1
|
Bertram JF, Cullen-McEwen LA, Andrade-Oliveira V, Câmara NOS. The intelligent podocyte: sensing and responding to a complex microenvironment. Nat Rev Nephrol 2025:10.1038/s41581-025-00965-y. [PMID: 40341763 DOI: 10.1038/s41581-025-00965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
Podocytes are key components of the glomerular filtration barrier - a specialized structure that is responsible for the filtration of blood by the kidneys. They therefore exist in a unique microenvironment exposed to mechanical force and the myriad molecules that cross the filtration barrier. To survive and thrive, podocytes must continually sense and respond to their ever-changing microenvironment. Sensing is achieved by interactions with the surrounding extracellular matrix and neighbouring cells, through a variety of pathways, to sense changes in environmental factors such as nutrient levels including glucose and lipids, oxygen levels, pH and pressure. The response mechanisms similarly involve a range of processes, including signalling pathways and the actions of specific organelles that initiate and regulate appropriate responses, including alterations in cell metabolism, immune regulation and changes in podocyte structure and cognate functions. These functions ultimately affect glomerular and kidney health. Imbalances in these processes can lead to inflammation, podocyte loss and glomerular disease.
Collapse
Affiliation(s)
- John F Bertram
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Brisbane, Queensland, Australia
| | - Luise A Cullen-McEwen
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Vinicius Andrade-Oliveira
- Center for Natural and Human Sciences, Federal University of ABC, Sao Paulo, Brazil.
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | |
Collapse
|
2
|
Rai M, Li H, Policastro RA, Pepin R, Zentner GE, Nemkov T, D’Alessandro A, Tennessen JM. Glycolytic disruption restricts Drosophila melanogaster larval growth via the cytokine Upd3. PLoS Genet 2025; 21:e1011690. [PMID: 40315265 PMCID: PMC12068724 DOI: 10.1371/journal.pgen.1011690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 05/12/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025] Open
Abstract
Drosophila larval growth requires efficient conversion of dietary nutrients into biomass. Lactate dehydrogenase (Ldh) and glycerol-3-phosphate dehydrogenase (Gpdh1) support this larval metabolic program by cooperatively promoting glycolytic flux. Consistent with their cooperative functions, the loss of both enzymes, but not either single enzyme alone, induces a developmental arrest. However, Ldh and Gpdh1 exhibit complex and often mutually exclusive expression patterns, suggesting that the lethal phenotypes exhibited by Gpdh1; Ldh double mutants could be mediated non-autonomously. Supporting this possibility, we find that the developmental arrest displayed by double mutants extends beyond simple metabolic disruption and instead stems, in part, from changes in systemic growth factor signaling. Specifically, we demonstrate that the simultaneous loss of Gpdh1 and Ldh results in elevated expression of Upd3, a cytokine involved in Jak/Stat signaling. Furthermore, we show that upd3 loss-of-function mutations suppress the Gpdh1; Ldh larval arrest phenotype, indicating that Upd3 signaling restricts larval development in response to decreased glycolytic flux. Together, our findings reveal a mechanism by which metabolic disruptions can modulate systemic growth factor signaling.
Collapse
Affiliation(s)
- Madhulika Rai
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Hongde Li
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Robert A. Policastro
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Robert Pepin
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Gabriel E. Zentner
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jason M. Tennessen
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- Member, Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| |
Collapse
|
3
|
Sun S, Li C, Hou H, Li J. Protein-metabolite Interactions Based on Chemical Targeting Methods. Chembiochem 2025; 26:e202400852. [PMID: 39715006 DOI: 10.1002/cbic.202400852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The importance of the protein-metabolite interaction network extends beyond its relevance to life sciences focused on proteins, it also profoundly influences its mechanisms related to disease targets, drug screening, and clinical diagnosis and treatment. Research methods targeting protein-metabolite interaction focus on enhancing the detectable signals of specific interactions by examining the structural characteristics of both proteins and metabolites in conjunction with chemical molecules, playing a crucial role in elucidating the protein-metabolite interaction network. Consequently, this article outlines several chemical targeting strategies developed in recent years and provides examples of their applications in the discovery and interpretation of new protein-metabolite interaction pathways. Finally, a brief summary will be presented regarding technological advances, research prospects, and current challenges of protein-metabolite interaction research.
Collapse
Affiliation(s)
- Shuzhe Sun
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Chuntong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing, 102209, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- Beijing Life Science Academy, Beijing, 102209, China
- New Cornerstone Science Laboratory, Shenzhen, 518054, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Kleinehr J, Bojarzyn CR, Schöfbänker M, Daniel K, Ludwig S, Hrincius ER. Metabolic interference impairs influenza A virus replication by dampening vRNA synthesis. NPJ VIRUSES 2025; 3:22. [PMID: 40295791 PMCID: PMC11953304 DOI: 10.1038/s44298-025-00090-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/13/2025] [Indexed: 04/30/2025]
Abstract
For replication, viruses exploit the host cell metabolism for biosynthesis of viral components. Recently, we could show that inhibition of glycolysis interfered with IAV replication by impairing the regulation of the viral polymerase as a transcriptase or replicase. Here, we investigated how IAV replication and polymerase regulation is influenced by other metabolic pathways which are directly or indirectly linked to glycolysis. Therefore, we inhibited glutaminolysis, fatty acid synthesis (FAS), oxidative phosphorylation (OXPHOS), and the pentose phosphate pathway (PPP). Inhibition of these metabolic pathways led to a significant reduction of viral titers. Furthermore, the inhibition of glutaminolysis, FAS and OXPHOS unbalanced the cellular glycolysis and respiration network leading to a prolonged phase of viral transcription while replication was strongly decreased. Our data indicate that affecting the cellular glycolysis and respiration balance impairs the dynamic regulation of the viral polymerase, resulting in reduced synthesis of viral genomic RNA and viral particles.
Collapse
Affiliation(s)
- Jens Kleinehr
- Institute of Virology Muenster (IVM), University of Muenster, Von-Esmarch-Straße 56, Muenster, Germany
| | - Chiara Robin Bojarzyn
- Institute of Virology Muenster (IVM), University of Muenster, Von-Esmarch-Straße 56, Muenster, Germany
| | - Michael Schöfbänker
- Institute of Virology Muenster (IVM), University of Muenster, Von-Esmarch-Straße 56, Muenster, Germany
| | - Katharina Daniel
- Institute of Virology Muenster (IVM), University of Muenster, Von-Esmarch-Straße 56, Muenster, Germany
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), University of Muenster, Von-Esmarch-Straße 56, Muenster, Germany.
| | - Eike R Hrincius
- Institute of Virology Muenster (IVM), University of Muenster, Von-Esmarch-Straße 56, Muenster, Germany
| |
Collapse
|
5
|
Smiles WJ, Ovens AJ, Yu D, Ling NXY, Poblete Goycoolea AC, Morrison KR, Murphy EO, Glaser A, O’Byrne SFM, Taylor S, Chalk AM, Walkley CR, McAloon LM, Scott JW, Kemp BE, Hoque A, Langendorf CG, Petersen J, Galic S, Oakhill JS. AMPK phosphosite profiling by label-free mass spectrometry reveals a multitude of mTORC1-regulated substrates. NPJ METABOLIC HEALTH AND DISEASE 2025; 3:8. [PMID: 40052110 PMCID: PMC11879883 DOI: 10.1038/s44324-025-00052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
The nutrient-sensitive protein kinases AMPK and mTORC1 form a fundamental negative feedback loop that governs cell growth and proliferation. mTORC1 phosphorylates α2-S345 in the AMPK αβγ heterotrimer to suppress its activity and promote cell proliferation under nutrient stress conditions. Whether AMPK contains other functional mTORC1 substrates is unknown. Using mass spectrometry, we generated precise stoichiometry profiles of phosphorylation sites across all twelve AMPK complexes expressed in proliferating human cells and identified seven sites displaying sensitivity to pharmacological mTORC1 inhibition. These included the abundantly phosphorylated residues β1-S182 and β2-S184, which were confirmed as mTORC1 substrates on purified AMPK, and four residues in the unique γ2 N-terminal extension. β-S182/184 phosphorylation was elevated in α1-containing complexes relative to α2, an effect attributed to the α-subunit serine/threonine-rich loop. Mutation of β1-S182 to non-phosphorylatable Ala had no effect on basal and ligand-stimulated AMPK activity; however, β2-S184A mutation increased nuclear AMPK activity, enhanced cell proliferation under nutrient stress and altered expression of genes implicated in glucose metabolism and Akt signalling. Our results indicate that mTORC1 directly or indirectly phosphorylates multiple AMPK residues that may contribute to metabolic rewiring in cancerous cells.
Collapse
Affiliation(s)
- William J. Smiles
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Ashley J. Ovens
- Protein Engineering in Immunity and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Dingyi Yu
- Protein Chemistry and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Naomi X. Y. Ling
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | | | - Kaitlin R. Morrison
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
| | - Emmanuel O. Murphy
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Astrid Glaser
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Sophie F. Monks O’Byrne
- Genome Stability Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Scott Taylor
- Cancer and RNA Biology, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Alistair M. Chalk
- Cancer and RNA Biology, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Carl R. Walkley
- Cancer and RNA Biology, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
| | - Luke M. McAloon
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052 Australia
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000 Australia
| | - John W. Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052 Australia
- The Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3052 Australia
| | - Bruce E. Kemp
- Protein Chemistry and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000 Australia
| | - Ashfaqul Hoque
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
| | - Christopher G. Langendorf
- Protein Engineering in Immunity and Metabolism, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, SA 5042 Australia
| | - Sandra Galic
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
| | - Jonathan S. Oakhill
- Metabolic Signalling Laboratory, St. Vincent’s Institute of Medical Research, Fitzroy, VIC 3065 Australia
- Department of Medicine, University of Melbourne, Parkville, VIC 3010 Australia
- Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000 Australia
| |
Collapse
|
6
|
Wang K, Lan Z, Zhou H, Fan R, Chen H, Liang H, You Q, Liang X, Zeng G, Deng R, Lan Y, Shen S, Chen P, Hou J, Bu P, Sun J. Long-chain acylcarnitine deficiency promotes hepatocarcinogenesis. Acta Pharm Sin B 2025; 15:1383-1396. [PMID: 40370557 PMCID: PMC12069247 DOI: 10.1016/j.apsb.2025.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 05/16/2025] Open
Abstract
Despite therapy with potent antiviral agents, chronic hepatitis B (CHB) patients remain at high risk of hepatocellular carcinoma (HCC). While metabolites have been rediscovered as active drivers of biological processes including carcinogenesis, the specific metabolites modulating HCC risk in CHB patients are largely unknown. Here, we demonstrate that baseline plasma from CHB patients who later developed HCC during follow-up exhibits growth-promoting properties in a case-control design nested within a large-scale, prospective cohort. Metabolomics analysis reveals a reduction in long-chain acylcarnitines (LCACs) in the baseline plasma of patients with HCC development. LCACs preferentially inhibit the proliferation of HCC cells in vitro at a physiological concentration and prevent the occurrence of HCC in vivo without hepatorenal toxicity. Uptake and metabolism of circulating LCACs increase the intracellular level of acetyl coenzyme A, which upregulates histone H3 Lys14 acetylation at the promoter region of KLF6 gene and thereby activates KLF6/p21 pathway. Indeed, blocking LCAC metabolism attenuates the difference in KLF6/p21 expression induced by baseline plasma of HCC/non-HCC patients. The deficiency of circulating LCACs represents a driver of HCC in CHB patients with viral control. These insights provide a promising direction for developing therapeutic strategies to reduce HCC risk further in the antiviral era.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhixian Lan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Heqi Zhou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rong Fan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Huiyi Chen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongyan Liang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiuhong You
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xieer Liang
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ge Zeng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rui Deng
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Lan
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Sheng Shen
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Sun
- State Key Laboratory of Organ Failure Research; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education; Guangdong Provincial Clinical Research Center for Viral Hepatitis; Guangdong Provincial Key Laboratory of Viral Hepatitis Research; Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
7
|
Moshood AY, Abdulraheem MI, Li L, Zhang Y, Raghavan V, Hu J. Deciphering nutrient stress in plants: integrative insight from metabolomics and proteomics. Funct Integr Genomics 2025; 25:38. [PMID: 39955391 DOI: 10.1007/s10142-025-01551-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
To comprehend the responses and resilience of plants under unfavorable environmental conditions, it is crucial to study the metabolomics and proteomic insights into nutrient stress. Nutrient stress substantially challenges agriculture, impacting plant growth, development, and productivity due to a lack or imbalance of essential nutrients, which can happen due to poor soil quality, limited nutrient availability, or unfavorable climatic conditions. Although there has been significant progress in the study of plant nutrient stress using metabolomics and proteomics, several challenges and research gaps still need to be addressed, such as the standardized experimental protocols, data integration strategies, and bioinformatic tools are necessary for comparative analysis and interpretation of omics data. Hence, this review explores the theoretical frameworks of metabolomics and proteomics as powerful tools to decode plant responses to nutrient stress, addressing critical knowledge gaps in the field. This review highlights the advantages of integrative analyses, combining metabolomics, proteomics, and transcriptomics, to uncover the molecular networks governing nutrient stress resilience. Key findings underscore the potential of these techniques to enhance breeding strategies and genetic engineering efforts aimed at developing nutrient-efficient crops. Through metabolomics and proteomic analyses, novel molecular components and regulatory networks have been revealed as responsive to nutrient stress, and this breakthrough has the potential to bolster plant resilience and optimize nutrient utilization. Understanding the synergistic roles of metabolites and proteins in nutrient stress resilience has profound implications for crop improvement and agricultural sustainability. Future research should focus on refining integrative methodologies and exploring their applications across diverse plant species and environmental conditions, paving the way for innovative solutions to nutrient stress challenges.
Collapse
Affiliation(s)
- Abiodun Yusuff Moshood
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou, 450002, China
| | - Mukhtar Iderawumi Abdulraheem
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou, 450002, China.
- Department of Agricultural Science, Oyo State College of Education, Lanlate, 202001, Nigeria.
| | - Linze Li
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou, 450002, China
| | - Yanyan Zhang
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte- Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Jiandong Hu
- Henan International Joint Laboratory of Laser Technology in Agriculture Science, Zhengzhou, 450002, China.
- Department of Agricultural Science, Oyo State College of Education, Lanlate, 202001, Nigeria.
| |
Collapse
|
8
|
Jie H, Wei J, Li Z, Yi M, Qian X, Li Y, Liu C, Li C, Wang L, Deng P, Liu L, Cen X, Zhao Y. Serine starvation suppresses the progression of esophageal cancer by regulating the synthesis of purine nucleotides and NADPH. Cancer Metab 2025; 13:10. [PMID: 39948566 PMCID: PMC11827256 DOI: 10.1186/s40170-025-00376-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Serine metabolism provides important metabolic intermediates that support the rapid proliferation of tumor cells. However, the role of serine metabolism in esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remains unclear. Here, we show that serine starvation predominantly inhibits ESCC cell proliferation by suppressing purine nucleotides and NADPH synthesis. Mechanistically, serine depletion led to the accumulation of aminoimidazole carboxamide ribonucleoside (AICAR), an intermediate metabolite of de novo purine synthesis, and AMP/ATP ratio. These increases activated 5'-AMP-activated kinase (AMPK), which subsequently inhibited the mTORC1 pathway by phosphorylating Raptor at Ser792. Moreover, serine depletion decreased NADPH level followed by elevated reactive oxygen species (ROS) production and DNA damage, which induced p53-p21 mediated G1 phase cell cycle arrest. Conversely, serine starvation activated transcription factor 4 (ATF4)-mediated robust expression of phosphoserine aminotransferase 1 (PSAT1) which in turn promoted compensatory endogenous serine synthesis, thus maintaining ESCC cell survival under serine-limited conditions. Accordingly, serine deprivation combined with PSAT1 inhibition significantly suppressed ESCC tumor growth both in vitro and in vivo. Taken together, our findings demonstrate that serine starvation suppresses the proliferation of ESCC cells by disturbing the synthesis of purine nucleotides and NADPH, and the combination of serine deprivation and PSAT1 inhibition significantly impairs ESCC tumor growth. Our study provides a theoretical basis for targeting serine metabolism as a potential therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Hui Jie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhuoling Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Yi
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinying Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunqi Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pengchi Deng
- Analytical & Testing Center, Sichuan University, Chengdu, 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Li G, Chen W, Guan H, Lai Z, Shao C, AnshanShan. Dendritic Antifungal Peptides as Potent Agents against Drug-Resistant Candida albicans and Biofilm. J Med Chem 2025; 68:3373-3385. [PMID: 39868500 DOI: 10.1021/acs.jmedchem.4c02598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Candida albicans infection is a major public health problem, exacerbated by the emergence of drug-resistant fungi with the widespread use of antifungal drugs. Therefore, the development of novel antifungal drugs for drug-resistant C. albicans infections is crucial. We constructed a series of dendritic antifungal peptides (AFPs) with different chain lengths of fatty acids as hydrophobic ends and 2 or 3 protease-stable repeats (Arg-Pro) as dendritic peptide branches. Among them, C4-3RP exhibited excellent antidrug-resistant fungal and biofilm activity (GMall = 5.04 μM) and was nontoxic. Furthermore, C4-3RP demonstrated high protease stability and salt ion tolerance, making it highly effective in murine skin infection mediated by C. albicans. In addition, C4-3RP uses multiple mechanisms of action to achieve excellent antifungal effects. In conclusion, the construction of dendritic peptides holds substantial potential in the treatment of fungal infections and provides a broader perspective on the design of peptide-based antifungal drugs.
Collapse
Affiliation(s)
- Guoyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Wenwen Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hongrui Guan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhenheng Lai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Changxuan Shao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| | - AnshanShan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
10
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
11
|
Chen T, Ashwood LM, Kondrashova O, Strasser A, Kelly G, Sutherland KD. Breathing new insights into the role of mutant p53 in lung cancer. Oncogene 2025; 44:115-129. [PMID: 39567755 PMCID: PMC11725503 DOI: 10.1038/s41388-024-03219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024]
Abstract
The tumour suppressor gene p53 is one of the most frequently mutated genes in lung cancer and these defects are associated with poor prognosis, albeit some debate exists in the lung cancer field. Despite extensive research, the exact mechanisms by which mutant p53 proteins promote the development and sustained expansion of cancer remain unclear. This review will discuss the cellular responses controlled by p53 that contribute to tumour suppression, p53 mutant lung cancer mouse models and characterisation of p53 mutant lung cancer. Furthermore, we discuss potential approaches of targeting mutant p53 for the treatment of lung cancer.
Collapse
Affiliation(s)
- Tianwei Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lauren M Ashwood
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- The University of Queensland, Brisbane, QLD, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Gemma Kelly
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Kate D Sutherland
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
12
|
Tu CE, Liu YF, Liu HW, Jiao CM, Liu Q, Hung MC, Li P, Wan XB, Fan XJ, Wang YL. D-ribose-5-phosphate inactivates YAP and functions as a metabolic checkpoint. J Hematol Oncol 2025; 18:2. [PMID: 39755622 DOI: 10.1186/s13045-024-01655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Targeting glucose uptake by glucose transporter (GLUT) inhibitors is a therapeutic opportunity, but efforts on GLUT inhibitors have not been successful in the clinic and the underlying mechanism remains unclear. We aim to identify the key metabolic changes responsible for cancer cell survival from glucose limitation and elucidate its mechanism. METHODS The level of phosphorylated YAP was analyzed with Western blotting and Phos-tag immunoblotting. Glucose limitation-induced metabolic changes were analyzed using targeted metabolomics (600MRM). The anti-cancer role of metabolite was examined using colony formation assay and APCmin/+ mice. Co-immunoprecipitation, LS-MS, qRT-PCR, and immunofluorescence were performed to explore the underlying mechanisms. RESULTS We found that D-Ribose-5-phosphate (D5P), a product of the pentose phosphate pathway connecting glucose metabolism and nucleotide metabolism, functions as a metabolic checkpoint to activate YAP under glucose limitation to promote cancer cell survival. Mechanistically, in glucose-deprived cancer cells, D5P is decreased, which facilitates the interaction between MYH9 and LATS1, resulting in MYH9-mediated LATS1 aggregation, degradation, and further YAP activation. Interestingly, activated YAP further promotes purine nucleoside phosphorylase (PNP)-mediated breakdown of purine nucleoside to restore D5P in a feedback manner. Importantly, D5P synergistically enhances the tumor-suppressive effect of GLUT inhibitors and inhibits cancer progression in mice. CONCLUSIONS Our study identifies D5P as a metabolic checkpoint linking glucose limitation stress and YAP activation, indicating that D5P may be a potential anti-cancer metabolite by enhancing glucose limitation sensitivity.
Collapse
Affiliation(s)
- Cheng-E Tu
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yong-Feng Liu
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hong-Wei Liu
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, 050081, Hebei, People's Republic of China
| | - Chun-Mei Jiao
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan.
- NSTC T-Star Center, Taipei, Taiwan.
| | - Peng Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Xiang-Bo Wan
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Xin-Juan Fan
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
| | - Yun-Long Wang
- Department of Radiation Oncology, Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
13
|
Aerathupalathu Janardhanan J, Yu HH. Recent advances in PEDOT/PProDOT-derived nano biosensors: engineering nano assemblies for fostering advanced detection platforms for biomolecule detection. NANOSCALE 2024; 16:17202-17229. [PMID: 39229680 DOI: 10.1039/d4nr01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the recent unprecedented emergence of a global pandemic, unknown diseases and new metabolic patterns expressing serious health issues, the requirement to develop new diagnostic tools, therapeutic solutions, and healthcare and environmental monitoring systems are significantly higher in the present situation. Considering that high sensitivity, selectivity, stability and a low limit of detection (LOD) are inevitable requirements for an ideal biosensor, the class of conducting polymers of poly(3,4-ethylenedioxythiophene) (PEDOT) and recently poly(3,4-propylenedioxythiophene) (PProDOT) materials have been demonstrated to be promising candidates for designing sensor devices. Nanostructure engineering of these polymeric materials with tunable surface properties and side chain functionalization to enable sensor probe conjugation combined with signal amplification devices such as OECTs and OFETs can fulfil the requirements of next-generation smart nano-biosensors. In this review, we analyze recent reports on PEDOT/PProDOT nanostructures and nanocomposites for developing nano-biosensors and their application in the detection of different biomarkers, environmental, toxicology, marine and aquatic monitoring, forensic and illicit drug detection, etc. In addition, we discuss the challenges associated with the design of PEDOT/PProDOT nano-biosensors and future perspectives on the exploration of novel sensor platforms, particularly PProDOT derivatives for bioelectronics and novel design strategies for next-generation smart nano-biosensors.
Collapse
Affiliation(s)
| | - Hsiao-Hua Yu
- Smart Organic Materials Laboratory (SOML), Institute of Chemistry, Academia Sinica No. 128, Sec. 2, Nankang District, Taipei City 115201, Taiwan.
| |
Collapse
|
14
|
Li X, Kirkpatrick RB, Wang X, Tucker CJ, Shukla A, Jessen HJ, Wang H, Shears SB, Gu C. Homeostatic coordination of cellular phosphate uptake and efflux requires an organelle-based receptor for the inositol pyrophosphate IP8. Cell Rep 2024; 43:114316. [PMID: 38833370 PMCID: PMC11284862 DOI: 10.1016/j.celrep.2024.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/16/2024] [Accepted: 05/17/2024] [Indexed: 06/06/2024] Open
Abstract
Phosphate (Pi) serves countless metabolic pathways and is involved in macromolecule synthesis, energy storage, cellular signaling, and bone maintenance. Herein, we describe the coordination of Pi uptake and efflux pathways to maintain mammalian cell Pi homeostasis. We discover that XPR1, the presumed Pi efflux transporter, separately supervises rates of Pi uptake. This direct, regulatory interplay arises from XPR1 being a binding partner for the Pi uptake transporter PiT1, involving a predicted transmembrane helix/extramembrane loop in XPR1, and its hitherto unknown localization in a subset of intracellular LAMP1-positive puncta (named "XLPVs"). A pharmacological mimic of Pi homeostatic challenge is sensed by the inositol pyrophosphate IP8, which functionalizes XPR1 to respond in a temporally hierarchal manner, initially adjusting the rate of Pi efflux, followed subsequently by independent modulation of PiT1 turnover to reset the rate of Pi uptake. These observations generate a unifying model of mammalian cellular Pi homeostasis, expanding opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Xingyao Li
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA
| | - Regan B Kirkpatrick
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles J Tucker
- Fluorescence Microscopy and Imaging Center, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Anuj Shukla
- Institute of Organic Chemistry, and CIBSS - the Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Henning J Jessen
- Institute of Organic Chemistry, and CIBSS - the Center for Integrative Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA; Nucleolar Integrity Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA
| | - Chunfang Gu
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA; Synaptic & Developmental Plasticity Group, Neurobiology Laboratory, National Institute of Environmental, Health Sciences, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
15
|
Rai M, Li H, Policastro RA, Zentner GE, Nemkov T, D’Alessandro A, Tennessen JM. Glycolytic Disruption Triggers Interorgan Signaling to Nonautonomously Restrict Drosophila Larval Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597835. [PMID: 38895259 PMCID: PMC11185712 DOI: 10.1101/2024.06.06.597835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Drosophila larval growth requires efficient conversion of dietary nutrients into biomass. Lactate Dehydrogenase (Ldh) and Glycerol-3-phosphate dehydrogenase (Gpdh1) support larval biosynthetic metabolism by maintaining NAD+/NADH redox balance and promoting glycolytic flux. Consistent with the cooperative functions of Ldh and Gpdh1, the loss of both enzymes, but neither single enzyme, induces a developmental arrest. However, Ldh and Gpdh1 exhibit complex and often mutually exclusive expression patterns, suggesting that the Gpdh1; Ldh double mutant lethal phenotype could be mediated nonautonomously. Here we find that the developmental arrest displayed by the double mutants extends beyond simple metabolic disruption and instead stems, in part, from changes in systemic growth factor signaling. Specifically, we demonstrate that this synthetic lethality is linked to the upregulation of Upd3, a cytokine involved in the Jak/Stat signaling pathway. Moreover, we demonstrate that either loss of the Upd3 or dietary administration of the steroid hormone 20-hydroxyecdysone (20E) rescue the synthetic lethal phenotype of Gpdh1; Ldh double mutants. Together, these findings demonstrate that metabolic disruptions within a single tissue can nonautonomously modulate interorgan signaling to ensure synchronous developmental growth.
Collapse
Affiliation(s)
- Madhulika Rai
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Hongde Li
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Colorado, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Colorado, USA
| | | |
Collapse
|
16
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
17
|
Farr E, Dimitrov D, Schmidt C, Turei D, Lobentanzer S, Dugourd A, Saez-Rodriguez J. MetalinksDB: a flexible and contextualizable resource of metabolite-protein interactions. Brief Bioinform 2024; 25:bbae347. [PMID: 39038934 PMCID: PMC11262834 DOI: 10.1093/bib/bbae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/29/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
From the catalytic breakdown of nutrients to signaling, interactions between metabolites and proteins play an essential role in cellular function. An important case is cell-cell communication, where metabolites, secreted into the microenvironment, initiate signaling cascades by binding to intra- or extracellular receptors of neighboring cells. Protein-protein cell-cell communication interactions are routinely predicted from transcriptomic data. However, inferring metabolite-mediated intercellular signaling remains challenging, partially due to the limited size of intercellular prior knowledge resources focused on metabolites. Here, we leverage knowledge-graph infrastructure to integrate generalistic metabolite-protein with curated metabolite-receptor resources to create MetalinksDB. MetalinksDB is an order of magnitude larger than existing metabolite-receptor resources and can be tailored to specific biological contexts, such as diseases, pathways, or tissue/cellular locations. We demonstrate MetalinksDB's utility in identifying deregulated processes in renal cancer using multi-omics bulk data. Furthermore, we infer metabolite-driven intercellular signaling in acute kidney injury using spatial transcriptomics data. MetalinksDB is a comprehensive and customizable database of intercellular metabolite-protein interactions, accessible via a web interface (https://metalinks.omnipathdb.org/) and programmatically as a knowledge graph (https://github.com/biocypher/metalinks). We anticipate that by enabling diverse analyses tailored to specific biological contexts, MetalinksDB will facilitate the discovery of disease-relevant metabolite-mediated intercellular signaling processes.
Collapse
Affiliation(s)
- Elias Farr
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Daniel Dimitrov
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Christina Schmidt
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Denes Turei
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Sebastian Lobentanzer
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Aurelien Dugourd
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- EMBL European Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Julio Saez-Rodriguez
- Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
- EMBL European Bioinformatics Institute, Wellcome Genome Campus, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
18
|
Manoj KM. Murburn posttranslational modifications of proteins: Cellular redox processes and murzyme-mediated metabolo-proteomics. J Cell Physiol 2024; 239:e30954. [PMID: 36716112 DOI: 10.1002/jcp.30954] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/31/2023]
Abstract
Murburn concept constitutes the thesis that diffusible reactive species or DRS are obligatorily involved in routine metabolic and physiological activities. Murzymes are defined as biomolecules/proteins that generate/modulate/sustain/utilize DRS. Murburn posttranslational modifications (PTMs) result because murburn/murzyme functionalism is integral to cellular existence. Cells must incorporate the inherently stochastic nature of operations mediated by DRS. Due to the earlier/inertial stigmatic perception that DRS are mere agents of chaos, several such outcomes were either understood as deterministic modulations sponsored by house-keeping enzymes or deemed as unregulated nonenzymatic events resulting out of "oxidative stress". In the current review, I dispel the myths around DRS-functions, and undertake systematic parsing and analyses of murburn modifications of proteins. Although it is impossible to demarcate all PTMs into the classical or murburn modalities, telltale signs of the latter are evident from the relative inaccessibility of the locus, non-specificities and mechanistic details. It is pointed out that while many murburn PTMs may be harmless, some others could have deleterious or beneficial physiological implications. Some details of reversible/irreversible modifications of amino acid residues and cofactors that may be subjected to phosphorylation, halogenation, glycosylation, alkylation/acetylation, hydroxylation/oxidation, etc. are listed, along with citations of select proteins where such modifications have been reported. The contexts of these modifications and their significance in (patho)physiology/aging and therapy are also presented. With more balanced explorations and statistically verified data, a definitive understanding of normal versus pathological contexts of murburn modifications would be obtainable in the future.
Collapse
|
19
|
Tian L, Cao M, Cheng H, Wang Y, He C, Shi X, Li T, Li Z. Plasmon-Stimulated Colorimetry Biosensor Array for the Identification of Multiple Metabolites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6849-6858. [PMID: 38293917 DOI: 10.1021/acsami.3c16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Rationally designing highly catalytic and stable nanozymes for metabolite monitoring is of great importance because of their huge potential in early disease diagnosis. Herein, a novel nanozyme based on hierarchically structured CuS/ZnS with a highly efficient peroxidase (POD)-mimic capability was developed and synthesized for multiple metabolite determination and recognition via the plasmon-stimulated biosensor array strategy. The designed nanozyme can simultaneously harvest plasmon triggered hot electron-hole pairs and generate photothermal properties, leading to a sharply boosted POD-mimic capability under 808 nm laser irradiation. Interestingly, because of the interaction diversity of the metabolite with POD-like nanomaterials, the unique inhibitory effect of metabolites on the POD-mimic activity could be the signal response as the differentiation. Thus, utilizing TMB as a typical chromogenic substrate in the addition of H2O2, the designed colorimetric biosensor array can produce diverse fingerprints for the three vital metabolisms (cysteine (Cys), ascorbic acid (AA), and glutathione (GSH)), which can be precisely identified by principal component analysis (PCA). Notably, a distinct fingerprint of a single metabolite with different levels and metabolite mixtures is also achieved with a detection limit of 1 μM. Most importantly, cell lysis could be effectively discriminated by the biosensor assay, implying its great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
- School of Food (Biology) Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Ming Cao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Haorong Cheng
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Yanfei Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Changchun He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Xinxin Shi
- School of Food (Biology) Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Tongxiang Li
- School of Food (Biology) Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
- School of Food (Biology) Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| |
Collapse
|
20
|
Chrysopoulou M, Rinschen MM. Metabolic Rewiring and Communication: An Integrative View of Kidney Proximal Tubule Function. Annu Rev Physiol 2024; 86:405-427. [PMID: 38012048 DOI: 10.1146/annurev-physiol-042222-024724] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The kidney proximal tubule is a key organ for human metabolism. The kidney responds to stress with altered metabolite transformation and perturbed metabolic pathways, an ultimate cause for kidney disease. Here, we review the proximal tubule's metabolic function through an integrative view of transport, metabolism, and function, and embed it in the context of metabolome-wide data-driven research. Function (filtration, transport, secretion, and reabsorption), metabolite transformation, and metabolite signaling determine kidney metabolic rewiring in disease. Energy metabolism and substrates for key metabolic pathways are orchestrated by metabolite sensors. Given the importance of renal function for the inner milieu, we also review metabolic communication routes with other organs. Exciting research opportunities exist to understand metabolic perturbation of kidney and proximal tubule function, for example, in hypertension-associated kidney disease. We argue that, based on the integrative view outlined here, kidney diseases without genetic cause should be approached scientifically as metabolic diseases.
Collapse
Affiliation(s)
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark;
- III. Department of Medicine and Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Kim HJ, Park JG, Moon KS, Jung SB, Kwon YM, Kang NS, Kim JH, Nam SJ, Choi G, Baek YB, Park SI. Identification and characterization of a marine bacterium extract from Mameliella sp. M20D2D8 with antiviral effects against influenza A and B viruses. Arch Virol 2024; 169:41. [PMID: 38326489 PMCID: PMC10850258 DOI: 10.1007/s00705-024-05979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/24/2023] [Indexed: 02/09/2024]
Abstract
Despite significant improvements in vaccines and chemotherapeutic drugs, pathogenic RNA viruses continue to have a profound impact on the global economy and pose a serious threat to animal and human health through emerging and re-emerging outbreaks of diseases. To overcome the challenge of viral adaptation and evolution, increased vigilance is required. Particularly, antiviral drugs derived from new, natural sources provide an attractive strategy for controlling problematic viral diseases. In this antiviral study, we discovered a previously unknown bacterium, Mameliella sp. M20D2D8, by conducting an antiviral screening of marine microorganisms. An extract from M20D2D8 exhibited antiviral activity with low cytotoxicity and was found to be effective in vitro against multiple influenza virus strains: A/PR8 (IC50 = 2.93 µg/mL, SI = 294.85), A/Phil82 (IC50 = 1.42 µg/mL, SI = 608.38), and B/Yamagata (IC50 = 1.59 µg/mL, SI = 543.33). The antiviral action was found to occur in the post-entry stages of viral replication and to suppress viral replication by inducing apoptosis in infected cells. Moreover, it efficiently suppressed viral genome replication, protein synthesis, and infectivity in MDCK and A549 cells. Our findings highlight the antiviral capabilities of a novel marine bacterium, which could potentially be useful in the development of drugs for controlling viral diseases.
Collapse
Affiliation(s)
- Hyo-Jin Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jun-Gyu Park
- Laboratory of Veterinary Zoonotic Diseases, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyeong-Seo Moon
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Su-Bin Jung
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea
| | - Yong Min Kwon
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Nam Seon Kang
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea
| | - Jeong-Hyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Grace Choi
- Department of Microbial Resources, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101beon-gil, Seocheon-gun, Chungcheongnam-do, 33662, Republic of Korea.
| | - Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea.
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
22
|
Mok JH, Joo M, Cho S, Duong VA, Song H, Park JM, Lee H. Optimizing MS-Based Multi-Omics: Comparative Analysis of Protein, Metabolite, and Lipid Extraction Techniques. Metabolites 2024; 14:34. [PMID: 38248837 PMCID: PMC10820684 DOI: 10.3390/metabo14010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Multi-omics integrates diverse types of biological information from genomic, proteomic, and metabolomics experiments to achieve a comprehensive understanding of complex cellular mechanisms. However, this approach is also challenging due to technical issues such as limited sample quantities, the complexity of data pre-processing, and reproducibility concerns. Furthermore, existing studies have primarily focused on technical performance assessment and the presentation of modified protocols through quantitative comparisons of the identified protein counts. Nevertheless, the specific differences in these comparisons have been minimally investigated. Here, findings obtained from various omics approaches were profiled using various extraction methods (methanol extraction, the Folch method, and Matyash methods for metabolites and lipids) and two digestion methods (filter-aided sample preparation (FASP) and suspension traps (S-Trap)) for resuspended proteins. FASP was found to be more effective for the identification of membrane-related proteins, whereas S-Trap excelled in isolating nuclear-related and RNA-processing proteins. Thus, FASP may be suitable for investigating the immune response and bacterial infection pathways, whereas S-Trap may be more effective for studies focused on the mechanisms of neurodegenerative diseases. Moreover, regarding the choice of extraction method, the single-phase method identified organic compounds and compounds related to fatty acids, whereas the two-phase extraction method identified more hydrophilic compounds such as nucleotides. Lipids with strong hydrophobicity, such as ChE and TG, were identified in the two-phase extraction results. These findings highlight that significant differences among small molecules are primarily identified due to the varying polarities of extraction solvents. These results, obtained by considering variables such as human error and batch effects in the sample preparation step, offer comprehensive and detailed results not previously provided by existing studies, thereby aiding in the selection of the most suitable pre-processing approach.
Collapse
Affiliation(s)
- Jeong-Hun Mok
- Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, 115, Irwon-ro, Gangnam-gu, Seoul 06355, Republic of Korea;
| | - Minjoong Joo
- Basilbiotech, 157-20, Sinsong-ro, Yeonsu-gu, Incheon 22002, Republic of Korea; (M.J.); (S.C.)
| | - Seonghyeon Cho
- Basilbiotech, 157-20, Sinsong-ro, Yeonsu-gu, Incheon 22002, Republic of Korea; (M.J.); (S.C.)
| | - Van-An Duong
- College of Pharmacy, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (V.-A.D.); (H.S.)
| | - Haneul Song
- College of Pharmacy, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (V.-A.D.); (H.S.)
| | - Jong-Moon Park
- Basilbiotech, 157-20, Sinsong-ro, Yeonsu-gu, Incheon 22002, Republic of Korea; (M.J.); (S.C.)
| | - Hookeun Lee
- College of Pharmacy, Gachon University, 191, Hambangmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea; (V.-A.D.); (H.S.)
| |
Collapse
|
23
|
Bacigalupa ZA, Landis MD, Rathmell JC. Nutrient inputs and social metabolic control of T cell fate. Cell Metab 2024; 36:10-20. [PMID: 38118440 PMCID: PMC10872404 DOI: 10.1016/j.cmet.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
Cells in multicellular organisms experience diverse neighbors, signals, and evolving physical environments that drive functional and metabolic demands. To maintain proper development and homeostasis while avoiding inappropriate cell proliferation or death, individual cells interact with their neighbors via "social" cues to share and partition available nutrients. Metabolic signals also contribute to cell fate by providing biochemical links between cell-extrinsic signals and available resources. In addition to metabolic checkpoints that sense nutrients and directly supply molecular intermediates for biosynthetic pathways, many metabolites directly signal or provide the basis for post-translational modifications of target proteins and chromatin. In this review, we survey the landscape of T cell nutrient sensing and metabolic signaling that supports proper immunity while avoiding immunodeficiency or autoimmunity. The integration of cell-extrinsic microenvironmental cues with cell-intrinsic metabolic signaling provides a social metabolic control model to integrate cell signaling, metabolism, and fate.
Collapse
Affiliation(s)
- Zachary A Bacigalupa
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Madelyn D Landis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey C Rathmell
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Abudahab S, Slattum PW, Price ET, McClay JL. Epigenetic regulation of drug metabolism in aging: utilizing epigenetics to optimize geriatric pharmacotherapy. Pharmacogenomics 2024; 25:41-54. [PMID: 38126340 PMCID: PMC10794944 DOI: 10.2217/pgs-2023-0199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
We explore the relationship between epigenetic aging and drug metabolism. We review current evidence for changes in drug metabolism in normal aging, followed by a description of how epigenetic modifications associated with age can regulate the expression and functionality of genes. In particular, we focus on the role of epigenome-wide studies of human and mouse liver in understanding these age-related processes with respect to xenobiotic processing. We highlight genes encoding drug metabolizing enzymes and transporters revealed to be affected by epigenetic aging in these studies. We conclude that substantial evidence exists for epigenetic aging impacting drug metabolism and transport genes, but more work is needed. We further highlight the promise of pharmacoepigenetics applied to enhancing drug safety in older adults.
Collapse
Affiliation(s)
- Sara Abudahab
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Patricia W Slattum
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- Virginia Center on Aging, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Elvin T Price
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph L McClay
- Department of Pharmacotherapy & Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
25
|
Slusher GA, Kottke PA, Culberson AL, Chilmonczyk MA, Fedorov AG. Microfluidics enabled multi-omics triple-shot mass spectrometry for cell-based therapies. BIOMICROFLUIDICS 2024; 18:011302. [PMID: 38268742 PMCID: PMC10807926 DOI: 10.1063/5.0175178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
In recent years, cell-based therapies have transformed medical treatment. These therapies present a multitude of challenges associated with identifying the mechanism of action, developing accurate safety and potency assays, and achieving low-cost product manufacturing at scale. The complexity of the problem can be attributed to the intricate composition of the therapeutic products: living cells with complex biochemical compositions. Identifying and measuring critical quality attributes (CQAs) that impact therapy success is crucial for both the therapy development and its manufacturing. Unfortunately, current analytical methods and tools for identifying and measuring CQAs are limited in both scope and speed. This Perspective explores the potential for microfluidic-enabled mass spectrometry (MS) systems to comprehensively characterize CQAs for cell-based therapies, focusing on secretome, intracellular metabolome, and surfaceome biomarkers. Powerful microfluidic sampling and processing platforms have been recently presented for the secretome and intracellular metabolome, which could be implemented with MS for fast, locally sampled screening of the cell culture. However, surfaceome analysis remains limited by the lack of rapid isolation and enrichment methods. Developing innovative microfluidic approaches for surface marker analysis and integrating them with secretome and metabolome measurements using a common analytical platform hold the promise of enhancing our understanding of CQAs across all "omes," potentially revolutionizing cell-based therapy development and manufacturing for improved efficacy and patient accessibility.
Collapse
Affiliation(s)
| | - Peter A. Kottke
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, USA
| | | | | | | |
Collapse
|
26
|
Charles C, Lloyd SM, Piyarathna DWB, Gohlke J, Rasaily U, Putluri V, Simons BW, Zaslavsky A, Nallandhighal S, Michailidis G, Palanisamy N, Navone N, Jones JA, Ittmann MM, Putluri N, Rowley DR, Salami SS, Palapattu GS, Sreekumar A. Role of adenosine deaminase in prostate cancer progression. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:594-612. [PMID: 38148936 PMCID: PMC10749386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 12/28/2023]
Abstract
Prostate cancer (PCa) is the second most common cancer and constitutes about 14.7% of total cancer cases. PCa is highly prevalent and more aggressive in African-American (AA) men than in European-American (EA) men. PCa tends to be highly heterogeneous, and its complex biology is not fully understood. We use metabolomics to better understand the mechanisms behind PCa progression and disparities in its clinical outcome. Adenosine deaminase (ADA) is a key enzyme in the purine metabolic pathway; it was found to be upregulated in PCa and is associated with higher-grade PCa and poor disease-free survival. The inosine-to-adenosine ratio, which is a surrogate for ADA activity was high in PCa patient urine and higher in AA PCa compared to EA PCa. To understand the significance of high ADA in PCa, we established ADA overexpression models and performed various in vitro and in vivo studies. Our studies have revealed that an acute increase in ADA expression during later stages of tumor development enhances in vivo growth in multiple pre-clinical models. Further analysis revealed that mTOR signaling activation could be associated with this tumor growth. Chronic ADA overexpression shows alterations in the cells' adhesion machinery and a decrease in cells' ability to adhere to the extracellular matrix in vitro. Losing cell-matrix interaction is critical for metastatic dissemination which suggests that ADA could potentially be involved in promoting metastasis. This is supported by the association of higher ADA expression with higher-grade tumors and poor patient survival. Overall, our findings suggest that increased ADA expression may promote PCa progression, specifically tumor growth and metastatic dissemination.
Collapse
Affiliation(s)
- Christy Charles
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, TX 77030, USA
| | - Stacy M Lloyd
- Department of Molecular and Cellular Biology, Baylor College of MedicineHouston, TX 77030, USA
| | | | | | - Uttam Rasaily
- Department of Molecular and Cellular Biology, Baylor College of MedicineHouston, TX 77030, USA
| | - Vasanta Putluri
- Advanced Technology Core, Baylor College of MedicineHouston, TX 77030, USA
| | - Brian W Simons
- Center for Comparative Medicine, Baylor College of MedicineHouston, TX 77030, USA
| | | | | | - George Michailidis
- Statistics and Data Science, University of CaliforniaLos Angeles, CA 90095, USA
| | | | - Nora Navone
- Department of Genitourinary Medical Oncology - Research, Division of Cancer Medicine, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Jeffrey A Jones
- Michael E. DeBakey Veteran Affairs Medical CenterHouston, TX 77030, USA
- Department of Urology, Baylor College of MedicineHouston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of MedicineHouston, TX 77030, USA
| | - Michael M Ittmann
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of MedicineHouston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of MedicineHouston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of MedicineHouston, TX 77030, USA
- Advanced Technology Core, Baylor College of MedicineHouston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of MedicineHouston, TX 77030, USA
| | - David R Rowley
- Department of Molecular and Cellular Biology, Baylor College of MedicineHouston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of MedicineHouston, TX 77030, USA
| | - Simpa S Salami
- Department of Urology, University of MichiganAnn Arbor, MI 48109, USA
| | | | - Arun Sreekumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of MedicineHouston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of MedicineHouston, TX 77030, USA
| |
Collapse
|
27
|
Perin GB, Moreno S, Zhou Y, Günther M, Boye S, Voit B, Felisberti MI, Appelhans D. Construction of Membraneless and Multicompartmentalized Coacervate Protocells Controlling a Cell Metabolism-like Cascade Reaction. Biomacromolecules 2023; 24:5807-5822. [PMID: 37984848 DOI: 10.1021/acs.biomac.3c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, there has been growing attention to designing synthetic protocells, capable of mimicking micrometric and multicompartmental structures and highly complex physicochemical and biological processes with spatiotemporal control. Controlling metabolism-like cascade reactions in coacervate protocells is still challenging since signal transduction has to be involved in sequential and parallelized actions mediated by a pH change. Herein, we report the hierarchical construction of membraneless and multicompartmentalized protocells composed of (i) a cytosol-like scaffold based on complex coacervate droplets stable under flow conditions, (ii) enzyme-active artificial organelles and a substrate nanoreservoir capable of triggering a cascade reaction between them in response to a pH increase, and (iii) a signal transduction component based on the urease enzyme capable of the conversion of an exogenous biological fuel (urea) into an endogenous signal (ammonia and pH increase). Overall, this strategy allows a synergistic communication between their components within the membraneless and multicompartment protocells and, thus, metabolism-like enzymatic cascade reactions. This signal communication is transmitted through a scaffold protocell from an "inactive state" (nonfluorescent protocell) to an "active state" (fluorescent protocell capable of consuming stored metabolites).
Collapse
Affiliation(s)
- Giovanni B Perin
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Yang Zhou
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Markus Günther
- Institute of Botany, Faculty of Biology, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Susanne Boye
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Maria I Felisberti
- Institute of Chemistry, University of Campinas, 13083-970 Campinas, São Paulo, Brazil
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, D-01069 Dresden, Germany
| |
Collapse
|
28
|
Cheng J, Cheng M, Lusis AJ, Yang X. Gene Regulatory Networks in Coronary Artery Disease. Curr Atheroscler Rep 2023; 25:1013-1023. [PMID: 38008808 PMCID: PMC11466510 DOI: 10.1007/s11883-023-01170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
PURPOSE OF REVIEW Coronary artery disease is a complex disorder and the leading cause of mortality worldwide. As technologies for the generation of high-throughput multiomics data have advanced, gene regulatory network modeling has become an increasingly powerful tool in understanding coronary artery disease. This review summarizes recent and novel gene regulatory network tools for bulk tissue and single cell data, existing databases for network construction, and applications of gene regulatory networks in coronary artery disease. RECENT FINDINGS New gene regulatory network tools can integrate multiomics data to elucidate complex disease mechanisms at unprecedented cellular and spatial resolutions. At the same time, updates to coronary artery disease expression data in existing databases have enabled researchers to build gene regulatory networks to study novel disease mechanisms. Gene regulatory networks have proven extremely useful in understanding CAD heritability beyond what is explained by GWAS loci and in identifying mechanisms and key driver genes underlying disease onset and progression. Gene regulatory networks can holistically and comprehensively address the complex nature of coronary artery disease. In this review, we discuss key algorithmic approaches to construct gene regulatory networks and highlight state-of-the-art methods that model specific modes of gene regulation. We also explore recent applications of these tools in coronary artery disease patient data repositories to understand disease heritability and shared and distinct disease mechanisms and key driver genes across tissues, between sexes, and between species.
Collapse
Affiliation(s)
- Jenny Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Michael Cheng
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, 650 Charles E Young Drive South, Los Angeles, CA, 90095, USA.
- Departments of Human Genetics & Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
29
|
Sharma B, Koren DT, Ghosh S. Nitric oxide modulates NMDA receptor through a negative feedback mechanism and regulates the dynamical behavior of neuronal postsynaptic components. Biophys Chem 2023; 303:107114. [PMID: 37832215 DOI: 10.1016/j.bpc.2023.107114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023]
Abstract
Nitric oxide (NO) is known to be an important regulator of neurological processes in the central nervous system which acts directly on the presynaptic neuron and enhances the release of neurotransmitters like glutamate into the synaptic cleft. Calcium influx activates a cascade of biochemical reactions to influence the production of nitric oxide in the postsynaptic neuron. This has been modeled in the present work as a system of ordinary differential equations, to explore the dynamics of the interacting components and predict the dynamical behavior of the postsynaptic neuron. It has been hypothesized that nitric oxide modulates the NMDA receptor via a feedback mechanism and regulates the dynamic behavior of postsynaptic components. Results obtained by numerical analyses indicate that the biochemical system is stimulus-dependent and shows oscillations of calcium and other components within a limited range of concentration. Some of the parameters such as stimulus strength, extracellular calcium concentration, and rate of nitric oxide feedback are crucial for the dynamics of the components in the postsynaptic neuron.
Collapse
Affiliation(s)
- Bhanu Sharma
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India
| | | | - Subhendu Ghosh
- Department of Biophysics, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
30
|
Suresh PS, Kumari S, Sahal D, Sharma U. Innate functions of natural products: A promising path for the identification of novel therapeutics. Eur J Med Chem 2023; 260:115748. [PMID: 37666044 DOI: 10.1016/j.ejmech.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
In the course of evolution, living organisms have become well equipped with diverse natural products that serve important functions, including defence from biotic and abiotic stress, growth regulation, reproduction, metabolism, and epigenetic regulation. It seems to be the organism's ecological niche that influences the natural product's structural and functional diversity. Indeed, natural products constitute the nuts and bolts of molecular co-evolution and ecological relationships among different life forms. Since natural products in the form of specialized secondary metabolites exhibit biological functions via interactions with specific target proteins, they can provide a simultaneous glimpse of both new therapeutics and therapeutic targets in humans as well. In this review, we have discussed the innate role of natural products in the ecosystem and how this intrinsic role provides a futuristic opportunity to identify new drugs and therapeutic targets rapidly.
Collapse
Affiliation(s)
- Patil Shivprasad Suresh
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Surekha Kumari
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
| |
Collapse
|
31
|
Cheng JW, Yu Y, Zong SY, Cai WW, Wang Y, Song YN, Xian H, Wei F. Berberine ameliorates collagen-induced arthritis in mice by restoring macrophage polarization via AMPK/mTORC1 pathway switching glycolytic reprogramming. Int Immunopharmacol 2023; 124:111024. [PMID: 37827054 DOI: 10.1016/j.intimp.2023.111024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Dysfunction of macrophage polarization majorly contributes to the progression of rheumatoid arthritis (RA). Polarization and functions of activated macrophages are closely associated with the reprogramming of intracellular metabolisms. Previously, we demonstrated that the anti-arthritis effect of berberine (BBR) in rats with adjuvant-induced arthritis (AA) may be related to AMP-activated protein kinase (AMPK) activation (a key regulator in the biological energy metabolism), and balanced macrophage polarization. However, the specific molecular mechanism of BBR in macrophage metabolism is yet to be elucidated. In this study, we clarified that BBR ameliorated articular inflammation and restored M1/M2 ratio in collagen-induced arthritis (CIA) mice in an AMPK-dependent manner. Mechanistically, BBR reversed the effects of mTORC1 agonist leucine (Leu) on regulating macrophage polarization through activation of AMPK to switch glycolytic reprogramming. Furthermore, BBR inhibition of mTORC1 rely on activation of AMPK to phosphorylate raptor and TSC2 instead of destroying its structure. Our study revealed that the activation of AMPK is required for the BBR-mediated anti-arthritis effect by downregulating mTORC1/HIF-1α and inhibiting the glycolysis in M1 macrophages.
Collapse
Affiliation(s)
- Jing-Wen Cheng
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Yun Yu
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Shi-Ye Zong
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Wei-Wei Cai
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Ying Wang
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Yi-Ning Song
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China
| | - Hao Xian
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China
| | - Fang Wei
- School of Pharmacy, Bengbu Medical College, No. 2600, Donghai Avenue, Bengbu, Anhui, China; Biochemical Engineering Center of Anhui, Bengbu, Anhui, China.
| |
Collapse
|
32
|
Zhao J, Wang W, Zhang L, Zhang J, Sturmey R, Zhang J. Dynamic metabolism during early mammalian embryogenesis. Development 2023; 150:dev202148. [PMID: 37877936 DOI: 10.1242/dev.202148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Dynamic metabolism is exhibited by early mammalian embryos to support changing cell fates during development. It is widely acknowledged that metabolic pathways not only satisfy cellular energetic demands, but also play pivotal roles in the process of cell signalling, gene regulation, cell proliferation and differentiation. Recently, various new technological advances have been made in metabolomics and computational analysis, deepening our understanding of the crucial role of dynamic metabolism during early mammalian embryogenesis. In this Review, we summarize recent studies on oocyte and embryo metabolism and its regulation, with a particular focus on its association with key developmental events such as fertilization, zygote genome activation and cell fate determination. In addition, we discuss the mechanisms of certain metabolites that, in addition to serving as energy sources, contribute to epigenetic modifications.
Collapse
Affiliation(s)
- Jing Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Wenjie Wang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| | - Ling Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jia Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| | - Roger Sturmey
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Inamdar S, Suresh AP, Mangal JL, Ng ND, Sundem A, Behbahani HS, Rubino TE, Yaron JR, Khodaei T, Green M, Curtis M, Acharya AP. Succinate in the tumor microenvironment affects tumor growth and modulates tumor associated macrophages. Biomaterials 2023; 301:122292. [PMID: 37643489 PMCID: PMC10544711 DOI: 10.1016/j.biomaterials.2023.122292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Succinate is an important metabolite that modulates metabolism of immune cells and cancer cells in the tumor microenvironment (TME). Herein, we report that polyethylene succinate (PES) microparticles (MPs) biomaterial mediated controlled delivery of succinate in the TME modulates macrophage responses. Administering PES MPs locally with or without a BRAF inhibitor systemically in an immune-defective aging mice with clinically relevant BRAFV600E mutated YUMM1.1 melanoma decreased tumor volume three-fold. PES MPs in the TME also led to maintenance of M1 macrophages with up-regulation of TSLP and type 1 interferon pathway. Impressively, this led to generation of pro-inflammatory adaptive immune responses in the form of increased T helper type 1 and T helper type 17 cells in the TME. Overall, our findings from this challenging tumor model suggest that immunometabolism-modifying PES MP strategies provide an approach for developing robust cancer immunotherapies.
Collapse
Affiliation(s)
- Sahil Inamdar
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhirami P Suresh
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Joslyn L Mangal
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Nathan D Ng
- Molecular Biosciences and Biotechnology, The College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Alison Sundem
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Hoda Shokrollahzadeh Behbahani
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Thomas E Rubino
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, 85259, USA; Department of Cancer Biology, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Jordan R Yaron
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Taravat Khodaei
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Matthew Green
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Materials Science and Engineering, School for the Engineering of Matter, Transport, And Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Marion Curtis
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, 85259, USA; Department of Cancer Biology, Mayo Clinic, Scottsdale, AZ, 85259, USA; College of Medicine and Science, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Abhinav P Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA; Materials Science and Engineering, School for the Engineering of Matter, Transport, And Energy, Arizona State University, Tempe, AZ, 85281, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
34
|
Xie Z, Li X, Mora A. A Comparison of Cell-Cell Interaction Prediction Tools Based on scRNA-seq Data. Biomolecules 2023; 13:1211. [PMID: 37627276 PMCID: PMC10452151 DOI: 10.3390/biom13081211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Computational prediction of cell-cell interactions (CCIs) is becoming increasingly important for understanding disease development and progression. We present a benchmark study of available CCI prediction tools based on single-cell RNA sequencing (scRNA-seq) data. By comparing prediction outputs with a manually curated gold standard for idiopathic pulmonary fibrosis (IPF), we evaluated prediction performance and processing time of several CCI prediction tools, including CCInx, CellChat, CellPhoneDB, iTALK, NATMI, scMLnet, SingleCellSignalR, and an ensemble of tools. According to our results, CellPhoneDB and NATMI are the best performer CCI prediction tools, among the ones analyzed, when we define a CCI as a source-target-ligand-receptor tetrad. In addition, we recommend specific tools according to different types of research projects and discuss the possible future paths in the field.
Collapse
Affiliation(s)
- Zihong Xie
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health (Chinese Academy of Sciences), Guangzhou 511436, China;
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Antonio Mora
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health (Chinese Academy of Sciences), Guangzhou 511436, China;
| |
Collapse
|
35
|
Santaliz-Casiano A, Mehta D, Danciu OC, Patel H, Banks L, Zaidi A, Buckley J, Rauscher GH, Schulte L, Weller LR, Taiym D, Liko-Hazizi E, Pulliam N, Friedewald SM, Khan S, Kim JJ, Gradishar W, Hegerty S, Frasor J, Hoskins KF, Madak-Erdogan Z. Identification of metabolic pathways contributing to ER + breast cancer disparities using a machine-learning pipeline. Sci Rep 2023; 13:12136. [PMID: 37495653 PMCID: PMC10372029 DOI: 10.1038/s41598-023-39215-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
African American (AA) women in the United States have a 40% higher breast cancer mortality rate than Non-Hispanic White (NHW) women. The survival disparity is particularly striking among (estrogen receptor positive) ER+ breast cancer cases. The purpose of this study is to examine whether there are racial differences in metabolic pathways typically activated in patients with ER+ breast cancer. We collected pretreatment plasma from AA and NHW ER+ breast cancer cases (AA n = 48, NHW n = 54) and cancer-free controls (AA n = 100, NHW n = 48) to conduct an untargeted metabolomics analysis using gas chromatography mass spectrometry (GC-MS) to identify metabolites that may be altered in the different racial groups. Unpaired t-test combined with multiple feature selection and prediction models were employed to identify race-specific altered metabolic signatures. This was followed by the identification of altered metabolic pathways with a focus in AA patients with breast cancer. The clinical relevance of the identified pathways was further examined in PanCancer Atlas breast cancer data set from The Cancer Genome Atlas Program (TCGA). We identified differential metabolic signatures between NHW and AA patients. In AA patients, we observed decreased circulating levels of amino acids compared to healthy controls, while fatty acids were significantly higher in NHW patients. By mapping these metabolites to potential epigenetic regulatory mechanisms, this study identified significant associations with regulators of metabolism such as methionine adenosyltransferase 1A (MAT1A), DNA Methyltransferases and Histone methyltransferases for AA individuals, and Fatty acid Synthase (FASN) and Monoacylglycerol lipase (MGL) for NHW individuals. Specific gene Negative Elongation Factor Complex E (NELFE) with histone methyltransferase activity, was associated with poor survival exclusively for AA individuals. We employed a comprehensive and novel approach that integrates multiple machine learning and statistical methods, coupled with human functional pathway analyses. The metabolic profile of plasma samples identified may help elucidate underlying molecular drivers of disproportionately aggressive ER+ tumor biology in AA women. It may ultimately lead to the identification of novel therapeutic targets. To our knowledge, this is a novel finding that describes a link between metabolic alterations and epigenetic regulation in AA breast cancer and underscores the need for detailed investigations into the biological underpinnings of breast cancer health disparities.
Collapse
Affiliation(s)
| | - Dhruv Mehta
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Oana C Danciu
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Hariyali Patel
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Landan Banks
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ayesha Zaidi
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jermya Buckley
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Garth H Rauscher
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Schulte
- Robert H. Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| | - Lauren Ro Weller
- Robert H. Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| | - Deanna Taiym
- Robert H. Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| | | | - Natalie Pulliam
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Seema Khan
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J Julie Kim
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - William Gradishar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Jonna Frasor
- Department Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Kent F Hoskins
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Zeynep Madak-Erdogan
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, 1201 W Gregory Dr, Urbana, IL, 61801, USA.
| |
Collapse
|
36
|
Rothman DL, Moore PB, Shulman RG. The impact of metabolism on the adaptation of organisms to environmental change. Front Cell Dev Biol 2023; 11:1197226. [PMID: 37377740 PMCID: PMC10291235 DOI: 10.3389/fcell.2023.1197226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Since Jacob and Monod's discovery of the lac operon ∼1960, the explanations offered for most metabolic adaptations have been genetic. The focus has been on the adaptive changes in gene expression that occur, which are often referred to as "metabolic reprogramming." The contributions metabolism makes to adaptation have been largely ignored. Here we point out that metabolic adaptations, including the associated changes in gene expression, are highly dependent on the metabolic state of an organism prior to the environmental change to which it is adapting, and on the plasticity of that state. In support of this hypothesis, we examine the paradigmatic example of a genetically driven adaptation, the adaptation of E. coli to growth on lactose, and the paradigmatic example of a metabolic driven adaptation, the Crabtree effect in yeast. Using a framework based on metabolic control analysis, we have reevaluated what is known about both adaptations, and conclude that knowledge of the metabolic properties of these organisms prior to environmental change is critical for understanding not only how they survive long enough to adapt, but also how the ensuing changes in gene expression occur, and their phenotypes post-adaptation. It would be useful if future explanations for metabolic adaptations acknowledged the contributions made to them by metabolism, and described the complex interplay between metabolic systems and genetic systems that make these adaptations possible.
Collapse
Affiliation(s)
- Douglas L. Rothman
- Departments of Radiology, Yale University, New Haven, CT, United States
- Biomedical Engineering, Yale University, New Haven, CT, United States
- Yale Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
| | - Peter B. Moore
- Department of Molecular Biology and Biophysics, Yale University, New Haven, CT, United States
- Department of Chemistry, Yale University, New Haven, CT, United States
| | - Robert G. Shulman
- Yale Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Molecular Biology and Biophysics, Yale University, New Haven, CT, United States
| |
Collapse
|
37
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
38
|
Ferdousi F, Sasaki K, Fukumitsu S, Kuwata H, Nakajima M, Isoda H. A Descriptive Whole-Genome Transcriptomics Study in a Stem Cell-Based Tool Predicts Multiple Tissue-Specific Beneficial Potential and Molecular Targets of Carnosic Acid. Int J Mol Sci 2023; 24:ijms24098077. [PMID: 37175790 PMCID: PMC10179098 DOI: 10.3390/ijms24098077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Carnosic acid (CA) is a phenolic diterpene widely distributed in herbal plants, rosemary and sage. Although its medicinal properties, such as antioxidant, antimicrobial, and neuroprotective effects, have been well-documented, its relevant biochemical processes and molecular targets have not been fully explored yet. In the present study, we conducted an untargeted whole-genome transcriptomics analysis to investigate CA-induced early biological and molecular events in human amniotic epithelial stem cells (hAESCs) with the aim of exploring its multiple tissue-specific functionalities and potential molecular targets. We found that seven days of CA treatment in hAESCs could induce mesoderm-lineage-specific differentiation. Tissue enrichment analysis revealed that CA significantly enriched lateral plate mesoderm-originated cardiovascular and adipose tissues. Further tissue-specific PPI analysis and kinase and transcription factor enrichment analyses identified potential upstream regulators and molecular targets of CA in a tissue-specific manner. Gene ontology enrichment analyses revealed the metabolic, antioxidant, and antifibrotic activities of CA. Altogether, our comprehensive whole-genome transcriptomics analyses offer a thorough understanding of the possible underlying molecular mechanism of CA.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
| | - Satoshi Fukumitsu
- NIPPN Corporation, Tokyo 243-0041, Japan
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
| | | | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
- MED R&D Corporation, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- MED R&D Corporation, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
39
|
Ligresti G, Raslan AA, Hong J, Caporarello N, Confalonieri M, Huang SK. Mesenchymal cells in the Lung: Evolving concepts and their role in fibrosis. Gene 2023; 859:147142. [PMID: 36603696 PMCID: PMC10068350 DOI: 10.1016/j.gene.2022.147142] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Mesenchymal cells in the lung are crucial during development, but also contribute to the pathogenesis of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), the most common and deadly form of fibrotic interstitial lung diseases. Originally thought to behave as supporting cells for the lung epithelium and endothelium with a singular function of producing basement membrane, mesenchymal cells encompass a variety of cell types, including resident fibroblasts, lipofibroblasts, myofibroblasts, smooth muscle cells, and pericytes, which all occupy different anatomic locations and exhibit diverse homeostatic functions in the lung. During injury, each of these subtypes demonstrate remarkable plasticity and undergo varying capacity to proliferate and differentiate into activated myofibroblasts. Therefore, these cells secrete high levels of extracellular matrix (ECM) proteins and inflammatory cytokines, which contribute to tissue repair, or in pathologic situations, scarring and fibrosis. Whereas epithelial damage is considered the initial trigger that leads to lung injury, lung mesenchymal cells are recognized as the ultimate effector of fibrosis and attempts to better understand the different functions and actions of each mesenchymal cell subtype will lead to a better understanding of why fibrosis develops and how to better target it for future therapy. This review summarizes current findings related to various lung mesenchymal cells as well as signaling pathways, and their contribution to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Giovanni Ligresti
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US.
| | - Ahmed A Raslan
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Jeongmin Hong
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, US
| | - Marco Confalonieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, US
| |
Collapse
|
40
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
41
|
Derbal Y. Cell Adaptive Fitness and Cancer Evolutionary Dynamics. Cancer Inform 2023; 22:11769351231154679. [PMID: 36860424 PMCID: PMC9969436 DOI: 10.1177/11769351231154679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/17/2023] [Indexed: 02/26/2023] Open
Abstract
Genome instability of cancer cells translates into increased entropy and lower information processing capacity, leading to metabolic reprograming toward higher energy states, presumed to be aligned with a cancer growth imperative. Dubbed as the cell adaptive fitness, the proposition postulates that the coupling between cell signaling and metabolism constrains cancer evolutionary dynamics along trajectories privileged by the maintenance of metabolic sufficiency for survival. In particular, the conjecture postulates that clonal expansion becomes restricted when genetic alterations induce a sufficiently high level of disorder, that is, high entropy, in the regulatory signaling network, abrogating as a result the ability of cancer cells to successfully replicate, leading to a stage of clonal stagnation. The proposition is analyzed in the context of an in-silico model of tumor evolutionary dynamics to illustrate how cell-inherent adaptive fitness may predictably constrain clonal evolution of tumors, which would have significant implications for the design of adaptive cancer therapies.
Collapse
Affiliation(s)
- Youcef Derbal
- Youcef Derbal, Ted Rogers School of
Information Technology Management, Toronto Metropolitan University, 350 Victoria
Street, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
42
|
Li M, Li L, Zheng J, Li Z, Li S, Wang K, Chen X. Liquid biopsy at the frontier in renal cell carcinoma: recent analysis of techniques and clinical application. Mol Cancer 2023; 22:37. [PMID: 36810071 PMCID: PMC9942319 DOI: 10.1186/s12943-023-01745-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/11/2023] [Indexed: 02/23/2023] Open
Abstract
Renal cell carcinoma (RCC) is a major pathological type of kidney cancer and is one of the most common malignancies worldwide. The unremarkable symptoms of early stages, proneness to postoperative metastasis or recurrence, and low sensitivity to radiotherapy and chemotherapy pose a challenge for the diagnosis and treatment of RCC. Liquid biopsy is an emerging test that measures patient biomarkers, including circulating tumor cells, cell-free DNA/cell-free tumor DNA, cell-free RNA, exosomes, and tumor-derived metabolites and proteins. Owing to its non-invasiveness, liquid biopsy enables continuous and real-time collection of patient information for diagnosis, prognostic assessment, treatment monitoring, and response evaluation. Therefore, the selection of appropriate biomarkers for liquid biopsy is crucial for identifying high-risk patients, developing personalized therapeutic plans, and practicing precision medicine. In recent years, owing to the rapid development and iteration of extraction and analysis technologies, liquid biopsy has emerged as a low cost, high efficiency, and high accuracy clinical detection method. Here, we comprehensively review liquid biopsy components and their clinical applications over the past 5 years. Additionally, we discuss its limitations and predict its future prospects.
Collapse
Affiliation(s)
- Mingyang Li
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning Shenyang, 110004 People’s Republic of China
| | - Lei Li
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning Shenyang, 110004 People’s Republic of China
| | - Jianyi Zheng
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning Shenyang, 110004 People’s Republic of China
| | - Zeyu Li
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning Shenyang, 110004 People’s Republic of China
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Liaoning, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
43
|
Correia-Melo C, Kamrad S, Tengölics R, Messner CB, Trebulle P, Townsend S, Jayasree Varma S, Freiwald A, Heineike BM, Campbell K, Herrera-Dominguez L, Kaur Aulakh S, Szyrwiel L, Yu JSL, Zelezniak A, Demichev V, Mülleder M, Papp B, Alam MT, Ralser M. Cell-cell metabolite exchange creates a pro-survival metabolic environment that extends lifespan. Cell 2023; 186:63-79.e21. [PMID: 36608659 DOI: 10.1016/j.cell.2022.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/07/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan.
Collapse
Affiliation(s)
- Clara Correia-Melo
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Stephan Kamrad
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roland Tengölics
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary; HCEMM-BRC Metabolic Systems Biology Lab, Szeged 6726, Hungary
| | - Christoph B Messner
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Precision Proteomics Center, Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland
| | - Pauline Trebulle
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - StJohn Townsend
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Anja Freiwald
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; Core Facility - High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Benjamin M Heineike
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Quantitative Gene Expression Research Group, MRC London Institute of Medical Sciences (LMS), London W12 0HS, UK; Quantitative Gene Expression Research Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London SW2 2AZ, UK
| | - Kate Campbell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Lucía Herrera-Dominguez
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Simran Kaur Aulakh
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Lukasz Szyrwiel
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jason S L Yu
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aleksej Zelezniak
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK; Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius 10257, Lithuania
| | - Vadim Demichev
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Michael Mülleder
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Core Facility - High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged 6726, Hungary; HCEMM-BRC Metabolic Systems Biology Lab, Szeged 6726, Hungary
| | - Mohammad Tauqeer Alam
- Department of Biology, College of Science, United Arab Emirates University, P.O.Box 15551, Al-Ain, United Arab Emirates
| | - Markus Ralser
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Department of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany; The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
44
|
de Souza LP, Fernie AR. Databases and Tools to Investigate Protein-Metabolite Interactions. Methods Mol Biol 2023; 2554:231-249. [PMID: 36178629 DOI: 10.1007/978-1-0716-2624-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein-metabolite interactions (PMIs) are directly responsible for the regulation of numerous processes. From the direct regulation of enzymes to complex developmental processes intermediated by hormones, PMIs are central to understanding the molecular mechanisms of important physiological phenomena. Still, proving such interactions experimentally has proven an arduous task. We discuss here some of the current technologies contributing to expand our knowledge on PMIs, with particular emphasis on platforms and databases to explore the highly heterogenous nature of characterized PMIs, which is likely to be an essential resource on the development of new computational approaches to predict and validate interactions based on large-scale PMI screenings.
Collapse
Affiliation(s)
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
45
|
Zeng X, Wang YP, Man CH. Metabolism in Hematopoiesis and Its Malignancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:45-64. [PMID: 38228958 DOI: 10.1007/978-981-99-7471-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that can self-renew and generate all blood cells of different lineages. The system is under tight control in order to maintain a precise equilibrium of the HSC pool and the effective production of mature blood cells to support various biological activities. Cell metabolism can regulate different molecular activities, such as epigenetic modification and cell cycle regulation, and subsequently affects the function and maintenance of HSC. Upon malignant transformation, oncogenic drivers in malignant hematopoietic cells can remodel the metabolic pathways for supporting the oncogenic growth. The dysregulation of metabolism results in oncogene addiction, implying the development of malignancy-specific metabolism-targeted therapy. In this chapter, we will discuss the significance of different metabolic pathways in hematopoiesis, specifically, the distinctive metabolic dependency in hematopoietic malignancies and potential metabolic therapy.
Collapse
Affiliation(s)
- Xiaoyuan Zeng
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi-Ping Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheuk-Him Man
- Division of Haematology, Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
46
|
Guirado J, Carranza-Valencia J, Morante J. Mammalian puberty: a fly perspective. FEBS J 2023; 290:359-369. [PMID: 35607827 PMCID: PMC10084137 DOI: 10.1111/febs.16534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023]
Abstract
Mammalian puberty and Drosophila metamorphosis, despite their evolutionary distance, exhibit similar design principles and conservation of molecular components. In this Viewpoint, we review recent advances in this area and the similarities between both processes in terms of the signaling pathways and neuroendocrine circuits involved. We argue that the detection and uptake of peripheral fat by Drosophila prothoracic endocrine cells induces endomembrane remodeling and ribosomal maturation, leading to the acquisition of high biosynthetic and secretory capacity. The absence of this fat-neuroendocrine interorgan communication leads to giant, obese, non-pupating larvae. Importantly, human leptin is capable of signaling the pupariation process in Drosophila, and its expression prevents obesity and triggers maturation in mutants that do not pupate. This implies that insect metamorphosis can be used to address issues related to the biology of leptin and puberty.
Collapse
Affiliation(s)
- Juan Guirado
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), San Juan de Alicante, Spain
| | - Juan Carranza-Valencia
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), San Juan de Alicante, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Cientificas (CSIC) and Universidad Miguel Hernández (UMH), San Juan de Alicante, Spain
| |
Collapse
|
47
|
Kim S, Lim SW, Choi J. Drug discovery inspired by bioactive small molecules from nature. Anim Cells Syst (Seoul) 2022; 26:254-265. [PMID: 36605590 PMCID: PMC9809404 DOI: 10.1080/19768354.2022.2157480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Natural products (NPs) have greatly contributed to the development of novel treatments for human diseases such as cancer, metabolic disorders, and infections. Compared to synthetic chemical compounds, primary and secondary metabolites from medicinal plants, fungi, microorganisms, and our bodies are promising resources with immense chemical diversity and favorable properties for drug development. In addition to the well-validated significance of secondary metabolites, endogenous small molecules derived from central metabolism and signaling events have shown great potential as drug candidates due to their unique metabolite-protein interactions. In this short review, we highlight the values of NPs, discuss recent scientific and technological advances including metabolomics tools, chemoproteomics approaches, and artificial intelligence-based computation platforms, and explore potential strategies to overcome the current challenges in NP-driven drug discovery.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea, Seyun Kim
| | - Seol-Wa Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jiyeon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
48
|
Keles U, Ow JR, Kuentzel KB, Zhao LN, Kaldis P. Liver-derived metabolites as signaling molecules in fatty liver disease. Cell Mol Life Sci 2022; 80:4. [PMID: 36477411 PMCID: PMC9729146 DOI: 10.1007/s00018-022-04658-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
Excessive fat accumulation in the liver has become a major health threat worldwide. Unresolved fat deposition in the liver can go undetected until it develops into fatty liver disease, followed by steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Lipid deposition in the liver is governed by complex communication, primarily between metabolic organs. This can be mediated by hormones, organokines, and also, as has been more recently discovered, metabolites. Although how metabolites from peripheral organs affect the liver is well documented, the effect of metabolic players released from the liver during the development of fatty liver disease or associated comorbidities needs further attention. Here we focus on interorgan crosstalk based on metabolites released from the liver and how these molecules act as signaling molecules in peripheral tissues. Due to the liver's specific role, we are covering lipid and bile mechanism-derived metabolites. We also discuss the high sucrose intake associated with uric acid release from the liver. Excessive fat deposition in the liver during fatty liver disease development reflects disrupted metabolic processes. As a response, the liver secretes a variety of signaling molecules as well as metabolites which act as a footprint of the metabolic disruption. In the coming years, the reciprocal exchange of metabolites between the liver and other metabolic organs will gain further importance and will help to better understand the development of fatty liver disease and associated diseases.
Collapse
Affiliation(s)
- Umur Keles
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Katharina Barbara Kuentzel
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Li Na Zhao
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Philipp Kaldis
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden. .,Lund University Diabetes Centre (LUDC), Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden.
| |
Collapse
|
49
|
Jamsheer K M, Awasthi P, Laxmi A. The social network of target of rapamycin complex 1 in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7026-7040. [PMID: 35781571 DOI: 10.1093/jxb/erac278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Target of rapamycin complex 1 (TORC1) is a highly conserved serine-threonine protein kinase crucial for coordinating growth according to nutrient availability in eukaryotes. It works as a central integrator of multiple nutrient inputs such as sugar, nitrogen, and phosphate and promotes growth and biomass accumulation in response to nutrient sufficiency. Studies, especially in the past decade, have identified the central role of TORC1 in regulating growth through interaction with hormones, photoreceptors, and stress signaling machinery in plants. In this review, we comprehensively analyse the interactome and phosphoproteome of the Arabidopsis TORC1 signaling network. Our analysis highlights the role of TORC1 as a central hub kinase communicating with the transcriptional and translational apparatus, ribosomes, chaperones, protein kinases, metabolic enzymes, and autophagy and stress response machinery to orchestrate growth in response to nutrient signals. This analysis also suggests that along with the conserved downstream components shared with other eukaryotic lineages, plant TORC1 signaling underwent several evolutionary innovations and co-opted many lineage-specific components during. Based on the protein-protein interaction and phosphoproteome data, we also discuss several uncharacterized and unexplored components of the TORC1 signaling network, highlighting potential links for future studies.
Collapse
Affiliation(s)
- Muhammed Jamsheer K
- Amity Institute of Genome Engineering, Amity University Uttar Pradesh, Noida 201313, India
| | - Prakhar Awasthi
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
50
|
Swinney DC. Why medicines work. Pharmacol Ther 2022; 238:108175. [DOI: 10.1016/j.pharmthera.2022.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
|