1
|
Outla Z, Oyman-Eyrilmez G, Korelova K, Prechova M, Frick L, Sarnova L, Bisht P, Novotna P, Kosla J, Bortel P, Borutzki Y, Bileck A, Gerner C, Rahbari M, Rahbari N, Birgin E, Kvasnicova B, Galisova A, Sulkova K, Bauer A, Jobe N, Tolde O, Sticova E, Rösel D, O'Connor T, Otahal M, Jirak D, Heikenwälder M, Wiche G, Meier-Menches SM, Gregor M. Plectin-mediated cytoskeletal crosstalk as a target for inhibition of hepatocellular carcinoma growth and metastasis. eLife 2025; 13:RP102205. [PMID: 40052672 DOI: 10.7554/elife.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025] Open
Abstract
The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Zuzana Outla
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Gizem Oyman-Eyrilmez
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Korelova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Magdalena Prechova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lukas Frick
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Lenka Sarnova
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Piyush Bisht
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Novotna
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kosla
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Patricia Bortel
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Yasmin Borutzki
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, Medical University of Vienna and University of Vienna, Heidelberg, Germany
| | - Christopher Gerner
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, Medical University of Vienna and University of Vienna, Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
- Department of Surgery, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nuh Rahbari
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Emrullah Birgin
- Department of General and Visceral Surgery, Ulm University Hospital, Ulm, Germany
| | - Bibiana Kvasnicova
- Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Andrea Galisova
- Department of Radiodiagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Katerina Sulkova
- Department of Radiodiagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Andreas Bauer
- Department of Physics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Njainday Jobe
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Prumyslova, Vestec, Czech Republic
| | - Ondrej Tolde
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Prumyslova, Vestec, Czech Republic
| | - Eva Sticova
- Department of Clinical and Transplant Pathology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Prumyslova, Vestec, Czech Republic
| | - Tracy O'Connor
- Department of Biology, North Park University, Chicago, United States
| | - Martin Otahal
- Department of Natural Sciences, Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Daniel Jirak
- Department of Radiodiagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
- Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
- Joint Metabolome Facility, Medical University of Vienna and University of Vienna, Heidelberg, Germany
| | - Martin Gregor
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Bai L, Qian X, Zhang H, Yuan Y, Cui X, Cheng M, Han Y. Plectin, a novel regulator in migration, invasion and adhesion of ovarian cancer. Cell Biosci 2025; 15:15. [PMID: 39915800 PMCID: PMC11804098 DOI: 10.1186/s13578-025-01349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 01/11/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most prevalent gynecologic malignancies and exhibites the highest fatality rate among all gynecologic malignancies. The absence of an early diagnostic biomarker and therapeutic target contributes to an overall 5-year survival rate ranging from 30 to 50%. Plectin (PLEC), a 500 kDa scaffolding protein, has gained prominence in recent years due to its pivotal role in various cellular biological functions such as cell morphology, migration and adhesion, while the accurate role of PLEC in OC remains elusive. RESULTS In this study, our findings demonstrate that PLEC exerts a positive influence on the progression of OC, encompassing cellular proliferation, migration, invasion, and adhesion both in vitro and in vivo. CONCLUSIONS The results providing new insights for the diagnosis and treatment in OC.
Collapse
Affiliation(s)
- Lanning Bai
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Xueqian Qian
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Hui Zhang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Yi Yuan
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China
| | - Xiaodong Cui
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China.
| | - Min Cheng
- Department of Physiology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China.
| | - Yangyang Han
- School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P. R. China.
| |
Collapse
|
3
|
Chastney MR, Kaivola J, Leppänen VM, Ivaska J. The role and regulation of integrins in cell migration and invasion. Nat Rev Mol Cell Biol 2025; 26:147-167. [PMID: 39349749 DOI: 10.1038/s41580-024-00777-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 01/29/2025]
Abstract
Integrin receptors are the main molecular link between cells and the extracellular matrix (ECM) as well as mediating cell-cell interactions. Integrin-ECM binding triggers the formation of heterogeneous multi-protein assemblies termed integrin adhesion complexes (IACs) that enable integrins to transform extracellular cues into intracellular signals that affect many cellular processes, especially cell motility. Cell migration is essential for diverse physiological and pathological processes and is dysregulated in cancer to favour cell invasion and metastasis. Here, we discuss recent findings on the role of integrins in cell migration with a focus on cancer cell dissemination. We review how integrins regulate the spatial distribution and dynamics of different IACs, covering classical focal adhesions, emerging adhesion types and adhesion regulation. We discuss the diverse roles integrins have during cancer progression from cell migration across varied ECM landscapes to breaching barriers such as the basement membrane, and eventual colonization of distant organs.
Collapse
Affiliation(s)
- Megan R Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veli-Matti Leppänen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Western Finnish Cancer Center (FICAN West), University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
4
|
Yu XX, Liu Y, Luo RJ, Song ZX, Chen WK, Mo ZM, Wang FJ. Bioinformatics analysis combined with experimental validation reveals the biological role of the ILK gene in prostate cancer. Discov Oncol 2025; 16:106. [PMID: 39890647 PMCID: PMC11785868 DOI: 10.1007/s12672-025-01852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/24/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a prevalent urological malignancy. The integrin-linked kinase (ILK) gene has been identified as an oncogenic driver in hormonal cancers, including PCa. METHODS To identify key genes in PCa, we utilized differential gene expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA). The ILK gene was silenced using short interfering RNA (siRNA), and subsequent experiments focusing on cellular functionality were conducted to evaluate its impact on cell proliferation, apoptosis, and cell cycle. We examined the expression of autophagy-related and cell cycle-related proteins, including MAP1LC3A, BECN1, C-MYC, TP53, and MDM2. Moreover, we conducted Mfuzz expression pattern clustering analysis, gene set enrichment analysis (GSEA), immune function analysis, transcription factor (TF) analysis, and drug prediction. RESULTS 544 significant genes were identified by WGCNA. The protein-protein interaction (PPI) network analysis revealed that MYC was the central regulatory gene, with the intersected genes mainly involved in regulating cell adhesion and drug metabolism in prostate cancer (PCa). Experimental results showed LNCaP cell proliferation was significantly inhibited in the knockdown groups (P < 0.001). Moreover, ILK silencing increased apoptosis in LNCaP cells compared to normal cells and empty vectors, and transfected LNCaP cells were arrested in the S phase of the cell cycle. Notably, C-MYC expression decreased following ILK silencing. Subsequently, we further identified ILK-related regulatory biomarkers. CONCLUSIONS The ILK is an oncogene mainly through influencing the C-MYC in PCa. Inhibition of ILK expression would be a promising method for treating the development and progression of PCa.
Collapse
Affiliation(s)
- Xiao-Xiang Yu
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China.
| | - Yi Liu
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| | - Rong-Jiang Luo
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| | - Zi-Xuan Song
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| | - Wen-Kai Chen
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| | - Zeng-Mi Mo
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| | - Feng-Jing Wang
- Department of Urology, The 923, Hospital of Chinese People's Liberation Army, Nanning, 530021, Guangxi, China
| |
Collapse
|
5
|
Nonnast E, Mira E, Mañes S. The role of laminins in cancer pathobiology: a comprehensive review. J Transl Med 2025; 23:83. [PMID: 39825429 PMCID: PMC11742543 DOI: 10.1186/s12967-025-06079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
Laminins (LMs) are a family of heterotrimeric glycoproteins that form the structural foundation of basement membranes (BM). By acting as molecular bridges between cells and the extracellular matrix (ECM) through integrins and other surface receptors, they regulate key cellular signals that influence cell behavior and tissue architecture. Despite their physiological importance, our understanding of the role of LMs in cancer pathobiology remains fragmented. In this article, we review the diverse functions of LMs in promoting cancer cell proliferation, adhesion, and migration-critical steps in cancer metastasis. Beyond their direct effects on tumor cells, LMs influence stromal interactions and modulate tumor microenvironment dynamics, affecting processes such as angiogenesis, immune cell infiltration, cancer-associated fibroblast activation, and immune evasion. Understanding the complex roles of LMs in cancer biology, as well as their differential expression patterns in malignancies, could provide new diagnostic tools for predicting disease outcomes and pave the way for innovative therapeutic strategies, such as targeting LM-receptor interactions or modulating ECM dynamics to impede tumor growth and metastasis.
Collapse
Affiliation(s)
- Elena Nonnast
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Emilia Mira
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
6
|
Wesley T, Escalona RM, Kannourakis G, Ahmed N. Plakin Expression in Serous Epithelial Ovarian Cancer Has the Potential to Impede Metastatic Spread and Epithelial-Mesenchymal Transition: A Comparative Expression Analysis of Immunohistochemical and In Silico Datasets. Cancers (Basel) 2024; 16:4087. [PMID: 39682273 DOI: 10.3390/cancers16234087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Epithelial ovarian cancer is aggressive and causes high mortality among women worldwide. Members of the plakin family are essential to maintain cytoskeletal integrity and key cellular processes. In this study we characterised the expression of plakins, particularly plectin (PLEC), periplakin (PPL), envoplakin (EVPL), and EMT-related proteins by immunohistochemistry in n = 48 patients' samples to evaluate a potential correlation of plakin expression with EMT as EOC progresses. These tissue plakin and EMT expression analyses were further evaluated by in vitro cell line expression and correlated with the expression of these molecules using publicly available datasets such as Cancer Genome Atlas (TCGA) and Clinical Proteome Tumour Analysis Consortium (CPTAC) datasets. We demonstrate that the expression of PPL and PLEC plakins is decreased in high-grade compared to low-grade EOCs with mixed EMT marker protein expression. This is supported by the correlation of high PPL and PLEC expression with an epithelial rather than mesenchymal phenotype. Our data suggest a partial loss of plakin expression as EOC tumours progress. This may impact the connections of plakins with membrane-bound receptors, which impede the downstream signalling required for the initiation of EMT as the tumours progress.
Collapse
Affiliation(s)
- Tamsin Wesley
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Ruth M Escalona
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3353, Australia
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Clayton, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3050, Australia
- Department of Surgery, St Vincent Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
7
|
Wenta T, Nastaly P, Lipinska B, Manninen A. Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression. Matrix Biol 2024; 134:197-219. [PMID: 39500383 DOI: 10.1016/j.matbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals. The ECM architecture is dynamically modulated by multiple serine proteases that process both structural and signaling proteins to regulate physiological processes such as organogenesis and tissue homeostasis but they also contribute to pathological events, especially cancer progression. Here, we review the current literature regarding the role of ECM remodeling by serine proteases (KLKs, uPA, furin, HtrAs, granzymes, matriptase, hepsin) in tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Paulina Nastaly
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
8
|
Tabibian M, Moghaddam FS, Motevaseli E, Ghafouri-Fard S. Targeting mRNA-coding genes in prostate cancer using CRISPR/Cas9 technology with a special focus on androgen receptor signaling. Cell Commun Signal 2024; 22:504. [PMID: 39420406 PMCID: PMC11484332 DOI: 10.1186/s12964-024-01833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Prostate cancer is among prevalent cancers in men. Numerous strategies have been proposed to intervene with the important prostate cancer-related signaling pathways. Among the most promising strategies is CRISPR/Cas9 strategy. This strategy has been used to modify expression of a number of genes in prostate cancer cells. AIMS This review summarizes the most recent progresses in the application of CRISPR/Cas9 strategy in modification of prostate cancer-related phenotypes with an especial focus on pathways related to androgen receptor signaling. CONCLUSION CRISPR/Cas9 technology has successfully targeted several genes in the prostate cancer cells. Moreover, the efficiency of this technique in reducing tumor burden has been tested in animal models of prostate cancer. Most of targeted genes have been related with the androgen receptor signaling. Targeted modulation of these genes have affected growth of castration-resistant prostate cancer. PI3K/AKT/mTOR signaling and immune response-related genes have been other targets that have been successfully modulated by CRISPR/Cas9 technology in prostate cancer. Based on the rapid translation of this technology into the clinical application, it is anticipated that novel treatments based on this technique change the outcome of this malignancy in future.
Collapse
Affiliation(s)
- Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | | | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Mei J, Jiang XY, Tian HX, Rong DC, Song JN, Wang L, Chen YS, Wong RCB, Guo CX, Wang LS, Wang LY, Wang PY, Yin JY. Anoikis in cell fate, physiopathology, and therapeutic interventions. MedComm (Beijing) 2024; 5:e718. [PMID: 39286778 PMCID: PMC11401975 DOI: 10.1002/mco2.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The extracellular matrix (ECM) governs a wide spectrum of cellular fate processes, with a particular emphasis on anoikis, an integrin-dependent form of cell death. Currently, anoikis is defined as an intrinsic apoptosis. In contrast to traditional apoptosis and necroptosis, integrin correlates ECM signaling with intracellular signaling cascades, describing the full process of anoikis. However, anoikis is frequently overlooked in physiological and pathological processes as well as traditional in vitro research models. In this review, we summarized the role of anoikis in physiological and pathological processes, spanning embryonic development, organ development, tissue repair, inflammatory responses, cardiovascular diseases, tumor metastasis, and so on. Similarly, in the realm of stem cell research focused on the functional evolution of cells, anoikis offers a potential solution to various challenges, including in vitro cell culture models, stem cell therapy, cell transplantation, and engineering applications, which are largely based on the regulation of cell fate by anoikis. More importantly, the regulatory mechanisms of anoikis based on molecular processes and ECM signaling will provide new strategies for therapeutic interventions (drug therapy and cell-based therapy) in disease. In summary, this review provides a systematic elaboration of anoikis, thus shedding light on its future research.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Xue-Yao Jiang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui-Xiang Tian
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Ding-Chao Rong
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
| | - Jia-Nan Song
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- School of Life Sciences Westlake University Hangzhou Zhejiang China
| | - Luozixian Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Yuan-Shen Chen
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Raymond C B Wong
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology the Third Xiangya Hospital Central South University Changsha Hunan China
| | - Lian-Sheng Wang
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Lei-Yun Wang
- Department of Pharmacy Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Peng-Yuan Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
10
|
Popęda M, Kowalski K, Wenta T, Beznoussenko GV, Rychłowski M, Mironov A, Lavagnino Z, Barozzi S, Richert J, Bertolio R, Myszczyński K, Szade J, Bieńkowski M, Miszewski K, Matuszewski M, Żaczek AJ, Braga L, Del Sal G, Bednarz-Knoll N, Maiuri P, Nastały P. Emerin mislocalization during chromatin bridge resolution can drive prostate cancer cell invasiveness in a collagen-rich microenvironment. Exp Mol Med 2024; 56:2016-2032. [PMID: 39218980 PMCID: PMC11446916 DOI: 10.1038/s12276-024-01308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Micronuclei (MN) can form through many mechanisms, including the breakage of aberrant cytokinetic chromatin bridges. The frequent observation of MN in tumors suggests that they might not merely be passive elements but could instead play active roles in tumor progression. Here, we propose a mechanism through which the presence of micronuclei could induce specific phenotypic and functional changes in cells and increase the invasive potential of cancer cells. Through the integration of diverse in vitro imaging and molecular techniques supported by clinical samples from patients with prostate cancer (PCa) defined as high-risk by the D'Amico classification, we demonstrate that the resolution of chromosome bridges can result in the accumulation of Emerin and the formation of Emerin-rich MN. These structures are negative for Lamin A/C and positive for the Lamin-B receptor and Sec61β. MN can act as a protein sinks and result in the pauperization of Emerin from the nuclear envelope. The Emerin mislocalization phenotype is associated with a molecular signature that is correlated with a poor prognosis in PCa patients and is enriched in metastatic samples. Emerin mislocalization corresponds with increases in the migratory and invasive potential of tumor cells, especially in a collagen-rich microenvironment. Our study demonstrates that the mislocalization of Emerin to MN results in increased cell invasiveness, thereby worsening patient prognosis.
Collapse
Affiliation(s)
- Marta Popęda
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kamil Kowalski
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | | | - Zeno Lavagnino
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sara Barozzi
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Julia Richert
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Rebecca Bertolio
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis, Medical University of Gdansk, Gdansk, Poland
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kevin Miszewski
- Department of Urology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Anna J Żaczek
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Luca Braga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
| | - Giannino Del Sal
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Natalia Bednarz-Knoll
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paulina Nastały
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
11
|
Wang Z, Wang W, Luo Q, Song G. Plectin: Dual Participation in Tumor Progression. Biomolecules 2024; 14:1050. [PMID: 39334817 PMCID: PMC11430127 DOI: 10.3390/biom14091050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The plectin gene can encode a cytoskeletal linking protein, plectin, known for its interaction with three critical components of the cellular cytoskeleton: intermediate filaments, microtubules, and actin filaments. In recent years, more and more studies have reported that plectin is closely related to tumorigenesis and development, exhibiting both tumor-suppressive and tumor-promoting functions. Here, we first introduce the molecular structure and function of plectin, and then we summarize the current understanding of the crucial role of plectin in cancer progression. Finally, we also discuss the possible reasons for the different roles of plectin expression in various types of cancer and highlight the double-edged sword role of plectin in tumor progression. The review aims to deepen the comprehensive understanding of plectin's role in cancer and further help to develop novel therapeutic strategies and drug targets.
Collapse
Affiliation(s)
- Zhihui Wang
- College of Bioengineering, Chongqing University, Chongqing 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing 400030, China
| | - Wenbin Wang
- College of Bioengineering, Chongqing University, Chongqing 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing 400030, China
| | - Qing Luo
- College of Bioengineering, Chongqing University, Chongqing 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing 400030, China
| | - Guanbin Song
- College of Bioengineering, Chongqing University, Chongqing 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing 400030, China
| |
Collapse
|
12
|
Cao F, Li Y, Peng T, Li Y, Yang L, Hu L, Zhang H, Wang J. PTEN in kidney diseases: a potential therapeutic target in preventing AKI-to-CKD transition. Front Med (Lausanne) 2024; 11:1428995. [PMID: 39165377 PMCID: PMC11333338 DOI: 10.3389/fmed.2024.1428995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Renal fibrosis, a critical factor in the development of chronic kidney disease (CKD), is predominantly initiated by acute kidney injury (AKI) and subsequent maladaptive repair resulting from pharmacological or pathological stimuli. Phosphatase and tensin homolog (PTEN), also known as phosphatase and tensin-associated phosphatase, plays a pivotal role in regulating the physiological behavior of renal tubular epithelial cells, glomeruli, and renal interstitial cells, thereby preserving the homeostasis of renal structure and function. It significantly impacts cell proliferation, apoptosis, fibrosis, and mitochondrial energy metabolism during AKI-to-CKD transition. Despite gradual elucidation of PTEN's involvement in various kidney injuries, its specific role in AKI and maladaptive repair after injury remains unclear. This review endeavors to delineate the multifaceted role of PTEN in renal pathology during AKI and CKD progression along with its underlying mechanisms, emphasizing its influence on oxidative stress, autophagy, non-coding RNA-mediated recruitment and activation of immune cells as well as renal fibrosis. Furthermore, we summarize prospective therapeutic targeting strategies for AKI and CKD-treatment related diseases through modulation of PTEN.
Collapse
Affiliation(s)
- Fangfang Cao
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Yuanyuan Li
- Division of Science and Education, Mianyang Central Hospital, Mianyang, China
| | - Ting Peng
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Yuanmei Li
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Lihua Yang
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
| | - Lanping Hu
- Hemodialysis Center, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Han Zhang
- Hemodialysis Center, Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Jiali Wang
- Division of Nephrology, Mianyang Central Hospital, Mianyang, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, China
| |
Collapse
|
13
|
Samaržija I, Lukiyanchuk V, Lončarić M, Rac-Justament A, Stojanović N, Gorodetska I, Kahya U, Humphries JD, Fatima M, Humphries MJ, Fröbe A, Dubrovska A, Ambriović-Ristov A. The extracellular matrix component perlecan/HSPG2 regulates radioresistance in prostate cancer cells. Front Cell Dev Biol 2024; 12:1452463. [PMID: 39149513 PMCID: PMC11325029 DOI: 10.3389/fcell.2024.1452463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Radiotherapy of prostate cancer (PC) can lead to the acquisition of radioresistance through molecular mechanisms that involve, in part, cell adhesion-mediated signaling. To define these mechanisms, we employed a DU145 PC model to conduct a comparative mass spectrometry-based proteomic analysis of the purified integrin nexus, i.e., the cell-matrix junction where integrins bridge assembled extracellular matrix (matrisome components) to adhesion signaling complexes (adhesome components). When parental and radioresistant cells were compared, the expression of integrins was not changed, but cell radioresistance was associated with extensive matrix remodeling and changes in the complement of adhesion signaling proteins. Out of 72 proteins differentially expressed in the parental and radioresistant cells, four proteins were selected for functional validation based on their correlation with biochemical recurrence-free survival. Perlecan/heparan sulfate proteoglycan 2 (HSPG2) and lysyl-like oxidase-like 2 (LOXL2) were upregulated, while sushi repeat-containing protein X-linked (SRPX) and laminin subunit beta 3 (LAMB3) were downregulated in radioresistant DU145 cells. Knockdown of perlecan/HSPG2 sensitized radioresistant DU145 RR cells to irradiation while the sensitivity of DU145 parental cells did not change, indicating a potential role for perlecan/HSPG2 and its associated proteins in suppressing tumor radioresistance. Validation in androgen-sensitive parental and radioresistant LNCaP cells further supported perlecan/HSPG2 as a regulator of cell radiosensitivity. These findings extend our understanding of the interplay between extracellular matrix remodeling and PC radioresistance and signpost perlecan/HSPG2 as a potential therapeutic target and biomarker for PC.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vasyl Lukiyanchuk
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Marija Lončarić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Anja Rac-Justament
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Nikolina Stojanović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Uğur Kahya
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jonathan D Humphries
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mahak Fatima
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Ana Fröbe
- Department of Oncology and Nuclear Medicine, Sestre Milosrdnice University Hospital Center, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
| | - Anna Dubrovska
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- German Cancer Consortium, Partner Site Dresden and German Cancer Research Center, Heidelberg, Germany
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Heidelberg, Germany
- Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
14
|
Zou Y, Xu L, Wang W, Zhu X, Lin J, Li H, Chen J, Xu W, Gao H, Wu X, Yin Z, Wang Q. Muscone restores anoikis sensitivity in TMZ-resistant glioblastoma cells by suppressing TOP2A via the EGFR/Integrin β1/FAK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155714. [PMID: 38723526 DOI: 10.1016/j.phymed.2024.155714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Temozolomide (TMZ) resistance is the main obstacle faced by glioblastoma multiforme (GBM) treatment. Muscone, one of the primary active pharmacological ingredients of Shexiang (Moschus), can cross the blood-brain barrier (BBB) and is being investigated as an antineoplastic medication. However, muscone treatment for GBM has received little research, and its possible mechanisms are still unclear. PURPOSE This study aims to evaluate the effect and the potential molecular mechanism of muscone on TMZ-resistant GBM cells. METHODS The differentially expressed genes (DEGs) between TMZ-resistant GBM cells and TMZ-sensitive GBM cells were screened using GEO2R. By progressively raising the TMZ concentration, a relatively stable TMZ-resistant human GBM cell line was established. The drug-resistance traits of U251-TR cells were assessed via the CCK-8 assay and Western Blot analysis of MGMT and TOP2A expression. Cell viability, cell proliferation, cell migration ability, and drug synergism were detected by the CCK-8 assay, colony formation assay, wound healing assay, and drug interaction relationship test, respectively. Anoikis was quantified by Calcein-AM/EthD-1 staining, MTT assay, and flow cytometry. Measurements of cell cycle arrest, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) were performed using cell cycle staining, Annexin V-FITC/PI labeling, JC-1 assay, and ROS assay, respectively. DNA damage was measured by TUNEL assay, alkaline comet assay, and γ-H2AX foci assay. GEPIA was used to investigate the link between the anoikis marker (FAK)/drug resistance gene and critical proteins in the EGFR/Integrin β1 signaling pathway. Molecular docking was used to anticipate the probable targets of muscone. The intracellular co-localization and expression of EGFR and FAK were shown using immunofluorescence. The U251-TR cell line stably overexpressing EGFR was constructed using lentiviral transduction to assess the involvement of EGFR-related signaling in anoikis resistance. Western Blot was employed to detect the expression of migration-related proteins, cyclins, anoikis-related proteins, DNA damage/repair-related proteins, and associated pathway proteins. RESULTS DEGs analysis identified 97 deregulated chemotherapy-resistant genes and 3779 upregulated genes in TMZ-resistant GBM cells. Subsequent experiments verified TMZ resistance and the hyper-expression of DNA repair-related genes (TOP2A and MGMT) in continuously low-dose TMZ-induced U251-TR cells. Muscone exhibited dose-dependent inhibition of U251-TR cell migration and proliferation, and its co-administration with TMZ showed the potential for enhanced therapeutic efficacy. By downregulating FAK, muscone reduced anoikis resistance in anchorage-independent U251-TR cells. It also caused cell cycle arrest in the G2/M phase by upregulating p21 and downregulating CDK1, CDK2, and Cyclin E1. Muscone-induced anoikis was accompanied by mitochondrial membrane potential collapse, ROS production, an increase in the BAX/Bcl-2 ratio, as well as elevated levels of Cytochrome c (Cyt c), cleaved caspase-9, and cleaved caspase-3. These findings indicated that muscone might trigger mitochondrial-dependent anoikis via ROS generation. Moreover, significant DNA damage, DNA double-strand breaks (DSBs), the formation of γ-H2AX foci, and a reduction in TOP2A expression are also associated with muscone-induced anoikis. Overexpression of EGFR in U251-TR cells boosted the expression of Integrin β1, FAK, β-Catenin, and TOP2A, whereas muscone suppressed the expression levels of EGFR, Integrin β1, β-Catenin, FAK, and TOP2A. Muscone may influence the expression of the key DNA repair enzyme, TOP2A, by suppressing the EGFR/Integrin β1/FAK pathway. CONCLUSION We first demonstrated that muscone suppressed TOP2A expression through the EGFR/Integrin β1/FAK pathway, hence restoring anoikis sensitivity in TMZ-resistant GBM cells. These data suggest that muscone may be a promising co-therapeutic agent for enhancing GBM treatment, particularly in cases of TMZ-resistant GBM with elevated TOP2A expression.
Collapse
Affiliation(s)
- Yuheng Zou
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Lanyang Xu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wanyu Wang
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiao Zhu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiaqi Lin
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Huazhao Li
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jiali Chen
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Xu
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haiqiong Gao
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xianghui Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhixin Yin
- Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qirui Wang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China; Department of Molecular Biology, State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
15
|
Cruz SP, Zhang Q, Devarajan R, Paia C, Luo B, Zhang K, Koivusalo S, Qin L, Xia J, Ahtikoski A, Vaarala M, Wenta T, Wei G, Manninen A. Dampened Regulatory Circuitry of TEAD1/ITGA1/ITGA2 Promotes TGFβ1 Signaling to Orchestrate Prostate Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305547. [PMID: 38169150 PMCID: PMC10953553 DOI: 10.1002/advs.202305547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/18/2023] [Indexed: 01/05/2024]
Abstract
The extracellular matrix (ECM) undergoes substantial changes during prostate cancer (PCa) progression, thereby regulating PCa growth and invasion. Herein, a meta-analysis of multiple PCa cohorts is performed which revealed that downregulation or genomic loss of ITGA1 and ITGA2 integrin genes is associated with tumor progression and worse prognosis. Genomic deletion of both ITGA1 and ITGA2 activated epithelial-to-mesenchymal transition (EMT) in benign prostate epithelial cells, thereby enhancing their invasive potential in vitro and converting them into tumorigenic cells in vivo. Mechanistically, EMT is induced by enhanced secretion and autocrine activation of TGFβ1 and nuclear targeting of YAP1. An unbiased genome-wide co-expression analysis of large PCa cohort datasets identified the transcription factor TEAD1 as a key regulator of ITGA1 and ITGA2 expression in PCa cells while TEAD1 loss phenocopied the dual loss of α1- and α2-integrins in vitro and in vivo. Remarkably, clinical data analysis revealed that TEAD1 downregulation or genomic loss is associated with aggressive PCa and together with low ITGA1 and ITGA2 expression synergistically impacted PCa prognosis and progression. This study thus demonstrated that loss of α1- and α2-integrins, either via deletion/inactivation of the ITGA1/ITGA2 locus or via loss of TEAD1, contributes to PCa progression by inducing TGFβ1-driven EMT.
Collapse
Affiliation(s)
- Sara P. Cruz
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Raman Devarajan
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Christos Paia
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Binjie Luo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Kai Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Saara Koivusalo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Longguang Qin
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Jihan Xia
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| | - Anne Ahtikoski
- Departments of Urology, Pathology and Radiology, and Medical Research Center OuluOulu University Hospital and University of OuluAapistie 5aOulu90220Finland
| | - Markku Vaarala
- Departments of Urology, Pathology and Radiology, and Medical Research Center OuluOulu University Hospital and University of OuluAapistie 5aOulu90220Finland
| | - Tomasz Wenta
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
- Department of General and Medical Biochemistry, Faculty of BiologyUniversity of GdanskJana Bażyńskiego 8Gdańsk80–309Poland
| | - Gong‐Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical SciencesShanghai Medical College of Fudan University138 Yi Xue Yuan RoadShanghai200032China
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter OuluUniversity of OuluAapistie 5aOulu90220Finland
| |
Collapse
|
16
|
Djakbarova U, Madraki Y, Chan ET, Wu T, Atreaga-Muniz V, Akatay AA, Kural C. Tension-induced adhesion mode switching: the interplay between focal adhesions and clathrin-containing adhesion complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579324. [PMID: 38370749 PMCID: PMC10871318 DOI: 10.1101/2024.02.07.579324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Integrin-based adhesion complexes are crucial in various cellular processes, including proliferation, differentiation, and motility. While the dynamics of canonical focal adhesion complexes (FAs) have been extensively studied, the regulation and physiological implications of the recently identified clathrin-containing adhesion complexes (CCACs) are still not well understood. In this study, we investigated the spatiotemporal mechanoregulations of FAs and CCACs in a breast cancer model. Employing single-molecule force spectroscopy coupled with live-cell fluorescence microscopy, we discovered that FAs and CCACs are mutually exclusive and inversely regulated complexes. This regulation is orchestrated through the modulation of plasma membrane tension, in combination with distinct modes of actomyosin contractility that can either synergize with or counteract this modulation. Our findings indicate that increased membrane tension promotes the association of CCACs at integrin αVβ5 adhesion sites, leading to decreased cancer cell proliferation, spreading, and migration. Conversely, lower membrane tension promotes the formation of FAs, which correlates with the softer membranes observed in cancer cells, thus potentially facilitating cancer progression. Our research provides novel insights into the biomechanical regulation of CCACs and FAs, revealing their critical and contrasting roles in modulating cancer cell progression.
Collapse
Affiliation(s)
- Umida Djakbarova
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Emily T. Chan
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Tianyao Wu
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - A. Ata Akatay
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Samaržija I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2023; 12:79. [PMID: 38255186 PMCID: PMC10813710 DOI: 10.3390/biomedicines12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
18
|
Ma SR, Liu JF, Jia R, Deng WW, Jia J. Identification of a Favorable Prognostic Subgroup in Oral Squamous Cell Carcinoma: Characterization of ITGB4/PD-L1 high with CD8/PD-1 high. Biomolecules 2023; 13:1014. [PMID: 37371594 DOI: 10.3390/biom13061014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Integrin β4 (ITGB4) is a member of the integrin family, which plays a crucial role in mediating cell adhesion to the extracellular matrix. Recent studies have demonstrated that ITGB4 is involved in tumorigenesis and metastasis during the development of cancer. However, the role of ITGB4 in oral squamous cell carcinoma (OSCC) remains unclear. A Multiplex immunohistochemistry (OPAL™, mIHC) assay was employed to stain ITGB4, ALDH1, PD-L1, cytokeratin (CK), CD8 and PD-1 in a human OSCC tissue microarray, containing 26 normal oral epithelium samples, 21 oral epithelium dysplasia samples and 76 OSCC samples. The expression pattern and clinicopathological characteristics of ITGB4 were analyzed and compared with those of PD-1, PD-L1, ALDH1 and CD8. The correlation between subgroups of tumor cells, including ITGB4+PD-L1+ and ITGB4+ALDH1+, and subgroups of T cells, including CD8+ and CD8+PD-1+, was evaluated using two-tailed Pearson's statistics. A Kaplan-Meier curve was built, and a log-rank test was performed to analyze the survival rate of different subgroups. The mIHC staining results show that ITGB4 was mostly expressed in the tumor cells, with a significant increase in the OSCC specimens compared with normal oral epithelium and oral epithelium dysplasia. The paired analysis, conducted between the OSCC tumor tissue and normal paracancer mucosa, confirmed the results. The study further revealed that ITGB4+PD-L1+ cancer cells, but not ITGB4+ALDH1+ cancer cells, were significantly associated with the infiltration of CD8+ T cells (positivity p = 0.005, positive number p = 0.03). Additionally, ITGB4+PD-L1+ tumor cells were positively correlated with CD8+PD-1+ T cells (positivity p = 0.02, positive number p = 0.03). Most intriguingly, the subgroup of ITGB4/PD-L1high with CD8/PD-1high displayed the best prognosis compared with the other considered subgroups. The results show that the expression of ITGB4 was increased in OSCC compared with normal oral mucosa. Furthermore, a specific subgroup with high levels of expression of ITGB4/PD-L1 and CD8/PD-1 was found to have a relatively better prognosis compared with the other subgroups. Ultimately, this study sheds light on the potential role of ITGB4 in OSCC and provides a basis for further investigation.
Collapse
Affiliation(s)
- Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jun Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
19
|
Sialyl Lewis X/A and Cytokeratin Crosstalk in Triple Negative Breast Cancer. Cancers (Basel) 2023; 15:cancers15030731. [PMID: 36765690 PMCID: PMC9913872 DOI: 10.3390/cancers15030731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) encompasses multiple entities and is generally highly aggressive and metastatic. We aimed to determine the clinical and biological relevance of Sialyl-Lewis X and A (sLeX/A)-a fucosylated glycan involved in metastasis-in TNBC. Here, we studied tissues from 50 TNBC patients, transcripts from a TNBC dataset from The Cancer Genome Atlas (TCGA) database, and a primary breast cancer cell line. All 50 TNBC tissue samples analysed expressed sLeX/A. Patients with high expression of sLeX/A had 3 years less disease-free survival than patients with lower expression. In tissue, sLeX/A negatively correlated with cytokeratins 5/6 (CK5/6, which was corroborated by the inverse correlation between fucosyltransferases and CK5/6 genes. Our observations were confirmed in vitro when inhibition of sLeX/A remarkably increased expression of CK5/6, followed by a decreased proliferation and invasion capacity. Among the reported glycoproteins bearing sLeX/A and based on the STRING tool, α6 integrin showed the highest interaction score with CK5/6. This is the first report on the sLeX/A expression in TNBC, highlighting its association with lower disease-free survival and its inverse crosstalk with CK5/6 with α6 integrin as a mediator. All in all, sLeX/A is critical for TNBC malignancy and a potential prognosis biomarker and therapeutic target.
Collapse
|
20
|
Koivusalo S, Schmidt A, Manninen A, Wenta T. Regulation of Kinase Signaling Pathways by α6β4-Integrins and Plectin in Prostate Cancer. Cancers (Basel) 2022; 15:149. [PMID: 36612146 PMCID: PMC9818203 DOI: 10.3390/cancers15010149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Hemidesmosomes (HDs) are adhesive structures that ensure stable anchorage of cells to the basement membrane. They are formed by α6β4-integrin heterodimers and linked to intermediate filaments via plectin. It has been reported that one of the most common events during the pathogenesis of prostate cancer (PCa) is the loss of HD organization. While the expression levels of β4-integrins are strongly reduced, the expression levels of α6-integrins and plectin are maintained or even elevated, and seem to promote tumorigenic properties of PCa cells, such as proliferation, invasion, metastasis, apoptosis- and drug-resistance. In this review, we discuss the potential mechanisms of how HD components might contribute to various cellular signaling pathways to promote prostate carcinogenesis. Moreover, we summarize the current knowledge on the involvement of α6β4-integrins and plectin in PCa initiation and progression.
Collapse
Affiliation(s)
- Saara Koivusalo
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Anette Schmidt
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
| | - Tomasz Wenta
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|