng Yu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Senbang Yao
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jian Xu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lingxue Tang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wen Li
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chen Gan
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
- Shenzhen Clinical Medical School of Southern Medical University, Guangzhou, China
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C, Zhang W. Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther 2023; 8:309. [PMID: 37644009 PMCID: PMC10465587 DOI: 10.1038/s41392-023-01519-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic, generally episodic and debilitating disease that affects an estimated 300 million people worldwide, but its pathogenesis is poorly understood. The heritability estimate of MDD is 30-40%, suggesting that genetics alone do not account for most of the risk of major depression. Another factor known to associate with MDD involves environmental stressors such as childhood adversity and recent life stress. Recent studies have emerged to show that the biological impact of environmental factors in MDD and other stress-related disorders is mediated by a variety of epigenetic modifications. These epigenetic modification alterations contribute to abnormal neuroendocrine responses, neuroplasticity impairment, neurotransmission and neuroglia dysfunction, which are involved in the pathophysiology of MDD. Furthermore, epigenetic marks have been associated with the diagnosis and treatment of MDD. The evaluation of epigenetic modifications holds promise for further understanding of the heterogeneous etiology and complex phenotypes of MDD, and may identify new therapeutic targets. Here, we review preclinical and clinical epigenetic findings, including DNA methylation, histone modification, noncoding RNA, RNA modification, and chromatin remodeling factor in MDD. In addition, we elaborate on the contribution of these epigenetic mechanisms to the pathological trait variability in depression and discuss how such mechanisms can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Biao Yang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Radiology, Columbia University, New York, NY, 10032, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
22
|
Li Y, Shi DD, Wang Z. Adolescent nonpharmacological interventions for early-life stress and their mechanisms. Behav Brain Res 2023; 452:114580. [PMID: 37453516 DOI: 10.1016/j.bbr.2023.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Those with a negative experience of psychosocial stress during the early stage of life not only have a high susceptibility of the psychiatric disorder in all phases of their life span, but they also demonstrate more severe symptoms and poorer response to treatment compared to those without a history of early-life stress. The interventions targeted to early-life stress may improve the effectiveness of treating and preventing psychiatric disorders. Brain regions associated with mood and cognition develop rapidly and own heightened plasticity during adolescence. So, manipulating nonpharmacological interventions in fewer side effects and higher acceptance during adolescence, which is a probable window of opportunity, may ameliorate or even reverse the constantly deteriorating impact of early-life stress. The present article reviews animal and people studies about adolescent nonpharmacological interventions for early-life stress. We aim to discuss whether those adolescent nonpharmacological interventions can promote individuals' psychological health who expose to early-life stress.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
23
|
Luo F, Deng JY, Sun X, Zhen J, Luo XD. Anterior cingulate cortex orexin signaling mediates early-life stress-induced social impairment in females. Proc Natl Acad Sci U S A 2023; 120:e2220353120. [PMID: 37155875 PMCID: PMC10193930 DOI: 10.1073/pnas.2220353120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023] Open
Abstract
Early-life stress has long-term impacts on the structure and function of the anterior cingulate cortex (ACC), and raises the risk of adult neuropsychiatric disorders including social dysfunction. The underlying neural mechanisms, however, are still uncertain. Here, we show that, in female mice, maternal separation (MS) during the first three postnatal weeks results in social impairment accompanied with hypoactivity in pyramidal neurons (PNs) of the ACC. Activation of ACC PNs ameliorates MS-induced social impairment. Neuropeptide Hcrt, which encodes hypocretin (orexin), is the top down-regulated gene in the ACC of MS females. Activating ACC orexin terminals enhances the activity of ACC PNs and rescues the diminished sociability observed in MS females via an orexin receptor 2 (OxR2)-dependent mechanism. Our results suggest orexin signaling in the ACC is critical in mediating early-life stress-induced social impairment in females.
Collapse
Affiliation(s)
- Fei Luo
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang330031, China
- Department of Psychiatry, Yichun First municipal People’s Hospital, YiChun336000, China
| | - Jun-yang Deng
- Department of Psychiatry, Yichun First municipal People’s Hospital, YiChun336000, China
| | - Xuan Sun
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang330031, China
| | - Jian Zhen
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang330031, China
| | - Xiao-dan Luo
- Department of Psychiatry, Yichun First municipal People’s Hospital, YiChun336000, China
| |
Collapse
|
24
|
Yang Y, Zhong Z, Wang B, Wang Y, Ding W. Activation of D1R signaling in the medial prefrontal cortex rescues maternal separation-induced behavioral deficits through restoration of excitatory neurotransmission. Behav Brain Res 2023; 441:114287. [PMID: 36627054 DOI: 10.1016/j.bbr.2023.114287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
Lack of maternal care and attention during infancy and childhood increases the likelihood of developing a range of neuropsychiatric disorders, such as social deficits, working memory impairment, and anxiety-like behaviors, in adulthood. However, the neuroregulatory signaling through which early-life stress causes behavioral and cognitive abnormalities in the offspring is largely unexplored. Here, we show that in mice, unpredictable maternal separation (MS) during the early postnatal period impairs neuronal development in the medial prefrontal cortex (mPFC) and results in long-lasting behavioral changes. Additionally, MS disrupts excitatory neurotransmission and inhibits the neuronal activity of pyramidal neurons in the mPFC. Differentially expressed gene (DEG) analysis of RNA sequencing (RNA-seq) data of mPFC showed that dopamine D1 receptor (D1R) was significantly downregulated in MS animals. Finally, we show that pharmacological activation of D1R signaling specifically in the mPFC improves neuronal excitability and rescues behavioral and cognitive dysfunction of MS mice, whereas pharmacologically inhibiting of D1R in the mPFC mimics MS-induced behavioral abnormalities in control mice. Together, our results identify D1R signaling in the mPFC, at least in part, as a potential therapeutic target for the behavioral and cognitive abnormalities caused by deprivation of maternal care in early life.
Collapse
Affiliation(s)
- Youjun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, Chengdu 611137, PR China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao Special Administrative Region of China.
| | - Zhanqiong Zhong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, Chengdu 611137, PR China
| | - Baojia Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, Chengdu 611137, PR China
| | - Yili Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Weijun Ding
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, Chengdu 611137, PR China
| |
Collapse
|
25
|
Zühlsdorff K, López-Cruz L, Dutcher EG, Jones JA, Pama C, Sawiak S, Khan S, Milton AL, Robbins TW, Bullmore ET, Dalley JW. Sex-dependent effects of early life stress on reinforcement learning and limbic cortico-striatal functional connectivity. Neurobiol Stress 2023; 22:100507. [PMID: 36505960 PMCID: PMC9731893 DOI: 10.1016/j.ynstr.2022.100507] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Major depressive disorder (MDD) is a stress-related condition hypothesized to involve aberrant reinforcement learning (RL) with positive and negative stimuli. The present study investigated whether repeated early maternal separation (REMS) stress, a procedure widely recognized to cause depression-like behaviour, affects how subjects learn from positive and negative feedback. The REMS procedure was implemented by separating male and female rats from their dam for 6 h each day from post-natal day 5-19. Control rat offspring were left undisturbed during this period. Rats were tested as adults for behavioral flexibility and feedback sensitivity on a probabilistic reversal learning task. A computational approach based on RL theory was used to derive latent behavioral variables related to reward learning and flexibility. To assess underlying brain substrates, a seed-based functional MRI connectivity analysis was applied both before and after an additional adulthood stressor in control and REMS rats. Female but not male rats exposed to REMS stress showed increased response 'stickiness' (repeated responses regardless of reward outcome). Following repeated adulthood stress, reduced functional connectivity from the basolateral amygdala (BLA) to the dorsolateral striatum (DLS), cingulate cortex (Cg), and anterior insula (AI) cortex was observed in females. By contrast, control male rats exposed to the second stressor showed impaired learning from negative feedback (i.e., non-reward) and reduced functional connectivity from the BLA to the DLS and AI compared to maternally separated males. RL in male rats exposed to REMS was unaffected. The fMRI data further revealed that connectivity between the mOFC and other prefrontal cortical and subcortical structures was positively correlated with response 'stickiness'. These findings reveal differences in how females and males respond to early life adversity and subsequent stress. These effects may be mediated by functional divergence in resting-state connectivity between the basolateral amygdala and fronto-striatal brain regions.
Collapse
Affiliation(s)
- Katharina Zühlsdorff
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Laura López-Cruz
- Faculty of Science, Technology, Engineering & Mathematics, The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
| | - Ethan G. Dutcher
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Jolyon A. Jones
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Claudia Pama
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Stephen Sawiak
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Box 65, Cambridge, CB2 0QQ, UK
| | - Shahid Khan
- GlaxoSmithKline Research & Development, Stevenage, UK
| | - Amy L. Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - Edward T. Bullmore
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
- Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Cambridge, CB2 0SZ, UK
| | - Jeffrey W. Dalley
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
- Department of Psychiatry, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Cambridge, CB2 0SZ, UK
| |
Collapse
|
26
|
Zhai X, Zhou D, Han Y, Han MH, Zhang H. Noradrenergic modulation of stress resilience. Pharmacol Res 2023; 187:106598. [PMID: 36481260 DOI: 10.1016/j.phrs.2022.106598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Resilience represents an active adaption process in the face of adversity, trauma, tragedy, threats, or significant sources of stress. Investigations of neurobiological mechanisms of resilience opens an innovative direction for preclinical research and drug development for various stress-related disorders. The locus coeruleus norepinephrine system has been implicated in mediating stress susceptibility versus resilience. It has attracted increasing attention over the past decades with the revolution of modern neuroscience technologies. In this review article, we first briefly go over resilience-related concepts and introduce rodent paradigms for segregation of susceptibility and resilience, then highlight recent literature that identifies the neuronal and molecular substrates of active resilience in the locus coeruleus, and discuss possible future directions for resilience investigations.
Collapse
Affiliation(s)
- Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongyu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
27
|
Triana-Del Rio R, Ranade S, Guardado J, LeDoux J, Klann E, Shrestha P. The modulation of emotional and social behaviors by oxytocin signaling in limbic network. Front Mol Neurosci 2022; 15:1002846. [PMID: 36466805 PMCID: PMC9714608 DOI: 10.3389/fnmol.2022.1002846] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2024] Open
Abstract
Neuropeptides can exert volume modulation in neuronal networks, which account for a well-calibrated and fine-tuned regulation that depends on the sensory and behavioral contexts. For example, oxytocin (OT) and oxytocin receptor (OTR) trigger a signaling pattern encompassing intracellular cascades, synaptic plasticity, gene expression, and network regulation, that together function to increase the signal-to-noise ratio for sensory-dependent stress/threat and social responses. Activation of OTRs in emotional circuits within the limbic forebrain is necessary to acquire stress/threat responses. When emotional memories are retrieved, OTR-expressing cells act as gatekeepers of the threat response choice/discrimination. OT signaling has also been implicated in modulating social-exposure elicited responses in the neural circuits within the limbic forebrain. In this review, we describe the cellular and molecular mechanisms that underlie the neuromodulation by OT, and how OT signaling in specific neural circuits and cell populations mediate stress/threat and social behaviors. OT and downstream signaling cascades are heavily implicated in neuropsychiatric disorders characterized by emotional and social dysregulation. Thus, a mechanistic understanding of downstream cellular effects of OT in relevant cell types and neural circuits can help design effective intervention techniques for a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Sayali Ranade
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Jahel Guardado
- Center for Neural Science, New York University, New York, NY, United States
| | - Joseph LeDoux
- Center for Neural Science, New York University, New York, NY, United States
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, United States
| | - Prerana Shrestha
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
28
|
Webster JF, Beerens S, Wozny C. Effects of early life stress and subsequent re-exposure to stress on neuronal activity in the lateral habenula. Neuropsychopharmacology 2022; 48:745-753. [PMID: 36371544 PMCID: PMC10066304 DOI: 10.1038/s41386-022-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022]
Abstract
Early life stress can result in depression in humans and depressive-like behaviour in rodents. In various animal models of depression, the lateral habenula (LHb) has been shown to become hyperactive immediately after early life stress. However, whether these pathological changes persist into adulthood is less well understood. Hence, we utilised the maternal separation (MS) model of depression to study how early life stress alters LHb physiology and depressive behaviour in adult mice. We find that only a weak depressive phenotype persists into adulthood which surprisingly is underpinned by LHb hypoactivity in acute slices, accompanied by alterations in both excitatory and inhibitory signalling. However, while we find the LHb to be less active at rest, we report that the neurons reside in a sensitised state where they are more responsive to re-exposure to stress in adulthood in the form of acute restraint, thus priming them to respond to aversive events with an increase in neuronal activity mediated by changes in glutamatergic transmission. These findings thus suggest that in addition to LHb hyperactivity, hypoactivity likely also promotes an adverse phenotype. Re-exposure to stress results in the reappearance of LHb hyperactivity offering a possible mechanism to explain how depression relapses occur following previous depressive episodes.
Collapse
Affiliation(s)
- Jack F Webster
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Sanne Beerens
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Christian Wozny
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK. .,MSH Medical School Hamburg, Medical University, Institute for Molecular Medicine, 20457, Hamburg, Germany.
| |
Collapse
|
29
|
Giannotti G, Mottarlini F, Heinsbroek JA, Mandel MR, James MH, Peters J. Oxytocin and orexin systems bidirectionally regulate the ability of opioid cues to bias reward seeking. Transl Psychiatry 2022; 12:432. [PMID: 36195606 PMCID: PMC9532415 DOI: 10.1038/s41398-022-02161-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
As opioid-related fatalities continue to rise, the need for novel opioid use disorder (OUD) treatments could not be more urgent. Two separate hypothalamic neuropeptide systems have shown promise in preclinical OUD models. The oxytocin system, originating in the paraventricular nucleus (PVN), may protect against OUD severity. By contrast, the orexin system, originating in the lateral hypothalamus (LH), may exacerbate OUD severity. Thus, activating the oxytocin system or inhibiting the orexin system are potential therapeutic strategies. The specific role of these systems with regard to specific OUD outcomes, however, is not fully understood. Here, we probed the therapeutic efficacy of pharmacological interventions targeting the orexin or oxytocin system on two distinct metrics of OUD severity in rats-heroin choice (versus choice for natural reward, i.e., food) and cued reward seeking. Using a preclinical model that generates approximately equal choice between heroin and food reward, we examined the impact of exogenously administered oxytocin, an oxytocin receptor antagonist (L-368,899), and a dual orexin receptor antagonist (DORA-12) on opioid choice. Whereas these agents did not alter heroin choice when rewards (heroin and food) were available, oxytocin and DORA-12 each significantly reduced heroin seeking in the presence of competing reward cues when no rewards were available. In addition, the number of LH orexin neurons and PVN oxytocin neurons correlated with specific behavioral economic variables indicative of heroin versus food motivation. These data identify a novel bidirectional role of the oxytocin and orexin systems in the ability of opioid-related cues to bias reward seeking.
Collapse
Affiliation(s)
- Giuseppe Giannotti
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Francesca Mottarlini
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133, Milan, Italy
| | - Jasper A Heinsbroek
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Mitchel R Mandel
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
30
|
Petković A, Chaudhury D. Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 2022; 16:931964. [PMID: 36004305 PMCID: PMC9395206 DOI: 10.3389/fnbeh.2022.931964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies over the past two decades have led to extensive advances in our understanding of pathogenesis of depressive and mood disorders. Among these, rodent behavioural models proved to be of highest informative value. Here, we present a comprehensive overview of the most popular behavioural models with respect to physiological, circuit, and molecular biological correlates. Behavioural stress paradigms and behavioural tests are assessed in terms of outcomes, strengths, weaknesses, and translational value, especially in the domain of pharmacological studies.
Collapse
Affiliation(s)
| | - Dipesh Chaudhury
- Laboratory of Neural Systems and Behaviour, Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
31
|
Helman TJ, Headrick JP, Peart JN, Stapelberg NJC. Central and cardiac stress resiliences consistently linked to integrated immuno-neuroendocrine responses across stress models in male mice. Eur J Neurosci 2022; 56:4333-4362. [PMID: 35763309 DOI: 10.1111/ejn.15747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022]
Abstract
Stress resilience, and behavioural and cardiovascular impacts of chronic stress, are theorised to involve integrated neuro-endocrine/inflammatory/transmitter/trophin signalling. We tested for this integration, and whether behaviour/emotionality, together with myocardial ischaemic tolerance, are consistently linked to these pathways across diverse conditions in male C57Bl/6 mice. This included: Restraint Stress (RS), 1 hr restraint/day for 14 days; Chronic Unpredictable Mild Stress (CUMS), 7 stressors randomised over 21 days; Social Stress (SS), 35 days social isolation with brief social encounters in final 13 days; and Control conditions (CTRL; un-stressed mice). Behaviour was assessed via open field (OFT) and sucrose preference (SPT) tests, and neurobiology from frontal cortex (FC) and hippocampal transcripts. Endocrine factors, and function and ischaemic tolerance in isolated hearts, were also measured. Model characteristics ranged from no behavioural or myocardial changes with homotypic RS, to increased emotionality and cardiac ischaemic injury (with apparently distinct endocrine/neurobiological profiles) in CUMS and SS models. Highly integrated expression of HPA axis, neuro-inflammatory, BDNF, monoamine, GABA, cannabinoid and opioid signalling genes was confirmed across conditions, and consistent/potentially causal correlations identified for: i) Locomotor activity (noradrenaline, ghrelin; FC Crhr1, Tnfrsf1b, Il33, Nfkb1, Maoa, Gabra1; hippocampal Il33); ii) Thigmotaxis (adrenaline, leptin); iii) Anxiety-like behaviour (adrenaline, leptin; FC Tnfrsf1a; hippocampal Il33); iv) Depressive-like behaviour (ghrelin; FC/hippocampal s100a8); and v) Cardiac stress-resistance (noradrenaline, leptin; FC Il33, Tnfrsf1b, Htr1a, Gabra1, Gabrg2; hippocampal Il33, Tnfrsf1a, Maoa, Drd2). Data support highly integrated pathway responses to stress, and consistent adipokine, sympatho-adrenergic, inflammatory and monoamine involvement in mood and myocardial disturbances across diverse conditions.
Collapse
Affiliation(s)
- Tessa J Helman
- School of Pharmacy and Medical Science, Griffith University, Southport, Australia
| | - John P Headrick
- School of Pharmacy and Medical Science, Griffith University, Southport, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Science, Griffith University, Southport, Australia
| | - Nicolas J C Stapelberg
- Faculty of Health Sciences and Medicine, Bond University, Robina, Australia.,Gold Coast Hospital and Health Service, Southport, Australia
| |
Collapse
|
32
|
Epigenetic Mechanism of Depression after Early Life Stress. Neurosci Bull 2022; 38:692-694. [PMID: 35224707 PMCID: PMC9206051 DOI: 10.1007/s12264-022-00831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/20/2021] [Indexed: 01/06/2023] Open
|
33
|
Takayanagi Y, Onaka T. Roles of Oxytocin in Stress Responses, Allostasis and Resilience. Int J Mol Sci 2021; 23:ijms23010150. [PMID: 35008574 PMCID: PMC8745417 DOI: 10.3390/ijms23010150] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
Oxytocin has been revealed to work for anxiety suppression and anti-stress as well as for psychosocial behavior and reproductive functions. Oxytocin neurons are activated by various stressful stimuli. The oxytocin receptor is widely distributed within the brain, and oxytocin that is released or diffused affects behavioral and neuroendocrine stress responses. On the other hand, there has been an increasing number of reports on the role of oxytocin in allostasis and resilience. It has been shown that oxytocin maintains homeostasis, shifts the set point for adaptation to a changing environment (allostasis) and contributes to recovery from the shifted set point by inducing active coping responses to stressful stimuli (resilience). Recent studies have suggested that oxytocin is also involved in stress-related disorders, and it has been shown in clinical trials that oxytocin provides therapeutic benefits for patients diagnosed with stress-related disorders. This review includes the latest information on the role of oxytocin in stress responses and adaptation.
Collapse
|
34
|
Carloni E, Ramos A, Hayes LN. Developmental Stressors Induce Innate Immune Memory in Microglia and Contribute to Disease Risk. Int J Mol Sci 2021; 22:13035. [PMID: 34884841 PMCID: PMC8657756 DOI: 10.3390/ijms222313035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/26/2022] Open
Abstract
Many types of stressors have an impact on brain development, function, and disease susceptibility including immune stressors, psychosocial stressors, and exposure to drugs of abuse. We propose that these diverse developmental stressors may utilize a common mechanism that underlies impaired cognitive function and neurodevelopmental disorders such as schizophrenia, autism, and mood disorders that can develop in later life as a result of developmental stressors. While these stressors are directed at critical developmental windows, their impacts are long-lasting. Immune activation is a shared pathophysiology across several different developmental stressors and may thus be a targetable treatment to mitigate the later behavioral deficits. In this review, we explore different types of prenatal and perinatal stressors and their contribution to disease risk and underlying molecular mechanisms. We highlight the impact of developmental stressors on microglia biology because of their early infiltration into the brain, their critical role in brain development and function, and their long-lived status in the brain throughout life. Furthermore, we introduce innate immune memory as a potential underlying mechanism for developmental stressors' impact on disease. Finally, we highlight the molecular and epigenetic reprogramming that is known to underlie innate immune memory and explain how similar molecular mechanisms may be at work for cells to retain a long-term perturbation after exposure to developmental stressors.
Collapse
Affiliation(s)
- Elisa Carloni
- Department of Molecular and Cellular Biology, Dartmouth College, Hanover, NH 03755, USA;
| | - Adriana Ramos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Lindsay N. Hayes
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|