1
|
Feng CZ, Gou XY, Liu YQ, Xin YW, Zhang YL, Zhao HM, Wei SC, Hong N, Wang Y, Cheng J. Extramural venous invasion in gastric cancer: 9.4T magnetic resonance imaging assessment and circular RNA functional analysis. World J Gastroenterol 2025; 31:99897. [PMID: 40248379 PMCID: PMC12001196 DOI: 10.3748/wjg.v31.i14.99897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/19/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Extramural venous invasion (EMVI) is a critical prognostic factor in gastric cancer (GC); however, its detection and underlying molecular mechanisms remain underexplored. AIM To investigate the relationship between EMVI and expression of the circular RNA hsa_circ_0097977 in orthotopic GC mouse models. METHODS A retrospective analysis was conducted in addition to a preclinical animal study, involving 13 GC patients and 24 orthotopic GC mouse models, respectively. EMVI was assessed using axial T2-weighted fat suppression sequences on a 9.4T magnetic resonance imaging (MRI) with histopathological confirmation as the gold standard for EMVI. The impact of hsa_circ_0097977 on EMVI and GC cell function was evaluated. Statistical analyses comprised consistency, area under the curve analysis, correlation, χ 2/Fisher exact, and Mann-Whitney U/t-tests, with significance set at P < 0.05. RESULTS EMVI was accurately detected using 9.4T MRI in orthotopic mouse models with an area under the curve of 0.843 (sensitivity 78.6%, specificity 90.0%). MRI detected EMVI was the only imaging factor associated with distant metastasis (P = 0.04). Furthermore, knockdown of hsa_circ_0097977 was the only factor associated with EMVI (P = 0.043, 0.038) and led to reduced invasion and increased apoptosis in GC cells. CONCLUSION EMVI, a risk factor for distant metastasis in GC, is detectable by 9.4T MRI and regulated by hsa_circ_0097977, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Cai-Zhen Feng
- Department of Radiology, Peking University People’s Hospital, Beijing 100044, China
| | - Xin-Yi Gou
- Department of Radiology, Peking University People’s Hospital, Beijing 100044, China
| | - Yi-Qun Liu
- Department of Ultrasound, Peking University People’s Hospital, Beijing 100044, China
| | - Yu-Wei Xin
- Department of Ultrasound, Peking University People’s Hospital, Beijing 100044, China
| | - Yin-Li Zhang
- Department of Pathology, Peking University People’s Hospital, Beijing 100044, China
| | - Hui-Min Zhao
- Department of Pathology, Peking University People’s Hospital, Beijing 100044, China
| | - Sheng-Cai Wei
- Department of Radiology, Peking University People’s Hospital, Beijing 100044, China
| | - Nan Hong
- Department of Radiology, Peking University People’s Hospital, Beijing 100044, China
| | - Yi Wang
- Department of Radiology, Peking University People’s Hospital, Beijing 100044, China
| | - Jin Cheng
- Department of Radiology, Peking University People’s Hospital, Beijing 100044, China
| |
Collapse
|
2
|
Campos-Parra AD, Sánchez-Marín D, Acevedo-Sánchez V. MicroRNAs as Sensitizers of Tyrosine Kinase Inhibitor Resistance in Cancer: Small Molecule Partnerships. Pharmaceuticals (Basel) 2025; 18:492. [PMID: 40283927 PMCID: PMC12030540 DOI: 10.3390/ph18040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have revolutionized cancer treatments by being less toxic and improving the survival of cancer patients. The greatest challenge to their success is the resistance exhibited by cancer patients. However, the potential of microRNAs (miRNAs) for sensitizing molecules to TKIs has been well recognized, with several reports publishing promising results. Nonetheless, this therapeutic window faces challenges and several often-overlooked limitations. One of the most fundamental challenges is selecting the optimal miRNA candidates for clinical trials, as miRNAs are promiscuous and regulate hundreds of targets. In this review, we describe how miRNAs enhance sensitivity to TKIs across various types of cancer. We highlight several challenges and limitations in achieving a successful collaboration between small molecules (TKIs-miRNAs). Our focus is on proposing a workflow to select the most suitable miRNA candidate, recommending several available bioinformatics tools to develop a successful therapeutic partnership between TKIs and miRNAs. We hope that this initial proposal will provide valuable support for future research.
Collapse
Affiliation(s)
| | - David Sánchez-Marín
- Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04360, Mexico;
| | | |
Collapse
|
3
|
Wang KX, Shi DM, Shi XL, Wang JY, Ai XH. Obesity promotes immunotherapy efficacy by up-regulating the glycolytic-mediated histone lactacylation modification of CD8+ T cells. Front Pharmacol 2025; 16:1533464. [PMID: 40110127 PMCID: PMC11920648 DOI: 10.3389/fphar.2025.1533464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
The response rate of immune checkpoint blockade (ICB) therapy for non-small-cell lung cancer (NSCLC) remains limited. Recent evidence suggests that obese cancer patients are more likely to benefit from ICB therapy, however, the specific mechanism needs further research. In this study, we found that anti-PD-1 therapy was more effective in obese NSCLC patients compared to normal weight patients and this was verified in mouse NSCLC model. Further bioinformatics analysis indicated that the glycolytic metabolism was markedly elevated in obese NSCLC patients. In vitro co-culture experiment showed that both increased glycolysis of tumor cells and external addition of lactate promoted T cell PD-1 expression. And, PD-1 upregulation was related to monocarboxylate transporter 1 (MCT1)-mediated lactate transport and subsequent lysine lactylation of histones in T cells. Based on the aforementioned data, our study contributes to better application of anti-PD-1 therapy in NSCLC.
Collapse
Affiliation(s)
- Kai-Xuan Wang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Min Shi
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Li Shi
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jing-Yuan Wang
- Department of Medical Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xing-Hao Ai
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Abu-Alghayth MH, Abalkhail A, Hazazi A, Alyahyawi Y, Abdulaziz O, Alsharif A, Nassar SA, Omar BIA, Alqahtani SF, Shmrany HA, Khan FR. MicroRNAs and long non-coding RNAs In T-cell lymphoma: Mechanisms, pathway, therapeutic opportunities. Pathol Res Pract 2025; 266:155769. [PMID: 39740285 DOI: 10.1016/j.prp.2024.155769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
T-cell lymphomas represent non-Hodgkin lymphomas distinguished by the uncontrolled proliferation of malignant T lymphocytes. Classifying these neoplasms and the ongoing investigation of their underlying biological mechanisms remains challenging. Significant subtypes encompass peripheral T-cell lymphomas, anaplastic large-cell lymphomas, cutaneous T-cell lymphomas, and adult T-cell leukemia/lymphoma. A systematic literature survey used electronic databases, including PubMed, Springer Link, Google Scholar, and Web of Science. Search keywords included "T-cell lymphoma," "therapeutic approaches," "RNA therapeutics," "microRNA," and "signaling pathways". T-cell lymphomas are believed to arise from a complex interplay of genetic predispositions and environmental factors. Epstein-Barr virus (EBV) and Human T-cell leukemia virus-1 (HTLV-1), have been implicated as potential etiologic agents. While the exact molecular mechanisms are under investigation, T-cell lymphomas are distinguished by aberrant proliferation of T-cells resulting from dysregulated gene expression. Contemporary research has emphasized the significance of non-coding RNAs, including microRNAs and long non-coding RNAs, in the etiology and advancement of T-cell lymphomas. Certain miRNAs function as tumor suppressors (e.g., miR-451, miR-31, miR-150, miR-29a), while others can act as oncogenes (e.g., miR-223, miR-17-92, miR-155). Additionally, lcRNAs are responsible for modulating gene expression, and their influence on T-cell function suggests their potential outcome as therapeutic targets. Current therapeutic strategies for T-cell lymphomas predominantly rely on chemotherapy, with emerging modalities encompassing immunotherapy and targeted therapies. Despite these advancements, a substantial subset of T-cell lymphomas remains challenging to manage, especially those in advanced stages or refractory to conventional treatments. RNA-based therapeutics represent a promising strategy, offering many advantages such as targeted therapy, potential for personalized medicine, reduced side effects, rapid development, and synergy with other therapies while facing challenges in delivery, immune response, and specificity. Future research should focus on improving delivery systems, modulating immune responses, and optimizing production to unlock its full potential. This review comprehensively explored T-cell lymphomas, delving into their classification, pathogenesis, and existing therapeutic options. Additionally, we explore the evolving function of non-coding RNAs in the pathogenesis of T-cell lymphoma. Furthermore, we discuss the potential of RNA-based therapeutics as a promising treatment strategy.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia.
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia.
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Yara Alyahyawi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Somia A Nassar
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt.
| | - Bashir Ibrahim A Omar
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Sultan F Alqahtani
- Laboratory Department, Aliman General Hospital, Riyadh 13782, Saudi Arabia.
| | - Humood Al Shmrany
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Zhang Z, Westover D, Tang Z, Liu Y, Sun J, Sun Y, Zhang R, Wang X, Zhou S, Hesilaiti N, Xia Q, Du Z. Wnt/β-catenin signaling in the development and therapeutic resistance of non-small cell lung cancer. J Transl Med 2024; 22:565. [PMID: 38872189 PMCID: PMC11170811 DOI: 10.1186/s12967-024-05380-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
Wnt/β-catenin signaling is a critical pathway that influences development and therapeutic response of non-small cell lung cancer (NSCLC). In recent years, many Wnt regulators, including proteins, miRNAs, lncRNAs, and circRNAs, have been found to promote or inhibit signaling by acting on Wnt proteins, receptors, signal transducers and transcriptional effectors. The identification of these regulators and their underlying molecular mechanisms provides important implications for how to target this pathway therapeutically. In this review, we summarize recent studies of Wnt regulators in the development and therapeutic response of NSCLC.
Collapse
Affiliation(s)
- Zixu Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - David Westover
- High-Throughput Analytics, Analytical Research and Development, Merck & Co. Inc., Rahway, NJ, USA
| | - Zhantong Tang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Yue Liu
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Jinghan Sun
- School of Life Science and Technology, Southeast University, Nanjing, 210018, China
| | - Yunxi Sun
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Runqing Zhang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Xingyue Wang
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Shihui Zhou
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Nigaerayi Hesilaiti
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Qi Xia
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Zhenfang Du
- Department of Genetic and Developmental Biology, School of Medicine, Southeast University, Nanjing, 210003, China.
| |
Collapse
|
6
|
Li S, Qiu C, Sun D, Yang S, Wang L. circNINL facilitates aerobic glycolysis, proliferation, invasion, and migration in lung cancer by sponging miR-3918 to mediate FGFR1 expression. Eur J Med Res 2024; 29:67. [PMID: 38245787 PMCID: PMC10799498 DOI: 10.1186/s40001-024-01636-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/02/2024] [Indexed: 01/22/2024] Open
Abstract
Previously characterized as an oncogenic player in breast cancer, the function of circular RNA NINL (circNINL) in lung cancer (LC) remained elusive. This study aimed to delineate the biological role of circNINL in LC and to unveil its potential molecular mechanisms. We discovered elevated expression levels of circNINL and Fibroblast Growth Factor Receptor 1 (FGFR1) concomitant with diminished expression of microRNA-3918 (miR-3918) in LC specimens. Knockdown of circNINL led to a marked decrease in cell proliferation, migration, invasion, and aerobic glycolysis, alongside an upsurge in apoptosis in LC cells. Either downregulation of miR-3918 or overexpression of FGFR1 mitigated the suppressive impact of circNINL knockdown on LC pathogenesis. Mechanistic studies validated that circNINL served as a competitive endogenous RNA for miR-3918, thus influencing FGFR1 expression. Further, in vivo experiments using nude mouse xenograft models underscored that silencing circNINL substantially curtailed tumor growth in LC. Collectively, these findings illuminate that circNINL exacerbates LC malignancy via the miR-3918/FGFR1 axis, a process integrally linked with the activation of aerobic glycolysis.
Collapse
Affiliation(s)
- Sai Li
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua Road, Xiuying District, Haikou City, 570311, Hainan, China
| | - Chun Qiu
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua Road, Xiuying District, Haikou City, 570311, Hainan, China
| | - DaTong Sun
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua Road, Xiuying District, Haikou City, 570311, Hainan, China
| | - ShengHui Yang
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua Road, Xiuying District, Haikou City, 570311, Hainan, China
| | - Lin Wang
- Department of Medical Oncology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua Road, Xiuying District, Haikou City, 570311, Hainan, China.
| |
Collapse
|
7
|
Li JL, Tan Y, Wang QL, Li CX, Hong JC, Wang HJ, Wu Y, Ni DC, Peng XW. Mechanism through which the hsa-circ_0000992- hsa- miR- 936-AKT3 regulatory network promotes the PM 2.5-induced inflammatory response in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115778. [PMID: 38147774 DOI: 10.1016/j.ecoenv.2023.115778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Studies have shown that fine particulate matter (PM2.5) remains a significant problem in developing countries and plays a critical role in the onset and progression of respiratory illnesses. Circular RNAs (circRNAs) are involved in many pathophysiological processes,but their relationship to PM2.5 pollution is largely unexplored. OBJECTIVES To elucidate the functional role of hsa_circ_0000992 in PM2.5-induced inflammation in a human bronchial epithelial cell line (16HBE) and to clarify whether the competing endogenous RNA (ceRNA) mechanism is involved in the interrelationships between hsa_circ_0000992 and hsa-miR-936 and the inflammatory signaling pathways. METHODS Detection of inflammatory factors in 16HBE cells exposed to PM2.5 by RT-qPCR and ELISA.High throughput sequencing and bioinformatics analysis methods were used to screen circRNA.The bioinformatics analysis method western blotting and dual-luciferase reporter gene system were used to verify mechanisms associated with circRNA. RESULTS PM2.5 cause inflammation in the 16HBE cells. High throughput sequencing and RT-qPCR result revealed that the expression of hsa_circ_0000992 was markedly up-regulated in 16HBE exposed to PM2.5. The binding sites between hsa_circ_0000992 and hsa-miR-936 was confirmed by dual-luciferase reporter gene system.Western blotting and RT-qPCR showed that hsa_circ_0000992 can interact with hsa-miR-936 to regulate AKT serine/threonine kinase 3(AKT3),thereby activating the PI3K/AKT pathway and ultimately promoting the expression of interleukin (IL)- 1β and IL-8. CONCLUSION PM2.5 can induce the inflammatory response in 16HBE cells by activating the PI3K/AKT pathway. The expression of hsa_circ_0000992 increased when PM2.5 stimulated 16HBE cells,and the circRNA could then regulate the inflammatory response.Hsa_circ_0000992 regulates the hsa-miR-936/AKT3 axis through the ceRNA mechanism,thereby activating the PI3K/AKT signaling pathway,increasing the expression of cellular inflammatory factors,and promoting PM2.5-induced respiratory inflammation.
Collapse
Affiliation(s)
- Jing Lin Li
- Nanning Center for Disease Control and Prevention, Nanning 530021, China
| | - Yi Tan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Qiu Ling Wang
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Cai Xia Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jin Chang Hong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Hong Jie Wang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Yi Wu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - De Chun Ni
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Xiao Wu Peng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China.
| |
Collapse
|
8
|
Duan G, Huang C, Zhao J, Zhang Y, Zhao W, Dai H. Investigating subtypes of lung adenocarcinoma by oxidative stress and immunotherapy related genes. Sci Rep 2023; 13:20930. [PMID: 38017020 PMCID: PMC10684862 DOI: 10.1038/s41598-023-47659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most widespread and fatal types of lung cancer. Oxidative stress, resulting from an imbalance in the production and accumulation of reactive oxygen species (ROS), is considered a promising therapeutic target for cancer treatment. Currently, immune checkpoint blockade (ICB) therapy is being explored as a potentially effective treatment for early-stage LUAD. In this research, we aim to identify distinct subtypes of LUAD patients by investigating genes associated with oxidative stress and immunotherapy. Additionally, we aim to propose subtype-specific therapeutic strategies. We conducted a thorough search of the Gene Expression Omnibus (GEO) datasets. From this search, we pinpointed datasets that contained both expression data and survival information. We selected genes associated with oxidative stress and immunotherapy using keyword searches on GeneCards. We then combined expression data of LUAD samples from both The Cancer Genome Atlas (TCGA) and 11 GEO datasets, forming a unified dataset. This dataset was subsequently divided into two subsets, Dataset_Training and Dataset_Testing, using a random bifurcation method, with each subset containing 50% of the data. We applied consensus clustering (CC) analysis to identify distinct LUAD subtypes within the Dataset_Training. Molecular variances associated with oxidative stress levels, the tumor microenvironment (TME), and immune checkpoint genes (ICGs) were then investigated among these subtypes. Employing feature selection combined with machine learning techniques, we constructed models that achieved the highest accuracy levels. We validated the identified subtypes and models from Dataset_Training using Dataset_Testing. A hub gene with the highest importance values in the machine learning model was identified. We then utilized virtual screening to discover potential compounds targeting this hub gene. In the unified dataset, we integrated 2,154 LUAD samples from TCGA-LUAD and 11 GEO datasets. We specifically selected 1,311 genes associated with immune and oxidative stress processes. The expression data of these genes were then employed for subtype identification through CC analysis. Within Dataset_Training, two distinct subtypes emerged, each marked by different levels of immune and oxidative stress pathway values. Consequently, we named these as the OX+ and IM+ subtypes. Notably, the OX+ subtype showed increased oxidative stress levels, correlating with a worse prognosis than the IM+ subtype. Conversely, the IM+ subtype demonstrated enhanced levels of immune pathways, immune cells, and ICGs compared to the OX+ subtype. We reconfirmed these findings in Dataset_Testing. Through gene selection, we identified an optimal combination of 12 genes for predicting LUAD subtypes: ACP1, AURKA, BIRC5, CYC1, GSTP1, HSPD1, HSPE1, MDH2, MRPL13, NDUFS1, SNRPD1, and SORD. Out of the four machine learning models we tested, the support vector machine (SVM) stood out, achieving the highest area under the curve (AUC) of 0.86 and an accuracy of 0.78 on Dataset_Testing. We focused on HSPE1, which was designated as the hub gene due to its paramount importance in the SVM model, and computed the docking structures for four compounds: ZINC3978005 (Dihydroergotamine), ZINC52955754 (Ergotamine), ZINC150588351 (Elbasvir), and ZINC242548690 (Digoxin). Our study identified two subtypes of LUAD patients based on oxidative stress and immunotherapy-related genes. Our findings provided subtype-specific therapeutic strategies.
Collapse
Affiliation(s)
- Guangliang Duan
- Department of Oncology, Hangzhou Normal University, Affiliated Hospital, Hangzhou, 310015, Zhejiang, China
| | - Changxin Huang
- Department of Oncology, Hangzhou Normal University, Affiliated Hospital, Hangzhou, 310015, Zhejiang, China
| | - Jiangang Zhao
- Department of Oncology, Shaoxing Cent Hospital, Shaoxing, 312030, Zhejiang, China
| | - Yinghong Zhang
- Department of Nephrol, Hangzhou Normal University, Affiliated Hospital, Hangzhou, 310015, Zhejiang, China
| | - Wenbin Zhao
- Hangzhou Normal University Affiliated Hospital, Hangzhou, 310015, Zhejiang, China
| | - Huiping Dai
- Department of Proctol, Hangzhou Normal University, Affiliated Hospital, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
9
|
Sadeghi MS, Lotfi M, Soltani N, Farmani E, Fernandez JHO, Akhlaghitehrani S, Mohammed SH, Yasamineh S, Kalajahi HG, Gholizadeh O. Recent advances on high-efficiency of microRNAs in different types of lung cancer: a comprehensive review. Cancer Cell Int 2023; 23:284. [PMID: 37986065 PMCID: PMC10661689 DOI: 10.1186/s12935-023-03133-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Carcinoma of the lung is among the most common types of cancer globally. Concerning its histology, it is categorized as a non-small cell carcinoma (NSCLC) and a small cell cancer (SCLC) subtype. MicroRNAs (miRNAs) are a member of non-coding RNA whose nucleotides range from 19 to 25. They are known to be critical regulators of cancer via epigenetic control of oncogenes expression and by regulating tumor suppressor genes. miRNAs have an essential function in a tumorous microenvironment via modulating cancer cell growth, metastasis, angiogenesis, metabolism, and apoptosis. Moreover, a wide range of information produced via several investigations indicates their tumor-suppressing, oncogenic, diagnostic assessment, and predictive marker functions in different types of lung malignancy. miRNA mimics or anti-miRNAs can be transferred into a lung cancer cell, with possible curative implications. As a result, miRNAs hold promise as targets for lung cancer treatment and detection. In this study, we investigate the different functions of various miRNAs in different types of lung malignancy, which have been achieved in recent years that show the lung cancer-associated regulation of miRNAs expression, concerning their function in lung cancer beginning, development, and resistance to chemotherapy, also the probability to utilize miRNAs as predictive biomarkers for therapy reaction.
Collapse
Affiliation(s)
- Mohammad Saleh Sadeghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Lotfi
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Ma J, Huang L, Gao YB, Li MX, Chen LL, Yang L. Circ_TNFRSF21 promotes cSCC metastasis and M2 macrophage polarization via miR-214-3p/CHI3L1. J Dermatol Sci 2023; 111:32-42. [PMID: 37442735 DOI: 10.1016/j.jdermsci.2023.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is a highly invasive disease with the potential to metastasize and cause fatality. Therefore, it is crucial to understand the mechanism behind cSCC in order to devise effective strategies to combat this disease. OBJECTIVE We investigated the function of circ_TNFRSF21/miR-214-3p/CHI3L1 axis in cSCC. METHODS The features of circ_TNFRSF21 was characterized using Sanger sequencing, and RNase R/actinomycin D treatment. Genes and M1/M2 markers levels were assessed by qRT-PCR and IHC. The proliferation, migration, and invasion of cells were evaluated by CCK-8, colony formation, EdU incorporation, and transwell assays. Tumor growth and metastasis in vivo were evaluated by nude mouse xenograft model. Interactions of circ_TNFRSF21/miR-214-3p and miR-214-3p/CHI3L1 were validated by RNA immunoprecipitation and dual luciferase assay. RESULTS Circ_TNFRSF21 and CHI3L1 expression were elevated in both human cSCC tissues and cells, whereas miR-214-3p was reduced. Circ_TNFRSF21 silencing or miR-214-3p overexpression suppressed cSCC cell proliferation, migration, invasion, and M2 macrophage polarization. Circ_TNFRSF21 functioned as a sponge for miR-214-3p while miR-214-3p directly targeted CHI3L1. Knockdown of miR-214-3p reversed the effects of circ_TNFRSF21 knockdown on cSCC development, while CHI3L1 upregulation reversed the effects of miR-214-3p overexpression. Furthermore, knockdown of circ_TNFRSF21 inhibited cSCC tumor growth and metastasis in vivo. CONCLUSION Circ_TNFRSF21 plays a significant role in cSCC progression by enhancing cell proliferation, migration, invasion, and M2 macrophage polarization through inhibiting miR-214-3p and subsequent disinhibition of CHI3L1. These findings deepen our understanding of the molecular mechanism of cSCC and propose the circ_TNFRSF21/miR-214-3p/CHI3L1 axis as promising diagnosis markers or therapeutic targets for cSCC.
Collapse
Affiliation(s)
- Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Yan-Bin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Min-Xiong Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Liang-Long Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China.
| |
Collapse
|
11
|
Liu L, Zhang H, Jin B, Li H, Zheng X, Li X, Li M, Li M, Nian S, Wang K. MiR-214-3p may alleviate T-2 toxin-induced chondrocyte apoptosis and matrix degradation by regulating NF-κB signaling pathway in vitro. Toxicon 2023; 225:107049. [PMID: 36796497 DOI: 10.1016/j.toxicon.2023.107049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
T-2 toxin is part of the most toxic fungal secondary metabolites contaminating different kinds of grains. Previous studies have demonstrated that T-2 toxin can influence the survival of chondrocytes and extracellular matrix (ECM) composition. MiR-214-3p is essential for the homeostasis of chondrocytes and ECM. However, the molecular machinery underlying T-2 toxin-induced chondrocyte apoptosis and ECM degradation remain to be elucidated. The present study aimed to investigate the mechanism of miR-214-3p's involvement in T-2 toxin-induced chondrocyte apoptosis and ECM degradation. Meanwhile, the role of the NF-κB signaling pathway was scrutinized. C28/I2 chondrocytes were treated with 8 ng/ml of T-2 toxin for 24 h, after the pretreatment of miR-214-3p interfering RNAs for 6 h. Gene and protein levels involved in chondrocyte apoptosis and ECM degradation were assessed through RT-PCR and Western blotting. The apoptosis rate of chondrocyte was measured by flow cytometry. Results and data indicated that miR-214-3p was decreased in a dose-dependent manner at different concentrations of T-2 toxin. The enhancement of miR-214-3p could alleviate chondrocyte apoptosis and ECM degradation due to T-2 toxin exposure. The upregulation of miR-214-3p was associated with the decreased expression of apoptosis-promoting genes such as Bax and Cleaved-caspase3/caspase3 as well as the increased expression of anti-apoptotic genes such as Bcl2 and Survivin. Furthermore, miR-214-3p stimulated the relative protein expression of collagen Ⅱ but inhibited the expression of MMP13. Overexpressing miR-214-3p could suppress the relative protein expression of IKKβ and phospho-p65/p65, thus blocking the activation of the NF-κB signaling pathway. The study suggested that the miR-214-3p attenuates T-2 toxin-induced chondrocyte apoptosis and ECM degradation through a potential NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lele Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Hua Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Baiming Jin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, 161006, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Haonan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Xiujuan Zheng
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Xuying Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Mengyuan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Mingqi Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Shijing Nian
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Kewei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
12
|
Phatak P, Burrows WM, Creed TM, Youssef M, Lee G, Donahue JM. MiR-214-3p targets Ras-related protein 14 (RAB14) to inhibit cellular migration and invasion in esophageal Cancer cells. BMC Cancer 2022; 22:1265. [PMID: 36471277 PMCID: PMC9721009 DOI: 10.1186/s12885-022-10304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/10/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND MicroRNA (miR)-214-3p is emerging as an important tumor suppressor in esophageal cancer. In this study, we examined the interaction between miR-214-3p and RAB14, a membrane trafficking protein shown to exert oncogenic functions in other malignancies, in esophageal cancer cells. METHODS Studies were performed in a human esophageal epithelial cell line and a panel of esophageal cancer cell lines, as well in human specimens. MiR-214-3p expression was measured by digital PCR. Biotinylated RNA pull-down and luciferase reporter assays assessed binding. The xCELLigence RTCA system measured cell migration and invasion in real time. A lentiviral expression vector was used to create an esophageal cancer cell line stably expressing miR-214-3p. RESULTS MiR-214-3p expression was decreased in esophageal cancer cell lines and human specimens compared to non-malignant controls. RAB14 mRNA stability and protein expression were decreased following miR-214-3p overexpression. Binding between miR-214-3p and RAB14 mRNA was observed. Either forced expression of miR-214-3p or RAB14 silencing led to a marked decrease in cellular migration and invasion. Esophageal cancer cells stably expressing miR-214-3p demonstrated decreased growth in a subcutaneous murine model. CONCLUSIONS These results further support the tumor-suppressive role of miR-214-3p in esophageal cancer cells by demonstrating its ability to regulate RAB14 expression.
Collapse
Affiliation(s)
- Pornima Phatak
- grid.280808.a0000 0004 0419 1326Birmingham Veterans Affairs Medical Center, Birmingham, AL USA ,grid.265892.20000000106344187Department of Surgery, University of Alabama at Birmingham, Birmingham, AL USA ,grid.280711.d0000 0004 0419 6661Baltimore Veterans Affairs Medical Center, Baltimore, MD USA
| | - Whitney M. Burrows
- grid.411024.20000 0001 2175 4264Department of Surgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Timothy Michael Creed
- grid.411024.20000 0001 2175 4264Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Mariam Youssef
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Goo Lee
- grid.265892.20000000106344187Department of Pathology, University of Alabama at Birmingham, Birmingham, AL USA
| | - James M. Donahue
- grid.280808.a0000 0004 0419 1326Birmingham Veterans Affairs Medical Center, Birmingham, AL USA ,grid.265892.20000000106344187Department of Surgery, University of Alabama at Birmingham, Birmingham, AL USA ,grid.280711.d0000 0004 0419 6661Baltimore Veterans Affairs Medical Center, Baltimore, MD USA
| |
Collapse
|
13
|
Lepri G, Catalano M, Bellando-Randone S, Pillozzi S, Giommoni E, Giorgione R, Botteri C, Matucci-Cerinic M, Antonuzzo L, Guiducci S. Systemic Sclerosis Association with Malignancy. Clin Rev Allergy Immunol 2022; 63:398-416. [PMID: 36121543 DOI: 10.1007/s12016-022-08930-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/17/2022]
Abstract
The association of systemic sclerosis (SSc) and cancer is well known from several decades suggesting common genetic and environmental risk factors involved in the development of both diseases. Immunosuppressive drugs widely used in SSc may increase the risk of cancer occurrence and different SSc clinical and serological features identify patients at major risk to develop malignancy. In this context, among serological features, presence of anti-RNA polymerase III and anti-topoisomerase I autoantibodies seems to increase cancer frequency in SSc patients (particularly lung and breast cancers). Lung fibrosis and a long standing SSc pulmonary involvement have been largely proposed as lung cancer risk factors, and the exposure to cyclophosphamide and an upper gastrointestinal involvement have been traditionally linked to bladder and oesophagus cancers, respectively. Furthermore, immune checkpoint inhibitors used for cancer therapy can induce immune-related adverse events, which are more frequent and severe in patients with pre-existing autoimmune diseases such as SSc. The strong association between SSc and cancer occurrence steers clinicians to carefully survey SSc patients performing periodical malignancy screening. In the present review, the most relevant bilateral relationships between SSc and cancer will be addressed.
Collapse
Affiliation(s)
- Gemma Lepri
- Department of Experimental and Clinical Medicine, University of Florence, and Division of Rheumatology, AOUC & Scleroderma Unit, Florence, Italy.
| | - Martina Catalano
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, University of Florence, and Division of Rheumatology, AOUC & Scleroderma Unit, Florence, Italy
| | - Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Elisa Giommoni
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | | | - Cristina Botteri
- Medical Oncology Unit, Careggi University Hospital, Florence, Italy
| | - Marco Matucci-Cerinic
- Department of Experimental and Clinical Medicine, University of Florence, and Division of Rheumatology, AOUC & Scleroderma Unit, Florence, Italy.,Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy
| | - Lorenzo Antonuzzo
- Medical Oncology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, University of Florence, and Division of Rheumatology, AOUC & Scleroderma Unit, Florence, Italy
| |
Collapse
|
14
|
Li J, Li P, Shao J, Liang S, Wan Y, Zhang Q, Li C, Li Y, Wang C. Emerging Role of Noncoding RNAs in EGFR TKI-Resistant Lung Cancer. Cancers (Basel) 2022; 14:cancers14184423. [PMID: 36139582 PMCID: PMC9496789 DOI: 10.3390/cancers14184423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Lung cancer accounts for the majority of malignancy-related mortalities worldwide. The introduction of epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) has revolutionized the treatment and significantly improved the overall survival (OS) of lung cancer. Nevertheless, almost all EGFR-mutant patients invariably acquire TKI resistance. Accumulating evidence has indicated that noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), have a central role in the tumorigenesis and progression of lung cancer by regulating crucial signaling pathways, providing a new approach for exploring the underlying mechanisms of EGFR-TKI resistance. Therefore, this review comprehensively describes the dysregulation of ncRNAs in EGFR TKI-resistant lung cancer and its underlying mechanisms. We also underscore the clinical application of ncRNAs as prognostic, predictive and therapeutic biomarkers for EGFR TKI-resistant lung cancer. Furthermore, the barriers that need to be overcome to translate the basic findings of ncRNAs into clinical practice are discussed.
Collapse
Affiliation(s)
- Jingwei Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peiyi Li
- Department of Anesthesiology, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jun Shao
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shufan Liang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuntian Wan
- West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiran Zhang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Changshu Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.L.); (C.W.)
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Medical School/West China Hospital, Sichuan University, Chengdu 610041, China
- Correspondence: (Y.L.); (C.W.)
| |
Collapse
|
15
|
MicroRNAs as Potential Tools for Predicting Cancer Patients’ Susceptibility to SARS-CoV-2 Infection and Vaccination Response. Cells 2022; 11:cells11152279. [PMID: 35892576 PMCID: PMC9332853 DOI: 10.3390/cells11152279] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease that is caused by a highly contagious and severe acute respiratory syndrome—coronavirus 2 (SARS-CoV-2). This infection started to spread across the world in 2019 and rapidly turned into a global pandemic, causing an urgent necessity for treatment strategies development. The mRNA vaccines against SARS-CoV-2 can trigger an immune response, providing genetic information that allows the production of spike glycoproteins. MiRNAs play a crucial role in diverse key cellular processes, including antiviral defense. Several miRNAs are described as key factors in SARS-CoV-2 human infection through the regulation of ACE2 levels and by the inhibition of SARS-CoV-2 replication and spike expression. Consequently, these molecules have been considered as highly promising biomarkers. In numerous human malignancies, it has been recognized that miRNAs expression is dysregulated. Since miRNAs can target SARS-CoV-2-associated mRNAs, in cancer patients, the deregulation of these molecules can impair the immune response to the vaccines. Therefore, in this review, we propose a miRNA profile of seven SARS-CoV-2-related miRNAs, namely miR-214, miR-98-5p, miR-7-5p, miR-24-3p, miR-145-5p, miR-223-3p and miR-15b-5p, that are deregulated in a high number of cancers and have the potential to be used as prognostic biomarkers to stratify cancer patients.
Collapse
|
16
|
Nie G, Wei X, Ye J. Bone Marrow Mesenchymal Stem Cells (BMSCs)-Originated miR-1298 Impedes the Aggressiveness of Non-Small Cell Lung Cancer by Hindering the Chemokine Receptor 4 (CXCR4)-Induced Epithelial-Mesenchymal Transition (EMT) Process. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exosomes are a subclass of extracellular vesicles, which are produced and secreted by various cells including bone marrow mesenchymal stem cells (BMSCs). BMSCs-originated exosomes can provide a beneficial microenvironment and manipulate tumor growth. However, whether BMSCs-derived miR-1298
exerts roles in NSCLC remains unclear. miR-1298 level was quantified in NSCLC tumor tissues and para-cancerous tissues and NSCLC cell lines. Cells were transfected with miR-136 mimics/miR-136 inhibitors or treatment with BMSCs-originated exosomes to measure cell biological behaviors. Our results
found a diminished miR-1298 expression in NSCLC tumor specimens and cell lines. Meanwhile, miR-1298 overexpression or miR-1298 derived from BMSC-originated exosomes can restrain the proliferating feature of NSCLC cells, and impedes cell aggressiveness via hindering EMT process. Additionally,
CXCR4 was a target of miR-1298. In conclusion, miR-1298 is served as a tumor suppressor gene in NSCLC and can retard the proliferating and invading behaviors of NSCLC cells by targeting CXCR4 expression, indicating that it might be a novel therapeutic target for treating NSCLC.
Collapse
Affiliation(s)
- Guangjie Nie
- Department of Thoracic Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 520308, China
| | - Xiaoqun Wei
- First People’s Hospital of Foshan, Affiliated Hospital of Sun Yat-Sen University in Foshan, Foshan, Guangdong, 528000, China
| | - Jun Ye
- First People’s Hospital of Foshan, Affiliated Hospital of Sun Yat-Sen University in Foshan, Foshan, Guangdong, 528000, China
| |
Collapse
|
17
|
Zeng Q, Qi X, Ma J, Hu F, Wang X, Qin H, Li M, Huang S, Yang Y, Li Y, Bai H, Jiang M, Ren D, Kang Y, Zhao Y, Chen X, Ding X, Ye D, Wang Y, Jiang J, Li D, Chen X, Hu K, Zhang B, Shi B, Zhang C. Distinct miRNAs associated with various clinical presentations of SARS-CoV-2 infection. iScience 2022; 25:104309. [PMID: 35502319 PMCID: PMC9044631 DOI: 10.1016/j.isci.2022.104309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/04/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) have been shown to play important roles in viral infections, but their associations with SARS-CoV-2 infection remain poorly understood. Here, we detected 85 differentially expressed miRNAs (DE-miRNAs) from 2,336 known and 361 novel miRNAs that were identified in 233 plasma samples from 61 healthy controls and 116 patients with COVID-19 using the high-throughput sequencing and computational analysis. These DE-miRNAs were associated with SASR-CoV-2 infection, disease severity, and viral persistence in the patients with COVID-19, respectively. Gene ontology and KEGG pathway analyses of the DE-miRNAs revealed their connections to viral infections, immune responses, and lung diseases. Finally, we established a machine learning model using the DE-miRNAs between various groups for classification of COVID-19 cases with different clinical presentations. Our findings may help understand the contribution of miRNAs to the pathogenesis of COVID-19 and identify potential biomarkers and molecular targets for diagnosis and treatment of SARS-CoV-2 infection. 2,336 known and 361 novel miRNAs identified in this study 85 miRNAs associated with COVID-19 A panel of miRNAs targeting the viral or cellular genes Machine learning using miRNAs for classification of COVID-19
Collapse
Affiliation(s)
- Qiqi Zeng
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an 710000, China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an 710000, China
| | - Junpeng Ma
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an 710000, China
| | - Fang Hu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an 710000, China
| | - Xiaorui Wang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an 710000, China
| | - Hongyu Qin
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an 710000, China
| | - Mengyang Li
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an 710000, China
| | - Shaoxin Huang
- SpecAlly Life Technology Co, Ltd, Wuhan East Lake High-tech Development Zone, 666 Gaoxin Road, Wuhan 430075, China
| | - Yong Yang
- SpecAlly Life Technology Co, Ltd, Wuhan East Lake High-tech Development Zone, 666 Gaoxin Road, Wuhan 430075, China
| | - Yixin Li
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an 710000, China
| | - Han Bai
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an 710000, China
| | - Meng Jiang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an 710000, China
| | - Doudou Ren
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an 710000, China
| | - Ye Kang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an 710000, China
| | - Yang Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan 430060, China
| | - Xiaobei Chen
- Department of Infectious Diseases, The Renmin Hospital of Wuhan University, East Campus, East Lake New Technology Development Zone, Gaoxin 6th Road, Wuhan 430040, China
| | - Xi Ding
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Di Ye
- Department of Rehabilitation, The Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan 430060, China
| | - Yankui Wang
- Dialysis Center, The Renmin Hospital of Wuhan University, East Campus, East Lake New Technology Development Zone, Gaoxin 6th Road, Wuhan 430040, China
| | - Jianguo Jiang
- LC-Bio Technologies (Hangzhou) Co., Ltd., Hanghzhou 310000, China
| | - Dong Li
- Department of Clinical Laboratory, The Renmin Hospital of Wuhan University, East Campus, East Lake New Technology Development Zone, Gaoxin 6th Road, Wuhan 430040, China
| | - Xi Chen
- SpecAlly Life Technology Co, Ltd, Wuhan East Lake High-tech Development Zone, 666 Gaoxin Road, Wuhan 430075, China.,Wuhan Institute of Biotechnology, Wuhan East Lake High-tech Development Zone, 666 Gaoxin Road, Wuhan 430040, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 99 Zhangzhidong Road, Wuhan 430060, China
| | - Binghong Zhang
- The Renmin Hospital of Wuhan University, East Campus, East Lake New Technology Development Zone, Gaoxin 6th Road, Wuhan 430040, China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Chengsheng Zhang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Western China Science and Technology Innovation Harbor, Building 21, Xi'an 710000, China.,Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.,The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| |
Collapse
|
18
|
An integrated in silico analysis highlighted angiogenesis regulating miRNA-mRNA network in PCOS pathophysiology. J Assist Reprod Genet 2022; 39:427-440. [PMID: 35032287 PMCID: PMC8760593 DOI: 10.1007/s10815-022-02396-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a heterogeneous endocrinopathy and a leading cause of anovulatory infertility. Angiogenesis is vital for ovarian folliculogenesis. The expression of angiogenesis-associated genes/proteins is altered in the ovary of PCOS women. However, information on microRNAs (miRNAs) regulating their expression is limited. This study aims to identify dysregulated angiogenesis-related genes in the ovary of women with PCOS, to identify miRNAs regulating them, and to construct a miRNA-mRNA network associated with angiogenesis. Methods A comprehensive literature search and reanalysis of seven ovarian GEO microarray datasets were performed to identify differentially expressed angiogenesis-related genes in PCOS. These target genes were used to predict their regulating miRNAs by querying miRNA databases and their expression in the ovary was verified. Panther and STRING database were used for functional enrichment. Gene expression of shortlisted miRNAs was studied in granulosa cells using digital droplet PCR. Results The miRNAs expressed in the ovary and potentially targeting dysregulated angiogenesis-related genes in PCOS were identified and those enriched in angiogenesis-related pathways, like VEGF, FGF, PI3K/Akt, Notch signaling, and ECM interaction were shortlisted. Analysis showed PI3K/Akt signaling was the most enriched pathway. MiR-218-5p, miR-214-3p, miR-20a-5p, and miR-140-3p associated with the PI3K/Akt pathway were found to be up-regulated in granulosa cells of women with PCOS. Conclusions By in silico analysis, we identified crucial dysregulated angiogenesis-related genes, the miRNA-mRNA interactions, and signaling pathways involved in impaired follicular angiogenesis in PCOS. This work provides a novel insight into the mechanism of aberrant ovarian angiogenesis contributing to PCOS pathophysiology. Supplementary Information The online version contains supplementary material available at 10.1007/s10815-022-02396-1.
Collapse
|
19
|
Exosomal miR-214-3p as a potential novel biomarker for rhabdoid tumor of the kidney. Pediatr Surg Int 2021; 37:1783-1790. [PMID: 34491386 DOI: 10.1007/s00383-021-04989-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Rhabdoid tumor of the kidney (RTK) is a rare, highly aggressive pediatric renal tumor. No specific biomarkers are available for detection of RTK, and the initial differential diagnosis from other pediatric abdominal tumors, including neuroblastoma (NB), is difficult. Exosomal miRNAs are novel cancer biomarkers that can be detected in biological fluids. We explored candidate RTK-specific exosomal miRNAs as novel biomarkers of RTK. METHODS Exosomal miRNAs were collected from conditioned media of human RTK-derived cell lines, a human embryonic renal cell line, and human NB-derived cell lines. miRNA sequencing (miRNA-Seq) was performed to detect candidate RTK-specific exosomal miRNAs. The exosomal miRNA expression in conditioned media of tumor cell lines and serum from RTK xenograft-bearing mice was analyzed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS The expression of exosomal miR-214-3p detected by miRNA-Seq was highest in RTK-derived cell lines. Exosomal miR-214-3p expression level determined by qRT-PCR was significantly higher in RTK-derived cell lines than in the human embryonic renal cell line or NB-derived cell lines. Furthermore, the serum exosomal miR-214-3p expression level was significantly higher in RTK xenograft mice than controls. CONCLUSION Our data indicated that exosomal miR-214-3p has potential as a novel biomarker of RTK.
Collapse
|
20
|
Arghiani N, Nissan T, Matin MM. Role of microRNAs in COVID-19 with implications for therapeutics. Biomed Pharmacother 2021; 144:112247. [PMID: 34601190 PMCID: PMC8463393 DOI: 10.1016/j.biopha.2021.112247] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/09/2023] Open
Abstract
COVID-19 is a pneumonia-like disease with highly transmittable and pathogenic properties caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which infects both animals and humans. Although many efforts are currently underway to test possible therapies, there is no specific FDA approved drug against SARS-CoV-2 yet. miRNA-directed gene regulation controls the majority of biological processes. In addition, the development and progression of several human diseases are associated with dysregulation of miRNAs. In this regard, it has been shown that changes in miRNAs are linked to severity of COVID-19 especially in patients with respiratory diseases, diabetes, heart failure or kidney problems. Therefore, targeting these small noncoding-RNAs could potentially alleviate complications from COVID-19. Here, we will review the roles and importance of host and RNA virus encoded miRNAs in COVID-19 pathogenicity and immune response. Then, we focus on potential miRNA therapeutics in the patients who are at increased risk for severe disease.
Collapse
Affiliation(s)
- Nahid Arghiani
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; School of Life Science, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, United Kingdom
| | - Tracy Nissan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; School of Life Science, Department of Biochemistry and Biomedicine, University of Sussex, Brighton, United Kingdom.
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|
21
|
LINC00665 Targets miR-214-3p/MAPK1 Axis to Accelerate Hepatocellular Carcinoma Growth and Warburg Effect. JOURNAL OF ONCOLOGY 2021; 2021:9046798. [PMID: 34804162 PMCID: PMC8598336 DOI: 10.1155/2021/9046798] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Inhibition of aerobic glycolysis is a hopeful method for cancer treatment. In this study, we aimed to explore LINC00665/miR-214-3p/MAPK1 role in regulating cell viability and aerobic glycolysis in hepatocellular carcinoma (HCC). The expressions of LINC00665 in 50 paired HCC tissues and normal tissues were determined by qRT-PCR. Pearson analysis was applied to evaluate the association between the expression levels of miR-214-3p, LINC00665, and MAPK1 in HCC tissues. The interactions between miR-214-3p and LINC00665 or MAPK1 were determined by luciferase reporter assay and RNA immunoprecipitation. CCK-8 and colony formation assays were used for cell viability evaluation. Lactate production, glucose consumption, and ATP levels were measured to assess Warburg effect. The results showed that LINC00665 was overexpressed in HCC, which positively associated with MAPK1 level and negatively associated with miR-214-3p level in HCC tissues. Overexpression of LINC00665 led to significant enhancements in cell viability and colony formation, whereas this effect was weakened when miR-214-3p was overexpressed or MAPK1 was downregulated. In addition, deletion of LINC00665 expression repressed tumor formation in vivo. Mechanically, LINC00665 increased MAPK1 expression through binding to miR-214-3p. Collectively, this study revealed that LINC00665 accelerated cell growth and Warburg effect through sponging miR-214-3p to increase MAPK1 expression in HCC.
Collapse
|
22
|
Tao W, Cao C, Ren G, Zhou D. Circular RNA circCPA4 promotes tumorigenesis by regulating miR-214-3p/TGIF2 in lung cancer. Thorac Cancer 2021; 12:3356-3369. [PMID: 34741437 PMCID: PMC8671903 DOI: 10.1111/1759-7714.14210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Background Lung cancer is the most prevalent malignancy in adults. Circular RNA (circRNA) circCPA4 (hsa_circ_0082374) is highly expressed in non‐small cell lung cancer (NSCLC). The purpose of this study was to explore the role and mechanism of circCPA4 in lung cancer. Methods CircCPA4, linear CPA4, TGF‐β‐induced factor homeobox 2 (TGIF2), and microRNA‐214‐3p (miR‐214‐3p) levels were measured by real‐time quantitative polymerase chain reaction (RT‐qPCR). The protein levels of TGIF2, Beclin1, and p62 were assessed by western blot assay. Colony numbers, migration, invasion, apoptosis, and cell cycle progression were examined by colony formation, wound‐healing, transwell, and flow cytometry assays, respectively. The binding relationship between miR‐214‐3p and circCPA4 or TGIF2 was predicted by StarBase or TargetScan and then verified by a dual‐luciferase reporter, RNA immunoprecipitation (RIP), and RNA pulldown assays. The biological role of circCPA4 on lung tumor growth was assessed by a xenograft tumor model in vivo, and TGIF2 and ki‐67 expression was assessed by immunohistochemistry. Results We determined that CircCPA4 and TGIF2 were increased, and miR‐214‐3p was decreased in lung cancer tissues and cells. Functionally, circCPA4 knockdown could suppress colony formation, migration, invasion, cell cycle progression, and expedite apoptosis of lung cancer cells in vitro. Mechanically, circCPA4 could regulate TGIF2 expression by sponging miR‐214‐3p. In addition, circCPA4 deficiency inhibited the tumor growth in lung cancer in the mouse model. Conclusions CircCPA4 could act as a sponge of miR‐214‐3p to upregulate TGIF2 expression, thereby promoting the progression of lung cancer cells. These findings suggested underlying therapeutic targets for the treatment of lung cancer.
Collapse
Affiliation(s)
- Wenhu Tao
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cheng Cao
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Gaofei Ren
- Department of Cardiovascular Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, China
| | - Decun Zhou
- Department of Cardiovascular Surgery, Anhui No. 2 Provincial People's Hospital, Hefei, China
| |
Collapse
|
23
|
Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer. Adv Drug Deliv Rev 2021; 178:113918. [PMID: 34375681 DOI: 10.1016/j.addr.2021.113918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM), is the most common metabolic disease and is characterized by sustained hyperglycemia. Accumulating evidences supports a strong association between DM and numerous lung diseases including chronic obstructive pulmonary disease (COPD), fibrosis, and lung cancer (LC). The global incidence of DM-associated lung disorders is rising and several ongoing studies, including clinical trials, aim to elucidate the molecular mechanisms linking DM with lung disorders, in particular LC. Several potential mechanisms, including hyperglycemia, hyperinsulinemia, glycation, inflammation, and hypoxia, are cited as plausible links between DM and LC. In addition, studies also propose a connection between the use of anti-diabetic medications and reduction in the incidence of LC. However, the exact cause for DM associated lung diseases especially LC is not clear and is an area under intense investigation. Herein, we review the biological links reported between DM and lung disorders with an emphasis on LC. Furthermore, we report common signaling pathways (eg: TGF-β, IL-6, HIF-1, PDGF) and miRNAs that are dysregulated in DM and LC and serve as molecular targets for therapy. Finally, we propose a nanomedicine based approach for delivering therapeutics (eg: IL-24 plasmid DNA, HuR siRNA) to disrupt signaling pathways common to DM and LC and thus potentially treat DM-associated LC. Finally, we conclude that the effective modulation of commonly regulated signaling pathways would help design novel therapeutic protocols for treating DM patients diagnosed with LC.
Collapse
|
24
|
He GN, Bao NR, Wang S, Xi M, Zhang TH, Chen FS. Ketamine Induces Ferroptosis of Liver Cancer Cells by Targeting lncRNA PVT1/miR-214-3p/GPX4. Drug Des Devel Ther 2021; 15:3965-3978. [PMID: 34566408 PMCID: PMC8458041 DOI: 10.2147/dddt.s332847] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Liver cancer ranks the top four malignant cancer type worldwide, which needs effective and safe treatment. Ferroptosis is a novel form of regulated cell death driven by iron-dependent lipid peroxidation and has been regarded as a promising therapeutic target for cancers. In this work, we aimed to study the effects of anesthetic ketamine on proliferation and ferroptosis of liver cancer. METHODS Cell viability and proliferation were detected by cell counting kit 8 (CCK-8), colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assay. Ferroptosis was determined by levels of Fe2+, lipid reactive oxygen species (ROS), and malondialdehyde (MDA). RNA levels of lncPVT1, miR-214-3p, and glutathione peroxidase 4 (GPX4) were checked by real-time PCR assay. Clinical liver tumor samples were collected to detect the levels of long noncoding RNA lncPVT1, miR-214-3p, and GPX4, and their correlation was evaluated by Pearson comparison test. Luciferase reporter gene assay and RNA pulldown were conducted to determine the binding between lncPVT1, miR-214-3p, and GPX4 3'UTR. RESULTS Ketamine significantly suppressed viability and proliferation of liver cancer cells both in vitro and in vivo, as well as stimulated ferroptosis, along with decreased expression of lncPVT1 and GPX4. LncPVT1 directly interacted with miR-214-3p to impede its role as a sponge of GPX4. Depletion of lncPVT1 accelerated the ferroptosis of live cancer cells, whereas miR-214-3p inhibition and GPX4 overexpression reversed this effect. Ketamine-induced cell growth suppression and ferroptosis were also suppressed by miR-214-3p inhibition and GPX4 overexpression. CONCLUSION In this work, we determined that ketamine suppressed viability of liver cancer cells and induced ferroptosis and identified the possible regulatory mechanism of lncPVT1/miR-214-3p/GPX4 axis.
Collapse
Affiliation(s)
- Guan-Nan He
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| | - Na-Ren Bao
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| | - Shuang Wang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| | - Man Xi
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| | - Tian-Hao Zhang
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| | - Feng-Shou Chen
- Department of Anesthesiology, First Affiliated Hospital, China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| |
Collapse
|
25
|
Zhang ZQ, Hong H, Li J, Li XX, Huang XM. MicroRNA-214 promotes alveolarization in neonatal rat models of bronchopulmonary dysplasia via the PlGF-dependent STAT3 pathway. Mol Med 2021; 27:109. [PMID: 34530740 PMCID: PMC8444414 DOI: 10.1186/s10020-021-00374-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/05/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recently, the role of several microRNAs (miRNAs or miRs) in pulmonary diseases has been described. The molecular mechanisms by which miR-214 is possibly implicated in bronchopulmonary dysplasia (BPD) have not yet been addressed. Hence, this study aimed to investigate a putative role of miR-214 in alveolarization among preterm neonates with BPD. METHODS Microarray-based gene expression profiling data from BPD was employed to identify differentially expressed genes. A BPD neonatal rat model was induced by hyperoxia. Pulmonary epithelial cells were isolated from rats and exposed to hyperoxia to establish cell injury models. Gain- and loss-of-function experiments were performed in BPD neonatal rats and hyperoxic pulmonary epithelial cells. MiR-214 and PlGF expression in BPD neonatal rats, and eNOS, Bcl-2, c-myc, Survivin, α-SMA and E-cadherin expression in hyperoxic pulmonary epithelial cells were measured using RT-qPCR and Western blot analysis. The interaction between PlGF and miR-214 was identified using dual luciferase reporter gene and RIP assays. IL-1β, TNF-a, IL-6, ICAM-1 and Flt-1 expression in the rat models was measured using ELISA. RESULTS The lung tissues of neonatal rats with BPD showed decreased miR-214 expression with elevated PlGF expression. PlGF was found to be a target of miR-214, whereby miR-214 downregulated PlGF to inactivate the STAT3 pathway. miR-214 overexpression or PlGF silencing decreased the apoptosis of hyperoxic pulmonary epithelial cells in vitro and restored alveolarization in BPD neonatal rats. CONCLUSION Overall, the results demonstrated that miR-214 could facilitate alveolarization in preterm neonates with BPD by suppressing the PlGF-dependent STAT3 pathway.
Collapse
Affiliation(s)
- Zhi-Qun Zhang
- Department of Neonatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310000, Zhejiang Province, People's Republic of China.
| | - Hui Hong
- Department of Neonatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310000, Zhejiang Province, People's Republic of China
| | - Jing Li
- Department of Neonatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310000, Zhejiang Province, People's Republic of China
| | - Xiao-Xia Li
- Department of Neonatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310000, Zhejiang Province, People's Republic of China
| | - Xian-Mei Huang
- Department of Neonatology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310000, Zhejiang Province, People's Republic of China
| |
Collapse
|
26
|
The FibromiR miR-214-3p Is Upregulated in Duchenne Muscular Dystrophy and Promotes Differentiation of Human Fibro-Adipogenic Muscle Progenitors. Cells 2021; 10:cells10071832. [PMID: 34360002 PMCID: PMC8303294 DOI: 10.3390/cells10071832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/23/2022] Open
Abstract
Fibrosis is a deleterious invasion of tissues associated with many pathological conditions, such as Duchenne muscular dystrophy (DMD) for which no cure is at present available for its prevention or its treatment. Fibro-adipogenic progenitors (FAPs) are resident cells in the human skeletal muscle and can differentiate into myofibroblasts, which represent the key cell population responsible for fibrosis. In this study, we delineated the pool of microRNAs (miRNAs) that are specifically modulated by TGFβ1 in FAPs versus myogenic progenitors (MPs) by a global miRNome analysis. A subset of candidates, including several “FibromiRs”, was found differentially expressed between FAPs and MPs and was also deregulated in DMD versus healthy biopsies. Among them, the expression of the TGFβ1-induced miR-199a~214 cluster was strongly correlated with the fibrotic score in DMD biopsies. Loss-of-function experiments in FAPs indicated that a miR-214-3p inhibitor efficiently blocked expression of fibrogenic markers in both basal conditions and following TGFβ1 stimulation. We found that FGFR1 is a functional target of miR-214-3p, preventing the signaling of the anti-fibrotic FGF2 pathway during FAP fibrogenesis. Overall, our work demonstrates that the « FibromiR » miR-214-3p is a key activator of FAP fibrogenesis by modulating the FGF2/FGFR1/TGFβ axis, opening new avenues for the treatment of DMD.
Collapse
|
27
|
Hoelzle CR, Arnoult S, Borém CRM, Ottone M, de Magalhães KCSF, da Silva IL, Simões RT. microRNA Levels in Cervical Cancer Samples and Relationship with Lesion Grade and HPV Infection. Microrna 2021; 10:139-145. [PMID: 34086555 DOI: 10.2174/2211536610666210604123534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/12/2020] [Accepted: 03/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND miR-21, miR-214, and miR-let-7a are three validated and well-known miRNAs. miR-21 is described as an "oncomir," while miR-214 and miR-let-7a are described mainly as tumor suppressors. The role of these miRNAs remains unclear in cervical cancer, an important malignancy among women worldwide and responsible for many deaths every year. OBJECTIVE The objective of this study was to describe the expression profile of miR-21, miR-214, and miR-let-7a in plasma and cervical scraping from a control group and patients with different grades of cervical lesions and invasive cervical cancer, and then correlate with HPV infection groups. METHODS Plasma and cervical scraping were submitted to DNA and RNA extraction. HPV detection and typing were performed by conventional PCR followed by PAGE to amplicons interpretation. The miRNA relative expression in plasma and cervical scraping samples was performed by real-time PCR using specific TaqMan probes. RESULTS miR-21 (p=0.0277) and miR-214 (p=0.0151) were up-regulated in cervical scraping samples of the invasive cervical cancer (ICC) group. However, miR-214 was also up-regulated in the LSIL group (p=0.0062). Both miRNAs were not related to HPV infection. However, miR-let-7a was higher in HPV positive plasma samples (p=0.0433) than in HPV negative plasma samples, and the correlation analysis confirmed the association between the levels of this miRNA with the presence of HPV (p=0.0407; r=0.3029), but not with lesion grade (p>0.05). CONCLUSION Our results suggest that miR-21 is related to cervical cancer progression and miR-214 appears to have an ambiguous role in cervical lesions. miR-let-7a may be upregulated at the systemic level in patients with HPV infection.
Collapse
Affiliation(s)
- Carolina R Hoelzle
- Santa Casa de Belo Horizonte Ensino e Pesquisa - EP/SCBH. Molecular Biology and Biomarkers Laboratory. Belo Horizonte, Minas Gerais, Brazil
| | - Solène Arnoult
- Polytech Marseille. Aix-Marseille Université. Marseille, France
| | - Cinthya R M Borém
- Santa Casa de Belo Horizonte Ensino e Pesquisa - EP/SCBH. Molecular Biology and Biomarkers Laboratory. Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Ottone
- Santa Casa de Belo Horizonte Ensino e Pesquisa - EP/SCBH. Molecular Biology and Biomarkers Laboratory. Belo Horizonte, Minas Gerais, Brazil
| | - Kênia C S F de Magalhães
- Santa Casa de Belo Horizonte Ensino e Pesquisa - EP/SCBH. Molecular Biology and Biomarkers Laboratory. Belo Horizonte, Minas Gerais, Brazil
| | - Istéfani L da Silva
- Center for Biological and Health Sciences. Federal University of West of Bahia (UFOB), Bahia, Brazil
| | - Renata T Simões
- Santa Casa de Belo Horizonte Ensino e Pesquisa - EP/SCBH. Molecular Biology and Biomarkers Laboratory. Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
28
|
Yang Y, Lu T, Li Z, Lu S. FGFR1 regulates proliferation and metastasis by targeting CCND1 in FGFR1 amplified lung cancer. Cell Adh Migr 2021; 14:82-95. [PMID: 32380883 PMCID: PMC7250189 DOI: 10.1080/19336918.2020.1766308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aims: The analysis of the online databases revealed that CCND1 expression is correlated with poor prognosis in LSCC. We aimed to explore the function of CCND1 in tumor progression in LSCC.Main methods: The expression of mRNA was measured using qRT-PCR. Protein expression was assessed by Western blot. Cell migration and invasion were assessed by transwell assay.Key findings: CCND1 was co-overexpressed with FGFR1 in lung cancer patients. Overexpression of CCND1 promoted LSCC cell proliferation and metastasis. FGFR1 promoted the processes of EMT through AKT/MAPK signaling by targeting CCND1 in FGFR1-amplification cell lines.Significance: IIn conclusion, our study demonstrated the regulatory mechanism between CCND1 and FGFR1 in FGFR1 amplified LSCC. Co-targeting CCND1 and FGFR1 could provide greater clinical benefits.
Collapse
Affiliation(s)
- Ying Yang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ziming Li
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shun Lu
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
29
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
30
|
Abstract
BACKGROUND Genomic aberrations (mutations, gene fusions, amplifications) and dysregulation of the fibroblast growth factor (FGF) receptor (FGFR) signaling pathway are frequently found in squamous cell carcinomas of the head and neck (HNSCCs). Targeted therapy with tyrosine kinase inhibitors (TKIs) or monoclonal antibodies directed against FGF receptors therefore represents a promising approach for the treatment of HNSCC. OBJECTIVE This review article describes the current status of FGFR-directed therapies for head and neck tumors (especially HNSCC) and, in this context, discusses genomic alterations of the FGFR pathway as potential companion predictive biomarkers. METHODS This article is based on searches of PubMed, ClinicalTrials.gov, and conference proceedings. RESULTS First results prove the efficacy of TKIs both in HNSCC and in adenocarcinomas of the head and neck, especially in thyroid and adenocystic salivary gland carcinomas. CONCLUSION Early clinical and preclinical data point to the promise of biomarker-directed treatment of patients with head and neck tumors using FGFR-targeted TKIs.
Collapse
Affiliation(s)
- Dimo Dietrich
- Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde/Chirurgie, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127, Bonn, Deutschland.
| |
Collapse
|
31
|
Li M, Yin B, Chen M, Peng J, Mu X, Deng Z, Xiao J, Li W, Fan J. Downregulation of the lncRNA ASB16-AS1 Decreases LARP1 Expression and Promotes Clear Cell Renal Cell Carcinoma Progression via miR-185-5p/miR-214-3p. Front Oncol 2021; 10:617105. [PMID: 33680937 PMCID: PMC7933513 DOI: 10.3389/fonc.2020.617105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) comprises approximately 75% of renal cell carcinomas, which is one of the most common and lethal urologic cancers, with poor quality of life for patients and is a huge economic burden to health care systems. It is imperative we find novel prognostic and therapeutic targets for ccRCC clinical intervention. In this study, we found that the expression of the long noncoding RNA (lncRNA) ASB16-AS1 was downregulated in ccRCC tissues compared with non-diseased tissues and was also associated with advanced tumor stage and larger tumors. By constructing cell and mouse models, it was found that downregulated lncRNA ASB16-AS1 enhanced cell proliferation, migration, invasion, and promoted tumor growth and metastasis. Furthermore, by performing bioinformatics analysis, biotinylated RNA pull-downs, AGO2-RIP, and luciferase reporter assays, our findings showed that downregulated ASB16-AS1 decreased La-related protein 1 (LARP1) expression by inhibiting miR-185-5p and miR-214-3p. Furthermore, it was found that overexpression of LARP1 reversed the promotive effects of downregulated ASB16-AS1 on ccRCC cellular progression. Our results revealed that downregulated ASB16-AS1 promotes ccRCC progression via a miR-185-5p-miR-214-3p-LARP1 pathway. We suggest that this pathway could be used to monitor prognosis and presents therapeutic targets for ccRCC clinical management.
Collapse
Affiliation(s)
- Mingzi Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bingde Yin
- Department of Urology, Minhang Hospital, Fudan University, Shanghai, China
| | - Mulin Chen
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jingtao Peng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Mu
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Deng
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiantao Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weiguo Li
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jie Fan
- Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
32
|
He K, Han S, An L, Zhang J. Inhibition of MicroRNA-214 Alleviates Lung Injury and Inflammation via Increasing FGFR1 Expression in Ventilator-Induced Lung Injury. Lung 2021; 199:63-72. [PMID: 33389067 DOI: 10.1007/s00408-020-00415-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/11/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE Ventilator-induced lung injury (VILI) is an additional inflammatory injury caused by mechanical ventilation (MV). This study aimed to determine the effects of microRNA-214 (miR-214) on VILI and its underlying mechanism of action. METHODS To develop a VILI mouse model, mice were subjected to MV. The expression of miR-214 was detected by qRT-PCR. The macrophages, fibroblasts, epithelial cells, and endothelial cells were isolated from lung tissues by fluorescence-activated cell sorting. The histopathological changes of lung, lung wet/dry weight (W/D) ratio, and myeloperoxidase (MPO) activity were used to evaluate the degree of lung injury. The levels of pro-inflammatory cytokines in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). Dual-luciferase reporter assay was performed to determine the interactions between miR-214 and FGFR1. Western blot was used to detect the protein expression of FGFR1, p-AKT, and p-PI3K. RESULTS The expression of miR-214 was increased in lung tissues and macrophages, fibroblasts, epithelial cells, and endothelial cells isolated from lung tissues in VILI mice. MiR-214 inhibition decreased the histopathological changes of lung, lung W/D ratio, MPO activity, and pro-inflammatory cytokines levels in BALF in VILI mice. FGFR1 was targeted by miR-214. The protein expression of FGFR1 was decreased in VILI mice. Ponatinib (FGFR1 inhibitor) reversed the suppressive effects of miR-214 inhibition on lung injury and inflammation of VILI mice. MiR-214 increased the activity of PI3K/AKT pathway by regulating FGFR1. CONCLUSIONS Inhibition of miR-214 attenuated lung injury and inflammation in VILI mice by increasing FGFR1 expression, providing a novel therapeutic target for VILI.
Collapse
Affiliation(s)
- Kun He
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, No. 206, Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| | - Shuang Han
- Department of Anesthesiology, Hebei General Hospital, No. 348, Heping West Road, Shijiazhuang, 050051, Hebei, China
| | - Li An
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, No. 206, Zhongshan East Road, Shijiazhuang, 050011, Hebei, China.
| | - Jin Zhang
- Department of Anesthesiology, The Fourth Hospital of Shijiazhuang, No. 206, Zhongshan East Road, Shijiazhuang, 050011, Hebei, China
| |
Collapse
|
33
|
circRNA hsa_circ_0018414 inhibits the progression of LUAD by sponging miR-6807-3p and upregulating DKK1. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:783-796. [PMID: 33614229 PMCID: PMC7868730 DOI: 10.1016/j.omtn.2020.12.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
Lung adenocarcinoma (LUAD) is a subtype of lung cancer with a high incidence and mortality all over the world. In recent years, circular RNAs (circRNAs) have been verified to be a novel subtype of noncoding RNAs that exert vital functions in various cancers. Our research was designed to investigate the role of circ_0018414 in LUAD. We first observed that circ_0018414 was downregulated in LUAD tissues and cells. Also, low expression of circ_0018414 predicted unfavorable prognosis of LUAD patients. Then, upregulation of circ_0018414 repressed cell proliferation and stemness, while promoting cell apoptosis, in LUAD. Moreover, circ_0018414 overexpression enhanced the expression of its host gene, dickkopf WNT signaling pathway inhibitor 1 (DKK1), therefore inactivating the Wnt/β-catenin pathway. Additionally, circ_0018414 could sponge miR-6807-3p to protect DKK1 mRNA from miR-6807-3p-induced silencing, leading to DKK1 upregulation in LUAD cells. Finally, rescue assays proved that circ_0018414 inhibited the progression of LUAD via the miR-6807-3p/DKK1 axis-inactivated Wnt/β-catenin pathway. The findings in our work indicated circ_0018414 as a tumor inhibitor in LUAD, which might provide a new perspective for LUAD treatment.
Collapse
|
34
|
Hao JF, Chen P, Li HY, Li YJ, Zhang YL. Effects of LncRNA HCP5/miR-214-3p/MAPK1 Molecular Network on Renal Cell Carcinoma Cells. Cancer Manag Res 2021; 12:13347-13356. [PMID: 33380840 PMCID: PMC7769072 DOI: 10.2147/cmar.s274426] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
Background Recent researches have shown that long non-coding RNA (LncRNA) is often disordered and acts in many carcinomas. Clear cell renal cell carcinoma (ccRCC) is the main reason for carcinoma-related deaths, which are mainly caused by the metastasis. HCP5 is a newly discovered LcnRNA. Early studies have found that HCP5 acts in neoplasm metastasis, but the mechanism of HCP5 in ccRCC is still unclear. Methods The expression of HCP5 in human renal cell carcinoma (RCC) was detected by real-time quantitative PCR. The biological effect of LncRNAs in proliferation, migration, invasion and metastasis of RCC cells was explored by gain-of-function and loss-of-function tests. The molecular mechanism of LncRNAs was explored by RNA immunoprecipitation and Western blot. Results qRT-PCR revealed that HCP5 was enhanced in neoplasm tissues of ccRCC patients and correlated with the metastatic characteristics of RCC. Over-expression of HCP5 promoted the proliferation, migration and invasion of renal carcinoma cells. The deletion of HCP5 inhibited the proliferation, migration and invasion of RCC in vitro and the metastasis of RCC in vivo. Mechanically, HCP5 inhibited the growth and metastasis of ccRCC cells by regulating miR-214-3p/MAPK1 axis. Conclusion HCP5, as a key LncRNA, can promote ccRCC metastasis by regulating miR-214-3p/MAPK1 axis and may be a biomarker and be helpful for judging the prognosis of ccRCC.
Collapse
Affiliation(s)
- Jun-Feng Hao
- Department of Nephrology and Blood Purification Center, Jin Qiu Hospital of Liaoning Province (Geriatric Hospital of Liaoning Province), Shenyang City, Liaoning Province 110000, People's Republic of China
| | - Pei Chen
- Department of Basic Medical Sciences, Jiangsu College of Nursing, Huai'an, Jiangsu Province 223000, People's Republic of China
| | - He-Yi Li
- Department of Ophthalmology, Jin Qiu Hospital of Liaoning Province (Geriatric Hospital of Liaoning Province), Shenyang City, Liaoning Province 110000, People's Republic of China
| | - Ya-Jing Li
- Department of Nephrology and Blood Purification Center, Jin Qiu Hospital of Liaoning Province (Geriatric Hospital of Liaoning Province), Shenyang City, Liaoning Province 110000, People's Republic of China
| | - Yu-Ling Zhang
- Department of Basic Medical Sciences, Jiangsu College of Nursing, Huai'an, Jiangsu Province 223000, People's Republic of China
| |
Collapse
|
35
|
Sato C, Osakabe M, Nagasawa T, Suzuki H, Itamochi H, Baba T, Sugai T. Genome-wide analysis of microRNA to evaluate prognostic markers in isolated cancer glands and surrounding stroma in high-grade serous ovarian carcinoma. Oncol Lett 2020; 20:338. [PMID: 33123249 PMCID: PMC7583725 DOI: 10.3892/ol.2020.12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 09/03/2020] [Indexed: 12/09/2022] Open
Abstract
The molecular mechanisms responsible for the progression of ovarian cancer remain incompletely understood. By targeting multiple cancer-related genes, microRNAs (miRNAs) have been identified as key regulators of cancer development and progression. In addition, the microenvironment, which constitutes cancer glands and the surrounding stromal tissue at the invasive front, has an important role in cancer progression. Using array-based analysis of 14 cases (cohort 1), the aim of the present study was to evaluate global miRNA expression in cancerous glands and surrounding stromal tissues (isolated using a crypt isolation method), in order to identify potential prognostic markers of high-grade serous carcinoma (HGSC). Reverse transcription-quantitative PCR was also used to verify the results in cohort 1 (14 cases) and in 16 additional HGSC cases (cohort 2; verification cohort). Firstly, miRNA expression levels were compared between HGSC and normal samples among both the isolated cancer gland and stromal tissue samples. Secondly, miRNA expression was compared between HGSC cases with recurrence and those without recurrence among the isolated cancer gland and stromal tissue samples. The results revealed six and seven miRNAs identified in both of the aforementioned comparisons in isolated cancer glands and surrounding stromal tissue, respectively. Furthermore, downregulation of miRNA-214-3p in isolated cancer glands and downregulation of miRNA-320c in the corresponding stromal tissue were associated with a decrease in disease-free survival (without recurrence) in cohort 2. These findings indicated that specific miRNAs expressed in cancer cells and surrounding stromal cells of HGSC may be potential biomarkers predicting patient prognosis.
Collapse
Affiliation(s)
- Chie Sato
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan.,Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan
| | - Mitsumasa Osakabe
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan
| | - Takayuki Nagasawa
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| | - Hiroaki Itamochi
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, School of Medicine, Iwate Medical University, Yahaba, Iwate 028-3695, Japan
| |
Collapse
|
36
|
Lu T, Yang Y, Li Z, Lu S. MicroRNA-214-3p inhibits the stem-like properties of lung squamous cell cancer by targeting YAP1. Cancer Cell Int 2020; 20:413. [PMID: 32863772 PMCID: PMC7450582 DOI: 10.1186/s12935-020-01506-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background Emerging evidence reveals that microRNAs (miRNAs) play a crucial role in tumor progression, but the underlying mechanism of microRNAs in lung squamous cell cancer (LSCC) remains unclear. Method Western-blotting and quantitative real-time PCR (q-PCR) were carried out to detect mRNA and protein expression. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8), colony-forming assay or sphere-forming assay, respectively. Results MiR-214-3p was markedly de-regulated in LSCC tissues and was inversely related to the level of Yes-associated protein1 (YAP1), which is the core transcription regulator of the Hippo signaling pathway. Kaplan–Meier survival curves illustrated that patients with high miR-214-3p expression demonstrated more favorable clinical outcomes. MiR-214-3p overexpression (OE) repressed proliferation and cancer stem-like cells (CSCs) properties in vitro and in vivo xenograft mouse model. Mechanistically, luciferase activity assay revealed that miR-214-3p directly targets YAP1 by specifically binding on the 3′ UTR of YAP1. Conclusion MiR-214-3p plays a pivotal role in CSCs properties by targeting YAP1, which provides a potential treatment strategy for LSCC patients.
Collapse
Affiliation(s)
- Tingting Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai, 200030 People's Republic of China
| | - Ying Yang
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai, 200030 People's Republic of China
| | - Ziming Li
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai, 200030 People's Republic of China
| | - Shun Lu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 Huaihai West Road, Shanghai, 200030 People's Republic of China
| |
Collapse
|
37
|
Liu J, Dai X, Guo X, Cheng A, Mac SM, Wang Z. Circ-OXCT1 Suppresses Gastric Cancer EMT and Metastasis by Attenuating TGF-β Pathway Through the Circ-OXCT1/miR-136/SMAD4 Axis. Onco Targets Ther 2020; 13:3987-3998. [PMID: 32523351 PMCID: PMC7236241 DOI: 10.2147/ott.s239789] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been proven to play important roles in tumorigenesis. However, the mechanism by which circRNAs act on gastric cancer (GC) through epithelial-to-mesenchymal transition (EMT) is unclear. In this study, we identified circ-OXCT1 and elucidated its function on EMT in GC. Methods Tissue circRNA microarray analysis and qRT-PCR were utilized to determine the expression level of circ-OXCT1 in GC. Luciferase reporter assay and FISH were employed to confirm the interaction between circ-OXCT1 and miR-136. CCK-8, cloning formation, transwell, wound healing, nude mice experiment, circ-OXCT1 overexpression and silencing were conducted to elucidate the function of circ-OXCT1 in vivo and in vitro. Western blot and rescue experiment were carried out to evaluate the changes of EMT-related proteins induced by circ-OXCT1 overexpression or silencing. Results Circ-OXCT1 was downregulated in GC tissues and cell lines. Its expression level was significantly associated with lymph node metastasis, pathologic stage and overall survival rate through clinicopathologic data analysis. Circ-OXCT1 silencing downregulated SMAD4 expression and accordingly regulated expression of E-cadherin, N-cadherin and vimentin through the transforming growth factor-beta (TGF-β)/Smad signaling pathway by a circ-OXCT1/miR-136/SMAD4 axis, resulting in enhancement of EMT and subsequent boost of cell migration, invasion and nude mice lung metastasis. Conclusion Our data showed that circ-OXCT1 suppresses gastric cancer EMT and metastasis through TGF-β/Smad signaling pathway. The clinicopathologic data analysis revealed that circ-OXCT1 overexpression could be a novel treatment for advanced GC especially with distant metastasis by targeting the circ-OXCT1/miR-136/SMAD4 axis.
Collapse
Affiliation(s)
- Jianjun Liu
- Department of Gastrointestinal Surgery, Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Xinglong Dai
- Department of Gastrointestinal Surgery, Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Xiong Guo
- Department of Gastrointestinal Surgery, Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Anqi Cheng
- Department of Gastrointestinal Surgery, Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Sandrie Mariella Mac
- Department of Gastrointestinal Surgery, Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
38
|
Kovar H, Bierbaumer L, Radic-Sarikas B. The YAP/TAZ Pathway in Osteogenesis and Bone Sarcoma Pathogenesis. Cells 2020; 9:E972. [PMID: 32326412 PMCID: PMC7227004 DOI: 10.3390/cells9040972] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/14/2022] Open
Abstract
YAP and TAZ are intracellular messengers communicating multiple interacting extracellular biophysical and biochemical cues to the transcription apparatus in the nucleus and back to the cell/tissue microenvironment interface through the regulation of cytoskeletal and extracellular matrix components. Their activity is negatively and positively controlled by multiple phosphorylation events. Phenotypically, they serve an important role in cellular plasticity and lineage determination during development. As they regulate self-renewal, proliferation, migration, invasion and differentiation of stem cells, perturbed expression of YAP/TAZ signaling components play important roles in tumorigenesis and metastasis. Despite their high structural similarity, YAP and TAZ are functionally not identical and may play distinct cell type and differentiation stage-specific roles mediated by a diversity of downstream effectors and upstream regulatory molecules. However, YAP and TAZ are frequently looked at as functionally redundant and are not sufficiently discriminated in the scientific literature. As the extracellular matrix composition and mechanosignaling are of particular relevance in bone formation during embryogenesis, post-natal bone elongation and bone regeneration, YAP/TAZ are believed to have critical functions in these processes. Depending on the differentiation stage of mesenchymal stem cells during endochondral bone development, YAP and TAZ serve distinct roles, which are also reflected in bone tumors arising from the mesenchymal lineage at different developmental stages. Efforts to clinically translate the wealth of available knowledge of the pathway for cancer diagnostic and therapeutic purposes focus mainly on YAP and TAZ expression and their role as transcriptional co-activators of TEAD transcription factors but rarely consider the expression and activity of pathway modulatory components and other transcriptional partners of YAP and TAZ. As there is a growing body of evidence for YAP and TAZ as potential therapeutic targets in several cancers, we here interrogate the applicability of this concept to bone tumors. To this end, this review aims to summarize our current knowledge of YAP and TAZ in cell plasticity, normal bone development and bone cancer.
Collapse
Affiliation(s)
- Heinrich Kovar
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (L.B.); (B.R.-S.)
- Department of Pediatrics, Medical University Vienna, 1090 Vienna, Austria
| | - Lisa Bierbaumer
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (L.B.); (B.R.-S.)
| | - Branka Radic-Sarikas
- St. Anna Children’s Cancer Research Institute, 1090 Vienna, Austria; (L.B.); (B.R.-S.)
| |
Collapse
|
39
|
Bersimbaev R, Pulliero A, Bulgakova O, Asia K, Aripova A, Izzotti A. Radon Biomonitoring and microRNA in Lung Cancer. Int J Mol Sci 2020; 21:E2154. [PMID: 32245099 PMCID: PMC7139524 DOI: 10.3390/ijms21062154] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/17/2022] Open
Abstract
Radon is the number one cause of lung cancer in non-smokers. microRNA expression in human bronchial epithelium cells is altered by radon, with particular reference to upregulation of miR-16, miR-15, miR-23, miR-19, miR-125, and downregulation of let-7, miR-194, miR-373, miR-124, miR-146, miR-369, and miR-652. These alterations alter cell cycle, oxidative stress, inflammation, oncogene suppression, and malignant transformation. Also DNA methylation is altered as a consequence of miR-29 modification induced by radon. Indeed miR-29 targets DNA methyltransferases causing inhibition of CpG sites methylation. Massive microRNA dysregulation occurs in the lung due to radon expose and is functionally related with the resulting lung damage. However, in humans this massive lung microRNA alterations only barely reflect onto blood microRNAs. Indeed, blood miR-19 was not found altered in radon-exposed subjects. Thus, microRNAs are massively dysregulated in experimental models of radon lung carcinogenesis. In humans these events are initially adaptive being aimed at inhibiting neoplastic transformation. Only in case of long-term exposure to radon, microRNA alterations lead towards cancer development. Accordingly, it is difficult in human to establish a microRNA signature reflecting radon exposure. Additional studies are required to understand the role of microRNAs in pathogenesis of radon-induced lung cancer.
Collapse
Affiliation(s)
- Rakhmet Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N.Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (R.B.); (O.B.); (K.A.); (A.A.)
| | - Alessandra Pulliero
- Department of Experimental Medicine, University of Genoa, I-16132 Genoa, Italy;
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N.Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (R.B.); (O.B.); (K.A.); (A.A.)
| | - Kussainova Asia
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N.Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (R.B.); (O.B.); (K.A.); (A.A.)
| | - Akmara Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N.Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (R.B.); (O.B.); (K.A.); (A.A.)
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, I-16132 Genoa, Italy;
- IRCCS Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
40
|
Yang L, Zhang L, Lu L, Wang Y. miR-214-3p Regulates Multi-Drug Resistance and Apoptosis in Retinoblastoma Cells by Targeting ABCB1 and XIAP. Onco Targets Ther 2020; 13:803-811. [PMID: 32095078 PMCID: PMC6995305 DOI: 10.2147/ott.s235862] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been shown to contribute to the initiation and progression of human cancer, including retinoblastoma. However, expression levels and potential roles of miRNAs in retinoblastoma remain largely unknown. In this study, we aimed to identify dysregulated miRNAs and explore their functional roles in the development of retinoblastoma. Material and Methods First, miRNA expression profiling in retinoblastoma tissues was performed via microarray analysis. To evaluate the involvement of miR-214-3p in multi-drug resistance, gain-of-function experiments were employed in vitro and in vivo. Bioinformatics analysis, luciferase reporter assay, qRT-PCR and Western blot were used to investigate the underlying mechanisms. Results Here, we identified 57 up-regulated and 34 down-regulated miRNAs. Among them, miR-214-3p was the most significantly decreased. We found that miR-214-3p level was positively correlated with clinical outcome and chemotherapy response. Overexpression of miR-214-3p significantly sensitized retinoblastoma cells to multiple chemodrugs and promoted cell apoptosis in vitro and in vivo. Further investigations revealed that miR-214-3p directly regulated ABCB1 and XIAP expression through interacting with the 3’ untranslated regions (3’UTRs). Pearson correlation analysis showed that miR-214-3p expression in retinoblastoma tissues was negatively correlated with ABCB1 and XIAP expression. We also observed that overexpression of ABCB1 or XIAP partly reversed the chemoresistance inhibition-induced by miR-214-3p overexpression. Conclusion Our data demonstrate that miR-214-3p functions as a tumor suppressor to inhibit the chemoresistance in retinoblastoma, suggesting that miR-214-3p might be potential diagnostic and therapeutic targets for retinoblastoma treatment.
Collapse
Affiliation(s)
- Lidong Yang
- Department of Ocular Fundus Disease, Cangzhou Eye Hospital, Cangzhou Central Hospital, Cangzhou 061001, People's Republic of China
| | - Liyou Zhang
- Department of Ocular Fundus Disease, Cangzhou Eye Hospital, Cangzhou Central Hospital, Cangzhou 061001, People's Republic of China
| | - Lu Lu
- Department of Ocular Fundus Disease, Cangzhou Eye Hospital, Cangzhou Central Hospital, Cangzhou 061001, People's Republic of China
| | - Yan Wang
- Department of Ocular Fundus Disease, Cangzhou Eye Hospital, Cangzhou Central Hospital, Cangzhou 061001, People's Republic of China
| |
Collapse
|