1
|
Ordaz-Ramos A, Diaz-Blancas J, Martínez-Cruz A, Castro-Oropeza R, Zampedri C, Romero-Rodríguez DP, Rodriguez-Dorantes M, Melendez-Zajgla J, Maldonado V, Vazquez-Santillan K. RANKL regulates differentially breast cancer stem cell properties through its RANK and LGR4 receptors. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119888. [PMID: 39662745 DOI: 10.1016/j.bbamcr.2024.119888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Breast cancer stem cells (BCSC) are a subpopulation responsible for cancer resistance and relapse. The receptor activator of nuclear factor kappa-Β ligand (RANKL) is a cytokine capable of activating RANK and LGR4 receptors. RANKL/RANK signaling maintains the self-renewal of BCSCs, however, the effect of RANKL via LGR4 remains unclear. Evidence from osteoclasts suggests that RANKL/LGR4 axis disrupts RANK signaling, leading to opposing cellular responses. Anti-RANKL inhibitors are potential agents for eradicating CSCs, but their effect on RANKL/LGR4 signal has not been demonstrated. OBJECTIVE This project aimed to elucidate the role of RANKL in regulating stemness depending on the expression of its receptors. METHODS We use in vitro and in vivo approaches to evaluate the effects of RANKL inhibition in stemness in low or high-LGR4 expressing cells. Furthermore, we analyze the effects of RANKL stimulation on the stemness of LGR4 or RANK overexpressing cells. Additionally, we evaluated the impact of RANKL/LGR4 signaling in the activity of Wnt/β-catenin and NF-κB signaling pathways. RESULTS Our findings indicated that elevated RANKL expression is related to a favorable prognosis in patients with high LGR4 levels. Furthermore, RANKL inhibition decreased BCSC properties in LGR4-low cell lines, while it promoted migration in LGR4-high cells. Additionally, the RANKL/RANK axis activated NF-κB signaling and enhanced BCSCs in RANK-overexpressing cells. In contrast, in LGR4-overexpressing cells, RANKL failed to activate NF-κB but instead inhibited the Wnt/β-catenin pathway, leading to a reduction in BCSCs. CONCLUSION Our findings suggest that RANKL exerts different responses according to the expression of its receptors.
Collapse
Affiliation(s)
- Alejandro Ordaz-Ramos
- Innovation and Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico; Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City C.P. 04510, Mexico
| | - Jorge Diaz-Blancas
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico
| | - Aketzalli Martínez-Cruz
- Innovation and Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico
| | - Rosario Castro-Oropeza
- Molecular Oncology Laboratory, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncologia, Centro Medico Nacional Siglo XXI, IMSS, Avenida Cuahuhtemoc 330, Col Doctores, Cuauhtemoc, Mexico City C.P. 06720, Mexico
| | - Cecilia Zampedri
- Multidisciplinary Zebrafish Laboratory, Department of Bioengineer, Escuela de Ingenieria y Ciencias, Instituto Tecnologico y de Estudios Superiores Monterrey, Mexico City, Mexico
| | - Damaris P Romero-Rodríguez
- Flow Citometry Laboratory, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosió Villegas", Calzada de Tlalpan 4502, Col Belisario Dominguez Secc 16, Tlalpan, C.P. 14080, Mexico; Laboratorio Nacional Conahcyt de Investigación y Diagnóstico por Inmunocitofluorometría (LANCIDI), Mexico City, Mexico
| | - Mauricio Rodriguez-Dorantes
- Oncogenomics Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico
| | - Jorge Melendez-Zajgla
- Functional Cancer Genomics Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14160, Mexico
| | - Vilma Maldonado
- Epigenetics Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico
| | - Karla Vazquez-Santillan
- Innovation and Precision Medicine Laboratory, Instituto Nacional de Medicina Genómica, Periférico Sur No.4809, Col Arenal Tepepan, Tlalpan, Mexico City C.P. 14610, Mexico.
| |
Collapse
|
2
|
Zhang Z, Huang W, Wang L, Li G, Xu F, Wu P, Luo C, Huang Q, Kuang W, Liu Z, Jiang Y, Zhao X, Zhang Y, Ye W, Li J, Ma N, Wang J. Ailanthone induces triple-negative breast cancer cells death involving the inhibition of OTUB1-mediated ERRα deubiquitylation. J Adv Res 2025:S2090-1232(25)00054-2. [PMID: 39864589 DOI: 10.1016/j.jare.2025.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/04/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) remains the most aggressive subtype of breast cancer, and effective therapeutic strategies are needed. Estrogen-related receptor alpha (ERRα) is considered a promising target for managing TNBC. OBJECTIVES Here, we aimed to screen natural products to find downregulator of ERRα and elucidate its mechanism of action. METHODS TNBC cells (MDA-MB-231, MDA-MB-468, MDA-MB-453, and BT-549) were used for in vitro studies, and a subcutaneous MDA-MB-231 tumor model was created for in vivo studies. Immunofluorescence assessed protein distribution, while competitive activity-based protein profiling identified potential target proteins. Co-immunoprecipitation detected protein interactions and modifications, and a luciferase reporter assay evaluated ERRα transcriptional activity. RESULTS The natural product Ailanthone (AIL) effectively induced cell death in TNBC cells by reducing the protein level of ERRα. The mechanism of action involved AIL promoting the degradation of ERRα through the ubiquitin-proteasome system, consequently reducing its transcriptional activity. The competitive-ABPP method mapped the profile of target proteins for AIL, and OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1) was identified as a pivotal target of AIL in regulating ERRα protein levels. OTUB1 was validated as a novel deubiquitinating enzyme for ERRα, with its C91 residue being crucial for this deubiquitination process. AIL was found to inhibit the enzyme activity of OTUB1 by interacting with the C91 residue and disrupt the interaction between OTUB1 and ERRα, ultimately leading to the inhibition of ERRα. CONCLUSION AIL is a promising downregulator of ERRα, and the mechanism of this downregulation has been elucidated. Additionally, a new regulatory relationship between ERRα and OTUB1 is identified. The research presented in this article is anticipated to yield potential lead compounds for ERRα regulatory agents and to stimulate the development of novel therapeutic strategies designed to modulate ERRα activity for the treatment of TNBC.
Collapse
Affiliation(s)
- Ziyue Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei Huang
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430061, China; Institute for Safflower Industry Research of Shihezi University, Pharmacy College of Shihezi University, KeyLaboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi 832003, China
| | - Li Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China; Department of Breast Surgery, Xingtai Peoples' Hospital, Xingtai 054000, China
| | - Guanjun Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Fang Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Pengfei Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chuqiao Luo
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Qian Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wenhua Kuang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Zhengyong Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ying Jiang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China
| | - Xiaoling Zhao
- Department of Breast Surgery, Xingtai Peoples' Hospital, Xingtai 054000, China
| | - Yayuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China.
| | - Wencai Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Juan Li
- Hubei Province Key Laboratory of Traditional Chinese Medicine Resource and Chemistry, Department of Pharmacy, Hubei University of Chinese Medicine, Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Nan Ma
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Center for Bioactive Natural Molecules and Innovative Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Jigang Wang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong 518020, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Chen W, Song YS, Lee HS, Lin CW, Lee J, Kang YE, Kim SK, Kim SY, Park YJ, Park JI. Estrogen-related receptor alpha promotes thyroid tumor cell survival via a tumor subtype-specific regulation of target gene networks. Oncogene 2024; 43:2431-2446. [PMID: 38937602 PMCID: PMC11629884 DOI: 10.1038/s41388-024-03078-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Mortalin (encoded by HSPA9) is a mitochondrial chaperone often overexpressed in cancer through as-yet-unknown mechanisms. By searching different RNA-sequencing datasets, we found that ESRRA is a transcription factor highly correlated with HSPA9 in thyroid cancer, especially in follicular, but not C cell-originated, tumors. Consistent with this correlation, ESRRA depletion decreased mortalin expression only in follicular thyroid tumor cells. Further, ESRRA expression and activity were relatively high in thyroid tumors with oncocytic characteristics, wherein ESRRA and mortalin exhibited relatively high functional overlap. Mechanistically, ESRRA directly regulated HSPA9 transcription through a novel ESRRA-responsive element located upstream of the HSPA9 promoter. Physiologically, ESRRA depletion suppressed thyroid tumor cell survival via caspase-dependent apoptosis, which ectopic mortalin expression substantially abrogated. ESRRA depletion also effectively suppressed tumor growth and mortalin expression in the xenografts of oncocytic or ESRRA-overexpressing human thyroid tumor cells in mice. Notably, our Bioinformatics analyses of patient data revealed two ESRRA target gene clusters that contrast oncocytic-like and anaplastic features of follicular thyroid tumors. These findings suggest that ESRRA is a tumor-specific regulator of mortalin expression, the ESRRA-mortalin axis has higher significance in tumors with oncocytic characteristics, and ESRRA target gene networks can refine molecular classification of thyroid cancer.
Collapse
Affiliation(s)
- Wenjing Chen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Young Shin Song
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Han Sai Lee
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chien-Wei Lin
- Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Junguee Lee
- Department of Pathology, Konyang University School of Medicine, Daejeon, Republic of Korea
| | - Yea Eun Kang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chungnam National University Hospital & College of Medicine, Daejeon, Republic of Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jong-In Park
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
4
|
Vanacker JM, Forcet C. ERRα: unraveling its role as a key player in cell migration. Oncogene 2024; 43:379-387. [PMID: 38129506 DOI: 10.1038/s41388-023-02899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Cell migration is essential throughout the life of multicellular organisms, and largely depends on the spatial and temporal regulation of cytoskeletal dynamics, cell adhesion and signal transduction. Interestingly, Estrogen-related receptor alpha (ERRα) has been identified as a major regulator of cell migration in both physiological and pathological conditions. ERRα is an orphan member of the nuclear hormone receptor superfamily of transcription factors and displays many biological functions. ERRα is a global regulator of energy metabolism, and it is also highly involved in bone homeostasis, development, differentiation, immunity and cancer progression. Importantly, in some instances, the regulation of these biological processes relies on the ability to orchestrate cell movements. Therefore, this review describes how ERRα-mediated cell migration contributes not only to tissue homeostasis but also to tumorigenesis and metastasis, and highlights the molecular and cellular mechanisms by which ERRα finely controls the cell migratory potential.
Collapse
Affiliation(s)
- Jean-Marc Vanacker
- Centre de Recherche en Cancérologie de Lyon, CNRS UMR5286, Inserm U1052, Université de Lyon, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France.
| |
Collapse
|
5
|
Tufail M, Wu C. RANK pathway in cancer: underlying resistance and therapeutic approaches. J Chemother 2023; 35:369-382. [PMID: 36200617 DOI: 10.1080/1120009x.2022.2129752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 10/10/2022]
Abstract
Cancer remains one of the deadliest diseases despite advances in treatment. Metastatic cancers are the leading cause of death for advanced cancer patients. Those with advanced cancer with osteolytic-type bone metastases have a significantly lower quality of life. A novel treatment plan is needed now more than ever for breast cancer patients with bone metastases. There are shreds of evidence that cancer cells in the bloodstream interact with the bone microenvironment and that this interaction is a contributing component to breast cancer progression. Preventing any stage of this cycle can result in anti-metastasis effects. Since RANKL interacts with its receptor RANK and plays an important role in the vicious cycle, it has proven to be a successful therapeutic target in cancer treatment. As a result, we have presented a complete overview of the RANK pathway in cancer and discussed RANK signaling and tumor microenvironment, and potential therapeutic approaches in this review.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, China
| |
Collapse
|
6
|
Gao Z, Wang T, Li R, Du Y, Lv H, Zhang L, Chen H, Shi X, Li Q, Shen J. The discovery of a novel series of potential ERRα inverse agonists based on p-nitrobenzenesulfonamide template for triple-negative breast cancer in vivo. J Enzyme Inhib Med Chem 2022; 37:125-134. [PMID: 34894977 PMCID: PMC8667933 DOI: 10.1080/14756366.2021.1995728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/24/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Oestrogen related receptor α participated in the regulation of oxidative metabolism and mitochondrial biogenesis, and was overexpressed in many cancers including triple-negative breast cancer. A set of new ERRα inverse agonists based on p-nitrobenzenesulfonamide template were discovered and compound 11 with high potent activity (IC50 = 0.80 μM) could significantly inhibit the transcription of ERRα-regulated target genes. By regulating the downstream signalling pathway, compound 11 could suppress the migration and invasion of the ER-negative MDA-MB-231 cell line. Furthermore, compound 11 demonstrated a significant growth suppression of breast cancer xenograft tumours in vivo (inhibition rate 23.58%). The docking results showed that compound 11 could form hydrogen bonds with Glu331 and Arg372 in addition to its hydrophobic interaction with ligand-binding domain. Our data implied that compound 11 represented a novel and effective ERRα inverse agonist, which had broad application prospects in the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Zhipei Gao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Rui Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Yongli Du
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Han Lv
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P. R. China
| | - Liudi Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Xiaojin Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Jingkang Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| |
Collapse
|
7
|
Gao B, Ou XL, Li MF, Wang MD, Huang F. Risk stratification system and visualized dynamic nomogram constructed for predicting diagnosis and prognosis in rare male breast cancer patients with bone metastases. Front Endocrinol (Lausanne) 2022; 13:1013338. [PMID: 36440188 PMCID: PMC9691876 DOI: 10.3389/fendo.2022.1013338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Bone metastases (BM) from malignant tumors could disrupt the balance between osteoclasts and osteoblasts and affect bone homeostasis. Malignant breast cancer (BC) is rare in male patients, and co-occurrence of BM is even rarer. Given its low incidence, there is limited research evaluating risk and prognosis. Despite the widespread application of nomograms to predict uncommon malignancies, no studies have constructed predictive models focusing on the diagnosis and prognosis of male breast cancer with bone metastases (MBCBM). Methods This study selected all male breast cancer patients (MBC) between 2010 and 2019 in the Surveillance, Epidemiology, and End Results (SEER) database. We used simple and multivariate Logistic regression analyses to identify independent risk factors for BM in MBC patients. Then simple and multivariate Cox regression analyses were employed to determine the independent prognostic factors for overall survival (OS) and cancer-specific survival (CSS) in MBCBM patients. We established and validated three new nomograms based on these independent factors. Result A total of 4187 MBC patients were included, with 191 (4.56%) having bone metastases at the time of diagnosis. The independent risk factors of BM in MBC patients included age, tumor size, marital status, T stage, and N stage. In MBCBM patients, independent prognostic factors for OS and CSS were both age, T stage, ER status, PR status, and surgery. The concordance index (C-index), the area under the curve (AUC) of the receiver operating characteristic curve (ROC), the calibration curve, and the decision curve analysis (DCA) confirmed that these three nomograms could accurately predict the diagnosis and prognosis of MBCBM patients with excellent discrimination and clinical utility superior to the TNM staging system. We then established two prognostic-based risk stratification systems and three visualized dynamic nomograms that could be applied in clinical practice. Conclusion In conclusion, this study aimed to establish and validate an accurate novel nomogram to objectively predict the diagnosis and prognosis of MBCBM patients. On this basis, prognostic-based risk stratification systems and visualized dynamic nomograms were constructed to facilitate doctors and patients to quantify individual BM risk probability and survival probability to assist in personalized risk assessment and clinical decision-making.
Collapse
Affiliation(s)
- Bing Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiao-lan Ou
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Mu-feng Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Meng-die Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fei Huang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Feng C, Xu Z, Tang X, Cao H, Zhang G, Tan J. Estrogen-Related Receptor α: A Significant Regulator and Promising Target in Bone Homeostasis and Bone Metastasis. Molecules 2022; 27:3976. [PMID: 35807221 PMCID: PMC9268386 DOI: 10.3390/molecules27133976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 01/23/2023] Open
Abstract
Bone homeostasis is maintained with the balance between bone formation and bone resorption, which is involved in the functional performance of osteoblast and osteoclast. Disruption of this equilibrium usually causes bone disorders including osteoporosis, osteoarthritis, and osteosclerosis. In addition, aberrant activity of bone also contributes to the bone metastasis that frequently occurs in the late stage of aggressive cancers. Orphan nuclear receptor estrogen-related receptor (ERRα) has been demonstrated to control the bone cell fate and the progression of tumor cells in bone through crosstalk with various molecules and signaling pathways. However, the defined function of this receptor in bone is inconsistent and controversial. Therefore, we summarized the latest research and conducted an overview to reveal the regulatory effect of ERRα on bone homeostasis and bone metastasis, this review may broaden the present understanding of the cellular and molecular model of ERRα and highlight its potential implication in clinical therapy.
Collapse
Affiliation(s)
- Chun Feng
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Zhaowei Xu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Xiaojie Tang
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| | - Haifei Cao
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Jiangwei Tan
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| |
Collapse
|
9
|
Huang W, Chen L, Sun P. ERRα expression in ovarian cancer and promotes ovarian cancer cells migration in vitro. Arch Gynecol Obstet 2022; 305:1525-1534. [PMID: 34797420 DOI: 10.1007/s00404-021-06323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Ovarian cancer is the leading cause of death from a gynaecological malignancy in the developed world, and is characterized by invasion and metastasis and thus causes a high fatality rate. Estrogen-related receptor alpha (ERRα) has been demonstrated to play a widespread and pathophysiological relevant role in tumourigenesis and development. The aim of this study was to investigate the effect of ERRα expression on the progression of ovarian cancer. METHODS The correlation between ERRα expression level and clinical pathological parameters in ovarian cancer tissues were analysed via cancer public database CPTAC. The expression level of ERRα in ovarian cancer cells were confirmed by RT-qPCR and Western blot methods. The cellular ERRα expression was up-regulated by lentivirus transfection and down-regulated by specific antagonist. The invasion and metastasis capabilities of ovarian cancer cells were characterized by wound healing assay and trans-well chamber assay. RESULTS The CPTAC database showed that the ERRα expression levels were higher in the late-stage and high-grade ovarian cancer tissues than in early-stage and low-grade tissues. Ovarian cancer cells with higher-expression ERRα exhibited stronger invasion and metastasis capabilities in vitro. After up-regulating the ERRα expression level, the invasion and metastasis capabilities of ovarian cancer cells were enhanced, while down-regulation weakened. Moreover, the wound sealing rate was positively correlated with the expression of ERRα mRNA expression level (r = 0.921, P < 0.01), and the cell invasiveness was also positively correlated with the cellular ERRα mRNA expression level (r = 0.926, P < 0.01). CONCLUSIONS Our results suggest that ERRα may promote the progression of ovarian cancer, and may serve as a promising predictive biomarker.
Collapse
Affiliation(s)
- Weiyi Huang
- Department of Gynecology and Obstetrics, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fuzhou, 350028, Fujian, People's Republic of China
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, Fujian, People's Republic of China
| | - Lili Chen
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, Fujian, People's Republic of China
- Department of Gynecology, Fujian Provincial Maternity and Children Hospital, Affiliate Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, People's Republic of China
| | - Pengming Sun
- Laboratory of Gynecologic Oncology, Fujian Provincial Maternity and Children's Health Hospital, Affiliated Hospital of Fujian Medical University, 18 Daoshan Road, Fuzhou, 350001, Fujian, People's Republic of China.
- Department of Gynecology, Fujian Provincial Maternity and Children Hospital, Affiliate Hospital of Fujian Medical University, Fuzhou, 350001, Fujian, People's Republic of China.
| |
Collapse
|
10
|
Ranhotra HS. Estrogen-related receptor alpha in select host functions and cancer: new frontiers. Mol Cell Biochem 2022; 477:1349-1359. [PMID: 35138514 DOI: 10.1007/s11010-022-04380-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 01/03/2023]
Abstract
Eukaryotic gene expression is under the tight control of transcription factors, which includes the estrogen-related receptor alpha (ERRα). The endogenous ligand(s) acting as ERRα agonist has not been identified and confirmed. ERRα is a prominent member of the nuclear receptors super-family with major roles in energy metabolism, including immunity, cell growth, proliferation and differentiation and a host of other functions in animals. The actions exerted by ERRα towards gene expression regulation are often in association with other transcriptional factors, receptors and signal mediators. Metabolic regulation by ERRα is known for some time that has tremendous impact on host biology like autophagy, angiogenesis, mitochondrial activity, including lipid metabolism. Cellular metabolism and cancer has intricate relationship. On account of the participation of ERRα in metabolism, it has been implicated in various types of cancer onset and progression. In a number of findings, ERRα has been demonstrated to influence several types of cancers, exhibiting as a negative prognostic marker for many. Such diverse role associated with ERRα is due to its interaction with numerous transcriptional factors and other signalling pathways that culminate in providing optimal gene regulation. These observations points to the crucial regulatory roles of ERRα in health and disease. In this article, some of the new findings on the influence of ERRα in host metabolism and biology including cancer, shall be reviewed that will provide a concise understanding of this receptor.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|
11
|
Danza K, Porcelli L, De Summa S, Di Fonte R, Pilato B, Lacalamita R, Serratì S, Azzariti A, Tommasi S. The ERRα-VDR axis promotes calcitriol degradation and estrogen signaling in breast cancer cells, while VDR-CYP24A1-ERRα overexpression correlates with poor prognosis in patients with basal-like breast cancer. Mol Oncol 2022; 16:904-920. [PMID: 34003583 PMCID: PMC8847991 DOI: 10.1002/1878-0261.13013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/14/2021] [Accepted: 05/14/2021] [Indexed: 11/12/2022] Open
Abstract
Vitamin D is used to reduce cancer risk and improve the outcome of cancer patients, but the vitamin D receptor (VDR; also known as the calcitriol receptor) pathway needs to be functionally intact to ensure the biological effects of circulating calcitriol, the active form of vitamin D. Besides estrogen receptor alpha (ERα), estrogen-related receptor alpha (ERRα) has also been shown to interfere with the VDR pathway, but its role in the antitumor and transactivation activity of calcitriol is completely unknown in breast cancer (BC). We observed that ERRα functionally supported the proliferation of BC cell lines and acted as a calcitriol-induced regulator of VDR. As such, ERRα deregulated the calcitriol-VDR transcription by enhancing the expression of CYP24A1 as well as of both ERα and aromatase (CYP19A1) in calcitriol-treated cells. ERRα knockdown limited the effect of calcitriol by reducing calcitriol-induced G0/G1 phase cell cycle arrest and by affecting the expression of cyclin D1 and p21/Waf. The interactome analysis suggested that Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-α (PGC-1α) and Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) are key players in the genomic actions of the calcitriol-VDR-ERRα axis. Evaluation of patient outcomes in The Cancer Genome Atlas (TCGA) dataset showed the translational significance of the biological effects of the VDR-ERRα axis, highlighting that VDR, CYP24A1, and ERRα overexpression correlates with poor prognosis in basal-like BC.
Collapse
Affiliation(s)
- Katia Danza
- Molecular Diagnostics and Pharmacogenetics UnitIRCCS Istituto Tumori Giovanni Paolo IIBariItaly
| | - Letizia Porcelli
- Laboratory of Experimental PharmacologyIRCCS Istituto Tumori Giovanni Paolo IIBariItaly
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics UnitIRCCS Istituto Tumori Giovanni Paolo IIBariItaly
| | - Roberta Di Fonte
- Laboratory of Experimental PharmacologyIRCCS Istituto Tumori Giovanni Paolo IIBariItaly
| | - Brunella Pilato
- Molecular Diagnostics and Pharmacogenetics UnitIRCCS Istituto Tumori Giovanni Paolo IIBariItaly
| | - Rosanna Lacalamita
- Molecular Diagnostics and Pharmacogenetics UnitIRCCS Istituto Tumori Giovanni Paolo IIBariItaly
| | - Simona Serratì
- Laboratory of NanotechnologyIRCCS Istituto Tumori Giovanni Paolo IIBariItaly
| | - Amalia Azzariti
- Laboratory of Experimental PharmacologyIRCCS Istituto Tumori Giovanni Paolo IIBariItaly
| | - Stefania Tommasi
- Molecular Diagnostics and Pharmacogenetics UnitIRCCS Istituto Tumori Giovanni Paolo IIBariItaly
| |
Collapse
|
12
|
Yu P, Zhu L, Cui K, Du Y, Zhang C, Ma W, Guo J. B4GALNT2 Gene Promotes Proliferation, and Invasiveness and Migration Abilities of Model Triple Negative Breast Cancer (TNBC) Cells by Interacting With HLA-B Protein. Front Oncol 2021; 11:722828. [PMID: 34589428 PMCID: PMC8473878 DOI: 10.3389/fonc.2021.722828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 12/26/2022] Open
Abstract
B4GALNT2 gene encodes the enzyme β1,4-N-acetylgalactosaminyltransferase 2 that biosynthesizes the histo-blood group antigen Sda, which is expressed on the surface of erythrocytes and in body secretions. Analysis of The Cancer Genome Atlas (TCGA) database revealed that this gene was highly expressed in breast cancer tissues in comparison with adjacent healthy ones. In-vitro lentivirus-assisted B4GALNT2 gene knockdown experiments in model triple negative breast cancer (TNBC) cell lines (HCC1937 and MDA-MB-231) showed inhibition in cell proliferation, decrease in cell viability, promotion of cell apoptosis and inhibitions in cell migration and invasiveness abilities in comparison with empty lentivirus transfectant controls. Also, in cell cycle tests, the number of cells in the G1 phase increased, in the S phase decreased and did not change in the G2/M phase (indicative of the presence of a block in the G1 phase). In-vivo tumor formation experiments in mice revealed that knockdown of the B4GALNT2 gene in MDA-MB-231 cells inhibited their proliferation. Using co-immunoprecipitation (Co-IP) mass spectroscopy-assisted analysis, it was found that HLA-B protein [a product of the human leukocyte antigen (HLA) class I gene] interacts with B4GALNT2 protein. In-vitro overexpression of HLA-B in B4GALNT2-knocked down MDA-MB-231 cell lines significantly recovered the cell proliferation, viability and migration ability of B4GALNT2 gene. These indicate that HLA-B is one of the interaction proteins in the downstream pathway of the B4GALNT2 gene.
Collapse
Affiliation(s)
- Pu Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Zhu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chaojie Zhang
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Guo
- Nephrology Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Yang Z, Gimple RC, Zhou N, Zhao L, Gustafsson JÅ, Zhou S. Targeting Nuclear Receptors for Cancer Therapy: Premises, Promises, and Challenges. Trends Cancer 2021; 7:541-556. [PMID: 33341430 DOI: 10.1016/j.trecan.2020.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Nuclear receptors are a family of transcription factors localized in cell nuclei, sensing specific ligands and fine-tuning a variety of cell physiological events. They have been intensively investigated in cancer biology. With their excellent properties of druggability and actionability, nuclear receptors have demonstrated much promise as novel therapeutic targets for different cancer types. Accumulating evidence has highlighted the essential roles of certain nuclear receptors in tumor immunology, suggesting the possibility for them to serve as cancer immunotherapeutic targets. Here, we summarize the roles of nuclear receptors in cancer biology and tumor immunology, and underscore the current advances of clinical trials for nuclear receptor-based cancer therapeutics.
Collapse
Affiliation(s)
- Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Nianxin Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Linjie Zhao
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA, USA.
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Center for Medical Innovation, Department of Biosciences and Nutrition at Novum, Karolinska Institute, Stockholm, Sweden.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| |
Collapse
|
14
|
Ke G, Chen X, Liao R, Xu L, Zhang L, Zhang H, Kuang S, Du Y, Hu J, Lian Z, Dou C, Zhang Q, Zhao X, Zhang F, Zhu S, Ma J, Li Z, Li S, He C, Chen X, Wen Y, Feng Z, Zheng M, Lin T, Li R, Li B, Dong W, Chen Y, Wang W, Ye Z, Deng C, Xiao H, Xiao J, Liang X, Shi W, Liu S. Receptor activator of NF-κB mediates podocyte injury in diabetic nephropathy. Kidney Int 2021; 100:377-390. [PMID: 34051263 DOI: 10.1016/j.kint.2021.04.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/10/2021] [Accepted: 04/22/2021] [Indexed: 01/19/2023]
Abstract
Receptor activator of NF-κB (RANK) expression is increased in podocytes of patients with diabetic nephropathy. However, the relevance of RANK to diabetic nephropathy pathobiology remains unclear. Here, to evaluate the role of podocyte RANK in the development of diabetic nephropathy, we generated a mouse model of podocyte-specific RANK depletion (RANK-/-Cre T), and a model of podocyte-specific RANK overexpression (RANK TG), and induced diabetes in these mice with streptozotocin. We found that podocyte RANK depletion alleviated albuminuria, mesangial matrix expansion, and basement membrane thickening, while RANK overexpression aggravated these indices in streptozotocin-treated mice. Moreover, streptozotocin-triggered oxidative stress was increased in RANK overexpression but decreased in the RANK depleted mice. Particularly, the expression of NADPH oxidase 4, and its obligate partner, P22phox, were enhanced in RANK overexpression, but reduced in RANK depleted mice. In parallel, the transcription factor p65 was increased in the podocyte nuclei of RANK overexpressing mice but decreased in the RANK depleted mice. The relevant findings were largely replicated with high glucose-treated podocytes in vitro. Mechanistically, p65 could bind to the promoter regions of NADPH oxidase 4 and P22phox, and increased their respective gene promoter activity in podocytes, dependent on the levels of RANK. Taken together, these findings suggested that high glucose induced RANK in podocytes and caused the increase of NADPH oxidase 4 and P22phox via p65, possibly together with the cytokines TNF- α, MAC-2 and IL-1 β, resulting in podocyte injury. Thus, we found that podocyte RANK was induced in the diabetic milieu and RANK mediated the development of diabetic nephropathy, likely by promoting glomerular oxidative stress and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Guibao Ke
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xueqin Chen
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ruyi Liao
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lixia Xu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Hong Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Sujuan Kuang
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yue Du
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Juan Hu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhiwen Lian
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Caoshuai Dou
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Qianmei Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xingchen Zhao
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Fengxia Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Shuangshuang Zhu
- Department of Renal Pathology, King Medical Diagnostics Center, Guangzhou, Guangdong, China
| | - Jianchao Ma
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhuo Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Sijia Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Chaosheng He
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xia Chen
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingzhen Wen
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhonglin Feng
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Minghao Zheng
- School of Surgery (Orthopaedics), University of Western Australia, Crawley, Perth, Western Australia, Australia
| | - Ting Lin
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Bohou Li
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Wei Dong
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Wenjian Wang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Chunyu Deng
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Houqin Xiao
- Department of Nephrology, Binhaiwan Central Hospital, Dongguan, Guangdong, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinling Liang
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Wei Shi
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Ramamoorthi G, Kodumudi K, Gallen C, Zachariah NN, Basu A, Albert G, Beyer A, Snyder C, Wiener D, Costa RLB, Czerniecki BJ. Disseminated cancer cells in breast cancer: Mechanism of dissemination and dormancy and emerging insights on therapeutic opportunities. Semin Cancer Biol 2021; 78:78-89. [PMID: 33626407 DOI: 10.1016/j.semcancer.2021.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/22/2020] [Accepted: 02/07/2021] [Indexed: 02/07/2023]
Abstract
Metastatic spread in breast cancer patients is the major driver of cancer-related deaths. A unique subset of cells disseminated from pre-invasive or primary tumor lesions are recognized as the main seeds for metastatic outgrowth. Disseminated cancer cells (DCCs) can migrate to distant organs and settle in a dormant state for a prolonged period until they emerge to overt metastases. Understanding the biology of breast cancer cells dissemination, dormancy and reactivation to form overt metastases has become an important focus. In this review, we discuss the recent advancements of molecular pathways involving breast cancer cell dissemination, role of chemokine-chemokine receptor networks in DCCs migration, DCCs phenotypic heterogeneity and unique genes signatures in tumor dormancy, microenvironmental regulation and specific niches that favors DCCs homing and dormancy. In addition, we also discuss recent findings relating to the role of immune response on DCC dissemination and dormancy. With recent advances in the field of immunotherapy/targeted therapy and its beneficial effects in cancer treatment, this review will focus on their impact on DCCs, reversal of stemness, tumor dormancy and metastatic relapse.
Collapse
Affiliation(s)
- Ganesan Ramamoorthi
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Krithika Kodumudi
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Corey Gallen
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Nadia Nocera Zachariah
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Amrita Basu
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Gabriella Albert
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Amber Beyer
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Colin Snyder
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Doris Wiener
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Ricardo L B Costa
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Brian J Czerniecki
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, United States; Department of Breast Oncology H. Lee Moffitt Cancer Center, Tampa, FL, United States.
| |
Collapse
|
16
|
Gentile M, Centonza A, Lovero D, Palmirotta R, Porta C, Silvestris F, D'Oronzo S. Application of "omics" sciences to the prediction of bone metastases from breast cancer: State of the art. J Bone Oncol 2021; 26:100337. [PMID: 33240786 PMCID: PMC7672315 DOI: 10.1016/j.jbo.2020.100337] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy and the first cause of cancer-related death in women. The majority of patients with advanced BC develop skeletal metastases which may ultimately lead to serious complications, termed skeletal-related events, that often dramatically impact on quality of life and survival. Therefore, the identification of biomarkers able to stratify BC patient risk to develop bone metastases (BM) is fundamental to define personalized diagnostic and therapeutic strategies, possibly at the earliest stages of the disease. In this regard, the advent of "omics" sciences boosted the investigation of several putative biomarkers of BC osteotropism, including deregulated genes, proteins and microRNAs. The present review revisits the current knowledge on BM development in BC and the most recent studies exploring potential BM-predicting biomarkers, based on the application of omics sciences to the study of primary breast malignancies.
Collapse
Key Words
- ADAMTS1, a disintegrin-like and metalloproteinase with thrombospondin type 1
- ALP, alkaline phosphatase
- BALP (BSAP), bone-specific alkaline phosphatase
- BC, breast cancer
- BM, bone metastases
- BOLCs, breast osteoblast-like cells
- BTM, bone turnover markers
- Biomarkers
- Bone metastases
- Breast cancer
- CAPG, capping-protein
- CCN3, cellular communication network factor 3
- CDH11, cadherin-11
- CNV, copy number variation
- CTGF, connective tissue-derived growth factor
- CTSK, cathepsin K
- CTX, C-telopeptide
- CXCL, C-X-C-ligand
- CXCR, C–X–C motif chemokine receptor
- DEGs, differentially expressed genes
- DOCK4, dedicator of cytokinesis protein 4
- DPD, deoxypyridoline
- DTC, disseminated tumour cells
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- ERRα, estrogen-related receptor alpha
- FAK, focal adhesion kinase
- FGF, fibroblast growth factor
- FST, follistatin
- GIPC1, PDZ domain-containing protein member 1
- HR, hazard ratio
- Her, human epidermal growth factor
- ICAM-1, intercellular adhesion molecule 1
- IGF, insulin-like growth factor
- IHC, immunohistochemistry
- IL, interleukin
- LC/MS/MS, liquid chromatography/mass spectrometry/mass spectrometry
- MAF, v-maf avian muscolo aponeurotic fibro-sarcoma oncogene homolog
- MDA-MB, MD Anderson metastatic BC
- MMP1, matrix metalloproteinase-1
- NTX, N-telopeptide
- OPG, osteoprotegerin
- Omics sciences
- Osteotropism
- P1CP, pro-collagen type I C-terminal
- P1NP, pro-collagen type I N-terminal
- PDGF, platelet-derived growth factor
- PRG1, proteoglycan-1
- PTH-rP, parathyroid hormone-related protein
- PYD, pyridoline
- PgR, progesterone receptor
- PlGF, placental growth factor
- RANK, receptor activator of nuclear factor к-B
- RT-PCR, real time-PCR
- SILAC-MS, stable isotope labelling by amino acids in cell culture-mass spectrometry
- SNPs, single nucleotide polymorphisms
- SPP1, osteopontin
- SREs, skeletal-related events
- TCGA, the cancer genome atlas
- TGF-β, transforming growth factor beta
- TNF-α, tumor necrosis factor-α
- TRACP-5b, tartrate resistant acid phosphatase-5b
- VEGF, vascular endothelial growth factor
- ZNF217, zinc-finger protein 217
- miRNAs, microRNAs
- ncRNAs, noncoding RNA
Collapse
Affiliation(s)
- Marica Gentile
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonella Centonza
- “Casa Sollievo della Sofferenza” Onco-hematologic Department, Medical Oncology Unit, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Camillo Porta
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
17
|
Clézardin P, Coleman R, Puppo M, Ottewell P, Bonnelye E, Paycha F, Confavreux CB, Holen I. Bone metastasis: mechanisms, therapies, and biomarkers. Physiol Rev 2020; 101:797-855. [PMID: 33356915 DOI: 10.1152/physrev.00012.2019] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Skeletal metastases are frequent complications of many cancers, causing bone complications (fractures, bone pain, disability) that negatively affect the patient's quality of life. Here, we first discuss the burden of skeletal complications in cancer bone metastasis. We then describe the pathophysiology of bone metastasis. Bone metastasis is a multistage process: long before the development of clinically detectable metastases, circulating tumor cells settle and enter a dormant state in normal vascular and endosteal niches present in the bone marrow, which provide immediate attachment and shelter, and only become active years later as they proliferate and alter the functions of bone-resorbing (osteoclasts) and bone-forming (osteoblasts) cells, promoting skeletal destruction. The molecular mechanisms involved in mediating each of these steps are described, and we also explain how tumor cells interact with a myriad of interconnected cell populations in the bone marrow, including a rich vascular network, immune cells, adipocytes, and nerves. We discuss metabolic programs that tumor cells could engage with to specifically grow in bone. We also describe the progress and future directions of existing bone-targeted agents and report emerging therapies that have arisen from recent advances in our understanding of the pathophysiology of bone metastases. Finally, we discuss the value of bone turnover biomarkers in detection and monitoring of progression and therapeutic effects in patients with bone metastasis.
Collapse
Affiliation(s)
- Philippe Clézardin
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Rob Coleman
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Margherita Puppo
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Penelope Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Edith Bonnelye
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France
| | - Frédéric Paycha
- Service de Médecine Nucléaire, Hôpital Lariboisière, Paris, France
| | - Cyrille B Confavreux
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, University of Lyon 1, Lyon, France.,Service de Rhumatologie Sud, CEMOS-Centre Expert des Métastases Osseuses, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Ingunn Holen
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
18
|
Crevet L, Vanacker JM. Regulation of the expression of the estrogen related receptors (ERRs). Cell Mol Life Sci 2020; 77:4573-4579. [PMID: 32448995 PMCID: PMC11104921 DOI: 10.1007/s00018-020-03549-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 10/23/2019] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
Estrogen related receptors (ERRα, β and γ in mammals) are orphan members of the nuclear receptor superfamily acting as transcription factors. ERRs are expressed in several tissues and cells and they display various physiological and pathological functions, controlling, amongst others and depending on the receptor, bone homeostasis, energy metabolism, embryonic stem cell pluripotency, and cancer progression. In contrast to classical nuclear receptors, the activities of the ERRs are not controlled by a natural ligand. Regulation of their activities thus rely on other means such as post-translational modification or availability of transcriptional co-regulators. In addition, regulation of their mere expression under given physiological or pathological conditions is a particularly important level of control. Here we discuss the mechanisms involved in the regulation of ERRs expression and the reported means to impact on it using pharmacological approaches.
Collapse
Affiliation(s)
- Lucile Crevet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
19
|
Ming J, Cronin SJF, Penninger JM. Targeting the RANKL/RANK/OPG Axis for Cancer Therapy. Front Oncol 2020; 10:1283. [PMID: 32850393 PMCID: PMC7426519 DOI: 10.3389/fonc.2020.01283] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
RANKL and RANK are expressed in different cell types and tissues throughout the body. They were originally described for their essential roles in bone remodeling and the immune system but have subsequently been shown to provide essential signals from regulating mammary gland homeostasis during pregnancy to modulating tumorigenesis. The success of RANKL/RANK research serves as a paragon for translational research from the laboratory to the bedside. The case in point has been the development of Denosumab, a RANKL-blocking monoclonal antibody which has already helped millions of patients suffering from post-menopausal osteoporosis and skeletal related events in cancer. Here we will provide an overview of the pathway from its origins to its clinical relevance in disease, with a special focus on emerging evidence demonstrating the therapeutic value of targeting the RANKL/RANK/OPG axis not only in breast cancer but also as an addition to the cancer immunotherapy arsenal.
Collapse
Affiliation(s)
- Jie Ming
- Department of Breast and Thyroid Surgery, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Li D, Cai Y, Teng D, Wu Z, Li W, Tang Y, Liu G. Insights into the interaction mechanisms of estrogen-related receptor alpha (ERRα) with ligands via molecular dynamics simulations. J Biomol Struct Dyn 2020; 38:3867-3878. [PMID: 31498028 DOI: 10.1080/07391102.2019.1666034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
Estrogen-related receptor alpha (ERRα), a member of nuclear receptors (NRs), participates in energy metabolism. Recent experiments identified that several agonists to increase the activity of ERRα, which have a therapeutic effect in improving insulin sensitivity and lowering blood glucose levels. However, the detailed molecular mechanism about how the ligands affect the structure of ERRα remains elusive. To better understand the conformational change of ERRα complexed with agonists and inverse agonists, unbiased molecular dynamics (MD) simulations were performed on the ligand binding domain of ERRα (ERRα-LBD) bound with different ligands. According to the results, the ERRα-agonist interactions were more stable in the presence of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α). More importantly, we observed that the binding of inverse agonists would decrease the stability of helix 12 (H12) of ERRα. Moreover, we suggested that Phe232 and Phe414 should be key residues in the interaction pathway from ligands to H12, which provided a possible explanation about how ligands impact the structure of ERRα. These results would provide insights into the design of novel and efficient agonists of ERRα to treat metabolic diabetes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dongping Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yingchun Cai
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dan Teng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
21
|
Bouchet M, Lainé A, Boyault C, Proponnet-Guerault M, Meugnier E, Bouazza L, Kan CWS, Geraci S, El-Moghrabi S, Hernandez-Vargas H, Benetollo C, Yoshiko Y, Duterque-Coquillaud M, Clézardin P, Marie JC, Bonnelye E. ERRα Expression in Bone Metastases Leads to an Exacerbated Antitumor Immune Response. Cancer Res 2020; 80:2914-2926. [PMID: 32366476 DOI: 10.1158/0008-5472.can-19-3584] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/20/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022]
Abstract
Bone is the most common metastatic site for breast cancer. Although the estrogen-related receptor alpha (ERRα) has been implicated in breast cancer cell dissemination to the bone from the primary tumor, its role after tumor cell anchorage in the bone microenvironment remains elusive. Here, we reveal that ERRα inhibits the progression of bone metastases of breast cancer cells by increasing the immune activity of the bone microenvironment. Overexpression of ERRα in breast cancer bone metastases induced expression of chemokines CCL17 and CCL20 and repressed production of TGFβ3. Subsequently, CD8+ T lymphocytes recruited to bone metastases escaped TGFβ signaling control and were endowed with exacerbated cytotoxic features, resulting in significant reduction in metastases. The clinical relevance of our findings in mice was confirmed in over 240 patients with breast cancer. Thus, this study reveals that ERRα regulates immune properties in the bone microenvironment that contributes to decreasing metastatic growth. SIGNIFICANCE: This study places ERRα at the interplay between the immune response and bone metastases of breast cancer, highlighting a potential target for intervention in advanced disease.
Collapse
Affiliation(s)
- Mathilde Bouchet
- INSERM-UMR1033, Labex DEVweCAN, Lyon, France
- University of Lyon-France
| | - Alexandra Lainé
- University of Lyon-France
- Tumor Escape Resistance and Immunity Department, CRCL, INSERM 1052 CNRS 5286, Centre Léon Bérard, Labex DEVweCAN, Lyon, France
| | - Cyril Boyault
- Institute for Advanced Biosciences, UMR5209-INSERM1302, La Tronche, France
| | | | | | - Lamia Bouazza
- INSERM-UMR1033, Labex DEVweCAN, Lyon, France
- University of Lyon-France
| | - Casina W S Kan
- INSERM-UMR1033, Labex DEVweCAN, Lyon, France
- University of Lyon-France
| | - Sandra Geraci
- INSERM-UMR1033, Labex DEVweCAN, Lyon, France
- University of Lyon-France
| | | | - Hector Hernandez-Vargas
- Tumor Escape Resistance and Immunity Department, CRCL, INSERM 1052 CNRS 5286, Centre Léon Bérard, Labex DEVweCAN, Lyon, France
| | - Claire Benetollo
- University of Lyon-France
- INSERM-UMR5292 INSERM U1028, Lyon, France
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Japan
| | | | | | - Julien C Marie
- University of Lyon-France.
- Tumor Escape Resistance and Immunity Department, CRCL, INSERM 1052 CNRS 5286, Centre Léon Bérard, Labex DEVweCAN, Lyon, France
| | - Edith Bonnelye
- INSERM-UMR1033, Labex DEVweCAN, Lyon, France.
- University of Lyon-France
| |
Collapse
|
22
|
Zheng ZG, Cheng HM, Zhou YP, Zhu ST, Thu PM, Li HJ, Li P, Xu X. Dual targeting of SREBP2 and ERRα by carnosic acid suppresses RANKL-mediated osteoclastogenesis and prevents ovariectomy-induced bone loss. Cell Death Differ 2020; 27:2048-2065. [PMID: 31907393 PMCID: PMC7308277 DOI: 10.1038/s41418-019-0484-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Osteoporosis develops because of impaired bone formation and/or excessive bone resorption. Several pharmacological treatment of osteoporosis has been developed; however, new treatments are still necessary. Cholesterol and estrogen receptor-related receptor alpha (ERRα) promote osteoclasts formation, survival, and cellular fusion and thus become high risk factors of osteoporosis. In this study, we identified that carnosic acid (CA) suppressed bone loss by dual-targeting of sterol regulatory element-binding protein 2 (SREBP2, a major regulator that regulates cholesterol synthesis) and ERRα. Mechanistically, CA reduced nuclear localization of mature SREBP2 and suppressed de novo biogenesis of cholesterol. CA subsequently decreased the interaction between ERRα and peroxisome proliferator-activated receptor gamma coactivator 1-beta (PGC1β), resulting in decreased the transcription activity of ERRα and its target genes expression. Meanwhile, CA directly bound to the ligand-binding domain of ERRα and significantly promoted its ubiquitination and proteasomal degradation. Subsequently, STUB1 was identified as the E3 ligase of ERRα. The lysine residues (K51 and K68) are essential for ubiquitination and proteasomal degradation of ERRα by CA. In conclusion, CA dually targets SREBP2 and ERRα, thus inhibits the RANKL-induced osteoclast formation and improves OVX-induced bone loss. CA may serve as a lead compound for pharmacological control of osteoporosis.
Collapse
Affiliation(s)
- Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hui-Min Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ya-Ping Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Si-Tong Zhu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Pyone Myat Thu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| | - Xiaojun Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China.
| |
Collapse
|
23
|
Xu Z, Ma T, Zhou J, Gao W, Li Y, Yu S, Wang Y, Chan FL. Nuclear receptor ERRα contributes to castration-resistant growth of prostate cancer via its regulation of intratumoral androgen biosynthesis. Theranostics 2020; 10:4201-4216. [PMID: 32226548 PMCID: PMC7086365 DOI: 10.7150/thno.35589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 02/17/2020] [Indexed: 12/29/2022] Open
Abstract
Enhanced intratumoral androgen biosynthesis and persistent androgen receptor (AR) signaling are key factors responsible for the relapse growth of castration-resistant prostate cancer (CRPC). Residual intraprostatic androgens can be produced by de novo synthesis of androgens from cholesterol or conversion from adrenal androgens by steroidogenic enzymes expressed in prostate cancer cells via different steroidogenic pathways. However, the dysregulation of androgen biosynthetic enzymes in CRPC still remains poorly understood. This study aims to elucidate the role of the nuclear receptor, estrogen-related receptor alpha (ERRα, ESRRA), in the promotion of androgen biosynthesis in CRPC growth. Methods: ERRα expression in CRPC patients was analyzed using Gene Expression Omnibus (GEO) datasets and validated in established CRPC xenograft model. The roles of ERRα in the promotion of castration-resistant growth were elucidated by overexpression and knockdown studies and the intratumoral androgen levels were measured by UPLC-MS/MS. The effect of suppression of ERRα activity in the potentiation of sensitivity to androgen-deprivation was determined using an ERRα inverse agonist. Results: ERRα exhibited an increased expression in metastatic CRPC and CRPC xenograft model, could act to promote castration-resistant growth via direct transactivation of two key androgen synthesis enzymes CYP11A1 and AKR1C3, and hence enhance intraprostatic production of dihydrotestosterone (DHT) and activation of AR signaling in prostate cancer cells. Notably, inhibition of ERRα activity by an inverse agonist XCT790 could reduce the DHT production and suppress AR signaling in prostate cancer cells. Conclusion: Our study reveals a new role of ERRα in the intratumoral androgen biosynthesis in CRPC via its transcriptional control of steroidogenic enzymes, and also provides a novel insight that targeting ERRα could be a potential androgen-deprivation strategy for the management of CRPC.
Collapse
Affiliation(s)
- Zhenyu Xu
- Precision Medicine Centre, Yijishan Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, PR China
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Taiyang Ma
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Jianfu Zhou
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weijie Gao
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Youjia Li
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Shan Yu
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Yuliang Wang
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | - Franky Leung Chan
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Chen Z, Wu L, Zhou J, Lin X, Peng Y, Ge L, Chiang CM, Huang H, Wang H, He W. N6-methyladenosine-induced ERRγ triggers chemoresistance of cancer cells through upregulation of ABCB1 and metabolic reprogramming. Theranostics 2020; 10:3382-3396. [PMID: 32206097 PMCID: PMC7069076 DOI: 10.7150/thno.40144] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/25/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Drug resistance severely reduces treatment efficiency of chemotherapy and leads to poor prognosis. However, regulatory factors of chemoresistant cancer cells are largely unknown. Methods: The expression of estrogen receptor related receptors (ERRs) in chemoresistant cancer cells are checked. The roles of ERRγ in chemoresistance are confirmed by in vitro and in vivo studies. The mechanisms responsible for ERRγ-regulated expression of ABCB1 and CPT1B are investigated. Results: The expression of ERRγ is upregulated in chemoresistant cancer cells. Targeted inhibition of ERRγ restores the chemosensitivity. ERRγ can directly bind to the promoter of ABCB1 to increase its transcription. An elevated interaction between ERRγ and p65 in chemoresistant cells further strengthens transcription of ABCB1. Further, ERRγ can increase the fatty acid oxidation (FAO) in chemoresistant cells via regulation of CPT1B, the rate-limiting enzyme of FAO. The upregulated ERRγ in chemoresistant cancer cells might be due to increased levels of N6-methyladenosine (m6A) can trigger the splicing of precursor ESRRG mRNA. Conclusions: m6A induced ERRγ confers chemoresistance of cancer cells through upregulation of ABCB1 and CPT1B.
Collapse
Affiliation(s)
- Zhuojia Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Long Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jiawang Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Xinyao Lin
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yanxi Peng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Lichen Ge
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, Nanjing 210002, China
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Pharmacology, and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Hui Huang
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shennan Middle Road 3025#, Shenzhen, 518033, China
| | - Hongsheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|