1
|
Kaminska D. Alternative Splicing Regulation in Metabolic Disorders. Obes Rev 2025:e13950. [PMID: 40425033 DOI: 10.1111/obr.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 03/20/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025]
Abstract
Alternative splicing (AS) is a fundamental mechanism for enhancing transcriptome diversity and regulating gene expression, crucial for various cellular processes and the development of complex traits. This review examines the role of AS in metabolic disorders, including obesity, weight loss, dyslipidemias, and metabolic syndrome. We explore the molecular mechanisms underlying AS regulation, focusing on the interplay between cis-acting elements and trans-acting factors, and the influence of RNA-binding proteins (RBPs). Advances in high-throughput sequencing and bioinformatics have unveiled the extensive landscape of AS events across different tissues and conditions, highlighting the importance of tissue-specific splicing in metabolic regulation. We discuss the impact of genetic variants on AS, with a particular emphasis on splicing quantitative trait loci (sQTLs) and their association with cardiometabolic traits. The review also covers the regulation of spliceosome components by phosphorylation, the role of m6A modification in AS, and the interaction between transcription and splicing. Additionally, we address the clinical relevance of AS, illustrating how splicing misregulation contributes to metabolic diseases and the potential for therapeutic interventions targeting splicing mechanisms. This comprehensive overview underscores the significance of AS in metabolic health and disease, advocating for further research to harness its therapeutic potential.
Collapse
Affiliation(s)
- Dorota Kaminska
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
2
|
Tang H, Jiang X, Zhu L, Xu L, Wang X, Li H, Gao F, Liu X, Ren C, Zhao Y. Clinicopathologic and molecular characteristics of neuroendocrine carcinomas of the gallbladder. Histol Histopathol 2025; 40:389-400. [PMID: 39041213 DOI: 10.14670/hh-18-788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Gallbladder neuroendocrine carcinomas (GB-NECs) are a rare subtype of malignant gallbladder cancer (GBC). The genetic and molecular characteristics of GB-NECs are rarely reported. This study aims to assess the frequency of microsatellite instability (MSI) in GB-NECs and characterize their clinicopathologic and molecular features in comparison with gallbladder adenocarcinomas (GB-ADCs). Data from six patients with primary GB-NECs and 13 with GB-ADCs were collected and reevaluated. MSI assay, immunohistochemistry for mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2), comprehensive genomic profiling (CGP) via next-generation sequencing (NGS), and evaluation of tumor mutation burden (TMB) were conducted on these samples. The six GB-NEC cases were all female, with a mean age of 62.0±9.2 years. Of these, two cases were diagnosed as large cell neuroendocrine carcinomas (LCNECs), while the remaining four were small cell neuroendocrine carcinomas (SCNECs). Microsatellite states observed in both GB-NECs and GB-ADCs were consistently microsatellite stable (MSS). Notably, TP53 (100%, 6/6) and RB1 (100%, 6/6) exhibited the highest mutation frequency in GB-NECs, followed by SMAD4 (50%, 3/6), GNAS (50%, 3/6), and RICTOR (33%, 2/6), with RB1, GNAS, and RICTOR specifically present in GB-NECs. Immunohistochemical (IHC) assays of p53 and Rb in the six GB-NECs were highly consistent with genetic mutations detected by targeted NGS. Moreover, no statistical difference was observed in TMB between GB-NECs and GB-ADCs (p=0.864). Although overall survival in GB-NEC patients tended to be worse than in GB-ADC patients, this difference did not reach statistical significance (p=0.119). This study has identified the microsatellite states and molecular mutation features of GB-NECs, suggesting that co-mutations in TP53 and RB1 may signify a neuroendocrine inclination in GB-NECs. The IHC assay provides an effective complement to targeted NGS for determining the functional status of p53 and Rb in clinical practice.
Collapse
Affiliation(s)
- Hui Tang
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaojun Jiang
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lili Zhu
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Liming Xu
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoxi Wang
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feifei Gao
- Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinxin Liu
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chuanli Ren
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China
| | - Yan Zhao
- Medical Research Center, Northern Jiangsu People's Hospital, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
3
|
Tan H, Gotea V, Jaiswal SK, Seidel NE, Holland DO, Fedkenheuer K, Elkahloun AG, Bang-Christensen SR, Elnitski L. iSoMAs: Finding isoform expression and somatic mutation associations in human cancers. PLoS Comput Biol 2025; 21:e1012847. [PMID: 40053523 PMCID: PMC12052144 DOI: 10.1371/journal.pcbi.1012847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/05/2025] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Aberrant alternative splicing, prevalent in cancer, impacts various cancer hallmarks involving proliferation, angiogenesis, and invasion. Splicing disruption often results from somatic point mutations rewiring functional pathways to support cancer cell survival. We introduce iSoMAs (iSoform expression and somatic Mutation Association), an efficient computational pipeline leveraging principal component analysis technique, to explore how somatic mutations influence transcriptome-wide gene expression at the isoform level. Applying iSoMAs to 33 cancer types comprising 9,738 tumor samples in The Cancer Genome Atlas, we identified 908 somatically mutated genes significantly associated with altered isoform expression across three or more cancer types. Mutations linked to differential isoform expression occurred through both cis- and trans-acting mechanisms, involving well-known oncogenes/suppressor genes, RNA binding protein and splicing factor genes. With wet-lab experiments, we verified direct association between TP53 mutations and differential isoform expression in cell cycle genes. Additional iSoMAs genes have been validated in the literature with independent cohorts and/or methods. Despite the complexity of cancer, iSoMAs attains computational efficiency via dimension reduction strategy and reveals critical associations between regulatory factors and transcriptional landscapes.
Collapse
Affiliation(s)
- Hua Tan
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Valer Gotea
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sushil K. Jaiswal
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nancy E. Seidel
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David O. Holland
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin Fedkenheuer
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Abdel G. Elkahloun
- Microarrays and Single-Cell Genomics Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sara R. Bang-Christensen
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Laura Elnitski
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Ho KH, Trapp M, Guida C, Ivanova EL, De Jaime-Soguero A, Jabali A, Thomas C, Salasova A, Bernatík O, Salio C, Horschitz S, Hasselblatt M, Sassoè-Pognetto M, Čajánek L, Ishikawa H, Schroten H, Schwerk C, Acebrón SP, Angel P, Koch P, Patrizi A. Activation of Wnt/β-catenin signaling is critical for the tumorigenesis of choroid plexus. Neuro Oncol 2025; 27:106-122. [PMID: 39215664 PMCID: PMC11726344 DOI: 10.1093/neuonc/noae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP) is the secretory epithelial structure located in the brain ventricles. Choroid plexus tumors (CPTs) are rare neoplasms predominantly occurring in young patients with intensified malignancy in children. CPT treatment is hindered by insufficient knowledge of tumor pathology and the limited availability of valid models. METHODS Genomic and transcriptomic data from CPT patients were analyzed to identify the putative pathological pathway. Cellular and molecular techniques were employed to validate bioinformatic results in CPT patient samples. Pharmacologic inhibition of Wnt/β-catenin signaling was assessed in CPT cells. Cell-based assays of ChP cell lines were performed following CRISPR-Cas9-derived knockout and overexpression of Wnt/β-catenin pathway genes. A 3D CPT model was generated through CRISPR-Cas9-derived knockout of APC. RESULTS We discovered that Wnt/β-catenin signaling is activated in human CPTs, likely as a consequence of large-scale chromosomal instability events of the CPT genomes. We demonstrated that CPT-derived cells depend on autocrine Wnt/β-catenin signaling for survival. Constitutive Wnt/β-catenin pathway activation, either through knockout of the negative regulator APC or overexpression of the ligand WNT3A, induced tumorigenic properties in ChP 2D in vitro models. Increased activation of the Wnt/β-catenin pathway in ChP organoids, through treatment with a potent GSK3β inhibitor, reduced the differentiation of mature ChP epithelial cells. Remarkably, the depletion of APC was sufficient to induce the oncogenic transformation of ChP organoids. CONCLUSIONS Our research identifies Wnt/β-catenin signaling as a critical driver of CPT tumorigenesis and provides the first 3D in vitro model for future pathological and therapeutic studies of CPT.
Collapse
Affiliation(s)
- Kim Hoa Ho
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marleen Trapp
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Catello Guida
- German Cancer Research Center, Heidelberg, Germany
- Hector Institute for Translational Brain Research, Mannheim, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ekaterina L Ivanova
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | | | - Ammar Jabali
- German Cancer Research Center, Heidelberg, Germany
- Hector Institute for Translational Brain Research, Mannheim, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Alena Salasova
- Danish Research Institute of Translational Neuroscience DANDRITE, and Center of Excellence PROMEMO, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ondřej Bernatík
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Chiara Salio
- Department of Veterinary Sciences, Turin University, Grugliasco, Italy
| | - Sandra Horschitz
- German Cancer Research Center, Heidelberg, Germany
- Hector Institute for Translational Brain Research, Mannheim, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | | | - Lukáš Čajánek
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
- Laboratory of Cilia and Centrosome Biology, Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Horst Schroten
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Infectious Diseases, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sergio P Acebrón
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany
| | - Philipp Koch
- German Cancer Research Center, Heidelberg, Germany
- Hector Institute for Translational Brain Research, Mannheim, Germany
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Annarita Patrizi
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
- Interdisciplinary Center for Neuroscience, Heidelberg University, Heidelberg, Germany
- Schaller Research Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Wang J, Li Q, Li H, Liu X, Hu Y, Bai Y, Yang K. A novel RUNX2 splice site mutation in Chinese associated with cleidocranial dysplasia. Heliyon 2024; 10:e40277. [PMID: 39584128 PMCID: PMC11585700 DOI: 10.1016/j.heliyon.2024.e40277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Pathogenic genes in most patients with cleidocranial dysplasia have been confirmed to be runt-related transcription factor 2 (RUNX2), which controls mutations in specific osteoblast transcription factors and affects skull ossification and suture adhesion. This study aimed to explore the role of RUNX2 mutations. Here, we report a rare case of a splice site mutation in a Chinese population with typical cleidocranial dysplasia symptoms, cranial suture insufficiency, clavicle dysplasia, and dental anomalies. Peripheral blood samples from the proband and her mother were subjected to Sanger sequencing. The expression levels of RUNX2 before and after mutation were verified using digital PCR (dPCR). The results revealed a classic mutation at the fifth base of the intron 5 initiation splicing sequence (NM001024630.4: C.685+5G > A). The mutation rate in the proband was 53 %, while the mother did not have any mutations. The secondary RNA structure of the RUNX2 gene in the progenitor was predicted to change, and the structural free energy was low in the wild-type, with the stem folded first and the structure being relatively stable. After the mutation, the free energy increased. This finding enriches the RUNX2 mutation library of CD-related genes in Chinese individuals.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, No.4 Tiantan Xili, Dong cheng District, Beijing, 100050, China
| | - Qiuying Li
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, No.4 Tiantan Xili, Dong cheng District, Beijing, 100050, China
| | - Hongyu Li
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiu Liu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Ying Hu
- Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, No.4 Tiantan Xili, Dong cheng District, Beijing, 100050, China
| | - Kai Yang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, No.4 Tiantan Xili, Dong cheng District, Beijing, 100050, China
| |
Collapse
|
6
|
Miskalis A, Shirguppe S, Winter J, Elias G, Swami D, Nambiar A, Stilger M, Woods WS, Gosstola N, Gapinske M, Zeballos A, Moore H, Maslov S, Gaj T, Perez-Pinera P. SPLICER: a highly efficient base editing toolbox that enables in vivo therapeutic exon skipping. Nat Commun 2024; 15:10354. [PMID: 39609418 PMCID: PMC11604662 DOI: 10.1038/s41467-024-54529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Exon skipping technologies enable exclusion of targeted exons from mature mRNA transcripts, which have broad applications in medicine and biotechnology. Existing techniques including antisense oligonucleotides, targetable nucleases, and base editors, while effective for specific applications, remain hindered by transient effects, genotoxicity, and inconsistent exon skipping. To overcome these limitations, here we develop SPLICER, a toolbox of next-generation base editors containing near-PAMless Cas9 nickase variants fused to adenosine or cytosine deaminases for the simultaneous editing of splice acceptor (SA) and splice donor (SD) sequences. Synchronized SA and SD editing improves exon skipping, reduces aberrant splicing, and enables skipping of exons refractory to single splice site editing. To demonstrate the therapeutic potential of SPLICER, we target APP exon 17, which encodes amino acids that are cleaved to form Aβ plaques in Alzheimer's disease. SPLICER reduces the formation of Aβ42 peptides in vitro and enables efficient exon skipping in a mouse model of Alzheimer's disease. Overall, SPLICER is a widely applicable and efficient exon skipping toolbox.
Collapse
Affiliation(s)
- Angelo Miskalis
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shraddha Shirguppe
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jackson Winter
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Gianna Elias
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Devyani Swami
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Ananthan Nambiar
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michelle Stilger
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Wendy S Woods
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Nicholas Gosstola
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michael Gapinske
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Alejandra Zeballos
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Hayden Moore
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sergei Maslov
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thomas Gaj
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Pablo Perez-Pinera
- The Grainger College of Engineering, Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
7
|
Oktelik FB, Wang M, Keles S, Eke Gungor H, Cansever M, Can S, Karakoc-Aydiner E, Baris S, Schmitz-Abe K, Benamar M, Chatila TA. DOCK8 deficiency due to a deep intronic variant in two kindreds with hyper-IgE syndrome. Clin Immunol 2024; 268:110384. [PMID: 39437980 PMCID: PMC11531991 DOI: 10.1016/j.clim.2024.110384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) deficiency underlies the majority of cases of patients with autosomal recessive form of the hyper-immunoglobulin E syndrome (HIES). Most DOCK8 mutations involve deletions and splice junction mutations that abrogate protein expression. However, a few patients whose presentation is reminiscent of DOCK8 deficiency have no identifiable mutations. Using Whole Exome Sequencing (WES), we identified a deep intronic homozygous DOCK8 variant located in intron 36 (c.4626 + 76 A > G) in two unrelated patients with features of HIES that resulted in an in-frame 75 base pair intronic sequence insertion in DOCK8 cDNA, resulting in a premature stop codon (p.S1542ins6Ter). This variant resulted in variable decrease in DOCK8 expression that was associated with impaired T cell receptor-triggered actin polymerization, decreased IL-6-induced STAT3 phosphorylation, reduced expression of the Th17 cell markers CCR6 and IL-17, and higher frequencies of GATA3+ T cells indicative of Th2 skewing. Our approach extends the reach of WES in identifying disease-related intronic variants. It highlights the role of non-coding mutations in immunodeficiency disorders, including DOCK8 deficiency, and emphasizes the need to explore these mutations in unexplained inborn errors of immunity.
Collapse
Affiliation(s)
- Fatma Betul Oktelik
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Immunology, Aziz Sancar Institute of Experimental Medicine (Aziz Sancar DETAE), Istanbul University, Istanbul, Turkiye; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Muyun Wang
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA
| | - Sevgi Keles
- Necmettin Erbakan University, Medical Faculty, Department of Pediatric Allergy and Immunology, Konya, Turkiye
| | - Hatice Eke Gungor
- University of Health Sciences, Kayseri City Hospital, Department of Pediatric Allergy and Immunology, Kayseri, Turkiye
| | - Murat Cansever
- University of Health Sciences, Kayseri City Hospital, Department of Pediatric Allergy and Immunology, Kayseri, Turkiye
| | - Salim Can
- Marmara University, School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkiye; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkiye; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkiye
| | - Elif Karakoc-Aydiner
- Marmara University, School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkiye; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkiye; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkiye
| | - Safa Baris
- Marmara University, School of Medicine, Division of Pediatric Allergy and Immunology, Istanbul, Turkiye; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkiye; The Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkiye
| | - Klaus Schmitz-Abe
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Division of Neonatology, Department of Pediatrics, University of Miami Miller School of Medicine and Jackson Health System, Miami, FL, USA
| | - Mehdi Benamar
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Talal A Chatila
- Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Kaur S, Vashistt J, Changotra H. Autophagy Gene BECN1 Intronic Variant rs9890617 Predisposes Individuals to Hepatitis B Virus Infection. Biochem Genet 2024; 62:3336-3349. [PMID: 38103127 DOI: 10.1007/s10528-023-10608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Beclin 1 protein encoded by the BECN1 gene plays a critical role in the autophagy pathway which is utilized by the Hepatitis B virus (HBV) for its replication. HBV is known for the subversion of the host's autophagy process for its multiplication. The aim of this study was to determine the role of BECN1 intronic variants in HBV susceptibility. Intronic region variant rs9890617 was analyzed using Human splicing finder v3.1 and was found to alter splicing signals. A total of 712 individuals (494 HBV infected and 218 healthy controls) were recruited in the study and genotyped by applying Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Statistical analysis revealed that the mutant allele T of rs9890617 was significantly associated with the overall disease risk in the allelic model (OR 1.41; 95%CI 1.00-1.99, p = 0.04). On stratifying the data based on the different stages of HBV infection, the mutant genotype showed a significant association with the chronic group in allelic (OR 1.62; 95%CI 1.11-2.39, p = 0.01), dominant (OR 1.64; 95%CI 1.07-2.52, p = 0.02), and co-dominant (OR 1.55; 95%CI 1.00-2.40, p = 0.04) models. Overall, this is the first study regarding beclin 1 variant rs9890617 and we found a significant association of the mutant T allele with the genetic predisposition to HBV infection.
Collapse
Affiliation(s)
- Sargeet Kaur
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, 173 234, India
| | - Harish Changotra
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, 143 005, India.
| |
Collapse
|
9
|
Trogdon M, Abbott K, Arang N, Lande K, Kaur N, Tong M, Bakhoum M, Gutkind JS, Stites EC. Systems modeling of oncogenic G-protein and GPCR signaling reveals unexpected differences in downstream pathway activation. NPJ Syst Biol Appl 2024; 10:75. [PMID: 39013872 PMCID: PMC11252164 DOI: 10.1038/s41540-024-00400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Mathematical models of biochemical reaction networks are an important and emerging tool for the study of cell signaling networks involved in disease processes. One promising potential application of such mathematical models is the study of how disease-causing mutations promote the signaling phenotype that contributes to the disease. It is commonly assumed that one must have a thorough characterization of the network readily available for mathematical modeling to be useful, but we hypothesized that mathematical modeling could be useful when there is incomplete knowledge and that it could be a tool for discovery that opens new areas for further exploration. In the present study, we first develop a mechanistic mathematical model of a G-protein coupled receptor signaling network that is mutated in almost all cases of uveal melanoma and use model-driven explorations to uncover and explore multiple new areas for investigating this disease. Modeling the two major, mutually-exclusive, oncogenic mutations (Gαq/11 and CysLT2R) revealed the potential for previously unknown qualitative differences between seemingly interchangeable disease-promoting mutations, and our experiments confirmed oncogenic CysLT2R was impaired at activating the FAK/YAP/TAZ pathway relative to Gαq/11. This led us to hypothesize that CYSLTR2 mutations in UM must co-occur with other mutations to activate FAK/YAP/TAZ signaling, and our bioinformatic analysis uncovers a role for co-occurring mutations involving the plexin/semaphorin pathway, which has been shown capable of activating this pathway. Overall, this work highlights the power of mechanism-based computational systems biology as a discovery tool that can leverage available information to open new research areas.
Collapse
Affiliation(s)
- Michael Trogdon
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Pfizer, La Jolla, CA, 92037, USA
| | - Kodye Abbott
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Nadia Arang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Kathryn Lande
- Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Navneet Kaur
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Melinda Tong
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Mathieu Bakhoum
- Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Edward C Stites
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
10
|
Martin MV, Aguilar-Rosas S, Franke K, Pieterse M, Langelaar JV, Schreurs R, Bijlsma MF, Besselink MG, Koster J, Timens W, Khasraw M, Ashley DM, Keir ST, Ottensmeier CH, King EV, Verheij J, Waasdorp C, Valk PJM, Engels SAG, Oostenbach E, van Dinter JT, Hofman DA, Mok JY, van Esch WJE, Wilmink H, Monkhorst K, Verheul HMW, Poel D, Hiltermann TJN, Kempen LCLTV, Groen HJM, Aerts JGJV, Heesch SV, Löwenberg B, Plasterk R, Kloosterman WP. The Neo-Open Reading Frame Peptides That Comprise the Tumor Framome Are a Rich Source of Neoantigens for Cancer Immunotherapy. Cancer Immunol Res 2024; 12:759-778. [PMID: 38573707 DOI: 10.1158/2326-6066.cir-23-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/22/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Identification of immunogenic cancer neoantigens as targets for therapy is challenging. Here, we integrate the whole-genome and long-read transcript sequencing of cancers to identify the collection of neo-open reading frame peptides (NOP) expressed in tumors. We termed this collection of NOPs the tumor framome. NOPs represent tumor-specific peptides that are different from wild-type proteins and may be strongly immunogenic. We describe a class of hidden NOPs that derive from structural genomic variants involving an upstream protein coding gene driving expression and translation of noncoding regions of the genome downstream of a rearrangement breakpoint, i.e., where no gene annotation or evidence for transcription exists. The entire collection of NOPs represents a vast number of possible neoantigens particularly in tumors with many structural genomic variants and a low number of missense mutations. We show that NOPs are immunogenic and epitopes derived from NOPs can bind to MHC class I molecules. Finally, we provide evidence for the presence of memory T cells specific for hidden NOPs in peripheral blood from a patient with lung cancer. This work highlights NOPs as a major source of possible neoantigens for personalized cancer immunotherapy and provides a rationale for analyzing the complete cancer genome and transcriptome as a basis for the detection of NOPs.
Collapse
Affiliation(s)
| | | | - Katka Franke
- CureVac Netherlands B.V., Amsterdam, the Netherlands
| | - Mark Pieterse
- CureVac Netherlands B.V., Amsterdam, the Netherlands
| | | | | | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Marc G Besselink
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands
| | - Jan Koster
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University, Medical Center Groningen, the Netherlands
| | - Mustafa Khasraw
- Duke University Medical Center, Duke University, Durham, North Carolina
| | - David M Ashley
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Stephen T Keir
- Duke University Medical Center, Duke University, Durham, North Carolina
| | - Christian H Ottensmeier
- Liverpool Head and Neck Centre, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, UK
| | - Emma V King
- Department of Otorhinolaryngology, Head and Neck Surgery, Poole Hospital, Poole, UK
| | - Joanne Verheij
- Amsterdam UMC, location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sem A G Engels
- The Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ellen Oostenbach
- The Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jip T van Dinter
- The Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Damon A Hofman
- The Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Juk Yee Mok
- Sanquin Reagents, Sanquin, Amsterdam, the Netherlands
| | | | - Hanneke Wilmink
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Kim Monkhorst
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Dennis Poel
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the, Netherlands
| | - T Jeroen N Hiltermann
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Léon C L T van Kempen
- Department of Pathology and Medical Biology, University of Groningen, University, Medical Center Groningen, the Netherlands
- University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - Harry J M Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | | | | | - Bob Löwenberg
- CureVac Netherlands B.V., Amsterdam, the Netherlands
| | | | | |
Collapse
|
11
|
Duman ET, Sitte M, Conrads K, Mackay A, Ludewig F, Ströbel P, Ellenrieder V, Hessmann E, Papantonis A, Salinas G. A single-cell strategy for the identification of intronic variants related to mis-splicing in pancreatic cancer. NAR Genom Bioinform 2024; 6:lqae057. [PMID: 38800828 PMCID: PMC11127633 DOI: 10.1093/nargab/lqae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
Most clinical diagnostic and genomic research setups focus almost exclusively on coding regions and essential splice sites, thereby overlooking other non-coding variants. As a result, intronic variants that can promote mis-splicing events across a range of diseases, including cancer, are yet to be systematically investigated. Such investigations would require both genomic and transcriptomic data, but there currently exist very few datasets that satisfy these requirements. We address this by developing a single-nucleus full-length RNA-sequencing approach that allows for the detection of potentially pathogenic intronic variants. We exemplify the potency of our approach by applying pancreatic cancer tumor and tumor-derived specimens and linking intronic variants to splicing dysregulation. We specifically find that prominent intron retention and pseudo-exon activation events are shared by the tumors and affect genes encoding key transcriptional regulators. Our work paves the way for the assessment and exploitation of intronic mutations as powerful prognostic markers and potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Emre Taylan Duman
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Maren Sitte
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Karly Conrads
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Medical Bioinformatics, University Medical Center, Göttingen, Germany
| | - Adi Mackay
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Fabian Ludewig
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Philipp Ströbel
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Volker Ellenrieder
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Elisabeth Hessmann
- Clinic of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Argyris Papantonis
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
- Institute of Pathology, University Medical Center, Göttingen, Germany
- Comprehensive Cancer Center Lower Saxony (CCC-N), Göttingen, Germany
| | - Gabriela Salinas
- NGS-Core Unit for Integrative Genomics, Institute of Pathology, University Medical Center, Göttingen, Germany
- Clinical Research Unit 5002 (CRU5002), University Medical Center, Göttingen, Germany
| |
Collapse
|
12
|
Sönmezler E, Stuani C, Hız Kurul S, Güngör S, Buratti E, Oktay Y. Characterization and Engineered U1 snRNA Rescue of Splicing Variants in a Turkish Neurodevelopmental Disease Cohort. Hum Mutat 2024; 2024:7760556. [PMID: 40225931 PMCID: PMC11925005 DOI: 10.1155/2024/7760556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 04/15/2025]
Abstract
Although they are rare in the population, rare neurodevelopmental disorders (RNDDs) constitute a significant portion of all rare diseases. While advancements in sequencing technologies led to improvements in diagnosing and managing rare neurodevelopmental diseases, accurate pathogenicity classification of the identified variants is still challenging. Sequence variants altering pre-mRNA splicing make up a significant part of pathogenic variants. Despite advances in the in silico prediction tools, noncanonical splice site variants are one of the groups of variants that pose a challenge in their clinical interpretation. In this study, we analyzed the effects of seven splicing variants we had previously proposed as disease-causing and demonstrated that all but one of the seven variants had a strong or moderate effect on splicing, as assessed by a minigene assay. Next, applying U1 snRNAs engineered for different splicing variants in the corresponding genes and expressed with minigene plasmids in HeLa cells provided a partial correction in four of the studied genes to varying degrees. Findings from our study highlight the importance of in vitro minigene-based assays for the reclassification of putative splice-altering variants of uncertain significance and the therapeutic potential of modified U1 snRNAs in RNDDs.
Collapse
Affiliation(s)
- Ece Sönmezler
- Izmir Biomedicine and Genome CenterDokuz Eylul University Health Campus35340 Izmir, Türkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylul University35340 Izmir, Türkiye
| | - Cristiana Stuani
- International Centre for Genetic Engineering and Biotechnology (ICGEB)34149 Trieste, Italy
| | - Semra Hız Kurul
- Izmir Biomedicine and Genome CenterDokuz Eylul University Health Campus35340 Izmir, Türkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylul University35340 Izmir, Türkiye
- Department of Paediatric NeurologySchool of MedicineDokuz Eylul University35340 Izmir, Türkiye
| | - Serdal Güngör
- Department of Paediatric NeurologySchool of MedicineInonu UniversityMalatya 44210, Türkiye
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB)34149 Trieste, Italy
| | - Yavuz Oktay
- Izmir Biomedicine and Genome CenterDokuz Eylul University Health Campus35340 Izmir, Türkiye
- Izmir International Biomedicine and Genome InstituteDokuz Eylul University35340 Izmir, Türkiye
- Department of Medical BiologySchool of MedicineDokuz Eylul UniversityIzmir 35340, Türkiye
| |
Collapse
|
13
|
Miskalis A, Shirguppe S, Winter J, Elias G, Swami D, Nambiar A, Stilger M, Woods WS, Gosstola N, Gapinske M, Zeballos A, Moore H, Maslov S, Gaj T, Perez-Pinera P. SPLICER: A Highly Efficient Base Editing Toolbox That Enables In Vivo Therapeutic Exon Skipping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587650. [PMID: 38883727 PMCID: PMC11178003 DOI: 10.1101/2024.04.01.587650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Exon skipping technologies enable exclusion of targeted exons from mature mRNA transcripts, which has broad applications in molecular biology, medicine, and biotechnology. Existing exon skipping techniques include antisense oligonucleotides, targetable nucleases, and base editors, which, while effective for specific applications at some target exons, remain hindered by shortcomings, including transient effects for oligonucleotides, genotoxicity for nucleases and inconsistent exon skipping for base editors. To overcome these limitations, we created SPLICER, a toolbox of next-generation base editors consisting of near-PAMless Cas9 nickase variants fused to adenosine or cytosine deaminases for the simultaneous editing of splice acceptor (SA) and splice donor (SD) sequences. Synchronized SA and SD editing with SPLICER improves exon skipping, reduces aberrant outcomes, including cryptic splicing and intron retention, and enables skipping of exons refractory to single splice-site editing. To demonstrate the therapeutic potential of SPLICER, we targeted APP exon 17, which encodes the amino acid residues that are cleaved to form the Aβ plaques in Alzheimer's disease. SPLICER reduced the formation of Aβ42 peptides in vitro and enabled efficient exon skipping in a mouse model of Alzheimer's disease. Overall, SPLICER is a widely applicable and efficient toolbox for exon skipping with broad therapeutic applications.
Collapse
|
14
|
Xiao L, Sun H, Cheng R, Yang R, Jin X, Xu Z, Cai Y, Yang Y, Pang F, Xue G, Wang P, Jiang Q, Nie H. Functional requirement of alternative splicing in epithelial-mesenchymal transition of pancreatic circulating tumor. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102129. [PMID: 38370981 PMCID: PMC10869908 DOI: 10.1016/j.omtn.2024.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
Circulating tumor cells (CTCs) that undergo epithelial-to-mesenchymal transition (EMT) can provide valuable information regarding metastasis and potential therapies. However, current studies on the EMT overlook alternative splicing. Here, we used single-cell full-length transcriptome data and mRNA sequencing of CTCs to identify stage-specific alternative splicing of partial EMT and mesenchymal states during pancreatic cancer metastasis. We classified definitive tumor and normal epithelial cells via genetic aberrations and demonstrated dynamic changes in the epithelial-mesenchymal continuum in both epithelial cancer cells and CTCs. We provide the landscape of alternative splicing in CTCs at different stages of EMT, uncovering cell-type-specific splicing patterns and splicing events in cell surface proteins suitable for therapies. We show that MBNL1 governs cell fate through alternative splicing independently of changes in gene expression and affects the splicing pattern during EMT. We found a high frequency of events that contained multiple premature termination codons and were enriched with C and G nucleotides in close proximity, which influence the likelihood of stop codon readthrough and expand the range of potential therapeutic targets. Our study provides insights into the EMT transcriptome's dynamic changes and identifies potential diagnostic and therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Lixing Xiao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Haoxiu Sun
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Rongrong Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Yideng Cai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Yuexin Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Fenglan Pang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Guangfu Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| | - Pingping Wang
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin 150076, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, China
| |
Collapse
|
15
|
Lynn N, Tuller T. Detecting and understanding meaningful cancerous mutations based on computational models of mRNA splicing. NPJ Syst Biol Appl 2024; 10:25. [PMID: 38453965 PMCID: PMC10920900 DOI: 10.1038/s41540-024-00351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cancer research has long relied on non-silent mutations. Yet, it has become overwhelmingly clear that silent mutations can affect gene expression and cancer cell fitness. One fundamental mechanism that apparently silent mutations can severely disrupt is alternative splicing. Here we introduce Oncosplice, a tool that scores mutations based on models of proteomes generated using aberrant splicing predictions. Oncosplice leverages a highly accurate neural network that predicts splice sites within arbitrary mRNA sequences, a greedy transcript constructor that considers alternate arrangements of splicing blueprints, and an algorithm that grades the functional divergence between proteins based on evolutionary conservation. By applying this tool to 12M somatic mutations we identify 8K deleterious variants that are significantly depleted within the healthy population; we demonstrate the tool's ability to identify clinically validated pathogenic variants with a positive predictive value of 94%; we show strong enrichment of predicted deleterious mutations across pan-cancer drivers. We also achieve improved patient survival estimation using a proposed set of novel cancer-involved genes. Ultimately, this pipeline enables accelerated insight-gathering of sequence-specific consequences for a class of understudied mutations and provides an efficient way of filtering through massive variant datasets - functionalities with immediate experimental and clinical applications.
Collapse
Affiliation(s)
- Nicolas Lynn
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, 69978, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, 69978, Israel.
| |
Collapse
|
16
|
Chica‐Redecillas L, Cuenca‐Lopez S, Andres‐Leon E, Terron‐Camero LC, Cano‐Gutierrez B, Cozar JM, Lorente JA, Vazquez‐Alonso F, Martinez‐Gonzalez LJ, Alvarez‐Cubero MJ. Multi-omic study to unmask genes involved in prostate cancer development in a multi-case family. Cancer Commun (Lond) 2024; 44:443-447. [PMID: 37990486 PMCID: PMC10958670 DOI: 10.1002/cac2.12501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Affiliation(s)
- Lucia Chica‐Redecillas
- GENYO, Centre for Genomics and Oncological Research, PfizerUniversity of GranadaAndalusian Regional Government, PTS GranadaGranadaGranadaSpain
- Department of BiochemistryMolecular Biology III and Immunology, Faculty of Medicine, University of Granada, PTS GranadaGranadaGranadaSpain
| | - Sergio Cuenca‐Lopez
- GENYO, Centre for Genomics and Oncological Research, PfizerUniversity of GranadaAndalusian Regional Government, PTS GranadaGranadaGranadaSpain
| | - Eduardo Andres‐Leon
- Bioinformatics UnitInstitute of Parasitology and Biomedicine “López‐Neyra”Spanish National Research CouncilGranadaGranadaSpain
| | - Laura Carmen Terron‐Camero
- Bioinformatics UnitInstitute of Parasitology and Biomedicine “López‐Neyra”Spanish National Research CouncilGranadaGranadaSpain
| | | | - Jose Manuel Cozar
- Urology DepartmentUniversity Hospital Virgen de las NievesGranadaGranadaSpain
| | - Jose Antonio Lorente
- GENYO, Centre for Genomics and Oncological Research, PfizerUniversity of GranadaAndalusian Regional Government, PTS GranadaGranadaGranadaSpain
- Legal Medicine and Toxicology DepartmentFaculty of MedicineUniversity of GranadaPTS GranadaGranadaGranadaSpain
| | - Fernando Vazquez‐Alonso
- Urology DepartmentUniversity Hospital Virgen de las NievesGranadaGranadaSpain
- Ibs, Biosanitary Research InstituteGranadaGranadaSpain
| | - Luis Javier Martinez‐Gonzalez
- GENYO, Centre for Genomics and Oncological Research, PfizerUniversity of GranadaAndalusian Regional Government, PTS GranadaGranadaGranadaSpain
| | - Maria Jesus Alvarez‐Cubero
- GENYO, Centre for Genomics and Oncological Research, PfizerUniversity of GranadaAndalusian Regional Government, PTS GranadaGranadaGranadaSpain
- Department of BiochemistryMolecular Biology III and Immunology, Faculty of Medicine, University of Granada, PTS GranadaGranadaGranadaSpain
- Ibs, Biosanitary Research InstituteGranadaGranadaSpain
| |
Collapse
|
17
|
Benitez-Cantos MS, Cano C, Cuadros M, Medina PP. Activation-induced cytidine deaminase causes recurrent splicing mutations in diffuse large B-cell lymphoma. Mol Cancer 2024; 23:42. [PMID: 38402205 PMCID: PMC10893679 DOI: 10.1186/s12943-024-01960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 02/26/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma. A major mutagenic process in DLBCL is aberrant somatic hypermutation (aSHM) by activation-induced cytidine deaminase (AID), which occurs preferentially at RCH/TW sequence motifs proximal to transcription start sites. Splice sequences are highly conserved, rich in RCH/TW motifs, and recurrently mutated in DLBCL. Therefore, we hypothesized that aSHM may cause recurrent splicing mutations in DLBCL. In a meta-cohort of > 1,800 DLBCLs, we found that 77.5% of splicing mutations in 29 recurrently mutated genes followed aSHM patterns. In addition, in whole-genome sequencing (WGS) data from 153 DLBCLs, proximal mutations in splice sequences, especially in donors, were significantly enriched in RCH/TW motifs (p < 0.01). We validated this enrichment in two additional DLBCL cohorts (N > 2,000; p < 0.0001) and confirmed its absence in 12 cancer types without aSHM (N > 6,300). Comparing sequencing data from mouse models with and without AID activity showed that the splice donor sequences were the top genomic feature enriched in AID-induced mutations (p < 0.0001). Finally, we observed that most AID-related splice site mutations are clonal within a sample, indicating that aSHM may cause early loss-of-function events in lymphomagenesis. Overall, these findings support that AID causes an overrepresentation of clonal splicing mutations in DLBCL.
Collapse
Affiliation(s)
- Maria S Benitez-Cantos
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada - Avenida de la Ilustración 114, Granada, 18016, Spain
- Health Research Institute of Granada (Ibs.Granada), Avenida de Madrid 15, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Granada, 18016, Spain
| | - Carlos Cano
- Department of Computer Science and Artificial Intelligence, School of Computer and Telecommunication Engineering, University of Granada, Calle Periodista Daniel Saucedo Aranda s/n, Granada, 18014, Spain
| | - Marta Cuadros
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada - Avenida de la Ilustración 114, Granada, 18016, Spain
- Health Research Institute of Granada (Ibs.Granada), Avenida de Madrid 15, Granada, 18012, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, Granada, 18016, Spain
| | - Pedro P Medina
- GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada - Avenida de la Ilustración 114, Granada, 18016, Spain.
- Health Research Institute of Granada (Ibs.Granada), Avenida de Madrid 15, Granada, 18012, Spain.
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida de Fuentenueva s/n, Granada, 18071, Spain.
| |
Collapse
|
18
|
Crooks DR, Cawthon GM, Fitzsimmons CM, Perez M, Ricketts CJ, Vocke CD, Yang Y, Middelton L, Nielsen D, Schmidt LS, Tandon M, Merino MJ, Ball MW, Meier JL, Batista PJ, Linehan WM. Cryptic splice mutation in the fumarate hydratase gene in patients with clinical manifestations of Hereditary Leiomyomatosis and Renal Cell Cancer. Hum Mol Genet 2023; 32:3135-3145. [PMID: 37561409 PMCID: PMC10630246 DOI: 10.1093/hmg/ddad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an autosomal dominant condition characterized by the development of cutaneous and uterine leiomyomas and risk for development of an aggressive form of papillary renal cell cancer. HLRCC is caused by germline inactivating pathogenic variants in the fumarate hydratase (FH) gene, which encodes the enzyme that catalyzes the interconversion of fumarate and L-malate. We utilized enzyme and protein mobility assays to evaluate the FH enzyme in a cohort of patients who showed clinical manifestations of HLRCC but were negative for known pathogenic FH gene variants. FH enzyme activity and protein levels were decreased by 50% or greater in three family members, despite normal FH mRNA expression levels as measured by quantitative PCR. Direct Nanopore RNA sequencing demonstrated 57 base pairs of retained intron sequence between exons 9 and 10 of polyadenylated FH mRNA in these patients, resulting in a truncated FH protein. Genomic sequencing revealed a heterozygous intronic alteration of the FH gene (chr1: 241498239 T/C) resulting in formation of a splice acceptor site near a polypyrimidine tract, and a uterine fibroid obtained from a patient showed loss of heterozygosity at this site. The same intronic FH variant was identified in an unrelated patient who also showed a clinical phenotype of HLRCC. These data demonstrate that careful clinical assessment as well as biochemical characterization of FH enzyme activity, protein expression, direct RNA sequencing, and genomic DNA sequencing of patient-derived cells can identify pathogenic variants outside of the protein coding regions of the FH gene.
Collapse
Affiliation(s)
- Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Geetha Mariah Cawthon
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Christina M Fitzsimmons
- RNA Metabolism and Epitranscriptomics Unit, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Minervo Perez
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyles St., Frederick, MD 21072, United States
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Cathy D Vocke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Ye Yang
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Lindsay Middelton
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Debbie Nielsen
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, 1050 Boyles St. Frederick, MD 21701, United States
| | - Mayank Tandon
- CCR Collaborative Bioinformatics Resource (CCBR), Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., 1050 Boyles St., Frederick, MD 21072, United States
| | - Maria J Merino
- Translational Surgical Pathology, Laboratory of Pathology Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, United States
| | - Mark W Ball
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, 1050 Boyles St., Frederick, MD 21072, United States
| | - Pedro J Batista
- RNA Metabolism and Epitranscriptomics Unit, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - William Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 10 Center Drive, Bethesda, MD 20892, United States
| |
Collapse
|
19
|
Liu Y, Qu HQ, Chang X, Mentch FD, Qiu H, Wang X, Saeidian AH, Watson D, Glessner J, Hakonarson H. Genomic variants exclusively identified in children with birth defects and concurrent malignant tumors predispose to cancer development. Mol Cancer 2023; 22:126. [PMID: 37543594 PMCID: PMC10403830 DOI: 10.1186/s12943-023-01828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023] Open
Abstract
Children with birth defects (BD) express distinct clinical features that often have various medical consequences, one of which is predisposition to the development of cancers. Identification of the underlying genetic mechanisms related to the development of cancer in BD patients would allow for preventive measures. We performed a whole genome sequencing (WGS) study on blood-derived DNA samples from 1566 individuals without chromosomal anomalies, including 454 BD probands with at least one type of malignant tumors, 767 cancer-free BD probands, and 345 healthy individuals. Exclusive recurrent variants were identified in BD-cancer and BD-only patients and mapped to their corresponding genomic regions. We observed statistically significant overlaps for protein-coding/ncRNA with exclusive variants in exons, introns, ncRNAs, and 3'UTR regions. Exclusive exonic variants, especially synonymous variants, tend to occur in prior exons locus in BD-cancer children. Intronic variants close to splicing site (< 500 bp from exon) have little overlaps in BD-cancer and BD-only patients. Exonic variants in non-coding RNA (ncRNA) tend to occur in different ncRNAs exons regardless of the overlaps. Notably, genes with 5' UTR variants are almost mutually exclusive between the two phenotypes. In conclusion, we conducted the first genomic study to explore the impact of recurrent variants exclusive to the two distinguished clinical phenotypes under study, BD with or without cancer, demonstrating enrichment of selective protein-coding/ncRNAs differentially expressed between these two phenotypes, suggesting that selective genetic factors may underlie the molecular processes of pediatric cancer development in BD children.
Collapse
Affiliation(s)
- Yichuan Liu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, 3615 Civic Center Blvd Abramson Building, Philadelphia, PA, 19104, USA.
| | - Hui-Qi Qu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, 3615 Civic Center Blvd Abramson Building, Philadelphia, PA, 19104, USA
| | - Xiao Chang
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, 3615 Civic Center Blvd Abramson Building, Philadelphia, PA, 19104, USA
| | - Frank D Mentch
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, 3615 Civic Center Blvd Abramson Building, Philadelphia, PA, 19104, USA
| | - Haijun Qiu
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, 3615 Civic Center Blvd Abramson Building, Philadelphia, PA, 19104, USA
| | - Xiang Wang
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, 3615 Civic Center Blvd Abramson Building, Philadelphia, PA, 19104, USA
| | - Amir Hossein Saeidian
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, 3615 Civic Center Blvd Abramson Building, Philadelphia, PA, 19104, USA
| | - Deborah Watson
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, 3615 Civic Center Blvd Abramson Building, Philadelphia, PA, 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph Glessner
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, 3615 Civic Center Blvd Abramson Building, Philadelphia, PA, 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, 3615 Civic Center Blvd Abramson Building, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
20
|
Berta D, Girma M, Melku M, Adane T, Birke B, Yalew A. Role of RNA Splicing Mutations in Diffuse Large B Cell Lymphoma. Int J Gen Med 2023; 16:2469-2480. [PMID: 37342407 PMCID: PMC10278864 DOI: 10.2147/ijgm.s414106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Ribonucleic acid splicing is a crucial process to create a mature mRNA molecule by removing introns and ligating exons. This is a highly regulated process, but any alteration in splicing factors, splicing sites, or auxiliary components affects the final products of the gene. In diffuse large B-cell lymphoma, splicing mutations such as mutant splice sites, aberrant alternative splicing, exon skipping, and intron retention are detected. The alteration affects tumor suppression, DNA repair, cell cycle, cell differentiation, cell proliferation, and apoptosis. As a result, malignant transformation, cancer progression, and metastasis occurred in B cells at the germinal center. B-cell lymphoma 7 protein family member A (BCL7A), cluster of differentiation 79B (CD79B), myeloid differentiation primary response gene 88 (MYD88), tumor protein P53 (TP53), signal transducer and activator of transcription (STAT), serum- and glucose-regulated kinase 1 (SGK1), Pou class 2 associating factor 1 (POU2AF1), and neurogenic locus notch homolog protein 1 (NOTCH) are the most common genes affected by splicing mutations in diffuse large B cell lymphoma.
Collapse
Affiliation(s)
- Dereje Berta
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mekonnen Girma
- Department of Quality Assurance and Laboratory Management, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mulugeta Melku
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Tiruneh Adane
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bisrat Birke
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Aregawi Yalew
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
21
|
Singh AK, Talseth-Palmer B, Xavier A, Scott RJ, Drabløs F, Sjursen W. Detection of germline variants with pathogenic potential in 48 patients with familial colorectal cancer by using whole exome sequencing. BMC Med Genomics 2023; 16:126. [PMID: 37296477 PMCID: PMC10257304 DOI: 10.1186/s12920-023-01562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Hereditary genetic mutations causing predisposition to colorectal cancer are accountable for approximately 30% of all colorectal cancer cases. However, only a small fraction of these are high penetrant mutations occurring in DNA mismatch repair genes, causing one of several types of familial colorectal cancer (CRC) syndromes. Most of the mutations are low-penetrant variants, contributing to an increased risk of familial colorectal cancer, and they are often found in additional genes and pathways not previously associated with CRC. The aim of this study was to identify such variants, both high-penetrant and low-penetrant ones. METHODS We performed whole exome sequencing on constitutional DNA extracted from blood of 48 patients suspected of familial colorectal cancer and used multiple in silico prediction tools and available literature-based evidence to detect and investigate genetic variants. RESULTS We identified several causative and some potentially causative germline variants in genes known for their association with colorectal cancer. In addition, we identified several variants in genes not typically included in relevant gene panels for colorectal cancer, including CFTR, PABPC1 and TYRO3, which may be associated with an increased risk for cancer. CONCLUSIONS Identification of variants in additional genes that potentially can be associated with familial colorectal cancer indicates a larger genetic spectrum of this disease, not limited only to mismatch repair genes. Usage of multiple in silico tools based on different methods and combined through a consensus approach increases the sensitivity of predictions and narrows down a large list of variants to the ones that are most likely to be significant.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway.
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | - Bente Talseth-Palmer
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Møre and Romsdal Hospital Trust, Research Unit, Ålesund, Norway
- NSW Health Pathology, Newcastle, Australia
| | - Alexandre Xavier
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Rodney J Scott
- School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- NSW Health Pathology, Newcastle, Australia
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Wenche Sjursen
- Department of Medical Genetics, St. Olavs Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
22
|
Htet M, Lei S, Bajpayi S, Zoitou A, Chamakioti M, Tampakakis E. The role of noncoding genetic variants in cardiomyopathy. Front Cardiovasc Med 2023; 10:1116925. [PMID: 37283586 PMCID: PMC10239966 DOI: 10.3389/fcvm.2023.1116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023] Open
Abstract
Cardiomyopathies remain one of the leading causes of morbidity and mortality worldwide. Environmental risk factors and genetic predisposition account for most cardiomyopathy cases. As with all complex diseases, there are significant challenges in the interpretation of the molecular mechanisms underlying cardiomyopathy-associated genetic variants. Given the technical improvements and reduced costs of DNA sequence technologies, an increasing number of patients are now undergoing genetic testing, resulting in a continuously expanding list of novel mutations. However, many patients carry noncoding genetic variants, and although emerging evidence supports their contribution to cardiac disease, their role in cardiomyopathies remains largely understudied. In this review, we summarize published studies reporting on the association of different types of noncoding variants with various types of cardiomyopathies. We focus on variants within transcriptional enhancers, promoters, intronic sites, and untranslated regions that are likely associated with cardiac disease. Given the broad nature of this topic, we provide an overview of studies that are relatively recent and have sufficient evidence to support a significant degree of causality. We believe that more research with additional validation of noncoding genetic variants will provide further mechanistic insights on the development of cardiac disease, and noncoding variants will be increasingly incorporated in future genetic screening tests.
Collapse
Affiliation(s)
- Myo Htet
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Shunyao Lei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Sheetal Bajpayi
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
| | - Asimina Zoitou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | | | - Emmanouil Tampakakis
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
23
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues and age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534370. [PMID: 37034741 PMCID: PMC10081249 DOI: 10.1101/2023.03.29.534370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigated mis-splicing using RNA-sequencing data from ~14K control samples and 42 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that mis-splicing occurs at different rates across introns and tissues and that these splicing inaccuracies are primarily affected by the abundance of core components of the spliceosome assembly and its regulators. Using publicly available data on short-hairpin RNA-knockdowns of numerous spliceosomal components and related regulators, we found support for the importance of RNA-binding proteins in mis-splicing. We also demonstrated that age is positively correlated with mis-splicing, and it affects genes implicated in neurodegenerative diseases. This in-depth characterisation of mis-splicing can have important implications for our understanding of the role of splicing inaccuracies in human disease and the interpretation of long-read RNA-sequencing data.
Collapse
Affiliation(s)
- S García-Ruiz
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - E K Gustavsson
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - M Grant-Peters
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A Fairbrother-Browne
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - J W Brenton
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A L Gil-Martínez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Verge Genomics, South San Francisco, CA, 94080, USA
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA , 21205
| | - M Ryten
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
24
|
Xu WQ, Wang RM, Dong Y, Wu ZY. Pathogenicity of Intronic and Synonymous Variants of ATP7B in Wilson Disease. J Mol Diagn 2023; 25:57-67. [PMID: 36343861 DOI: 10.1016/j.jmoldx.2022.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Wilson disease (WD) is a hereditary disorder of copper metabolism, resulting from mutations within ATP7B. Early diagnosis is essential for affected individuals. However, there are still patients with clinically suspected WD who do not have detectable pathogenic variants, which makes diagnosis difficult and delays treatment. This study included such patients from the authors' center and screened for the full-length sequence of ATP7B by next-generation sequencing. Newly identified synonymous and intronic variants were then analyzed with in silico tools. A minigene system was constructed to determine the pathogenicity of these variants in terms of splicing and blood RNA extraction, and RT-PCR experiments were performed on several patients to verify the splicing alterations. The phenotypes of the patients were also analyzed. Fourteen suspected pathogenic variants, including nine synonymous and five intronic variants, were detected in 12 patients with clinically suspected WD. Among them, four synonymous variants (c.1050G>A, c.1122C>G, c.3243G>A, and c.4014T>A) and four intronic variants (c.1543 +40G>A, c.1707+6_1707+16del, c.1870-49A>G, and c.2731-67A>G) resulted in splicing changes in ATP7B. After the above analysis, the diagnosis of WD could be confirmed in eight clinically suspected patients with WD who showed a late age of onset.
Collapse
Affiliation(s)
- Wan-Qing Xu
- Departments of Neurology and Medical Genetics, Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Rou-Min Wang
- Departments of Neurology and Medical Genetics, Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Dong
- Departments of Neurology and Medical Genetics, Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Departments of Neurology and Medical Genetics, Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
25
|
Apostolidi M, Stamatopoulou V. Aberrant splicing in human cancer: An RNA structural code point of view. Front Pharmacol 2023; 14:1137154. [PMID: 36909167 PMCID: PMC9995731 DOI: 10.3389/fphar.2023.1137154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Alternative splicing represents an essential process that occurs widely in eukaryotes. In humans, most genes undergo alternative splicing to ensure transcriptome and proteome diversity reflecting their functional complexity. Over the last decade, aberrantly spliced transcripts due to mutations in cis- or trans-acting splicing regulators have been tightly associated with cancer development, largely drawing scientific attention. Although a plethora of single proteins, ribonucleoproteins, complexed RNAs, and short RNA sequences have emerged as nodal contributors to the splicing cascade, the role of RNA secondary structures in warranting splicing fidelity has been underestimated. Recent studies have leveraged the establishment of novel high-throughput methodologies and bioinformatic tools to shed light on an additional layer of splicing regulation in the context of RNA structural elements. This short review focuses on the most recent available data on splicing mechanism regulation on the basis of RNA secondary structure, emphasizing the importance of the complex RNA G-quadruplex structures (rG4s), and other specific RNA motifs identified as splicing silencers or enhancers. Moreover, it intends to provide knowledge on newly established techniques that allow the identification of RNA structural elements and highlight the potential to develop new RNA-oriented therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Maria Apostolidi
- Agilent Laboratories, Agilent Technologies, Santa Clara, CA, United States
| | | |
Collapse
|
26
|
Barbosa P, Savisaar R, Carmo-Fonseca M, Fonseca A. Computational prediction of human deep intronic variation. Gigascience 2022; 12:giad085. [PMID: 37878682 PMCID: PMC10599398 DOI: 10.1093/gigascience/giad085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The adoption of whole-genome sequencing in genetic screens has facilitated the detection of genetic variation in the intronic regions of genes, far from annotated splice sites. However, selecting an appropriate computational tool to discriminate functionally relevant genetic variants from those with no effect is challenging, particularly for deep intronic regions where independent benchmarks are scarce. RESULTS In this study, we have provided an overview of the computational methods available and the extent to which they can be used to analyze deep intronic variation. We leveraged diverse datasets to extensively evaluate tool performance across different intronic regions, distinguishing between variants that are expected to disrupt splicing through different molecular mechanisms. Notably, we compared the performance of SpliceAI, a widely used sequence-based deep learning model, with that of more recent methods that extend its original implementation. We observed considerable differences in tool performance depending on the region considered, with variants generating cryptic splice sites being better predicted than those that potentially affect splicing regulatory elements. Finally, we devised a novel quantitative assessment of tool interpretability and found that tools providing mechanistic explanations of their predictions are often correct with respect to the ground - information, but the use of these tools results in decreased predictive power when compared to black box methods. CONCLUSIONS Our findings translate into practical recommendations for tool usage and provide a reference framework for applying prediction tools in deep intronic regions, enabling more informed decision-making by practitioners.
Collapse
Affiliation(s)
- Pedro Barbosa
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016,, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | | | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Alcides Fonseca
- LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016,, Lisboa, Portugal
| |
Collapse
|
27
|
Akiba K, Hasegawa Y, Katoh-Fukui Y, Terao M, Takada S, Hasegawa T, Fukami M, Narumi S. POU1F1/Pou1f1 c.143-83A > G Variant Disrupts the Branch Site in Pre-mRNA and Leads to Dwarfism. Endocrinology 2022; 164:6847324. [PMID: 36427334 PMCID: PMC9795478 DOI: 10.1210/endocr/bqac198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
POU Class 1 Homeobox1 (POU1F1/Pou1f1) is a well-established pituitary-specific transcription factor, and causes, when mutated, combined pituitary hormone deficiency in humans and mice. POU1F1/Pou1f1 has 2 isoforms: the alpha and beta isoforms. Recently, pathogenic variants in the unique coding region of the beta isoform (beta domain) and the intron near the exon-intron boundary for the beta domain were reported, although their functional consequences remain obscure. In this study, we generated mice carrying the Pou1f1 c.143-83A>G substitution that recapitulates the human intronic variant near the exon-intron boundary for the beta domain. Homozygous mice showed postnatal growth failure, with an average body weight that was 35% of wild-type littermates at 12 weeks, which was accompanied by anterior pituitary hypoplasia and deficiency of circulating insulin-like growth factor 1 and thyroxine. The results of RNA-seq analysis of the pituitary gland were consistent with reduction of somatotrophs, and this was confirmed immunohistochemically. Reverse transcription polymerase chain reaction of pituitary Pou1f1 mRNA showed abnormal splicing in homozygous mice, with a decrease in the alpha isoform, an increase in the beta isoform, and the emergence of the exon-skipped transcript. We further characterized artificial variants in or near the beta domain, which were candidate positions of the branch site in pre-mRNA, using cultured cell-basis analysis and found that only c.143-83A>G produced transcripts similar to the mice model. Our report is the first to show that the c.143-83A>G variant leads to splicing disruption and causes morphological and functional abnormalities in the pituitary gland. Furthermore, our mice will contribute understanding the role of POU1F1/Pou1f1 transcripts in pituitary development.
Collapse
Affiliation(s)
- Kazuhisa Akiba
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tomonobu Hasegawa
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Satoshi Narumi
- Correspondence: Satoshi Narumi, MD, PhD, Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| |
Collapse
|
28
|
Postel MD, Culver JO, Ricker C, Craig DW. Transcriptome analysis provides critical answers to the "variants of uncertain significance" conundrum. Hum Mutat 2022; 43:1590-1608. [PMID: 35510381 PMCID: PMC9560997 DOI: 10.1002/humu.24394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
While whole-genome and exome sequencing have transformed our collective understanding of genetics' role in disease pathogenesis, there are certain conditions and populations for whom DNA-level data fails to identify the underlying genetic etiology. Specifically, patients of non-White race and non-European ancestry are disproportionately affected by "variants of unknown/uncertain significance" (VUS), limiting the scope of precision medicine for minority patients and perpetuating health disparities. VUS often include deep intronic and splicing variants which are difficult to interpret from DNA data alone. RNA analysis can illuminate the consequences of VUS, thereby allowing for their reclassification as pathogenic versus benign. Here we review the critical role transcriptome analysis plays in clarifying VUS in both neoplastic and non-neoplastic diseases.
Collapse
Affiliation(s)
- Mackenzie D. Postel
- Department of Translational GenomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Julie O. Culver
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Charité Ricker
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David W. Craig
- Department of Translational GenomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
29
|
Febres-Aldana CA, Chang JC, Ptashkin R, Wang Y, Gedvilaite E, Baine MK, Travis WD, Ventura K, Bodd F, Yu HA, Quintanal-Villalonga A, Lai WV, Egger JV, Offin M, Ladanyi M, Rudin CM, Rekhtman N. Rb Tumor Suppressor in Small Cell Lung Cancer: Combined Genomic and IHC Analysis with a Description of a Distinct Rb-Proficient Subset. Clin Cancer Res 2022; 28:4702-4713. [PMID: 35792876 PMCID: PMC9623236 DOI: 10.1158/1078-0432.ccr-22-1115] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/31/2022] [Accepted: 07/01/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE RB1 mutations and loss of retinoblastoma (Rb) expression represent consistent but not entirely invariable hallmarks of small cell lung cancer (SCLC). The prevalence and characteristics of SCLC retaining wild-type Rb are not well-established. Furthermore, the performance of targeted next-generation sequencing (NGS) versus immunohistochemistry for Rb assessment is not well-defined. EXPERIMENTAL DESIGN A total of 208 clinical SCLC samples were analyzed by comprehensive targeted NGS, covering all exons of RB1, and Rb IHC. On the basis of established coordination of Rb/p16/cyclinD1 expression, p16-high/cyclinD1-low profile was used as a marker of constitutive Rb deficiency. RESULTS Fourteen of 208 (6%) SCLC expressed wild-type Rb, accompanied by a unique p16-low/cyclinD1-high profile supporting Rb proficiency. Rb-proficient SCLC was associated with neuroendocrine-low phenotype, combined SCLC with non-SCLC (NSCLC) histology and aggressive behavior. These tumors exclusively harbored CCND1 amplification (29%), and were markedly enriched in CDKN2A mutations (50%) and NSCLC-type alterations (KEAP1, STK11, FGFR1). The remaining 194 of 208 SCLC were Rb-deficient (p16-high/cyclinD1-low), including 184 cases with Rb loss (of which 29% lacked detectable RB1 alterations by clinical NGS pipeline), and 10 cases with mutated but expressed Rb. CONCLUSIONS This is the largest study to date to concurrently analyze Rb by NGS and IHC in SCLC, identifying a 6% rate of Rb proficiency. Pathologic-genomic data implicate NSCLC-related progenitors as a putative source of Rb-proficient SCLC. Consistent upstream Rb inactivation via CDKN2A/p16↓ and CCND1/cyclinD1↑ suggests the potential utility of CDK4/6 inhibitors in this aggressive SCLC subset. The study also clarifies technical aspects of Rb status determination in clinical practice, highlighting the limitations of exon-only sequencing for RB1 interrogation. See related commentary by Mahadevan and Sholl, p. 4603.
Collapse
Affiliation(s)
| | - Jason C. Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - Ryan Ptashkin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - Yuhan Wang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - Erika Gedvilaite
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - Marina K. Baine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - William D. Travis
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - Katia Ventura
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - Francis Bodd
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| | - Helena A. Yu
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | | | - W. Victoria Lai
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Jacklynn V. Egger
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Michael Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York
| | - Charles M. Rudin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York
| |
Collapse
|
30
|
Putscher E, Hecker M, Fitzner B, Boxberger N, Schwartz M, Koczan D, Lorenz P, Zettl UK. Genetic risk variants for multiple sclerosis are linked to differences in alternative pre-mRNA splicing. Front Immunol 2022; 13:931831. [PMID: 36405756 PMCID: PMC9670805 DOI: 10.3389/fimmu.2022.931831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/12/2022] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system to which a genetic predisposition contributes. Over 200 genetic regions have been associated with increased disease risk, but the disease-causing variants and their functional impact at the molecular level are mostly poorly defined. We hypothesized that single-nucleotide polymorphisms (SNPs) have an impact on pre-mRNA splicing in MS. METHODS Our study focused on 10 bioinformatically prioritized SNP-gene pairs, in which the SNP has a high potential to alter alternative splicing events (ASEs). We tested for differential gene expression and differential alternative splicing in B cells from MS patients and healthy controls. We further examined the impact of the SNP genotypes on ASEs and on splice isoform expression levels. Novel genotype-dependent effects on splicing were verified with splicing reporter minigene assays. RESULTS We were able to confirm previously described findings regarding the relation of MS-associated SNPs with the ASEs of the pre-mRNAs from GSDMB and SP140. We also observed an increased IL7R exon 6 skipping when comparing relapsing and progressive MS patients to healthy subjects. Moreover, we found evidence that the MS risk alleles of the SNPs rs3851808 (EFCAB13), rs1131123 (HLA-C), rs10783847 (TSFM), and rs2014886 (TSFM) may contribute to a differential splicing pattern. Of particular interest is the genotype-dependent exon skipping of TSFM due to the SNP rs2014886. The minor allele T creates a donor splice site, resulting in the expression of the exon 3 and 4 of a short TSFM transcript isoform, whereas in the presence of the MS risk allele C, this donor site is absent, and thus the short transcript isoform is not expressed. CONCLUSION In summary, we found that genetic variants from MS risk loci affect pre-mRNA splicing. Our findings substantiate the role of ASEs with respect to the genetics of MS. Further studies on how disease-causing genetic variants may modify the interactions between splicing regulatory sequence elements and RNA-binding proteins can help to deepen our understanding of the genetic susceptibility to MS.
Collapse
Affiliation(s)
- Elena Putscher
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Michael Hecker
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Brit Fitzner
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Nina Boxberger
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Margit Schwartz
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| | - Dirk Koczan
- Rostock University Medical Center, Institute of Immunology, Rostock, Germany
| | - Peter Lorenz
- Rostock University Medical Center, Institute of Immunology, Rostock, Germany
| | - Uwe Klaus Zettl
- Rostock University Medical Center, Department of Neurology, Division of Neuroimmunology, Rostock, Germany
| |
Collapse
|
31
|
Zahra A, Hall M, Chatterjee J, Sisu C, Karteris E. In Silico Study to Predict the Structural and Functional Consequences of SNPs on Biomarkers of Ovarian Cancer (OC) and BPA Exposure-Associated OC. Int J Mol Sci 2022; 23:ijms23031725. [PMID: 35163645 PMCID: PMC8835975 DOI: 10.3390/ijms23031725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Recently, we have shown that seven genes, namely GBP5, IRS2, KRT4, LINCOO707, MRPL55, RRS1 and SLC4A11, have prognostic power for the overall survival in ovarian cancer (OC). Methods: We present an analysis on the association of these genes with any phenotypes and mutations indicative of involvement in female cancers and predict the structural and functional consequences of those SNPS using in silico tools. Results: These seven genes present with 976 SNPs/mutations that are associated with human cancers, out of which 284 related to female cancers. We have then analysed the mutation impact on amino acid polarity, charge and water affinity, leading to the identification of 30 mutations in gynaecological cancers where amino acid (aa) changes lead to opposite polarity, charges and water affinity. Out of these 30 mutations identified, only a missense mutation (i.e., R831C/R804C in uterine corpus endometrial carcinomas, UCEC) was suggestive of structural damage on the SLC4A11 protein. Conclusions: We demonstrate that the R831C/R804C mutation is deleterious and the predicted ΔΔG values suggest that the mutation reduces the stability of the protein. Future in vitro studies should provide further insight into the role of this transporter protein in UCEC.
Collapse
Affiliation(s)
- Aeman Zahra
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
| | - Marcia Hall
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
- Mount Vernon Cancer Centre, Northwood HA6 2RN, UK
| | - Jayanta Chatterjee
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Cristina Sisu
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
- Correspondence: (C.S.); (E.K.)
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK; (A.Z.); (M.H.); (J.C.)
- Correspondence: (C.S.); (E.K.)
| |
Collapse
|
32
|
Petersen USS, Doktor TK, Andresen BS. Pseudoexon activation in disease by non-splice site deep intronic sequence variation - wild type pseudoexons constitute high-risk sites in the human genome. Hum Mutat 2021; 43:103-127. [PMID: 34837434 DOI: 10.1002/humu.24306] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/27/2022]
Abstract
Accuracy of pre-messenger RNA (pre-mRNA) splicing is crucial for normal gene expression. Complex regulation supports the spliceosomal distinction between authentic exons and the many seemingly functional splice sites delimiting pseudoexons. Pseudoexons are nonfunctional intronic sequences that can be activated for aberrant inclusion in mRNA, which may cause disease. Pseudoexon activation is very challenging to predict, in particular when activation occurs by sequence variants that alter the splicing regulatory environment without directly affecting splice sites. As pseudoexon inclusion often evades detection due to activation of nonsense-mediated mRNA decay, and because conventional diagnostic procedures miss deep intronic sequence variation, pseudoexon activation is a heavily underreported disease mechanism. Pseudoexon characteristics have mainly been studied based on in silico predicted sequences. Moreover, because recognition of sequence variants that create or strengthen splice sites is possible by comparison with well-established consensus sequences, this type of pseudoexon activation is by far the most frequently reported. Here we review all known human disease-associated pseudoexons that carry functional splice sites and are activated by deep intronic sequence variants located outside splice site sequences. We delineate common characteristics that make this type of wild type pseudoexons distinct high-risk sites in the human genome.
Collapse
Affiliation(s)
- Ulrika S S Petersen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Thomas K Doktor
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| | - Brage S Andresen
- Department of Biochemistry and Molecular Biology and the Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
33
|
Moles-Fernández A, Domènech-Vivó J, Tenés A, Balmaña J, Diez O, Gutiérrez-Enríquez S. Role of Splicing Regulatory Elements and In Silico Tools Usage in the Identification of Deep Intronic Splicing Variants in Hereditary Breast/Ovarian Cancer Genes. Cancers (Basel) 2021; 13:cancers13133341. [PMID: 34283047 PMCID: PMC8268271 DOI: 10.3390/cancers13133341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary There is a significant percentage of hereditary breast and ovarian cancer (HBOC) cases that remain undiagnosed, because no pathogenic variant is detected through massively parallel sequencing of coding exons and exon-intron boundaries of high-moderate susceptibility risk genes. Deep intronic regions may contain variants affecting RNA splicing, leading ultimately to disease, and hence they may explain several cases where the genetic cause of HBOC is unknown. This study aims to characterize intronic regions to identify a landscape of “exonizable” zones and test the efficiency of two in silico tools to detect deep intronic variants affecting the mRNA splicing process. Abstract The contribution of deep intronic splice-altering variants to hereditary breast and ovarian cancer (HBOC) is unknown. Current computational in silico tools to predict spliceogenic variants leading to pseudoexons have limited efficiency. We assessed the performance of the SpliceAI tool combined with ESRseq scores to identify spliceogenic deep intronic variants by affecting cryptic sites or splicing regulatory elements (SREs) using literature and experimental datasets. Our results with 233 published deep intronic variants showed that SpliceAI, with a 0.05 threshold, predicts spliceogenic deep intronic variants affecting cryptic splice sites, but is less effective in detecting those affecting SREs. Next, we characterized the SRE profiles using ESRseq, showing that pseudoexons are significantly enriched in SRE-enhancers compared to adjacent intronic regions. Although the combination of SpliceAI with ESRseq scores (considering ∆ESRseq and SRE landscape) showed higher sensitivity, the global performance did not improve because of the higher number of false positives. The combination of both tools was tested in a tumor RNA dataset with 207 intronic variants disrupting splicing, showing a sensitivity of 86%. Following the pipeline, five spliceogenic deep intronic variants were experimentally identified from 33 variants in HBOC genes. Overall, our results provide a framework to detect deep intronic variants disrupting splicing.
Collapse
Affiliation(s)
- Alejandro Moles-Fernández
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
| | - Joanna Domènech-Vivó
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
| | - Anna Tenés
- Area of Clinical and Molecular Genetics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
| | - Judith Balmaña
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
- Medical Oncology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Orland Diez
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
- Area of Clinical and Molecular Genetics, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
- Correspondence: (O.D.); (S.G.-E.)
| | - Sara Gutiérrez-Enríquez
- Hereditary Cancer Genetics Group, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.M.-F.); (J.D.-V.); (J.B.)
- Correspondence: (O.D.); (S.G.-E.)
| |
Collapse
|
34
|
Lord J, Baralle D. Splicing in the Diagnosis of Rare Disease: Advances and Challenges. Front Genet 2021; 12:689892. [PMID: 34276790 PMCID: PMC8280750 DOI: 10.3389/fgene.2021.689892] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations which affect splicing are significant contributors to rare disease, but are frequently overlooked by diagnostic sequencing pipelines. Greater ascertainment of pathogenic splicing variants will increase diagnostic yields, ending the diagnostic odyssey for patients and families affected by rare disorders, and improving treatment and care strategies. Advances in sequencing technologies, predictive modeling, and understanding of the mechanisms of splicing in recent years pave the way for improved detection and interpretation of splice affecting variants, yet several limitations still prohibit their routine ascertainment in diagnostic testing. This review explores some of these advances in the context of clinical application and discusses challenges to be overcome before these variants are comprehensively and routinely recognized in diagnostics.
Collapse
Affiliation(s)
- Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| |
Collapse
|