1
|
Xu L, Wang P, Yang L, Liu Y, Li X, Yin Y, Lan C. Neurotrophic factor biomarkers for ischemic stroke diagnosis and mechanistic insights. Sci Rep 2025; 15:11906. [PMID: 40195336 PMCID: PMC11977241 DOI: 10.1038/s41598-025-86935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/15/2025] [Indexed: 04/09/2025] Open
Abstract
Ischemic stroke (IS), a multifactorial disease resulting from the complex interplay of various environmental and genetic risk factors. Neurotrophic factors (NTFs) have a potential role in IS, but the exact mechanisms are unknown. The aim of this study was to identify biomarkers associated with the occurrence and development of NTFs and to analyze their potential mechanisms of action. In this study, we selected the intersection of neurotrophic factor genes, differentially expressed genes (DEGs) and key genes in the IS module based on IS-related datasets (GSE16561 and GSE58294). Machine learning screened out 5 biomarkers for IS diagnosis (MMP9, MARCKS, IGF2R, HECW2 and CYBRD1). GSEA results showed that different signaling pathways were activated in IS samples with high expression of different diagnostic genes. Furthermore, an immunological analysis was carried out, which demonstrated significant differences in the levels of activated B cells, neutrophils, and activated CD8 T cells between IS patients and normal samples. RT-qPCR results showed that there were significant differences in the expression of CYBRD1, MARCKS and MMP9 between IS and control patients. In conclusion, we identified 5 diagnostic markers that may be involved in the progression of IS, including MMP9, MARCKS, IGF2R, HECW2 and CYBRD1. Finally, differential expression of MMP9, MARCKS, and CYBRD1 was detected in peripheral blood samples from 15 IS and 5 normal cases. Our analysis could serve as a foundation for enhancing comprehension of the underlying molecular mechanisms governing the pathogenesis and progression of IS. The identified biomarkers might serve as targets for the development of novel diagnostic assays, enabling earlier detection of IS and potentially leading to more timely and effective treatment interventions.
Collapse
Affiliation(s)
- Liying Xu
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Pingzhi Wang
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| | - Lei Yang
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yinlian Liu
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xiangping Li
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yajie Yin
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Caiqin Lan
- Department of Rehabilitation Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
2
|
Jiang C, Wang B, Qu Y, Wang J, Zhang X. Nonlinear association between depressive symptoms and homeostasis model assessment of insulin resistance: a cross-sectional analysis in the American population. Front Psychiatry 2025; 16:1393782. [PMID: 39911326 PMCID: PMC11794198 DOI: 10.3389/fpsyt.2025.1393782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025] Open
Abstract
Background Depressive symptom, a pervasive mental health disorder, has garnered increasing attention due to its intricate interconnections with various physiological processes. One emerging avenue of investigation delves into the potential association between depressive symptom and Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), a parameter reflecting insulin resistance. The intricate interplay between these two domains holds promising implications for understanding the multifaceted nature of depressive symptom and its impact on metabolic health. Methods We used weighted multivariable logistic regression models with subgroup analysis to explore the relationship between depressive symptom and homeostasis model assessment of insulin resistance. Non-linear correlations were explored using fitted smoothing curves. Then, we constructed a two-piece linear regression model and performed a recursive algorithm to calculate the inflection point. Results The study included 20,282 participants in the United States. In the regression model adjusted for all confounding variables, the odds ratio (OR) for the correlation between depressive symptom and the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was 1.01 (95% CI: 1.00, 1.01). However, a significant discrepancy between trend tests and regression analyses suggests a potential non-linear relationship between depressive symptom and the assessment of insulin resistance using the Homeostasis Model. Constrained cubic spline analysis confirmed this non-linear relationship, identifying an inflection point at 10.47. Before the inflection point, depressive symptom exhibited a significantly positive correlation with the assessment of insulin resistance using the Homeostasis Model. However, after the inflection point, a negative correlation was observed, though it did not reach statistical significance. Conclusion We found a curve-like relationship between depressive symptom and homeostasis model assessment of insulin resistance.
Collapse
Affiliation(s)
- Chunqi Jiang
- Treatment of Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Bo Wang
- Department of Pediatrics, Central Hospital of Jinan City, Jinan, Shandong, China
| | - Yinuo Qu
- Treatment of Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jun Wang
- Treatment of Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Zhang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
3
|
Wang W, Chang X, Lin F, Feng L, Wang M, Huang J, Wu T. Adding salt to foods and risk of incident depression and anxiety. BMC Med 2025; 23:32. [PMID: 39838382 PMCID: PMC11752635 DOI: 10.1186/s12916-025-03865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Diet is a well-known determinant of mental health outcomes. However, epidemiologic evidence on salt consumption with the risk of developing depression and anxiety is still very limited. This study aimed to examine the association between adding salt to foods and incident depression and anxiety longitudinally. METHODS This study used data from 444,787 adults who had never been diagnosed with depression or anxiety at baseline from the UK Biobank, a national community-based cohort from 2006 to 2010. Adding salt to foods was measured using a four-point Likert scale at baseline from a touch-screen questionnaire. The outcomes were incidents of diagnosed depression (F32-F33) and anxiety (F40-F48), defined by the International Statistical Classification of Diseases and Related Health Problems, 10th Revision codes. Cox proportional hazards models were used to investigate the association between the frequency of adding salt to foods and incident depression and anxiety. RESULTS During a mean follow-up period of 14.5 years, 16,319 incidents of depression and 18,959 incidents of anxiety were documented. A higher frequency of adding salt to foods was associated with elevated risk for depression and anxiety. Compared with the group of never/rarely adding salt to foods, the adjusted HRs of incident depression were 1.07 (95% CI: 1.02-1.12), 1.18 (95% CI: 1.10-1.26), and 1.29 (95% CI: 1.18-1.41) across the groups of sometimes, usually, and always, respectively (P trend < 0.001). Participants who reported always adding salt to foods had a 1.17-fold higher risk for developing anxiety (95% CI: 1.07-1.28) compared with those who never/rarely added salt to foods. CONCLUSIONS A higher frequency of adding salt to foods was independently associated with a higher hazard of depression and anxiety. Interventions such as public awareness campaigns promoting reduced salt consumption may be promising preventative measures to reduce the incidence of depression and anxiety.
Collapse
Affiliation(s)
- Weiwei Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Xicheng District, Beijing, 100088, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China
| | - Xiaotian Chang
- Department of Counseling and Clinical Psychology, Teachers College, Columbia University, 525 West 120 Street, New York, 10027, USA
| | - Feifei Lin
- Institute of Epidemiology and Health Care, University College London, Gower Street, London, WC1E 6BT, UK
| | - Lei Feng
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, 5 Ankang Lane, Xicheng District, Beijing, 100088, China
| | - Mengying Wang
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China.
| | - Jie Huang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
4
|
Di Miceli M, Rossitto M, Martinat M, Marchaland F, Kharbouche S, Graland M, Younes F, Séré A, Aubert A, Khabbaz LR, Madore C, Delpech JC, Martín R, Layé S. Modified neuroimmune processes and emotional behaviour in weaned and late adolescent male and female mice born via caesarean section. Sci Rep 2024; 14:29807. [PMID: 39616177 PMCID: PMC11608364 DOI: 10.1038/s41598-024-80770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/21/2024] [Indexed: 02/07/2025] Open
Abstract
Elective and emergency Caesarean section (C-section) procedures are on the rise, exceeding the recommended guidelines by the World Health Organization. Higher morbidities and long-term health conditions are correlated to C-section deliveries, including neurodevelopmental disorders. During C-section delivery, newborns are not exposed to the vaginal commensal flora, which impedes the early establishment of the gut microbiota. The latter is essential for adequate neuro-immune processes to take place during infancy. In this study, we used a validated model of mice born by C-section (CSD), which mimics clinical observations of dysregulated gut microbiota. Animals were either born naturally or by CSD, before being adopted by dams who underwent delivery within the 12 preceding hours. Behavioural analyses were conducted at post-natal day (PND) 21 and 55. Our results indicate that animals born by C-section present significantly higher body weight in late (PND40-P53) but not early adolescence (PND21-P27), compared to animals born by vaginal delivery (VD). Male animals delivered by C-section presented significantly lower exploration time of the novel arm in the Y Maze test at PND55. However, at PND21, abnormal social interaction was witnessed in male and female animals born by CSD, with significantly decreased time spent interacting during the social interaction test. At both PND21 and PND55, animals from both sexes born by C-section presented significantly decreased time spent in the open arm of the Elevated Plus Maze test, compared to control animals. We then measured the expression of genes associated to neuroimmune interactions (microglia phenotype), inflammatory mediators and lipids in several brain structures of VD and CSD mice at PND21 and PND55. At weaning, animals born by CSD presented altered microglia, inflammatory and lipid metabolism signatures, with increased expression of Cd36, Csf1r and Tnfα in different brain regions of males, but not in females. At PND64, Csf1r, Tmem119 as well as C3ar1 were significantly increased in males born by C-section, but not in females. In males born by vaginal delivery, the expression of Cd36 at PND64 was correlated to anxiety at PND55, whilst a correlation between the expression of Clec7a and the number of head dippings in the elevated plus maze was also noted in males born by CSD. Altogether, our study shows altered emotional behaviour in animals delivered by CSD, which is likely explained by underlying neuro-inflammatory processes in different brain regions. Our work further supports the long-term consequences of CSD on brain health.
Collapse
Affiliation(s)
- Mathieu Di Miceli
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France.
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester, WR2 6AJ, UK.
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Moïra Rossitto
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Maud Martinat
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Flore Marchaland
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Sarah Kharbouche
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Marion Graland
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Farah Younes
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Alexandra Séré
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Agnès Aubert
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Lydia Rabbaa Khabbaz
- Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Faculty of Pharmacy, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Charlotte Madore
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | | | - Rebeca Martín
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, 78350, Jouy-En-Josas, France
| | - Sophie Layé
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| |
Collapse
|
5
|
Krupa AJ, Chrobak AA, Sołtys Z, Dudek D, Szewczyk B, Siwek M. Insulin resistance, clinical presentation and resistance to selective serotonin and noradrenaline reuptake inhibitors in major depressive disorder. Pharmacol Rep 2024; 76:1100-1113. [PMID: 38980569 PMCID: PMC11387451 DOI: 10.1007/s43440-024-00621-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The understanding of mechanisms underlying non-response to antidepressants is limited. The latest data highlights the role of insulin resistance (IR) in major depressive disorder (MDD) pathophysiology, presentation, and treatment efficacy. This work aimed to assess IR in MDD and explore the relationships between IR, MDD presentation and non-response to selective serotonin and noradrenaline reuptake inhibitors (SNRI). METHODS 67 MDD individuals: 36 responsive (MDD T[+]), 31 non-responsive (MDD T[-]) to SNRI and 30 healthy controls were recruited. The treatment response criteria were: Clinical Global Impression Scale-Improvement score of 1 or 2 after ≥ 8 weeks of treatment. Participants were assessed by physician and self-report tools measuring depression, anhedonia, anxiety, bipolarity, sleep quality. Blood samples were collected to assess fasting glucose and insulin levels and calculate HOMA-IR (homeostasis model assessment of insulin resistance). RESULTS MDD T[-] vs. MDD T[+] had significantly higher body mass index, insulin levels, and HOMA-IR. MDD T[-] presented higher levels of depressed mood, appetite/weight changes, loss of interest, energy, overall depressive symptoms, and sleep impairment; some evaluations suggested higher anhedonia and anxiety in MDD T[-] vs. MDD T[+]. Insulin and IR were weakly but significantly correlated with the severity of psychomotor symptoms, energy level, thoughts of death/suicide, self-criticism, appetite/weight, depressed mood symptoms, sleep problems. IR was weakly but significantly correlated with anhedonia. CONCLUSION IR appears to be linked to depressive symptoms characteristic of the "metabolic" MDD subtype, such as psychomotor changes, energy level, anhedonia, sleep problems, appetite/weight changes, state and trait anxiety, sleep quality, and non-response to SNRI.
Collapse
Affiliation(s)
- Anna J Krupa
- Department of Affective Disorders, Jagiellonian University Medical College, ul. Kopernika 21a, Krakow, 31-501, Poland
| | - Adrian A Chrobak
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21a, Krakow, 31-501, Poland
| | - Zbigniew Sołtys
- Institute of Zoology and Biomedical Research, Laboratory of Experimental Neuropathology, Jagiellonian University, Gronostajowa 9, Krakow, 30-387, Poland
| | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika 21a, Krakow, 31-501, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Krakow, 31-343, Poland
| | - Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, ul. Kopernika 21a, Krakow, 31-501, Poland.
| |
Collapse
|
6
|
Siwek M, Chrobak AA, Sołtys Z, Dudek D, Krupa AJ. Insulin Resistance, Temperament and Personality Traits Are Associated with Anhedonia in a Transdiagnostic Sample. Brain Sci 2024; 14:890. [PMID: 39335386 PMCID: PMC11430038 DOI: 10.3390/brainsci14090890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Anhedonia constitutes a core symptom of major depressive disorder (MDD) mediating the ultimate goal of MDD treatment: functional remission. Anhedonia is also present in other clinical populations, including patients with chronic pain. Recent data links anhedonia to insulin resistance (IR). Some researchers have underlined a different dimension of anhedonia as a temperament/personality trait. The objective of this post-hoc analysis was to explore the links between anhedonia (main outcome) and (1) IR, (2) temperamental, personality, and schizotypy traits (exposures). The study population included patients with MDD, fibromyalgia, and healthy controls. Participants were split into groups: (1) insulin resistant (IR[+] n = 69, HOMA-IR ≥ 2.1) and (2) insulin sensitive (IR[-] n = 69, HOMA-IR < 2.1). Anhedonia was significantly higher in the IR[+] group than the IR[-] group. IR was a predictor of higher anhedonia levels. IR[+] vs. IR[-] participants showed higher levels of anxiety and lower levels of hyperthymic affective temperaments, as well as conscientiousness and emotional stability personality traits. Depressive, irritable, and anxious temperaments, cognitive disorganization, and introvertive anhedonia positively predicted anhedonia, while hyperthymic temperament, conscientiousness, extraversion, and emotional stability traits negatively predicted anhedonia. IR partially mediated the relationship between depressive temperament and anhedonia. In sum, IR, affective temperaments, and personality traits are predictors of anhedonia.
Collapse
Affiliation(s)
- Marcin Siwek
- Department of Affective Disorders, Jagiellonian University Medical College, Kopernika St. 21a, 31-501 Krakow, Poland;
| | - Adrian A. Chrobak
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika St. 21a, 31-501 Krakow, Poland; (A.A.C.); (D.D.)
| | - Zbigniew Sołtys
- Laboratory of Experimental Neuropathology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland;
| | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Medical College, Kopernika St. 21a, 31-501 Krakow, Poland; (A.A.C.); (D.D.)
| | - Anna J. Krupa
- Department of Affective Disorders, Jagiellonian University Medical College, Kopernika St. 21a, 31-501 Krakow, Poland;
| |
Collapse
|
7
|
Rhea EM, Leclerc M, Yassine HN, Capuano AW, Tong H, Petyuk VA, Macauley SL, Fioramonti X, Carmichael O, Calon F, Arvanitakis Z. State of the Science on Brain Insulin Resistance and Cognitive Decline Due to Alzheimer's Disease. Aging Dis 2024; 15:1688-1725. [PMID: 37611907 PMCID: PMC11272209 DOI: 10.14336/ad.2023.0814] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is common and increasing in prevalence worldwide, with devastating public health consequences. While peripheral insulin resistance is a key feature of most forms of T2DM and has been investigated for over a century, research on brain insulin resistance (BIR) has more recently been developed, including in the context of T2DM and non-diabetes states. Recent data support the presence of BIR in the aging brain, even in non-diabetes states, and found that BIR may be a feature in Alzheimer's disease (AD) and contributes to cognitive impairment. Further, therapies used to treat T2DM are now being investigated in the context of AD treatment and prevention, including insulin. In this review, we offer a definition of BIR, and present evidence for BIR in AD; we discuss the expression, function, and activation of the insulin receptor (INSR) in the brain; how BIR could develop; tools to study BIR; how BIR correlates with current AD hallmarks; and regional/cellular involvement of BIR. We close with a discussion on resilience to both BIR and AD, how current tools can be improved to better understand BIR, and future avenues for research. Overall, this review and position paper highlights BIR as a plausible therapeutic target for the prevention of cognitive decline and dementia due to AD.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Manon Leclerc
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
| | - Hussein N Yassine
- Departments of Neurology and Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Ana W Capuano
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Han Tong
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA.
| | - Xavier Fioramonti
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| | - Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.
| | - Frederic Calon
- Faculty of Pharmacy, Laval University, Quebec, Quebec, Canada.
- Neuroscience Axis, CHU de Québec Research Center - Laval University, Quebec, Quebec, Canada.
- International Associated Laboratory OptiNutriBrain, Bordeaux, France and Quebec, Canada.
| | - Zoe Arvanitakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
8
|
Vily-Petit J, Taki A, Sinet F, Soty M, Guiard B, Zemdegs J, Malleret G, Stefanutti A, Mithieux G, Gautier-Stein A. Absence of the Peptide Transporter 1 Induces a Prediabetic and Depressive-Like Phenotype in Mice. Neuroendocrinology 2024; 115:226-241. [PMID: 38852578 DOI: 10.1159/000539499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
INTRODUCTION Protein-enriched diets improve glycemic control in diabetes or emotional behavior in depressive patients. In mice, these benefits depend on intestinal gluconeogenesis activation by di-/tripeptides. Intestinal di-/tripeptides absorption is carried out by the peptide transporter 1, PEPT1. The lack of PEPT1 might thus alter glucose and emotional balance. METHODS To determine the effects of PEPT1 deficiency under standard dietary conditions or during a dietary challenge known to promote both metabolic and cognitive dysfunction, insulin sensitivity, anxiety, and depressive-like traits, hippocampal serotonin (5-HT) and insulin signaling pathway were measured in wild-type (WT) and Pept1-/- mice fed either a chow or a high-fat high-sucrose (HF-HS) diet. RESULTS Pept1-/- mice exhibited slight defects in insulin sensitivity and emotional behavior, which were aggravated by an HF-HS diet. Pept1-/- mice fed a chow diet had lower hippocampal 5-HT levels and exhibited cerebral insulin resistance under HF-HS diet. These defects were independent of intestinal gluconeogenesis but might be linked to increased plasma amino acids levels. CONCLUSION Pept1-/- mice develop prediabetic and depressive-like traits and could thus be used to develop strategies to prevent or cure both diseases.
Collapse
Affiliation(s)
| | - Amelie Taki
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Flore Sinet
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Maud Soty
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Bruno Guiard
- CRCA - UMR - Université Paul Sabatier, Toulouse, France
| | | | - Gael Malleret
- Forgetting and Cortical Dynamics, Lyon Neuroscience Research Center, Lyon, France
| | - Anne Stefanutti
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France
| | - Gilles Mithieux
- INSERM UMR-S1213, Université Claude Bernard Lyon 1, Lyon, France,
| | | |
Collapse
|
9
|
Verma C, Jain K, Saini A, Mani I, Singh V. Exploring the potential of drug repurposing for treating depression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:79-105. [PMID: 38942546 DOI: 10.1016/bs.pmbts.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Researchers are interested in drug repurposing or drug repositioning of existing pharmaceuticals because of rising costs and slower rates of new medication development. Other investigations that authorized these treatments used data from experimental research and off-label drug use. More research into the causes of depression could lead to more effective pharmaceutical repurposing efforts. In addition to the loss of neurotransmitters like serotonin and adrenaline, inflammation, inadequate blood flow, and neurotoxins are now thought to be plausible mechanisms. Because of these other mechanisms, repurposing drugs has resulted for treatment-resistant depression. This chapter focuses on therapeutic alternatives and their effectiveness in drug repositioning. Atypical antipsychotics, central nervous system stimulants, and neurotransmitter antagonists have investigated for possible repurposing. Nonetheless, extensive research is required to ensure their formulation, effectiveness, and regulatory compliance.
Collapse
Affiliation(s)
- Chaitenya Verma
- Department of Pathology, Ohio State University, Columbus, OH, United States
| | - Kritika Jain
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, India.
| |
Collapse
|
10
|
Li S, Zhang Y, Wang Y, Zhang Z, Xin C, Wang Y, Rong P. Transcutaneous vagus nerve stimulation modulates depression-like phenotype induced by high-fat diet via P2X7R/NLRP3/IL-1β in the prefrontal cortex. CNS Neurosci Ther 2024; 30:e14755. [PMID: 38752512 PMCID: PMC11097256 DOI: 10.1111/cns.14755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Depression is a common psychiatric disorder in diabetic patients. Depressive mood associated with obesity/metabolic disorders is related to the inflammatory response caused by long-term consumption of high-fat diets, but its molecular mechanism is unclear. In this study, we investigated whether the antidepressant effect of transcutaneous auricular vagus nerve stimulation (taVNS) in high-fat diet rats works through the P2X7R/NLRP3/IL-1β pathway. METHODS We first used 16S rRNA gene sequencing analysis and LC-MS metabolomics assays in Zucker diabetic fatty (ZDF) rats with long-term high-fat diet (Purina #5008) induced significant depression-like behaviors. Next, the forced swimming test (FST) and open field test (OFT) were measured to evaluate the antidepressive effect of taVNS. Immunofluorescence and western blotting (WB) were used to measure the microglia state and the expression of P2X7R, NLRP3, and IL-1β in PFC. RESULTS Purina#5008 diet induced significant depression-like behaviors in ZDF rats and was closely related to purine and inflammatory metabolites. Consecutive taVNS increased plasma insulin concentration, reduced glycated hemoglobin and glucagon content in ZDF rats, significantly improved the depressive-like phenotype in ZDF rats through reducing the microglia activity, and increased the expression of P2X7R, NLRP3, and IL-1β in the prefrontal cortex (PFC). CONCLUSION The P2X7R/NLRP3/IL-1β signaling pathway may play an important role in the antidepressant-like behavior of taVNS, which provides a promising mechanism for taVNS clinical treatment of diabetes combined with depression.
Collapse
Affiliation(s)
- Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical SciencesBeijingChina
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijingChina
| | - Yuzhengheng Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical SciencesBeijingChina
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical SciencesBeijingChina
| | - Zixuan Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical SciencesBeijingChina
| | - Chen Xin
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical SciencesBeijingChina
| | - Yifei Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical SciencesBeijingChina
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical SciencesBeijingChina
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
11
|
Kim YK, Jo D, Arjunan A, Ryu Y, Lim YH, Choi SY, Kim HK, Song J. Identification of IGF-1 Effects on White Adipose Tissue and Hippocampus in Alzheimer's Disease Mice via Transcriptomic and Cellular Analysis. Int J Mol Sci 2024; 25:2567. [PMID: 38473814 DOI: 10.3390/ijms25052567] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD) stands as the most prevalent neurodegenerative disorder, characterized by a multitude of pathological manifestations, prominently marked by the aggregation of amyloid beta. Recent investigations have revealed a compelling association between excessive adiposity and glial activation, further correlating with cognitive impairments. Additionally, alterations in levels of insulin-like growth factor 1 (IGF-1) have been reported in individuals with metabolic conditions accompanied by memory dysfunction. Hence, our research endeavors to comprehensively explore the impact of IGF-1 on the hippocampus and adipose tissue in the context of Alzheimer's disease. To address this, we have conducted an in-depth analysis utilizing APP/PS2 transgenic mice, recognized as a well-established mouse model for Alzheimer's disease. Upon administering IGF-1 injections to the APP/PS2 mice, we observed notable alterations in their behavioral patterns, prompting us to undertake a comprehensive transcriptomic analysis of both the hippocampal and adipose tissues. Our data unveiled significant modifications in the functional profiles of these tissues. Specifically, in the hippocampus, we identified changes associated with synaptic activity and neuroinflammation. Concurrently, the adipose tissue displayed shifts in processes related to fat browning and cell death signaling. In addition to these findings, our analysis enabled the identification of a collection of long non-coding RNAs and circular RNAs that exhibited significant changes in expression subsequent to the administration of IGF-1 injections. Furthermore, we endeavored to predict the potential roles of these identified RNA molecules within the context of our study. In summary, our study offers valuable transcriptome data for hippocampal and adipose tissues within an Alzheimer's disease model and posits a significant role for IGF-1 within both the hippocampus and adipose tissue.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Danbi Jo
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeongseo Ryu
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Yeong-Hwan Lim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Seo Yoon Choi
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Hee Kyung Kim
- Department of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| | - Juhyun Song
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Jeollanamdo, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanamdo, Republic of Korea
| |
Collapse
|
12
|
Valentin-Escalera J, Leclerc M, Calon F. High-Fat Diets in Animal Models of Alzheimer's Disease: How Can Eating Too Much Fat Increase Alzheimer's Disease Risk? J Alzheimers Dis 2024; 97:977-1005. [PMID: 38217592 PMCID: PMC10836579 DOI: 10.3233/jad-230118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
High dietary intake of saturated fatty acids is a suspected risk factor for neurodegenerative diseases, including Alzheimer's disease (AD). To decipher the causal link behind these associations, high-fat diets (HFD) have been repeatedly investigated in animal models. Preclinical studies allow full control over dietary composition, avoiding ethical concerns in clinical trials. The goal of the present article is to provide a narrative review of reports on HFD in animal models of AD. Eligibility criteria included mouse models of AD fed a HFD defined as > 35% of fat/weight and western diets containing > 1% cholesterol or > 15% sugar. MEDLINE and Embase databases were searched from 1946 to August 2022, and 32 preclinical studies were included in the review. HFD-induced obesity and metabolic disturbances such as insulin resistance and glucose intolerance have been replicated in most studies, but with methodological variability. Most studies have found an aggravating effect of HFD on brain Aβ pathology, whereas tau pathology has been much less studied, and results are more equivocal. While most reports show HFD-induced impairment on cognitive behavior, confounding factors may blur their interpretation. In summary, despite conflicting results, exposing rodents to diets highly enriched in saturated fat induces not only metabolic defects, but also cognitive impairment often accompanied by aggravated neuropathological markers, most notably Aβ burden. Although there are important variations between methods, particularly the lack of diet characterization, these studies collectively suggest that excessive intake of saturated fat should be avoided in order to lower the incidence of AD.
Collapse
Affiliation(s)
- Josue Valentin-Escalera
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain – Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain – Laboratoire International Associé (NutriNeuro France-INAF Canada)
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, Canada
- Axe Neurosciences, Centre de recherche du centre Hospitalier de l’Université Laval (CHUL), Québec, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, Québec, Canada
- OptiNutriBrain – Laboratoire International Associé (NutriNeuro France-INAF Canada)
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The circular interactions between type 2 diabetes (TMD2) and major depressive disorder (MDD) are well documented but the understanding of their mechanisms has only recently gained more clarity. Latest research indicates, that the association between TMD2 and MDD is largely mediated by insulin resistance (IR). RECENT FINDINGS A metabolic subtype of MDD can be distinguished from other MDD subpopulations, that is characterized by predominantly atypical clinical presentation, IR and different responsiveness to antidepressant interventions. IR is a predictor of nonresponse to some antidepressants. The IR seems to be a state-marker of clinical or subclinical depression and the relationship between IR and MDD varies between sexes and ethnicities. Insulin has a direct impact on the monoaminergic systems known to underlie MDD symptoms: serotoninergic and dopaminergic, which are dysregulated in IR subjects. Several trials assessed the efficacy of insulin-sensitizing drugs in MDD with mixed results for metformin and more consistent evidence for pioglitazone and lifestyle intervention/physical activity. SUMMARY Recently published data suggest a significant role of IR in the clinical presentation, pathophysiology and treatment response in MDD. Further research of IR in MDD and integration of existing data into clinical practice are needed.
Collapse
Affiliation(s)
| | - Dominika Dudek
- Department of Adult Psychiatry, Jagiellonian University Collegium Medicum, Krakow, Poland
| | | |
Collapse
|
14
|
Li YH, Cheng YC, Liu HC, Wu J, Lee IT. Depressive Symptoms Associated with Peripheral Artery Disease and Predicting Mortality in Type 2 Diabetes. Biomedicines 2023; 12:29. [PMID: 38275390 PMCID: PMC10813585 DOI: 10.3390/biomedicines12010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
This retrospective cohort study aimed to assess the mortality risk in patients with type 2 diabetes mellitus (DM) by screening for depressive symptoms and peripheral artery disease (PAD). We enrolled patients aged ≥60 years who had undergone assessments of both the ankle-brachial index (ABI) and the five-item Geriatric Depression Scale (GDS-5). PAD and depression were defined as ABI ≤ 0.90 and GDS-5 ≥ 1, respectively. The primary endpoint was total mortality. In 1673 enrolled patients, the prevalence of PAD was higher in those with depression than in those without depression (8.9% vs. 5.7%, p = 0.021). After a median follow-up of 56.6 months (interquartile range: 47.0-62.3 months), a total of 168 (10.0%) deaths occurred. The patients in the depression and PAD subgroup had the highest hazard ratio of mortality, followed by the PAD without depression subgroup and the depression without PAD subgroup (2.209, 95%CI: 1.158-4.217; 1.958, 95%CI: 1.060-3.618; and 1.576, 95%CI: 1.131-2.196; respectively) in comparison to the patients without depression and PAD after adjustment for associated factors. In conclusion, a combination of depression and PAD predicted the highest mortality risk. Screening for depression and PAD is recommended in patients aged ≥60 years with type 2 DM.
Collapse
Affiliation(s)
- Yu-Hsuan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (Y.-H.L.); (Y.-C.C.); (J.W.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Computer Science & Information Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Cheng Cheng
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (Y.-H.L.); (Y.-C.C.); (J.W.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsiu-Chen Liu
- Department of Nursing, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Junyi Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (Y.-H.L.); (Y.-C.C.); (J.W.)
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (Y.-H.L.); (Y.-C.C.); (J.W.)
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| |
Collapse
|
15
|
Viguier C, Bullich S, Botella M, Fasseu L, Alfonso A, Rekik K, Gauzin S, Guiard BP, Davezac N. Impact of physical activity on brain oxidative metabolism and intrinsic capacities in young swiss mice fed a high fat diet. Neuropharmacology 2023; 241:109730. [PMID: 37758019 DOI: 10.1016/j.neuropharm.2023.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Type 2 diabetes and obesity characterized by hallmarks of insulin resistance along with an imbalance in brain oxidative metabolism would impair intrinsic capacities (ICs), a new concept for assessing mental and physical functioning. Here, we explored the impact of physical activity on antioxidant responses and oxidative metabolism in discrete brain areas of HFD or standard diet (STD) fed mice but also its consequences on specific domains of ICs. 6-week-old Swiss male mice were exposed to a STD or a HFD for 16 weeks and half of the mice in each group had access to an activity wheel and the other half did not. As expected HFD mice displayed peripheral insulin resistance but also a persistent inhibition of aconitase activity in cortices revealing an increase in mitochondrial reactive oxygen species (ROS) production. Animals with access to the running wheel displayed an improvement of insulin sensitivity regardless of the diet factor whereas ROS production remained impaired. Moreover, although the access of the running wheel did not influence mitochondrial biomass, in the oxidative metabolism area, it produced a slight decrease in brain SOD1 and catalase expression notably in HFD fed mice. At the behavioural level, physical exercise produced anxiolytic/antidepressant-like responses and improved motor coordination in both STD and HFD fed mice. However, this non-pharmacological intervention failed to enhance cognitive performance. These findings paint a contrasting landscape about physical exercise as a non-pharmacological intervention for positively orienting the aging trajectory.
Collapse
Affiliation(s)
- Clémence Viguier
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France
| | - Sébastien Bullich
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France
| | - Marlene Botella
- Minding Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France
| | - Laure Fasseu
- Minding Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France
| | - Amélie Alfonso
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France
| | - Khaoula Rekik
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France
| | - Sébastien Gauzin
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France
| | - Bruno P Guiard
- Remember Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France.
| | - Noélie Davezac
- Minding Team, Research Center on Animal Cognition (CRCA), Center of Integrative Biology (CBI), CNRS - University of Toulouse, CNRS, UPS, 31 067, Toulouse, France; INSPIRE Consortium, France.
| |
Collapse
|
16
|
Teng M, Li Y, Zhao X, White JC, Zhao L, Sun J, Zhu W, Wu F. Vitamin D modulation of brain-gut-virome disorder caused by polystyrene nanoplastics exposure in zebrafish (Danio rerio). MICROBIOME 2023; 11:266. [PMID: 38008755 PMCID: PMC10680193 DOI: 10.1186/s40168-023-01680-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/27/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Many studies have investigated how nanoplastics (NPs) exposure mediates nerve and intestinal toxicity through a dysregulated brain-gut axis interaction, but there are few studies aimed at alleviating those effects. To determine whether and how vitamin D can impact that toxicity, fish were supplemented with a vitamin D-low diet and vitamin D-high diet. RESULTS Transmission electron microscopy (TEM) showed that polystyrene nanoplastics (PS-NPs) accumulated in zebrafish brain and intestine, resulting in brain blood-brain barrier basement membrane damage and the vacuolization of intestinal goblet cells and mitochondria. A high concentration of vitamin D reduced the accumulation of PS-NPs in zebrafish brain tissues by 20% and intestinal tissues by 58.8% and 52.2%, respectively, and alleviated the pathological damage induced by PS-NPs. Adequate vitamin D significantly increased the content of serotonin (5-HT) and reduced the anxiety-like behavior of zebrafish caused by PS-NPs exposure. Virus metagenome showed that PS-NPs exposure affected the composition and abundance of zebrafish intestinal viruses. Differentially expressed viruses in the vitamin D-low and vitamin D-high group affected the secretion of brain neurotransmitters in zebrafish. Virus AF191073 was negatively correlated with neurotransmitter 5-HT, whereas KT319643 was positively correlated with malondialdehyde (MDA) content and the expression of cytochrome 1a1 (cyp1a1) and cytochrome 1b1 (cyp1b1) in the intestine. This suggests that AF191073 and KT319643 may be key viruses that mediate the vitamin D reduction in neurotoxicity and immunotoxicity induced by PS-NPs. CONCLUSION Vitamin D can alleviate neurotoxicity and immunotoxicity induced by PS-NPs exposure by directionally altering the gut virome. These findings highlight the potential of vitamin D to alleviate the brain-gut-virome disorder caused by PS-NPs exposure and suggest potential therapeutic strategies to reduce the risk of NPs toxicity in aquaculture, that is, adding adequate vitamin D to diet. Video Abstract.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yunxia Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, 06511, USA
| | - Lihui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiaqi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wentao Zhu
- Department of Applied Chemistry, Innovation Center of Pesticide Research, College of Science, China Agricultural University, Beijing, 100193, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
17
|
Yu H, Yu B, Qin X, Shan W. A unique inflammation-related mechanism by which high-fat diets induce depression-like behaviors in mice. J Affect Disord 2023; 339:180-193. [PMID: 37437725 DOI: 10.1016/j.jad.2023.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/03/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND High-fat diet (HFD) consumption is an important reason for promoting depression, but the mechanism is unclear. The present study aims to explore the relationship between metabolic disturbance and HFD-induced depression-like behaviors. METHODS Depression models were established by HFD consumption and chronic unpredictable mild stress (CUMS) in mice. Enzyme-linked immunosorbent assay, western blotting, real-time polymerase chain reaction, gas chromatography and metabolomic analysis were undertaken to investigate the 5-hydroxytryptamine (5-HT) system, neuroinflammation and to identify altered lipid metabolic pathways. RESULTS Depression-like behaviors, impaired 5-HT neurotransmission and disordered lipid metabolism were observed upon HFD consumption. Despite a similar reduction of high-density lipoprotein cholesterol in CUMS and HFD group, high levels of body low-density lipoprotein cholesterol in the HFD group could help distinguish HFD from CUMS. Levels of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and inflammation-related metabolites were increased in HFD mice, so a link between depression and inflammation was postulated. Different metabolites were enriched in the two groups. The linoleic acid (LA) metabolic pathway and expression of fatty acid desaturase (FADS)1 and FADS2 (key enzymes in LA metabolic pathway) were enhanced significantly in HFD mice compared with the control group. LIMITATIONS Causality analyses for HFD and inflammation-related features were not undertaken. CONCLUSIONS HFD-induced depression-like behaviors was characterized by more severely disordered metabolism of lipids (especially in the LA metabolic pathway) and increased levels of inflammatory mediators, which might be the reasons for the disturbance of serotonergic system in hippocampus.
Collapse
Affiliation(s)
- Haining Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China.
| | - Bixian Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Xiuyuan Qin
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| | - Weiguang Shan
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, China
| |
Collapse
|
18
|
Ramasubbu K, Ramanathan G, Venkatraman G, Rajeswari VD. Sleep-associated insulin resistance promotes neurodegeneration. Mol Biol Rep 2023; 50:8665-8681. [PMID: 37580496 DOI: 10.1007/s11033-023-08710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Lifestyle modification can lead to numerous health issues closely associated with sleep. Sleep deprivation and disturbances significantly affect inflammation, immunity, neurodegeneration, cognitive depletion, memory impairment, neuroplasticity, and insulin resistance. Sleep significantly impacts brain and memory formation, toxin excretion, hormonal function, metabolism, and motor and cognitive functions. Sleep restriction associated with insulin resistance affects these functions by interfering with the insulin signalling pathway, neurotransmission, inflammatory pathways, and plasticity of neurons. So, in this review, We discuss the evidence that suggests that neurodegeneration occurs via sleep and is associated with insulin resistance, along with the insulin signalling pathways involved in neurodegeneration and neuroplasticity, while exploring the role of hormones in these conditions.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
19
|
Ding H, Xie M, Wang J, Ouyang M, Huang Y, Yuan F, Jia Y, Zhang X, Liu N, Zhang N. Shared genetics of psychiatric disorders and type 2 diabetes:a large-scale genome-wide cross-trait analysis. J Psychiatr Res 2023; 159:185-195. [PMID: 36738649 DOI: 10.1016/j.jpsychires.2023.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/31/2022] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
BACKGROUND Individuals with psychiatric disorders have elevated rates of type 2 diabetes comorbidity. Although little is known about the shared genetics and causality of this association. Thus, we aimed to investigate shared genetics and causal link between different type 2 diabetes and psychiatric disorders. METHODS We conducted a large-scale genome-wide cross-trait association study(GWAS) to investigate genetic overlap between type 2 diabetes and anorexia nervosa, attention deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, obsessive-compulsive disorder, schizophrenia, anxiety disorders and Tourette syndrome. By post-GWAS functional analysis, we identify variants genes expression in various tissues. Enrichment pathways, potential protein interaction and mendelian randomization also provided to research the relationship between type 2 diabetes and psychiatric disorders. RESULTS We discovered that type 2 diabetes and psychiatric disorders had a significant correlation. We identified 138 related loci, 32 were novel loci. Post-GWAS analysis revealed that 86 differentially expressed genes were located in different brain regions and peripheral blood in type 2 diabetes and related psychiatric disorders. MAPK signaling pathway plays an important role in neural development and insulin signaling. In addition, there is a causal relationship between T2D and mental disorders. In PPI analysis, the central genes of the DEG PPI network were FTO and TCF7L2. CONCLUSION This large-scale genome-wide cross-trait analysis identified shared genetics andpotential causal links between type 2 diabetes and related psychiatric disorders, suggesting potential new biological functions in common among them.
Collapse
Affiliation(s)
- Hui Ding
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Minyao Xie
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Jinyi Wang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Mengyuan Ouyang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Yanyuan Huang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Fangzheng Yuan
- School of Psychology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yunhan Jia
- School of Psychology, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xuedi Zhang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, PR China.
| | - Ning Zhang
- The Affiliated Nanjing Brain Hospital of Nanjing Medical Univesity, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, PR China.
| |
Collapse
|