1
|
Huysentruyt J, Steels W, Ruiz Pérez M, Verstraeten B, Divert T, Flies K, Lemeire K, Takahashi N, De Bruyn E, Joossens M, Brown AS, Lambrecht BN, Declercq W, Vanden Berghe T, Maelfait J, Vandenabeele P, Tougaard P. RIPK1 ablation in T cells results in spontaneous enteropathy and TNF-driven villus atrophy. EMBO Rep 2025:10.1038/s44319-025-00441-5. [PMID: 40307618 DOI: 10.1038/s44319-025-00441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 05/02/2025] Open
Abstract
RIPK1 is a crucial regulator of cell survival, inflammation and cell death. Human RIPK1 deficiency leads to early-onset intestinal inflammation and peripheral T cell imbalance, though its role in αβT cell-mediated intestinal homeostasis remains unclear. In this study, we demonstrate that mice with RIPK1 ablation in conventional αβT cells (Ripk1ΔCD4) developed a severe small intestinal pathology characterized by small intestinal elongation, crypt hyperplasia, and duodenum-specific villus atrophy. Using mixed bone marrow chimeras reveals a survival disadvantage of αβT cells compared to γδT cells in the small intestine. Broad-spectrum antibiotic treatment ameliorates crypt hyperplasia and prevents intestinal elongation, though villus atrophy persists. Conversely, crossing Ripk1ΔCD4 with TNF receptor 1 Tnfr1-/- knockout mice rescues villus atrophy but not intestinal elongation. Finally, combined ablation of Ripk1∆CD4 and Casp8∆CD4 fully rescues intestinal pathology, revealing that αβT cell apoptosis in Ripk1∆CD4 drives the enteropathy. These findings demonstrate that RIPK1-mediated survival of αβT cells is essential for proximal small intestinal homeostasis. In Ripk1∆CD4 mice, the imbalanced T cell compartment drives microbiome-mediated intestinal elongation and TNF-driven villus atrophy.
Collapse
Affiliation(s)
- Jelle Huysentruyt
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Wolf Steels
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Mario Ruiz Pérez
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bruno Verstraeten
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tatyana Divert
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kayleigh Flies
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Lemeire
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Nozomi Takahashi
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elke De Bruyn
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Andrew S Brown
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Wim Declercq
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Peter Tougaard
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Li C, Lanasa D, Park JH. Pathways and mechanisms of CD4 +CD8αα + intraepithelial T cell development. Trends Immunol 2024; 45:288-302. [PMID: 38514370 PMCID: PMC11015970 DOI: 10.1016/j.it.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
The mammalian small intestine epithelium harbors a peculiar population of CD4+CD8αα+ T cells that are derived from mature CD4+ T cells through reprogramming of lineage-specific transcription factors. CD4+CD8αα+ T cells occupy a unique niche in T cell biology because they exhibit mixed phenotypes and functional characteristics of both CD4+ helper and CD8+ cytotoxic T cells. The molecular pathways driving their generation are not fully mapped. However, recent studies demonstrate the unique role of the commensal gut microbiota as well as distinct cytokine and chemokine requirements in the differentiation and survival of these cells. We review the established and newly identified factors involved in the generation of CD4+CD8αα+ intraepithelial lymphocytes (IELs) and place them in the context of the molecular machinery that drives their phenotypic and functional differentiation.
Collapse
Affiliation(s)
- Can Li
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dominic Lanasa
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jung-Hyun Park
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Passerini L, Amodio G, Bassi V, Vitale S, Mottola I, Di Stefano M, Fanti L, Sgaramella P, Ziparo C, Furio S, Auricchio R, Barera G, Di Nardo G, Troncone R, Gianfrani C, Gregori S. IL-10-producing regulatory cells impact on celiac disease evolution. Clin Immunol 2024; 260:109923. [PMID: 38316201 PMCID: PMC10905269 DOI: 10.1016/j.clim.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Celiac Disease (CD) is a T-cell mediated disorder caused by immune response to gluten, although the mechanisms underlying CD progression are still elusive. We analyzed immune cell composition, plasma cytokines, and gliadin-specific T-cell responses in patients with positive serology and normal intestinal mucosa (potential-CD) or villous atrophy (acute-CD), and after gluten-free diet (GFD). We found: an inflammatory signature and the presence of circulating gliadin-specific IFN-γ+ T cells in CD patients regardless of mucosal damage; an increased frequency of IL-10-secreting dendritic cells (DC-10) in the gut and of circulating gliadin-specific IL-10-secreting T cells in potential-CD; IL-10 inhibition increased IFN-γ secretion by gliadin-specific intestinal T cells from acute- and potential-CD. On GFD, inflammatory cytokines normalized, while IL-10-producing T cells accumulated in the gut. We show that IL-10-producing cells are fundamental in controlling pathological T-cell responses to gluten: DC-10 protect the intestinal mucosa from damage and represent a marker of potential-CD.
Collapse
Affiliation(s)
- Laura Passerini
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Giada Amodio
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Virginia Bassi
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Serena Vitale
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, Naples 80131, Italy
| | - Ilaria Mottola
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, Naples 80131, Italy
| | - Marina Di Stefano
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Lorella Fanti
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Paola Sgaramella
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Chiara Ziparo
- NESMOS Department, School of Medicine and Psychology, Sapienza University of Rome, Sant' Andrea University Hospital, Via di Grottarossa 1035, Rome 00189, Italy
| | - Silvia Furio
- NESMOS Department, School of Medicine and Psychology, Sapienza University of Rome, Sant' Andrea University Hospital, Via di Grottarossa 1035, Rome 00189, Italy
| | - Renata Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), Department of Translational Medical Science, Section of Pediatrics, Via Pansini 5, University Federico II, Naples 80131, Italy
| | - Graziano Barera
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy
| | - Giovanni Di Nardo
- NESMOS Department, School of Medicine and Psychology, Sapienza University of Rome, Sant' Andrea University Hospital, Via di Grottarossa 1035, Rome 00189, Italy
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), Department of Translational Medical Science, Section of Pediatrics, Via Pansini 5, University Federico II, Naples 80131, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, CNR, Via P. Castellino 111, Naples 80131, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, Milan 20132, Italy.
| |
Collapse
|
4
|
Akama Y, Murao A, Aziz M, Wang P. Extracellular CIRP induces CD4CD8αα intraepithelial lymphocyte cytotoxicity in sepsis. Mol Med 2024; 30:17. [PMID: 38302880 PMCID: PMC10835974 DOI: 10.1186/s10020-024-00790-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND In sepsis, intestinal barrier dysfunction is often caused by the uncontrolled death of intestinal epithelial cells (IECs). CD4CD8αα intraepithelial lymphocytes (IELs), a subtype of CD4+ T cells residing within the intestinal epithelium, exert cytotoxicity by producing granzyme B (GrB) and perforin (Prf). Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently identified alarmin which stimulates TLR4 on immune cells to induce proinflammatory responses. Here, we hypothesized that eCIRP enhances CD4CD8αα IEL cytotoxicity and induces IEC death in sepsis. METHODS We subjected wild-type (WT) and CIRP-/- mice to sepsis by cecal ligation and puncture (CLP) and collected the small intestines to isolate IELs. The expression of GrB and Prf in CD4CD8αα IELs was assessed by flow cytometry. IELs isolated from WT and TLR4-/- mice were challenged with recombinant mouse CIRP (eCIRP) and assessed the expression of GrB and Prf in CD4CD8αα by flow cytometry. Organoid-derived IECs were co-cultured with eCIRP-treated CD4CD8αα cells in the presence/absence of GrB and Prf inhibitors and assessed IEC death by flow cytometry. RESULTS We found a significant increase in the expression of GrB and Prf in CD4CD8αα IELs of septic mice compared to sham mice. We found that GrB and Prf levels in CD4CD8αα IELs were increased in the small intestines of WT septic mice, while CD4CD8αα IELs of CIRP-/- mice did not show an increase in those cytotoxic granules after sepsis. We found that eCIRP upregulated GrB and Prf in CD4CD8αα IELs isolated from WT mice but not from TLR4-/- mice. Furthermore, we also revealed that eCIRP-treated CD4CD8αα cells induced organoid-derived IEC death, which was mitigated by GrB and Prf inhibitors. Finally, histological analysis of septic mice revealed that CIRP-/- mice were protected from tissue injury and cell death in the small intestines compared to WT mice. CONCLUSION In sepsis, the cytotoxicity initiated by the eCIRP/TLR4 axis in CD4CD8αα IELs is associated with intestinal epithelial cell (IEC) death, which could lead to gut injury.
Collapse
Affiliation(s)
- Yuichi Akama
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA
| | - Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr, 11030, Manhasset, NY, USA.
- Departments of Surgery and Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| |
Collapse
|
5
|
Ocampo-Anguiano PV, Victoria-Ruiz LL, Reynoso-Camacho R, Olvera-Ramírez AM, Rocha-Guzmán NE, Ramos-Gómez M, Ahumada-Solórzano SM. Ingestion of Bean Leaves Reduces Metabolic Complications and Restores Intestinal Integrity in C57BL/6 Mice with Obesity Induced by a High-Fat and High-Fructose Diet. Nutrients 2024; 16:367. [PMID: 38337654 PMCID: PMC10856891 DOI: 10.3390/nu16030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Consumption of foods with fiber and compounds can promote gastrointestinal health and reduce obesity complications. Therefore, treatment with common bean leaves (BL) against obesity was evaluated in mice with a high-fat and high-fructose diet (HFFD) for 14 weeks. The bromatological and phytochemical characterization of BL were determined. Afterwards, the animals were supplemented with BL (10%) or a standard diet (SD) as a strategy to encourage a healthy diet for 12 additional weeks. Changes in body composition, lipid profile, and intestinal integrity were analyzed. The characterization of BL stood out for its content of 27.2% dietary fiber, total phenolics (475.04 mg/100 g), and saponins (2.2 mg/100 g). The visceral adipose tissue (VAT) decreased in the BL group by 52% compared to the HFFD group. Additionally, triglyceride levels were 23% lower in the BL consumption group compared to the HFFD group. The improvement in lipid profile was attributed to the 1.77-fold higher fecal lipid excretion in the BL consumption group compared to the HFFD group and the inhibition of pancreatic lipase by 29%. Furthermore, BL supplementation reduced the serum levels of IL-6 (4.4-fold) and FITC-dextran by 50% compared with those in the HFFD group. Metabolic endotoxemia was inhibited after BL supplementation (-33%) compared to the HFFD group. BL consumption as a treatment in obese mice reduces adipose tissue accumulation and improves the lipid profile. Furthermore, we report for the first time that BL consumption improves intestinal integrity.
Collapse
Affiliation(s)
- Perla Viridiana Ocampo-Anguiano
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
- Interdisciplinary Research in Biomedicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. de las Ciencias S/N, Queretaro 76230, Mexico
| | - Laura Lizeth Victoria-Ruiz
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
| | - Rosalía Reynoso-Camacho
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
| | - Andrea Margarita Olvera-Ramírez
- Department of Veterinary Medicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. de las Ciencias S/N, Queretaro 76230, Mexico;
| | - Nuria Elizabeth Rocha-Guzmán
- Research Group on Functional Foods and Nutraceuticals, Department of Chemical and Biochemical Engineering, TecNM/Instituto Tecnológico de Durango, Durango 34080, Mexico;
| | - Minerva Ramos-Gómez
- Research and Postgraduate Department in Food Science, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico; (P.V.O.-A.); (L.L.V.-R.); (R.R.-C.)
| | - Santiaga Marisela Ahumada-Solórzano
- Interdisciplinary Research in Biomedicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. de las Ciencias S/N, Queretaro 76230, Mexico
| |
Collapse
|
6
|
He Z, Xie H, Xu H, Wu J, Zeng W, He Q, Jobin C, Jin S, Lan P. Chemotherapy-induced microbiota exacerbates the toxicity of chemotherapy through the suppression of interleukin-10 from macrophages. Gut Microbes 2024; 16:2319511. [PMID: 38400752 PMCID: PMC10896127 DOI: 10.1080/19490976.2024.2319511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
The gut microbiota has been shown to influence the efficacy and toxicity of chemotherapy, thereby affecting treatment outcomes. Understanding the mechanism by which microbiota affects chemotherapeutic toxicity would have a profound impact on cancer management. In this study, we report that fecal microbiota transplantation from oxaliplatin-exposed mice promotes toxicity in recipient mice. Splenic RNA sequencing and macrophage depletion experiment showed that the microbiota-induced toxicity of oxaliplatin in mice was dependent on macrophages. Furthermore, oxaliplatin-mediated toxicity was exacerbated in Il10-/- mice, but not attenuated in Rag1-/- mice. Adoptive transfer of macrophage into Il10-/- mice confirmed the role of macrophage-derived IL-10 in the improvement of oxaliplatin-induced toxicity. Depletion of fecal Lactobacillus and Bifidobacterium was associated with the exacerbation of oxaliplatin-mediated toxicity, whereas supplementation with these probiotics alleviated chemotherapy-induced toxicity. Importantly, IL-10 administration and probiotics supplementation did not attenuate the antitumor efficacy of chemotherapy. Clinically, patients with colorectal cancer exposed to oxaliplatin exhibited downregulation of peripheral CD45+IL-10+ cells. Collectively, our findings indicate that microbiota-mediated IL-10 production influences tolerance to chemotherapy, and thus represents a potential clinical target.
Collapse
Affiliation(s)
- Zhen He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Hongyu Xie
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Haoyang Xu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinjie Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Wanyi Zeng
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangzhou, China
| | - Qilang He
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangzhou, China
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, University of Florida, Florida, USA
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Sanqing Jin
- Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Hada A, Li L, Kandel A, Jin Y, Xiao Z. Characterization of Bovine Intraepithelial T Lymphocytes in the Gut. Pathogens 2023; 12:1173. [PMID: 37764981 PMCID: PMC10535955 DOI: 10.3390/pathogens12091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Intraepithelial T lymphocytes (T-IELs), which constitute over 50% of the total T lymphocytes in the animal, patrol the mucosal epithelial lining to defend against pathogen invasion while maintaining gut homeostasis. In addition to expressing T cell markers such as CD4 and CD8, T-IELs display T cell receptors (TCR), including either TCRαβ or TCRγδ. Both humans and mice share similar T-IEL subsets: TCRγδ+, TCRαβ+CD8αα+, TCRαβ+CD4+, and TCRαβ+CD8αβ+. Among these subsets, human T-IELs are predominantly TCRαβ+ (over 80%), whereas those in mice are mostly TCRγδ+ (~60%). Of note, the majority of the TCRγδ+ subset expresses CD8αα in both species. Although T-IELs have been extensively studied in humans and mice, their profiles in cattle have not been well examined. Our study is the first to characterize bovine T-IELs using flow cytometry, where we identified several distinct features. The percentage of TCRγδ+ was comparable to that of TCRαβ+ T-IELs (both ~50% of CD3+), and the majority of bovine TCRγδ+ T-IELs did not express CD8 (CD8-) (above 60%). Furthermore, about 20% of TCRαβ+ T-IELs were CD4+CD8αβ+, and the remaining TCRαβ+ T-IELs were evenly distributed between CD4+ and CD8αβ+ (~40% of TCRαβ+ T-IELs each) with no TCRαβ+CD8αα+ identified. Despite these unique properties, bovine T-IELs, similar to those in humans and mice, expressed a high level of CD69, an activation and tissue-retention marker, and a low level of CD62L, a lymphoid adhesion marker. Moreover, bovine T-IELs produced low levels of inflammatory cytokines such as IFNγ and IL17A, and secreted small amounts of the immune regulatory cytokine TGFβ1. Hence, bovine T-IELs' composition largely differs from that of human and mouse, with the dominance of the CD8- population among TCRγδ+ T-IELs, the substantial presence of TCRαβ+CD4+CD8αβ+ cells, and the absence of TCRαβ+CD8αα+ T-IELs. These results provide the groundwork for conducting future studies to examine how bovine T-IELs respond to intestinal pathogens and maintain the integrity of the gut epithelial barrier in animals.
Collapse
Affiliation(s)
| | | | | | | | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; (A.H.); (L.L.); (A.K.); (Y.J.)
| |
Collapse
|
8
|
Lockhart A, Reed A, Rezende de Castro T, Herman C, Campos Canesso MC, Mucida D. Dietary protein shapes the profile and repertoire of intestinal CD4+ T cells. J Exp Med 2023; 220:e20221816. [PMID: 37191720 PMCID: PMC10192604 DOI: 10.1084/jem.20221816] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
The intestinal immune system must tolerate food antigens to avoid allergy, a process requiring CD4+ T cells. Combining antigenically defined diets with gnotobiotic models, we show that food and microbiota distinctly influence the profile and T cell receptor repertoire of intestinal CD4+ T cells. Independent of the microbiota, dietary proteins contributed to accumulation and clonal selection of antigen-experienced CD4+ T cells at the intestinal epithelium, imprinting a tissue-specialized transcriptional program including cytotoxic genes on both conventional and regulatory CD4+ T cells (Tregs). This steady state CD4+ T cell response to food was disrupted by inflammatory challenge, and protection against food allergy in this context was associated with Treg clonal expansion and decreased proinflammatory gene expression. Finally, we identified both steady-state epithelium-adapted CD4+ T cells and tolerance-induced Tregs that recognize dietary antigens, suggesting that both cell types may be critical for preventing inappropriate immune responses to food.
Collapse
Affiliation(s)
- Ainsley Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Aubrey Reed
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | | | - Calvin Herman
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | | | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
9
|
Xie Y, Zhang Y, Wang T, Liu Y, Ma J, Wu S, Duan C, Qiao W, Cheng K, Lu L, Zhuang R, Bian K. Ablation of CD226 on CD4+ T cells modulates asthma progress associated with altered IL-10 response and gut microbiota. Int Immunopharmacol 2023; 118:110051. [PMID: 36989896 DOI: 10.1016/j.intimp.2023.110051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
To investigate the role of the costimulatory molecule CD226 in asthma pathogenesis, we produced a CD4+ T-cell-specific CD226 knockout mice model (Cd226ΔCD4) and induced airway allergic inflammation by administering ovalbumin (OVA). Our results revealed alleviated lung inflammation, decreased levels of OVA-specific IgE, and increased levels of IL-10 in the serum of Cd226ΔCD4 mice (P < 0.05). Moreover, IL-10 levels in CD4+ T cells were significantly elevated in the mediastinal lymph node, spleen, and Peyer's patches in the Cd226ΔCD4 mice compared with those in controls (P < 0.05 to P < 0.01). Notably, there was a significantly higher IL-10 mRNA levels in the large intestine of the mice (P < 0.05). The protective effect of CD226 deficiency is also associated with the accumulation of gut TCRγδ+ intraepithelial lymphocytes and reversion of the gut microbiome dysbiosis. The Bacteroidetes-to-Firmicutes ratio and the abundance of Akkermansia increased in the absence of CD226 after OVA treatment. Our data reveal the synchronous changes in the lung and intestine in OVA-treated CD226-knockout mice, supporting the gut-lung axis concept and providing evidence for novel therapeutic approaches for asthma.
Collapse
|
10
|
Lockhart A, Reed A, de Castro TR, Herman C, Canesso MCC, Mucida D. Dietary protein shapes the profile and repertoire of intestinal CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536475. [PMID: 37090529 PMCID: PMC10120666 DOI: 10.1101/2023.04.11.536475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The intestinal immune system must tolerate food antigens to avoid allergy, a process requiring CD4 + T cells. Combining antigenically defined diets with gnotobiotic models, we show that food and microbiota distinctly influence the profile and T cell receptor repertoire of intestinal CD4 + T cells. Independent of the microbiota, dietary proteins contributed to accumulation and clonal selection of antigen-experienced CD4 + T cells at the intestinal epithelium, imprinting a tissue specialized transcriptional program including cytotoxic genes on both conventional and regulatory CD4 + T cells (Tregs). This steady state CD4 + T cell response to food was disrupted by inflammatory challenge, and protection against food allergy in this context was associated with Treg clonal expansion and decreased pro-inflammatory gene expression. Finally, we identified both steady state epithelium-adapted CD4 + T cells and tolerance-induced Tregs that recognize dietary antigens, suggesting that both cell types may be critical for preventing inappropriate immune responses to food.
Collapse
|
11
|
Zhang M, Chong KK, Chen ZY, Guo H, Liu YF, Kang YY, Li YJ, Shi TT, Lai KK, He MQ, Ye K, Kahaly GJ, Shi BY, Wang Y. Rapamycin improves Graves' orbitopathy by suppressing CD4+ cytotoxic T lymphocytes. JCI Insight 2023; 8:160377. [PMID: 36580373 PMCID: PMC9977423 DOI: 10.1172/jci.insight.160377] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
CD4+ cytotoxic T lymphocytes (CTLs) were recently implicated in immune-mediated inflammation and fibrosis progression of Graves' orbitopathy (GO). However, little is known about therapeutic targeting of CD4+ CTLs. Herein, we studied the effect of rapamycin, an approved mTOR complex 1 (mTORC1) inhibitor, in a GO mouse model, in vitro, and in patients with refractory GO. In the adenovirus-induced model, rapamycin significantly decreased the incidence of GO. This was accompanied by the reduction of both CD4+ CTLs and the reduction of orbital inflammation, adipogenesis, and fibrosis. CD4+ CTLs from patients with active GO showed upregulation of the mTOR pathway, while rapamycin decreased their proportions and cytotoxic function. Low-dose rapamycin treatment substantially improved diplopia and the clinical activity score in steroid-refractory patients with GO. Single-cell RNA-Seq revealed that eye motility improvement was closely related to suppression of inflammation and chemotaxis in CD4+ CTLs. In conclusion, rapamycin is a promising treatment for CD4+ CTL-mediated inflammation and fibrosis in GO.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kelvin K.L. Chong
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology and Visual Science, The Prince of Wales Hospital, Hong Kong, China
| | - Zi-yi Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hui Guo
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yu-feng Liu
- Biobank of The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yong-yong Kang
- Genome Institute and,Center for Mathematical Medical, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yang-jun Li
- Department of Ophthalmology, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Ting-ting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Kenneth K.H. Lai
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Department of Ophthalmology, Tung Wah Eastern Hospital, Hong Kong, China
| | - Ming-qian He
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Kai Ye
- Genome Institute and,MOE Key Laboratory for Intelligent Networks & Network Security and,School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China.,School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China.,Faculty of Science, Leiden University, Leiden, Netherlands
| | - George J. Kahaly
- Molecular Thyroid Lab, Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Bing-yin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yue Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China.,Genome Institute and,MOE Key Laboratory for Intelligent Networks & Network Security and
| |
Collapse
|
12
|
Ma S, Yang Q, Chen N, Zheng A, Abbasi N, Wang G, Patel PR, Cho BS, Yee BA, Zhang L, Chu H, Evans SM, Yeo GW, Zheng Y, Huang WJM. RNA binding protein DDX5 restricts RORγt + T reg suppressor function to promote intestine inflammation. SCIENCE ADVANCES 2023; 9:eadd6165. [PMID: 36724232 PMCID: PMC9891705 DOI: 10.1126/sciadv.add6165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Retinoid-related orphan receptor (RAR) gamma (RORγt)-expressing regulatory T cells (RORγt+ Tregs) play pivotal roles in preventing T cell hyperactivation and maintaining tissue homeostasis, in part by secreting the anti-inflammation cytokine interleukin-10 (IL-10). Here, we report that hypoxia-induced factor 1α (HIF1α) is the master transcription factor for Il10 in RORγt+ Tregs. This critical anti-inflammatory pathway is negatively regulated by an RNA binding protein DEAD box helicase 5 (DDX5). As a transcriptional corepressor, DDX5 restricts the expression of HIF1α and its downstream target gene Il10 in RORγt+ Tregs. T cell-specific Ddx5 knockout (DDX5ΔT) mice have augmented RORγt+ Treg suppressor activities and are better protected from intestinal inflammation. Genetic ablation or pharmacologic inhibition of HIF1α restores enteropathy susceptibility in DDX5ΔT mice. The DDX5-HIF1α-IL-10 pathway is conserved in mice and humans. These findings reveal potential therapeutic targets for intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Shengyun Ma
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Qiyuan Yang
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicholas Chen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anna Zheng
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nazia Abbasi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Parth R. Patel
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Benjamin S. Cho
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brian A. Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lunfeng Zhang
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
| | - Hiutung Chu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Chiba University–UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (cMAV), University of California San Diego, La Jolla, CA, USA
| | - Sylvia M. Evans
- Department of Pediatrics, Pediatric Diabetes Research Center, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Gene W. Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ye Zheng
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Hou P, Wang D, Lang H, Yao Y, Zhou J, Zhou M, Zhu J, Yi L, Mi M. Dihydromyricetin Attenuates High-Intensity Exercise-Induced Intestinal Barrier Dysfunction Associated with the Modulation of the Phenotype of Intestinal Intraepithelial Lymphocytes. Int J Mol Sci 2022; 24:ijms24010221. [PMID: 36613665 PMCID: PMC9820179 DOI: 10.3390/ijms24010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Exercise-induced gastrointestinal syndrome (GIS) has symptoms commonly induced by strenuous sports. The study aimed to determine the effect of dihydromyricetin (DHM) administration on high-intensity exercise (HIE)-induced intestinal barrier dysfunction and the underlying mechanism involved with intestinal intraepithelial lymphocytes (IELs). METHODS The HIE model was established with male C57BL/6 mice using a motorized treadmill for 2 weeks, and DHM was given once a day by oral gavage. After being sacrificed, the small intestines of the mice were removed immediately. RESULTS We found that DHM administration significantly suppressed HIE-induced intestinal inflammation, improved intestinal barrier integrity, and inhibited a HIE-induced increase in the number of IELs and the frequency of CD8αα+ IELs. Meanwhile, several markers associated with the activation, gut homing and immune functions of CD8αα+ IELs were regulated by DHM. Mechanistically, luciferase reporter assay and molecular docking assay showed DHM could activate the aryl hydrocarbon receptor (AhR). CONCLUSIONS These data indicate that DHM exerts a preventive effect against HIE-induced intestinal barrier dysfunction, which is associated with the modulation of the quantity and phenotype of IELs in the small intestine. The findings provide a foundation to identify novel preventive strategies based on DHM supplementation for HIE-induced GIS.
Collapse
Affiliation(s)
- Pengfei Hou
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Dawei Wang
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Hedong Lang
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yu Yao
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jie Zhou
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Min Zhou
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jundong Zhu
- Research Center for Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Long Yi
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Mantian Mi
- Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, China
- Correspondence: ; Tel.: +86-23-6877-1549
| |
Collapse
|
14
|
Alteration of interleukin-10-producing Type 1 regulatory cells in autoimmune diseases. Curr Opin Hematol 2022; 29:218-224. [PMID: 35787550 DOI: 10.1097/moh.0000000000000720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW This review highlights findings describing the role of interleukin (IL)-10-producing Type 1 regulatory T (Tr1) cells in controlling autoimmune diseases and possible approaches to restore their function and number. RECENT FINDINGS Reduced frequency and/or function of cell subsets playing a role in Tr1 cell induction (e.g., DC-10 and Bregs), was found in patients with autoimmunity and may impact on Tr1 cell frequency. SUMMARY IL-10 is a pleiotropic cytokine with fundamental anti-inflammatory functions acting as negative regulator of immune responses. IL-10 is critically involved in the induction and functions of Tr1 cells, a subset of memory CD4+ T cells induced in the periphery to suppress immune responses to a variety of antigens (Ags), including self-, allogeneic, and dietary Ags. Alterations in IL-10-related pathways and/or in the frequency and activities of Tr1 cells have been associated to several autoimmune diseases. We will give an overview of the alterations of IL-10 and IL-10-producing Tr1 cells in Multiple Sclerosis, Type 1 Diabetes, and Celiac Disease, in which similarities in the role of these tolerogenic mechanisms are present. Current and future approaches to overcome Tr1 cell defects and restore tolerance in these diseases will also be discussed.
Collapse
|
15
|
Chen L, He Z, Reis BS, Gelles JD, Chipuk JE, Ting AT, Spicer JA, Trapani JA, Furtado GC, Lira SA. IFN-γ + cytotoxic CD4 + T lymphocytes are involved in the pathogenesis of colitis induced by IL-23 and the food colorant Red 40. Cell Mol Immunol 2022; 19:777-790. [PMID: 35468944 PMCID: PMC9243055 DOI: 10.1038/s41423-022-00864-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
The food colorant Red 40 is an environmental risk factor for colitis development in mice with increased expression of interleukin (IL)-23. This immune response is mediated by CD4+ T cells, but mechanistic insights into how these CD4+ T cells trigger and perpetuate colitis have remained elusive. Here, using single-cell transcriptomic analysis, we found that several CD4+ T-cell subsets are present in the intestines of colitic mice, including an interferon (IFN)-γ-producing subset. In vivo challenge of primed mice with Red 40 promoted rapid activation of CD4+ T cells and caused marked intestinal epithelial cell (IEC) apoptosis that was attenuated by depletion of CD4+ cells and blockade of IFN-γ. Ex vivo experiments showed that intestinal CD4+ T cells from colitic mice directly promoted apoptosis of IECs and intestinal enteroids. CD4+ T cell-mediated cytotoxicity was contact-dependent and required FasL, which promoted caspase-dependent cell death in target IECs. Genetic ablation of IFN-γ constrained IL-23- and Red 40-induced colitis development, and blockade of IFN-γ inhibited epithelial cell death in vivo. These results advance the understanding of the mechanisms regulating colitis development caused by IL-23 and food colorants and identify IFN-γ+ cytotoxic CD4+ T cells as a new potential therapeutic target for colitis.
Collapse
Affiliation(s)
- Lili Chen
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zhengxiang He
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Jesse D Gelles
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adrian T Ting
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Julie A Spicer
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street, Melbourne, VIC, 3000, Australia
| | - Glaucia C Furtado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
16
|
Hue SSS, Ng SB, Wang S, Tan SY. Cellular Origins and Pathogenesis of Gastrointestinal NK- and T-Cell Lymphoproliferative Disorders. Cancers (Basel) 2022; 14:2483. [PMID: 35626087 PMCID: PMC9139583 DOI: 10.3390/cancers14102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
The intestinal immune system, which must ensure appropriate immune responses to both pathogens and commensal microflora, comprises innate lymphoid cells and various T-cell subsets, including intra-epithelial lymphocytes (IELs). An example of innate lymphoid cells is natural killer cells, which may be classified into tissue-resident, CD56bright NK-cells that serve a regulatory function and more mature, circulating CD56dim NK-cells with effector cytolytic properties. CD56bright NK-cells in the gastrointestinal tract give rise to indolent NK-cell enteropathy and lymphomatoid gastropathy, as well as the aggressive extranodal NK/T cell lymphoma, the latter following activation by EBV infection and neoplastic transformation. Conventional CD4+ TCRαβ+ and CD8αβ+ TCRαβ+ T-cells are located in the lamina propria and the intraepithelial compartment of intestinal mucosa as type 'a' IELs. They are the putative cells of origin for CD4+ and CD8+ indolent T-cell lymphoproliferative disorders of the gastrointestinal tract and intestinal T-cell lymphoma, NOS. In addition to such conventional T-cells, there are non-conventional T-cells in the intra-epithelial compartment that express CD8αα and innate lymphoid cells that lack TCRs. The central feature of type 'b' IELs is the expression of CD8αα homodimers, seen in monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL), which primarily arises from both CD8αα+ TCRαβ+ and CD8αα+ TCRγδ+ IELs. EATL is the other epitheliotropic T-cell lymphoma in the GI tract, a subset of which arises from the expansion and reprograming of intracytoplasmic CD3+ innate lymphoid cells, driven by IL15 and mutations of the JAK-STAT pathway.
Collapse
Affiliation(s)
- Susan Swee-Shan Hue
- Department of Pathology, National University Hospital, Singapore 119074, Singapore; (S.S.-S.H.); (S.W.)
| | - Siok-Bian Ng
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, Singapore 119074, Singapore; (S.S.-S.H.); (S.W.)
| | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore;
| |
Collapse
|
17
|
Preglej T, Ellmeier W. CD4 + Cytotoxic T cells - Phenotype, Function and Transcriptional Networks Controlling Their Differentiation Pathways. Immunol Lett 2022; 247:27-42. [PMID: 35568324 DOI: 10.1016/j.imlet.2022.05.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
The two major subsets of peripheral T cells are classically divided into the CD4+ T helper cells and the cytotoxic CD8+ T cell lineage. However, the appearance of some effector CD4+ T cell populations displaying cytotoxic activity, in particular during viral infections, has been observed, thus breaking the functional dichotomy of CD4+ and CD8+ T lymphocytes. The strong association of the appearance of CD4+ cytotoxic T lymphocytes (CD4 CTLs) with viral infections suggests an important role of this subset in antiviral immunity by controlling viral replication and infection. Moreover, CD4 CTLs have been linked with anti-tumor activity and might also cause immunopathology in autoimmune diseases. This raises interest into the molecular mechanisms regulating CD4 CTL differentiation, which are poorly understood in comparison to differentiation pathways of other Th subsets. In this review, we provide a brief overview about key features of CD4 CTLs, including their role in viral infections and cancer immunity, and about the link between CD4 CTLs and immune-mediated diseases. Subsequently, we will discuss the current knowledge about transcriptional and epigenetic networks controlling CD4 CTL differentiation and highlight recent data suggesting a role for histone deacetylases in the generation of CD4 CTLs.
Collapse
Affiliation(s)
- Teresa Preglej
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna.
| |
Collapse
|
18
|
Bolivar-Wagers S, Larson JH, Jin S, Blazar BR. Cytolytic CD4 + and CD8 + Regulatory T-Cells and Implications for Developing Immunotherapies to Combat Graft-Versus-Host Disease. Front Immunol 2022; 13:864748. [PMID: 35493508 PMCID: PMC9040077 DOI: 10.3389/fimmu.2022.864748] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T-cells (Treg) are critical for the maintenance of immune homeostasis and tolerance induction. While the immunosuppressive mechanisms of Treg have been extensively investigated for decades, the mechanisms responsible for Treg cytotoxicity and their therapeutic potential in regulating immune responses have been incompletely explored and exploited. Conventional cytotoxic T effector cells (Teffs) are known to be important for adaptive immune responses, particularly in the settings of viral infections and cancer. CD4+ and CD8+ Treg subsets may also share similar cytotoxic properties with conventional Teffs. Cytotoxic effector Treg (cyTreg) are a heterogeneous population in the periphery that retain the capacity to suppress T-cell proliferation and activation, induce cellular apoptosis, and migrate to tissues to ensure immune homeostasis. The latter can occur through several cytolytic mechanisms, including the Granzyme/Perforin and Fas/FasL signaling pathways. This review focuses on the current knowledge and recent advances in our understanding of cyTreg and their potential application in the treatment of human disease, particularly Graft-versus-Host Disease (GVHD).
Collapse
Affiliation(s)
| | | | | | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
19
|
Xu Y, Zhu J, Feng B, Lin F, Zhou J, Liu J, Shi X, Lu X, Pan Q, Yu J, Zhang Y, Li L, Cao H. Immunosuppressive effect of mesenchymal stem cells on lung and gut CD8 + T cells in lipopolysaccharide-induced acute lung injury in mice. Cell Prolif 2021; 54:e13028. [PMID: 33738881 PMCID: PMC8088466 DOI: 10.1111/cpr.13028] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Acute lung injury (ALI) not only affects pulmonary function but also leads to intestinal dysfunction, which in turn contributes to ALI. Mesenchymal stem cell (MSC) transplantation can be a potential strategy in the treatment of ALI. However, the mechanisms of synergistic regulatory effects by MSCs on the lung and intestine in ALI need more in-depth study. MATERIALS AND METHODS We evaluated the therapeutic effects of MSCs on the murine model of lipopolysaccharide (LPS)-induced ALI through survival rate, histopathology and bronchoalveolar lavage fluid. Metagenomic sequencing was performed to assess the gut microbiota. The levels of pulmonary and intestinal inflammation and immune response were assessed by analysing cytokine expression and flow cytometry. RESULTS Mesenchymal stem cells significantly improved the survival rate of mice with ALI, alleviated histopathological lung damage, improved intestinal barrier integrity, and reduced the levels of inflammatory cytokines in the lung and gut. Furthermore, MSCs inhibited the inflammatory response by decreasing the infiltration of CD8+ T cells in both small-intestinal lymphocytes and Peyer's patches. The gut bacterial community diversity was significantly altered by MSC transplantation. Furthermore, depletion of intestinal bacterial communities with antibiotics resulted in more severe lung and gut damages and mortality, while MSCs significantly alleviated lung injury due to their immunosuppressive effect. CONCLUSIONS The present research indicates that MSCs attenuate lung and gut injury partly via regulation of the immune response in the lungs and intestines and gut microbiota, providing new insights into the mechanisms underlying the therapeutic effects of MSC treatment for LPS-induced ALI.
Collapse
Affiliation(s)
- Yanping Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
- National Clinical Research Center for Infectious DiseasesHangzhou CityChina
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
- National Clinical Research Center for Infectious DiseasesHangzhou CityChina
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
- National Clinical Research Center for Infectious DiseasesHangzhou CityChina
| | - Feiyan Lin
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
- National Clinical Research Center for Infectious DiseasesHangzhou CityChina
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
- National Clinical Research Center for Infectious DiseasesHangzhou CityChina
| | - Jingqi Liu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
- National Clinical Research Center for Infectious DiseasesHangzhou CityChina
| | - Xiaowei Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Xuan Lu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
- National Clinical Research Center for Infectious DiseasesHangzhou CityChina
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
- National Clinical Research Center for Infectious DiseasesHangzhou CityChina
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
- National Clinical Research Center for Infectious DiseasesHangzhou CityChina
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
- National Clinical Research Center for Infectious DiseasesHangzhou CityChina
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
- National Clinical Research Center for Infectious DiseasesHangzhou CityChina
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
- National Clinical Research Center for Infectious DiseasesHangzhou CityChina
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic‐chemical Injury DiseasesHangzhou CityChina
| |
Collapse
|
20
|
Wang Y, Chen Z, Wang T, Guo H, Liu Y, Dang N, Hu S, Wu L, Zhang C, Ye K, Shi B. A novel CD4+ CTL subtype characterized by chemotaxis and inflammation is involved in the pathogenesis of Graves' orbitopathy. Cell Mol Immunol 2021; 18:735-745. [PMID: 33514849 PMCID: PMC8027210 DOI: 10.1038/s41423-020-00615-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Graves' orbitopathy (GO), the most severe manifestation of Graves' hyperthyroidism (GH), is an autoimmune-mediated inflammatory disorder, and treatments often exhibit a low efficacy. CD4+ T cells have been reported to play vital roles in GO progression. To explore the pathogenic CD4+ T cell types that drive GO progression, we applied single-cell RNA sequencing (scRNA-Seq), T cell receptor sequencing (TCR-Seq), flow cytometry, immunofluorescence and mixed lymphocyte reaction (MLR) assays to evaluate CD4+ T cells from GO and GH patients. scRNA-Seq revealed the novel GO-specific cell type CD4+ cytotoxic T lymphocytes (CTLs), which are characterized by chemotactic and inflammatory features. The clonal expansion of this CD4+ CTL population, as demonstrated by TCR-Seq, along with their strong cytotoxic response to autoantigens, localization in orbital sites, and potential relationship with disease relapse provide strong evidence for the pathogenic roles of GZMB and IFN-γ-secreting CD4+ CTLs in GO. Therefore, cytotoxic pathways may become potential therapeutic targets for GO.
Collapse
Affiliation(s)
- Yue Wang
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China ,grid.452438.cGenome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.452438.cPrecision Medicine Center, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ziyi Chen
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Tingjie Wang
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Hui Guo
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yufeng Liu
- grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China ,grid.452438.cGenome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.452438.cBioBank, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ningxin Dang
- grid.452438.cGenome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shiqian Hu
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liping Wu
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chengsheng Zhang
- grid.452438.cPrecision Medicine Center, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.249880.f0000 0004 0374 0039The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
| | - Kai Ye
- grid.43169.390000 0001 0599 1243MOE Key Lab for Intelligent Networks & Networks Security, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China ,grid.452438.cGenome Institute, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China ,grid.43169.390000 0001 0599 1243The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Bingyin Shi
- grid.452438.cDepartment of Endocrinology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The current review is prompted by recent studies indicating that adaptive immunity could be sufficient to explain rapid onset symptoms as well as many chronic effects of gluten in celiac disease. RECENT FINDINGS Gluten re-exposure in treated celiac disease drives a coordinated systemic cytokine release response implicating T-cell activation within 2 h. Instead of direct effects of gluten on innate immunity, long lasting memory CD4+ T cells activated within 2 h of ingesting gluten or injecting purified gluten peptides now appear to be responsible for acute digestive symptoms. In addition, memory B cells and plasma cells specific for gluten and transglutaminase 2, rather than innate immune cells, are the preferred antigen-presenting cells for gluten in the gut. A variety of innate immune stimuli such as transient infections and local intestinal microbiome, not necessarily gluten itself, may contribute to disease initiation and transition to overt intestinal mucosal injury. Gluten-specific adaptive immunity in the gut and blood are now shown to be closely linked, and systemic cytokine release after gluten provides an additional explanation for extraintestinal manifestations of celiac disease. SUMMARY Clinical studies utilizing cytokines as new biomarkers for gluten immunity promise to improve understanding of clinical effects of gluten, accelerate therapeutics development, and augment diagnosis.
Collapse
|
22
|
Abstract
Nutrient content and nutrient timing are considered key regulators of human health and a variety of diseases and involve complex interactions with the mucosal immune system. In particular, the innate immune system is emerging as an important signaling hub that modulates the response to nutritional signals, in part via signaling through the gut microbiota. In this review we elucidate emerging evidence that interactions between innate immunity and diet affect human metabolic health and disease, including cardiometabolic disorders, allergic diseases, autoimmune disorders, infections, and cancers. Furthermore, we discuss the potential modulatory effects of the gut microbiota on interactions between the immune system and nutrition in health and disease, namely how it relays nutritional signals to the innate immune system under specific physiological contexts. Finally, we identify key open questions and challenges to comprehensively understanding the intersection between nutrition and innate immunity and how potential nutritional, immune, and microbial therapeutics may be developed into promising future avenues of precision treatment.
Collapse
Affiliation(s)
- Samuel Philip Nobs
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Niv Zmora
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel;
- Research Center for Digestive Tract and Liver Diseases and Internal Medicine Division, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel;
- Cancer-Microbiome Research Division, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany;
| |
Collapse
|
23
|
Medina S, Lauer FT, Castillo EF, Bolt AM, Ali AMS, Liu KJ, Burchiel SW. Exposures to uranium and arsenic alter intraepithelial and innate immune cells in the small intestine of male and female mice. Toxicol Appl Pharmacol 2020; 403:115155. [PMID: 32710956 PMCID: PMC7490749 DOI: 10.1016/j.taap.2020.115155] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/12/2020] [Accepted: 07/18/2020] [Indexed: 12/25/2022]
Abstract
Human exposures to environmental metals, including uranium (U) and arsenic (As) are a global public health concern. Chronic exposures to U and As are linked to many adverse health effects including, immune suppression and autoimmunity. The gastrointestinal (GI) tract is home to many immune cells vital in the maintenance of systemic immune health. However, very little is known about the immunotoxicity of U and As at this site. The present study examined the burden of U and As exposure in the GI tract as well as the resultant immunotoxicity to intraepithelial lymphocytes (IELs) and innate immune cells of the small intestine following chronic drinking water exposures of male and female mice to U (in the form of uranyl acetate, UA) and As (in the form of sodium arsenite, As3+). Exposure to U or As3+ resulted in high levels of U or As in the GI tract of male and female mice, respectively. A reduction of small intestinal CD4+ IELs (TCRαβ+, CD8αα+) was found following As3+ exposure, whereas U produced widespread suppression of CD4- IEL subsets (TCRαβ+ and TCRγδ+). Evaluation of innate immune cell subsets in the small intestinal lamina propria revealed a decrease in mature macrophages, along with a corresponding increase in immature/proinflammatory macrophages following As3+ exposures. These data show that exposures to two prevalent environmental contaminants, U and As produce significant immunotoxicity in the GI tract. Collectively, these findings provide a critical framework for understanding the underlying immune health issues reported in human populations chronically exposed to environmental metals.
Collapse
Affiliation(s)
- Sebastian Medina
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Fredine T Lauer
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Eliseo F Castillo
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, The University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Alicia M Bolt
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Abdul-Mehdi S Ali
- Department of Department of Earth and Planetary Sciences, The University of New Mexico, Albuquerque, NM, USA
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Scott W Burchiel
- Department of Pharmaceutical Sciences, The University of New Mexico College of Pharmacy, Albuquerque, NM, USA.
| |
Collapse
|
24
|
Ma H, Qiu Y, Yang H. Intestinal intraepithelial lymphocytes: Maintainers of intestinal immune tolerance and regulators of intestinal immunity. J Leukoc Biol 2020; 109:339-347. [PMID: 32678936 PMCID: PMC7891415 DOI: 10.1002/jlb.3ru0220-111] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Intestinal immune tolerance is essential for the immune system, as it prevents abnormal immune responses to large quantities of antigens from the intestinal lumen, such as antigens from commensal microorganisms, and avoids self‐injury. Intestinal intraepithelial lymphocytes (IELs), a special group of mucosal T lymphocytes, play a significant role in intestinal immune tolerance. To accomplish this, IELs exhibit a high threshold of activation and low reactivity to most antigens from the intestinal lumen. In particular, CD8αα+TCRαβ+ IELs, TCRγδ+ IELs, and CD4+CD8αα+ IELs show great potential for maintaining intestinal immune tolerance and regulating intestinal immunity. However, if the intestinal microenvironment becomes abnormal or intestinal tolerance is broken, IELs may be activated abnormally and become pathogenic.
Collapse
Affiliation(s)
- Haitao Ma
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
25
|
Preglej T, Hamminger P, Luu M, Bulat T, Andersen L, Göschl L, Stolz V, Rica R, Sandner L, Waltenberger D, Tschismarov R, Faux T, Boenke T, Laiho A, Elo LL, Sakaguchi S, Steiner G, Decker T, Bohle B, Visekruna A, Bock C, Strobl B, Seiser C, Boucheron N, Ellmeier W. Histone deacetylases 1 and 2 restrain CD4+ cytotoxic T lymphocyte differentiation. JCI Insight 2020; 5:133393. [PMID: 32102981 PMCID: PMC7101144 DOI: 10.1172/jci.insight.133393] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
Some effector CD4+ T cell subsets display cytotoxic activity, thus breaking the functional dichotomy of CD4+ helper and CD8+ cytotoxic T lymphocytes. However, molecular mechanisms regulating CD4+ cytotoxic T lymphocyte (CD4+ CTL) differentiation are poorly understood. Here we show that levels of histone deacetylases 1 and 2 (HDAC1-HDAC2) are key determinants of CD4+ CTL differentiation. Deletions of both Hdac1 and 1 Hdac2 alleles (HDAC1cKO-HDAC2HET) in CD4+ T cells induced a T helper cytotoxic program that was controlled by IFN-γ-JAK1/2-STAT1 signaling. In vitro, activated HDAC1cKO-HDAC2HET CD4+ T cells acquired cytolytic activity and displayed enrichment of gene signatures characteristic of effector CD8+ T cells and human CD4+ CTLs. In vivo, murine cytomegalovirus-infected HDAC1cKO-HDAC2HET mice displayed a stronger induction of CD4+ CTL features compared with infected WT mice. Finally, murine and human CD4+ T cells treated with short-chain fatty acids, which are commensal-produced metabolites acting as HDAC inhibitors, upregulated CTL genes. Our data demonstrate that HDAC1-HDAC2 restrain CD4+ CTL differentiation. Thus, HDAC1-HDAC2 might be targets for the therapeutic induction of CD4+ CTLs.
Collapse
Affiliation(s)
- Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Maik Luu
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Tanja Bulat
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Liisa Andersen
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Göschl
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Lisa Sandner
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Darina Waltenberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Faux
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Thorina Boenke
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Asta Laiho
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Laura L. Elo
- Medical Bioinformatics Centre, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Günter Steiner
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| | - Thomas Decker
- Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology
| | - Alexander Visekruna
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, and
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Zhou C, Qiu Y, Yang H. CD4CD8αα IELs: They Have Something to Say. Front Immunol 2019; 10:2269. [PMID: 31649659 PMCID: PMC6794356 DOI: 10.3389/fimmu.2019.02269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
The intraepithelial lymphocytes (IELs) that reside within the epithelium of the intestine play a critical role in maintaining the immune balance of the gut. CD4CD8αα IELs are one of the most important types of IELs, and they play an irreplaceable role in maintaining the balance of the intestinal immune system. CD4CD8αα IELs are often regarded as a special subtype of CD4+ IELs that can express CD8αα on their cytomembrane. Hence, CD4CD8αα IELs not only have the ability to modulate the functions of immune cells but also are regarded as cytotoxic T lymphocytes (CTLs). Transcription factors, microbes, and dietary factors have a substantial effect on the development of CD4CD8αα IELs, which make them exert immunosuppression and cytotoxicity activities. In addition, there is an intimate relationship between CD4CD8αα IELs and inflammatory bowel disease (IBD), whereas it is still unclear how CD4CD8αα IELs influence IBD. As such, this review will focus on the unparalleled differentiation of CD4CD8αα IELs and discuss how these cells might be devoted to tolerance and immunopathological responses in the intestinal tract. In addition, the role of CD4CD8αα IELs in IBD would also be discussed.
Collapse
Affiliation(s)
- Chao Zhou
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|