1
|
Paras KI, Brunner JS, Boyer JA, Montero AM, Jackson BT, Chakraborty S, Xie A, Guillan K, Siddiquee A, Torres LP, Rabinowitz JD, Kung A, You D, Cruz FD, Finley LWS. PAX3-FOXO1 drives targetable cell state-dependent metabolic vulnerabilities in rhabdomyosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.633227. [PMID: 39868247 PMCID: PMC11761651 DOI: 10.1101/2025.01.15.633227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
PAX3-FOXO1, an oncogenic transcription factor, drives a particularly aggressive subtype of rhabdomyosarcoma (RMS) by enforcing gene expression programs that support malignant cell states. Here we show that PAX3-FOXO1 + RMS cells exhibit altered pyrimidine metabolism and increased dependence on enzymes involved in de novo pyrimidine synthesis, including dihydrofolate reductase (DHFR). Consequently, PAX3-FOXO1 + cells display increased sensitivity to inhibition of DHFR by the chemotherapeutic drug methotrexate, and this dependence is rescued by provision of pyrimidine nucleotides. Methotrexate treatment mimics the metabolic and transcriptional impact of PAX3-FOXO1 silencing, reducing expression of genes related to PAX3-FOXO1-driven malignant cell states. Accordingly, methotrexate treatment slows growth of multiple PAX3-FOXO1 + tumor xenograft models, but not fusion-negative counterparts. Taken together, these data demonstrate that PAX3-FOXO1 induces cell states characterized by altered pyrimidine dependence and nominate methotrexate as an addition to the current therapeutic arsenal for treatment of these malignant pediatric tumors.
Collapse
|
2
|
Hsieh J, Danis EP, Owens CR, Parrish JK, Nowling NL, Wolin AR, Purdy SC, Rosenbaum SR, Ivancevic AM, Chuong EB, Ford HL, Jedlicka P. Dependence of PAX3-FOXO1 chromatin occupancy on ETS1 at important disease-promoting genes exposes new targetable vulnerability in Fusion-Positive Rhabdomyosarcoma. Oncogene 2025; 44:19-29. [PMID: 39448867 DOI: 10.1038/s41388-024-03201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Rhabdomyosarcoma (RMS), a malignancy of impaired myogenic differentiation, is the most common soft tissue pediatric cancer. PAX3-FOXO1 oncofusions drive the majority of the clinically more aggressive fusion-positive rhabdomyosarcoma (FP-RMS). Recent studies have established an epigenetic basis for PAX3-FOXO1-driven oncogenic processes. However, details of PAX3-FOXO1 epigenetic mechanisms, including interactions with, and dependence on, other chromatin and transcription factors, are incompletely understood. We previously identified a novel disease-promoting epigenetic axis in RMS, involving the histone demethylase KDM3A and the ETS1 transcription factor, and demonstrated that this epigenetic axis interfaces with PAX3-FOXO1 both phenotypically and transcriptomically, including co-regulation of biological processes and genes important to FP-RMS progression. In this study, we demonstrate that KDM3A and ETS1 colocalize with PAX3-FOXO1 to enhancers of important disease-promoting genes in FP-RMS, including FGF8, IL4R, and MEST, as well as PODXL, which we define herein as a new FP-RMS-promoting gene. We show that ETS1, which is induced by both PAX3-FOXO1 and KDM3A, exists in complex with PAX3-FOXO1, and augments PAX3-FOXO1 chromatin occupancy. We further show that the PAX3-FOXO1/ETS1 complex can be disrupted by the clinically relevant small molecule inhibitor YK-4-279. YK-4-279 displaces PAX3-FOXO1 from chromatin and interferes with PAX3-FOXO1-dependent gene regulation, resulting in potent inhibition of growth and invasive properties in FP-RMS, along with downregulation of FGF8, IL4R, MEST and PODXL expression. We additionally show that, in some FP-RMS, KDM3A also increases PAX3-FOXO1 levels. Together, our studies illuminate mechanisms of action of the KDM3A/ETS1 regulatory module, and reveal novel targetable mechanisms of PAX3-FOXO1 chromatin complex regulation, in FP-RMS.
Collapse
Affiliation(s)
- Joseph Hsieh
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA
- Cancer Biology Graduate Training Program, UC-AMC, Aurora, CO, USA
- Department of Pathology, UC-AMC, Aurora, CO, USA
| | - Etienne P Danis
- Department of Biomedical Informatics, UC-AMC, Aurora, CO, USA
- University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA
| | | | | | | | - Arthur R Wolin
- Department of Pharmacology, UC-AMC, Aurora, CO, USA
- Molecular Biology Graduate Training Program, UC-AMC, Aurora, CO, USA
| | - Stephen Connor Purdy
- Cancer Biology Graduate Training Program, UC-AMC, Aurora, CO, USA
- Department of Pharmacology, UC-AMC, Aurora, CO, USA
| | | | - Atma M Ivancevic
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA
- Cancer Biology Graduate Training Program, UC-AMC, Aurora, CO, USA
- University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA
- Department of Pharmacology, UC-AMC, Aurora, CO, USA
- Molecular Biology Graduate Training Program, UC-AMC, Aurora, CO, USA
| | - Paul Jedlicka
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA.
- Cancer Biology Graduate Training Program, UC-AMC, Aurora, CO, USA.
- Department of Pathology, UC-AMC, Aurora, CO, USA.
- University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA.
| |
Collapse
|
3
|
Di Paolo V, Paolini A, Galardi A, Gasparini P, De Cecco L, Colletti M, Lampis S, Raieli S, De Stefanis C, Miele E, Russo I, Di Ruscio V, Casanova M, Alaggio R, Masotti A, Milano GM, Locatelli F, Di Giannatale A. Plasma-derived extracellular vesicles miR-335-5p as potential diagnostic biomarkers for fusion-positive rhabdomyosarcoma. J Exp Clin Cancer Res 2024; 43:282. [PMID: 39385294 PMCID: PMC11463097 DOI: 10.1186/s13046-024-03197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma, with embryonal (ERMS) and alveolar (ARMS) representing the two most common histological subtypes. ARMS shows poor prognosis, being often metastatic at diagnosis. Thus, the discovery of novel biomarkers predictive of tumor aggressiveness represents one of the most important challenges to overcome and may help the development of tailored therapies. In the last years, miRNAs carried in extracellular vesicles (EVs), small vesicles of endocytic origin, have emerged as ideal candidate biomarkers due to their stability in plasma and their tissue specificity. METHODS EVs miRNAs were isolated from plasma of 21 patients affected by RMS and 13 healthy childrens (HC). We performed a miRNA profile using the Serum/Plasma Focus microRNA PCR panels (Qiagen), and RT-qPCR for validation analysis. Statistically significant (p < 0.05) miRNAs were obtained by ANOVA test. RESULTS We identified nine EVs miRNAs (miR-483-5p, miR-132-3p, miR-766-3p, miR-454-3p miR-197-3p, miR-335-3p, miR-17-5p, miR-486-5p and miR-484) highly upregulated in RMS patients compared to HCs. Interestingly, 4 miRNAs (miR-335-5p, miR-17-5p, miR-486-5p and miR-484) were significantly upregulated in ARMS samples compared to ERMS. In the validation analysis performed in a larger group of patients only three miRNAs (miR-483-5p, miR-335-5p and miR-484) were differentially significantly expressed in RMS patients compared to HC. Among these, mir-335-5p was significant also when compared ARMS to ERMS patients. MiR-335-5p was upregulated in RMS tumor tissues respect to normal tissues (p = 0.00202) and upregulated significantly between ARMS and ERMS (p = 0.04). Furthermore, the miRNA expression correlated with the Intergroup Rhabdomyosarcoma Study (IRS) grouping system, (p = 0.0234), and survival (OS, p = 0.044; PFS, p = 0.025). By performing in situ hybridization, we observed that miR-335-5p signal was exclusively in the cytoplasm of cancer cells. CONCLUSION We identified miR-335-5p as significantly upregulated in plasma derived EVs and tumor tissue of patients affected by ARMS. Its expression correlates to stage and survival in patients. Future studies are needed to validate miR-335-5p as prognostic biomarker and to deeply elucidate its biological role.
Collapse
Affiliation(s)
- Virginia Di Paolo
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Paolini
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Angela Galardi
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Marta Colletti
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Lampis
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | | | - Evelina Miele
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ida Russo
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Di Ruscio
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Rita Alaggio
- Pathology Unit and Predictive Molecular Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Masotti
- Multifactorial and Complex Phenotype Research Area, Bambino Gesù Children's Hospital-IRCCS, Rome, Italy
| | - Giuseppe Maria Milano
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Angela Di Giannatale
- Hematology/Oncology and Cell and Gene Therapy Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| |
Collapse
|
4
|
Benton A, Moriarty NM, Terwilliger E, Liu B, Murphy A, Maluvac H, Shu M, Gartenhaus LE, Janson ND, Pfeffer CM, Utturkar SM, Parkinson EI, Lanman NA, Hanna JA. miR-497 Target Gene Regulatory Network in Angiosarcoma. Mol Cancer Res 2024; 22:879-890. [PMID: 38771248 PMCID: PMC11374500 DOI: 10.1158/1541-7786.mcr-23-1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Angiosarcoma is a vascular sarcoma that is highly aggressive and metastatic. Because of its rarity, treatment options for patients are limited. Therefore, more research is needed to identify possible therapeutic vulnerabilities. We previously found that conditional deletion of Dicer1 drives angiosarcoma development in mice. Given the role of DICER1 in canonical miRNA biogenesis, this suggests that miRNA loss is important in angiosarcoma development. After testing miRNAs previously suggested to have a tumor-suppressive role in angiosarcoma, miRNA-497-5p (miR-497) suppressed cell viability most significantly. We also found that miR-497 overexpression led to significantly reduced cell migration and tumor formation. To understand the mechanism of miR-497 in tumor suppression, we identified clinically relevant target genes using a combination of RNA-sequencing data in an angiosarcoma cell line, expression data from patients with angiosarcoma, and target prediction algorithms. We validated miR-497 direct regulation of cyclin-D2, cyclin-dependent kinase 6, and vesicle amine transport protein 1 (VAT1). One of these genes, VAT1, is an understudied protein that has been suggested to promote cell migration and metastasis in other cancers. Indeed, we find that pharmacologic inhibition of VAT1 with the natural product neocarzilin A reduces angiosarcoma migration. Implications: This work supports the potent tumor-suppressive abilities of miR-497 in angiosarcoma, providing evidence for its potential as a therapeutic agent, and provides insight into the mechanisms of tumor suppression through analysis of the target gene regulatory network of miR-497.
Collapse
Affiliation(s)
- Annaleigh Benton
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Noah M. Moriarty
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
| | - Emma Terwilliger
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Bozhi Liu
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Ant Murphy
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Hannah Maluvac
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Mae Shu
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Lauren E. Gartenhaus
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Nimod D. Janson
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Claire M. Pfeffer
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Sagar M. Utturkar
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Elizabeth I. Parkinson
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Nadia A. Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN USA
| | - Jason A. Hanna
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| |
Collapse
|
5
|
Giusti V, Miserocchi G, Sbanchi G, Pannella M, Hattinger CM, Cesari M, Fantoni L, Guerrieri AN, Bellotti C, De Vita A, Spadazzi C, Donati DM, Torsello M, Lucarelli E, Ibrahim T, Mercatali L. Xenografting Human Musculoskeletal Sarcomas in Mice, Chick Embryo, and Zebrafish: How to Boost Translational Research. Biomedicines 2024; 12:1921. [PMID: 39200384 PMCID: PMC11352184 DOI: 10.3390/biomedicines12081921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Musculoskeletal sarcomas pose major challenges to researchers and clinicians due to their rarity and heterogeneity. Xenografting human cells or tumor fragments in rodents is a mainstay for the generation of cancer models and for the preclinical trial of novel drugs. Lately, though, technical, intrinsic and ethical concerns together with stricter regulations have significantly curbed the employment of murine patient-derived xenografts (mPDX). In alternatives to murine PDXs, researchers have focused on embryonal systems such as chorioallantoic membrane (CAM) and zebrafish embryos. These systems are time- and cost-effective hosts for tumor fragments and near-patient cells. The CAM of the chick embryo represents a unique vascularized environment to host xenografts with high engraftment rates, allowing for ease of visualization and molecular detection of metastatic cells. Thanks to the transparency of the larvae, zebrafish allow for the tracking of tumor development and metastatization, enabling high-throughput drug screening. This review will focus on xenograft models of musculoskeletal sarcomas to highlight the intrinsic and technically distinctive features of the different hosts, and how they can be exploited to elucidate biological mechanisms beneath the different phases of the tumor's natural history and in drug development. Ultimately, the review suggests the combination of different models as an advantageous approach to boost basic and translational research.
Collapse
Affiliation(s)
- Veronica Giusti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Giacomo Miserocchi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Giulia Sbanchi
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Micaela Pannella
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Claudia Maria Hattinger
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Marilena Cesari
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Leonardo Fantoni
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Chiara Bellotti
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Alessandro De Vita
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Chiara Spadazzi
- Preclinic and Osteoncology Unit, Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (G.M.); (A.D.V.); (C.S.)
| | - Davide Maria Donati
- Orthopaedic Oncology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Monica Torsello
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Enrico Lucarelli
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| | - Laura Mercatali
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (V.G.); (G.S.); (M.P.); (C.M.H.); (M.C.); (L.F.); (A.N.G.); (C.B.); (T.I.); (L.M.)
| |
Collapse
|
6
|
Nelson H, Qu S, Franklin JL, Liu Q, Pua HH, Vickers KC, Weaver AM, Coffey RJ, Patton JG. Extracellular RNA in oncogenesis, metastasis and drug resistance. RNA Biol 2024; 21:17-31. [PMID: 39107918 PMCID: PMC11639457 DOI: 10.1080/15476286.2024.2385607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024] Open
Abstract
Extracellular vesicles and nanoparticles (EVPs) are now recognized as a novel form of cell-cell communication. All cells release a wide array of heterogeneous EVPs with distinct protein, lipid, and RNA content, dependent on the pathophysiological state of the donor cell. The overall cargo content in EVPs is not equivalent to cellular levels, implying a regulated pathway for selection and export. In cancer, release and uptake of EVPs within the tumour microenvironment can influence growth, proliferation, invasiveness, and immune evasion. Secreted EVPs can also have distant, systemic effects that can promote metastasis. Here, we review current knowledge of EVP biogenesis and cargo selection with a focus on the role that extracellular RNA plays in oncogenesis and metastasis. Almost all subtypes of RNA have been identified in EVPs, with miRNAs being the best characterized. We review the roles of specific miRNAs that have been detected in EVPs and that play a role in oncogenesis and metastasis.
Collapse
Affiliation(s)
- Hannah Nelson
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sherman Qu
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jeffrey L. Franklin
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Qi Liu
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather H. Pua
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kasey C. Vickers
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alissa M. Weaver
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert J. Coffey
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
7
|
Searcy MB, Larsen RK, Stevens BT, Zhang Y, Jin H, Drummond CJ, Langdon CG, Gadek KE, Vuong K, Reed KB, Garcia MR, Xu B, Kimbrough DW, Adkins GE, Djekidel N, Porter SN, Schreiner PA, Pruett-Miller SM, Abraham BJ, Rehg JE, Hatley ME. PAX3-FOXO1 dictates myogenic reprogramming and rhabdomyosarcoma identity in endothelial progenitors. Nat Commun 2023; 14:7291. [PMID: 37968277 PMCID: PMC10651858 DOI: 10.1038/s41467-023-43044-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/27/2023] [Indexed: 11/17/2023] Open
Abstract
Fusion-positive rhabdomyosarcoma (FP-RMS) driven by the expression of the PAX3-FOXO1 (P3F) fusion oncoprotein is an aggressive subtype of pediatric rhabdomyosarcoma. FP-RMS histologically resembles developing muscle yet occurs throughout the body in areas devoid of skeletal muscle highlighting that FP-RMS is not derived from an exclusively myogenic cell of origin. Here we demonstrate that P3F reprograms mouse and human endothelial progenitors to FP-RMS. We show that P3F expression in aP2-Cre expressing cells reprograms endothelial progenitors to functional myogenic stem cells capable of regenerating injured muscle fibers. Further, we describe a FP-RMS mouse model driven by P3F expression and Cdkn2a loss in endothelial cells. Additionally, we show that P3F expression in TP53-null human iPSCs blocks endothelial-directed differentiation and guides cells to become myogenic cells that form FP-RMS tumors in immunocompromised mice. Together these findings demonstrate that FP-RMS can originate from aberrant development of non-myogenic cells driven by P3F.
Collapse
Affiliation(s)
- Madeline B Searcy
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Randolph K Larsen
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Bradley T Stevens
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Yang Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Catherine J Drummond
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Casey G Langdon
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katherine E Gadek
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kyna Vuong
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kristin B Reed
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Matthew R Garcia
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Darden W Kimbrough
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Rhodes College, Memphis, TN, 38112, USA
| | - Grace E Adkins
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shaina N Porter
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Patrick A Schreiner
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mark E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
8
|
Ibarra J, Hershenhouse T, Almassalha L, Walterhouse D, Backman V, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. Front Cell Dev Biol 2023; 11:1293891. [PMID: 38020905 PMCID: PMC10662331 DOI: 10.3389/fcell.2023.1293891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Tyler Hershenhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL, United States
| | - David Walterhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Kyle L. MacQuarrie
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Han YH, Mao YY, Lee KH, Cho HJ, Yu NN, Xing XY, Wang AG, Jin MH, Hong KS, Sun HN, Kwon T. Peroxiredoxin II regulates exosome secretion from dermal mesenchymal stem cells through the ISGylation signaling pathway. Cell Commun Signal 2023; 21:296. [PMID: 37864270 PMCID: PMC10588245 DOI: 10.1186/s12964-023-01331-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Exosomes are small extracellular vesicles that play important roles in intercellular communication and have potential therapeutic applications in regenerative medicine. Dermal mesenchymal stem cells (DMSCs) are a promising source of exosomes due to their regenerative and immunomodulatory properties. However, the molecular mechanisms regulating exosome secretion from DMSCs are not fully understood. RESULTS In this study, the role of peroxiredoxin II (Prx II) in regulating exosome secretion from DMSCs and the underlying molecular mechanisms were investigated. It was discovered that depletion of Prx II led to a significant reduction in exosome secretion from DMSCs and an increase in the number of intracellular multivesicular bodies (MVBs), which serve as precursors of exosomes. Mechanistically, Prx II regulates the ISGylation switch that controls MVB degradation and impairs exosome secretion. Specifically, Prx II depletion decreased JNK activity, reduced the expression of the transcription inhibitor Foxo1, and promoted miR-221 expression. Increased miR-221 expression inhibited the STAT signaling pathway, thus downregulating the expression of ISGylation-related genes involved in MVB degradation. Together, these results identify Prx II as a critical regulator of exosome secretion from DMSCs through the ISGylation signaling pathway. CONCLUSIONS Our findings provide important insights into the molecular mechanisms regulating exosome secretion from DMSCs and highlight the critical role of Prx II in controlling the ISGylation switch that regulates DMSC-exosome secretion. This study has significant implications for developing new therapeutic strategies in regenerative medicine. Video Abstract.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, P.R. China.
| | - Ying-Ying Mao
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, P.R. China
| | - Kyung Ho Lee
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Chungbuk, 28116, Republic of Korea
| | - Hee Jun Cho
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Nan-Nan Yu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, P.R. China
| | - Xiao-Ya Xing
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, P.R. China
| | - Ai-Guo Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, 116041, P.R. China
| | - Mei-Hua Jin
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, P.R. China
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Chungbuk, 28119, Korea
| | - Hu-Nan Sun
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, 163319, P.R. China.
| | - Taeho Kwon
- KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56216, Republic of Korea.
| |
Collapse
|
10
|
Benton A, Terwilliger E, Moriarty NM, Liu B, Murphy A, Maluvac H, Shu M, Gartenhaus LE, Janson ND, Pfeffer CM, Utturkar SM, Parkinson EI, Lanman NA, Hanna JA. Target gene regulatory network of miR-497 in angiosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.24.559218. [PMID: 37808715 PMCID: PMC10557590 DOI: 10.1101/2023.09.24.559218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Angiosarcoma (AS) is a vascular sarcoma that is highly aggressive and metastatic. Due to its rarity, treatment options for patients are limited, therefore more research is needed to identify possible therapeutic vulnerabilities. We previously found that conditional deletion of Dicer1 drives AS development in mice. Given the role of DICER1 in canonical microRNA (miRNA) biogenesis, this suggests that miRNA loss is important in AS development. After testing miRNAs previously suggested to have a tumor-suppressive role in AS, microRNA-497-5p (miR-497) suppressed cell viability most significantly. We also found that miR-497 overexpression led to significantly reduced cell migration and tumor formation. To understand the mechanism of miR-497 in tumor suppression, we identified clinically relevant target genes using a combination of RNA-sequencing data in an AS cell line, expression data from AS patients, and target prediction algorithms. We validated miR-497 direct regulation of CCND2, CDK6, and VAT1. One of these genes, VAT1, is an understudied protein that has been suggested to promote cell migration and metastasis in other cancers. Indeed, we find that pharmacologic inhibition of VAT1 with the natural product Neocarzilin A reduces AS migration. This work provides insight into the mechanisms of miR-497 and its target genes in AS pathogenesis.
Collapse
Affiliation(s)
- Annaleigh Benton
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Emma Terwilliger
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Noah M. Moriarty
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
| | - Bozhi Liu
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Ant Murphy
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Hannah Maluvac
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Mae Shu
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Lauren E. Gartenhaus
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Nimod D. Janson
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Claire M. Pfeffer
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Sagar M. Utturkar
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| | - Elizabeth I. Parkinson
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN USA
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Nadia A. Lanman
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN USA
| | - Jason A. Hanna
- Department of Biological Sciences, Purdue University, West Lafayette, IN USA
- Purdue University Institute for Cancer Research, Purdue University, West Lafayette, IN USA
| |
Collapse
|
11
|
La Ferlita A, Sp N, Goryunova M, Nigita G, Pollock RE, Croce CM, Beane JD. Small Non-Coding RNAs in Soft-Tissue Sarcomas: State of the Art and Future Directions. Mol Cancer Res 2023; 21:511-524. [PMID: 37052491 PMCID: PMC10238653 DOI: 10.1158/1541-7786.mcr-22-1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 04/14/2023]
Abstract
Soft-tissue sarcomas (STS) are a rare and heterogeneous group of tumors that arise from connective tissue and can occur anywhere in the body. Among the plethora of over 50 different STS types, liposarcoma (LPS) is one of the most common. The subtypes of STS are characterized by distinct differences in tumor biology that drive responses to pharmacologic therapy and disparate oncologic outcomes. Small non-coding RNAs (sncRNA) are a heterogeneous class of regulatory RNAs involved in the regulation of gene expression by targeting mRNAs. Among the several types of sncRNAs, miRNAs and tRNA-derived ncRNAs are the most studied in the context of tumor biology, and we are learning more about the role of these molecules as important regulators of STS tumorigenesis and differentiation. However, challenges remain in translating these findings and no biomarkers or therapeutic approaches targeting sncRNAs have been developed for clinical use. In this review, we summarize the current landscape of sncRNAs in the context of STS with an emphasis on LPS, including the role of sncRNAs in the tumorigenesis and differentiation of these rare malignancies and their potential as novel biomarkers and therapeutic targets. Finally, we provide an appraisal of published studies and outline future directions to study sncRNAs in STS, including tRNA-derived ncRNAs.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Nipin Sp
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Marina Goryunova
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Raphael E. Pollock
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Joal D. Beane
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Ibarra J, Hershenhouse T, Almassalha L, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540394. [PMID: 37214969 PMCID: PMC10197681 DOI: 10.1101/2023.05.11.540394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Tyler Hershenhouse
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL
| | - Kyle L MacQuarrie
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| |
Collapse
|
13
|
Agnoletto C, Pignochino Y, Caruso C, Garofalo C. Exosome-Based Liquid Biopsy Approaches in Bone and Soft Tissue Sarcomas: Review of the Literature, Prospectives, and Hopes for Clinical Application. Int J Mol Sci 2023; 24:ijms24065159. [PMID: 36982236 PMCID: PMC10048895 DOI: 10.3390/ijms24065159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
The knowledge of exosome impact on sarcoma development and progression has been implemented in preclinical studies thanks to technological advances in exosome isolation. Moreover, the clinical relevance of liquid biopsy is well established in early diagnosis, prognosis prediction, tumor burden assessment, therapeutic responsiveness, and recurrence monitoring of tumors. In this review, we aimed to comprehensively summarize the existing literature pointing out the clinical relevance of detecting exosomes in liquid biopsy from sarcoma patients. Presently, the clinical utility of liquid biopsy based on exosomes in patients affected by sarcoma is under debate. The present manuscript collects evidence on the clinical impact of exosome detection in circulation of sarcoma patients. The majority of these data are not conclusive and the relevance of liquid biopsy-based approaches in some types of sarcoma is still insufficient. Nevertheless, the utility of circulating exosomes in precision medicine clearly emerged and further validation in larger and homogeneous cohorts of sarcoma patients is clearly needed, requiring collaborative projects between clinicians and translational researchers for these rare cancers.
Collapse
Affiliation(s)
| | - Ymera Pignochino
- Department of Clinical and Biological Sciences, University of Torino, 10043 Torino, Italy
- Candiolo Cancer Instute, FPO-IRCCS, 10060 Torino, Italy
| | - Chiara Caruso
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Cecilia Garofalo
- Advanced Translational Research Laboratory, Immunology and Molecular Oncology Diagnostic Unit, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy
| |
Collapse
|
14
|
Chin DH, Osman I, Porch J, Kim H, Buck KK, Rodriguez J, Carapia B, Yan D, Moura SB, Sperry J, Nakashima J, Altman K, Altman D, Gryder BE. BET Bromodomain Degradation Disrupts Function but Not 3D Formation of RNA Pol2 Clusters. Pharmaceuticals (Basel) 2023; 16:199. [PMID: 37259348 PMCID: PMC9966215 DOI: 10.3390/ph16020199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/26/2023] [Indexed: 12/20/2023] Open
Abstract
Fusion-positive rhabdomyosarcoma (FP-RMS) is driven by a translocation that creates the chimeric transcription factor PAX3-FOXO1 (P3F), which assembles de novo super enhancers to drive high levels of transcription of other core regulatory transcription factors (CRTFs). P3F recruits co-regulatory factors to super enhancers such as BRD4, which recognizes acetylated lysines via BET bromodomains. In this study, we demonstrate that inhibition or degradation of BRD4 leads to global decreases in transcription, and selective downregulation of CRTFs. We also show that the BRD4 degrader ARV-771 halts transcription while preserving RNA Polymerase II (Pol2) loops between super enhancers and their target genes, and causes the removal of Pol2 only past the transcriptional end site of CRTF genes, suggesting a novel effect of BRD4 on Pol2 looping. We finally test the most potent molecule, inhibitor BMS-986158, in an orthotopic PDX mouse model of FP-RMS with additional high-risk mutations, and find that it is well tolerated in vivo and leads to an average decrease in tumor size. This effort represents a partnership with an FP-RMS patient and family advocates to make preclinical data rapidly accessible to the family, and to generate data to inform future patients who develop this disease.
Collapse
Affiliation(s)
- Diana H. Chin
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Issra Osman
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Jadon Porch
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Hyunmin Kim
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | - Deborah Yan
- Certis Oncology Solutions, San Diego, CA 92121, USA
| | | | | | | | - Kasey Altman
- Kasey Altman Research Fund, Rein in Sarcoma, Fridley, MN 55432, USA
| | - Delsee Altman
- Kasey Altman Research Fund, Rein in Sarcoma, Fridley, MN 55432, USA
| | - Berkley E. Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Teo AYT, Lim VY, Yang VS. MicroRNAs in the Pathogenesis, Prognostication and Prediction of Treatment Resistance in Soft Tissue Sarcomas. Cancers (Basel) 2023; 15:cancers15030577. [PMID: 36765536 PMCID: PMC9913386 DOI: 10.3390/cancers15030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Soft tissue sarcomas are highly aggressive malignant neoplasms of mesenchymal origin, accounting for less than 1% of adult cancers, but comprising over 20% of paediatric solid tumours. In locally advanced, unresectable, or metastatic disease, outcomes from even the first line of systemic treatment are invariably poor. MicroRNAs (miRNAs), which are short non-coding RNA molecules, target and modulate multiple dysregulated target genes and/or signalling pathways within cancer cells. Accordingly, miRNAs demonstrate great promise for their utility in diagnosing, prognosticating and improving treatment for soft tissue sarcomas. This review aims to provide an updated discussion on the known roles of specific miRNAs in the pathogenesis of sarcomas, and their potential use in prognosticating outcomes and prediction of therapeutic resistance.
Collapse
Affiliation(s)
- Andrea York Tiang Teo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Vivian Yujing Lim
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Valerie Shiwen Yang
- Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| |
Collapse
|
16
|
Wang C, Liu Y, Zhang W, Huang J, Jiang J, Wang R, Zeng D. circ-BPTF serves as a miR-486-5p sponge to regulate CEMIP and promotes hypoxic pulmonary arterial smooth muscle cell proliferation in COPD. Acta Biochim Biophys Sin (Shanghai) 2022; 55:438-448. [PMID: 36514216 PMCID: PMC10160238 DOI: 10.3724/abbs.2022178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Hypoxia plays a crucial role in pulmonary vascular remodelling at the early stage of chronic obstructive pulmonary disease (COPD). Circle RNA (circRNA) has been identified to play a critical role in multiple diseases. However, the role of circRNAs in pulmonary vascular remodelling in COPD remains unclear. In this study, we aim to investigate the role of circRNAs in pulmonary arterial smooth muscle cell proliferation and pulmonary vascular remodelling in COPD. COPD patients show lower partial pressure of arterial oxygen and pulmonary arterial remodeling as compared with controls. circRNA microarray and real-time PCR analyses show significantly higher level of circ-BPTF and lower miR-486-5p level in the pulmonary arteries of COPD patients as compared with controls. Hypoxia suppresses miR-486-5p expression but promotes expressions of circ-BPTF and cell migration inducing protein (CEMIP) in human pulmonary arterial smooth muscle cells (PASMCs) in vitro. Loss- and gain-of-function experiments show that circ-BPTF promotes PASMC proliferation in vitro. Moreover, luciferase reporter assay results indicate that circ-BPTF regulates PASMC proliferation by acting as an miR-486-5p sponge. CEMIP is identified as a candidate target gene of miR-486-5p by luciferase reporter assay. Overall, our study shows that circ-BPTF serves as a miR-486-5p sponge to regulate CEMIP and promote hypoxic PASMC proliferation in pulmonary vascular remodelling in COPD.
Collapse
Affiliation(s)
- Changguo Wang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yingying Liu
- Department of Pulmonary and Critical Care Medicine, Suzhou Dushu Lake Hospital, Suzhou 215006, China.,Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215006, China
| | - Weiyun Zhang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Pulmonary and Critical Care Medicine, Suzhou Dushu Lake Hospital, Suzhou 215006, China.,Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215006, China
| | - Jian'an Huang
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Junhong Jiang
- Department of Pulmonary and Critical Care Medicine, Suzhou Dushu Lake Hospital, Suzhou 215006, China.,Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215006, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Daxiong Zeng
- Department of Pulmonary and Critical Care Medicine, Suzhou Dushu Lake Hospital, Suzhou 215006, China.,Department of Pulmonary and Critical Care Medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215006, China
| |
Collapse
|
17
|
Zhang S, Wang J, Liu Q, McDonald WH, Bomber ML, Layden HM, Ellis J, Borinstein SC, Hiebert SW, Stengel KR. PAX3-FOXO1 coordinates enhancer architecture, eRNA transcription, and RNA polymerase pause release at select gene targets. Mol Cell 2022; 82:4428-4442.e7. [PMID: 36395771 PMCID: PMC9731406 DOI: 10.1016/j.molcel.2022.10.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 08/24/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022]
Abstract
Transcriptional control is a highly dynamic process that changes rapidly in response to various cellular and extracellular cues, making it difficult to define the mechanism of transcription factor function using slow genetic methods. We used a chemical-genetic approach to rapidly degrade a canonical transcriptional activator, PAX3-FOXO1, to define the mechanism by which it regulates gene expression programs. By coupling rapid protein degradation with the analysis of nascent transcription over short time courses and integrating CUT&RUN, ATAC-seq, and eRNA analysis with deep proteomic analysis, we defined PAX3-FOXO1 function at a small network of direct transcriptional targets. PAX3-FOXO1 degradation impaired RNA polymerase pause release and transcription elongation at most regulated gene targets. Moreover, the activity of PAX3-FOXO1 at enhancers controlling this core network was surprisingly selective, affecting single elements in super-enhancers. This combinatorial analysis indicated that PAX3-FOXO1 was continuously required to maintain chromatin accessibility and enhancer architecture at regulated enhancers.
Collapse
Affiliation(s)
- Susu Zhang
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37203, USA; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - W Hayes McDonald
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Monica L Bomber
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Hillary M Layden
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jacob Ellis
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Scott C Borinstein
- Department of Pediatrics, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37027, USA
| | - Scott W Hiebert
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37027, USA.
| | - Kristy R Stengel
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Song YL, Yang MH, Zhang S, Wang H, Kai KL, Yao CX, Dai FF, Zhou MJ, Li JB, Wei ZR, Yin Z, Zhu WG, Xue L, Zang MX. A GRIP-1-EZH2 switch binding to GATA-4 is linked to the genesis of rhabdomyosarcoma through miR-29a. Oncogene 2022; 41:5223-5237. [PMID: 36309571 DOI: 10.1038/s41388-022-02521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022]
Abstract
Terminal differentiation failure is an important cause of rhabdomyosarcoma genesis, however, little is known about the epigenetic regulation of aberrant myogenic differentiation. Here, we show that GATA-4 recruits polycomb group proteins such as EZH2 to negatively regulate miR-29a in undifferentiated C2C12 myoblast cells, whereas recruitment of GRIP-1 to GATA-4 proteins displaces EZH2, resulting in the activation of miR-29a during myogenic differentiation of C2C12 cells. Moreover, in poorly differentiated rhabdomyosarcoma cells, EZH2 still binds to the miR-29a promoter with GATA-4 to mediate transcriptional repression of miR-29a. Interestingly, once re-differentiation of rhabdomyosarcoma cells toward skeletal muscle, EZH2 was dispelled from miR-29a promoter which is similar to that in myogenic differentiation of C2C12 cells. Eventually, this expression of miR-29a results in limited rhabdomyosarcoma cell proliferation and promotes myogenic differentiation. We thus establish that GATA-4 can function as a molecular switch in the up- and downregulation of miR-29a expression. We also demonstrate that GATA-4 acts as a tumor suppressor in rhabdomyosarcoma partly via miR-29a, which thus provides a potential therapeutic target for rhabdomyosarcoma.
Collapse
Affiliation(s)
- Yang-Liu Song
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ming-Hui Yang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Si Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Kun-Lun Kai
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chun-Xia Yao
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fei-Fei Dai
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Meng-Jiao Zhou
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Biao Li
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhi-Ru Wei
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongnan Yin
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen, 518055, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Cancer Center of Peking University Third Hospital, Peking University Third Hospital, Beijing, 100191, China.
| | - Ming-Xi Zang
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
19
|
Chadda KR, Blakey EE, Coleman N, Murray MJ. The clinical utility of dysregulated microRNA expression in paediatric solid tumours. Eur J Cancer 2022; 176:133-154. [PMID: 36215946 DOI: 10.1016/j.ejca.2022.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/10/2022] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are short, non-protein-coding genes that regulate the expression of numerous protein-coding genes. Their expression is dysregulated in cancer, where they may function as oncogenes or tumour suppressor genes. As miRNAs are highly resistant to degradation, they are ideal biomarker candidates to improve the diagnosis and clinical management of cancer, including prognostication. Furthermore, miRNAs dysregulated in malignancy represent potential therapeutic targets. The use of miRNAs for these purposes is a particularly attractive option to explore for paediatric malignancies, where the mutational burden is typically low, in contrast to cancers affecting adult patients. As childhood cancers are rare, it has taken time to accumulate the necessary body of evidence showing the potential for miRNAs to improve clinical management across this group of tumours. Here, we review the current literature regarding the potential clinical utility of miRNAs in paediatric solid tumours, which is now both timely and justified. Exploring such avenues is warranted to improve the management and outcomes of children affected by cancer.
Collapse
Affiliation(s)
- Karan R Chadda
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ellen E Blakey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Histopathology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Matthew J Murray
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK; Department of Paediatric Haematology and Oncology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
20
|
Liu Y, Rao J, Mi Y, Chen L, Feng L, Li Q, Geng J, Yang X, Zhan X, Ren L, Chen J, Zhang X. SARS-CoV-2 RNAs are processed into 22-nt vsRNAs in Vero cells. Front Immunol 2022; 13:1008084. [DOI: 10.3389/fimmu.2022.1008084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global pandemic, resulting in great fatalities around the world. Although the antiviral roles of RNA interference (RNAi) have been well studied in plants, nematodes and insects, the antiviral roles of RNAi in mammalians are still debating as RNAi effect is suspected to be suppressed by interferon (IFN) signaling pathways in most cell types. To determine the role of RNAi in mammalian resistance to SARS-CoV-2, we studied the profiling of host small RNAs and SARS-CoV-2 virus-derived small RNAs (vsRNAs) in the early infection stages of Vero cells, an IFN-deficient cell line. We found that host microRNAs (miRNAs) were dysregulated upon SARS-CoV-2 infection, resulting in downregulation of microRNAs playing antiviral functions and upregulation of microRNAs facilitating viral proliferations. Moreover, vsRNA peaked at 22 nt at negative strand but not the positive strand of SARS-CoV-2 and formed successive Dicer-spliced pattern at both strands. Similar characteristics of vsRNAs were observed in IFN-deficient cell lines infected with Sindbis and Zika viruses. Together, these findings indicate that host cell may deploy RNAi pathway to combat SARS-CoV-2 infection in IFN-deficient cells, informing the alternative antiviral strategies to be developed for patients or tissues with IFN deficiency.
Collapse
|
21
|
Wijesinghe SN, Anderson J, Brown TJ, Nanus DE, Housmans B, Green JA, Hackl M, Choi KK, Arkill KP, Welting T, James V, Jones SW, Peffers MJ. The role of extracellular vesicle miRNAs and tRNAs in synovial fibroblast senescence. Front Mol Biosci 2022; 9:971621. [PMID: 36213127 PMCID: PMC9537453 DOI: 10.3389/fmolb.2022.971621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles are mediators of intercellular communication with critical roles in cellular senescence and ageing. In arthritis, senescence is linked to the activation of a pro-inflammatory phenotype contributing to chronic arthritis pathogenesis. We hypothesised that senescent osteoarthritic synovial fibroblasts induce senescence and a pro-inflammatory phenotype in non-senescent osteoarthritic fibroblasts, mediated through extracellular vesicle cargo. Small RNA-sequencing and mass spectrometry proteomics were performed on extracellular vesicles isolated from the secretome of non-senescent and irradiation-induced senescent synovial fibroblasts. β-galactosidase staining confirmed senescence in SFs. RNA sequencing identified 17 differentially expressed miRNAs, 11 lncRNAs, 14 tRNAs and one snoRNA and, 21 differentially abundant proteins were identified by mass spectrometry. Bioinformatics analysis of miRNAs identified fibrosis, cell proliferation, autophagy, and cell cycle as significant pathways, tRNA analysis was enriched for signaling pathways including FGF, PI3K/AKT and MAPK, whilst protein analysis identified PAX3-FOXO1, MYC and TFGB1 as enriched upstream regulators involved in senescence and cell cycle arrest. Finally, treatment of non-senescent synovial fibroblasts with senescent extracellular vesicles confirmed the bystander effect, inducing senescence in non-senescent cells potentially through down regulation of NF-κβ and cAMP response element signaling pathways thus supporting our hypothesis. Understanding the exact composition of EV-derived small RNAs of senescent cells in this way will inform our understanding of their roles in inflammation, intercellular communication, and as active molecules in the senescence bystander effect.
Collapse
Affiliation(s)
- Susanne N. Wijesinghe
- Institute of Inflammation and Ageing, MRC- Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - James Anderson
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Thomas J. Brown
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Dominika E. Nanus
- Institute of Inflammation and Ageing, MRC- Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Bas Housmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | | | | | - Katie K. Choi
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Kenton P. Arkill
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Tim Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Simon W. Jones
- Institute of Inflammation and Ageing, MRC- Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, United Kingdom
| | - Mandy J. Peffers
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
22
|
Ramadan F, Saab R, Hussein N, Clézardin P, Cohen PA, Ghayad SE. Non-coding RNA in rhabdomyosarcoma progression and metastasis. Front Oncol 2022; 12:971174. [PMID: 36033507 PMCID: PMC9403786 DOI: 10.3389/fonc.2022.971174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma of skeletal muscle differentiation, with a predominant occurrence in children and adolescents. One of the major challenges facing treatment success is the presence of metastatic disease at the time of diagnosis, commonly associated with the more aggressive fusion-positive subtype. Non-coding RNA (ncRNA) can regulate gene transcription and translation, and their dysregulation has been associated with cancer development and progression. MicroRNA (miRNA) are short non-coding nucleic acid sequences involved in the regulation of gene expression that act by targeting messenger RNA (mRNA), and their aberrant expression has been associated with both RMS initiation and progression. Other ncRNA including long non-coding RNA (lncRNA), circular RNA (circRNA) and ribosomal RNA (rRNA) have also been associated with RMS revealing important mechanistic roles in RMS biology, but these studies are still limited and require further investigation. In this review, we discuss the established roles of ncRNA in RMS differentiation, growth and progression, highlighting their potential use in RMS prognosis, as therapeutic agents or as targets of treatment.
Collapse
Affiliation(s)
- Farah Ramadan
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Raya Saab
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nader Hussein
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Philippe Clézardin
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Pascale A. Cohen
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Sandra E. Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| |
Collapse
|
23
|
Therapeutic targeting of ATR in alveolar rhabdomyosarcoma. Nat Commun 2022; 13:4297. [PMID: 35879366 PMCID: PMC9314382 DOI: 10.1038/s41467-022-32023-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
Despite advances in multi-modal treatment approaches, clinical outcomes of patients suffering from PAX3-FOXO1 fusion oncogene-expressing alveolar rhabdomyosarcoma (ARMS) remain dismal. Here we show that PAX3-FOXO1-expressing ARMS cells are sensitive to pharmacological ataxia telangiectasia and Rad3 related protein (ATR) inhibition. Expression of PAX3-FOXO1 in muscle progenitor cells is not only sufficient to increase sensitivity to ATR inhibition, but PAX3-FOXO1-expressing rhabdomyosarcoma cells also exhibit increased sensitivity to structurally diverse inhibitors of ATR. Mechanistically, ATR inhibition leads to replication stress exacerbation, decreased BRCA1 phosphorylation and reduced homologous recombination-mediated DNA repair pathway activity. Consequently, ATR inhibitor treatment increases sensitivity of ARMS cells to PARP1 inhibition in vitro, and combined treatment with ATR and PARP1 inhibitors induces complete regression of primary patient-derived ARMS xenografts in vivo. Lastly, a genome-wide CRISPR activation screen (CRISPRa) in combination with transcriptional analyses of ATR inhibitor resistant ARMS cells identifies the RAS-MAPK pathway and its targets, the FOS gene family, as inducers of resistance to ATR inhibition. Our findings provide a rationale for upcoming biomarker-driven clinical trials of ATR inhibitors in patients suffering from ARMS.
Collapse
|
24
|
Cheng Y, Yang L, Zhang N, Chen GS, Li J, Liu YF, Zhou CJ. Extraskeletal Ewing's Sarcoma with CD7 Positivity and T-cell Receptor/Immunoglobulin Rearrangement Masquerading as T-lymphoblastic Lymphoma. Fetal Pediatr Pathol 2022; 41:499-504. [PMID: 33213248 DOI: 10.1080/15513815.2020.1845885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background: Extraskeletal Ewing's Sarcoma (EES) may harbor more than one tumor-specific genetic abnormality, leading to diagnostic difficulties. Case report: We report a nine-year-old boy with recurrent mass of his right thigh. Tumor cells were round, with scant cytoplasm, finely dispersed chromatin, and inapparent, small nucleoli. The initial misdiagnosis was T-lymphoblastic lymphoma due to CD7 and TCR/Ig monoclonal rearrangement. As it expressed NKX2.2 and harbored an EWSR1-FLI1 fusion transcript, the diagnosis was changed to EES. The child underwent EES therapy with good initial response, but had a subcutaneous relapse at 22 months. Conclusion: In addition to typical genetic alterations, Ewing sarcoma can also express CD7 and TCR/Ig rearrangement, which are not limited to lymphoma.
Collapse
Affiliation(s)
- Yin Cheng
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Li Yang
- Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shanxi, China
| | - Na Zhang
- Department of Pathology, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Guang-Sheng Chen
- Department of Pathology, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Juan Li
- Department of Pathology, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Yan-Fei Liu
- Department of Pathology, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Chun-Ju Zhou
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
25
|
Adib A, Sahu R, Mohta S, Pollock RE, Casadei L. Cancer-Derived Extracellular Vesicles: Their Role in Sarcoma. Life (Basel) 2022; 12:life12040481. [PMID: 35454972 PMCID: PMC9029613 DOI: 10.3390/life12040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Soft tissue sarcomas (STS) are rare malignancies with limited responses to anticancer therapy. Extracellular vesicles (EVs) are a heterogeneous group of bi-lipid layer sacs secreted by cells into extracellular space. Investigations of tumor-derived EVs have revealed their functional capabilities, including cell-to-cell communication and their impact on tumorigenesis, progression, and metastasis; however information on the roles of EVs in sarcoma is currently limited. In this review we investigate the role of various EV cargos in sarcoma and the mechanisms by which those cargos can affect the recipient cell phenotype and the aggressivity of the tumor itself. The study of EVs in sarcoma may help establish novel therapeutic approaches that target specific sarcoma subtypes or biologies, thereby improving sarcoma therapeutics in the future.
Collapse
Affiliation(s)
- Anita Adib
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
- Correspondence: (A.A.); (R.S.)
| | - Ruhi Sahu
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
- Correspondence: (A.A.); (R.S.)
| | - Shivangi Mohta
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
| | - Raphael Etomar Pollock
- Division of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, OH 43210, USA;
| | - Lucia Casadei
- The James Cancer Hospital Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.M.); (L.C.)
| |
Collapse
|
26
|
Di Martino MT, Arbitrio M, Caracciolo D, Cordua A, Cuomo O, Grillone K, Riillo C, Caridà G, Scionti F, Labanca C, Romeo C, Siciliano MA, D'Apolito M, Napoli C, Montesano M, Farenza V, Uppolo V, Tafuni M, Falcone F, D'Aquino G, Calandruccio ND, Luciano F, Pensabene L, Tagliaferri P, Tassone P. miR-221/222 as biomarkers and targets for therapeutic intervention on cancer and other diseases: A systematic review. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:1191-1224. [PMID: 35282417 PMCID: PMC8891816 DOI: 10.1016/j.omtn.2022.02.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among deregulated microRNAs (miRs) in human malignancies, miR-221 has been widely investigated for its oncogenic role and as a promising biomarker. Moreover, recent evidence suggests miR-221 as a fine-tuner of chronic liver injury and inflammation-related events. Available information also supports the potential of miR-221 silencing as promising therapeutic intervention. In this systematic review, we selected papers from the principal databases (PubMed, MedLine, Medscape, ASCO, ESMO) between January 2012 and December 2020, using the keywords "miR-221" and the specific keywords related to the most important hematologic and solid malignancies, and some non-malignant diseases, to define and characterize deregulated miR-221 as a valuable therapeutic target in the modern vision of molecular medicine. We found a major role of miR-221 in this view.
Collapse
Affiliation(s)
| | - Mariamena Arbitrio
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Catanzaro, Italy
| | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Alessia Cordua
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Onofrio Cuomo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Riillo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giulio Caridà
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Francesca Scionti
- Institute for Research and Biomedical Innovation (IRIB), Italian National Council (CNR), Messina, Italy
| | - Caterina Labanca
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Caterina Romeo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria Anna Siciliano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Maria D'Apolito
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Cristina Napoli
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Martina Montesano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Farenza
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Valentina Uppolo
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Michele Tafuni
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Federica Falcone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Giuseppe D'Aquino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Francesco Luciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Licia Pensabene
- Department of Surgical and Medical Sciences, Magna Græcia University, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| |
Collapse
|
27
|
Hsu JY, Danis EP, Nance S, O'Brien JH, Gustafson AL, Wessells VM, Goodspeed AE, Talbot JC, Amacher SL, Jedlicka P, Black JC, Costello JC, Durbin AD, Artinger KB, Ford HL. SIX1 reprograms myogenic transcription factors to maintain the rhabdomyosarcoma undifferentiated state. Cell Rep 2022; 38:110323. [PMID: 35108532 PMCID: PMC8917510 DOI: 10.1016/j.celrep.2022.110323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/21/2021] [Accepted: 01/10/2022] [Indexed: 12/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric muscle sarcoma characterized by expression of the myogenic lineage transcription factors (TFs) MYOD1 and MYOG. Despite high expression of these TFs, RMS cells fail to terminally differentiate, suggesting the presence of factors that alter their functions. Here, we demonstrate that the developmental TF SIX1 is highly expressed in RMS and critical for maintaining a muscle progenitor-like state. SIX1 loss induces differentiation of RMS cells into myotube-like cells and impedes tumor growth in vivo. We show that SIX1 maintains the RMS undifferentiated state by controlling enhancer activity and MYOD1 occupancy at loci more permissive to tumor growth over muscle differentiation. Finally, we demonstrate that a gene signature derived from SIX1 loss correlates with differentiation status and predicts RMS progression in human disease. Our findings demonstrate a master regulatory role of SIX1 in repression of RMS differentiation via genome-wide alterations in MYOD1 and MYOG-mediated transcription.
Collapse
Affiliation(s)
- Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Pharmacology Graduate Program, UC-AMC, Aurora, CO, USA
| | - Etienne P Danis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA
| | - Stephanie Nance
- Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jenean H O'Brien
- Department of Biology, College of St. Scholastica, Duluth, MN, USA
| | - Annika L Gustafson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Molecular Biology Graduate Program, UC-AMC, Aurora, CO, USA
| | | | - Andrew E Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA
| | - Jared C Talbot
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Sharon L Amacher
- Department of Molecular Genetics, Ohio State University, Columbus, OH, USA
| | | | - Joshua C Black
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Pharmacology Graduate Program, UC-AMC, Aurora, CO, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Pharmacology Graduate Program, UC-AMC, Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA
| | - Adam D Durbin
- Division of Molecular Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristin B Artinger
- Department of Craniofacial Biology, UC-AMC, Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA.
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (UC-AMC), Aurora, CO, USA; Pharmacology Graduate Program, UC-AMC, Aurora, CO, USA; University of Colorado Cancer Center, UC-AMC, Aurora, CO, USA.
| |
Collapse
|
28
|
Hanna JA, Langdon CG, Garcia MR, Benton A, Lanman NA, Finkelstein D, Rehg JE, Hatley ME. Genetic context of oncogenic drivers dictates vascular sarcoma development in
aP2‐Cre
mice. J Pathol 2022; 257:109-124. [PMID: 35066877 PMCID: PMC9007915 DOI: 10.1002/path.5873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 12/02/2022]
Abstract
Angiosarcomas are aggressive vascular sarcomas that arise from endothelial cells and have an extremely poor prognosis. Because of the rarity of angiosarcomas, knowledge of molecular drivers and optimized treatment strategies is lacking, highlighting the need for in vivo models to study the disease. Previously, we generated genetically engineered mouse models of angiosarcoma driven by aP2‐Cre‐mediated biallelic loss of Dicer1 or conditional activation of KrasG12D with Cdkn2a loss that histologically and genetically resemble human tumors. In the present study, we found that DICER1 functions as a potent tumor suppressor and its deletion, in combination with either KRASG12D expression or Cdkn2a loss, is associated with angiosarcoma development. Independent of the genetic driver, the mTOR pathway was activated in all murine angiosarcoma models. Direct activation of the mTOR pathway by conditional deletion of Tsc1 with aP2‐Cre resulted in tumors that resemble intermediate grade human kaposiform hemangioendotheliomas, indicating that mTOR activation was not sufficient to drive the malignant angiosarcoma phenotype. Genetic dissection of the spectrum of vascular tumors identified genes specifically regulated in the aggressive murine angiosarcomas that are also enriched in human angiosarcoma. The genetic dissection driving the transition across the malignant spectrum of endothelial sarcomas provides an opportunity to identify key determinants of the malignant phenotype, novel therapies for angiosarcoma, and novel in vivo models to further explore angiosarcoma pathogenesis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jason A. Hanna
- Department of Oncology St. Jude Children's Research Hospital 262 Danny Thomas Place Memphis TN 38105 USA
- Department of Biological Sciences Purdue University 201 S. University Street West Lafayette IN 47906 USA
- Purdue University Center for Cancer Research Purdue University West Lafayette, IN, 47907 USA
| | - Casey G. Langdon
- Department of Oncology St. Jude Children's Research Hospital 262 Danny Thomas Place Memphis TN 38105 USA
| | - Matthew R. Garcia
- Department of Oncology St. Jude Children's Research Hospital 262 Danny Thomas Place Memphis TN 38105 USA
| | - Annaleigh Benton
- Department of Biological Sciences Purdue University 201 S. University Street West Lafayette IN 47906 USA
- Purdue University Center for Cancer Research Purdue University West Lafayette, IN, 47907 USA
| | - Nadia A. Lanman
- Department of Comparative Pathobiology Purdue University 201 S. University Street West Lafayette IN 47906 USA
- Purdue University Center for Cancer Research Purdue University West Lafayette, IN, 47907 USA
| | - David Finkelstein
- Department of Computational Biology St. Jude Children's Research Hospital 262 Danny Thomas Place Memphis TN 38105 USA
| | - Jerold E. Rehg
- Department of Pathology St. Jude Children's Research Hospital 262 Danny Thomas Place Memphis TN 38105 USA
| | - Mark E. Hatley
- Department of Oncology St. Jude Children's Research Hospital 262 Danny Thomas Place Memphis TN 38105 USA
| |
Collapse
|
29
|
Mestre-Alagarda C, Gómez-Mateo MC, Berenguer-Romero MD, Syonghyun NC, Nieto G, Navarro-Fos S. [Alveolar rhabdomyosarcoma: Two fusion-negative cases lacking PAX3-FOXO1 and PAX7-FOXO1]. REVISTA ESPANOLA DE PATOLOGIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ANATOMIA PATOLOGICA Y DE LA SOCIEDAD ESPANOLA DE CITOLOGIA 2022; 55:57-62. [PMID: 34980443 DOI: 10.1016/j.patol.2019.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/04/2019] [Accepted: 03/24/2019] [Indexed: 06/14/2023]
Abstract
Rhabdomyosarcoma is the most common soft tissue sarcoma in childhood and adolescence. Morphologically, two major forms are described: alveolar and embryonal rhabdomyosarcoma. The former is generally associated with a poorer prognosis and it usually harbors a characteristic fusion gene, PAX3/7-FOXO1, that is used to confirm the diagnosis. We present two cases, both of which exhibited the classic alveolar histology with immunohistochemical myogenic differentiation (Desmin, MYOD-1 and Myogenin expression) and lacked the characteristic fusion gene PAX3/7-FOXO1. The aim of this report is to highlight the importance of the molecular status in the study and diagnosis of these cases, as it seems to be not only a useful diagnostic tool, but also an important prognostic factor.
Collapse
Affiliation(s)
- Claudia Mestre-Alagarda
- Servicio de Anatomía Patológica, Hospital Clínico Universitario de Valencia, Valencia, España.
| | - M Carmen Gómez-Mateo
- Servicio de Anatomía Patológica, Hospital Universitario de Donostia, Donostia, Gipuzkoa, España
| | | | | | - Gema Nieto
- Departamento de Anatomía Patológica, Universidad de Valencia, Valencia, España
| | - Samuel Navarro-Fos
- Servicio de Anatomía Patológica, Hospital Clínico Universitario de Valencia, Valencia, España
| |
Collapse
|
30
|
Langdon CG, Gadek KE, Garcia MR, Evans MK, Reed KB, Bush M, Hanna JA, Drummond CJ, Maguire MC, Leavey PJ, Finkelstein D, Jin H, Schreiner PA, Rehg JE, Hatley ME. Synthetic essentiality between PTEN and core dependency factor PAX7 dictates rhabdomyosarcoma identity. Nat Commun 2021; 12:5520. [PMID: 34535684 PMCID: PMC8448747 DOI: 10.1038/s41467-021-25829-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
PTEN promoter hypermethylation is nearly universal and PTEN copy number loss occurs in ~25% of fusion-negative rhabdomyosarcoma (FN-RMS). Here we show Pten deletion in a mouse model of FN-RMS results in less differentiated tumors more closely resembling human embryonal RMS. PTEN loss activated the PI3K pathway but did not increase mTOR activity. In wild-type tumors, PTEN was expressed in the nucleus suggesting loss of nuclear PTEN functions could account for these phenotypes. Pten deleted tumors had increased expression of transcription factors important in neural and skeletal muscle development including Dbx1 and Pax7. Pax7 deletion completely rescued the effects of Pten loss. Strikingly, these Pten;Pax7 deleted tumors were no longer FN-RMS but displayed smooth muscle differentiation similar to leiomyosarcoma. These data highlight how Pten loss in FN-RMS is connected to a PAX7 lineage-specific transcriptional output that creates a dependency or synthetic essentiality on the transcription factor PAX7 to maintain tumor identity.
Collapse
Affiliation(s)
- Casey G Langdon
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Katherine E Gadek
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Matthew R Garcia
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Myron K Evans
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Kristin B Reed
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Rhodes College, Memphis, TN, 38112, USA
| | - Madeline Bush
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, Memphis, TN, 38105, USA
| | - Jason A Hanna
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Purdue Center for Cancer Research, Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Catherine J Drummond
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Pathology, University of Otago, Dunedin, Otago, New Zealand
| | - Matthew C Maguire
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Patrick J Leavey
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Patrick A Schreiner
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mark E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
31
|
Boudjadi S, Pandey PR, Chatterjee B, Nguyen TH, Sun W, Barr FG. A Fusion Transcription Factor-Driven Cancer Progresses to a Fusion-Independent Relapse via Constitutive Activation of a Downstream Transcriptional Target. Cancer Res 2021; 81:2930-2942. [PMID: 33589519 DOI: 10.1158/0008-5472.can-20-1613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 12/22/2020] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
Targeted monotherapies usually fail due to development of resistance by a subgroup of cells that evolve into recurrent tumors. Alveolar rhabdomyosarcoma is an aggressive myogenic soft-tissue cancer that is associated with a characteristic PAX3-FOXO1 gene fusion encoding a novel fusion transcription factor. In our myoblast model of PAX3-FOXO1-induced rhabdomyosarcoma, deinduction of PAX3-FOXO1 simulates a targeted therapy that antagonizes the fusion oncoprotein. This simulated therapy results initially in regression of the primary tumors, but PAX3-FOXO1-independent recurrent tumors eventually form after a delay. We report here that upregulation of FGF8, a direct transcriptional target of PAX3-FOXO1, is a mechanism responsible for PAX3-FOXO1-independent tumor recurrence. As a transcriptional target of PAX3-FOXO1, FGF8 promoted oncogenic activity in PAX3-FOXO1-expressing primary tumors that developed in the myoblast system. In the recurrent tumors forming after PAX3-FOXO1 deinduction, FGF8 expression was necessary and sufficient to induce PAX3-FOXO1-independent tumor growth through an autocrine mechanism. FGF8 was also expressed in human PAX3-FOXO1-expressing rhabdomyosarcoma cell lines and contributed to proliferation and transformation. In a human rhabdomyosarcoma cell line with reduced PAX3-FOXO1 expression, FGF8 upregulation rescued oncogenicity and simulated recurrence after PAX3-FOXO1-targeted therapy. We propose that deregulated expression of a PAX3-FOXO1 transcriptional target can generate resistance to therapy directed against this oncogenic transcription factor and postulate that this resistance mechanism may ultimately be countered by therapeutic approaches that antagonize the corresponding downstream pathways. SIGNIFICANCE: In a model of cancer initiated by a fusion transcription factor, constitutive activation of a downstream transcriptional target leads to fusion oncoprotein-independent recurrences, thereby highlighting a novel progression mechanism and therapeutic target.
Collapse
Affiliation(s)
- Salah Boudjadi
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Puspa Raj Pandey
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | | | - Thanh Hung Nguyen
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Wenyue Sun
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Frederic G Barr
- Laboratory of Pathology, Center for Cancer Research, NCI, Bethesda, Maryland.
| |
Collapse
|
32
|
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood mesenchymal tumor with two major molecular and histopathologic subtypes: fusion-positive (FP)RMS, characterized by the PAX3-FOXO1 fusion protein and largely of alveolar histology, and fusion-negative (FN)RMS, the majority of which exhibit embryonal tumor histology. Metastatic disease continues to be associated with poor overall survival despite intensive treatment strategies. Studies on RMS biology have provided some insight into autocrine as well as paracrine signaling pathways that contribute to invasion and metastatic propensity. Such pathways include those driven by the PAX3-FOXO1 fusion oncoprotein in FPRMS and signaling pathways such as IGF/RAS/MEK/ERK, PI3K/AKT/mTOR, cMET, FGFR4, and PDGFR in both FP and FNRMS. In addition, specific cytoskeletal proteins, G protein coupled receptors, Hedgehog, Notch, Wnt, Hippo, and p53 pathways play a role, as do specific microRNA. Paracrine factors, including secreted proteins and RMS-derived exosomes that carry cargo of protein and miRNA, have also recently emerged as potentially important players in RMS biology. This review summarizes the known factors contributing to RMS invasion and metastasis and their implications on identifying targets for treatment and a better understanding of metastatic RMS.
Collapse
|
33
|
Sobral LM, Hicks HM, Parrish JK, McCann TS, Hsieh J, Goodspeed A, Costello JC, Black JC, Jedlicka P. KDM3A/Ets1 epigenetic axis contributes to PAX3/FOXO1-driven and independent disease-promoting gene expression in fusion-positive Rhabdomyosarcoma. Mol Oncol 2020; 14:2471-2486. [PMID: 32697014 PMCID: PMC7530783 DOI: 10.1002/1878-0261.12769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and young adults. RMS exists as two major disease subtypes, oncofusion-negative RMS (FN-RMS) and oncofusion-positive RMS (FP-RMS). FP-RMS is characterized by recurrent PAX3/7-FOXO1 driver oncofusions and is a biologically and clinically aggressive disease. Recent studies have revealed FP-RMS to have a strong epigenetic basis. Epigenetic mechanisms represent potential new therapeutic vulnerabilities in FP-RMS, but their complex details remain to be defined. We previously identified a new disease-promoting epigenetic axis in RMS, involving the chromatin factor KDM3A and the Ets1 transcription factor. In the present study, we define the KDM3A and Ets1 FP-RMS transcriptomes and show that these interface with the recently characterized PAX3/FOXO1-driven gene expression program. KDM3A and Ets1 positively control numerous known and candidate novel PAX3/FOXO1-induced RMS-promoting genes, including subsets under control of PAX3/FOXO1-associated superenhancers (SE), such as MEST. Interestingly, KDM3A and Ets1 also positively control a number of known and candidate novel FP-RMS-promoting, but not PAX3/FOXO1-dependent, genes. Epistatically, Ets1 is downstream of, and exerts disease-promoting effects similar to, both KDM3A and PAX3/FOXO1. MEST also manifests disease-promoting properties in FP-RMS, and KDM3A and Ets1 each impacts activation of the PAX3/FOXO1-associated MEST SE. Taken together, our studies show that the KDM3A/Ets1 epigenetic axis plays an important role in disease promotion in FP-RMS, and provide insight into potential new ways to target aggressive phenotypes in this disease.
Collapse
Affiliation(s)
- Lays M Sobral
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Hannah M Hicks
- Cancer Biology Graduate Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Janet K Parrish
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Tyler S McCann
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Joseph Hsieh
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Cancer Biology Graduate Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Medical Scientist Training Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Andrew Goodspeed
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Bioinformatics Shared Resource, University of Colorado Cancer Center, Aurora, CO, USA
| | - James C Costello
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Bioinformatics Shared Resource, University of Colorado Cancer Center, Aurora, CO, USA
| | - Joshua C Black
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| | - Paul Jedlicka
- Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Cancer Biology Graduate Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA.,Medical Scientist Training Program, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
34
|
Zhu J, Su W, Xiong C, Bai R, Zhou Q, Chen M. Catalyst-Free [3+2] Cycloaddition of Electron-Deficient Alkynes and o-Hydroxyaryl Azomethine Ylides in Water. ACS OMEGA 2020; 5:18244-18253. [PMID: 32743200 PMCID: PMC7392385 DOI: 10.1021/acsomega.0c01856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
A catalyst-free [3 + 2] cycloaddition reaction of electron-deficient alkynes and o-hydroxyaryl azomethine ylides in water was developed, affording pyrroline derivatives in moderate to high yields (up to 90%).
Collapse
|
35
|
Kong Y, Li Y, Luo Y, Zhu J, Zheng H, Gao B, Guo X, Li Z, Chen R, Chen C. circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer. Mol Cancer 2020; 19:82. [PMID: 32366257 PMCID: PMC7197141 DOI: 10.1186/s12943-020-01205-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Patients with lymph node (LN)-positive pancreatic ductal adenocarcinoma (PDAC) have extremely poor survival rates. Circular RNAs (circRNAs), a newly discovered type of endogenous noncoding RNAs, have been proposed to mediate the progression of diverse types of tumors. However, the role and underlying regulatory mechanisms of circRNAs in the LN metastasis of PDAC remain unknown. METHODS Next-generation sequencing was used to identify differentially expressed circRNAs between PDAC and normal adjacent tissues. In vitro and in vivo experiments were conducted to evaluate the functional role of circNFIB1. RNA pulldown and luciferase assays were performed to examine the binding of circNFIB1 and miR-486-5p. RESULTS In the present study, we identified that a novel circRNA (circNFIB1, hsa_circ_0086375) was downregulated in PDAC and negatively associated with LN metastasis in PDAC patients. Functionally, circNFIB1 knockdown promoted lymphangiogenesis and LN metastasis of PDAC both in vitro and in vivo. Mechanistically, circNFIB1 functioned as a sponge of miR-486-5p, and partially reversed the effect of miR-486-5p. Moreover, circNFIB1 attenuated the oncogenic effect of miR-486-5p and consequently upregulated PIK3R1 expression, which further downregulated VEGF-C expression through inhibition of the PI3K/Akt pathway, and ultimately suppressed lymphangiogenesis and LN metastasis in PDAC. CONCLUSIONS Our findings provide novel insight into the underlying mechanism of circRNA-mediated LN metastasis of PDAC and suggest that circNFIB1 may serve as a potential therapeutic target for LN metastasis in PDAC.
Collapse
Affiliation(s)
- Yao Kong
- Department of Ultrasound, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Yuting Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Yuming Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510120, People's Republic of China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Jiang Zhu
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Hanhao Zheng
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Bowen Gao
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Xiaofeng Guo
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Zhihua Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, 107th Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, People's Republic of China.
| | - Rufu Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Changhao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, 510120, People's Republic of China. .,Department of Urology, Sun Yat-sen Memorial Hospital, 107 Yanjiangxi Road, Yuexiu District, Guangzhou, Guangdong, 510120, People's Republic of China.
| |
Collapse
|
36
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
37
|
Peng X, Wei F, Hu X. Long noncoding RNA DLGAP1-AS1 promotes cell proliferation in hepatocellular carcinoma via sequestering miR-486-5p. J Cell Biochem 2019; 121:1953-1962. [PMID: 31633236 DOI: 10.1002/jcb.29430] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC) is most prevalent tumor in liver and one of the most fatal cancers in the world. Long noncoding RNAs (lncRNAs) have been accepted as important regulators in carcinomas. But there are still many lncRNAs including DLGAP1-AS1 unannotated in HCC. First of all, GEPIA suggested that DLGAP1-AS1 presented high expression in HCC tissue samples relative to the normal tissues. Besides, overexpression of DLGAP1-AS1 was also proved in HCC cell lines. Moreover, DLGAP1-AS1 knockdown efficiently suppressed cell proliferation in HCC. Interestingly, miR-486-5p was predicted and validated to interact with DLGAP1-AS1, while the level of miR-486-5p was significantly increased In HCC after DLGAP1-AS1 knockdown. Moreover, we uncovered that ectopic expression of miR-486-5p induced suppression on HCC cell proliferation and that miR-486-5p inhibition offset the effect of DLGAP1-AS1 silence on HCC cell proliferation and apoptosis. Furthermore, H3F3B was identified as target of miR-486-5p and was therefore positively regulated by DLGAP1-AS1 in HCC. Of note, H3F3B upregulation partly revived the declined cell proliferative capacity in response to DLGAP1-AS1 knockdown. To conclude, DLGAP1-AS1 exerted its oncogenic role in HCC via miR-486-5p/H3F3B axis. Our new findings provided novel theoretical basis for discovery of therapeutic targets of HCC.
Collapse
Affiliation(s)
- Xiaochun Peng
- Department of Interventional Radiology, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Fengmei Wei
- Department of Cancer Center, Shanxian Central Hospital, Heze City, Shandong Province, China
| | - Xiaoli Hu
- Department of Ultrasound Center, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, China
| |
Collapse
|
38
|
The PAX3-FOXO1 oncogene alters exosome miRNA content and leads to paracrine effects mediated by exosomal miR-486. Sci Rep 2019; 9:14242. [PMID: 31578374 PMCID: PMC6775163 DOI: 10.1038/s41598-019-50592-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. The alveolar subtype (ARMS) is clinically more aggressive, and characterized by an oncogenic fusion protein PAX3-FOXO1 that drives oncogenic cellular properties. Exosomes are small, secreted vesicles that affect paracrine signaling. We show that PAX3-FOXO1 transcript alters exosome content of C2C12 myoblasts, leading to pro-tumorigenic paracrine effects in recipient cells. Microarray analysis revealed alteration in miRNA content of exosomes, affecting cellular networks involved in cell metabolism, growth signaling, and cellular invasion. Overexpression and knockdown studies showed that miR-486-5p is an effector of PAX3-FOXO1, and mediates its paracrine effects in exosomes, including promoting recipient cell migration, invasion, and colony formation. Analysis of human RMS cells showed miR-486-5p is enriched in both cells and exosomes, and to a higher extent in ARMS subtypes. Analysis of human serum samples showed that miR-486-5p is enriched in exosomes of patients with RMS, and follow-up after chemotherapy showed decrease to control values. Our findings identify a novel role of both PAX3-FOXO1 and its downstream effector miR-486-5p in exosome-mediated oncogenic paracrine effects of RMS, and suggest its possible use as a biomarker.
Collapse
|
39
|
Diaz-Perez JA, Nielsen GP, Antonescu C, Taylor MS, Lozano-Calderon SA, Rosenberg AE. EWSR1/FUS-NFATc2 rearranged round cell sarcoma: clinicopathological series of 4 cases and literature review. Hum Pathol 2019; 90:45-53. [PMID: 31078563 PMCID: PMC6714048 DOI: 10.1016/j.humpath.2019.05.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/05/2019] [Indexed: 12/27/2022]
Abstract
The classification of bone neoplasms composed of small round cells is experiencing a transformation after the discovery of various gene fusion rearrangements that determine diagnosis, behavior, and response to therapy. We present herein 4 new cases of small round cell tumor of the bone that harbor NFATc2 rearrangements involving either EWSR1 or FUS genes. We studied the clinical presentation, pathologic features, genetics (FISH, targeted RNA sequencing) and outcome in these 4 patients. We also reviewed the literature describing similar cases. All our patients were male. The median age at diagnosis was 33.5 years. All tumors presented in long bones of the extremities as a large destructive mass with a mean size of 12.5 cm. All cases were hypercellular with prominent collagenous stroma and consisted of small to medium size round cells arranged in cords, thin trabeculae, and pseudoacinar structures. Most cases showed focal or diffuse membrane staining for CD99; whereas S100, synaptophysin and chromogranin were negative. EMA showed cytoplasmic staining in one case. Genetic studies identified EWSR1-NFATc2 fusion in 3 cases, and FUS-NFATc2 fusion in one case. Two patients were treated with neoadjuvant chemotherapy using Ewing sarcoma regimens, and surgical excision was performed on 3 patients; necrosis was minimal. Follow-up is limited; after a median follow-up of 8.7 months, one patient developed local recurrence and metastases to the lungs. Poorly differentiated round cell sarcoma with EWSR1/FUS-NFATc2 fusions are uncommon. The tumors have consistent clinical findings, morphology, and immunoprofile that in combination are distinctive and differ from that of Ewing sarcoma. Importantly, these tumors do not respond to Ewing sarcoma chemotherapy regimens.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - G Petur Nielsen
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Harvard University, Boston, MA
| | - Cristina Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S Taylor
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Harvard University, Boston, MA
| | | | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL.
| |
Collapse
|
40
|
Angelopoulou E, Paudel YN, Piperi C. Emerging Pathogenic and Prognostic Significance of Paired Box 3 (PAX3) Protein in Adult Gliomas. Transl Oncol 2019; 12:1357-1363. [PMID: 31352198 PMCID: PMC6664158 DOI: 10.1016/j.tranon.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/19/2023] Open
Abstract
Gliomas present the most common type of brain tumors in adults, characterized by high morbidity and mortality. In search of potential molecular targets, members of paired box (PAX) family have been found expressed in neural crest cells, regulating their proliferation, apoptosis, migration and differentiation. Recently, PAX3 overexpression has been implicated in glioma tumorigenesis by enhancing proliferation, increasing invasiveness and inducing resistance to apoptosis of glioma cells, while maintaining brain glioma stem cells (BGSCs) stemness. Although the oncogenic potential of PAX3 in gliomas is still under investigation, experimental evidence suggests that PAX3 function is mainly mediated through the canonical and non-canonical Wnt signaling pathway as well as through its interaction with GFAP and p53 proteins. In addition, PAX3 may contribute to the chemoresistance of glioma cells and modulates the effectiveness of novel experimental therapies. Further evidence indicates that PAX3 may represent a novel diagnostic and prognostic biomarker for gliomas, facilitating personalized treatment. This review addresses the emerging role of PAX3 in glioma diagnosis, prognosis and treatment, aiming to shed more light on the underlying molecular mechanisms that could lead to more effective treatment approaches.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
41
|
Kang U, Caldwell DR, Cartner LK, Wang D, Kim CK, Tian X, Bokesch HR, Henrich CJ, Woldemichael GM, Schnermann MJ, Gustafson KR. Elucidation of Spirodactylone, a Polycyclic Alkaloid from the Sponge Dactylia sp., and Nonenzymatic Generation from the Co-metabolite Denigrin B. Org Lett 2019; 21:4750-4753. [PMID: 31150264 PMCID: PMC8274939 DOI: 10.1021/acs.orglett.9b01636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spirodactylone (1), a hexacyclic indolizidone alkaloid possessing a novel spiro ring system, was isolated from the marine sponge Dactylia sp. The structure was elucidated by extensive spectroscopic methods including application of the LR-HSQMBC NMR pulse sequence. Oxidative cyclization of denigrin B (2), an aryl-substituted 2-oxo-pyrroline derivative that was also isolated from the sponge extract, provided material identical to spirodactylone (1). This confirmed the assigned structure and provides insight into the probable biogenesis of 1.
Collapse
Affiliation(s)
- Unwoo Kang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Donald R. Caldwell
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Laura K. Cartner
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Dongdong Wang
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Chang-Kwon Kim
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Xiangrong Tian
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Research & Development Center of Biorational Pesticide, College of Plant Protection, Northwest A&F University, Yangling 712100, P. R. China
| | - Heidi R. Bokesch
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Curtis J. Henrich
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Girma M. Woldemichael
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Martin J. Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| | - Kirk R. Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
42
|
Boudjadi S, Chatterjee B, Sun W, Vemu P, Barr FG. The expression and function of PAX3 in development and disease. Gene 2018; 666:145-157. [PMID: 29730428 DOI: 10.1016/j.gene.2018.04.087] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/27/2022]
Abstract
The PAX3 gene encodes a member of the PAX family of transcription factors that is characterized by a highly conserved paired box motif. The PAX3 protein is a transcription factor consisting of an N-terminal DNA binding domain (containing a paired box and homeodomain) and a C-terminal transcriptional activation domain. This protein is expressed during development of skeletal muscle, central nervous system and neural crest derivatives, and regulates expression of target genes that impact on proliferation, survival, differentiation and motility in these lineages. Germline mutations of the murine Pax3 and human PAX3 genes cause deficiencies in these developmental lineages and result in the Splotch phenotype and Waardenburg syndrome, respectively. Somatic genetic rearrangements that juxtapose the PAX3 DNA binding domain to the transcriptional activation domain of other transcription factors deregulate PAX3 function and contribute to the pathogenesis of the soft tissue cancers alveolar rhabdomyosarcoma and biphenotypic sinonasal sarcoma. The wild-type PAX3 protein is also expressed in other cancers related to developmental lineages that normally express this protein and exerts phenotypic effects related to its normal developmental role.
Collapse
Affiliation(s)
- Salah Boudjadi
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | | | - Wenyue Sun
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Prasantha Vemu
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Frederic G Barr
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|