1
|
Lee JE, Park S, Kim Y, Wi S, Kim YT. Novel evidence in vivo: Berberine ameliorated glucocorticoid-induced post-natal growth retardation by regulating the GH/IGF-1 axis through KMT1A downregulation. Toxicol Appl Pharmacol 2025; 500:117362. [PMID: 40328339 DOI: 10.1016/j.taap.2025.117362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Glucocorticoids (GCs) are widely used anti-inflammatory agents that inhibit growth in children. However, their mechanisms and effect on the growth hormone (GH)/insulin-like growth factor (IGF)-1 axis remain unclear. PURPOSE This study, we aimed to establish a mouse model of GC-induced growth retardation during the critical growth period and explore the underlying mechanisms. Additionally, we aimed to identify novel biomarkers and potential therapeutic agents for GC-induced growth impairment. METHODS Four-week-old mice were treated with GCs for two weeks and subsequently assessed for body length, weight, and body composition. Immunohistochemical analysis of the growth plate in the proximal tibia and biochemical assays of blood were performed to evaluate changes in growth plate length and GH/IGF-1 axis. KMT1A expression and its effects on Ghr expression were examined, and the impact of berberine on GC-induced growth retardation was assessed. RESULTS GCs significantly reduced growth by impairing growth plate expansion, disrupting the GH/IGF-1 axis, and downregulation of the GH receptor (Ghr) and Igf-1 levels in the liver. These changes were attributed to the upregulation of the H3K9 trimethyltransferase KMT1A, which decreased Ghr transcription in the liver. In vitro screening of natural compounds revealed that berberine chloride hydrate decreased the KMT1A levels and increased GHR levels. Berberine chloride hydrate also effectively ameliorated GC-induced growth retardation by restoring Ghr expression via KMT1A inhibition, thereby enhancing the circulating IGF-1 levels. CONCLUSION Overall, our findings highlight the potential of targeting KMT1A using berberine chloride hydrate as an epigenetic modifier to treat GC-induced growth impairment.
Collapse
Affiliation(s)
- Jung-Eun Lee
- Food Functionality Research Division, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Seungmin Park
- Food Functionality Research Division, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yongeun Kim
- Food Functionality Research Division, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Subin Wi
- Food Functionality Research Division, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Yun-Tai Kim
- Food Functionality Research Division, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
2
|
Wang H, Zhan J, Zhao S, Jiang H, Jia H, Pan Y, Zhong X, Huo J. Sex-induced alterations in rumen microbial communities and metabolite profiles: implications for lamb body weight. BMC Microbiol 2025; 25:328. [PMID: 40426040 PMCID: PMC12107992 DOI: 10.1186/s12866-025-04049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Microbiota-metabolome interactions play a crucial role in host physiological regulation and metabolic homeostasis. The aim of this study was to investigate that sex induces alterations in rumen microbial community composition and metabolite profiles in lambs and the influence on body weight. This study aimed to demonstrate that sex- induced alterations in rumen microbial community and metabolite profiles and blood indices and their linkage to growth performance in lambs. RESULTS This study examined (growth indices, serum indices, rumen fermentation parameters, rumen fluid microbiota community and metabolome profiles) in 180 Hu lambs (90 males, and 90 females) with the same age and diet. At six months, male lambs showed significantly greater body weight, serum indices (glutamic pyruvic transaminase, glutamic oxalacetic transaminase, growth hormone, glucagon-like peptide 1, and ghrelin), and molar percentage of propionic acid, isobutyric acid, butyric acid, isovaleric acid and valeric acid compared to female. However, male had lower VFA molar concentrations (acetic acid, propionic acid, butyric acid, and TVFAs), acetic acid/propionic acid, and VFA molar percentage (acetic acid) than female. Significant sex-related differences were observed in rumen microbiota and metabolic enrichment between genders. Moreover, compared with the females lambs, the relative abundance of Succiniclasticum, uncultured_rumen_bacterium, NK4 A214_group, Veillonellaceae_UCG_001 and Butyrivibrio in the male lambs has been significantly increased, while the relative abundance of Prevotella has been significantly decreased (P < 0.05). Notably, there were significant rumen microbiota-metabolite interactions, especially Firmicutes and Bacteroidota as dominant phyla in the sheep rumen with significant differences in correlation with rumen metabolic modules. Additionally, there are pronounced correlations among the microbiota, particularly within the Firmicutes phylum. Furthermore, the up-regulated metabolites in the rumen fluid of male lambs were predominantly enriched in the amino acid metabolite pathway, and these metabolites exhibited a significant positive correlation with body weight. However, the metabolites that were up-regulated in ewe lambs were predominantly enriched in the lipid metabolic pathway, and these metabolites exhibited a significant negative correlation with body weight. Moreover, lamb rumen microbial markers (Lachnospiraceae_UCG_008, Saccharofermentans, unclassified_Clostridia, Christensenellaceae_R_7_group, Anaerovorax, Mogibacterium, and unclassified_Erysipelotrichaceae) and metabolic markers (C75, 4-Coumarate, Flibanserin,3-Amino-5-mercapto-1,2,4-triazole, 1,3-Propane sultone, Fingolimod phosphate ester, S-,) were significantly positively correlated with body weight, but lamb rumen microbial markers (Anaeroplasma, unclassified_Acholeplasmataceae, uncultured_rumen_bacterum_4c28 d_15) and metabolic markers (Mozenavir, Reduced riboflavin, PG(18:2(9Z,12Z)/0:0), Cowanin) were significantly negatively correlated body weight. CONCLUSIONS This study shows that sex-induced alterations in rumen microbial communities and metabolite profiles, adapting to the growth and development of lambs. The findings may help develop targeted strategies to optimize sheep rumen microbiota and improve productivity.
Collapse
Affiliation(s)
- Haibo Wang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Provincial Development and Research Institute of Ruminants in Gansu, Lanzhou, 730070, China
| | - Jinshun Zhan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
- Provincial Development and Research Institute of Ruminants in Gansu, Lanzhou, 730070, China
| | - Haoyun Jiang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
| | - Haobin Jia
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
| | - Yue Pan
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
| | - Xiaojun Zhong
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China
| | - Junhong Huo
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China.
- Jiangxi Province Key Laboratory of Animal Green and Healthy Breeding, Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang, 330200, China.
| |
Collapse
|
3
|
Ishihara T, Tsugawa H, Iwanami S, Chang JC, Minoda A, Arita M. Transcriptomic and lipidomic analysis of aging-associated inflammatory signature in mouse liver. Inflamm Regen 2025; 45:13. [PMID: 40319315 PMCID: PMC12049063 DOI: 10.1186/s41232-025-00377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/20/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND Aging-associated dysbiosis leads to chronic inflammation and the development of a range of aging-related diseases. The gut microbiota crosstalks with the host by providing lipid metabolites and modulating metabolic functions. However, the precise mechanism by which the gut microbiota regulates aging is unknown. The objective of this study was to examine the impact of the gut microbiota on the transcriptome and lipidome associated with aging in mouse liver. METHODS RNA-sequencing was conducted on the livers of young and aged male and female-specific pathogen-free (SPF) and germ-free (GF) mice to comprehensively analyze transcriptomic alterations with aging. We also reanalyzed our previously reported results on aging-associated changes in the hepatic lipidome to investigate the gut microbiota-dependent hepatic lipidome signatures associated with aging. RESULTS In contrast to the findings in male mice, the changes in hepatic transcriptome associated with aging were attenuated in female GF mice compared with those in SPF mice. In particular, the gene sets associated with inflammatory signatures (i.e., inflammation and tissue remodeling) were found to be suppressed in female GF mice. The ChIP-Atlas database predicted that transcription factors associated with sex differences may be involved in the gene signature of aged female GF mice. Significant differences in the lipid profile were observed between aged SPF and GF female mice, including in bile acids, sterol sulfates, lysophospholipids, oxidized triacylglycerols, vitamin D, and phytoceramides. Moreover, notable alterations were identified in the quality of phospholipids and sphingolipids. Integrated transcriptomic and lipidomic analysis identified candidate enzymes responsible for the change of lipid profiles in aged female mice. CONCLUSIONS The findings of this study offer new insights into the molecular mechanisms through which the gut microbiota regulates aging-related phenotypes such as inflammation in the liver, possibly through modulating lipid metabolism in a sex-dependent manner.
Collapse
Affiliation(s)
- Tomoaki Ishihara
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7, Huis Ten Bosch, Sasebo, Nagasaki, 859-3298, Japan.
| | - Hiroshi Tsugawa
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan
- Metabolome Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Seigo Iwanami
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Jen-Chien Chang
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Department of Human Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Molecular and Cellular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
4
|
Prusty B, Sahoo D, Das S, Meher D, Agarwal V, Sahu SK, Choudhury A, Das B. Pituitary Stalk Interruption Syndrome: A Case Series. Cureus 2025; 17:e84437. [PMID: 40539145 PMCID: PMC12177210 DOI: 10.7759/cureus.84437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 05/19/2025] [Indexed: 06/22/2025] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare congenital endocrine condition characterized by a developmental anomaly of the pituitary gland, leading to deficiencies in anterior pituitary hormones due to the absence or underdevelopment of the pituitary stalk and anterior pituitary gland. An ectopic posterior pituitary; anterior pituitary hypoplasia or aplasia; and a thin, interrupted, or missing pituitary stalk constitute the classic triad of symptoms that define PSIS. PSIS is manifested in various forms and may be identified at different stages of life. PSIS may present as an isolated growth hormone deficiency occurring due to the deficiency of multiple pituitary hormones. Although the exact aetiology remains unknown, genetic mutations are considered a potential causative factor for disease onset. Hormone replacement therapy and early detection of PSIS are essential for preventing long-term consequences. Here, we report three cases in which patients at different stages of life presented with a wide variety of clinical manifestations of PSIS.
Collapse
Affiliation(s)
- Binod Prusty
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Devadarshini Sahoo
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Sambit Das
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Dayanidhi Meher
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Vishal Agarwal
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneshwar, IND
| | - Sandeep K Sahu
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Arun Choudhury
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Bijay Das
- Endocrinology, Diabetes and Metabolism, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| |
Collapse
|
5
|
Pecani M, Andreozzi P, Cangemi R, Corica B, Miglionico M, Romiti GF, Stefanini L, Raparelli V, Basili S. Metabolic Syndrome and Liver Disease: Re-Appraisal of Screening, Diagnosis, and Treatment Through the Paradigm Shift from NAFLD to MASLD. J Clin Med 2025; 14:2750. [PMID: 40283580 PMCID: PMC12028215 DOI: 10.3390/jcm14082750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), encompasses a spectrum of liver diseases characterized by hepatic steatosis, the presence of at least one cardiometabolic risk factor, and no other apparent cause. Metabolic syndrome (MetS) is a cluster of clinical conditions associated with increased risk of cardiovascular disease, type 2 diabetes, and overall morbidity and mortality. This narrative review summarizes the changes in the management of people with MetS and NAFLD/MASLD from screening to therapeutic strategies that have occurred in the last decades. Specifically, we underline the clinical importance of considering the different impacts of simple steatosis and advanced fibrosis and provide an up-to-date overview on non-invasive diagnostic tests (i.e., imaging and serum biomarkers), which now offer acceptable accuracy and are globally more accessible. Early detection of MetS and MASLD is a top priority as it allows for timely interventions, primarily through lifestyle modification. The liver and cardiovascular benefits of a global and multidimensional approach are not negligible. Therefore, a holistic approach to both conditions, MetS and related chronic liver disease, should be applied to improve overall health and longevity.
Collapse
Affiliation(s)
- Marin Pecani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Paola Andreozzi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Bernadette Corica
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Polyclinic of Modena, 41121 Modena, Italy
| | - Marzia Miglionico
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulio Francesco Romiti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Valeria Raparelli
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
6
|
Han J, Wu Z, Zhan S, Sheng T, You J, Yu J, Fu J, Zhang Y, Gu Z. Biorhythm-mimicking growth hormone patch. NATURE MATERIALS 2025:10.1038/s41563-025-02188-9. [PMID: 40181125 DOI: 10.1038/s41563-025-02188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/24/2025] [Indexed: 04/05/2025]
Abstract
Timing dosing throughout the day impacts the therapeutic efficacy and side effects of medications. Thus, optimizing release profiles to synchronize drug concentrations with natural rhythms is critical for optimal therapeutic benefits. However, existing delivery systems are still inefficient in delivering drugs in a biorhythm-mimicking fashion. Here we describe a biorhythm-inspired growth hormone transdermal microneedle patch with multistage drug release that mimics the natural rhythm of human growth hormone secretion at night. Programmed drug release is achieved by combining a 'burst-release' module with several 'delayed-release' modules. Compared with the subcutaneous daily injections currently used in clinics, the patch exhibits enhanced efficacy in terms of longitudinal bone growth and bone quality, leading to bone length increases of ~10 mm and ~5 mm in healthy rats and growth hormone gene knockout mice, respectively. Our findings reveal that the biorhythm-mimicking release pattern significantly enhances growth hormone bioavailability and effectively regulates the growth-related biological process, thus boosting the secretion of insulin-like growth factor-1 and ultimately promoting bone growth.
Collapse
Affiliation(s)
- Jinpeng Han
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhaoyuan Wu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shumin Zhan
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Tao Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiahuan You
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Burns and Wound Care Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou, China.
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, China.
| |
Collapse
|
7
|
Sarmento-Cabral A, Fuentes-Fayos AC, Ordoñez FM, León-González AJ, Martínez-Fuentes AJ, Gahete MD, Luque RM. From pituitary cells to prostate gland in health and disease: direct and indirect endocrine connections. Rev Endocr Metab Disord 2025; 26:187-203. [PMID: 39910005 PMCID: PMC11920336 DOI: 10.1007/s11154-025-09948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
The prostate gland is an endocrine-sensitive organ responding to multiple stimuli. Its development and function are regulated by multiple hormones (i.e. steroids such as androgens, estrogens and glucocorticoids) but also by other key hormonal systems such as those comprised by insulin-like growth factor 1 and insulin, which are sourced by different tissues [e.g. testicles/adrenal-gland/adipose-tissue/liver/pancreas, etc.). Particularly important for the endocrine control of prostatic pathophysiology and anatomy are hormones produced and/or secreted by different cell types of the pituitary gland [growth-hormone, luteinizing-hormone, follicle-stimulating hormone, and prolactin, oxytocin, arginine-vasopressin and melanocyte-stimulating hormone], which affect prostate gland function either directly or indirectly under physiological and pathophysiological conditions [e.g. metabolic dysregulation (e.g. obesity), and prostate transformations (e.g. prostate cancer)]. This review summarizes the impact of all pituitary hormone types on prostate gland under these diverse conditions including in vivo and in vitro studies.
Collapse
Affiliation(s)
- André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain.
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain.
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Fernando Mata Ordoñez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Faculty of Health Sciences, Alfonso X el Sabio University, Villanueva de la Cañada, 28691, Spain
| | - Antonio J León-González
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain.
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain.
| |
Collapse
|
8
|
He P, Lyu Y, Shen X, Liu W, Zhang Y, Li Y, Huang Y, Xu L, Zhang L, Guo S. Gut microbiome and short-chain fatty acids associated with the efficacy of growth hormone treatment in children with short stature. Front Pediatr 2025; 13:1557878. [PMID: 40230807 PMCID: PMC11994682 DOI: 10.3389/fped.2025.1557878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
Objective To investigate associations between fecal microbiota, short-chain fatty acids (SCFAs), and the efficacy of recombinant human growth hormone (rhGH) treatment in children with growth hormone deficiency (GHD) or idiopathic short stature (ISS). Methods A 2-phase cohort study was conducted. Phase I included 102 participants (GHD: n = 33, ISS: n = 28, controls: n = 41) for cross-sectional analysis using 16S rRNA sequencing and targeted metabolomics to compare microbial diversity, predicted metabolic pathways, and SCFA levels. Phase II longitudinally monitored 61 rhGH-treated children (GHD = 33, ISS = 28) over 2 years, assessing growth velocity, IGF-1 levels, and fecal microbiota/SCFA dynamics. Statistical analyses included alpha/beta diversity metrics, LEfSe, PERMANOVA, and redundancy analysis (RDA) to link microbial/SCFA profiles with clinical outcomes. Results (1). Microbiota Dysbiosis: Untreated GHD/ISS children exhibited reduced beneficial taxa (e.g., Faecalibacterium, Akkermansia) and increased pathobionts (e.g., Streptococcus, Collinsella) compared to controls (PERMANOVA: R 2 = 0.114, P = 0.001). (2). Metabolic Pathways: GHD/ISS groups showed enrichment in xenobiotic degradation (e.g., atrazine) and deficits in nutrient-associated pathways (e.g., carotenoid biosynthesis). (3). rhGH Effects: Treatment increased beneficial taxa (e.g., Bifidobacterium, Faecalibacterium) and modulated amino acid/lipid metabolism pathways (e.g., glycine-serine-threonine metabolism, P = 0.035). (4). SCFAs and Growth Velocity: Higher growth velocity percentiles correlated with elevated acetic acid (GHD-treated: 1952 ± 962.4 vs. untreated: 1290 ± 886.0 μg/g, P = 0.037) and butyric acid levels. Conclusion GHD, ISS, and healthy children have different fecal microbiota compositions and SCFA metabolisms. rhGH therapy partially restores microbial balance and alters metabolic pathways, with SCFA levels associated with treatment efficacy. These findings highlight the gut microbiome as a potential modulator of rhGH response and provide insight into microbiota-targeted therapies to improve growth outcomes (e.g., "probiotic interventions").
Collapse
Affiliation(s)
- Pingsihua He
- Department of Endocrine and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfen Lyu
- Department of Endocrine and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyuan Shen
- Department of Endocrine and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Liu
- Department of Endocrine and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Zhang
- Department of Endocrine and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Department of Endocrine and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuying Huang
- Department of Traditional Chinese Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liya Xu
- Department of Endocrine and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Zhang
- Department of Endocrine and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Guo
- Department of Endocrine and Metabolism, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Liu L, Yang S, Chai L, Zhang S, Liu D, Xu H, Zhao Y, Chen S, Jiang G, Li B. Nicotinic acetylcholine receptors regulate growth hormone in pituitary somatotrophs of tigers. Commun Biol 2025; 8:526. [PMID: 40164859 PMCID: PMC11958662 DOI: 10.1038/s42003-025-07980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
The Felidae exhibits remarkable diversity in body size, with lengths ranging from 50 to 370 cm and weights from 1.1 to 423 kg. However, the underlying mechanisms driving this variation remain poorly understood. Here, we focused on the Siberian tiger (Panthera tigris altaica), the largest of the six extant tiger subspecies, and revealed the surprising expression of nicotinic acetylcholine receptors (nAChRs) in pituitary somatotrophs, which are crucial for regulating growth hormone (GH) secretion. Single-nucleus RNA sequencing of Siberian tiger pituitary cells exhibited the coexpression of CHRNA3, CHRNB4, and CHRNA5 genes in somatotrophs, a finding confirmed by electrophysiological experiments demonstrating the formation of functional nAChRs. Activation of these receptors elevated intracellular Ca2+ levels, thereby enhancing GH secretion in somatotrophs. Notably, nAChRs were absent in the pituitary glands of mice, domestic cats, and rats, both in early life and adulthood, despite high acetylcholine levels during early life. These results suggest that nAChRs in Siberian tiger somatotrophs play a pivotal role in GH release, offering new insights into the molecular mechanisms regulating body size in these terrestrial giants.
Collapse
Affiliation(s)
- Lulu Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Shilong Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Longhui Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shipei Zhang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Dan Liu
- Siberian Tiger Park, Harbin, Heilongjiang, China
| | - Haitao Xu
- Siberian Tiger Park, Harbin, Heilongjiang, China
| | - Yue Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Shiyu Chen
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
| | - Guangshun Jiang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.
| | - Bin Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China.
| |
Collapse
|
10
|
Jarneborn A, Kopparapu PK, Jin T. The Dual-Edged Sword: Risks and Benefits of JAK Inhibitors in Infections. Pathogens 2025; 14:324. [PMID: 40333091 PMCID: PMC12030494 DOI: 10.3390/pathogens14040324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 05/09/2025] Open
Abstract
Janus kinase inhibitors (JAKis) represent a relatively new class of immunomodulatory drugs with potent effects on various cytokine signalling pathways. They have revolutionized the treatment landscape for autoimmune diseases such as rheumatoid arthritis, psoriatic arthritis, and ulcerative colitis. However, their ability to modulate immune responses presents a dual-edged nature, influencing both protective immunity and pathological inflammation. This review explores the complex role of JAKis in infectious settings, highlighting both beneficial and detrimental effects. On the one hand, experimental models suggest that JAK inhibition can impair host defence mechanisms, increasing susceptibility to certain bacterial and viral infections. For example, tofacitinib-treated mice exhibited more severe joint erosions in Staphylococcus aureus (S. aureus) septic arthritis and showed impaired viral clearance in herpes simplex encephalitis. Additionally, clinical data confirm an increased risk of herpes zoster in patients receiving JAKis, underscoring the need for rigorous monitoring. On the other hand, JAK inhibition has demonstrated protective effects in certain infectious and hyperinflammatory conditions. In sepsis models, including cecal ligation and puncture (CLP) and S. aureus bacteraemia, tofacitinib improved survival by attenuating excessive inflammation. Furthermore, JAKis, particularly baricitinib, have shown substantial efficacy in mitigating cytokine storms during severe COVID-19 infections, leading to improved clinical outcomes and reduced mortality. These observations suggest that JAKis have a role in modulating hyperinflammatory responses in select infectious contexts. In conclusion, JAKis present a complex interplay between immunosuppression and immunomodulation. While they increase the risk of certain infections, they also show potential in managing hyperinflammatory conditions such as cytokine storms. The key challenge is determining which patients and situations benefit most from JAKis while minimizing risks, requiring a careful and personalized treatment approach.
Collapse
Affiliation(s)
- Anders Jarneborn
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (P.K.K.); (T.J.)
- Department of Rheumatology, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| | - Pradeep Kumar Kopparapu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (P.K.K.); (T.J.)
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden; (P.K.K.); (T.J.)
- Department of Rheumatology, Sahlgrenska University Hospital, 413 46 Gothenburg, Sweden
| |
Collapse
|
11
|
Basu R, Boguszewski CL, Kopchick JJ. Growth Hormone Action as a Target in Cancer: Significance, Mechanisms, and Possible Therapies. Endocr Rev 2025; 46:224-280. [PMID: 39657053 DOI: 10.1210/endrev/bnae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/29/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Growth hormone (GH) is a pituitary-derived endocrine hormone required for normal postnatal growth and development. Hypo- or hypersecretion of endocrine GH results in 2 pathologic conditions, namely GH deficiency (GHD) and acromegaly. Additionally, GH is also produced in nonpituitary and tumoral tissues, where it acts rather as a cellular growth factor with an autocrine/paracrine mode of action. An increasingly persuasive and large body of evidence over the last 70 years concurs that GH action is implicit in escalating several cancer-associated events, locally and systemically. This pleiotropy of GH's effects is puzzling, but the association with cancer risk automatically raises a concern for patients with acromegaly and for individuals treated with GH. By careful assessment of the available knowledge on the fundamental concepts of cancer, suggestions from epidemiological and clinical studies, and the evidence from specific reports, in this review we aimed to help clarify the distinction of endocrine vs autocrine/paracrine GH in promoting cancer and to reconcile the discrepancies between experimental and clinical data. Along this discourse, we critically weigh the targetability of GH action in cancer-first by detailing the molecular mechanisms which posit GH as a critical node in tumor circuitry; and second, by enumerating the currently available therapeutic options targeting GH action. On the basis of our discussion, we infer that a targeted intervention on GH action in the appropriate patient population can benefit a sizable subset of current cancer prognoses.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
| | - Cesar L Boguszewski
- SEMPR, Endocrine Division, Department of Internal Medicine, Federal University of Parana, Curitiba 80060-900, Brazil
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
12
|
Hanafy NA. Chitosan nanoparticles as drug carriers and gene delivery systems: Advances and challenges. FUNDAMENTALS AND BIOMEDICAL APPLICATIONS OF CHITOSAN NANOPARTICLES 2025:267-308. [DOI: 10.1016/b978-0-443-14088-4.00015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
Steenblock C, Bornstein SR. GHRH in diabetes and metabolism. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09930-9. [PMID: 39560873 DOI: 10.1007/s11154-024-09930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Despite over a century of insulin therapy and recent advances in glucose monitoring, diabetes and its complications remain a significant burden. Current medications are not durable, with symptoms often returning after treatment ends, and responses vary between patients. Additionally, the effectiveness of many medications diminishes over time, highlighting the need for alternative approaches. Maintaining β-cell mass and promoting β-cell regeneration offer more curable treatments, while cell replacement therapies could be an option if regeneration is not feasible. For both strategies, enhancing β-cell survival is crucial. Growth hormone-releasing hormone (GHRH) was originally discovered for its ability to stimulate the production and release of growth hormone (GH) from the pituitary. Beyond the hypothalamus, GHRH is produced in peripheral tissues, with its receptor, GHRHR, expressed in tissues such as the pituitary, pancreas, adipose tissue, intestine, and liver. Several studies have shown that GHRH and its analogs enhance the survival of insulin-producing pancreatic β-cells both in vitro and in animal models. These beneficial effects strongly support the potential of GHRH agonists and antagonists for the clinical treatment of human metabolic diseases or for enhancing β-cell survival in cells used for transplantation. In the current review, we will discuss the roles of hypothalamic and extrahypothalamic GHRH in metabolism in physiological and pathological contexts, along with the underlying mechanisms. Furthermore, we will discuss the potential beneficial effects of GHRH analogs for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
14
|
Xiong J, Zhou Z, Jiang Y, Li Q, Geng Z, Guo J, Yan C, Zhang J. Hypoxic stabilization of RIPOR3 mRNA via METTL3-mediated m 6A methylation drives breast cancer progression and metastasis. Oncogene 2024; 43:3426-3441. [PMID: 39341989 DOI: 10.1038/s41388-024-03180-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Dysregulated N6-methyladenosine (m6A) modification has been associated with breast cancer pathogenesis. Hypoxia which characterizes solid tumors is known to reprogram the m6A epitranscriptome, but the underlying mechanisms of how this process contributes to breast cancer progression remain poorly understood. Through integrative analyses of m6A-RIP sequencing and RNA sequencing databases, we reveal a cluster of mRNAs with upregulated m6A methylation and expression under hypoxia, that are enriched by many oncogenic pathways, including PI3K-Akt signaling. Furthermore, we identify the mRNA, RIPOR3, as a target of METTL3-mediated m6A methylation in response to hypoxia. We find that m6A methylation stabilizes RIPOR3, increasing its protein expression in a METTL3 catalytic activity-dependent manner, and consequently driving breast tumor growth and metastasis. RIPOR3 is found to be overexpressed in breast cancer cell lines and tumor tissues from breast cancer patients, in whom elevated RIPOR3 is associated with a worse prognosis. Mechanistically, we show that RIPOR3 interacts with EGFR and is essential for the PI3K-Akt pathway activation. In conclusion, we identify RIPOR3 as a hypoxia-stabilized oncogenic driver via METTL3-mediated m6A methylation, thus provide a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Jingjing Xiong
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zirui Zhou
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yulong Jiang
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Qifang Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zuhan Geng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahao Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Chaojun Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
| | - Jing Zhang
- Department of Urology, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Escribano-Núñez A, Cornelis FMF, De Roover A, Sermon A, Cailotto F, Lories RJ, Monteagudo S. IGF1 drives Wnt-induced joint damage and is a potential therapeutic target for osteoarthritis. Nat Commun 2024; 15:9170. [PMID: 39448593 PMCID: PMC11502680 DOI: 10.1038/s41467-024-53604-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Osteoarthritis is the most common joint disease and a global leading cause of pain and disability. Current treatment is limited to symptom relief, yet there is no disease-modifying therapy. Its multifactorial etiology includes excessive activation of Wnt signaling, but how Wnt causes joint destruction remains poorly understood. Here, we identify that Wnt signaling promotes the transcription of insulin-like growth factor 1 (IGF1) in articular chondrocytes and that IGF1 is a major driver of Wnt-induced joint damage. Male mice with cartilage-specific Igf1 deficiency are protected from Wnt-triggered joint disease. Mechanistically, Wnt-induced IGF1 transcription depends on β-catenin and binding of Wnt transcription factor TCF4 to the IGF1 gene promoter. In a clinically relevant mouse model of post-traumatic osteoarthritis, cartilage-specific deletion of Igf1 protects against the disease in male mice. IGF1 silencing in chondrocytes from patients with osteoarthritis restores a healthy molecular profile. Our findings reveal that reducing Wnt-induced IGF1 is a potential therapeutic strategy for osteoarthritis.
Collapse
Affiliation(s)
- Ana Escribano-Núñez
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frederique M F Cornelis
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Astrid De Roover
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - An Sermon
- Division of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Locomotor and Neurological Disorders Unit, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Frédéric Cailotto
- CNRS-University of Lorraine, Molecular Engineering and Articular Physiopathology, Biopôle, University of Lorraine; Campus Biologie-Santé, Vandœuvre-Lès-Nancy, France
| | - Rik J Lories
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Silvia Monteagudo
- Laboratory of Tissue Homeostasis and Disease, Skeletal Biology and Engineering Research Centre, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
16
|
Timmermans EPM, Blankevoort J, Grinwis GCM, Mesu SJ, Gehring R, Delhanty PJD, Maas PEM, Strous GJ, Mol JA. In Vivo Effects of a GHR Synthesis Inhibitor During Prolonged Treatment in Dogs. Pharmaceuticals (Basel) 2024; 17:1381. [PMID: 39459020 PMCID: PMC11510805 DOI: 10.3390/ph17101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The activation of the growth hormone receptor (GHR) is a major determinant of body growth. Defective GHR signaling, as seen in human Laron dwarfism, resulted in low plasma IGF-1 concentrations and limited growth, but also marked absence in the development of breast cancer and type 2 diabetes. In vitro, we identified a small molecule (C#1) that inhibits the translation of GHR mRNA to receptor protein. Methods: Before its application in humans as a potential anticancer drug, C#1 was tested in animals to evaluate whether it could be administered to achieve a plasma concentration in vivo that inhibits cell proliferation in vitro without causing unwanted toxicity. To evaluate the efficacy and toxicity of C#1, a group of six intact female Beagle dogs was treated daily each morning for 90 days with an oral solution of C#1 in Soiae oleum emulgatum at a dose of 0.1 mg/kg body weight. During treatment, dogs were closely monitored clinically, and blood samples were taken to measure plasma C#1 concentrations, complete blood counts (CBC), clinical chemistry, and endocrinology. At the end of the treatment, dogs were euthanized for gross and histopathological analysis. An additional group of six female Beagle dogs was included for statistical reasons and only evaluated for efficacy during treatment for 30 days. Results: Daily administration of C#1 resulted in a constant mean plasma concentration of approximately 50 nmol/L. In both groups, two out of six dogs developed decreased appetite and food refusal after 4-5 weeks, and occasionally diarrhea. No significant effects in CBC or routine clinical chemistry were seen. Plasma IGF-1 concentrations, used as biomarkers for defective GHR signaling, significantly decreased by 31% over time. As plasma growth hormone (GH) concentrations decreased by 51% as well, no proof of GHR dysfunction could be established. The measured 43% decrease in plasma acylated/non-acylated ghrelin ratios will also lower plasma GH concentrations by reducing activation of the GH secretagogue receptor (GHSR). C#1 did not directly inhibit the GHSR in vivo, as shown in vitro. There were no significant effects on glucose, lipid, or folate/homocysteine metabolism. Conclusions: It is concluded that with daily dosing of 0.1 mg C#1/kg body weight, the induction of toxic effects prevented further increases in dosage. Due to the concomitant decrease in both IGF-1 and GH, in vivo inhibition of GHR could not be confirmed. Since the concept of specific inhibition of GHR synthesis by small molecules remains a promising strategy, searching for compounds similar to C#1 with lower toxicity should be worthwhile.
Collapse
Affiliation(s)
- Elpetra P. M. Timmermans
- Department Clinical Sciences, Faculty of Veterinary Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands (J.A.M.)
| | - Joëlle Blankevoort
- Department Clinical Sciences, Faculty of Veterinary Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands (J.A.M.)
| | - Guy C. M. Grinwis
- Department of Biomolecular Health Sciences, Pathology Division, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands;
| | - Sietske J. Mesu
- Department Population Health Sciences, Institute for Risk assessment Sciences (IRAS), 3584 CM Utrecht, The Netherlands; (S.J.M.); (R.G.)
| | - Ronette Gehring
- Department Population Health Sciences, Institute for Risk assessment Sciences (IRAS), 3584 CM Utrecht, The Netherlands; (S.J.M.); (R.G.)
| | - Patric J. D. Delhanty
- Department Internal Medicine, Endocrinology, Erasmus Medical Centre, 3015 GD Rotterdam, The Netherlands;
| | - Peter E. M. Maas
- Specs Compound Handling B.V., 2712 PB Zoetermeer, The Netherlands;
| | - Ger J. Strous
- Center for Molecular Medicine, Cell Biology, University Medical Center Utrecht, 3508 AB Utrecht, The Netherlands;
| | - Jan A. Mol
- Department Clinical Sciences, Faculty of Veterinary Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands (J.A.M.)
| |
Collapse
|
17
|
Chiloiro S, Costanza F, Giampietro A, Infante A, Mattogno PP, Angelini F, Gullì C, Lauretti L, Rigante M, Olivi A, De Marinis L, Doglietto F, Bianchi A, Pontecorvi A. GH receptor polymorphisms guide second-line therapies to prevent acromegaly skeletal fragility: preliminary results of a pilot study. Front Endocrinol (Lausanne) 2024; 15:1414101. [PMID: 39280003 PMCID: PMC11395836 DOI: 10.3389/fendo.2024.1414101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Background Skeletal fragility is characterized by increased frequency of vertebral fractures (VFs) in acromegaly. Several trials were conducted to identify modifiable risk factors and predictors of VFs, with limited data on the prognostic role of GH receptor (GHR) isoforms. In this study, we investigated the potential role of GHR polymorphism on the occurrence of incidental VFs (i-VFs), in patients treated with second-line medical therapies. Methods A longitudinal, retrospective, observational study was conducted on a cohort of 45 acromegalic patients not-responsive to first-generation somatostatin receptor ligands (fg-SRLs) and treated with GHR antagonist (Pegvisomant) or with the second-generation SRLs (Pasireotide long-acting release). Results Second line treatments were Pegvisomant plus fg-SRLs in 26 patients and Pasireotide LAR in 19 patients. From the group treated with fg-SRLs+Peg-V, the fl-GHR isoform was identified in 18 patients (69.2%) and the d3-GHR isoform in 8 patients (30.8%). I-VFs arose exclusively in fl-GHR isoform carriers (p=0.039). From the group treated with Pasireotide LAR, the fl-GHR isoform was identified in 11 patients (57.9%), and the d3-GHR isoform in 8 patients (42.1%). I-VFs arose exclusively in d3-GHR isoform carriers (p=0.018). Patients with fl-GHR isoform had a higher risk for i-VFs if treated with fg-SRL+Peg-V (OR: 1.6 95%IC: 1.1-2.3, p=0.04), and a lower risk if treated with Pasi-LAR (OR: 0.26 IC95%: 0.11-0.66, p=0.038). Conclusions Our data support a predictive role of the GHR isoforms for the occurrence of i-VFs in acromegalic patients treated with second-line drugs, tailored to the individual patient. The knowledge of the GHR polymorphism may facilitate the choice of second-line therapies, improving the therapeutic approach, in the context of personalized medicine.
Collapse
Affiliation(s)
- Sabrina Chiloiro
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Flavia Costanza
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Antonella Giampietro
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Amato Infante
- Dipartimento di Diagnostica per Immagini e radioterapia oncologica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Pier Paolo Mattogno
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavia Angelini
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Consolato Gullì
- Dipartimento di Diagnostica per Immagini e radioterapia oncologica, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Liverana Lauretti
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mario Rigante
- Unità di Otorinologingoiatria, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Alessandro Olivi
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura De Marinis
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Francesco Doglietto
- Dipartimento di Neurochirugia, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
- Dipartimento di Science dell’invecchiamento, neuroscienze, delle scienze del capo-collo, ed ortopediche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Bianchi
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Alfredo Pontecorvi
- Dipartimento di Medicina Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento di Endocrinologia, Diabetologia e Medicina Interna, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| |
Collapse
|
18
|
Mukherji A, Jühling F, Simanjuntak Y, Crouchet E, Del Zompo F, Teraoka Y, Haller A, Baltzinger P, Paritala S, Rasha F, Fujiwara N, Gadenne C, Slovic N, Oudot MA, Durand SC, Ponsolles C, Schuster C, Zhuang X, Holmes J, Yeh ML, Abe-Chayama H, Heikenwälder M, Sangiovanni A, Iavarone M, Colombo M, Foung SKH, McKeating JA, Davidson I, Yu ML, Chung RT, Hoshida Y, Chayama K, Lupberger J, Baumert TF. An atlas of the human liver diurnal transcriptome and its perturbation by hepatitis C virus infection. Nat Commun 2024; 15:7486. [PMID: 39209804 PMCID: PMC11362569 DOI: 10.1038/s41467-024-51698-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Chronic liver disease and cancer are global health challenges. The role of the circadian clock as a regulator of liver physiology and disease is well established in rodents, however, the identity and epigenetic regulation of rhythmically expressed genes in human disease is less well studied. Here we unravel the rhythmic transcriptome and epigenome of human hepatocytes using male human liver chimeric mice. We identify a large number of rhythmically expressed protein coding genes in human hepatocytes of male chimeric mice, which includes key transcription factors, chromatin modifiers, and critical enzymes. We show that hepatitis C virus (HCV) infection, a major cause of liver disease and cancer, perturbs the transcriptome by altering the rhythmicity of the expression of more than 1000 genes, and affects the epigenome, leading to an activation of critical pathways mediating metabolic alterations, fibrosis, and cancer. HCV-perturbed rhythmic pathways remain dysregulated in patients with advanced liver disease. Collectively, these data support a role for virus-induced perturbation of the hepatic rhythmic transcriptome and pathways in cancer development and may provide opportunities for cancer prevention and biomarkers to predict HCC risk.
Collapse
Affiliation(s)
- Atish Mukherji
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Frank Jühling
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Yogy Simanjuntak
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Emilie Crouchet
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Fabio Del Zompo
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Yuji Teraoka
- Department of Gastroenterology, National Hospital Organization Kure Medical Center, Hiroshima, Japan
| | - Alexandre Haller
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/University of Strasbourg, Illkirch, France
| | - Philippe Baltzinger
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/University of Strasbourg, Illkirch, France
| | - Soumith Paritala
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fahmida Rasha
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naoto Fujiwara
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cloé Gadenne
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Nevena Slovic
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Marine A Oudot
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Sarah C Durand
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Clara Ponsolles
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Catherine Schuster
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Institute of Immunity & Transplantation, Division of Infection & Immunity, UCL, Pears Building, Rowland Hill St, London, NW3 2PP, UK
| | - Jacinta Holmes
- University of Melbourne, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Ming-Lun Yeh
- Hepatobiliary Division, Department of Internal Medicine, School of Medicine and Hepatitis Research Center, College of Medicine, and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Hiromi Abe-Chayama
- Center for Medical Specialist Graduate Education and Research, Hiroshima University, Hiroshima, Japan
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- M3 Research Center, Tübingen, Germany and Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies, " Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Angelo Sangiovanni
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Iavarone
- Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Irwin Davidson
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/University of Strasbourg, Illkirch, France
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, School of Medicine and Hepatitis Research Center, College of Medicine, and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Raymond T Chung
- Gastrointestinal Division, Hepatology and Liver Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Yujin Hoshida
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kazuaki Chayama
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Hiroshima Institute of Life Sciences, Hiroshima, Japan
| | - Joachim Lupberger
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France.
| | - Thomas F Baumert
- University of Strasbourg, Institute of Translational Medicine and Liver Diseases (ITM), Inserm UMR_S1110, Strasbourg, France.
- Gastroenterology and Hepatology Service, Strasbourg University Hospitals, Strasbourg, France.
- Institut Universitaire de France, Paris, France.
- IHU, Strasbourg, France.
| |
Collapse
|
19
|
West AC, Harpur CM, Le Page MA, Lam M, Hodges C, Ely LK, Gearing AJ, Tate MD. Harnessing Endogenous Peptide Compounds as Potential Therapeutics for Severe Influenza. J Infect Dis 2024; 230:e384-e394. [PMID: 38060822 PMCID: PMC11326819 DOI: 10.1093/infdis/jiad566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/05/2023] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Excessive pulmonary inflammation and damage are characteristic features of severe influenza virus infections. LAT8881 is a synthetic 16-amino acid cyclic peptide form of a naturally occurring C-terminal fragment of human growth hormone with therapeutic efficacy against influenza. Shorter linear peptides are typically easier to manufacture and formulate for delivery than larger cyclic peptides. A 6-amino acid linear peptide fragment of LAT8881, LAT9997, was investigated as a potential influenza therapy. METHODS LAT9997 was evaluated for its potential to limit disease in a preclinical mouse model of severe influenza infection. RESULTS Intranasal treatment of mice with either LAT8881 or LAT9997 from day 1 following influenza infection significantly improved survival outcomes. Initiating LAT9997 treatment at the onset of severe disease also significantly improved disease severity. Greater disease resistance in LAT9997-treated mice correlated with reduced lung immunopathology, damage markers, vascular leak, and epithelial cell death. Treatment reduced viral loads, cytokines, and neutrophil infiltration in the airways yet maintained protective alveolar macrophages in a dose-dependent manner. Sequential trimming of N- and C-terminal amino acids from LAT9997 revealed a structure-activity relationship. CONCLUSIONS These findings provide preclinical evidence that therapeutic LAT9997 treatment limits viral burden and characteristic features of severe influenza, including hyperinflammation and lung damage. SUMMARY Excessive pulmonary inflammation and damage are characteristic features of severe influenza virus infections. LAT9997 is a linear peptide fragment derived from human growth hormone. This study provides preclinical evidence that therapeutic LAT9997 treatment limits viral burden, hyperinflammation, and lung damage.
Collapse
Affiliation(s)
- Alison C West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Christopher M Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Maggie Lam
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | - Christopher Hodges
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| | | | | | - Michelle D Tate
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research
- Department of Molecular and Translational Sciences, Monash University, Clayton
| |
Collapse
|
20
|
Taghizadeh B, Moradi R, Mirzavi F, Barati M, Soleimani A, Jaafari MR, Zarghami N. The protection role of human growth hormone on skin cells following ultraviolet B exposure. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 257:112961. [PMID: 38917719 DOI: 10.1016/j.jphotobiol.2024.112961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Ultraviolet-B (UVB) radiation is the leading environmental cause of skin damage and photoaging. The epidermis and dermis layers of the skin mainly absorb UVB. UVB stimulates apoptosis, cell cycle arrest, generation of reactive oxygen species, and degradation of collagen and elastin fibers. OBJECTIVE This study investigated the potential of human growth hormone (hGH) in protecting the skin fibroblasts and keratinocytes (HFFF-2 and HaCaT cell lines) from UVB-induced damage. METHODS The MTT assay was performed to evaluate UVB-induced mitochondrial damage via assessing the mitochondrial dehydrogenase activity, and flow cytometry was carried out to investigate the effects of UVB and hGH on the cell cycle and apoptosis of UVB-irradiated cells. In addition, the fold change mRNA expression levels of Type I collagen and elastin in HFFF-2 cells were evaluated using the qRT-PCR method following UVB exposure. RESULTS We observed that treatment of cells with hGH before UVB exposure inhibited UVB-induced loss of mitochondrial dehydrogenase activity, apoptosis, and sub-G1 population formation in both cell lines. We also found that hGH-treated HFFF-2 cells showed up-regulated mRNA expression of Type I collagen, elastin, and IGF-1 in response to UVB irradiation. CONCLUSION These findings suggest hGH as a potential anti-UVB compound that can protect skin cells from UVB-induced damage. Our findings merit further investigation and can be used to better understand the role of hGH in skin photoaging.
Collapse
Affiliation(s)
- Bita Taghizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehdi Barati
- Department of Pathophysiology and Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Anvar Soleimani
- Department of Medical Microbiology, Cihan University - Sulaimaniya, Kurdistan Region, Iraq
| | - Mahmoud-Reza Jaafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
21
|
Ren SY, Xia Y, Yu B, Lei QJ, Hou PF, Guo S, Wu SL, Liu W, Yang SF, Jiang YB, Chen JF, Shen KF, Zhang CQ, Wang F, Yan M, Ren H, Yang N, Zhang J, Zhang K, Lin S, Li T, Yang QW, Xiao L, Hu ZX, Mei F. Growth hormone promotes myelin repair after chronic hypoxia via triggering pericyte-dependent angiogenesis. Neuron 2024; 112:2177-2196.e6. [PMID: 38653248 DOI: 10.1016/j.neuron.2024.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/26/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
White matter injury (WMI) causes oligodendrocyte precursor cell (OPC) differentiation arrest and functional deficits, with no effective therapies to date. Here, we report increased expression of growth hormone (GH) in the hypoxic neonatal mouse brain, a model of WMI. GH treatment during or post hypoxic exposure rescues hypoxia-induced hypomyelination and promotes functional recovery in adolescent mice. Single-cell sequencing reveals that Ghr mRNA expression is highly enriched in vascular cells. Cell-lineage labeling and tracing identify the GHR-expressing vascular cells as a subpopulation of pericytes. These cells display tip-cell-like morphology with kinetic polarized filopodia revealed by two-photon live imaging and seemingly direct blood vessel branching and bridging. Gain-of-function and loss-of-function experiments indicate that GHR signaling in pericytes is sufficient to modulate angiogenesis in neonatal brains, which enhances OPC differentiation and myelination indirectly. These findings demonstrate that targeting GHR and/or downstream effectors may represent a promising therapeutic strategy for WMI.
Collapse
Affiliation(s)
- Shu-Yu Ren
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Xia
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Bin Yu
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China; Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qi-Jing Lei
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Peng-Fei Hou
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Sheng Guo
- Department of Immunology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shuang-Ling Wu
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wei Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shao-Fan Yang
- Brain Research Center, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yi-Bin Jiang
- Department of Neurobiology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jing-Fei Chen
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kai-Feng Shen
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fei Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Mi Yan
- Department of Pediatrics, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400000, China
| | - Hong Ren
- Department of Emergence, 5(th) People's Hospital of Chongqing, Chongqing 400062, China
| | - Nian Yang
- Department of Physiology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Zhang
- Department of Neurobiology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kuan Zhang
- Brain Research Center, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Sen Lin
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tao Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhang-Xue Hu
- Department of Pediatrics, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400000, China.
| | - Feng Mei
- Department of Histology and Embryology, Chongqing Key Laboratory of Brain Development and Cognition, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
22
|
Piñera-Moreno R, Reyes-López FE, Goldstein M, Santillán-Araneda MJ, Robles-Planells B, Arancibia-Carvallo C, Vallejos-Vidal E, Cuesta A, Esteban MÁ, Tort L. Transcriptional Evaluation of Neuropeptides, Hormones, and Tissue Repair Modulators in the Skin of Gilthead Sea Bream ( Sparus aurata L.) Subjected to Mechanical Damage. Animals (Basel) 2024; 14:1815. [PMID: 38929434 PMCID: PMC11200434 DOI: 10.3390/ani14121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The skin of bony fish is the first physical barrier and is responsible for maintaining the integrity of the fish. Lesions make the skin vulnerable to potential infection by pathogens present in the aquatic environment. In this way, wound repair has barely been studied in gilthead sea bream. Thus, this study investigated the modulation of peripheral neuro-endocrine and tissue repair markers at the transcriptional level in the skin of teleost fish subjected to mechanical damage above or below the lateral line (dorsal and ventral lesions, respectively). Samples were evaluated using RT-qPCR at 2-, 4-, and 20-days post-injury. Fish with a ventral lesion presented a trend of progressive increase in the expressions of corticotropin-releasing hormone (crh), pro-opiomelanocortin-A (pomca), proenkephalin-B (penkb), cholecystokinin (cck), oxytocin (oxt), angiotensinogen (agt), and (less pronounced) somatostatin-1B (sst1b). By contrast, fish with a dorsal lesion registered no significant increase or biological trend for the genes evaluated at the different sampling times. Collectively, the results show a rapid and more robust response of neuro-endocrine and tissue repair markers in the injuries below than above the lateral line, which could be attributable to their proximity to vital organs.
Collapse
Affiliation(s)
- Rocío Piñera-Moreno
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Felipe E. Reyes-López
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - Merari Goldstein
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - María Jesús Santillán-Araneda
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - Bárbara Robles-Planells
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - Camila Arancibia-Carvallo
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
| | - Eva Vallejos-Vidal
- Fish Health and Integrative Physiogenomics Research Team, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile; (F.E.R.-L.); (B.R.-P.); (C.A.-C.); (E.V.-V.)
- Centro de Nanociencia y Nanotecnología CEDENNA, Universidad de Santiago de Chile, Santiago 9170002, Chile
- Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, La Florida 8250122, Chile
| | - Alberto Cuesta
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - María Ángeles Esteban
- Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| |
Collapse
|
23
|
Guo Q, Zhao J, Yu S. Clinical Features and Analysis in Pituitary Stalk Interruption Syndrome. Int J Endocrinol 2024; 2024:2493083. [PMID: 38828392 PMCID: PMC11142856 DOI: 10.1155/2024/2493083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
Objective Pituitary stalk interruption syndrome (PSIS) is characterized by the absence of pituitary stalk, pituitary hypoplasia, and ectopic posterior pituitary. Because the etiology and clinical cognition of PSIS remain elusive, we analyzed the clinical features of PSIS in Chinese patients. Methods A retrospective analysis was conducted on the clinical presentation, laboratory data, imaging examination, and management of 24 PSIS inpatients from our center over 10 years. Results Among the 24 PSIS patients, there were 22 males (91.7%) and 2 females (8.3%). Growth hormone deficiency was present in all 24 cases (100%), hypogonadism in 24 cases (100%), secondary adrenal insufficiency in 22 cases (91.2%), and hypothyroidism in 21 cases (87.5%). 20 cases (83.3%) of PSIS patients exhibited deficiencies in four anterior pituitary hormones, 3 cases (12.5%) exhibited deficiencies in three anterior pituitary hormones, and 1 case (4.2%) exhibited deficiencies in two anterior pituitary hormones, with none exhibiting deficiencies in posterior pituitary hormones. Among the 24 PSIS patients, 12 had a history of growth hormone therapy before admission, and 12 had no such history. Additionally, 19 cases (79.2%) with PSIS were complicated by dyslipidemia, 15 cases (62.5%) were complicated by nonalcoholic fatty liver disease, and 9 cases (37.5%) were complicated by hyperuricemia. Conclusions PSIS often presents with growth retardation and hypogonadotropic hypogonadism, but in some cases, short stature is not exhibited. PSIS is prone to complications such as dyslipidemia, nonalcoholic fatty liver disease, and hyperuricemia, increasing the risk of cardiovascular and cerebrovascular diseases. In clinical practice, the diagnostic ability of PSIS should be improved, and pituitary function and complications should be evaluated in a timely manner to avoid delayed treatment.
Collapse
Affiliation(s)
- Qiuxuan Guo
- Department of Endocrinology, Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing 350300, Fujian, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
24
|
Hata T, Uematsu Y, Sugita A, Adachi H, Kato S, Hirate M, Ishikura KI, Kaku A, Ohara H, Kojima N, Takahashi T, Kurokawa T. A Potent Neutralizing Monoclonal Antibody to Human Growth Hormone Suppresses Insulin-Like Growth Factor-1 in Female Rats. Endocrinology 2024; 165:bqae033. [PMID: 38500360 DOI: 10.1210/endocr/bqae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Acromegaly and gigantism are disorders caused by hypersecretion of growth hormone (GH), usually from pituitary adenomas. Although somatostatin analogues (SSA), dopamine agonists, and GH receptor antagonists are important therapeutic agents, all of these have issues with their effectiveness, safety, and/or convenience of use. To overcome these, we developed a GH-specific potent neutralizing a mouse monoclonal antibody (mAb) named 13H02. 13H02 selectively bound both to human and monkey GH with high affinity, and strongly inhibited the biological activity of GH in the Nb2 rat lymphoma cell proliferation assay. In hypophysectomized/GH-supplemented rats, a single subcutaneous administration of 13H02 significantly and dose-dependently lowered the serum insulin-like growth factor-1 levels. To pursue the therapeutic potential of this antibody for acromegaly and gigantism, we humanized 13H02 to reduce its immunogenicity and applied a single amino acid mutation in the Fc region to extend its serum half-life. The resulting antibody, Hu-13H02m, also showed GH-specific neutralizing activity, similar to the parental 13H02, and showed improved binding affinity to human FcRn.
Collapse
Affiliation(s)
- Tomoyuki Hata
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Yoshikatsu Uematsu
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Ayumi Sugita
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Hisashi Adachi
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Sayaka Kato
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Maki Hirate
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Kei-Ichiro Ishikura
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Ayaka Kaku
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Hiroki Ohara
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Naoki Kojima
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Teisuke Takahashi
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| | - Tomofumi Kurokawa
- Research Headquarters, Taisho Pharmaceutical Co., Ltd., Saitama 331-9530, Japan
| |
Collapse
|
25
|
Yang Z, Yao Q, Gong L, Zhang F, Sun J, Sun Y, Gao W. A Superlong-Acting Growth Hormone-Polypeptide Fusion for Growth Hormone Deficiency Treatment. Adv Healthc Mater 2024; 13:e2302507. [PMID: 38030143 DOI: 10.1002/adhm.202302507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Recombinant human growth hormone (rhGH) is clinically used to treat growth hormone deficiency (GHD). However, daily administration of rhGH is required due to its poor stability and short blood circulation, which causes pains and burdens as well as inconvenience to patients. In this study, a method for genetically fusing rhGH to a thermosensitive polymer of elastin-like polypeptide (ELP) is reported, using which the rhGH-ELP thermosensitive fusion protein can be purified by the thermosensitivity of ELP instead of chromatography. The ELP fusion not only drastically improves the stability of rhGH, but also enables the in situ formation of a sustained-release depot of rhGH-ELP upon subcutaneous (SC) injection, which exhibits gentle release with a platform-to-trough fluctuation in blood and a very long circulatory half-life of 594.6 h. In contrast, rhGH exhibits a peak-to-trough fluctuation in blood with a very short circulatory half-life of 0.7 h. As a result, a single subcutaneous injection of rhGH-ELP can consecutively promote the linear growth of rats and the development of major tissues and organs over 3 weeks without obvious side effects, whereas rhGH is required to be injected daily to achieve similar therapeutic results.
Collapse
Affiliation(s)
- Zhaoying Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Qiongqiong Yao
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Like Gong
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Fan Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Jiawei Sun
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Yuanzi Sun
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Weiping Gao
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
- Biomedical Engineering Department, Peking University, Beijing, 100191, China
- Peking University International Cancer Institute, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| |
Collapse
|
26
|
Yan H, Yang W, Yan Y, Liu J, Zhu H, Qu L, Gao Y. Detection of small sequence variations within the goat GHR gene and its effects on growth traits. Anim Biotechnol 2023; 34:4256-4261. [PMID: 36369830 DOI: 10.1080/10495398.2022.2143791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Growth hormone receptor (GHR) gene is considered to be an important candidate gene in growth traits. Therefore, the purpose of this study was to detect whether there were potential indel variations in the GHR gene that were related to the growth traits of the Shaanbei white cashmere goats (SBWC). In this study, genomic DNA from 931 healthy SBWC individuals were used to verify the relationship between the indel of the GHR gene and growth traits. Two indel variants, P49-bp indel in intron 1 and P1410-bp indel in 3'-UTR, were confirmed. Association analyses demonstrated that these two indel polymorphism loci were associated with the chest circumference and chest width of SBWC. Additionally, for the P49-bp and P1410-bp indel loci, the ID and II genotypes were dominant genotypes, respectively. Moreover, the genotypic distributions of these two indel loci in SBWC were significantly different from those in three other Chinese indigenous goat breeds (HNBG, GZDG and IMWC) (p < 0.05). Taken together, two indel loci (P49-bp indel and P1410-bp indel) both significantly affected the growth traits of goats. This illustrated that these two indel loci might be the potential DNA marker for use in improving the selection and breeding of goats.
Collapse
Affiliation(s)
- Hailong Yan
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
| | - Wenjing Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuqing Yan
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
| | - Jinwang Liu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
| | - Ye Gao
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, China
| |
Collapse
|
27
|
Esfarjani SV, Zamani M, Ashrafizadeh SS, Zamani M. Association between lifestyle and height growth in high school students. J Family Med Prim Care 2023; 12:3279-3284. [PMID: 38361874 PMCID: PMC10866238 DOI: 10.4103/jfmpc.jfmpc_8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 06/01/2023] [Indexed: 02/17/2024] Open
Abstract
Introduction An important indicator that plays a pivotal role in examining the health of individuals living in a community is their height. The aim of this study was to examine the relationship between lifestyle and height among female high school students in Dezful, Iran. Methods This research was a cross-sectional descriptive-analytical study. Participants included 351 female high school students who were selected from public and private high schools in Dezful using random cluster sampling. Miller-Smith Lifestyle Assessment Inventory was used to collect data about students' lifestyles, and their height was measured based on self-report. Results The total lifestyle score of the study participants was 52.23 ± 11.31. Also, 30.2%, 67.2%, and 2.6% of the students had high, moderate, and low lifestyle scores, respectively. A negative and significant relationship was observed between the total score of lifestyle and its components, that is, nutrition, sleep, exercise, and mental stress, and the height growth of female high school students in Dezful (P < 0.05) according to Pearson's correlation. Results of regression analysis showed that the total lifestyle score and its components could significantly predict the height growth of students. Conclusion Our results are indicative of the relationship between lifestyle and its components with height growth among female high school students.
Collapse
Affiliation(s)
- Shahla Vaziri Esfarjani
- Department of Community Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marjan Zamani
- Department of Community Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Soraya Ashrafizadeh
- Department of Community Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Zamani
- Department of Community Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
28
|
Araujo-Castro M, Marazuela M, Puig-Domingo M, Biagetti B. Prolactin and Growth Hormone Signaling and Interlink Focused on the Mammosomatotroph Paradigm: A Comprehensive Review of the Literature. Int J Mol Sci 2023; 24:14002. [PMID: 37762304 PMCID: PMC10531307 DOI: 10.3390/ijms241814002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Prolactin (PRL) and growth hormone (GH) are peptide hormones that bind to the class 1 cytokine receptor superfamily, a highly conserved cell surface class of receptors. Both hormones control their own secretion via a negative autocrine loop in their own mammosomatotroph, lactotroph or somatotroph. In this regard, GH and PRL are regulated by similar signaling pathways involving cell growth and hormone secretion. Thus, GH and PRL dysregulation and pituitary neuroendocrine tumor (PitNET) development may have common pathogenic pathways. Based on cell linage, lactotroph and somatotroph PitNETs come from pituitary-specific POU-class homeodomain transcription factor (Pit-1). Mammosomatotroph and plurihormonal PitNETs are a unique subtype of PitNETs that arise from a single-cell population of Pit-1 lineage. In contrast, mixed somatotroph-lactotroph PitNETs are composed of two distinct cell populations: somatotrophs and lactotrophs. Morphologic features that distinguish indolent PitNETs from locally aggressive ones are still unidentified, and no single prognostic parameter can predict tumor aggressiveness or treatment response. In this review, we aim to explore the latest research on lactotroph and somatotroph PitNETs, the molecular mechanisms involved in PRL and GH axis regulation and the signaling pathways involved in their aggressiveness, particularly focused on mammosomatotroph and mixed subtypes. Finally, we summarize epidemiological, clinical, and radiological features of these exceptional tumors. We aim to shed light, from basic to clinical settings, on new perspectives and scientific gaps in this field.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Colmenar Viejo Street km 9, 28034 Madrid, Spain
- Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), Colmenar Viejo Street km 9, 28034 Madrid, Spain
| | - Mónica Marazuela
- Department of Endocrinology and Nutrition, Hospital Universitario La Princesa, 28006 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER GCV14/ER/12), Monforte de Lemos Avenue, 28029 Madrid, Spain
| | - Manel Puig-Domingo
- Department of Endocrinology and Nutrition, Department of Medicine, Germans Trias i Pujol Research Institute and Hospital, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras CIBERER G747, Monforte de Lemos Avenue, 28029 Madrid, Spain
| | - Betina Biagetti
- Department of Endocrinology and Nutrition, Vall d’Hebron University Hospital, Reference Networks (ERN) and Vall d’Hebron Research Institute (VHIR), Vall d’Hebron Avenue, 119, 08035 Barcelona, Spain
- Diabetes and Metabolism Research Unit, Vall d’Hebron Research Institute and CIBERDEM (ISCIII), Universidad Autónoma de Barcelona, Avenida Can Domènech s/n, 08193 Bellaterra, Spain
| |
Collapse
|
29
|
Falah G, Sharvit L, Atzmon G. The Exon 3-Deleted Growth Hormone Receptor (d3GHR) Polymorphism-A Favorable Backdoor Mechanism for the GHR Function. Int J Mol Sci 2023; 24:13908. [PMID: 37762211 PMCID: PMC10531306 DOI: 10.3390/ijms241813908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Growth hormone (GH) is a peptide hormone that plays a crucial role in controlling growth, development, and lifespan. Molecular regulation of GH is accomplished via the GH receptor (GHR), which is the main factor influencing human development and is essential to optimal functioning of the GH/IGF-I axis. Two GHR isoforms have been studied, according to the presence (flGHR) or absence (d3GHR) of exon 3. The d3GHR isoform, which lacks exon 3 has recently been related to longevity; individuals carrying this isoform have higher receptor activity, improved signal transduction, and alterations in the treatment response and efficacy compared with those carrying the wild type (WT) isoform (flGHR). Further, studies performed in patients with acromegaly, Prader-Willi syndrome, Turner syndrome, small for gestational age (SGA), and growth hormone deficiency (GHD) suggested that the d3GHR isoform may have an impact on the relationship between GH and IGF-I levels, height, weight, BMI, and other variables. Other research, however, revealed inconsistent results, which might have been caused by confounding factors, including limited sample sizes and different experimental methods. In this review, we lay out the complexity of the GHR isoforms and provide an overview of the major pharmacogenetic research conducted on this ongoing and unresolved subject.
Collapse
Affiliation(s)
- Ghadeer Falah
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (G.F.); (L.S.)
| | - Lital Sharvit
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (G.F.); (L.S.)
| | - Gil Atzmon
- Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel; (G.F.); (L.S.)
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
30
|
Jain L, Vickers MH, Jacob B, Middleditch MJ, Chudakova DA, Ganley ARD, O'Sullivan JM, Perry JK. The growth hormone receptor interacts with transcriptional regulator HMGN1 upon GH-induced nuclear translocation. J Cell Commun Signal 2023; 17:925-937. [PMID: 37043098 PMCID: PMC10409943 DOI: 10.1007/s12079-023-00741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/15/2023] [Indexed: 04/13/2023] Open
Abstract
Growth hormone (GH) actions are mediated through binding to its cell-surface receptor, the GH receptor (GHR), with consequent activation of downstream signalling. However, nuclear GHR localisation has also been observed and is associated with increased cancer cell proliferation. Here we investigated the functional implications of nuclear translocation of the GHR in the human endometrial cancer cell-line, RL95-2, and human mammary epithelial cell-line, MCF-10A. We found that following GH treatment, the GHR rapidly translocates to the nucleus, with maximal localisation at 5-10 min. Combined immunoprecipitation-mass spectrometry analysis of RL95-2 whole cell lysates identified 40 novel GHR binding partners, including the transcriptional regulator, HMGN1. Moreover, microarray analysis demonstrated that the gene targets of HMGN1 were differentially expressed following GH treatment, and co-immunoprecipitation showed that HMGN1 associates with the GHR in the nucleus. Therefore, our results suggest that GHR nuclear translocation might mediate GH actions via interaction with chromatin factors that then drive changes in specific downstream transcriptional programs.
Collapse
Affiliation(s)
- Lekha Jain
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mark H Vickers
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand
| | - Bincy Jacob
- Faculty of Science, University of Auckland, Auckland, New Zealand
| | | | - Daria A Chudakova
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Justin M O'Sullivan
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Jo K Perry
- The Liggins Institute, University of Auckland, 85 Park Rd, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
31
|
Wu G, Dong Y, Hu Q, Ma H, Xu Q, Xu K, Chen H, Yang Z, He M. HGH1 and the immune landscape: a novel prognostic marker for immune-desert tumor microenvironment identification and immunotherapy outcome prediction in human cancers. Cell Cycle 2023; 22:1969-1985. [PMID: 37811868 PMCID: PMC10761050 DOI: 10.1080/15384101.2023.2260163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/21/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
HGH1 homolog, a protein-coding gene, plays a crucial role in human growth and development. However, its role in human cancer remains unclear. For the first time, this study comprehensively evaluated the potential involvement of HGH1 in cancer prognosis and immunological function. To achieve this, data from various databases, including The Cancer Genome Atlas, Genotype Tissue Expression, Cancer Cell Lineage Encyclopedia, Human Protein Atlas, cBioPortal, Tumor Immune Estimation Resource and Immune Cell Abundance Identifier, were collated, as well as from one large clinical study, three immunotherapy cohorts and in vitro experiments. This study aims to elucidate the role of HGH1 expression in cancer prognosis and immune response. Our findings revealed a significant association between increased HGH1 expression and a worse prognosis across various cancer types. Predominantly, copy number variations were identified as the most common genetic mutations. Additionally, HGH1 was observed to not only regulate cell cycle-related functions to promote cell proliferation but also influence autoimmunity-related functions within both the innate and adaptive immune systems, along with other relevant immune-related signaling pathways. Gene set enrichment analysis and gene set variation analysis were used to substantiate these findings. HGH1 overexpression contributed to an immune-deficient (immune-desert) tumor microenvironment, which was characterized by a significant expression of immune-related features such as immune-related gene and pathway expression and the number of immune-infiltrating cells. Furthermore, the correlation between HGH1 expression and tumor mutational burden in four cancers and microsatellite instability in eight cancers was observed. This suggests that HGH1 has potential as an immunotherapeutic target. Immunotherapy data analysis supports this notion, demonstrating that patients with low HGH1 expression treated with immune checkpoint inhibitors exhibit improved survival rates and a higher likelihood of responding to immunotherapy than patients with high HGH1 expression. Collectively, these findings highlight the significant role of HGH1 in human cancers, illuminating its involvement in tumorigenesis and cancer immunity. Elevated HGH1 expression was identified to be indicative of an immune-desert tumor microenvironment. Consequently, the targeting of HGH1, particularly in combination with immune checkpoint inhibitor therapy, holds promise for enhancing therapeutic outcomes in patients with cancer.
Collapse
Affiliation(s)
- Gujie Wu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yipeng Dong
- School of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qin Hu
- Shanghai Medical College, Fudan University, Shanghai, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Huiyun Ma
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Qun Xu
- School of Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kun Xu
- Department of Chemotherapy, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyu Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Min He
- Shanghai Medical College, Fudan University, Shanghai, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
32
|
Wang Y, Kim M, Buckley C, Maynard HD, Langley RJ, Perry JK. Growth hormone receptor agonists and antagonists: From protein expression and purification to long-acting formulations. Protein Sci 2023; 32:e4727. [PMID: 37428391 PMCID: PMC10443362 DOI: 10.1002/pro.4727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Recombinant human growth hormone (rhGH) and GH receptor antagonists (GHAs) are used clinically to treat a range of disorders associated with GH deficiency or hypersecretion, respectively. However, these biotherapeutics can be difficult and expensive to manufacture with multiple challenges from recombinant protein generation through to the development of long-acting formulations required to improve the circulating half-life of the drug. In this review, we summarize methodologies and approaches used for making and purifying recombinant GH and GHA proteins, and strategies to improve pharmacokinetic and pharmacodynamic properties, including PEGylation and fusion proteins. Therapeutics that are in clinical use or are currently under development are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- Liggins Institute, University of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| | - Minah Kim
- Liggins Institute, University of AucklandAucklandNew Zealand
| | - Chantal Buckley
- Liggins Institute, University of AucklandAucklandNew Zealand
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry and the California NanoSystems InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Ries J. Langley
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
- Department of Molecular Medicine and PathologyUniversity of AucklandAucklandNew Zealand
| | - Jo K. Perry
- Liggins Institute, University of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| |
Collapse
|
33
|
Basu R, Brody R, Sandbhor U, Kulkarni P, Davis E, Swegan D, Caggiano LJ, Brenya E, Neggers S, Kopchick JJ. Structure and function of a dual antagonist of the human growth hormone and prolactin receptors with site-specific PEG conjugates. J Biol Chem 2023; 299:105030. [PMID: 37442239 PMCID: PMC10410519 DOI: 10.1016/j.jbc.2023.105030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Human growth hormone (hGH) is a pituitary-derived endocrine protein that regulates several critical postnatal physiologic processes including growth, organ development, and metabolism. Following adulthood, GH is also a regulator of multiple pathologies like fibrosis, cancer, and diabetes. Therefore, there is a significant pharmaceutical interest in developing antagonists of hGH action. Currently, there is a single FDA-approved antagonist of the hGH receptor (hGHR) prescribed for treating patients with acromegaly and discovered in our laboratory almost 3 decades ago. Here, we present the first data on the structure and function of a new set of protein antagonists with the full range of hGH actions-dual antagonists of hGH binding to the GHR as well as that of hGH binding to the prolactin receptor. We describe the site-specific PEG conjugation, purification, and subsequent characterization using MALDI-TOF, size-exclusion chromatography, thermostability, and biochemical activity in terms of ELISA-based binding affinities with GHR and prolactin receptor. Moreover, these novel hGHR antagonists display distinct antagonism of GH-induced GHR intracellular signaling in vitro and marked reduction in hepatic insulin-like growth factor 1 output in vivo. Lastly, we observed potent anticancer biological efficacies of these novel hGHR antagonists against human cancer cell lines. In conclusion, we propose that these new GHR antagonists have potential for development towards multiple clinical applications related to GH-associated pathologies.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
| | | | | | - Prateek Kulkarni
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, USA; Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Emily Davis
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, USA; Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Deborah Swegan
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Lydia J Caggiano
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Honors Tutorial College, Ohio University, Athens, Ohio, USA
| | - Edward Brenya
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| | - Sebastian Neggers
- Department of Medicine, Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA; Molecular and Cellular Biology Program, Ohio University, Athens, Ohio, USA; Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, USA.
| |
Collapse
|
34
|
Silva-García CG. Devo-Aging: Intersections Between Development and Aging. GeroScience 2023; 45:2145-2159. [PMID: 37160658 PMCID: PMC10651630 DOI: 10.1007/s11357-023-00809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
There are two fundamental questions in developmental biology. How does a single fertilized cell give rise to a whole body? and how does this body later produce progeny? Synchronization of these embryonic and postembryonic developments ensures continuity of life from one generation to the next. An enormous amount of work has been done to unravel the molecular mechanisms behind these processes, but more recently, modern developmental biology has been expanded to study development in wider contexts, including regeneration, environment, disease, and even aging. However, we have just started to understand how the mechanisms that govern development also regulate aging. This review discusses examples of signaling pathways involved in development to elucidate how their regulation influences healthspan and lifespan. Therefore, a better knowledge of developmental signaling pathways stresses the possibility of using them as innovative biomarkers and targets for aging and age-related diseases.
Collapse
Affiliation(s)
- Carlos Giovanni Silva-García
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
35
|
Li GY, Wu QZ, Song TJ, Zhen XC, Yu X. Dynamic regulation of excitatory and inhibitory synaptic transmission by growth hormone in the developing mouse brain. Acta Pharmacol Sin 2023; 44:1109-1121. [PMID: 36476808 PMCID: PMC10202927 DOI: 10.1038/s41401-022-01027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/06/2022] [Indexed: 12/13/2022]
Abstract
Normal sensory and cognitive function of the brain relies on its intricate and complex neural network. Synaptogenesis and synaptic plasticity are critical to neural circuit formation and maintenance, which are regulated by coordinated intracellular and extracellular signaling. Growth hormone (GH) is the most abundant anterior pituitary hormone. Its deficiencies could alter brain development and impair learning and memory, while GH replacement therapy in human patients and animal models has been shown to ameliorate cognitive deficits caused by GH deficiency. However, the underlying mechanism remains largely unknown. In this study, we investigated the neuromodulatory function of GH in young (pre-weaning) mice at two developmental time points and in two different brain regions. Neonatal mice were subcutaneously injected with recombinant human growth hormone (rhGH) on postnatal day (P) 14 or 21. Excitatory and inhibitory synaptic transmission was measured using whole-cell recordings in acute cortical slices 2 h after the injection. We showed that injection of rhGH (2 mg/kg) in P14 mice significantly increased the frequency of mEPSCs, but not that of mIPSCs, in both hippocampal CA1 pyramidal neurons and L2/3 pyramidal neurons of the barrel field of the primary somatosensory cortex (S1BF). Injection of rhGH (2 mg/kg) in P21 mice significantly increased the frequency of mEPSCs and mIPSCs in both brain regions. Perfusion of rhGH (1 μM) onto acute brain slices in P14 mice had similar effects. Consistent with the electrophysiological results, the dendritic spine density of CA1 pyramidal neurons and S1BF L2/3 pyramidal neurons increased following in vivo injection of rhGH. Furthermore, NMDA receptors and postsynaptic calcium-dependent signaling contributed to rhGH-dependent regulation of both excitatory and inhibitory synaptic transmission. Together, these results demonstrate that regulation of excitatory and inhibitory synaptic transmission by rhGH occurs in a developmentally dynamic manner, and have important implication for identifying GH treatment strategies without disturbing excitation/inhibition balance.
Collapse
Affiliation(s)
- Guang-Ying Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing, 100871, China.
| | - Qiu-Zi Wu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing, 100871, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tian-Jia Song
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing, 100871, China
| | - Xue-Chu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, and Peking University McGovern Institute, Peking University, Beijing, 100871, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Al-Samerria S, Radovick S. Exploring the Therapeutic Potential of Targeting GH and IGF-1 in the Management of Obesity: Insights from the Interplay between These Hormones and Metabolism. Int J Mol Sci 2023; 24:9556. [PMID: 37298507 PMCID: PMC10253584 DOI: 10.3390/ijms24119556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity is a growing public health problem worldwide, and GH and IGF-1 have been studied as potential therapeutic targets for managing this condition. This review article aims to provide a comprehensive view of the interplay between GH and IGF-1 and metabolism within the context of obesity. We conducted a systematic review of the literature that was published from 1993 to 2023, using MEDLINE, Embase, and Cochrane databases. We included studies that investigated the effects of GH and IGF-1 on adipose tissue metabolism, energy balance, and weight regulation in humans and animals. Our review highlights the physiological functions of GH and IGF-1 in adipose tissue metabolism, including lipolysis and adipogenesis. We also discuss the potential mechanisms underlying the effects of these hormones on energy balance, such as their influence on insulin sensitivity and appetite regulation. Additionally, we summarize the current evidence regarding the efficacy and safety of GH and IGF-1 as therapeutic targets for managing obesity, including in pharmacological interventions and hormone replacement therapy. Finally, we address the challenges and limitations of targeting GH and IGF-1 in obesity management.
Collapse
Affiliation(s)
- Sarmed Al-Samerria
- Laboratory of Human Growth and Reproductive Development, Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | | |
Collapse
|
37
|
Harpur CM, West AC, Le Page MA, Lam M, Hodges C, Oseghale O, Gearing AJ, Tate MD. Naturally derived cytokine peptides limit virus replication and severe disease during influenza A virus infection. Clin Transl Immunology 2023; 12:e1443. [PMID: 36969366 PMCID: PMC10034483 DOI: 10.1002/cti2.1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
Objectives Novel host‐targeted therapeutics could treat severe influenza A virus (IAV) infections, with reduced risk of drug resistance. LAT8881 is a synthetic form of the naturally occurring C‐terminal fragment of human growth hormone. Acting independently of the growth hormone receptor, it can reduce inflammation‐induced damage and promote tissue repair in an animal model of osteoarthritis. LAT8881 has been assessed in clinical trials for the treatment of obesity and neuropathy and has an excellent safety profile. We investigated the potential for LAT8881, its metabolite LAT9991F and LAT7771 derived from prolactin, a growth hormone structural homologue, to treat severe IAV infection. Methods LAT8881, LAT9991F and LAT7771 were evaluated for their effects on cell viability and IAV replication in vitro, as well as their potential to limit disease in a preclinical mouse model of severe IAV infection. Results In vitro LAT8881 treatment enhanced cell viability, particularly in the presence of cytotoxic stress, which was countered by siRNA inhibition of host lanthionine synthetase C‐like proteins. Daily intranasal treatment of mice with LAT8881 or LAT9991F, but not LAT7771, from day 1 postinfection significantly improved influenza disease resistance, which was associated with reduced infectious viral loads, reduced pro‐inflammatory cytokines and increased abundance of protective alveolar macrophages. LAT8881 treatment in combination with the antiviral oseltamivir phosphate led to more pronounced reduction in markers of disease severity than treatment with either compound alone. Conclusion These studies provide the first evidence identifying LAT8881 and LAT9991F as novel host‐protective therapies that improve survival, limit viral replication, reduce local inflammation and curtail tissue damage during severe IAV infection. Evaluation of LAT8881 and LAT9991F in other infectious and inflammatory conditions of the airways is warranted.
Collapse
Affiliation(s)
- Christopher M Harpur
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| | - Alison C West
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| | - Mélanie A Le Page
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| | - Maggie Lam
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| | - Christopher Hodges
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| | - Osezua Oseghale
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| | | | - Michelle D Tate
- Centre for Innate Immunity and Infectious DiseasesHudson Institute of Medical ResearchClaytonVICAustralia
- Department of Molecular and Translational SciencesMonash UniversityClaytonVICAustralia
| |
Collapse
|
38
|
Ronsley R, Lazow M, Henry RK. Growth hormone after CNS tumor diagnosis: the fundamentals, fears, facts, and future directions. Pediatr Hematol Oncol 2023; 40:786-799. [PMID: 36939305 DOI: 10.1080/08880018.2023.2190765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023]
Abstract
Growth hormone deficiency (GHD) may occur in pediatric patients with central nervous system (CNS) tumors at initial tumor presentation or later as treatment-related sequelae. While it is well recognized that growth hormone (GH) has beneficial effects on growth and endocrinopathies, there's often hesitancy by clinicians to initiate GH therapy for GHD after CNS tumor diagnosis due to the perceived increased risk of tumor recurrence. The available data is described here and based on this review, there is no evidence of increased risk of tumor recurrence or secondary malignancy in patients treated with GH after CNS tumor diagnosis. Further understanding of tumor biology and presence of downstream GH targets including insulin-like growth factor-1 (IGF-1) and insulin receptor activity is still needed.
Collapse
Affiliation(s)
- Rebecca Ronsley
- Section of Hematology, Oncology & BMT, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Section of Hematology, Oncology & BMT, Department of Pediatrics, Seattle Children's Hospital, The University of Washington, Seattle, Washington, USA
| | - Margot Lazow
- Section of Hematology, Oncology & BMT, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Rohan K Henry
- Section of Endocrinology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
39
|
Topical Delivery of Cell-Penetrating Peptide-Modified Human Growth Hormone for Enhanced Wound Healing. Pharmaceuticals (Basel) 2023; 16:ph16030394. [PMID: 36986493 PMCID: PMC10053240 DOI: 10.3390/ph16030394] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Protein drugs have been emerging as a class of promising therapeutics. However, their topical application has been limited by their high molecular weight and poor permeability to the cell membrane. In this study, we aimed to enhance human growth hormone (hGH) permeability for topical application by conjugation of TAT peptide, a cell-penetrating peptide, to hGH via crosslinker. After TAT was conjugated to hGH, TAT-hGH was purified by affinity chromatography. TAT-hGH significantly increased cell proliferation compared with the control. Interestingly, the effect of TAT-hGH was higher than hGH at the same concentration. Furthermore, the conjugation of TAT to hGH enhanced the permeability of TAT-hGH across the cell membrane without affecting its biological activity in vitro. In vivo, the topical application of TAT-hGH into scar tissue markedly accelerated wound healing. Histological results showed that TAT-hGH dramatically promoted the re-epithelialization of wounds in the initial stage. These results demonstrate TAT-hGH as a new therapeutic potential drug for wound healing treatment. This study also provides a new method for topical protein application via enhancement of their permeability.
Collapse
|
40
|
Moosavi A, Yazdanparast R. Beta cell regeneration upon magainin and growth hormone treatment as a possible alternative to insulin therapy. FEBS Open Bio 2023; 13:447-458. [PMID: 36647783 PMCID: PMC9989927 DOI: 10.1002/2211-5463.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/05/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Insulin therapy, pancreas transplantation and β cell regeneration are among the suggested treatment strategies for type 1 diabetes. It has been shown that some antimicrobial peptides have the potential to increase insulin release and to improve glucose tolerance, although the mechanism by which they promote the regeneration of damaged pancreatic cells to functional β-like cells remains unknown. To answer this question, we evaluated the in vivo effects of magainin-AM2 and growth hormone (GH) on the regeneration of streptozotocin (STZ)-damaged mouse pancreas. Treatment with magainin-AM2 and GH ameliorated the effects of STZ on fasting blood glucose and glucose tolerance test values, and also resulted in a significant increase in total cell counts (α and β) and the number of insulin+ and glucagon+ cells per islet and a decrease in the number of T and B cells. In addition, we observed a 1.43- and 2.21-fold increase in expression of paired box 4, one of the main factors for α to β-like cell conversion, in normal- and diabetes-treated mice, respectively. Similarly, expression of P-S6 and extracellular signal-regulated kinases 1 and 2, required for cell proliferation/differentiation, increased by 3.27- and 2.19-fold among the diabetes-treated and control diabetic mice, respectively. Furthermore, in all experiments, amelioration of the effects of STZ were greatest upon Mag treatment followed by GH administration. The present in vivo data provide evidence in support of the possibility of pharmaceutical induction of α cell production and their trans-differentiation to functional β-like cells.
Collapse
Affiliation(s)
- Azam Moosavi
- Institute of Biochemistry and Biophysics, University of Tehran, Iran
| | | |
Collapse
|
41
|
Cai Y, Wang Z, Liao B, Sun Z, Zhu P. Anti-inflammatory and Chondroprotective Effects of Platelet-derived Growth Factor-BB on Osteoarthritis Rat Models. J Gerontol A Biol Sci Med Sci 2023; 78:51-59. [PMID: 35640164 DOI: 10.1093/gerona/glac118] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis (OA) is a common and challenging joint disease that mainly affects the diarthrodial joints. Traditionally, except for surgery for severe cases, treatments for OA mainly focus on relieving pain and improving joint function. However, these treatments are not effective for cartilage repair and induce only symptomatic relief. Platelet-derived growth factor (PDGF)-BB, a member of the PDGF cytokine family, has been proved to have effects on protecting the chondrocytes via multiple mechanisms. In this study, we further focused on the effects of PDGF-BB on OA and found that PDGF-BB could attenuate OA development by inhibiting inflammation and enhancing cell proliferation via JAK2/STAT3, PI3K/AKT, and p38 signaling pathways and PKA-mediated regulation of SOX-9/RunX-2. This article demonstrates the feasibility of PDGF-BB application as a treatment for OA. This is the first article that reports that PDGF-BB attenuates OA development via PKA-mediated regulation of SOX-9 and RunX-2.
Collapse
Affiliation(s)
- Yu Cai
- Department of Rehabilitation, Wuhan Fourth Hospital, Wuhan, China
| | - Zhengchao Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bokai Liao
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Zhenxing Sun
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Zhu
- Department of Cardiology, Wuhan Fourth Hospital, Wuhan, China
| |
Collapse
|
42
|
Al-Massadi O, Parini P, Fernø J, Luquet S, Quiñones M. Metabolic actions of the growth hormone-insulin growth factor-1 axis and its interaction with the central nervous system. Rev Endocr Metab Disord 2022; 23:919-930. [PMID: 35687272 DOI: 10.1007/s11154-022-09732-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
The growth hormone/insulin growth factor-1 axis is a key endocrine system that exerts profound effects on metabolism by its actions on different peripheral tissues but also in the brain. Growth hormone together with insulin growth factor-1 perform metabolic adjustments, including regulation of food intake, energy expenditure, and glycemia. The dysregulation of this hepatic axis leads to different metabolic disorders including obesity, type 2 diabetes or liver disease. In this review, we discuss how the growth hormone/insulin growth factor-1 axis regulates metabolism and its interactions with the central nervous system. Finally, we state our vision for possible therapeutic uses of compounds based in the components of this hepatic axis.
Collapse
Affiliation(s)
- Omar Al-Massadi
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706, Santiago de Compostela, Spain.
| | - Paolo Parini
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, Stockholm, Sweden
- Department of Medicine, Metabolism Unit, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
- Patient Area Nephrology and Endocrinology, Inflammation and Infection Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Fernø
- Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France
| | - Mar Quiñones
- Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago (CHUS/SERGAS), Travesía da Choupana s/n, 15706, Santiago de Compostela, Spain.
- CIBER de Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III, 15706, Santiago de Compostela, Spain.
- Unité de Biologie Fonctionnelle et Adaptative, Univ Paris Diderot, Sorbonne Paris Cité, CNRS UMR 8251, F-75205, Paris, France.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Canonical growth hormone (GH)-dependent signaling is essential for growth and counterregulatory responses to hypoglycemia, but also may contribute to glucose homeostasis (even in the absence of hypoglycemia) via its impact on metabolism of carbohydrates, lipids and proteins, body composition, and cardiovascular risk profile. The aim of this review is to summarize recent data implicating GH action in metabolic control, including both IGF-1-dependent and -independent pathways, and its potential role as target for T2D therapy. RECENT FINDINGS Experimental blockade of the GHR can modulate glucose metabolism. Moreover, the soluble form of the GH receptor (GHR, or GHBP) was recently identified as a mediator of improvement in glycemic control in patients with T2D randomized to bariatric surgery vs. medical therapy. Reductions in GHR were accompanied by increases in plasma GH, but unchanged levels of both total and free IGF-1. Likewise, hepatic GHR expression is reduced following both RYGB and VSG in rodents. Emerging data indicate that GH signaling is important for regulation of long-term glucose metabolism in T2D. Future studies will be required to dissect tissue-specific GH signaling and sensitivity and their contributions to systemic glucose metabolism.
Collapse
Affiliation(s)
- Xuehong Dong
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Endocrinology, Diabetes & Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Su
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mary-Elizabeth Patti
- Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Park S, Lee K, Ryu W. Research progress on detachable microneedles for advanced applications. Expert Opin Drug Deliv 2022; 19:1115-1131. [PMID: 36062366 DOI: 10.1080/17425247.2022.2121388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Microneedles (MNs) have undergone great advances in transdermal drug delivery, and commercialized MN applications are currently available in vaccination and cosmetic products. Despite the development of MN technologies, common limitations of MN products still exist. Typical MN patches are applied to target tissues, where the substrate of an MN patch must remain until the drug is delivered, which reduces patients' compliance and hinders the applicability of the MN technique to many diseases in various tissues. MN research is ongoing to solve this issue. AREAS COVERED Most recent MNs developed by combining various biomaterials with appropriate fabrication processes are detachable MNs (DeMNs). Because of advances in biomaterials and fabrication techniques, various DeMNs have been rapidly developed. In this review, we discuss four types of DeMN: substrate-separable, multi-layered, crack-inducing, and shell DeMN. These DeMNs deliver various therapeutic agents ranging from small- and large-molecular-weight drugs to proteins and even stem cells for regeneration therapy. Furthermore, DeMNs are applied to skin as well as non-transdermal tissues. EXPERT OPINION It has become increasingly evident that novel MN technologies can be expected in terms of designs, fabrication methods, materials, and even possible application sites given the recent advances in DeMNs.
Collapse
Affiliation(s)
- SeungHyun Park
- Department of Mechanical Engineering, Yonsei University, Republic of Korea
| | - KangJu Lee
- School of Healthcare and Biomedical Engineering, Chonnam National University, Republic of Korea
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, Republic of Korea
| |
Collapse
|
45
|
Kopchick JJ, Basu R, Berryman DE, Jorgensen JOL, Johannsson G, Puri V. Covert actions of growth hormone: fibrosis, cardiovascular diseases and cancer. Nat Rev Endocrinol 2022; 18:558-573. [PMID: 35750929 PMCID: PMC9703363 DOI: 10.1038/s41574-022-00702-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2022] [Indexed: 12/20/2022]
Abstract
Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have investigated its structure, how it interacts with the GH receptor and its multiple actions. These include effects on growth, substrate metabolism, body composition, bone mineral density, the cardiovascular system and brain function, among many others. Recombinant human GH is approved for use to promote growth in children with GH deficiency (GHD), along with several additional clinical indications. Studies of humans and animals with altered levels of GH, from complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis (or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of GH in fibrosis, cardiovascular function and cancer.
Collapse
Affiliation(s)
- John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- The Diabetes Institute, Ohio University, Athens, OH, USA.
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA.
| | - Reetobrata Basu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| | - Jens O L Jorgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Gudmundur Johannsson
- Department of Endocrinology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Göteborg, Gothenburg, Sweden
| | - Vishwajeet Puri
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- The Diabetes Institute, Ohio University, Athens, OH, USA
| |
Collapse
|
46
|
Verreault M, Segoviano Vilchis I, Rosenberg S, Lemaire N, Schmitt C, Guehennec J, Royer-Perron L, Thomas JL, Lam TT, Dingli F, Loew D, Ducray F, Paris S, Carpentier C, Marie Y, Laigle-Donadey F, Rousseau A, Pigat N, Boutillon F, Bielle F, Mokhtari K, Frank SJ, de Reyniès A, Hoang-Xuan K, Sanson M, Goffin V, Idbaih A. Identification of growth hormone receptor as a relevant target for precision medicine in low-EGFR expressing glioblastoma. Clin Transl Med 2022; 12:e939. [PMID: 35808822 PMCID: PMC9270581 DOI: 10.1002/ctm2.939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/11/2022] Open
Abstract
Objective New therapeutic approaches are needed to improve the prognosis of glioblastoma (GBM) patients. Methods With the objective of identifying alternative oncogenic mechanisms to abnormally activated epidermal growth factor receptor (EGFR) signalling, one of the most common oncogenic mechanisms in GBM, we performed a comparative analysis of gene expression profiles in a series of 54 human GBM samples. We then conducted gain of function as well as genetic and pharmocological inhibition assays in GBM patient‐derived cell lines to functionnally validate our finding. Results We identified that growth hormone receptor (GHR) signalling defines a distinct molecular subset of GBMs devoid of EGFR overexpression. GHR overexpression was detected in one third of patients and was associated with low levels of suppressor of cytokine signalling 2 (SOCS2) expression due to SOCS2 promoter hypermethylation. In GBM patient‐derived cell lines, GHR signalling modulates the expression of proteins involved in cellular movement, promotes cell migration, invasion and proliferation in vitro and promotes tumourigenesis, tumour growth, and tumour invasion in vivo. GHR genetic and pharmacological inhibition reduced cell proliferation and migration in vitro. Conclusion This study pioneers a new field of investigation to improve the prognosis of GBM patients.
Collapse
Affiliation(s)
- Maïté Verreault
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Irma Segoviano Vilchis
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Shai Rosenberg
- Laboratory for Cancer Computational Biology & Gaffin Center for Neuro-Oncology, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nolwenn Lemaire
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Charlotte Schmitt
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jérémy Guehennec
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Louis Royer-Perron
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jean-Léon Thomas
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - TuKiet T Lam
- Mass Spectrometry & Proteomics Resource, Keck Biotechnology Resource Laboratory, New Haven, Connecticut, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Florent Dingli
- Institut Curie, Centre de Recherche, PSL Research University, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Damarys Loew
- Institut Curie, Centre de Recherche, PSL Research University, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | | | - Sophie Paris
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Catherine Carpentier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Yannick Marie
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Florence Laigle-Donadey
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Audrey Rousseau
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.,DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Natascha Pigat
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Florence Boutillon
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Franck Bielle
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Karima Mokhtari
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stuart J Frank
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Alabama, Birmingham, Alabama, USA.,Endocrinology Section, Medical Service, Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre le Cancer, Service de Bioinformatique, Paris, France
| | - Khê Hoang-Xuan
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Marc Sanson
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Vincent Goffin
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Ahmed Idbaih
- DMU Neurosciences, Service de Neurologie 2-Mazarin, Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
47
|
Mora-Criollo P, Basu R, Qian Y, Costales JA, Guevara-Aguirre J, Grijalva MJ, Kopchick JJ. Growth hormone modulates Trypanosoma cruzi infection in vitro. Growth Horm IGF Res 2022; 64:101460. [PMID: 35490602 DOI: 10.1016/j.ghir.2022.101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Chagas disease (CD) is caused by the protozoan parasite, Trypanosoma cruzi. It affects 7 to 8 million people worldwide and leads to approximately 50,000 deaths per year. In vitro and in vivo studies had demonstrated that Trypanosoma cruziinfection causes an imbalance in the hypothalamic-pituitary-adrenal (HPA) axis that is accompanied by a progressive decrease in growth hormone (GH) and prolactin (PRL) production. In humans, inactivating mutations in the GH receptor gene cause Laron Syndrome (LS), an autosomal recessive disorder. Affected subjects are short, have increased adiposity, decreased insulin-like growth factor-I (IGFI), increased serum GH levels, are highly resistant to diabetes and cancer, and display slow cognitive decline. In addition, CD incidence in these individuals is diminished despite living in highly endemic areas. Consequently, we decided to investigate the in vitro effect of GH/IGF-I on T. cruzi infection. DESIGN We first treated the parasite and/or host cells with different peptide hormones including GH, IGFI, and PRL. Then, we treated cells using different combinations of GH/IGF-I attempting to mimic the GH/IGF-I serum levels observed in LS subjects. RESULTS We found that exogenous GH confers protection against T. cruzi infection. Moreover, this effect is mediated by GH and not IGFI. The combination of relatively high GH (50 ng/ml) and low IGF-I (20 ng/ml), mimicking the hormonal pattern seen in LS individuals, consistently decreased T. cruzi infection in vitro. CONCLUSIONS The combination of relatively high GH and low IGF-I serum levels in LS individuals may be an underlying condition providing partial protection against T. cruzi infection.
Collapse
Affiliation(s)
| | - Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Yanrong Qian
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA
| | - Jaime A Costales
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime Guevara-Aguirre
- Colegio de ciencias de la salud, Universidad San Francisco de Quito, Cumbaya, Quito, Ecuador
| | - Mario J Grijalva
- Infectious and Tropical Disease Institute, Ohio University, Athens, OH, USA; Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, USA; Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
48
|
Mirbaha S, Rezaei M, Emamzadeh R, Zarkesh Esfahani SH. Design and production of a novel chimeric human growth hormone superagonist fused to human Fc domain. Res Pharm Sci 2022; 17:284-293. [PMID: 35531129 PMCID: PMC9075020 DOI: 10.4103/1735-5362.343082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 11/04/2022] Open
Abstract
Background and purpose Growth hormone (GH) has been known as a crucial metabolic hormone expressed at the pituitary and the other number of cells and tissues and responsible for body growth. Because of the short half-life of GH, daily subcutaneous injections were shown to be more effective for GH therapy. This represents a burden for patients. So, there is a strong effort from the industry to create a long-acting form of GH and lots of technologies like GH fusion proteins are used to increase GH half-life. Experimental approach In this study, the Fc domain of human IgG1 with serine-glycine linkers was attached to the C-terminal of a GH superagonist via molecular cloning. The presence of recombinant vector in E. coli host was confirmed by PCR. SDS-PAGE and western blot analysis showed the expression of recombinant proteins in the bacterial lysate. The binding ability to growth hormone receptors is determined by ELISA. Findings / Results Our results showed that the novel SupGH-Fc has a good binding affinity to its receptor in ELISA in comparison to standard GH, although it has a big size. Conclusion and implications Our data in this study clearly demonstrated the expression of the SupGH-Fc in a recombinant protein expression system. It is an introduction to the production of the new recombinant GH, which can bind to its receptor more effectively than commercial growth hormones and also might have a longer half-life.
Collapse
Affiliation(s)
- Samira Mirbaha
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, I.R. Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, I.R. Iran
| | - Sayyed Hamid Zarkesh Esfahani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, I.R. Iran
| |
Collapse
|
49
|
Chatterjee D, Jacob RS, Ray S, Navalkar A, Singh N, Sengupta S, Gadhe L, Kadu P, Datta D, Paul A, Arunima S, Mehra S, Pindi C, Kumar S, Singru P, Senapati S, Maji SK. Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids. eLife 2022; 11:73835. [PMID: 35257659 PMCID: PMC8993219 DOI: 10.7554/elife.73835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Synergistic-aggregation and cross-seeding by two different proteins/peptides in the amyloid aggregation are well evident in various neurological disorders including Alzheimer’s disease. Here, we show co-storage of human Prolactin (PRL), which is associated with lactation in mammals, and neuropeptide galanin (GAL) as functional amyloids in secretory granules (SGs) of the female rat. Using a wide variety of biophysical studies, we show that irrespective of the difference in sequence and structure, both hormones facilitate their synergic aggregation to amyloid fibrils. Although each hormone possesses homotypic seeding ability, a unidirectional cross-seeding of GAL aggregation by PRL seeds and the inability of cross seeding by mixed fibrils suggest tight regulation of functional amyloid formation by these hormones for their efficient storage in SGs. Further, the faster release of functional hormones from mixed fibrils compared to the corresponding individual amyloid, suggests a novel mechanism of heterologous amyloid formation in functional amyloids of SGs in the pituitary. The formation of plaques of proteins called ‘amyloids’ in the brain is one of the hallmark characteristics of both Alzheimer’s and Parkinson’s disease, but amyloids can form in many tissues and organs, often disrupting normal activity. A lot of the research into amyloids has focused on their role in disease, but it turns out that amyloids can also appear in healthy tissues. For example, some protein hormones form amyloids that act as storage depots, helping cells to release the hormone when it is needed. Normally, amyloids are made mostly of a single type of protein or protein fragment associated with a particular disease like Alzheimer's. Often, this type of amyloid promotes plaque formation in other proteins, which aggravates other diseases (for example, the amyloids that form in Alzheimer’s can lead to Parkinson’s disease or type II diabetes getting worse).The plaques start growing from small amyloid fragments called seeds. In mixed amyloids – amyloids made of two types of proteins – seeds made of one protein can trigger the formation of amyloids of the other protein. This raises the question, is this true for hormones? The body often releases more than one hormone at a time from the same tissue; for example, the pituitary gland releases prolactin and galanin simultaneously. However, these hormones have completely different structures, so whether they can form a mixed amyloid is unclear. To answer this question, Chatterjee et al. first determined that, within the pituitary gland of female rats, prolactin and galanin could be found together in the same cells, forming mixed amyloids. To understand out how this happens, Chatterjee et al. tried seeding new amyloids using either prolactin or galanin. This revealed that only prolactin seeds were able to trigger the formation of galanin amyloids. Chatterjee et al. also found that the mixed amyloids could release the hormones faster than amyloids made from either protein alone. Together, these results suggest that the collaboration between these two proteins may help maintain hormone balance in the body. Problems with hormone storage and release lead to various human diseases, including prolactinoma. Understanding amyloid storage depots could reveal new ways to control hormone levels. Further research could also help to explain more about well-studied diseases linked to amyloids, like Alzheimer's.
Collapse
Affiliation(s)
- Debdeep Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Reeba S Jacob
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Soumik Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shinjinee Sengupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sakunthala Arunima
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Chinmai Pindi
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Santosh Kumar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Praful Singru
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Sanjib Senapati
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
50
|
IGF-1 as a Potential Therapy for Spinocerebellar Ataxia Type 3. Biomedicines 2022; 10:biomedicines10020505. [PMID: 35203722 PMCID: PMC8962315 DOI: 10.3390/biomedicines10020505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023] Open
Abstract
Although the effects of growth hormone (GH) therapy on spinocerebellar ataxia type 3 (SCA3) have been examined in transgenic SCA3 mice, it still poses a nonnegligible risk of cancer when used for a long term. This study investigated the efficacy of IGF-1, a downstream mediator of GH, in vivo for SCA3 treatment. IGF-1 (50 mg/kg) or saline, once a week, was intraperitoneally injected to SCA3 84Q transgenic mice harboring a human ATXN3 gene with a pathogenic expanded 84 cytosine–adenine–guanine (CAG) repeat motif at 9 months of age. Compared with the control mice harboring a 15 CAG repeat motif, the SCA3 84Q mice treated with IGF-1 for 9 months exhibited the improvement only in locomotor function and minimized degeneration of the cerebellar cortex as indicated by the survival of more Purkinje cells with a more favorable mitochondrial function along with a decrease in oxidative stress caused by DNA damage. These findings could be attributable to the inhibition of mitochondrial fission, resulting in mitochondrial fusion, and decreased immunofluorescence staining in aggresome formation and ataxin-3 mutant protein levels, possibly through the enhancement of autophagy. The findings of this study show the therapeutic potential effect of IGF-1 injection for SCA3 to prevent the exacerbation of disease progress.
Collapse
|