1
|
Lee S, Wischmeyer PE, Mintz CD, Serbanescu MA. Recent Insights into the Evolving Role of the Gut Microbiome in Critical Care. Crit Care Clin 2025; 41:379-396. [PMID: 40021286 DOI: 10.1016/j.ccc.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
This review explores the evolving understanding of gut microbiota's role in critical illness, focusing on how acute illness and exposures in intensive care unit (ICU) environment negatively impact the gut microbiota and the implications of these changes on host responses in critically-ill patients. Focusing on recent findings from clinical and preclinical studies, we discuss the effects of inflammation, enteral nutrient deprivation, and antibiotics on gut microbial dynamics. This review aims to enhance comprehension of microbial dynamics in the ICU and their implications for clinical outcomes and therapeutic strategies.
Collapse
Affiliation(s)
- Seoho Lee
- Department of Anesthesiology and Critical Care, Johns Hopkins University School of Medicine, Phipps 455 1800 Orleans Street, Baltimore, MD 21212, USA
| | - Paul E Wischmeyer
- Department of Anesthesiology, Duke University School of Medicine, 5692 HAFS Box 3094, 2301 Erwin Road, Durham, NC 27710, USA
| | - Cyrus D Mintz
- Department of Anesthesiology and Critical Care, Johns Hopkins University School of Medicine, Phipps 455 1800 Orleans Street, Baltimore, MD 21212, USA
| | - Mara A Serbanescu
- Department of Anesthesiology, Duke University School of Medicine, 5692 HAFS Box 3094, 2301 Erwin Road, Durham, NC 27710, USA.
| |
Collapse
|
2
|
Saad MJA, Santos A. The Microbiota and Evolution of Obesity. Endocr Rev 2025; 46:300-316. [PMID: 39673174 PMCID: PMC11894537 DOI: 10.1210/endrev/bnae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Obesity is a major global concern and is generally attributed to a combination of genetic and environmental factors. Several hypotheses have been proposed to explain the evolutionary origins of obesity epidemic, including thrifty and drifty genotypes, and changes in thermogenesis. Here, we put forward the hypothesis of metaflammation, which proposes that due to intense selection pressures exerted by environmental pathogens, specific genes that help develop a robust defense mechanism against infectious diseases have had evolutionary advantages and that this may contribute to obesity in modern times due to connections between the immune and energy storage systems. Indeed, incorporating the genetic variations of gut microbiota into the complex genetic framework of obesity makes it more polygenic than previously believed. Thus, uncovering the evolutionary origins of obesity requires a multifaceted approach that considers the complexity of human history, the unique genetic makeup of different populations, and the influence of gut microbiome on host genetics.
Collapse
Affiliation(s)
- Mario J A Saad
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| | - Andrey Santos
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, CEP 13083-887 Campinas, SP, Brazil
| |
Collapse
|
3
|
Zhang R, Huangfu B, Xu T, Opatola VO, Ban Q, Huang K, He X. Zearalenone enhances TSST-1 production by intestinal Staphylococcus and increases uterine immune stress in rats. Food Chem Toxicol 2025; 196:115140. [PMID: 39586525 DOI: 10.1016/j.fct.2024.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Zearalenone (ZEA), a mycotoxin prevalent in food crops, poses significant health risks, particularly through its impact on the gut-uterus axis. This study assessed the effects of a 5 mg/kg body weight ZEA dosage in female SD rats, focusing on gut microbiota alterations, inflammatory responses, and uterine changes. Our findings revealed substantial shifts in microbial composition, including significant reductions in beneficial genera such as Akkermansia and Ruminococcaceae and marked increases in pathogenic staphylococci, which correlated with elevated levels of toxic shock syndrome toxin-1 (TSST-1) in serum and uterine tissue. RNA sequencing of uterine samples indicated activation of the extracellular matrix (ECM) pathway, along with significant upregulation of MMP-2 and TIMP-2, enzymes associated with ECM remodelling. Correlation analysis showed a strong link between staphylococcal proliferation and ECM pathway activation, suggesting that ZEA-induced gut dysbiosis contributes to uterine inflammation and structural alterations. These results reveal how ZEA disrupts gut and uterine health, highlighting critical pathways that could serve as targets for future preventive and therapeutic strategies against mycotoxin exposure.
Collapse
Affiliation(s)
- Ruiqi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Tongxiao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Victor Olusola Opatola
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Qiushi Ban
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| |
Collapse
|
4
|
Chen X, Xie X, Sun N, Liu X, Liu J, Zhang W, Cao Y. Gut microbiota-derived butyrate improved acute leptospirosis in hamster via promoting macrophage ROS mediated by HDAC3 inhibition. mBio 2024; 15:e0190624. [PMID: 39287437 PMCID: PMC11481532 DOI: 10.1128/mbio.01906-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Leptospirosis is a re-emerging worldwide zoonotic disease. Infected patients and animals often exhibit intestinal symptoms. Mounting evidence suggests that host immune responses to bacterial infection are closely associated with intestinal homeostasis. Our previous research has shown that the gut microbiota can protect the host from acute leptospirosis, while the specific bacterial metabolic mediators participating in the pathogenesis remain to be identified. Short-chain fatty acids (SCFAs) are metabolites produced mainly by the gut microbiota that play a role in immune regulation. However, whether SCFAs are the key to protecting the host against leptospirosis and the underlying regulatory mechanisms are unknown. In this study, our results showed that the SCFA butyrate is involved in ameliorating leptospirosis. The depletion of SCFAs by antibiotic cocktail treatment reduced survival time after Leptospira infection while supplementation with butyrate but not acetate or propionate significantly amelioration of leptospirosis. In vitro experiments showed that butyrate treatment enhanced the intracellular bactericidal activity mediated by reactive oxygen species (ROS) production. Mechanistically, butyrate functions as a histone deacetylase 3 inhibitor (HDAC3i) to promote ROS production via monocarboxylate transporter (MCT). The protection of butyrate against acute leptospirosis mediated by ROS was also proven in vivo. Collectively, our data provide evidence that the butyrate-MCT-HDAC3i-ROS signaling axis is a potential therapeutic target for acute leptospirosis. Our work not only interprets the microbial metabolite signaling involved in transkingdom interactions between the host and gut microbiota but also provides a possible target for developing a prevention strategy for acute leptospirosis. IMPORTANCE Leptospirosis is a worldwide zoonotic disease caused by Leptospira. An estimated 1 million people are infected with leptospirosis each year. Studies have shown that healthy gut microbiota can protect the host against leptospirosis but the mechanism is not clear. This work elucidated the mechanism of gut microbiota protecting the host against acute leptospirosis. Here, we find that butyrate, a metabolite of gut microbiota, can improve the survival rate of hamsters with leptospirosis by promoting the bactericidal activity of macrophages. Mechanistically, butyrate upregulates reactive oxygen species (ROS) levels after macrophage infection with Leptospira by inhibiting HDAC3. This work confirms the therapeutic potential of butyrate in preventing acute leptospirosis and provides evidence for the benefits of the macrophage-HDAC3i-ROS axis.
Collapse
Affiliation(s)
- Xi Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ni Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiuxi Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
5
|
Wielgosz-Grochowska JP, Domanski N, Drywień ME. Identification of SIBO Subtypes along with Nutritional Status and Diet as Key Elements of SIBO Therapy. Int J Mol Sci 2024; 25:7341. [PMID: 39000446 PMCID: PMC11242202 DOI: 10.3390/ijms25137341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is a pathology of the small intestine and may predispose individuals to various nutritional deficiencies. Little is known about whether specific subtypes of SIBO, such as the hydrogen-dominant (H+), methane-dominant (M+), or hydrogen/methane-dominant (H+/M+), impact nutritional status and dietary intake in SIBO patients. The aim of this study was to investigate possible correlations between biochemical parameters, dietary nutrient intake, and distinct SIBO subtypes. This observational study included 67 patients who were newly diagnosed with SIBO. Biochemical parameters and diet were studied utilizing laboratory tests and food records, respectively. The H+/M+ group was associated with low serum vitamin D (p < 0.001), low serum ferritin (p = 0.001) and low fiber intake (p = 0.001). The M+ group was correlated with high serum folic acid (p = 0.002) and low intakes of fiber (p = 0.001) and lactose (p = 0.002). The H+ group was associated with low lactose intake (p = 0.027). These results suggest that the subtype of SIBO may have varying effects on dietary intake, leading to a range of biochemical deficiencies. Conversely, specific dietary patterns may predispose one to the development of a SIBO subtype. The assessment of nutritional status and diet, along with the diagnosis of SIBO subtypes, are believed to be key components of SIBO therapy.
Collapse
Affiliation(s)
| | - Nicole Domanski
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Małgorzata Ewa Drywień
- Department of Human Nutrition, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-776 Warsaw, Poland;
| |
Collapse
|
6
|
Maitin-Shepard M, O'Tierney-Ginn P, Kraneveld AD, Lyall K, Fallin D, Arora M, Fasano A, Mueller NT, Wang X, Caulfield LE, Dickerson AS, Diaz Heijtz R, Tarui T, Blumberg JB, Holingue C, Schmidt RJ, Garssen J, Almendinger K, Lin PID, Mozaffarian D. Food, nutrition, and autism: from soil to fork. Am J Clin Nutr 2024; 120:240-256. [PMID: 38677518 DOI: 10.1016/j.ajcnut.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024] Open
Abstract
Food and nutrition-related factors have the potential to impact development of autism spectrum disorder (ASD) and quality of life for people with ASD, but gaps in evidence exist. On 10 November 2022, Tufts University's Friedman School of Nutrition Science and Policy and Food and Nutrition Innovation Institute hosted a 1-d meeting to explore the evidence and evidence gaps regarding the relationships of food and nutrition with ASD. This meeting report summarizes the presentations and deliberations from the meeting. Topics addressed included prenatal and child dietary intake, the microbiome, obesity, food-related environmental exposures, mechanisms and biological processes linking these factors and ASD, food-related social factors, and data sources for future research. Presentations highlighted evidence for protective associations with prenatal folic acid supplementation and ASD development, increases in risk of ASD with maternal gestational obesity, and the potential for exposure to environmental contaminants in foods and food packaging to influence ASD development. The importance of the maternal and child microbiome in ASD development or ASD-related behaviors in the child was reviewed, as was the role of discrimination in leading to disparities in environmental exposures and psychosocial factors that may influence ASD. The role of child diet and high prevalence of food selectivity in children with ASD and its association with adverse outcomes were also discussed. Priority evidence gaps identified by participants include further clarifying ASD development, including biomarkers and key mechanisms; interactions among psychosocial, social, and biological determinants; interventions addressing diet, supplementation, and the microbiome to prevent and improve quality of life for people with ASD; and mechanisms of action of diet-related factors associated with ASD. Participants developed research proposals to address the priority evidence gaps. The workshop findings serve as a foundation for future prioritization of scientific research to address evidence gaps related to food, nutrition, and ASD.
Collapse
Affiliation(s)
| | | | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, United States
| | - Daniele Fallin
- Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Laura E Caulfield
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Tomo Tarui
- Department of Pediatrics, Hasbro Children's Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Jeffrey B Blumberg
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States
| | - Calliope Holingue
- Center for Autism Services, Science and Innovation, Kennedy Krieger Institute and Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rebecca J Schmidt
- Department of Public Health Sciences, the MIND Institute, University of California Davis, Davis, CA, United States
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Katherine Almendinger
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Pi-I Debby Lin
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, United States
| | - Dariush Mozaffarian
- Food is Medicine Institute, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, United States.
| |
Collapse
|
7
|
Gao Y, Liang Z, Mao B, Zheng X, Shan J, Jin C, Liu S, Kolliputi N, Chen Y, Xu F, Shi L. Gut microbial GABAergic signaling improves stress-associated innate immunity to respiratory viral infection. J Adv Res 2024; 60:41-56. [PMID: 37353002 PMCID: PMC10284622 DOI: 10.1016/j.jare.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023] Open
Abstract
INTRODUCTION Epidemiological evidences reveal that populations with psychological stress have an increased likelihood of respiratory viral infection involving influenza A virus (IAV) and SARS-CoV-2. OBJECTIVES This study aims to explore the potential correlation between psychological stress and increased susceptibility to respiratory viral infections and how this may contribute to a more severe disease progression. METHODS A chronic restraint stress (CRS) mouse model was used to infect IAV and estimate lung inflammation. Alveolar macrophages (AMs) were observed in the numbers, function and metabolic-epigenetic properties. To confirm the central importance of the gut microbiome in stress-exacerbated viral pneumonia, mice were conducted through microbiome depletion and gut microbiome transplantation. RESULTS Stress exposure induced a decline in Lactobacillaceae abundance and hence γ-aminobutyric acid (GABA) level in mice. Microbial-derived GABA was released in the peripheral and sensed by AMs via GABAAR, leading to enhanced mitochondrial metabolism and α-ketoglutarate (αKG) generation. The metabolic intermediator in turn served as the cofactor for the epigenetic regulator Tet2 to catalyze DNA hydroxymethylation and promoted the PPARγ-centered gene program underpinning survival, self-renewing, and immunoregulation of AMs. Thus, we uncover an unappreciated GABA/Tet2/PPARγ regulatory circuitry initiated by the gut microbiome to instruct distant immune cells through a metabolic-epigenetic program. Accordingly, reconstitution with GABA-producing probiotics, adoptive transferring of GABA-conditioned AMs, or resumption of pulmonary αKG level remarkably improved AMs homeostasis and alleviated severe pneumonia in stressed mice. CONCLUSION Together, our study identifies microbiome-derived tonic signaling tuned by psychological stress to imprint resident immune cells and defensive response in the lungs. Further studies are warranted to translate these findings, basically from murine models, into the individuals with psychiatric stress during respiratory viral infection.
Collapse
Affiliation(s)
- Yanan Gao
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihao Liang
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bingyong Mao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xudong Zheng
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Shijia Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yugen Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Feng Xu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
8
|
Lin Q, Kuypers M, Baglaenko Y, Cao E, Hezaveh K, Despot T, de Amat Herbozo C, Cruz Tleugabulova M, Umaña JM, McGaha TL, Philpott DJ, Mallevaey T. The intestinal microbiota modulates the transcriptional landscape of iNKT cells at steady-state and following antigen exposure. Mucosal Immunol 2024; 17:226-237. [PMID: 38331095 DOI: 10.1016/j.mucimm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Invariant Natural Killer T (iNKT) cells are unconventional T cells that respond to microbe-derived glycolipid antigens. iNKT cells exert fast innate effector functions that regulate immune responses in a variety of contexts, including during infection, cancer, or inflammation. The roles these unconventional T cells play in intestinal inflammation remain poorly defined and vary based on the disease model and species. Our previous work suggested that the gut microbiota influenced iNKT cell functions during dextran sulfate sodium-induced colitis in mice. This study, shows that iNKT cell homeostasis and response following activation are altered in germ-free mice. Using prenatal fecal transplant in specific pathogen-free mice, we show that the transcriptional signatures of iNKT cells at steady state and following αGC-mediated activation in vivo are modulated by the microbiota. Our data suggest that iNKT cells sense the microbiota at homeostasis independently of their T cell receptors. Finally, iNKT cell transcriptional signatures are different in male and female mice. Collectively, our findings suggest that sex and the intestinal microbiota are important factors that regulate iNKT cell homeostasis and responses. A deeper understanding of microbiota-iNKT cell interactions and the impact of sex could improve the development of iNKT cell-based immunotherapies.
Collapse
Affiliation(s)
- Qiaochu Lin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Meggie Kuypers
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Yuriy Baglaenko
- Center for Autoimmune Genomics and Etiology, Division of Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Eric Cao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Kebria Hezaveh
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Tijana Despot
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Tracy L McGaha
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Šojat D, Volarić M, Keškić T, Volarić N, Cerovečki V, Trtica Majnarić L. Putting Functional Gastrointestinal Disorders within the Spectrum of Inflammatory Disorders Can Improve Classification and Diagnostics of These Disorders. Biomedicines 2024; 12:702. [PMID: 38540315 PMCID: PMC10967747 DOI: 10.3390/biomedicines12030702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 01/03/2025] Open
Abstract
The spectrum, intensity, and overlap of symptoms between functional gastrointestinal disorders (FGIDs) and other gastrointestinal disorders characterize patients with FGIDs, who are incredibly different in their backgrounds. An additional challenge with regard to the diagnosis of FGID and the applicability of a given treatment is the ongoing expansion of the risk factors believed to be connected to these disorders. Many cytokines and inflammatory cells have been found to cause the continuous existence of a low level of inflammation, which is thought to be a basic pathophysiological process. The idea of the gut-brain axis has been created to offer a basic framework for the complex interactions that occur between the nervous system and the intestinal functions, including the involvement of gut bacteria. In this review paper, we intend to promote the hypothesis that FGIDs should be seen through the perspective of the network of the neuroendocrine, immunological, metabolic, and microbiome pathways. This hypothesis arises from an increased understanding of chronic inflammation as a systemic disorder, that is omnipresent in chronic health conditions. A better understanding of inflammation's role in the pathogenesis of FGIDs can be achieved by clustering markers of inflammation with data indicating symptoms, comorbidities, and psycho-social factors. Finding subclasses among related entities of FGIDs may reduce patient heterogeneity and help clarify the pathophysiology of this disease to allow for better treatment.
Collapse
Affiliation(s)
- Dunja Šojat
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (D.Š.); (M.V.)
| | - Mile Volarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (D.Š.); (M.V.)
- Department of Gastroenterology and Hepatology, University Clinical Hospital Mostar, Bijeli Brijeg bb, 88000 Mostar, Bosnia and Herzegovina
| | - Tanja Keškić
- Department Biomedicine, Technology and Food Safety, Laboratory of Chemistry and Microbiology, Institute for Animal Husbandry, Autoput Belgrade-Zagreb 16, 11080 Belgrade, Serbia;
| | - Nikola Volarić
- Department of Physiology and Immunology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Crkvena ulica 21, 31000 Osijek, Croatia;
| | - Venija Cerovečki
- Department of Family Medicine, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia; (D.Š.); (M.V.)
| |
Collapse
|
10
|
Cho NA, Strayer K, Dobson B, McDonald B. Pathogenesis and therapeutic opportunities of gut microbiome dysbiosis in critical illness. Gut Microbes 2024; 16:2351478. [PMID: 38780485 PMCID: PMC11123462 DOI: 10.1080/19490976.2024.2351478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
For many years, it has been hypothesized that pathological changes to the gut microbiome in critical illness is a driver of infections, organ dysfunction, and other adverse outcomes in the intensive care unit (ICU). The advent of contemporary microbiome methodologies and multi-omics tools have allowed researchers to test this hypothesis by dissecting host-microbe interactions in the gut to better define its contribution to critical illness pathogenesis. Observational studies of patients in ICUs have revealed that gut microbial communities are profoundly altered in critical illness, characterized by markedly reduced alpha diversity, loss of commensal taxa, and expansion of potential pathogens. These key features of ICU gut dysbiosis have been associated with adverse outcomes including life-threatening hospital-acquired (nosocomial) infections. Current research strives to define cellular and molecular mechanisms connecting gut dysbiosis with infections and other outcomes, and to identify opportunities for therapeutic modulation of host-microbe interactions. This review synthesizes evidence from studies of critically ill patients that have informed our understanding of intestinal dysbiosis in the ICU, mechanisms linking dysbiosis to infections and other adverse outcomes, as well as clinical trials of microbiota-modifying therapies. Additionally, we discuss novel avenues for precision microbial therapeutics to combat nosocomial infections and other life-threatening complications of critical illness.
Collapse
Affiliation(s)
- Nicole A Cho
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathryn Strayer
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Breenna Dobson
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Zhou J, Wang T, Fan L, Xiao H, Ji H, Zhou N, Zhou Z, Liu H, Akhtar M, Xiao Y, Shi D. Enterococcus faecium HDRsEf1 Promotes Systemic Th1 Responses and Enhances Resistance to SalmonellaTyphimurium Infection. Nutrients 2023; 15:4241. [PMID: 37836523 PMCID: PMC10574401 DOI: 10.3390/nu15194241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The gut microbiota is known to regulate the immune system and thereby influence susceptibility to infection. In this study, we observed that the administration of Enterococcus faecium HDRsEf1 (HDRsEf1) led to an improvement in the development of the immune system. This was evidenced by an increase in both the spleen index and the area of spleen white pulp. Specifically, the proportion of T helper (Th) 1 cells and the production of IFN-γ and IL-12 were significantly increased in the spleens of mice treated with HDRsEf1. In agreement with the in vivo results, we found that Th1-related cytokines, including IFN-γ and IL-12p70, were strongly induced in splenocytes treated with HDRsEf1. In addition, Th1 cell activation and high-level secretion of IL-12p70 were also confirmed by coculture of CD4+ T cells with bone marrow-derived dendritic cells treated with HDRsEf1. Moreover, the employment of HDRsEf1 was identified to augment resilience against systemic infection provoked by S. Typhimurium and stimulate the expression of the genes for TNFα and iNOS in the initial stage of infection, signifying that reinforced Th1 cells and IL-12 might activate macrophages for antibacterial safeguards. In summary, our study suggests that HDRsEf1 could act as an effective immunobiotic functional agent, promoting systemic Th1 immunological responses and priming defenses against infection.
Collapse
Affiliation(s)
- Jin Zhou
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (T.W.); (L.F.); (H.X.); (H.J.); (N.Z.); (Z.Z.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingyang Wang
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (T.W.); (L.F.); (H.X.); (H.J.); (N.Z.); (Z.Z.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Lele Fan
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (T.W.); (L.F.); (H.X.); (H.J.); (N.Z.); (Z.Z.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongde Xiao
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (T.W.); (L.F.); (H.X.); (H.J.); (N.Z.); (Z.Z.)
| | - Hui Ji
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (T.W.); (L.F.); (H.X.); (H.J.); (N.Z.); (Z.Z.)
| | - Naiji Zhou
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (T.W.); (L.F.); (H.X.); (H.J.); (N.Z.); (Z.Z.)
| | - Zutao Zhou
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (T.W.); (L.F.); (H.X.); (H.J.); (N.Z.); (Z.Z.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (M.A.)
| | - Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (H.L.); (M.A.)
| | - Yuncai Xiao
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (T.W.); (L.F.); (H.X.); (H.J.); (N.Z.); (Z.Z.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Deshi Shi
- State Key Laboratory of Agriculture Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (T.W.); (L.F.); (H.X.); (H.J.); (N.Z.); (Z.Z.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
12
|
Thompson B, Lu S, Revilla J, Uddin MJ, Oakland DN, Brovero S, Keles S, Bresnick EH, Petri WA, Burgess SL. Secondary bile acids function through the vitamin D receptor in myeloid progenitors to promote myelopoiesis. Blood Adv 2023; 7:4970-4982. [PMID: 37276450 PMCID: PMC10463201 DOI: 10.1182/bloodadvances.2022009618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/20/2023] [Accepted: 05/14/2023] [Indexed: 06/07/2023] Open
Abstract
Metabolic products of the microbiota can alter hematopoiesis. However, the contribution and site of action of bile acids is poorly understood. Here, we demonstrate that the secondary bile acids, deoxycholic acid (DCA) and lithocholic acid (LCA), increase bone marrow myelopoiesis. Treatment of bone marrow cells with DCA and LCA preferentially expanded immunophenotypic and functional colony-forming unit-granulocyte and macrophage (CFU-GM) granulocyte-monocyte progenitors (GMPs). DCA treatment of sorted hematopoietic stem and progenitor cells (HSPCs) increased CFU-GMs, indicating that direct exposure of HSPCs to DCA sufficed to increase GMPs. The vitamin D receptor (VDR) was required for the DCA-induced increase in CFU-GMs and GMPs. Single-cell RNA sequencing revealed that DCA significantly upregulated genes associated with myeloid differentiation and proliferation in GMPs. The action of DCA on HSPCs to expand GMPs in a VDR-dependent manner suggests microbiome-host interactions could directly affect bone marrow hematopoiesis and potentially the severity of infectious and inflammatory disease.
Collapse
Affiliation(s)
- Brandon Thompson
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Shan Lu
- Department of Statistics, Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Julio Revilla
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Md Jashim Uddin
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - David N. Oakland
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Savannah Brovero
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Sunduz Keles
- Department of Statistics, Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| | - Stacey L. Burgess
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
13
|
Ding N, Xiao H, Zhen L, Li H, Zhang Z, Ge J, Jia H. Systemic cytokines inhibition with Imp7 siRNA nanoparticle ameliorates gut injury in a mouse model of ventilator-induced lung injury. Biomed Pharmacother 2023; 165:115237. [PMID: 37516020 DOI: 10.1016/j.biopha.2023.115237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Mechanical ventilation (MV) may negatively affect the lungs and cause the release of inflammatory mediators, resulting in extra-pulmonary organ dysfunction. Studies have revealed systemically elevated levels of proinflammatory cytokines in animal models of ventilator-induced lung injury (VILI); however, whether these cytokines have an effect on gut injury and the mechanisms involved remain unknown. In this study, VILI was generated in mice with high tidal volume mechanical ventilation (20 ml/kg). Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 concentrations in serum and gut measured by ELISA showed significant elevation in the VILI mice. Significant increases in gut injury and PANoptosis were observed in the VILI mice, which were positively correlated with the serum levels of TNF-α, IL-1β, and IL-6. The VILI mice displayed intestinal barrier defects, decreased expressions of occludin and zonula occludin-1 (ZO-1), and increased expression of claudin-2 and the activation of myosin light chain (MLC). Importantly, intratracheal administration of Imp7 siRNA nanoparticle effectively inhibited cytokines production and protected mice from VILI-induced gut injury. These data provide evidence of systemic cytokines contributing to gut injury following VILI and highlight the possibility of targeting cytokines inhibition via Imp7 siRNA nanoparticle as a potential therapeutic intervention for alleviating gut injury following VILI.
Collapse
Affiliation(s)
- Ning Ding
- Key Laboratory of Intensive Care Rehabilitation of Shandong, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China; Department of Anesthesiology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China.
| | - Hui Xiao
- Key Laboratory of Intensive Care Rehabilitation of Shandong, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Lixiao Zhen
- Key Laboratory of Intensive Care Rehabilitation of Shandong, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Huiqing Li
- Key Laboratory of Intensive Care Rehabilitation of Shandong, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China; Department of Anesthesiology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Zengzhen Zhang
- Key Laboratory of Intensive Care Rehabilitation of Shandong, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China; Department of Anesthesiology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China
| | - Junke Ge
- Key Laboratory of Intensive Care Rehabilitation of Shandong, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China; Department of Intensive Care Medicine, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiyan Jia
- Key Laboratory of Intensive Care Rehabilitation of Shandong, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250031, China; Department of Intensive Care Medicine, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Graham DB, Xavier RJ. Conditioning of the immune system by the microbiome. Trends Immunol 2023; 44:499-511. [PMID: 37236891 DOI: 10.1016/j.it.2023.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023]
Abstract
The human intestinal microbiome has coevolved with its host to establish a stable homeostatic relationship with hallmark features of mutualistic symbioses, yet the mechanistic underpinnings of host-microbiome interactions are incompletely understood. Thus, it is an opportune time to conceive a common framework for microbiome-mediated regulation of immune function. We propose the term conditioned immunity to describe the multifaceted mechanisms by which the microbiome modulates immunity. In this regard, microbial colonization is a conditioning exposure that has durable effects on immune function through the action of secondary metabolites, foreign molecular patterns, and antigens. Here, we discuss how spatial niches impact host exposure to microbial products at the level of dose and timing, which elicit diverse conditioned responses.
Collapse
Affiliation(s)
- Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
15
|
Liao J, Bi S, Fang Z, Deng Q, Chen Y, Sun L, Jiang Y, Huang L, Gooneratne R. Docosahexaenoic Acid Promotes Cd Excretion by Restoring the Abundance of Parabacteroides in Cd-Exposed Mice. Molecules 2023; 28:4217. [PMID: 37241957 PMCID: PMC10222105 DOI: 10.3390/molecules28104217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
As a common harmful pollutant, cadmium (Cd) can easily enter the human body through the food chain, posing a major threat to human health. Gut microbiota play a key role in Cd absorption. Docosahexaenoic acid (DHA) is thought to have a potential role in the treatment of Cd poisoning. This study investigated the therapeutic effect and mechanism of DHA in Cd-exposed mice from the perspective of the gut microbiota. The results showed that DHA significantly increased the Cd content in feces and decreased the Cd accumulation in the organs of mice. The gut microbiota results showed that DHA significantly restored the abundance of Parabacteroides in the gut microbiota of Cd-exposed mice. Parabacteroides distasonis (P. distasonis), a representative strain of the Parabacteroides, also showed Cd- and toxicity-reduction capabilities. P. distasonis significantly restored the gut damage caused by Cd exposure. At the same time, P. distasonis reduced the Cd content in the liver, spleen, lung, kidneys, gut, and blood to varying degrees and significantly increased the Cd content in feces. The succinic acid produced by P. distasonis plays an important role in promoting Cd excretion in Cd-exposed mice. Therefore, these results suggest that P. distasonis may have a potential role in DHA-mediated Cd excretion in Cd-exposed mice.
Collapse
Affiliation(s)
- Jianzhen Liao
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Siyuan Bi
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
- Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Qi Deng
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Yinyan Chen
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Yongqing Jiang
- Shenzhen Jinyue Test Technology Co., Ltd., Shenzhen 510100, China
- Shenzhen Lvshiyuan Biotechnology Co., Ltd., Shenzhen 510100, China
| | - Linru Huang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Technology, Research Center of Marine Food, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Guangdong Ocean University, Zhanjiang 524088, China; (J.L.); (S.B.); (Q.D.); (Y.C.); (L.S.); (L.H.)
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647, New Zealand;
| |
Collapse
|
16
|
Zucoloto AZ, Schlechte J, Ignacio A, Thomson CA, Pyke S, Yu IL, Geuking MB, McCoy KD, Yipp BG, Gillrie MR, McDonald B. Vascular traffic control of neutrophil recruitment to the liver by microbiota-endothelium crosstalk. Cell Rep 2023; 42:112507. [PMID: 37195866 DOI: 10.1016/j.celrep.2023.112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
During bloodstream infections, neutrophils home to the liver as part of an intravascular immune response to eradicate blood-borne pathogens, but the mechanisms regulating this crucial response are unknown. Using in vivo imaging of neutrophil trafficking in germ-free and gnotobiotic mice, we demonstrate that the intestinal microbiota guides neutrophil homing to the liver in response to infection mediated by the microbial metabolite D-lactate. Commensal-derived D-lactate augments neutrophil adhesion in the liver independent of granulopoiesis in bone marrow or neutrophil maturation and activation in blood. Instead, gut-to-liver D-lactate signaling primes liver endothelial cells to upregulate adhesion molecule expression in response to infection and promote neutrophil adherence. Targeted correction of microbiota D-lactate production in a model of antibiotic-induced dysbiosis restores neutrophil homing to the liver and reduces bacteremia in a model of Staphylococcus aureus infection. These findings reveal long-distance traffic control of neutrophil recruitment to the liver by microbiota-endothelium crosstalk.
Collapse
Affiliation(s)
- Amanda Z Zucoloto
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jared Schlechte
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aline Ignacio
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carolyn A Thomson
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shannon Pyke
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ian-Ling Yu
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Markus B Geuking
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kathy D McCoy
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Bryan G Yipp
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark R Gillrie
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Braedon McDonald
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
17
|
Wang YZ, Zhou JG, Lu YM, Hu H, Xiao FF, Ge T, Wang X, Zheng L, Yu LH, Le J, Yu H, Yu GJ, Xia Q, Zhang T, Zhou WH. Altered gut microbiota composition in children and their caregivers infected with the SARS-CoV-2 Omicron variant. World J Pediatr 2023; 19:478-488. [PMID: 36627507 PMCID: PMC9838448 DOI: 10.1007/s12519-022-00659-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/17/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Gut microbiota alterations have been implicated in the pathogenesis of coronavirus disease 2019 (COVID-19). This study aimed to explore gut microbiota changes in a prospective cohort of COVID-19 children and their asymptomatic caregivers infected with the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) Omicron variant. METHODS A total of 186 participants, including 59 COVID-19 children, 50 asymptomatic adult caregivers, 52 healthy children (HC), and 25 healthy adults (HA), were recruited between 15 April and 31 May 2022. The gut microbiota composition was determined by 16S rRNA gene sequencing in fecal samples collected from the participants. Gut microbiota functional profiling was performed by using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) software. RESULTS The gut microbiota analysis of beta diversity revealed that the fecal microbial community of COVID-19 children remained far distantly related to HC. The relative abundances of the phyla Actinobacteria and Firmicutes were decreased, whereas Bacteroidetes, Proteobacteria, and Verrucomicrobiota were increased in COVID-19 children. Feces from COVID-19 children exhibited notably lower abundances of the genera Blautia, Bifidobacterium, Fusicatenibacter, Streptococcus, and Romboutsia and higher abundances of the genera Prevotella, Lachnoclostridium, Escherichia-Shigella, and Bacteroides than those from HC. The enterotype distributions of COVID-19 children were characterized by a high prevalence of enterotype Bacteroides. Similar changes in gut microbiota compositions were observed in asymptomatic caregivers. Furthermore, the microbial metabolic activities of KEGG (Kyoto Encyclopedia of Genes and Genomes) and COG (cluster of orthologous groups of proteins) pathways were perturbed in feces from subjects infected with the SARS-CoV-2 Omicron variant. CONCLUSION Our data reveal altered gut microbiota compositions in both COVID-19 children and their asymptomatic caregivers infected with the SARS-CoV-2 Omicron variant, which further implicates the critical role of gut microbiota in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Yi-Zhong Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062 China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Guo Zhou
- Department of Neonatology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yan-Ming Lu
- Department of Pediatrics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Hu
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062 China
| | - Fang-Fei Xiao
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062 China
| | - Ting Ge
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062 China
| | - Xing Wang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062 China
| | - Lu Zheng
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062 China
| | - Lian-Hu Yu
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062 China
| | - Jun Le
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062 China
| | - Hui Yu
- Department of Infectious Diseases, Children’s Hospital of Fudan University, Shanghai, China
| | - Guang-Jun Yu
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Zhang
- Department of Gastroenterology, Hepatology, and Nutrition, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, 355 Luding Road, Shanghai, 200062 China
- Gut Microbiota and Metabolic Research Center, Institute of Pediatric Infection, Immunity and Critical Care Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wen-Hao Zhou
- Shanghai Key Laboratory of Birth Defects, Department of Neonatology, Molecular Medical Center, Children’s Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201101 China
| |
Collapse
|
18
|
Duess JW, Sampah ME, Lopez CM, Tsuboi K, Scheese DJ, Sodhi CP, Hackam DJ. Necrotizing enterocolitis, gut microbes, and sepsis. Gut Microbes 2023; 15:2221470. [PMID: 37312412 PMCID: PMC10269420 DOI: 10.1080/19490976.2023.2221470] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease in premature infants and the leading cause of death and disability from gastrointestinal disease in this vulnerable population. Although the pathophysiology of NEC remains incompletely understood, current thinking indicates that the disease develops in response to dietary and bacterial factors in the setting of a vulnerable host. As NEC progresses, intestinal perforation can result in serious infection with the development of overwhelming sepsis. In seeking to understand the mechanisms by which bacterial signaling on the intestinal epithelium can lead to NEC, we have shown that the gram-negative bacterial receptor toll-like receptor 4 is a critical regulator of NEC development, a finding that has been confirmed by many other groups. This review article provides recent findings on the interaction of microbial signaling, the immature immune system, intestinal ischemia, and systemic inflammation in the pathogenesis of NEC and the development of sepsis. We will also review promising therapeutic approaches that show efficacy in pre-clinical studies.
Collapse
Affiliation(s)
- Johannes W. Duess
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Maame E. Sampah
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Carla M. Lopez
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Koichi Tsuboi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Daniel J. Scheese
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Chhinder P. Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David J. Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| |
Collapse
|
19
|
Yang Zhou J. Innate immunity and early liver inflammation. Front Immunol 2023; 14:1175147. [PMID: 37205101 PMCID: PMC10187146 DOI: 10.3389/fimmu.2023.1175147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
The innate system constitutes a first-line defence mechanism against pathogens. 80% of the blood supply entering the human liver arrives from the splanchnic circulation through the portal vein, so it is constantly exposed to immunologically active substances and pathogens from the gastrointestinal tract. Rapid neutralization of pathogens and toxins is an essential function of the liver, but so too is avoidance of harmful and unnecessary immune reactions. This delicate balance of reactivity and tolerance is orchestrated by a diverse repertoire of hepatic immune cells. In particular, the human liver is enriched in many innate immune cell subsets, including Kupffer cells (KCs), innate lymphoid cells (ILCs) like Natural Killer (NK) cells and ILC-like unconventional T cells - namely Natural Killer T cells (NKT), γδ T cells and Mucosal-associated Invariant T cells (MAIT). These cells reside in the liver in a memory-effector state, so they respond quickly to trigger appropriate responses. The contribution of aberrant innate immunity to inflammatory liver diseases is now being better understood. In particular, we are beginning to understand how specific innate immune subsets trigger chronic liver inflammation, which ultimately results in hepatic fibrosis. In this review, we consider the roles of specific innate immune cell subsets in early inflammation in human liver disease.
Collapse
Affiliation(s)
- Jordi Yang Zhou
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
- Leibniz Institute for Immunotherapy, Regensburg, Germany
- *Correspondence: Jordi Yang Zhou,
| |
Collapse
|
20
|
Threonine Facilitates Cd Excretion by Increasing the Abundance of Gut Escherichia coli in Cd-Exposed Mice. Molecules 2022; 28:molecules28010177. [PMID: 36615370 PMCID: PMC9822384 DOI: 10.3390/molecules28010177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cadmium (Cd) can easily enter the body through the food chain and threaten health since Cd pollution is prevalent in the environment. Gut microbiota is necessary for the reduction of metal ions. To reduce Cd-induced harmful impacts and Cd accumulation in the body, we investigated the effect of amino acids on gut microbiota and Cd excretion in (fecal Cd) Cd-exposed mice. The screening of 20 amino acids showed that threonine (Thr) effectively increased fecal Cd, and reduced Cd-induced intestinal structural damage. The abundance of Escherichia-Shigella genus and KF843036_g significantly increased after the oral administration of Thr. As the type species of the Escherichia-Shigella genus, Escherichia coli exhibited high similarity to KF843036_g species and significantly decreased Cd-induced gut damage. Cd contents in the liver, kidney, and gut of Cd-exposed mice were also significantly (p < 0.05) decreased after E. coli treatment, while the contents in the feces were increased. The results demonstrated the potential roles that gut E. coli might play in Thr-mediated Cd excretion in Cd-exposed mice. The findings may provide important data for better understanding the molecular biological mechanism of Thr in reducing Cd accumulation in the body.
Collapse
|