1
|
Françon A, Behar-Cohen F, Torriglia A. Wavelength-dependency of the impact of light on proliferation and DNA damage of corneal cells in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2025; 264:113118. [PMID: 39922040 DOI: 10.1016/j.jphotobiol.2025.113118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
The wavelength-dependent impact of light has been mainly studied focusing on retina. In particular, an opposite effect of the two ends of the visible spectrum was observed, with blue wavelengths being harmful and red wavelengths being protective. However, few studies on the cornea indicate that the increasing exposition to artificial light due to digital devices is linked to an increase in computer vision syndrome affecting the cornea. In this study, we aim at deciphering the impact of blue and red LED light on a primary culture of corneal endothelial cells, by looking at cell death and proliferation, and at DNA replication and DNA breaks. Our results show that exposure to blue light at 5.35 J/cm2 (455 nm) induces the inhibition of DNA replication and cell proliferation, and the formation of DNA breaks, highlighted by the formation of γH2AX foci and DNA fragmentation. Addition of red light at 0.3 J/cm2 (630 nm) to blue light mitigates the formation of DNA damage and delays the kinetics of formation and repair of the damage. Interestingly, exposure of the corneal cells to red light alone induces the formation of γH2AX foci that do not correspond to DNA breaks, but to DNA replication forks in proliferative cells. Our results highlight the wavelength-dependent effect of light on the cornea, and point out that the formation of γH2AX foci is not always representative of DNA breaks. This emphasizes the importance of light spectrum in eye health, an important issue in today's changing light environment.
Collapse
Affiliation(s)
- Anaïs Françon
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Team: Physiopathology of Ocular Diseases: Therapeutic Innovations, 15, rue de l'école de Médecine, 75006 Paris, France
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Team: Physiopathology of Ocular Diseases: Therapeutic Innovations, 15, rue de l'école de Médecine, 75006 Paris, France; Assistance Publique, Hôpitaux de Paris, Hôpital Cochin, Ophtalmopole, 27, rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Alicia Torriglia
- Centre de Recherche des Cordeliers, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Team: Physiopathology of Ocular Diseases: Therapeutic Innovations, 15, rue de l'école de Médecine, 75006 Paris, France.
| |
Collapse
|
2
|
Berry MA, Bland AR, Major GS, Ashton JC. Development of an ALK-positive Non-Small-Cell Lung Cancer in Vitro Tumor 3D Culture Model for Therapeutic Screening. J Histochem Cytochem 2025; 73:63-79. [PMID: 39991927 PMCID: PMC11851580 DOI: 10.1369/00221554251318435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Cancer cell monolayers are commonly used for preclinical drug screening. However, monolayers do not begin to mimic the complexity of the tumor microenvironment, including hypoxia and nutrient gradients within the tumor. To more accurately mimic solid tumors, we developed and drug-tested an anaplastic lymphoma kinase (ALK)-positive (H3122) non-small-cell lung cancer 3D (three-dimensional) culture model using light-activated gelatin methacryloyl hydrogels. We previously demonstrated that the combination of alectinib, an ALK inhibitor, and SHP099, an SHP2 inhibitor, had synergistic efficacy in ALK-positive cell monolayers. We aimed to test this drug combination in our novel ALK-positive 3D cancer model. We first validated the 3D cultures by comparing the distribution of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in the 3D cultures with sections from time-matched mouse xenografts, finding a comparable percentage of TUNEL-positive cells in the 3D culture and xenograft inner cores at each time point. When we investigated the effect of the combination of alectinib and SHP099 in these novel 3D cultures, we found a comparable cellular response compared with our two-dimensional experiments especially with the drugs in combination. We suggest that 3D cultures be used as preclinical screening platforms to ensure that only the most efficacious drug candidates move on to in vivo testing.
Collapse
Affiliation(s)
- Madeleine A. Berry
- Department of Pharmacology and Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Abigail R. Bland
- Department of Pharmacology and Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gretel S. Major
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, Centre for Bioengineering and Nanomedicine, University of Otago, Christchurch, New Zealand
| | - John C. Ashton
- Department of Pharmacology and Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
3
|
Shen LP, Zhang WC, Deng JR, Qi ZH, Lin ZW, Wang ZD. Advances in the mechanism of small nucleolar RNA and its role in DNA damage response. Mil Med Res 2024; 11:53. [PMID: 39118131 PMCID: PMC11308251 DOI: 10.1186/s40779-024-00553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) were previously regarded as a class of functionally conserved housekeeping genes, primarily involved in the regulation of ribosome biogenesis by ribosomal RNA (rRNA) modification. However, some of them are involved in several biological processes via complex molecular mechanisms. DNA damage response (DDR) is a conserved mechanism for maintaining genomic stability to prevent the occurrence of various human diseases. It has recently been revealed that snoRNAs are involved in DDR at multiple levels, indicating their relevant theoretical and clinical significance in this field. The present review systematically addresses four main points, including the biosynthesis and classification of snoRNAs, the mechanisms through which snoRNAs regulate target molecules, snoRNAs in the process of DDR, and the significance of snoRNA in disease diagnosis and treatment. It focuses on the potential functions of snoRNAs in DDR to help in the discovery of the roles of snoRNAs in maintaining genome stability and pathological processes.
Collapse
Affiliation(s)
- Li-Ping Shen
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wen-Cheng Zhang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jia-Rong Deng
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhen-Hua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhong-Wu Lin
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Zhi-Dong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
- Graduate Collaborative Training Base of Academy of Military Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Zhan Y, Zhang Z, Yin A, Su X, Tang N, Chen Y, Zhang Z, Chen W, Wang J, Wang W. RBBP4: A novel diagnostic and prognostic biomarker for non-small-cell lung cancer correlated with autophagic cell death. Cancer Med 2024; 13:e70090. [PMID: 39109577 PMCID: PMC11304277 DOI: 10.1002/cam4.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/07/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) often presents at later stages, typically associated with poor prognosis. Autophagy genes play a role in the progression of tumors. This study investigated the clinical relevance, prognostic value, and biological significance of RBBP4 in NSCLC. METHODS We assessed RBBP4 expression using the GSE30219 and TCGA NSCLC datasets and NSCLC cells, exploring its links with clinical outcomes, tumor immunity, and autophagy genes through bioinformatics analysis after transcriptome sequencing of RBBP4-knockdown and control PC9 cells. We identified differentially expressed genes (DEGs) and conducted Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, and protein-protein interaction network analyses. The significance of autophagy-related DEGs was evaluated for diagnosis and prognosis using the GSE30219 dataset. Experiments both in vivo and in vitro explored the biological mechanisms behind RBBP4-mediated autophagic cell death in NSCLC. RESULTS RBBP4 overexpression in NSCLC correlates with a poorer prognosis. Eighteen types of immune cell were significantly enriched in cultures that had low RBBP4 expression compared high expression. DEGs associated with RBBP4 are enriched in autophagy pathways. Transcriptomic profiling of the PC9 cell line identified autophagy-related DEGs associated with RBBP4 that exhibited differential expression in NSCLC, suggesting prognostic applications. In vitro experiments demonstrated that RBBP4 knockdown induced autophagy and apoptosis in PC9 cells, promoting cell death, which was inhibited by 3-MA. In vivo, targeted siRNA against RBBP4 significantly reduced tumor development in PC9 cell-injected nude mice, elevating autophagy-related protein levels and inducing apoptosis and necrosis in tumor tissues. CONCLUSION In NSCLC, RBBP4 upregulation correlates with poor prognosis and altered immunity. Its knockdown induces autophagic cell death in NSCLC cells. These results indicate RBBP4 as a potential NSCLC diagnostic marker and its autophagy modulation as a prospective therapeutic target.
Collapse
Affiliation(s)
- Yajing Zhan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zhiqian Zhang
- Department of Clinical Laboratory CenterShaoxing People's Hospital (Shaoxing Hospital)ShaoxingZhejiangChina
| | - Ankang Yin
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Xiyang Su
- Department of Laboratory MedicineThe Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Nan Tang
- Department of Clinical LaboratoryPeople's Hospital of Wangcheng District ChangshaChangshaHunanChina
| | - Yi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Zebin Zhang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Wei Chen
- Institute of Clinical Medicine Research, Zhejiang Provincial People's Hospital, Hangzhou Medical CollegeHangzhouZhejiangChina
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Juan Wang
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| | - Wei Wang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical UniversityHangzhouZhejiangChina
- Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese MedicineTongde Hospital of Zhejiang ProvinceHangzhouZhejiangChina
| |
Collapse
|
5
|
Zhao L, Zhu Y, Zhang L, Huang Y, Fan Y, Gao L, Zhao Y, Wang X, Mo D, Lu H, Wang D. Dicliptera chinensis-derived polysaccharide enhanced the growth activity of submandibular gland cells in vitro after radiotherapy. Heliyon 2024; 10:e31005. [PMID: 38799761 PMCID: PMC11126834 DOI: 10.1016/j.heliyon.2024.e31005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Objective Radiotherapy for head and neck can damage the salivary gland cells, which can easily result in xerostomia. No effective treatment for radiation-induced salivary gland dysfunction currently exists. Thus, we aimed to study the protective effect of Dicliptera chinensis polysaccharides (DCP) on the prevention of submandibular gland (SMG) cell damage caused by radiotherapy in Sprague-Dawley rats. Design Mechanical enzyme digestion was used to extract primary rat SMG cells. A radiation injury model was established by treating these cells with a dose of 8 Gy, followed by intervention using different DCP concentrations. The cell counting kit 8 assay was used to determine the inhibition rate of SMG cells in each group. The rates of apoptosis and cell cycle progression were detected using flow cytometry. Expression of the Mre11/Rad50/Nbs1 complex (MRN) was detected using western blotting. Results DCP increased the proliferation of SMG cells after irradiation, and cell growth activity positively correlated with polysaccharide concentration. Flow cytometry analysis of SMG cell apoptosis revealed that DCP markedly reduced the total apoptosis rate after irradiation, especially the early apoptosis rate. Cell cycle results suggested that DCP reduced the number of cells in the S and G2 phases after irradiation and alleviated the S and G2 blocks. Western blot results indicated that the expression of Mre11, Rad50, and Nbs1 decreased in the radiation-injured group, whereas their expression increased after DCP treatment. Conclusions DCP can protect the rat SMG cells after radiation and be used as a protective agent against salivary gland cell damage caused by radiotherapy.
Collapse
Affiliation(s)
- Lixiang Zhao
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Yanchun Zhu
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
- Xiaolan People's Hospital, ZhongShan, 528415, China
| | - Lihua Zhang
- Liuzhou People's Hospital, Liuzhou, 545000, China
| | - Yude Huang
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Yiyang Fan
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
- Yichang City Hospital of Traditional Chinese Medicine, Yichang, 443000, China
| | - Linjin Gao
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Yanfei Zhao
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Xian Wang
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Dongqing Mo
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Haoyu Lu
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Daiyou Wang
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| |
Collapse
|
6
|
Zaragoza JZ, Klap K, Heidstra R, Zhou W, Scheres B. The dual role of the RETINOBLASTOMA-RELATED protein in the DNA damage response is coordinated by the interaction with LXCXE-containing proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1194-1206. [PMID: 38321589 DOI: 10.1111/tpj.16665] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Living organisms possess mechanisms to safeguard genome integrity. To avoid spreading mutations, DNA lesions are detected and cell division is temporarily arrested to allow repair mechanisms. Afterward, cells either resume division or respond to unsuccessful repair by undergoing programmed cell death (PCD). How the success rate of DNA repair connects to later cell fate decisions remains incompletely known, particularly in plants. The Arabidopsis thaliana RETINOBLASTOMA-RELATED1 (RBR) protein and its partner E2FA, play both structural and transcriptional functions in the DNA damage response (DDR). Here we provide evidence that distinct RBR protein interactions with LXCXE motif-containing proteins guide these processes. Using the N849F substitution in the RBR B-pocket domain, which specifically disrupts binding to the LXCXE motif, we show that these interactions are dispensable in unchallenging conditions. However, N849F substitution abolishes RBR nuclear foci and promotes PCD and growth arrest upon genotoxic stress. NAC044, which promotes growth arrest and PCD, accumulates after the initial recruitment of RBR to foci and can bind non-focalized RBR through the LXCXE motif in a phosphorylation-independent manner, allowing interaction at different cell cycle phases. Disrupting NAC044-RBR interaction impairs PCD, but their genetic interaction points to opposite independent roles in the regulation of PCD. The LXCXE-binding dependency of the roles of RBR in the DDR suggests a coordinating mechanism to translate DNA repair success to cell survival. We propose that RBR and NAC044 act in two distinct DDR pathways, but interact to integrate input from both DDR pathways to decide upon an irreversible cell fate decision.
Collapse
Affiliation(s)
- Jorge Zamora Zaragoza
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Department of Biotechnology, Rijk Zwaan Breeding B.V., Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| | - Katinka Klap
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Wenkun Zhou
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ben Scheres
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Department of Biotechnology, Rijk Zwaan Breeding B.V., Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| |
Collapse
|
7
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Deng M, Tan J, Fan Z, Pham LV, Zhu F, Fang X, Zhao H, Young K, Xu B. The synergy of the XPO1 inhibitors combined with the BET inhibitor INCB057643 in high-grade B-cell lymphoma via downregulation of MYC expression. Sci Rep 2023; 13:18554. [PMID: 37899423 PMCID: PMC10613613 DOI: 10.1038/s41598-023-45721-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
High grade B-cell lymphoma with MYC and BCL2 rearrangements (HGBCL-DH) represents an uncommon B-cell lymphoma (BCL) with aggressive clinical courses and poor prognosis. Despite revolutionary therapeutic advances in BCL, there has been limited treatment progress in HGBCL-DH, thus necessitating additional therapeutic strategies for HGBCL-DH. This study demonstrated that the BET antagonist INCB057643 synergized with the XPO1 inhibitors (selinexor and eltanexor) to decrease cell viability and increase cell apoptosis in HGBCL-DH cells with or without TP53 mutations. As anticipated, the combined treatment of INCB057643 with selinexor slowed tumor growth and reduced the tumor burden in TP53-mutated HGBCL-DH xenografts. Mechanistically, MYC functional inhibition was a potential molecular mechanism underlying the synergy of the combined INCB057643 and selinexor treatment in HGBCL-DH cells independent of TP53 mutation status. In TP53 mutated HGBCL-DH cells, inducing DNA damage and impairing the DNA damage response (DDR) were involved in the therapeutic interaction of the combined regimen. In TP53 wild-type cells, the molecular mechanism was linked with upregulation of p53 levels and activation of its targeted pathways, rather than dysregulation of the DDR. Collectively, we might provide a potential promising combination therapy regimen for the management of HGBCL-DH. Clinical evaluations are warranted to confirm this conclusion.
Collapse
Affiliation(s)
- Manman Deng
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China
| | - Jinshui Tan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China
| | - Ziying Fan
- Department of Hematology, Dongguan People's Hospital, Dongguan, 523000, China
| | - Lan V Pham
- Phamacyclics, an Abbvie Company, San Francisco, CA, USA
| | - Feng Zhu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaosheng Fang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Haijun Zhao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China.
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, Medical College of Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| | - Kenh Young
- Division of Hematopathology and Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, Xiamen, 361102, China.
- Department of Hematology, the First Affiliated Hospital of Xiamen University and Institute of Hematology, Medical College of Xiamen University, No.55, Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| |
Collapse
|
9
|
Maru B, Messikommer A, Huang L, Seipel K, Kovecses O, Valk PJM, Theocharides APA, Mercier FE, Pabst T, McKeague M, Luedtke NW. PARP-1 improves leukemia outcomes by inducing parthanatos during chemotherapy. Cell Rep Med 2023; 4:101191. [PMID: 37683650 PMCID: PMC10518631 DOI: 10.1016/j.xcrm.2023.101191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 02/13/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023]
Abstract
Previous chemotherapy research has focused almost exclusively on apoptosis. Here, a standard frontline drug combination of cytarabine and idarubicin induces distinct features of caspase-independent, poly(ADP-ribose) polymerase 1 (PARP-1)-mediated programmed cell death "parthanatos" in acute myeloid leukemia (AML) cell lines (n = 3/10 tested), peripheral blood mononuclear cells from healthy human donors (n = 10/10 tested), and primary cell samples from patients with AML (n = 18/39 tested, French-American-British subtypes M4 and M5). A 3-fold improvement in survival rates is observed in the parthanatos-positive versus -negative patient groups (hazard ratio [HR] = 0.28-0.37, p = 0.002-0.046). Manipulation of PARP-1 activity in parthanatos-competent cells reveals higher drug sensitivity in cells that have basal PARP-1 levels as compared with those subjected to PARP-1 overexpression or suppression. The same trends are observed in RNA expression databases and support the conclusion that PARP-1 can have optimal levels for favorable chemotherapeutic responses.
Collapse
Affiliation(s)
- Bruktawit Maru
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | | | - Linhui Huang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Katja Seipel
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Olivia Kovecses
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Francois E Mercier
- Division of Hematology and Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Maureen McKeague
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Chemistry, McGill University, Montreal, QC, Canada.
| | - Nathan W Luedtke
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Department of Chemistry, University of Zurich, Zurich, Switzerland; Department of Chemistry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
10
|
Ahmed SA, Al-Shanon AF, Al-Saffar AZ, Tawang A, Al-Obaidi JR. Antiproliferative and cell cycle arrest potentials of 3-O-acetyl-11-keto-β-boswellic acid against MCF-7 cells in vitro. J Genet Eng Biotechnol 2023; 21:75. [PMID: 37393563 DOI: 10.1186/s43141-023-00529-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Cancer is a major issue in medical science with increasing death cases every year worldwide. Therefore, searching for alternatives and nonorthodox methods of treatments with high efficiency, selectivity and less toxicity is the main goal in fighting cancer. Acetyl-11-keto-β-boswellic acid (AKBA), is a derivative pentacyclic triterpenoid that exhibited various biological activities with potential anti-tumoral agents. In this research, AKBA was utilized to examine the potential cytotoxic activity against MCF-7 cells in vitro and monitor the cellular and morphological changes with a prospective impact on apoptosis induction. METHODS The cytotoxic activity of AKBA was measured by 3(4,5dimethylthiazole- 2-yl)-2,5 diphyneltetrazolium bromide (MTT) assay. A dose-dependent inhibition in MCF-7 cell viability was detected. The clonogenicity of MCF-7 cells was significantly suppressed by AKBA increment in comparison with untreated cells. RESULT Morphologically, exposure of MCF-7 cells to high AKBA concentrations caused changes in cell nuclear morphology which was indicated by increasing in nuclear size and cell permeability intensity. The mitochondrial membrane potential (ΔΨm) was reduced by increasing AKBA concentration with a significant release of cytochrome c. Acridine orange/ethidium bromide dual staining experiment confirmed that MCF-7 cells treated with AKBA (IC50 concentration) displayed a late stage of apoptosis indicated by intense and bright reddish colour. CONCLUSION A significant increase in reactive oxygen species formation was observed. Caspase 8 and caspase 9 activities were estimated and AKBA activated the production of caspase 8 and caspase 9 in a dose-dependent pattern. Finally, the cell phase distribution analysis was conducted, and flow cytometric analysis showed that AKBA at 200 μg mL-1 significantly arrest MCF-7 cells at the G1 phase and triggered apoptosis.
Collapse
Affiliation(s)
- Saja A Ahmed
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | | | - Ali Z Al-Saffar
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq.
| | - Alene Tawang
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
| |
Collapse
|
11
|
Naviaux RK. Mitochondrial and metabolic features of salugenesis and the healing cycle. Mitochondrion 2023; 70:131-163. [PMID: 37120082 DOI: 10.1016/j.mito.2023.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/24/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Pathogenesis and salugenesis are the first and second stages of the two-stage problem of disease production and health recovery. Salugenesis is the automatic, evolutionarily conserved, ontogenetic sequence of molecular, cellular, organ system, and behavioral changes that is used by living systems to heal. It is a whole-body process that begins with mitochondria and the cell. The stages of salugenesis define a circle that is energy- and resource-consuming, genetically programmed, and environmentally responsive. Energy and metabolic resources are provided by mitochondrial and metabolic transformations that drive the cell danger response (CDR) and create the three phases of the healing cycle: Phase 1-Inflammation, Phase 2-Proliferation, and Phase 3-Differentiation. Each phase requires a different mitochondrial phenotype. Without different mitochondria there can be no healing. The rise and fall of extracellular ATP (eATP) signaling is a key driver of the mitochondrial and metabolic reprogramming required to progress through the healing cycle. Sphingolipid and cholesterol-enriched membrane lipid rafts act as rheostats for tuning cellular sensitivity to purinergic signaling. Abnormal persistence of any phase of the CDR inhibits the healing cycle, creates dysfunctional cellular mosaics, causes the symptoms of chronic disease, and accelerates the process of aging. New research reframes the rising tide of chronic disease around the world as a systems problem caused by the combined action of pathogenic triggers and anthropogenic factors that interfere with the mitochondrial functions needed for healing. Once chronic pain, disability, or disease is established, salugenesis-based therapies will start where pathogenesis-based therapies end.
Collapse
Affiliation(s)
- Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, Departments of Medicine, and Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, MC#8467, San Diego, CA 92103.
| |
Collapse
|
12
|
Yang J, Griffin A, Qiang Z, Ren J. Organelle-targeted therapies: a comprehensive review on system design for enabling precision oncology. Signal Transduct Target Ther 2022; 7:379. [PMID: 36402753 PMCID: PMC9675787 DOI: 10.1038/s41392-022-01243-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer is a major threat to human health. Among various treatment methods, precision therapy has received significant attention since the inception, due to its ability to efficiently inhibit tumor growth, while curtailing common shortcomings from conventional cancer treatment, leading towards enhanced survival rates. Particularly, organelle-targeted strategies enable precise accumulation of therapeutic agents in organelles, locally triggering organelle-mediated cell death signals which can greatly reduce the therapeutic threshold dosage and minimize side-effects. In this review, we comprehensively discuss history and recent advances in targeted therapies on organelles, specifically including nucleus, mitochondria, lysosomes and endoplasmic reticulum, while focusing on organelle structures, organelle-mediated cell death signal pathways, and design guidelines of organelle-targeted nanomedicines based on intervention mechanisms. Furthermore, a perspective on future research and clinical opportunities and potential challenges in precision oncology is presented. Through demonstrating recent developments in organelle-targeted therapies, we believe this article can further stimulate broader interests in multidisciplinary research and technology development for enabling advanced organelle-targeted nanomedicines and their corresponding clinic translations.
Collapse
Affiliation(s)
- Jingjing Yang
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| | - Anthony Griffin
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Zhe Qiang
- grid.267193.80000 0001 2295 628XSchool of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406 USA
| | - Jie Ren
- grid.24516.340000000123704535Institute of Nano and Biopolymeric Materials, School of Materials Science and Engineering, Tongji University, 201804 Shanghai, China
| |
Collapse
|
13
|
Increased susceptibility to doxorubicin-induced cell death in acute lymphocytic leukemia cells by inhibiting serine/threonine WEE1 kinase expression using the chitosan-carboxymethyl dextran-polyethylene glycol-TAT nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Miller W, Pruett CLH, Stone W, Eide C, Riddle M, Popp C, Yousefzadeh M, Lees C, Seelig D, Thompson E, Orr H, Niedernhofer L, Tolar J. Accumulation of senescence observed in spinocerebellar ataxia type 7 mouse model. PLoS One 2022; 17:e0275580. [PMID: 36251631 PMCID: PMC9576077 DOI: 10.1371/journal.pone.0275580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disease caused by a trinucleotide CAG repeat. SCA7 predominantly causes a loss of photoreceptors in the retina and Purkinje cells of the cerebellum. Severe infantile-onset SCA7 also causes renal and cardiac irregularities. Previous reports have shown that SCA7 results in increased susceptibility to DNA damage. Since DNA damage can lead to accumulation of senescent cells, we hypothesized that SCA7 causes an accumulation of senescent cells over the course of disease. A 140-CAG repeat SCA7 mouse model was evaluated for signs of disease-specific involvement in the kidney, heart, and cerebellum, tissues that are commonly affected in the infantile form. We found evidence of significant renal abnormality that coincided with an accumulation of senescent cells in the kidneys of SCA7140Q/5Q mice, based on histology findings in addition to RT-qPCR for the cell cycle inhibitors p16Ink4a and p21Cip1 and senescence-associated ß-galactosidase (SA-ßgal) staining, respectively. The Purkinje layer in the cerebellum of SCA7140Q/5Q mice also displayed SA-ßgal+ cells. These novel findings offer evidence that senescent cells accumulate in affected tissues and may possibly contribute to SCA7’s specific phenotype.
Collapse
Affiliation(s)
- William Miller
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | | | - William Stone
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | - Cindy Eide
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | - Megan Riddle
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | - Courtney Popp
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | - Matthew Yousefzadeh
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, United States of America
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Christopher Lees
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | - Davis Seelig
- Comparative Pathology Shared Resource, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Elizabeth Thompson
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, United States of America
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Harry Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States of America
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, MN, United States of America
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, United States of America
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States of America
| | - Jakub Tolar
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
15
|
Sazonova EV, Chesnokov MS, Zhivotovsky B, Kopeina GS. Drug toxicity assessment: cell proliferation versus cell death. Cell Death Dis 2022; 8:417. [PMID: 36241623 PMCID: PMC9568594 DOI: 10.1038/s41420-022-01207-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Analysis of the toxicity of chemotherapeutic drugs is one of the main tasks of clinical pharmacology. Decreased viability of tumor cells may reflect two important physiological processes, namely the arrest of proliferation associated with disturbances in cellular metabolism or actual cell death. Elucidation of the exact processes mediating a reduction in the number of cells is fundamentally important to establish the mechanisms of drug action. Only the use of a combination of cell biological and biochemical approaches makes it possible to understand these mechanisms. Here, using various lines of tumor cells and a set of methodological approaches, we carried out a detailed comparative analysis and demonstrated the possible ways to overcome the uncertainties in establishing the mechanisms of cell response to the action of chemotherapeutic drugs and their toxicity.
Collapse
Affiliation(s)
- Elena V Sazonova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
| | | | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia. .,Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
16
|
Chronological transcriptome changes induced by exposure to cyanoacrylate resin nanoparticles in Chlamydomonas reinhardtii with a focus on ROS development and cell wall lysis-related genes. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Jennrich S, Pelzer M, Tertel T, Koska B, Vüllings M, Thakur BK, Jendrossek V, Timmermann B, Giebel B, Rudner J. CD9- and CD81-positive extracellular vesicles provide a marker to monitor glioblastoma cell response to photon-based and proton-based radiotherapy. Front Oncol 2022; 12:947439. [PMID: 36203458 PMCID: PMC9530604 DOI: 10.3389/fonc.2022.947439] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive tumor of the central nervous system with a poor prognosis. In the treatment of GBM tumors, radiotherapy plays a major role. Typically, GBM tumors cannot be cured by irradiation because of intrinsic resistance machanisms. An escalation of the irradiation dose in the GBM tumor is difficult due to the high risk of severe side effects in the brain. In the last decade, the development of new irradiation techniques, including proton-based irradiation, promised new chances in the treatment of brain tumors. In contrast to conventional radiotherapy, irradiation with protons allows a dosimetrically more confined dose deposition in the tumor while better sparing the normal tissue surrounding the tumor. A systematic comparison of both irradiation techniques on glioblastoma cells has not been performed so far. Despite the improvements in radiotherapy, it remains challenging to predict the therapeutical response of GBM tumors. Recent publications suggest extracellular vesicles (EVs) as promising markers predicting tumor response. Being part of an ancient intercellular communication system, virtually all cells release specifically composed EVs. The assembly of EVs varies between cell types and depends on environmental parameters. Here, we compared the impact of photon-based with proton-based radiotherapy on cell viability and phenotype of four different glioblastoma cell lines. Furthermore, we characterized EVs released by different glioblastoma cells and correlated released EVs with the cellular response to radiotherapy. Our results demonstrated that glioblastoma cells reacted more sensitive to irradiation with protons than photons, while radiation-induced cell death 72 h after single dose irradiation was independent of the irradiation modality. Moreover, we detected CD9 and CD81-positive EVs in the supernatant of all glioblastoma cells, although at different concentrations. The amount of released CD9 and CD81-positive EVs increased after irradiation when cells became apoptotic. Although secreted EVs of non-irradiated cells were not predictive for radiosensitivity, their increased EV release after irradiation correlated with the cytotoxic response to radiotherapy 72 h after irradiation. Thus, our data suggest a novel application of EVs in the surveillance of anti-cancer therapies.
Collapse
Affiliation(s)
- Sara Jennrich
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Pelzer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tobias Tertel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benjamin Koska
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Vüllings
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Basant Kumar Thakur
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Justine Rudner
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Justine Rudner,
| |
Collapse
|
18
|
Maigali SS, El‐Shanawany HR, El‐Sayed NF, Youssef MA, Fouad MA. Synthesis and Evaluation of a New Series of Spiro Aryl Dioxolane Compounds: A New Scaffold as Potential
PARP
‐1 Inhibitors. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soher S. Maigali
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir, Dokki,12622 Giza Egypt
| | - Hala R. El‐Shanawany
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir, Dokki,12622 Giza Egypt
| | - Naglaa F. El‐Sayed
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir, Dokki,12622 Giza Egypt
| | - Mohamed. A. Youssef
- Chemistry Department, Faculty of Science Helwan University, Economic Housing, QismHelwan Cairo Egypt
| | - Marwa A. Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy Cairo University, Kasr El‐Aini St. Cairo Egypt
| |
Collapse
|
19
|
Proteomic analysis reveals USP7 as a novel regulator of palmitic acid-induced hepatocellular carcinoma cell death. Cell Death Dis 2022; 13:563. [PMID: 35732625 PMCID: PMC9217975 DOI: 10.1038/s41419-022-05003-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/21/2023]
Abstract
Nutrient surplus and consequent free fatty acid accumulation in the liver cause hepatosteatosis. The exposure of free fatty acids to cultured hepatocyte and hepatocellular carcinoma cell lines induces cellular stress, organelle adaptation, and subsequent cell death. Despite many studies, the mechanism associated with lipotoxicity and subsequent cell death still remains poorly understood. Here, we have used the proteomics approach to circumvent the mechanism for lipotoxicity using hepatocellular carcinoma cells as a model. Our quantitative proteomics data revealed that ectopic lipids accumulation in cells severely affects the ubiquitin-proteasomal system. The palmitic acid (PA) partially lowered the expression of deubiquitinating enzyme USP7 which subsequently destabilizes p53 and promotes mitotic entry of cells. Our global phosphoproteomics analysis also provides strong evidence of an altered cell cycle checkpoint proteins' expression that abrogates early G2/M checkpoints recovery with damaged DNA and induced mitotic catastrophe leading to hepatocyte death. We observe that palmitic acid prefers apoptosis-inducing factor (AIF) mediated cell death by depolarizing mitochondria and translocating AIF to the nucleus. In summary, the present study provides evidence of PA-induced hepatocellular death mediated by deubiquitinase USP7 downregulation and subsequent mitotic catastrophe.
Collapse
|
20
|
The Antitumoral/Antimetastatic Action of the Flavonoid Brachydin A in Metastatic Prostate Tumor Spheroids In Vitro Is Mediated by (Parthanatos) PARP-Related Cell Death. Pharmaceutics 2022; 14:pharmaceutics14050963. [PMID: 35631550 PMCID: PMC9147598 DOI: 10.3390/pharmaceutics14050963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Metastatic prostate cancer (mPCa) is resistant to several chemotherapeutic agents. Brachydin A (BrA), a glycosylated flavonoid extracted from Fridericia platyphylla, displays a remarkable antitumoral effect against in vitro mPCa cells cultured as bidimensional (2D) monolayers. Considering that three-dimensional (3D) cell cultures provide a more accurate response to chemotherapeutic agents, this study investigated the antiproliferative/antimetastatic effects of BrA and the molecular mechanisms underlying its action in mPCa spheroids (DU145) in vitro. BrA at 60–100 μM was cytotoxic, altered spheroid morphology/volume, and suppressed cell migration and tumor invasiveness. High-content analysis revealed that BrA (60–100 µM) reduced mitochondrial membrane potential and increased apoptosis and necrosis markers, indicating that it triggered cell death mechanisms. Molecular analysis showed that (i) 24-h treatment with BrA (80–100 µM) increased the protein levels of DNA disruption markers (cleaved-PARP and p-γ-H2AX) as well as decreased the protein levels of anti/pro-apoptotic (BCL-2, BAD, and RIP3K) and cell survival markers (p-AKT1 and p-44/42 MAPK); (ii) 72-h treatment with BrA increased the protein levels of effector caspases (CASP3, CASP7, and CASP8) and inflammation markers (NF-kB and TNF-α). Altogether, our results suggest that PARP-mediated cell death (parthanatos) is a potential mechanism of action. In conclusion, BrA confirms its potential as a candidate drug for preclinical studies against mPCa.
Collapse
|
21
|
Mu T, Hu H, Ma Y, Wen H, Yang C, Feng X, Wen W, Zhang J, Gu Y. Identifying key genes in milk fat metabolism by weighted gene co-expression network analysis. Sci Rep 2022; 12:6836. [PMID: 35477736 PMCID: PMC9046402 DOI: 10.1038/s41598-022-10435-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Milk fat is the most important and energy-rich substance in milk, and its content and composition are important reference elements in the evaluation of milk quality. However, the current identification of valuable candidate genes affecting milk fat is limited. IlluminaPE150 was used to sequence bovine mammary epithelial cells (BMECs) with high and low milk fat rates (MFP), the weighted gene co-expression network (WGCNA) was used to analyze mRNA expression profile data in this study. As a result, a total of 10,310 genes were used to construct WGCNA, and the genes were classified into 18 modules. Among them, violet (r = 0.74), yellow (r = 0.75) and darkolivegreen (r = − 0.79) modules were significantly associated with MFP, and 39, 181, 75 hub genes were identified, respectively. Combining enrichment analysis and differential genes (DEs), we screened five key candidate DEs related to lipid metabolism, namely PI4K2A, SLC16A1, ATP8A2, VEGFD and ID1, respectively. Relative to the small intestine, liver, kidney, heart, ovary and uterus, the gene expression of PI4K2A is the highest in mammary gland, and is significantly enriched in GO terms and pathways related to milk fat metabolism, such as monocarboxylic acid transport, phospholipid transport, phosphatidylinositol signaling system, inositol phosphate metabolism and MAPK signaling pathway. This study uses WGCNA to form an overall view of MFP, providing a theoretical basis for identifying potential pathways and hub genes that may be involved in milk fat synthesis.
Collapse
Affiliation(s)
- Tong Mu
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Honghong Hu
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Yanfen Ma
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia Hui Autonomous Region, Ningxia University, Yinchuan, 750021, China
| | - Huiyu Wen
- Maosheng Pasture of He Lanshan in Ningxia State Farm, Yinchuan, 750001, China
| | - Chaoyun Yang
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Xiaofang Feng
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Wan Wen
- Animal Husbandry Extension Station, Yinchuan, 750001, China
| | - Juan Zhang
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Yaling Gu
- School of Agriculture, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
22
|
Egorshina AY, Zamaraev AV, Kaminskyy VO, Radygina TV, Zhivotovsky B, Kopeina GS. Necroptosis as a Novel Facet of Mitotic Catastrophe. Int J Mol Sci 2022; 23:ijms23073733. [PMID: 35409093 PMCID: PMC8998610 DOI: 10.3390/ijms23073733] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Mitotic catastrophe is a defensive mechanism that promotes elimination of cells with aberrant mitosis by triggering the cell-death pathways and/or cellular senescence. Nowadays, it is known that apoptosis, autophagic cell death, and necrosis could be consequences of mitotic catastrophe. Here, we demonstrate the ability of a DNA-damaging agent, doxorubicin, at 600 nM concentration to stimulate mitotic catastrophe. We observe that the inhibition of caspase activity leads to accumulation of cells with mitotic catastrophe hallmarks in which RIP1-dependent necroptotic cell death is triggered. The suppression of autophagy by a chemical inhibitor or ATG13 knockout upregulates RIP1 phosphorylation and promotes necroptotic cell death. Thus, in certain conditions mitotic catastrophe, in addition to apoptosis and autophagy, can precede necroptosis.
Collapse
Affiliation(s)
- Aleksandra Yu. Egorshina
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (A.Y.E.); (A.V.Z.); (B.Z.)
| | - Alexey V. Zamaraev
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (A.Y.E.); (A.V.Z.); (B.Z.)
| | - Vitaliy O. Kaminskyy
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, P.O. Box 210, 171 77 Stockholm, Sweden;
| | - Tatiana V. Radygina
- Federal State Autonomous Institution “National Medical Research Center for Children’s Health” of the Ministry of Health of the Russian Federation, 119296 Moscow, Russia;
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (A.Y.E.); (A.V.Z.); (B.Z.)
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, P.O. Box 210, 171 77 Stockholm, Sweden;
| | - Gelina S. Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; (A.Y.E.); (A.V.Z.); (B.Z.)
- Correspondence:
| |
Collapse
|
23
|
Liu Z, Wang P, Xie F, Chen J, Cai M, Li Y, Yan J, Lin Q, Luo F. Virus-Inspired Hollow Mesoporous Gadolinium-Bismuth Nanotheranostics for Magnetic Resonance Imaging-Guided Synergistic Photodynamic-Radiotherapy. Adv Healthc Mater 2022; 11:e2102060. [PMID: 34894092 DOI: 10.1002/adhm.202102060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/23/2021] [Indexed: 12/25/2022]
Abstract
The anti-tumor efficacy of single photodynamic therapy (PDT) and radiotherapy (RT) has been greatly affected by inadequate tumor uptake of photo/radiation sensitizers, limited laser penetration depth, and radiation sickness caused by high doses of X-rays. Here, the authors report a biomimetic coronavirus-inspired hollow mesoporous gadolinium/bismuth nanocarrier loaded with a new NIR photosensitizer HB (termed as HB@VHMBi-Gd) for magnetic resonance imaging (MRI)-guided synergistic photodynamic-RT. HB@VHMBi-Gd displayed a faster cellular uptake rate than the conventional spherical HMBi-Gd loaded with HB (HB@SHMBi-Gd) because of rough surface-enhanced adhesion. After intravenous injection, HB@VHMBi-Gd is efficiently delivered to the tumor and rapidly invades the tumor cells by surface spikes. Interestingly, lysosomal acidity can trigger the degradation of VHMBi-Gd to produce ultrasmall nanoparticles to amplify the X-ray attenuation ability and enhance MRI contrast and radiosensitization. Under laser and X-ray irradiation, HB@VHMBi-Gd significantly enhances 1 O2 generation from HB to induce activation of caspase 9/3 and inhibition of C-myc, while enhancing hydroxyl radical generation from Bi2 O3 to induce intense DNA breakage. By synergistically inducing cell apoptosis by distinct reactive oxygen species (ROS), HB@VHMBi-Gd exhibits superior anticancer efficacy with ≈90% tumor inhibition. They envision that biomimetic virus-inspired hollow hybrid metal nanoparticles can provide a promising strategy for imaging-guided synergistic photodynamic-RT.
Collapse
Affiliation(s)
- Zongjunlin Liu
- Cancer Research Center School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350007 P. R. China
- Xiamen Institute of Rare Earth Materials Institute of Haixi Chinese Academy of Sciences Xiamen 361000 P. R. China
| | - Fang Xie
- Department of Radiation Oncology Xiamen Cancer Center Xiamen Key Laboratory of Radiation Oncology The First Affiliated Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Jianhao Chen
- Department of Radiation Oncology Xiamen Cancer Center Xiamen Key Laboratory of Radiation Oncology The First Affiliated Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Meimei Cai
- Department of Radiation Oncology Xiamen Cancer Center Xiamen Key Laboratory of Radiation Oncology The First Affiliated Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Yang Li
- Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350007 P. R. China
- Xiamen Institute of Rare Earth Materials Institute of Haixi Chinese Academy of Sciences Xiamen 361000 P. R. China
| | - Jianghua Yan
- Cancer Research Center School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Qin Lin
- Department of Radiation Oncology Xiamen Cancer Center Xiamen Key Laboratory of Radiation Oncology The First Affiliated Hospital of Xiamen University School of Medicine Xiamen University Xiamen 361000 P. R. China
| | - Fanghong Luo
- Cancer Research Center School of Medicine Xiamen University Xiamen 361000 P. R. China
| |
Collapse
|
24
|
Bai Z, Zhou Y, Ye X, Li Y, Peng Y, Guan Q, Zhang W, Ma L. Survivin suppression heightens BZML-induced mitotic catastrophe to overcome multidrug resistance by removing therapy-induced senescent A549/Taxol cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119174. [PMID: 34808206 DOI: 10.1016/j.bbamcr.2021.119174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Mitotic catastrophe (MC) is a newly identified type of anticancer mechanism for multidrug resistance (MDR) prevention. However, the long cellular death process resulting from MC is not beneficial for anticancer treatment. BZML is a novel colchicine-binding site inhibitor which can overcome MDR by inducing MC; however, BZML-induced MC cells underwent a long cellular death process. Thus, to improve anticancer therapies based on drug-induced MC, BZML-induced MC was served as a model to further study the underlying molecular mechanisms in the process of MC. Here, BZML could induce p53-dependent senescence in A549/Taxol cells, a MDR cell line. This senescence was a secondary effect of MC in overcoming MDR. During MC, BZML-induced destruction of protein-degradation system contributed not only to an increase of p53 protein but also to the accumulation of survivin in nucleus of A549/Taxol cells. Importantly, the nuclear accumulation of survivin was not the inducer but the result of BZML-induced MC, and it promoted the survival of senescent cells. Moreover, it provided additional vulnerability and critical opportunities for sequentially applied therapies. Further, targeting survivin with YM155 accelerated the death of MC cells by timely eliminating therapy-induced senescent cells and strengthening the efficiency of BZML in overcoming MDR in A549/Taxol cells. Collectively, nuclear accumulation of survivin delayed cellular death during MC by promoting the survival of BZML-induced senescent A549/Taxol cells. Moreover, "one-two punch" approach to cancer treatment based on combination therapy with YM155 for survivin suppression might be a new strategy for potentiating MC to overcome MDR.
Collapse
Affiliation(s)
- Zhaoshi Bai
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, China.
| | - Yiran Zhou
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xinyue Ye
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yupeng Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yaling Peng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Qi Guan
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Weige Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
25
|
Sazonova EV, Petrichuk SV, Kopeina GS, Zhivotovsky B. A link between mitotic defects and mitotic catastrophe: detection and cell fate. Biol Direct 2021; 16:25. [PMID: 34886882 PMCID: PMC8656038 DOI: 10.1186/s13062-021-00313-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 02/08/2023] Open
Abstract
Although the phenomenon of mitotic catastrophe was first described more than 80 years ago, only recently has this term been used to explain a mechanism of cell death linked to delayed mitosis. Several mechanisms have been suggested for mitotic catastrophe development and cell fate. Depending on molecular perturbations, mitotic catastrophe can end in three types of cell death, namely apoptosis, necrosis, or autophagy. Moreover, mitotic catastrophe can be associated with different types of cell aging, the development of which negatively affects tumor elimination and, consequently, reduces the therapeutic effect. The effective triggering of mitotic catastrophe in clinical practice requires induction of DNA damage as well as inhibition of the molecular pathways that regulate cell cycle arrest and DNA repair. Here we discuss various methods to detect mitotic catastrophe, the mechanisms of its development, and the attempts to use this phenomenon in cancer treatment.
Collapse
Affiliation(s)
- Elena V Sazonova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Svetlana V Petrichuk
- Federal State Autonomous Institution "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia, 119296
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, 17177, Stockholm, Sweden.
| |
Collapse
|
26
|
Pinto LC, Mesquita FP, Barreto LH, Souza PFN, Ramos INF, Pinto AVU, Soares BM, da Silva MN, Burbano RMR, Montenegro RC. Anticancer potential of limonoids from Swietenia macrophylla: Genotoxic, antiproliferative and proapoptotic effects towards human colorectal cancer. Life Sci 2021; 285:119949. [PMID: 34543640 DOI: 10.1016/j.lfs.2021.119949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022]
Abstract
AIMS Swietenia macrophylla have been considered for the treatment of various diseases, including anticancer activity. This study aimed to investigate the anticancer activity of S. macrophylla leaves extract and its isolated compound towards human colorectal cancer cell line. MAIN METHODS Hexanic extract of S. macrophylla leaves demonstrated relevant cytotoxicity only against colon cancer cell line HCT116. KEY FINDINGS Our results showed significant DNA damage and apoptosis after treatment with the hexanic extract of S. macrophylla. Moreover, no toxicity was noticed for the animal model. The isolated compound limonoid L1 showed potent cytotoxicity against cancer cell lines with IC50 at 55.87 μg mL-1. Limonoid L1 did not trigger any cell membrane rupture in the mice erythrocytes suggesting no toxicity. The antiproliferative effect of L1 was confirmed in colorectal cancer cells by clonogenic assay, inducing G2/M arrest, apoptosis, and DNA damage in cancer-type cells. SIGNIFICANCE L1 reduced BCL2 and increased ATM, CHK2, TP53, ARF, CDK1, CDKN1A, and CASP3 in the colorectal cancer cell line. These findings suggest that limonoid L1 isolated from S. macrophylla can be a promising anticancer agent in managing colorectal cancer.
Collapse
Affiliation(s)
- Laine C Pinto
- Laboratory of Experimental Neuropathology, Biological Science Institute, Federal University of Pará, Mundurucus street, 4487, Guamá, Belém, Brazil
| | - Felipe P Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, Brazil
| | - Leilane H Barreto
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Pedro F N Souza
- Collaborating professor of Biochemistry and Molecular Biology Graduate Program at the Department of Biochemistry and Molecular Biology, Federal University of Ceará
| | - Ingryd N F Ramos
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Adrielly V U Pinto
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Bruno M Soares
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Milton N da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Rommel M R Burbano
- Laboratory of Human Cytogenetics, Biological Science Institute, Federal University of Pará, Augusto Correa Avenue, 01, Guamá, Belém, Brazil
| | - Raquel C Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, 1000, Rodolfo Teófilo, Fortaleza, Brazil.
| |
Collapse
|
27
|
Bland AR, Ashton JC. Considerations for Whole-Slide Analysis of Murine Xenografts Experiments. J Histochem Cytochem 2021; 69:627-631. [PMID: 34617806 DOI: 10.1369/00221554211046994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histochemistry of tumor sections is a widely employed technique utilized to examine cell death in preclinical xenograft animal models of cancer. However, this is under the assumption that tumors are homogeneous, leading to practices such as automatic cell counting across the entire section. We have noted that in our experiments the core of the tumor is largely or partially necrotic, and lacks evidence of vascularization (in contrast to the outer areas of the tumor). We note that this can bias and confound immunohistochemical analyses that do not take care to sample areas of interest in a way to take this into account. Design-based stereology with image analysis techniques is an alternative process that could be used to measure the volume of the necrotic region compared to the volume of the whole tumor.
Collapse
Affiliation(s)
- Abigail R Bland
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - John C Ashton
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
28
|
Yang S, Xiao H, Sun Y, Cao L. Zeylenone synergizes with cisplatin in osteosarcoma by enhancing DNA damage, apoptosis, and necrosis via the Hsp90/AKT/GSK3β and Fanconi anaemia pathway. Phytother Res 2021; 35:5899-5918. [PMID: 34585447 DOI: 10.1002/ptr.7299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/12/2022]
Abstract
A safer and more effective combination strategy designed to enhance the efficacy and minimize the toxicity of cisplatin in osteosarcoma (OS) is urgently needed. Zeylenone (zey), a cyclohexene oxide compound, exerted an obvious inhibitory effect on several cancer cell lines and exhibited little cytotoxicity towards normal cells, enabling zey to play a unique role in combination therapy. Thus, the study aimed to determine whether the combination of zey and cisplatin produces synergistic antitumour effects on OS and to further explore molecular mechanisms. Initially, we found that zey potentiated the anti-osteosarcoma efficacy of cisplatin and exhibited synergistic interactions with cisplatin in vitro, which also were confirmed in vivo by using xenograft model. Mechanistically, zey and cisplatin synergistically induced DNA damage, cell cycle arrest, necrosis, and apoptosis in OS cells. Importantly, zey had a high binding affinity for Hsp90 and reduced the expression of Hsp90, which further induced the suppression of AKT/GSK3β signalling axis and the degradation of Fanconi anaemia (FA) pathway proteins. Thus, the Hsp90/AKT/GSK3β and FA pathway are the key to the synergism between zey and cisplatin. Overall, zey shows promise for development as a cisplatin chemosensitizer with clinical utility in restoring cisplatin sensitivity of cancer cells.
Collapse
Affiliation(s)
- Shuxian Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haiyan Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yunfang Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Fu X, Li M, Tang C, Huang Z, Najafi M. Targeting of cancer cell death mechanisms by resveratrol: a review. Apoptosis 2021; 26:561-573. [PMID: 34561763 DOI: 10.1007/s10495-021-01689-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/11/2022]
Abstract
Cancer cell death is the utmost aim in cancer therapy. Anti-cancer agents can induce apoptosis, mitotic catastrophe, senescence, or autophagy through the production of free radicals and induction of DNA damage. However, cancer cells can acquire some new properties to adapt to anti-cancer agents. An increase in the incidence of apoptosis, mitotic catastrophe, senescence, and necrosis is in favor of overcoming tumor resistance to therapy. Although an increase in the autophagy process may help the survival of cancer cells, some studies indicated that stimulation of autophagy cell death may be useful for cancer therapy. Using some low toxic agents to amplify cancer cell death is interesting for the eradication of clonogenic cancer cells. Resveratrol (a polyphenol agent) may affect various signaling pathways related to cell death. It can induce death signals and also downregulate the expression of anti-apoptotic genes. Resveratrol has also been shown to modulate autophagy and induce mitotic catastrophe and senescence in some cancer cells. This review focuses on the important targets and mechanisms for the modulation of cancer cell death by resveratrol.
Collapse
Affiliation(s)
- Xiao Fu
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Mu Li
- College of Basic Medicine, Shaoyang University, Shaoyang, 422000, China
| | - Cuilian Tang
- Department of Obstetrics and Gynecology of the Second Affiliated Hospital, Shaoyang University, Shaoyang, 422000, China
| | - Zezhi Huang
- Shaoyang Key Laboratory of Molecular Biology Diagnosis, Shaoyang, 422000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
30
|
Chen CC, Chen CY, Cheng SF, Shieh TM, Leu YL, Chuang WY, Liu KT, Ueng SH, Shih YH, Chou LF, Wang TH. Hydroxygenkwanin Increases the Sensitivity of Liver Cancer Cells to Chemotherapy by Inhibiting DNA Damage Response in Mouse Xenograft Models. Int J Mol Sci 2021; 22:ijms22189766. [PMID: 34575923 PMCID: PMC8471855 DOI: 10.3390/ijms22189766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 12/21/2022] Open
Abstract
Molecules involved in DNA damage response (DDR) are often overexpressed in cancer cells, resulting in poor responses to chemotherapy and radiotherapy. Although treatment efficacy can be improved with the concomitant use of DNA repair inhibitors, the accompanying side effects can compromise the quality of life of patients. Therefore, in this study, we identified a natural compound that could inhibit DDR, using the single-strand annealing yeast-cell analysis system, and explored its mechanisms of action and potential as a chemotherapy adjuvant in hepatocellular carcinoma (HCC) cell lines using comet assay, flow cytometry, Western blotting, immunofluorescence staining, and functional analyses. We developed a mouse model to verify the in vitro findings. We found that hydroxygenkwanin (HGK) inhibited the expression of RAD51 and progression of homologous recombination, thereby suppressing the ability of the HCC cell lines to repair DNA damage and enhancing their sensitivity to doxorubicin. HGK inhibited the phosphorylation of DNA damage checkpoint proteins, leading to apoptosis in the HCC cell lines. In the mouse xenograft model, HGK enhanced the sensitivity of liver cancer cells to doxorubicin without any physiological toxicity. Thus, HGK can inhibit DDR in liver cancer cells and mouse models, making it suitable for use as a chemotherapy adjuvant.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Shu-Fang Cheng
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan;
| | - Yann-Lii Leu
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan 33303, Taiwan;
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (W.-Y.C.); (S.-H.U.)
- College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| | - Kuang-Ting Liu
- Department of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan;
- Department of Pathology & Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 32551, Taiwan
| | - Shir-Hwa Ueng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (W.-Y.C.); (S.-H.U.)
- College of Medicine, Chang Gung University, Taoyuan 33303, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung 41354, Taiwan;
| | - Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (L.-F.C.); (T.-H.W.)
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-L.L.)
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Correspondence: (L.-F.C.); (T.-H.W.)
| |
Collapse
|
31
|
Nardone V, Barbarino M, Angrisani A, Correale P, Pastina P, Cappabianca S, Reginelli A, Mutti L, Miracco C, Giannicola R, Giordano A, Pirtoli L. CDK4, CDK6/cyclin-D1 Complex Inhibition and Radiotherapy for Cancer Control: A Role for Autophagy. Int J Mol Sci 2021; 22:8391. [PMID: 34445095 PMCID: PMC8395054 DOI: 10.3390/ijms22168391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
The expanding clinical application of CDK4- and CDK6-inhibiting drugs in the managements of breast cancer has raised a great interest in testing these drugs in other neoplasms. The potential of combining these drugs with other therapeutic approaches seems to be an interesting work-ground to explore. Even though a potential integration of CDK4 and CDK6 inhibitors with radiotherapy (RT) has been hypothesized, this kind of approach has not been sufficiently pursued, neither in preclinical nor in clinical studies. Similarly, the most recent discoveries focusing on autophagy, as a possible target pathway able to enhance the antitumor efficacy of CDK4 and CDK6 inhibitors is promising but needs more investigations. The aim of this review is to discuss the recent literature on the field in order to infer a rational combination strategy including cyclin-D1/CDK4-CDK6 inhibitors, RT, and/or other anticancer agents targeting G1-S phase cell cycle transition.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.A.); (S.C.); (A.R.)
| | - Marcella Barbarino
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.)
| | - Antonio Angrisani
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.A.); (S.C.); (A.R.)
| | - Pierpaolo Correale
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (P.C.); (R.G.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19104, USA; (L.M.); (L.P.)
| | - Pierpaolo Pastina
- Section of Radiation Oncology, Medical School, University of Siena, 53100 Siena, Italy;
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.A.); (S.C.); (A.R.)
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (A.A.); (S.C.); (A.R.)
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19104, USA; (L.M.); (L.P.)
| | - Clelia Miracco
- Pathological Anatomy Unit, Department of Medical, Surgical and Neurological Science, University of Siena, 53100 Siena, Italy;
| | - Rocco Giannicola
- Medical Oncology Unit, Grand Metropolitan Hospital “Bianchi-Melacrino-Morelli”, 89124 Reggio Calabria, Italy; (P.C.); (R.G.)
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (M.B.); (A.G.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19104, USA; (L.M.); (L.P.)
| | - Luigi Pirtoli
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19104, USA; (L.M.); (L.P.)
| |
Collapse
|
32
|
Len JM, Hussein N, Malla S, Mcintosh K, Patidar R, Elangovan M, Chandrabose K, Moorthy NSHN, Pandey M, Raman D, Trivedi P, Tiwari AK. A Novel Dialkylamino-Functionalized Chalcone, DML6, Inhibits Cervical Cancer Cell Proliferation, In Vitro, via Induction of Oxidative Stress, Intrinsic Apoptosis and Mitotic Catastrophe. Molecules 2021; 26:4214. [PMID: 34299490 PMCID: PMC8306139 DOI: 10.3390/molecules26144214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
In this study, we designed, synthesized and evaluated, in vitro, novel chalcone analogs containing dialkylamino pharmacophores in the cervical cancer cell line, OV2008. The compound, DML6 was selective and significantly decreased the proliferation of OV2008 and HeLa cells in sub-micromolar concentrations, compared to prostate, lung, colon, breast or human embryonic kidney cell line (HEK293). DML6, at 5 μM, arrested the OV2008 cells in the G2 phase. Furthermore, DML6, at 5 μM, increased the levels of reactive oxygen species and induced a collapse in the mitochondrial membrane potential, compared to OV2008 cells incubated with a vehicle. DML6, at 5 μM, induced intrinsic apoptosis by significantly (1) increasing the levels of the pro-apoptotic proteins, Bak and Bax, and (2) decreasing the levels of l the anti-apoptotic protein, Bcl-2, compared to cell incubated with a vehicle. Furthermore, DML6, at 5 and 20 μM, induced the cleavage of caspase-9, followed by subsequent cleavage of the executioner caspases, caspase-3 and caspase-7, which produced OV2008 cell death. Overall, our data suggest that DML6 is an apoptosis-inducing compound that should undergo further evaluation as a potential treatment for cervical cancer.
Collapse
Affiliation(s)
- Jenna M. Len
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (J.M.L.); (N.H.); (S.M.); (K.M.)
| | - Noor Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (J.M.L.); (N.H.); (S.M.); (K.M.)
| | - Saloni Malla
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (J.M.L.); (N.H.); (S.M.); (K.M.)
| | - Kyle Mcintosh
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (J.M.L.); (N.H.); (S.M.); (K.M.)
| | - Rahul Patidar
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore 452001, India;
| | | | - Karthikeyan Chandrabose
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, India; (K.C.); (N.S.H.N.M.)
| | - N. S. Hari Narayana Moorthy
- Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak 484887, India; (K.C.); (N.S.H.N.M.)
| | - Manoj Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA;
| | - Dayanidhi Raman
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Piyush Trivedi
- Center of Innovation and Translational Research, Poona College of Pharmacy, Bhartiya Vidyapeeth, Pune 411038, India;
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA; (J.M.L.); (N.H.); (S.M.); (K.M.)
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore 452001, India;
| |
Collapse
|
33
|
Sazonova EV, Kopeina GS, Imyanitov EN, Zhivotovsky B. Platinum drugs and taxanes: can we overcome resistance? Cell Death Discov 2021; 7:155. [PMID: 34226520 PMCID: PMC8257727 DOI: 10.1038/s41420-021-00554-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer therapy is aimed at the elimination of tumor cells and acts via the cessation of cell proliferation and induction of cell death. Many research publications discussing the mechanisms of anticancer drugs use the terms "cell death" and "apoptosis" interchangeably, given that apoptotic pathways are the most common components of the action of targeted and cytotoxic compounds. However, there is sound evidence suggesting that other mechanisms of drug-induced cell death, such as necroptosis, ferroptosis, autophagy, etc. may significantly contribute to the fate of cancer cells. Molecular cross-talks between apoptotic and nonapoptotic death pathways underlie the successes and the failures of therapeutic interventions. Here we discuss the nuances of the antitumor action of two groups of the widely used anticancer drugs, i.e., platinum salts and taxane derivatives. The available data suggest that intelligent interference with the choice of cell death pathways may open novel opportunities for cancer treatment.
Collapse
Affiliation(s)
- Elena V Sazonova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Evgeny N Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, 197758, Russia.
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, St.-Petersburg, 194100, Russia.
- Department of Oncology, I.I. Mechnikov North-Western Medical University, St.-Petersburg, 195067, Russia.
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, 119991, Russia.
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, 17177, Stockholm, Sweden.
| |
Collapse
|
34
|
Nano-Motion Analysis for Rapid and Label Free Assessing of Cancer Cell Sensitivity to Chemotherapeutics. ACTA ACUST UNITED AC 2021; 57:medicina57050446. [PMID: 34064439 PMCID: PMC8147836 DOI: 10.3390/medicina57050446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Optimization of chemotherapy is crucial for cancer patients. Timely and costly efficient treatments are emerging due to the increasing incidence of cancer worldwide. Here, we present a methodology of nano-motion analysis that could be developed to serve as a screening tool able to determine the best chemotherapy option for a particular patient within hours. Materials and Methods: Three different human cancer cell lines and their multidrug resistant (MDR) counterparts were analyzed with an atomic force microscope (AFM) using tipless cantilevers to adhere the cells and monitor their nano-motions. Results: The cells exposed to doxorubicin (DOX) differentially responded due to their sensitivity to this chemotherapeutic. The death of sensitive cells corresponding to the drop in signal variance occurred in less than 2 h after DOX application, while MDR cells continued to move, even showing an increase in signal variance. Conclusions: Nano-motion sensing can be developed as a screening tool that will allow simple, inexpensive and quick testing of different chemotherapeutics for each cancer patient. Further investigations on patient-derived tumor cells should confirm the method’s applicability.
Collapse
|
35
|
Yuan D, Luo J, Sun Y, Hao L, Zheng J, Yang Z. PCOS follicular fluid derived exosomal miR-424-5p induces granulosa cells senescence by targeting CDCA4 expression. Cell Signal 2021; 85:110030. [PMID: 33930499 DOI: 10.1016/j.cellsig.2021.110030] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/10/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous reproductive disease, characterized by increased ovarian androgen biosynthesis, chronic anovulation and polycystic ovaries. The objective of this study was to identify the altered miRNA expression profiles in follicular fluid derived exosomes isolated from PCOS patients and to investigate the molecular functions of exosomal miR-424-5p. Herein, small RNA sequencing showed that twenty-five miRNAs were differentially expressed between control and PCOS group. The alterations in the miRNA profile were related to the endocrine resistance, cell growth and proliferation, cellular senescence and insulin signaling pathway. Among these differentially expressed miRNAs, we found that the expression of miR-424-5p was significantly decreased in PCOS exosomes and primary granulosa cells (GCs). Exosome-enriched miR-424-5p significantly promoted GCs senescence and suppressed cell proliferation. Similar to the results obtained in the cells transfected with miR-424-5p mimic, miR-424-5p mimic significantly decreased cell proliferation ability and induced senescence, but treatment with miR-424-5p inhibitor got the opposite results. In addition, cell division cycle associated 4 (CDCA4) gene displayed an inverse expression pattern to those of miR-424-5p, was identified as the direct target of miR-424-5p. Overexpression of CDCA4 reversed the effects of exosomal miR-424-5p on GCs via activation of Rb/E2F1 signaling pathway. These results demonstrate that exosomal miR-424-5p inhibits GCs proliferation and induces cellular senescence in PCOS through blocking CDCA4-mediated Rb/E2F1 signaling. Our findings provide new information on abnormal follicular development in PCOS.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jing Luo
- Department of Pathology, Basic Medical College of Chongqing Medical University, 400016, PR China
| | - Yixuan Sun
- Department of Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Lijuan Hao
- Department of Reproductive Endocrinology, Chongqing Health Center for Women and Children, Chongqing 401147, PR China
| | - Jing Zheng
- Department of Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Zhu Yang
- Department of Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| |
Collapse
|
36
|
Ainslie A, Huiting W, Barazzuol L, Bergink S. Genome instability and loss of protein homeostasis: converging paths to neurodegeneration? Open Biol 2021; 11:200296. [PMID: 33878947 PMCID: PMC8059563 DOI: 10.1098/rsob.200296] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genome instability and loss of protein homeostasis are hallmark events of age-related diseases that include neurodegeneration. Several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis are characterized by protein aggregation, while an impaired DNA damage response (DDR) as in many genetic DNA repair disorders leads to pronounced neuropathological features. It remains unclear to what degree these cellular events interconnect with each other in the development of neurological diseases. This review highlights how the loss of protein homeostasis and genome instability influence one other. We will discuss studies that illustrate this connection. DNA damage contributes to many neurodegenerative diseases, as shown by an increased level of DNA damage in patients, possibly due to the effects of protein aggregates on chromatin, the sequestration of DNA repair proteins and novel putative DNA repair functions. Conversely, genome stability is also important for protein homeostasis. For example, gene copy number variations and the loss of key DDR components can lead to marked proteotoxic stress. An improved understanding of how protein homeostasis and genome stability are mechanistically connected is needed and promises to lead to the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Anna Ainslie
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Wouter Huiting
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
37
|
Zhong B, Yu J, Hou Y, Ai N, Ge W, Lu JJ, Chen X. A novel strategy for glioblastoma treatment by induction of noptosis, an NQO1-dependent necrosis. Free Radic Biol Med 2021; 166:104-115. [PMID: 33600944 DOI: 10.1016/j.freeradbiomed.2021.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 01/02/2023]
Abstract
Glioblastoma (GBM) is one of the most prevalent malignant primary tumors in the human brain. Temozolomide (TMZ), the chemotherapeutic drug for GBM treatment, induces apoptosis. Unfortunately, apoptosis-resistance to TMZ results in treatment failure. GBM shows enhanced expression of NAD(P)H: quinone oxidoreductase 1 (NQO1). Recently, noptosis, a type of NQO1-dependent necrosis, was proposed. Here, we identified that tanshindiol B (TSB) inhibits GBM growth by induction of noptosis. TSB triggered significant cell death, which did not fit the criteria of apoptosis but oxidative stress-induced necrosis. Molecular docking, cellular thermal shift assay, and NQO1 activity assay revealed that TSB bind to and promptly activated NQO1 enzyme activity. As the substrate of NQO1, TSB induced oxidative stress, which resulted in dramatic DNA damage, poly (ADP-ribose) polymerase 1 (PARP1) hyperactivation, and NAD+ depletion, leading to necrotic cell death. These effects of TSB were completely abolished by specific NQO1 inhibitor dicoumarol (DIC). Furthermore, the c-Jun N-terminal kinase 1/2 (JNK1/2) plays an essential role in mediating TSB-induced cell death. Besides, TSB significantly suppressed tumor growth in a zebrafish xenograft model mediated by NQO1. In conclusion, these results showed that TSB was an NQO1 substrate and triggered noptosis of GBM. TSB exhibited anti-tumor potentials in GBM both in vitro and in vivo. This study provides a novel strategy for fighting GBM through the induction of noptosis.
Collapse
Affiliation(s)
- Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Nana Ai
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
38
|
Hamad SH, Brinkman MC, Tsai YH, Mellouk N, Cross K, Jaspers I, Clark PI, Granville CA. Pilot Study to Detect Genes Involved in DNA Damage and Cancer in Humans: Potential Biomarkers of Exposure to E-Cigarette Aerosols. Genes (Basel) 2021; 12:genes12030448. [PMID: 33809907 PMCID: PMC8004185 DOI: 10.3390/genes12030448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
There is a paucity of data on how gene expression enables identification of individuals who are at risk of exposure to carcinogens from e-cigarette (e-cig) vaping; and how human vaping behaviors modify these exposures. This pilot study aimed to identify genes regulated from acute exposure to e-cig using RT-qPCR. Three subjects (2M and 1F) made three visits to the lab (nTOT = 9 visits); buccal and blood samples were collected before and immediately after scripted vaping 20 puffs (nTOT = 18 samples); vaping topography data were collected in each session. Subjects used their own e-cig containing 50:50 propylene glycol (PG):vegetable glycerine (VG) +3-6 mg/mL nicotine. The tumor suppressor TP53 was significantly upregulated in buccal samples. TP53 expression was puff volume and flow rate dependent in both tissues. In blood, the significant downregulation of N-methylpurine DNA glycosylase (MPG), a base excision repair gene, was consistent across all subjects. In addition to DNA repair pathway, cell cycle and cancer pathways were the most enriched pathways in buccal and blood samples, respectively. This pilot study demonstrates that vaping 20 puffs significantly alters expression of TP53 in human tissues; vaping behavior is an important modifier of this response. A larger study is needed to confirm these relationships.
Collapse
Affiliation(s)
- Samera H. Hamad
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Correspondence: (S.H.H.); (P.I.C.); (C.A.G.); Tel.: +1-608-217-2829 (S.H.H.); +1-443-791-3553 (P.I.C.); +1-614-607-2766 (C.A.G.)
| | | | - Yi-Hsuan Tsai
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Namya Mellouk
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Kandice Cross
- Gad Consulting Services, Risk Assessment, Consulting in Raleigh, Raleigh, NC 27609, USA;
| | - Ilona Jaspers
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pamela I. Clark
- School of Public Health, University of Maryland, College Park, MD 20742, USA
- Correspondence: (S.H.H.); (P.I.C.); (C.A.G.); Tel.: +1-608-217-2829 (S.H.H.); +1-443-791-3553 (P.I.C.); +1-614-607-2766 (C.A.G.)
| | - Courtney A. Granville
- Drug Information Association, Washington, DC 20036, USA
- Correspondence: (S.H.H.); (P.I.C.); (C.A.G.); Tel.: +1-608-217-2829 (S.H.H.); +1-443-791-3553 (P.I.C.); +1-614-607-2766 (C.A.G.)
| |
Collapse
|
39
|
Khalfin B, Lichtenstein A, Albeck A, Nathan I. Targeting Necrosis: Elastase-like Protease Inhibitors Curtail Necrotic Cell Death Both In Vitro and in Three In Vivo Disease Models. J Med Chem 2021; 64:1510-1523. [PMID: 33522230 DOI: 10.1021/acs.jmedchem.0c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Necrosis is the main mode of cell death, which leads to multiple clinical conditions affecting hundreds of millions of people worldwide. Its molecular mechanisms are poorly understood, hampering therapeutics development. Here, we identify key proteolytic activities essential for necrosis using various biochemical approaches, enzymatic assays, medicinal chemistry, and siRNA library screening. These findings provide strategies to treat and prevent necrosis, including known medicines used for other indications, siRNAs, and establish a platform for the design of new inhibitory molecules. Indeed, inhibitors of these pathways demonstrated protective activity in vitro and in vivo in animal models of traumatic brain injury, acute myocardial infarction, and drug-induced liver toxicity. Consequently, this study may pave the way for the development of novel therapies for the treatment, inhibition, or prevention of a large number of hitherto untreatable diseases.
Collapse
Affiliation(s)
- Boris Khalfin
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Alexandra Lichtenstein
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Amnon Albeck
- The Julius Spokojny Bioorganic Chemistry Laboratory, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
- Soroka University Medical Center, Beer Sheva 8457108, Israel
| |
Collapse
|
40
|
Liang R, Zhu X. UC2288 induces cell apoptosis of nasopharyngeal carcinoma cells via inhibiting EGFR/ERK pathway. J Cancer 2021; 12:988-995. [PMID: 33442398 PMCID: PMC7797659 DOI: 10.7150/jca.48282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/30/2020] [Indexed: 02/04/2023] Open
Abstract
Radiotherapy and chemotherapy are the standard care for patients with nasopharyngeal carcinoma (NPC). These treatments cause some severe toxicity and about 30% of patients develop recurrence and metastases after treatment. UC2288 is structurally similar to sorafenib, a multikinase inhibitor. However, studies about the effects of UC2288 on tumors are few. Here, UC2288 inhibited proliferation and induced apoptosis of NPC cells in a dose- and time-dependent manner. Using western blot and immunofluorescence assay, we found that UC2288 promoted DNA damage. In addition, UC2288 decreased the phosphorylation of EGFR and ERK. Moreover, pretreatment with EGF partially rescued cell viability suppressed by UC2288. In conclusion, UC2288 suppressed the growth of NPC via inhibiting EGFR/ERK pathway and it may be a promising therapeutic option for NPC.
Collapse
Affiliation(s)
- Renba Liang
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China.,Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, P.R. China
| | - Xiaodong Zhu
- Department of Oncology, Wuming Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China.,Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, P.R. China.,Key Laboratory of Early Prevention and Treatment for Regional High-Incidence-Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, P.R. China
| |
Collapse
|
41
|
Ward AI, Olmo F, Atherton RL, Taylor MC, Kelly JM. Trypanosoma cruzi amastigotes that persist in the colon during chronic stage murine infections have a reduced replication rate. Open Biol 2020; 10:200261. [PMID: 33321060 PMCID: PMC7776577 DOI: 10.1098/rsob.200261] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic Trypanosoma cruzi infections are typically lifelong, with small numbers of parasites surviving in restricted tissue sites, which include the gastrointestinal tract. There is considerable debate about the replicative status of these persistent parasites and whether there is a role for dormancy in long-term infection. Here, we investigated T. cruzi proliferation in the colon of chronically infected mice using 5-ethynyl-2′deoxyuridine incorporation into DNA to provide ‘snapshots’ of parasite replication status. Highly sensitive imaging of the extremely rare infection foci, at single-cell resolution, revealed that parasites are three times more likely to be in S-phase during the acute stage than during the chronic stage. By implication, chronic infections of the colon are associated with a reduced rate of parasite replication. Despite this, very few host cells survived infection for more than 14 days, suggesting that T. cruzi persistence continues to involve regular cycles of replication, host cell lysis and re-infection. We could find no evidence for wide-spread dormancy in parasites that persist in this tissue reservoir.
Collapse
Affiliation(s)
- Alexander I Ward
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Richard L Atherton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - John M Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
42
|
Zamaraev AV, Volik PI, Nilov DK, Turkina MV, Egorshina AY, Gorbunova AS, Iarovenko SI, Zhivotovsky B, Kopeina GS. Requirement for Serine-384 in Caspase-2 processing and activity. Cell Death Dis 2020; 11:825. [PMID: 33011746 PMCID: PMC7532978 DOI: 10.1038/s41419-020-03023-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Caspase-2 is a unique and conservative cysteine protease which plays an important role in several cellular processes including apoptotic cell death. Although the molecular mechanisms of its activation remain largely unclear, a major role belongs to the architecture of the caspase-2 active center. We demonstrate that the substitution of the putative phosphorylation site of caspase-2, Serine-384 to Alanine, blocks caspase-2 processing and decreases its enzymatic activity. Strikingly, in silico analysis using molecular dynamics simulations has shown that Serine-384 is crucially involved in interactions within the caspase-2 active center. It stabilizes Arginine-378, which forms a crucial hydrogen bond with the aspartate residue of a substrate. Hence, Serine-384 is essential for supporting a proper architecture of the active center of caspase-2. Moreover, molecular modeling strongly proved steric inaccessibility of Ser-384 to be phosphorylated. Importantly, a multiple alignment has demonstrated that both Serine-384 and Arg-378 residues are highly conservative across all members of caspase family, which allows us to suggest that this diade is indispensable for caspase processing and activity. Spontaneous mutations in this diade might influence oncosuppressive function of caspases, in particular of caspase-2. Likewise, the mutation of Ser-384 is associated with the development of lung squamous cell carcinoma and adenocarcinoma. Taken together, we have uncovered a central feature of the caspase-2 activation mechanism which is crucial for the regulation of its signaling network.
Collapse
Affiliation(s)
- Alexey V Zamaraev
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Pavel I Volik
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Dmitry K Nilov
- Belozersky Institute of Physicochemical Biology, MV Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Maria V Turkina
- Faculty of Medicine and Heath Sciences, Department of Clinical and Experimental Medicine, Linköping University, 58185, Linköping, Sweden
| | | | - Anna S Gorbunova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991
| | | | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, 17177, Stockholm, Sweden
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia, 119991.
| |
Collapse
|
43
|
Zdioruk M, Want A, Mietelska-Porowska A, Laskowska-Kaszub K, Wojsiat J, Klejman A, Użarowska E, Koza P, Olejniczak S, Pikul S, Konopka W, Golab J, Wojda U. A New Inhibitor of Tubulin Polymerization Kills Multiple Cancer Cell Types and Reveals p21-Mediated Mechanism Determining Cell Death after Mitotic Catastrophe. Cancers (Basel) 2020; 12:cancers12082161. [PMID: 32759730 PMCID: PMC7463620 DOI: 10.3390/cancers12082161] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Induction of mitotic catastrophe through the disruption of microtubules is an established target in cancer therapy. However, the molecular mechanisms determining the mitotic catastrophe and the following apoptotic or non-apoptotic cell death remain poorly understood. Moreover, many existing drugs targeting tubulin, such as vincristine, have reduced efficacy, resulting from poor solubility in physiological conditions. Here, we introduce a novel small molecule 2-aminoimidazoline derivative—OAT-449, a synthetic water-soluble tubulin inhibitor. OAT-449 in a concentration range from 6 to 30 nM causes cell death of eight different cancer cell lines in vitro, and significantly inhibits tumor development in such xenograft models as HT-29 (colorectal adenocarcinoma) and SK-N-MC (neuroepithelioma) in vivo. Mechanistic studies showed that OAT-449, like vincristine, inhibited tubulin polymerization and induced profound multi-nucleation and mitotic catastrophe in cancer cells. HeLa and HT-29 cells within 24 h of treatment arrested in G2/M cell cycle phase, presenting mitotic catastrophe features, and 24 h later died by non-apoptotic cell death. In HT-29 cells, both agents altered phosphorylation status of Cdk1 and of spindle assembly checkpoint proteins NuMa and Aurora B, while G2/M arrest and apoptosis blocking was consistent with p53-independent accumulation in the nucleus and largely in the cytoplasm of p21/waf1/cip1, a key determinant of cell fate programs. This is the first common mechanism for the two microtubule-dissociating agents, vincristine and OAT-449, determining the cell death pathway following mitotic catastrophe demonstrated in HT-29 cells.
Collapse
Affiliation(s)
- Mykola Zdioruk
- Laboratory of Preclinical Testing of Higher Standards, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland; (M.Z.); (A.W.); (A.M.-P.); (K.L.-K.); (J.W.)
| | - Andrew Want
- Laboratory of Preclinical Testing of Higher Standards, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland; (M.Z.); (A.W.); (A.M.-P.); (K.L.-K.); (J.W.)
| | - Anna Mietelska-Porowska
- Laboratory of Preclinical Testing of Higher Standards, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland; (M.Z.); (A.W.); (A.M.-P.); (K.L.-K.); (J.W.)
| | - Katarzyna Laskowska-Kaszub
- Laboratory of Preclinical Testing of Higher Standards, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland; (M.Z.); (A.W.); (A.M.-P.); (K.L.-K.); (J.W.)
| | - Joanna Wojsiat
- Laboratory of Preclinical Testing of Higher Standards, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland; (M.Z.); (A.W.); (A.M.-P.); (K.L.-K.); (J.W.)
| | - Agata Klejman
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland; (A.K.); (E.U.); (P.K.); (W.K.)
| | - Ewelina Użarowska
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland; (A.K.); (E.U.); (P.K.); (W.K.)
| | - Paulina Koza
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland; (A.K.); (E.U.); (P.K.); (W.K.)
| | | | - Stanislaw Pikul
- OncoArendi Therapeutics, 02-089 Warsaw, Poland; (S.O.); (S.P.)
| | - Witold Konopka
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland; (A.K.); (E.U.); (P.K.); (W.K.)
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Urszula Wojda
- Laboratory of Preclinical Testing of Higher Standards, Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland; (M.Z.); (A.W.); (A.M.-P.); (K.L.-K.); (J.W.)
- Correspondence: ; Tel.: +48-22-5892578
| |
Collapse
|
44
|
Vitovcova B, Skarkova V, Rudolf K, Rudolf E. Biology of Glioblastoma Multiforme-Exploration of Mitotic Catastrophe as a Potential Treatment Modality. Int J Mol Sci 2020; 21:ijms21155324. [PMID: 32727112 PMCID: PMC7432846 DOI: 10.3390/ijms21155324] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) represents approximately 60% of all brain tumors in adults. This malignancy shows a high biological and genetic heterogeneity associated with exceptional aggressiveness, leading to a poor survival of patients. This review provides a summary of the basic biology of GBM cells with emphasis on cell cycle and cytoskeletal apparatus of these cells, in particular microtubules. Their involvement in the important oncosuppressive process called mitotic catastrophe will next be discussed along with select examples of microtubule-targeting agents, which are currently explored in this respect such as benzimidazole carbamate compounds. Select microtubule-targeting agents, in particular benzimidazole carbamates, induce G2/M cell cycle arrest and mitotic catastrophe in tumor cells including GBM, resulting in phenotypically variable cell fates such as mitotic death or mitotic slippage with subsequent cell demise or permanent arrest leading to senescence. Their effect is coupled with low toxicity in normal cells and not developed chemoresistance. Given the lack of efficient cytostatics or modern molecular target-specific compounds in the treatment of GBM, drugs inducing mitotic catastrophe might offer a new, efficient alternative to the existing clinical management of this at present incurable malignancy.
Collapse
|
45
|
|
46
|
Wang C, Li TK, Zeng CH, Fan R, Wang Y, Zhu GY, Guo JH. Iodine‑125 seed radiation induces ROS‑mediated apoptosis, autophagy and paraptosis in human esophageal squamous cell carcinoma cells. Oncol Rep 2020; 43:2028-2044. [PMID: 32323828 PMCID: PMC7160615 DOI: 10.3892/or.2020.7576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Iodine-125 (125I) seed brachytherapy has been proven to be a safe and effective treatment for advanced esophageal cancer; however, the mechanisms underlying its actions are not completely understood. In the present study, the anti-cancer mechanisms of 125I seed radiation in human esophageal squamous cell carcinoma (ESCC) cells (Eca-109 and KYSE-150) were determined, with a particular focus on the mode of cell death. The results showed that 125I seed radiation significantly inhibited cell proliferation, and induced DNA damage and G2/M cell cycle arrest in both ESCC cell lines. 125I seed radiation induced cell death through both apoptosis and paraptosis. Eca-109 cells were primarily killed by inducing caspase-dependent apoptosis, with 6 Gy radiation resulting in the largest response. KYSE-150 cells were primarily killed by inducing paraptosis, which is characterized by extensive cytoplasmic vacuolation. 125I seed radiation induced autophagic flux in both ESCC cell lines, and autophagy inhibition by 3-methyladenine enhanced radiosensitivity. Furthermore 125I seed radiation induced increased production of reactive oxygen species (ROS) in both ESCC cell lines. Treatment with an ROS scavenger significantly attenuated the effects of 125I seed radiation on endoplasmic reticulum stress, autophagy, apoptosis, paraptotic vacuoles and reduced cell viability. In vivo experiments showed that 125I seed brachytherapy induced ROS generation, initiated cell apoptosis and potential paraptosis, and inhibited cell proliferation and tumor growth. In summary, the results demonstrate that in ESCC cells, 125I seed radiation induces cell death through both apoptosis and paraptosis; and at the same time initiates protective autophagy. Additionally, 125I seed radiation-induced apoptosis, paraptosis and autophagy was considerably mediated by ROS.
Collapse
Affiliation(s)
- Chao Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Tian-Kuan Li
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chu-Hui Zeng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Rui Fan
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yong Wang
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Guang-Yu Zhu
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jin-He Guo
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|