1
|
Papavassiliou KA, Gargalionis AN, Papavassiliou AG. The potential of tumour mechanotargeting in lung cancer therapeutics. Pulmonology 2025; 31:2411808. [PMID: 39883499 DOI: 10.1080/25310429.2024.2411808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Affiliation(s)
- Kostas A Papavassiliou
- First University Department of Respiratory Medicine, 'Sotiria' Chest Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Laboratory of Clinical Biochemistry, 'Attikon' University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
2
|
Jiang J, Peng W, Sun N, Zhao D, Cui W, Lai Y, Zhang C, Duan C, Zeng W. Unraveling the anoikis-cancer nexus: a bibliometric analysis of research trends and mechanisms. Future Sci OA 2025; 11:2484159. [PMID: 40160087 PMCID: PMC11959893 DOI: 10.1080/20565623.2025.2484159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Cancer, influenced by genetics and the environment, involves anoikis, a cell death mechanism upon extracellular matrix detachment crucial for metastasis. Understanding this relationship is key for therapy. We analyze cancer and anoikis trends using bibliometrics. METHODS A search was conducted from Web of Science Core, PubMed, Scopus and non-English databases such as the CNKI (inception- 21 December 2024). Data analysis employed Microsoft Excel, VOSviewer, CiteSpace, R software, and the online platform (https://bibliometric.com/). RESULTS 2510 publications were retrieved, with a significant increase in the last decade. China led, the University of Texas system was productive, and the Oncogene Journal was popular. Breast, and colorectal cancers were frequently studied. Among them, representative tumor-related mechanisms were identified, commonalities such as (EMT, ECM, autophagy) and respective specific mechanisms were summarized. CONCLUSION This bibliometric analysis highlights rapid advances in anoikis research in cancer, emphasizing EMT and FAK pathways' translational potential, guiding targeted therapies, and improving cancer treatment outcomes.
Collapse
Affiliation(s)
- Junjie Jiang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Wei Peng
- Department of Oncology, Hunan Provincial People’s Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Nianzhe Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Deze Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Weifang Cui
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Yuwei Lai
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
- Institute of Medical Sciences, Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Wei Zeng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis & Treatment, Changsha, Hunan, People’s Republic of China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
3
|
Dong D, Yu X, Liu H, Xu J, Guo J, Guo W, Li X, Wang F, Zhang D, Liu K, Sun Y. Study of immunosenescence in the occurrence and immunotherapy of gastrointestinal malignancies. Semin Cancer Biol 2025; 111:16-35. [PMID: 39929408 DOI: 10.1016/j.semcancer.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/25/2025]
Abstract
In human beings heterogenous, pervasive and lethal malignancies of different parts of the gastrointestinal (GI) tract viz., tumours of the oesophagus, stomach, small intestine, colon, and rectum, represent gastrointestinal malignancies. Primary treatment modality for gastric cancer includes chemotherapy, surgical interventions, radiotherapy, monoclonal antibodies and inhibitors of angiogenesis. However, there is a need to improve upon the existing treatment modality due to associated adverse events and the development of resistance towards treatment. Additionally, age has been found to contribute to increasing the incidence of tumours due to immunosenescence-associated immunosuppression. Immunosenescence is the natural process of ageing, wherein immune cells as well as organs begin to deteriorate resulting in a dysfunctional or malfunctioning immune system. Accretion of senescent cells in immunosenescence results in the creation of a persistent inflammatory environment or inflammaging, marked with elevated expression of pro-inflammatory and immunosuppressive cytokines and chemokines. Perturbation in the T-cell pools and persistent stimulation by the antigens facilitate premature senility of the immune cells, and senile immune cells exacerbate inflammaging conditions and the inefficiency of the immune system to identify the tumour antigen. Collectively, these conditions contribute positively towards tumour generation, growth and eventually proliferation. Thus, activating the immune cells to distinguish the tumour cells from normal cells and invade them seems to be a logical strategy for the treatment of cancer. Consequently, various approaches to immunotherapy, viz., programmed death ligand-1 (PD-1) inhibitors, Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors etc are being extensively evaluated for their efficiency in gastric cancer. In fact, PD-1 inhibitors have been sanctioned as late late-line therapy modality for gastric cancer. The present review will focus on deciphering the link between the immune system and gastric cancer, and the alterations in the immune system that incur during the development of gastrointestinal malignancies. Also, the mechanism of evasion by tumour cells and immune checkpoints involved along with different approaches of immunotherapy being evaluated in different clinical trials will be discussed.
Collapse
Affiliation(s)
- Daosong Dong
- Department of Pain, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Key Laboratory of Molecular Pathology and Epidemiology of Gastric Cancer in the Universities of Liaoning Province, Shenyang, Liaoning 110001, China
| | - Haoran Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jingjing Xu
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiayan Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiang Li
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Fei Wang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Dongyong Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Kaiwei Liu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
4
|
Hao H, Sun S, Fu Y, Wen S, Wen Y, Yi Y, Peng Z, Fang Y, Tang J, Wang T, Wu M. Magnesium peroxide-based biomimetic nanoigniter degrades extracellular matrix to awake T cell-mediated cancer immunotherapy. Biomaterials 2025; 317:123043. [PMID: 39754969 DOI: 10.1016/j.biomaterials.2024.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/25/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
As the elite force of our immune system, T cells play a determining role in the effectiveness of cancer immunotherapy. However, the clever tumor cells construct a strong immunosuppressive tumor microenvironment (TME) fortress to resist the attack of T cells. Herein, a magnesium peroxide (MP)-based biomimetic nanoigniter loaded with doxorubicin (DOX) and metformin (MET) is rationally designed (D/M-MP@LM) to awake T cell-mediated cancer immunotherapy via comprehensively destroying the strong TME fortress. The nanoigniter not only effectively initiate CD8+ T cell-mediated immune response by promoting the presentation of tumor antigens, but also greatly facilitate the infiltration of T cells by degrading rigid extracellular matrix (ECM). More importantly, the nanoigniter significantly augment the effector functions of infiltrated CD8+ T cells by Mg2+-mediated metalloimmunotherapy and avoid the exhaustion of CD8+ T cells by improving the acidic TME. Thus, the nanoigniter comprehensively awakes T cells and achieves remarkable tumor inhibition efficacy.
Collapse
Affiliation(s)
- Huisong Hao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yanan Fu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Simin Wen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yingfei Wen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yixuan Fang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jia Tang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tianqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
5
|
Wimmers DG, Huebner K, Dale T, Papargyriou A, Reichert M, Hartmann A, Schneider-Stock R. A floating collagen matrix triggers ring formation and stemness characteristics in human colorectal cancer organoids. Pathol Res Pract 2025; 269:155890. [PMID: 40073643 DOI: 10.1016/j.prp.2025.155890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/06/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
Intestinal organoids reflect the 3D structure and function of their original tissues. Organoid are typically cultured in Matrigel, an extracellular matrix (ECM) mimicking the basement membrane, which is suitable for epithelial cells but does not accurately mimic the tumour microenvironment of colorectal cancer (CRC). The ECM and particularly collagen type I is crucial for CRC progression and invasiveness. Given that efforts to examine CRC organoid invasion in a more physiologically relevant ECM have been limited, we used a floating collagen type I matrix (FC) to study organoid invasion in three patient-derived CRC organoid lines. In FC gel, organoids contract, align, and fuse into macroscopic ring structures, initiating minor branch formation and invasion fronts, phenomena unique for the collagen ECM and otherwise not observed in Matrigel-grown CRC organoids. In contrast to Matrigel, FC organoids showed basal extrusion with improper actin localization, but without change in the organoid polarity. Moreover, small clusters of vital invading cells were observed. Gene expression analysis revealed that the organoids cultured in a FC matrix presented more epithelial and stem cell-like characteristics. This novel technique of cultivating CRC organoids in a FC matrix represents an in-vitro model for studying cancer organization and matrix remodelling with increased organoid stemness potential.
Collapse
Affiliation(s)
- Daniel Gerhard Wimmers
- Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Kerstin Huebner
- Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Trevor Dale
- Cardiff University, European Cancer Stem Cell Research Institute (ECSCRI), School of Bioscience, Cardiff, United Kingdom
| | - Aristeidis Papargyriou
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Technical University of Munich, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Maximilian Reichert
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Technical University of Munich, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Munich, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, 85764, Germany; Center for Organoid Systems, Technical University of Munich, Garching, Germany; Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Garching, Germany; German Center for Translational Cancer Research (DKTK), Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany; Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany; Bavarian Cancer Research Center (BZKF), Erlangen, Germany.
| |
Collapse
|
6
|
Zhou X, Li R, Lai M, Lai C. Exploring molecular and cellular mechanisms of Pre-Metastatic niche in renal cell carcinoma. Mol Cancer 2025; 24:121. [PMID: 40264130 DOI: 10.1186/s12943-025-02315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/25/2025] [Indexed: 04/24/2025] Open
Abstract
Renal cell carcinoma (RCC) is among the most frequently occurring types of cancer, and its metastasis is a major contributor to its elevated mortality. Before the primary tumor metastasizes to secondary or distant organs, it remodels the microenvironment of these sites, creating a pre-metastatic niche (PMN) conducive to the colonization and growth of metastatic tumors. RCC releases a variety of biomolecules that induce angiogenesis, alter vascular permeability, modulate immune cells to create an immunosuppressive microenvironment, affect extracellular matrix remodeling and metabolic reprogramming, and determine the organotropism of metastasis through different signaling pathways. This review summarizes the principal processes and mechanisms underlying the formation of the premetastatic niche in RCC. Additionally, we emphasize the significance and potential of targeting PMNs for the prevention and treatment of tumor metastasis in future therapeutic approaches. Finally, we summarized the currently potential targeted strategies for detecting and treating PMN in RCC and provide a roadmap for further in-depth studies on PMN in RCC.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Pathology, and Department of Pathology Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ruirui Li
- Institute of Immunology, Department of Respiratory Disease of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Maode Lai
- Department of Pathology, and Department of Pathology Sir Run Run Shaw Hospital, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Chong Lai
- Department of Urology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
7
|
Zhang M, Zhang L, Liu J, Zhao J, Mei J, Zou J, Luo Y, Cai C. Mammary stem cells: molecular cues, orchestrated regulatory mechanisms and its implications in breast cancer. J Genet Genomics 2025:S1673-8527(25)00116-X. [PMID: 40254157 DOI: 10.1016/j.jgg.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Mammary stem cells (MaSCs), endowed with self-renewal and multilineage differentiation capabilities, are crucial for mammary gland development, function, and disease initiation. Recent advances in MaSCs biology research encompass molecular marker identification, regulatory pathway dissection, and microenvironmental crosstalk. This review synthesizes key progress and remaining challenges in MaSC research. Molecular profiling advances have identified key markers recently, such as Procr, Dll1, Bcl11b, and PD-L1. Central to their regulatory logic are evolutionarily conserved pathways, including Wnt, Notch, Hedgehog, and Hippo, which exhibit context-dependent thresholds to balance self-renewal and differentiation. Beyond intrinsic signaling, the dynamic interplay between MaSCs and their microenvironment, such as luminal-derived Wnt4, macrophage-mediated TNF-α signaling, and adrenergic inputs from sympathetic nerves, spatially orchestrates stem cell behavior. In addition, this review also discusses the roles of breast cancer stem cells (BCSCs) in tumorigenesis and therapeutic resistance, focusing on the molecular mechanisms underlying MaSC transformation into BCSCs. Despite progress, challenges remain: human MaSCs functional assays lack standardization, pathway inhibitors risk off-target effects, and delivery systems lack precision. Emerging tools like spatial multi-omics, organoids, and biomimetic scaffolds address these gaps. By integrating MaSCs and BCSCs biology, this review links mechanisms to breast cancer and outlines strategies to target malignancy to accelerate clinical translation.
Collapse
Affiliation(s)
- Mengna Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Lingxian Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jie Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahui Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiayu Mei
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Jiahua Zou
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Yaogan Luo
- Mengniu Institute of Nutrition Science, Shanghai 200124, China
| | - Cheguo Cai
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
8
|
George S, Saju H, Jaikumar T, Raj R, Nisarga R, Sontakke S, Sangshetti J, Paul MK, Arote RB. Deciphering a crosstalk between biological cues and multifunctional nanocarriers in lung cancer therapy. Int J Pharm 2025; 674:125395. [PMID: 40064384 DOI: 10.1016/j.ijpharm.2025.125395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
In recent years, the utilization of nanocarriers has significantly broadened across a diverse spectrum of biomedical applications. However, the clinical translation of these tiny carriers is limited and encounters hurdles, particularly in the intricate landscape of the tumor microenvironment. Lung cancer poses unique hurdles for nanocarrier design. Multiple physiological barriers hinder the efficient drug delivery to the lungs, such as the complex anatomy of the lung, the presence of mucus, immune responses, and rapid clearance mechanisms. Overcoming these obstacles necessitates a targeted approach that minimizes off-target effects while effectively penetrating nanoparticles/cargo into specific lung tissues or cells. Furthermore, understanding the cellular uptake mechanisms of these nano carriers is also essential. This knowledge aids in developing nanocarriers that efficiently enter cells and transfer their payload for the most effective therapeutic outcome. Hence, a thorough understanding of biological cues becomes crucial in designing multifunctional nanocarriers tailored for treating lung cancer. This review explores the essential biological cues critical for developing a flexible nanocarrier specifically intended to treat lung cancer. Additionally, it discusses advancements in nanotheranostics in lung cancer.
Collapse
Affiliation(s)
- Sharon George
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Hendry Saju
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Tharun Jaikumar
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Reshma Raj
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - R Nisarga
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Samruddhi Sontakke
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Jaiprakash Sangshetti
- Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Rauza Baugh, Aurangabad 431001, India
| | - Manash K Paul
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India; Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), 90095 CA, USA.
| | - Rohidas B Arote
- Centre for Nano and Material Sciences, Jain (Deemed to be) University, Jain Global Campus, Bangalore, Karnataka 562112, India; Dental Research Institute, School of Dentistry, Seoul National University, Gwanak-ku, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Xu L, Wang B, Wang C, Mao N, Huang Y, Fu X, Feng T, He Q, Zhang Y, You G, Ma X, Peng X, Su J. A model of basement membrane-related regulators for prediction of prognoses in esophageal cancer and verification in vitro. BMC Cancer 2025; 25:696. [PMID: 40234833 PMCID: PMC11998150 DOI: 10.1186/s12885-025-14081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
Emerging evidence suggests the importance of basement membrane components in cancer metastasis; however, their specific roles in esophageal carcinoma remain underexplored. To investigate this, we analyzed 152 esophageal cancer and 11 normal esophageal tissue samples, identifying basement membrane-related prognostic signatures through differential gene expression profiling and Least Absolute Shrinkage and Selection Operator regression. A six-gene panel (LAMC2, GPC2, AGRN, ITGA3, LAMA3, and LOXL4) demonstrated robust predictive capacity, which we subsequently integrated with clinical features via nomogram modeling to predict overall survival. Our computational analyses revealed distinct tumor microenvironment immune cell profiles and chemotherapeutic drug sensitivities across risk strata. We performed an immunohistochemical assay to confirm increased tumor tissue expression, thereby reinforcing the clinical relevance of these biomarkers. Experimental validation using KYSE-150 esophageal squamous carcinoma cells demonstrated that while LAMC2 knockdown attenuated cellular migration, AGRN, GPC2, ITGA3, LAMA3, and LOXL4 suppression enhanced migratory capacity. Proliferation assays further revealed increased growth rates upon GPC2, ITGA3, and LAMA3 expression inhibition. Our results established a basement membrane-derived risk model for esophageal carcinoma and revealed the roles of the model genes in tumor progression regulation. This model advances prognostic stratification and provides insights into therapeutic targets.
Collapse
Affiliation(s)
- Lang Xu
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
- Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Bingna Wang
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
- School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chen Wang
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
| | - Nan Mao
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
| | - Yating Huang
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
| | - Xihua Fu
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
| | - Tao Feng
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Qiming He
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Yang Zhang
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Guoxing You
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiaojun Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xinsheng Peng
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Jianfen Su
- The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China.
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
- School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
10
|
Xiao R, Xu P, Li X, Shen F, Tao S, Zhu X, Cai Y, Feng Z, Liu Z, Xiao H, Ding F, Zhu M. The LysoPS/GPR174 axis drives metastatic progression in esophageal squamous cell carcinoma through cAMP-PKA-CREB signaling activation. J Transl Med 2025; 23:438. [PMID: 40229851 PMCID: PMC11995483 DOI: 10.1186/s12967-025-06419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a highly lethal malignancy with a 5-year survival rate of less than 20%, largely due to its high propensity for metastasis and recurrence. There is an urgent need to identify targeted therapeutic agents for this disease. While lysophosphatidylserine (LysoPS) and its receptor GPR174 are known regulators of immune and inflammatory processes, their mechanistic role in ESCC progression remains unexplored. This study investigates the LysoPS/GPR174 axis in driving ESCC metastasis and its underlying molecular pathways. METHODS LC-MS was used to measure LysoPS concentration, and Western blotting was performed for protein quantification. The correlation between GPR174 expression and ESCC prognosis was analyzed using ESCC tissue microarrays, immunohistochemistry, and Kaplan-Meier survival analysis. Wound healing and Transwell assays were carried out to evaluate the migratory and invasive capacities of cells. The proliferative ability of ESCC cell lines was assessed with the CCK-8 assay. Nuclear-cytoplasmic extraction assay was conducted to separate the nucleus and cytoplasm. Metastasis model of nude mouse was employed to investigate the metastasis of ESCC cell lines. RESULTS We found that the levels of LysoPS were significantly increased in metastatic ESCC tissues compared to nonmetastatic ESCC tissues. Moreover, a correlation was established between LysoPS-mediated tumor metastasis and GPR174 expression in ESCC. Our results also revealed that high expression of GPR174 in ESCC is associated with tumor metastasis and poor survival outcomes in ESCC patients. Further exploration of the underlying mechanism showed that LysoPS stimulates the up- regulation of GPR174 expression. The increased GPR174 then activates the cAMP-PKA signaling pathway. Subsequently, the active subunit of PKA translocates into the nucleus, where it phosphorylates CREB, thereby promoting the metastasis of ESCC. In vivo, GPR174 overexpression increased metastasis burden. CONCLUSIONS Our study demonstrates that the LysoPS/GPR174 axis, through the cAMP-PKA-CREB pathway, plays a crucial role in promoting the invasion and metastasis of ESCC. This highlights its potential as a novel target for predicting ESCC progression and may offer new insights for the development of targeted therapies for this deadly disease.
Collapse
Affiliation(s)
- Rong Xiao
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Pei Xu
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiangyuan Li
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Feng Shen
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shuangfen Tao
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaocen Zhu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Cai
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhuowei Feng
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zhiyi Liu
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Haibo Xiao
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Meiling Zhu
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
11
|
Ran Y, Li L, Wang Z, Sun T, Wen C, Zhang Y, Wang S, Jiang S, Zheng J, Yin C, Zhang C. Regulator of G-protein signaling 14 (RGS14) promotes cancer growth in hepatocellular carcinoma. Cancer Genet 2025; 294-295:80-89. [PMID: 40245482 DOI: 10.1016/j.cancergen.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major contributor to cancer-related deaths globally. The progression of HCC is influenced by a range of intrinsic and extrinsic factors, necessitating further research into the molecular mechanisms involved. While Regulator of G-protein Signaling 14 (RGS14) has shown emerging roles in cancer biology, its function in HCC remains poorly characterized. MATERIALS AND METHODS RGS14 expression and clinical significance were analyzed using TCGA-LIHC, HCCDB, and GEO datasets. Immunofluorescence (IF) staining was employed to validate protein expression. Functional assays, including cell proliferation, migration, invasion, and in vivo xenograft models, were conducted to assess the oncogenic role of RGS14. Bulk-mRNA sequencing was performed using in situ tumor tissues to identify RGS14-regulated pathways. RESULTS RGS14 was significantly upregulated in HCC tissues and positively associated with poor patient outcomes. In vitro experiments demonstrated that RGS14 enhanced HCC cell proliferation, migration, and invasion, while in vivo studies confirmed its tumor-promoting effects. Mechanistically, RGS14 activated the extracellular matrix (ECM)-receptor interaction pathway to drive HCC progression. CONCLUSION Our findings suggest that RGS14 could serve as a novel prognostic marker and therapeutic target for HCC, contributing to improved treatment strategies.
Collapse
Affiliation(s)
- Yi Ran
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China; Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Liping Li
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Zhihua Wang
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Ting Sun
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Cong Wen
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Yixin Zhang
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Shu Wang
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Shishi Jiang
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China
| | - Junjie Zheng
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Changjun Yin
- Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China; Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University, 80336, Munich, Germany
| | - Chuankai Zhang
- Department of Oncology, Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, PR China; Precision Medicine Institute, the First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, PR China.
| |
Collapse
|
12
|
Zhou L, Cui M, Yu J, Liu Y, Zeng F, Liu Y. Identification of Versican as a target gene of the transcription Factor ZNF587B in ovarian cancer. Biochem Pharmacol 2025; 237:116946. [PMID: 40228636 DOI: 10.1016/j.bcp.2025.116946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/20/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Ovarian cancer is the most lethal malignancy affecting the female reproductive system, with its progression and metastasis being significant contributors to patient mortality. Our previous study identified the zinc finger protein ZNF587B as a potential tumor suppressor that inhibited the proliferation, migration and invasion of ovarian cancer cells, although the underlying mechanism remains elusive. In this study, ZNF587B was demonstrated to bind directly to the promoter region of Versican (VCAN), a high molecular weight chondroitin sulfate glycoprotein, and repress its transcription using Chromatin immunoprecipitation-qPCR (ChIP-qPCR), luciferase reporter assays, and immunofluorescence (IF). Moreover, in vivo and in vitro assays revealed that the effect of ZNF587B knockdown on ovarian cancer proliferation may be mediated through VCAN. Not only that, patients with reduced expression of ZNF587B and increased expression of VCAN exhibit a poorer prognosis. The potential mechanism behind this may involve its impact on the phosphorylation process of AKT.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Mengke Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Jian Yu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China
| | - Feiyue Zeng
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, PR China
| | - Yingzi Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; National Laboratory of Medical Genetics, Central South University, Changsha 410078, PR China.
| |
Collapse
|
13
|
Arafat Y, Cuesta-Apausa C, Castellano E, Reyes-Aldasoro CC. Fibre tracing in biomedical images: An objective comparison between seven algorithms. PLoS One 2025; 20:e0320006. [PMID: 40209168 PMCID: PMC11984972 DOI: 10.1371/journal.pone.0320006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/01/2025] [Indexed: 04/12/2025] Open
Abstract
Obtaining the traces and the characteristics of elongated structures is an important task in computer vision pipelines. In biomedical applications, the analysis of traces of vasculature, nerves or fibres of the extracellular matrix can help characterise processes like angiogenesis or the effect of a certain treatment. This paper presents an objective comparison of six existing methodologies (Edge detection, CT Fire, Scale Space, Twombli, U-Net and Graph Based) and one novel approach called Trace Ridges to trace biomedical images with fibre-like structures. Trace Ridges is a fully automatic and fast algorithm that combines a series of image-processing algorithms including filtering, watershed transform and edge detection to obtain an accurate delineation of the fibre-like structures in a rapid time. To compare the algorithms, four biomedical data sets with vastly distinctive characteristics were selected. Ground truth was obtained by manual delineation of the fibre-like structures. Three pre-processing filtering options were used as a first step: no filtering, Gaussian low-pass and DnCnn, a deep-learning filtering. Three distance error metrics (total, average and maximum distance from the obtained traces to the ground truth) and processing time were calculated. It was observed that no single algorithm outperformed the others in all metrics. For the total distance error, which was considered the most significative, Trace Ridges ranked first, followed by Graph Based, U-Net, Twombli, Scale Space, CT Fire and Edge Detection. In terms of speed, Trace Ridges ranked second, only slightly slower than Edge Detection. Code is freely available at github.com/youssefarafat/Trace_Ridges.
Collapse
Affiliation(s)
- Youssef Arafat
- Department of Computer Science, School of Science and Technology, City St George’s, University of London, London, United Kingdom
| | | | - Esther Castellano
- Tumour-Stroma Signalling Lab, Universidad de Salamanca, Salamanca, Spain
| | - Constantino Carlos Reyes-Aldasoro
- Department of Computer Science, School of Science and Technology, City St George’s, University of London, London, United Kingdom
- Integrated Pathology Unit, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| |
Collapse
|
14
|
Kubatka P, Bojkova B, Nosalova N, Huniadi M, Samuel SM, Sreenesh B, Hrklova G, Kajo K, Hornak S, Cizkova D, Bubnov R, Smokovski I, Büsselberg D, Golubnitschaja O. Targeting the MAPK signaling pathway: implications and prospects of flavonoids in 3P medicine as modulators of cancer cell plasticity and therapeutic resistance in breast cancer patients. EPMA J 2025. [DOI: 10.1007/s13167-025-00407-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/21/2025]
Abstract
Abstract
Cancer drug resistance poses a significant challenge in oncology, primarily driven by cancer cell plasticity, which promotes tumor initiation, progression, metastasis, and therapeutic evasion in many different cancers. Breast cancers (BCs) are a prominent example of that, with an estimated 2.3 million new cases and 670,000 BC-related deaths registered worldwide annually. Triple-negative BC is especially challenging for treatments demonstrating particularly aggressive disease course, an early manifestation of metastatic disease, frequent drug-resistant cancer types, and poor individual outcomes. Although chemosensitizing agents have been developed, their clinical utility in oncology remains unproven. The mitogen-activated protein kinase (MAPK) pathway is considered a critical regulator of intracellular and extracellular signaling highly relevant for both — genetic and epigenetic modifications. Dysregulation of the MAPK signaling pathways plays a significant role in conferring chemoresistance in BC. Contextually, targeting the MAPK pathway represents a promising strategy for overcoming drug resistance and enhancing the therapeutic efficacy of anticancer agents in BC treatment. On the other hand, flavonoids, a prominent class of phytochemicals, are key modulators of MAPK signaling. Flavonoids interact with the ERK, JNK, p38, and ERK5 pathways of the MAPK signaling cascade and present a promising avenue for developing novel anti-cancer therapies and re-sensitizing agents for the treatment of BC. Compounds such as quercetin, kaempferol, genistein, luteolin, myricetin, EGCG, baicalein, baicalin, nobiletin, morin, delphinidin, acacetin, isorhamnetin, apigenin, silymarin, among others, have been identified as specific modulators of MAPK signaling, exerting complex downstream effects in BC cells increasing therewith drug efficacy and suppressing tumor growth and aggressivity. These properties reflect mechanisms of great clinical relevance to overcome therapeutic resistance in overall BC management. This article highlights corresponding mechanisms and provides clinically relevant illustrations in the framework of 3P medicine for primary (protection of individuals at high risk against health-to-disease transition) and secondary care (protection against metastatic BC progression). 3PM novelty makes good use of patient phenotyping and stratification, predictive multi-level diagnostics, and application of Artificial Intelligence (AI) tools to the individualized interpretation of big data — all proposed for cost-effective treatments tailored to individualized patient profiles with clear benefits to patients and advanced BC management.
Collapse
|
15
|
Zhang M, Zhang B. Extracellular matrix stiffness: mechanisms in tumor progression and therapeutic potential in cancer. Exp Hematol Oncol 2025; 14:54. [PMID: 40211368 PMCID: PMC11984264 DOI: 10.1186/s40164-025-00647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
Tumor microenvironment (TME) is a complex ecosystem composed of both cellular and non-cellular components that surround tumor tissue. The extracellular matrix (ECM) is a key component of the TME, performing multiple essential functions by providing mechanical support, shaping the TME, regulating metabolism and signaling, and modulating immune responses, all of which profoundly influence cell behavior. The quantity and cross-linking status of stromal components are primary determinants of tissue stiffness. During tumor development, ECM stiffness not only serves as a barrier to hinder drug delivery but also promotes cancer progression by inducing mechanical stimulation that activates cell membrane receptors and mechanical sensors. Thus, a comprehensive understanding of how ECM stiffness regulates tumor progression is crucial for identifying potential therapeutic targets for cancer. This review examines the effects of ECM stiffness on tumor progression, encompassing proliferation, migration, metastasis, drug resistance, angiogenesis, epithelial-mesenchymal transition (EMT), immune evasion, stemness, metabolic reprogramming, and genomic stability. Finally, we explore therapeutic strategies that target ECM stiffness and their implications for tumor progression.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Basic Medicine, China Three Gorges University, 8 Daxue Road, Yichang, 443002, Hubei, China
- Central Laboratory, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Bin Zhang
- School of Basic Medicine, China Three Gorges University, 8 Daxue Road, Yichang, 443002, Hubei, China.
- Central Laboratory, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China.
| |
Collapse
|
16
|
Xie D, Chen B, Wang W, Guo W, Sun Z, Wang L, Shi B, Song Y, Su M. Nanocomposite Hydrogels and Micro/Nanostructures for Printing Organoids. ACS NANO 2025; 19:12458-12466. [PMID: 40162603 DOI: 10.1021/acsnano.4c17587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Organoids are 3D artificial miniature organs composed of a cluster of self-renewing and self-organizing cells in vitro, which mimic the functions of real organs. Nanotechnologies, including the preparation of nanomaterials and the fabrication of micro/nanostructures, have been proven to promote cell proliferation, guide cell differentiation, and regulate cell self-organization, showing great promise in engineering organoids. In this Perspective, different types of nanocomposite hydrogels for organoid culture are summarized, the effects of micro/nanostructures on organoid growth and development are discussed, and 3D bioprinting technologies for constructing organoid models are introduced.
Collapse
Affiliation(s)
- Daixi Xie
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, 100190 Beijing, P. R. China
- University of Chinese Academy of Sciences, Yuquan Road No. 19A, 100049 Beijing, P. R. China
| | - Bingda Chen
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, 100190 Beijing, P. R. China
| | - Wenqing Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, 100190 Beijing, P. R. China
- University of Chinese Academy of Sciences, Yuquan Road No. 19A, 100049 Beijing, P. R. China
| | - Wenjing Guo
- University of Chinese Academy of Sciences, Yuquan Road No. 19A, 100049 Beijing, P. R. China
| | - Zhiyuan Sun
- Macao Institute of Materials Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Long Wang
- Department of Orthopedics, the Fourth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Bin Shi
- Department of Organ Transplantation, the Third Medical Center of PLA General Hospital, Beijing 100039, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, 100190 Beijing, P. R. China
- University of Chinese Academy of Sciences, Yuquan Road No. 19A, 100049 Beijing, P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, 100190 Beijing, P. R. China
- University of Chinese Academy of Sciences, Yuquan Road No. 19A, 100049 Beijing, P. R. China
| |
Collapse
|
17
|
Linderman SW, DeRidder L, Sanjurjo L, Foote MB, Alonso MJ, Kirtane AR, Langer R, Traverso G. Enhancing immunotherapy with tumour-responsive nanomaterials. Nat Rev Clin Oncol 2025; 22:262-282. [PMID: 40050505 DOI: 10.1038/s41571-025-01000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
The targeted delivery of immunotherapies to tumours using tumour-responsive nanomaterials is a promising area of cancer research with the potential to address the limitations of systemic administration such as on-target off-tumour toxicities and a lack of activity owing to the immunosuppressive tumour microenvironment (TME). Attempts to address these challenges include the design and functionalization of nanomaterials capable of releasing their cargoes in response to specific TME characteristics, thus facilitating the targeted delivery of immune-checkpoint inhibitors, cytokines, mRNAs, vaccines and, potentially, chimaeric antigen receptors as well as of agents that modulate the extracellular matrix and induce immunogenic cell death. In this Review, we describe these various research efforts in the context of the dynamic properties of the TME, such as pH, reductive conditions, reactive oxygen species, hypoxia, specific enzymes, high levels of ATP and locoregional aspects, which can be leveraged to enhance the specificity and efficacy of nanomaterial-based immunotherapies. Highlighting preclinical successes and ongoing clinical trials, we evaluate the current landscape and potential of these innovative approaches. We also consider future research directions as well as the most important barriers to successful clinical translation, emphasizing the transformative potential of tumour-responsive nanomaterials in overcoming the barriers that limit the activity of traditional immunotherapies, thus improving patient outcomes.
Collapse
Affiliation(s)
- Stephen W Linderman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Hospital Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Louis DeRidder
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Science Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lucía Sanjurjo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Michael B Foote
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, Santiago de Compostela, Spain
- IMDEA Nanosciences Institute, Madrid, Spain
| | - Ameya R Kirtane
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA
| | - Robert Langer
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Giovanni Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
18
|
Chen Y, Zhang Z, Ji K, Zhang Q, Qian L, Yang C. Role of microplastics in the tumor microenvironment (Review). Oncol Lett 2025; 29:193. [PMID: 40041410 PMCID: PMC11877014 DOI: 10.3892/ol.2025.14939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/07/2025] [Indexed: 03/06/2025] Open
Abstract
Microplastics (MPs) are pervasive in several ecosystems and have the potential to infiltrate multiple aspects of human life through ingestion, inhalation and dermal exposure, thus eliciting substantial concerns regarding their potential implications for human health. Whilst initial research has documented the effects of MPs on disease development across multiple physiological systems, MPs may also facilitate tumor progression by influencing the tumor microenvironment (TME). This evolving focus underscores the growing interest in the role of MPs in tumorigenesis and their interactions within the TME. In the present review, the relationship between MPs and the TME is comprehensively assessed, providing a detailed analysis of their interactions with tumor cells, stromal cells (including macrophages, fibroblasts and endothelial cells), the extracellular matrix and inflammatory processes. Recommendations for future research directions and strategies to address and reduce microplastic pollution are proposed.
Collapse
Affiliation(s)
- Yunjie Chen
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zihang Zhang
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Kangming Ji
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qiuchen Zhang
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Lijun Qian
- Department of Geriatric Cardiology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chuang Yang
- Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
19
|
Liu H, Sun X, Dong B, Zhang J, Zhang J, Gu Y, Chen L, Pang X, Ye J, Wang X, Rong Z. Systematic Characterisation and Analysis of Lysyl Oxidase Family Members as Drivers of Tumour Progression and Multiple Drug Resistance. J Cell Mol Med 2025; 29:e70536. [PMID: 40179101 PMCID: PMC11967703 DOI: 10.1111/jcmm.70536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
The intricacies of tumour microenvironment, particularly the extracellular matrix (ECM), underscore its pivotal function in modulating tumour progression and drug resistance. Among the key regulators of ECM remodelling and homeostasis, the lysyl oxidases (LOXs) emerge as promising therapeutic targets of tumour treatment. Despite their significance, a holistic evaluation of the LOX family's genomics and clinical implications across diverse cancer types remains elusive. Herein, this study aimed to investigate the correlation between LOX family expression and patient outcomes, drug responsiveness and tumour microenvironment (TME) characteristics in a cohort of 33 tumours based on The Cancer Genome Atlas (TCGA) database. Notably, patients exhibiting elevated LOX family expression suffer from worse prognosis and resistance to a spectrum of antitumor therapies, encompassing chemotherapy, endocrine therapy, targeted therapy and immunotherapy, in contrast to counterparts with subdued LOX family expression levels. Furthermore, enrichment analysis indicated that the LOX family fosters tumour progression and drug resistance. These findings were further validated by multiplex immunofluorescence staining in breast, gastric and rectal cancer, as well as breast cancer organoids. Altogether, this study unravels the intricate association between the LOX family and tumour progression, alongside multidrug resistance. We have gained further insights into the roles of LOX family genes in various tumour types, offering a novel avenue for future research into the relationship between LOX family genes and tumorigenesis.
Collapse
Affiliation(s)
- Hongjin Liu
- Department of Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Xiaojiao Sun
- School of Pharmaceutical Sciences, Peking UniversityBeijingChina
| | - Bingqi Dong
- Department of Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Jixin Zhang
- Department of PathologyPeking University First HospitalBeijingChina
| | - Junling Zhang
- Department of Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Yanlun Gu
- Department of PharmacyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Clinical Pharmacology and Translation of Innovative DrugsPeking University First HospitalBeijingChina
| | - Lin Chen
- Department of PharmacyPeking University First HospitalBeijingChina
| | - Xiaocong Pang
- Department of PharmacyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Clinical Pharmacology and Translation of Innovative DrugsPeking University First HospitalBeijingChina
| | - Jingming Ye
- Department of Thyroid and Breast SurgeryPeking University First HospitalBeijingChina
| | - Xin Wang
- Department of Gastrointestinal SurgeryPeking University First HospitalBeijingChina
| | - Zhuona Rong
- Department of PharmacyPeking University First HospitalBeijingChina
- Beijing Key Laboratory of Clinical Pharmacology and Translation of Innovative DrugsPeking University First HospitalBeijingChina
| |
Collapse
|
20
|
Aparo A, Avesani S, Parmigiani L, Napoli S, Bertoni F, Bonnici V, Cascione L, Giugno R. EasyCircR: Detection and reconstruction of circular RNAs post-transcriptional regulatory interaction networks. Comput Biol Med 2025; 188:109846. [PMID: 39987699 DOI: 10.1016/j.compbiomed.2025.109846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025]
Abstract
Circular RNAs (circRNAs) are regulatory RNAs that play a crucial role in various biological activities and have been identified as potential biomarkers for neurological disorders and cancer. CircRNAs have emerged as significant regulators of gene expression through different mechanisms, including regulation of transcription and splicing, modulation of translation, and post-translational modifications. Additionally, some circRNAs operate as microRNA (miRNA) sponges in the cytoplasm, boosting post-transcriptional expression of target genes by inhibiting miRNA activity. Although existing pipelines can reconstruct circRNAs, identify miRNAs sponged by them, retrieve cascade-regulated mRNAs, and represent the regulatory interactions as complex circRNA-miRNA-mRNA networks, none of the state-of-the-art approaches can discriminate the biological level at which the mRNAs involved in the interactions are regulated, avoiding considering potential target mRNAs not regulated at the post-transcriptional level. EasyCircR is a novel R package that combines circRNA detection and reconstruction with post-transcriptional gene expression analysis (exon-intron split analysis) and miRNA response element prediction. The package enables estimation and visualization of circRNA-miRNA-mRNA interactions through an intuitive Shiny application, leveraging the post-transcriptional regulatory nature of circRNA-miRNA relationship and excluding unrealistic regulatory interactions at the biological level. EasyCircR source code, Docker container and user guide are available at: https://github.com/InfOmics/EasyCircR.
Collapse
Affiliation(s)
- Antonino Aparo
- Department of Computer Science, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy; Research Center LURM (Interdepartmental Laboratory of Medical Research), University of Verona, Verona, 37134, Italy
| | - Simone Avesani
- Department of Computer Science, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy.
| | - Luca Parmigiani
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld, 33615, Germany; Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld, 33615, Germany; Graduate School "Digital Infrastructure for the Life Sciences"(DILS), Bielefeld, 33615, Germany
| | - Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, 6500, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, 6500, Switzerland; Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, 6500, Switzerland
| | - Vincenzo Bonnici
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, 43124, Italy
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Bellinzona, 6500, Switzerland; Swiss Institute of Bioinformatics (SIB), Lausanne, 1015, Switzerland
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Strada le Grazie, 15, Verona, 37134, Italy
| |
Collapse
|
21
|
Mivehchi H, Eskandari-Yaghbastlo A, Ghazanfarpour M, Ziaei S, Mesgari H, Faghihinia F, Zokaei Ashtiani N, Afjadi MN. Microenvironment-based immunotherapy in oral cancer: a comprehensive review. Med Oncol 2025; 42:140. [PMID: 40153139 DOI: 10.1007/s12032-025-02694-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/19/2025] [Indexed: 03/30/2025]
Abstract
Oral cancer, a prevalent form of head and neck malignancy, accounts for 4% of global cancer cases. The most common type, oral squamous cell carcinoma (OSCC), has a survival rate of about 50%. Even though emerging molecular therapies show promise for managing oral cancer, current treatments like surgery, radiotherapy, and chemotherapy have significant side effects. In addition, the complex tumor microenvironment (TME), involving the extracellular matrix (ECM) and cells like fibroblasts and stromal cells like immune cells, promotes tumor growth and inhibits immune responses, complicating treatment. Nonetheless, immunotherapy is crucial in cancer treatment, especially in oral cancers. Indeed, its effectiveness lies in targeting immune checkpoints such as PD-1 and CTLA-4 inhibitors, as well as monoclonal antibodies like pembrolizumab and cetuximab, adoptive cell transfer methods (including CAR-T cell therapy), cytokine therapy such as IL-2, and tumor vaccines. Thus, these interventions collectively regulate tumor proliferation and metastasis by targeting the TME through autocrine-paracrine signaling pathways. Immunotherapy indeed aims to stimulate the immune system, leveraging both innate and adaptive immunity to counteract cancer cell signals and promote tumor destruction. This review will explore how the TME controls tumor proliferation and metastasis via autocrine-paracrine signaling pathways. It will then detail the effectiveness of immunotherapy in oral cancers, focusing on immune checkpoints, targeted monoclonal antibodies, adoptive cell transfer, cytokine therapy, and tumor vaccines.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | | | - SeyedMehdi Ziaei
- Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Mesgari
- Oral and Maxillofacial Surgery Department, Faculty of Dentistry, Islamic Azad University, Tehran Branch, Tehran, Iran
| | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
22
|
Chen X, Zhong X, Zhang F, Zhou X, Yue X, Li X. Molecular mechanisms and therapeutic targets in glioblastoma multiforme: network and single-cell analyses. Sci Rep 2025; 15:10558. [PMID: 40148380 PMCID: PMC11950307 DOI: 10.1038/s41598-025-92867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor associated with poor survival outcomes and is driven by a complex tumor microenvironment (TME) that promotes tumor progression and treatment resistance. To explore the role of the TME in GBM, we analyzed glioma-related microarray and single-cell RNA sequencing (scRNA-seq) datasets from the Gene Expression Omnibus (GEO). Functional enrichment and weighted gene coexpression network analyses revealed distinct immune profiles, metabolic alterations, and differences in chemotherapeutic drug sensitivity between the high-risk and low-risk patient groups. scRNA-seq data processed with the 'Seurat' package were used to identify differentially expressed genes in pericytes, endothelial cells, and glioma cells, particularly those involved in extracellular matrix (ECM) remodeling. A 17-gene prognostic signature developed through Cox regression and LASSO analyses revealed that key genes (COL1A1, COL4A1, and VIM) were significantly associated with survival outcomes in GBM patients. Drug sensitivity analyses using data from the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Therapeutics Response Portal (CTRP) identified potential targeted therapies for GBM, including SB-505,124, staurosporine, and AZD8186. This integrative study underscores the critical roles of the ECM and synaptic remodeling in GBM and suggests novel therapeutic targets to improve personalized treatment strategies for GBM patients.
Collapse
Affiliation(s)
- Xiangyu Chen
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Xiao Zhong
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China
| | - Feifei Zhang
- Department of Blood Transfusion, School of Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610021, Sichuan, China
| | - Xiaomei Zhou
- Sichuan Provincial Chengdu Second People's Hospital, Chengdu, 610021, Sichuan, China
| | - Xiaofeng Yue
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China.
| | - Xueru Li
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
23
|
Zhu R, Tian C, Gao N, Li Z, Yang S, Zhang Y, Zhou M, Sun Y, Zhang C, Jin K. Hypomethylation induced overexpression of PLOD3 facilitates colorectal cancer progression through TM9SF4-mediated autophagy. Cell Death Dis 2025; 16:206. [PMID: 40133271 PMCID: PMC11937244 DOI: 10.1038/s41419-025-07503-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 02/09/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
Colorectal cancer (CRC) ranks among the primary causes of human mortality globally. Numerous studies have highlighted the significant role of PLOD3 in the progression of various cancers. However, the exact function and underlying mechanisms of PLOD3 in CRC remains incompletely understood. To investigate the expression of PLOD3, qRT‒PCR, immunohistochemistry and western blotting were utilized to analyze the expression of PLOD3 in CRC tissues and adjacent normal tissues. Functional assays were conducted to assess the roles of PLOD3 both in vitro and in vivo. To elucidate the potential mechanism of PLOD3 in CRC, a range of techniques, including coimmunoprecipitation, immunofluorescence, CHX pulse-chase, and ubiquitination assays were used. As the results indicated, hypomethylation of the PLOD3 promoter leads to its over- expression in CRC, and elevated PLOD3 levels are associated with a poor prognosis. Both in vitro and in vivo models demonstrated that PLOD3 enhances CRC cell proliferation, invasion, and migration. Furthermore, through mechanistic studies, TM9SF4 was identified as a protein that interacts with PLOD3 and contributes to CRC progression by promoting autophagy. Additionally, PLOD3 could be secreted by CRC cells and secreted PLOD3 could promote CRC cells migration and invasion. These results demonstrated that PLOD3 promotes CRC progression through the PLOD3/TM9SF4 axis and could be a potential biomarker and treatment target for CRC.
Collapse
Affiliation(s)
- Renzhong Zhu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Chuanxin Tian
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Nan Gao
- General Surgery department of Dongtai People's Hospital, Yancheng, China
| | - Zhiqiang Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sheng Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Yue Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The Colorectal Institute of Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China
| | - Ming Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yueming Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China.
| | - Chuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China.
| | - Kangpeng Jin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
- The Colorectal Institute of Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Colorectal Cancer Precision Medicine and Translational Medicine, Nanjing, China.
| |
Collapse
|
24
|
Zheng J, Wu YC, Cai X, Phan P, Gill M, Er EE, Zhao Z, Wang ZJ, Lee SSY. Correlative multiscale 3D imaging of mouse primary and metastatic tumors by sequential light sheet and confocal fluorescence microscopy. iScience 2025; 28:111934. [PMID: 40124485 PMCID: PMC11928867 DOI: 10.1016/j.isci.2025.111934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
Three-dimensional (3D) optical microscopy permits in situ interrogation of the tumor microenvironment (TME) in volumetric tumors for research while light sheet and confocal fluorescence microscopy are often used to achieve macroscopic and microscopic 3D images of tissues, respectively. Although each technique offers distinct fields of view (FOVs) and spatial resolution, the combination of the two to obtain correlative multiscale 3D images from the same tumor tissues has not yet been explored. We established a workflow that enables the tracking and 3D imaging of region of interests (ROIs) within tumor tissues through sequential light sheet and confocal fluorescence microscopy. This approach allowed for quantitative 3D spatial analysis of the immune response in the TME at multiple spatial scales and facilitated the direct localization of a metastatic lesion within a mouse brain. Our method offers an approach for correlative multiscale 3D optical microscopy with the potential to provide new insights into comprehensive research in disease mechanism or drug response.
Collapse
Affiliation(s)
- Jingtian Zheng
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Yi-Chien Wu
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Xiaoying Cai
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Meghna Gill
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Ekrem Emrah Er
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
| | - Zaijie J. Wang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Shah DD, Chorawala MR, Raghani NR, Patel R, Fareed M, Kashid VA, Prajapati BG. Tumor microenvironment: recent advances in understanding and its role in modulating cancer therapies. Med Oncol 2025; 42:117. [PMID: 40102282 DOI: 10.1007/s12032-025-02641-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Tumor microenvironment (TME) denotes the non-cancerous cells and components presented in the tumor, including molecules produced and released by them. Interactions between cancer cells, immune cells, stromal cells, and the extracellular matrix within the TME create a dynamic ecosystem that can either promote or hinder tumor growth and spread. The TME plays a pivotal role in either promoting or inhibiting tumor growth and dissemination, making it a critical factor to consider in the development of effective cancer therapies. Understanding the intricate interplay within the TME is crucial for devising effective cancer therapies. Combination therapies involving inhibitors of immune checkpoint blockade (ICB), and/or chemotherapy now offer new approaches for cancer therapy. However, it remains uncertain how to best utilize these strategies in the context of the complex tumor microenvironment. Oncogene-driven changes in tumor cell metabolism can impact the TME to limit immune responses and present barriers to cancer therapy. Cellular and acellular components in tumor microenvironment can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Components in the TME can reprogram tumor behavior and influence responses to treatments, facilitating immune evasion, nutrient deprivation, and therapeutic resistance. Moreover, the TME can influence angiogenesis, promoting the formation of blood vessels that sustain tumor growth. Notably, the TME facilitates immune evasion, establishes a nutrient-deprived milieu, and induces therapeutic resistance, hindering treatment efficacy. A paradigm shift from a cancer-centric model to a TME-centric one has revolutionized cancer research and treatment. However, effectively targeting specific cells or pathways within the TME remains a challenge, as the complexity of the TME poses hurdles in designing precise and effective therapies. This review highlights challenges in targeting the tumor microenvironment to achieve therapeutic efficacy; explore new approaches and technologies to better decipher the tumor microenvironment; and discuss strategies to intervene in the tumor microenvironment and maximize therapeutic benefits.
Collapse
Affiliation(s)
- Disha D Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Navrangpura, Ahmedabad, Gujarat, 380009, India.
| | - Neha R Raghani
- Department of Pharmacology and Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, 382355, India
| | - Rajanikant Patel
- Department of Product Development, Granules Pharmaceuticals Inc., 3701 Concorde Parkway, Chantilly, VA, 20151, USA
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 13713, Riyadh, Saudi Arabia
| | - Vivekanand A Kashid
- MABD Institute of Pharmaceutical Education and Research, Babhulgaon, Yeola, Nashik, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana, Gujarat, 384012, India.
- Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
26
|
Chang CY, Lin CC. Click Hydrogels to Assess Stiffness-Induced Activation of Pancreatic Cancer-Associated Fibroblasts and Its Impact on Cancer Cell Spreading. Chembiochem 2025; 26:e202400955. [PMID: 39794304 PMCID: PMC11907380 DOI: 10.1002/cbic.202400955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is marked by significant desmoplastic reactions, or the accumulation of excessive extracellular matrices. PDAC stroma has abnormally high stiffness, which alters cancer cell behaviors and creates a barrier for effective drug delivery. Unfortunately, clinical trials using a combination of chemotherapy and matrix-degrading enzyme have led to disappointing results, as the degradation of stromal tissue likely accelerated the dissemination of cancer cells. High matrix stiffness has been shown to activate cancer-associated fibroblasts (CAFs), increasing their interaction with pancreatic cancer cells (PCCs) through promoting proliferation, migration, and resistance to chemotherapy. With the advance of biomaterials science and engineering, it is now possible to design chemically defined matrices to understand the role of stiffness in activating pancreatic CAFs and how this may alter cancer cell migration. Here, we developed a norbornene-based click hydrogel system with independently tunable stiffness and cell adhesive ligand to evaluate stiffness-induced activation of CAFs and migration of PCCs. Our results show that matrix stiffness did not alter matrix deposition from CAFs but affected nuclear localization of Yes-associated protein (YAP). Our results also verify the role of CAFs on promoting PCC migration and an elevated substrate stiffness further increased PCC motility.
Collapse
Affiliation(s)
- Chun-Yi Chang
- Weldon School of Biomedical Engineering, Purdue University, 206 Martin Jischke Dr., West Lafayette, IN 47907, USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, 206 Martin Jischke Dr., West Lafayette, IN 47907, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Meyer J, Teixeira AM, Richter S, Larner DP, Syed A, Klöting N, Matz-Soja M, Gaul S, Barnikol-Oettler A, Kiess W, Le Duc D, Penke M, Garten A. Sex differences in diet-induced MASLD - are female mice naturally protected? Front Endocrinol (Lausanne) 2025; 16:1567573. [PMID: 40162312 PMCID: PMC11949793 DOI: 10.3389/fendo.2025.1567573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Males suffer more often from profibrotic changes in liver than females. The underlying mechanism for this sex difference in the prevalence and manifestation of Metabolic dysfunction-associated Steatotic Liver Disease (MASLD) is not yet completely known. We studied male and female mice that were induced to develop MASLD by consuming a "fast food" diet (FFD) and assessed metabolic phenotype as well as liver histology and compared them with mice fed with a matched control diet (CD). Our aim was to check for sex-specific differences in MASLD development in a mouse model of diet-induced profibrotic changes in the liver. Our results demonstrate a clear difference in body weight, fat distribution and changes in liver tissue for male and female mice fed with FFD. We found that female mice stored lipids mainly in subcutaneous and visceral adipose tissue while males increased ectopic lipid accumulation in the liver which resulted in hepatomegaly and increased transforming growth factor β 1 (Tgfb1) and collagen I (Col1a1) expression concomitant to fibrosis development. This was absent in female mice. Analysis of estrogen receptor -α (Esr1) and -β (Esr2) expression revealed an upregulation of Esr2 in livers of male FFD-fed mice whereas in female liver tissue a higher expression in Esr1 could be observed. This study supports Esr1 and Esr2 as potential targets to reverse negative effects of diet-induced profibrotic changes in the liver.
Collapse
Affiliation(s)
- Jana Meyer
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Ana Mendes Teixeira
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Sandy Richter
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Dean P. Larner
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Asifuddin Syed
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) belonging to Helmholtz Center Munich at the University and University Hospital, Leipzig, Germany
| | - Madlen Matz-Soja
- Division of Hepatology, Clinic and Polyclinic for Oncology, Gastroenterology, Hepatology, and Pneumology, University Hospital Leipzig, Leipzig, Germany
| | - Susanne Gaul
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
- Klinik und Poliklinik für Kardiologie, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Anja Barnikol-Oettler
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Wieland Kiess
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Melanie Penke
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Antje Garten
- Center for Pediatric Research, University Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| |
Collapse
|
28
|
Morabito M, Thibodot P, Gigandet A, Compagnon P, Toso C, Berishvili E, Lacotte S, Peloso A. Liver Extracellular Matrix in Colorectal Liver Metastasis. Cancers (Basel) 2025; 17:953. [PMID: 40149289 PMCID: PMC11939972 DOI: 10.3390/cancers17060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
The liver is the most common site of metastasis of colorectal cancer (CRC), and colorectal liver metastasis is one of the major causes of CRC-related deaths worldwide. The tumor microenvironment, particularly the extracellular matrix (ECM), plays a critical role in CRC metastasis and chemoresistance. Based on findings from clinical and basic research, this review attempts to offer a complete understanding of the role of the ECM in colorectal liver metastasis and to suggest potential ways for therapeutic intervention. First, the ECMs' role in regulating cancer cell fate is explored. We then discuss the hepatic ECM fingerprint and its influence on the metastatic behavior of CRC cells, highlighting key molecular interactions that promote metastasis. In addition, we examine how changes in the ECM within the metastatic niche contribute to chemoresistance, focusing on ECM remodeling by ECM stiffening and the activation of specific signaling pathways. Understanding these mechanisms is crucial for the development of novel strategies to overcome metastasis and improve outcomes for CRC patients.
Collapse
Affiliation(s)
- Marika Morabito
- General, Emergency and Transplant Surgery Department, ASST Settelaghi, University Hospital and Faculty of Medicine of Insubria, 21100 Varese, Italy
| | - Pauline Thibodot
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Anthony Gigandet
- School of Medecine, Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland
| | - Philippe Compagnon
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
| | - Christian Toso
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland;
| | - Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Andrea Peloso
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| |
Collapse
|
29
|
Chen Y, Xue D, Huang D, Li X, Duan Y, Chen B. Biofabrication of Tunable 3D Hydrogel for Investigating the Matrix Stiffness Impact on Breast Cancer Chemotherapy Resistance. ACS Biomater Sci Eng 2025; 11:1417-1431. [PMID: 40013911 PMCID: PMC11900772 DOI: 10.1021/acsbiomaterials.4c01636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Matrix stiffness is a key factor in breast cancer progression, but its impact on cell function and response to treatment is not fully understood. Here, we developed a stiffness-tunable hydrogel-based three-dimensional system that recapitulates the extracellular matrix and physiological properties of human breast cancer in vitro. Adjusting the ratio of GelMA to PEGDA in the hydrogel formulation enabled the fine-tuning of matrix stiffness across a range of 7 to 52 kPa. Utilizing this three-dimensional (3D) hydrogel platform for a breast cancer cell culture has enabled precise functional evaluations. Variations in matrix stiffness resulted in significant changes in the morphology of breast cancer cells after 2 weeks of incubation. The analysis of transcriptomic sequencing revealed that the 3D microenvironment significantly changed the expression of a wide panel of transcriptomic profiles of breast cancer cells in various matrix stiffness. Gene Ontology analysis further suggested that specific biological functions could potentially be linked to the magnitude of the matrix stiffness. According to our findings, extracellular matrix rigidity modulates the sensitivity of breast cancer cells to paclitaxel and adriamycin. Notably, the expression of ABCB1 and YAP1 genes may be upregulated in the 3D culture environment, potentially contributing to the increased drug resistance observed in breast cancer cells. This work aims to establish facile adjustable hydrogels to deepen insights into matrix rigidity effects on breast cancer cells within 3D microenvironments, highlighting the critical role of extracellular matrix stiffness in modulating cell-matrix interactions.
Collapse
Affiliation(s)
- Yue Chen
- Department
of Laboratory Medicine, the Second Affiliated Hospital, School of
Medicine, South China University of Technology, Guangzhou 510180, China
| | - Dan Xue
- Department
of Traditional Chinese Medicine, the Second Affiliated Hospital, School
of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Di Huang
- Department
of Breast Surgery, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Xinying Li
- Dermatology
Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yuyou Duan
- Laboratory
of Stem Cells and Translational Medicine, Institute for Medical Research,
the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Laboratory
of Stem Cells and Translational Medicine, Institute for Life Science,
School of Medicine, South China University
of Technology, Guangzhou 510006, China
| | - Bin Chen
- Department
of Laboratory Medicine, the Second Affiliated Hospital, School of
Medicine, South China University of Technology, Guangzhou 510180, China
| |
Collapse
|
30
|
Lai W, Geliang H, Bin X, Wang W. Effects of hydrogel stiffness and viscoelasticity on organoid culture: a comprehensive review. Mol Med 2025; 31:83. [PMID: 40033190 DOI: 10.1186/s10020-025-01131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
As an emerging technology, organoids are promising new tools for basic and translational research in disease. Currently, the culture of organoids relies mainly on a type of unknown composition scaffold, namely Matrigel, which may pose problems in studying the effect of mechanical properties on organoids. Hydrogels, a new material with adjustable mechanical properties, can adapt to current studies. In this review, we summarized the synthesis of recent advance in developing definite hydrogel scaffolds for organoid culture and identified the critical parameters for regulating mechanical properties. In addition, classified by different mechanical properties like stiffness and viscoelasticity, we concluded the effect of mechanical properties on the development of organoids and tumor organoids. We hope this review enhances the understanding of the development of organoids by hydrogels and provides more practical approaches to investigating them.
Collapse
Affiliation(s)
- Wei Lai
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hu Geliang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xu Bin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
31
|
Li C, Li J, Argall‐Knapp Z, Hendrikse NW, Farooqui MA, Raykowski B, King A, Nong S, Liu Y. Combining Top-Down and Bottom-Up: An Open Microfluidic Microtumor Model for Investigating Tumor Cell-ECM Interaction and Anti-Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2402499. [PMID: 39811947 PMCID: PMC11878254 DOI: 10.1002/smll.202402499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/19/2024] [Indexed: 01/16/2025]
Abstract
Using a combined top-down (i.e., operator-directed) and bottom-up (i.e., cell-directed) strategy, an Under-oil Open Microfluidic System (UOMS)-based microtumor model is presented for investigating tumor cell migration and anti-metastasis drug test. Compared to the mainstream closed microfluidics-based microtumor models, the UOMS microtumor model features: i) micrometer-scale lateral resolution of surface patterning with open microfluidic design for flexible spatiotemporal sample manipulation (i.e., top-down); ii) self-organized extracellular matrix (ECM) structures and tumor cell-ECM spontaneous remodeling (i.e., bottom-up); and iii) free physical access to the samples on a device with minimized system disturbance. The UOMS microtumor model - allowing a controlled but also self-organized, cell-directed tumor-ECM microenvironment in an open microfluidic configuration - is used to test an anti-metastasis drug (incyclinide, aka CMT-3) with a triple-negative breast cancer cell line (MDA-MB-231). The in vitro results show a suppression of tumor cell migration and ECM remodeling echoing the in vivo mice metastasis results.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer CenterUniversity of Wisconsin‐MadisonMadisonWI53792USA
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Jiayi Li
- College of Osteopathic MedicineLiberty UniversityLynchburgVA24502USA
| | - Zach Argall‐Knapp
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Nathan W. Hendrikse
- Department of Integrative BiologyUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Mehtab A. Farooqui
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Bella Raykowski
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Anna King
- College of Osteopathic MedicineLiberty UniversityLynchburgVA24502USA
| | - Serratt Nong
- College of Osteopathic MedicineLiberty UniversityLynchburgVA24502USA
| | - Yingguang Liu
- College of Osteopathic MedicineLiberty UniversityLynchburgVA24502USA
| |
Collapse
|
32
|
Wang L, Gu M, Zhang X, Kong T, Liao J, Zhang D, Li J. Recent Advances in Nanoenzymes Based Therapies for Glioblastoma: Overcoming Barriers and Enhancing Targeted Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413367. [PMID: 39854126 PMCID: PMC11905078 DOI: 10.1002/advs.202413367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/14/2024] [Indexed: 01/26/2025]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor originating from glial cells, characterized by high recurrence rates and poor patient prognosis. The heterogeneity and complex biology of GBM, coupled with the protective nature of the blood-brain barrier (BBB), significantly limit the efficacy of traditional therapies. The rapid development of nanoenzyme technology presents a promising therapeutic paradigm for the rational and targeted treatment of GBM. In this review, the underlying mechanisms of GBM pathogenesis are comprehensively discussed, emphasizing the impact of the BBB on treatment strategies. Recent advances in nanoenzyme-based approaches for GBM therapy are explored, highlighting how these nanoenzymes enhance various treatment modalities through their multifunctional capabilities and potential for precise drug delivery. Finally, the challenges and therapeutic prospects of translating nanoenzymes from laboratory research to clinical application, including issues of stability, targeting efficiency, safety, and regulatory hurdles are critically analyzed. By providing a thorough understanding of both the opportunities and obstacles associated with nanoenzyme-based therapies, future research directions are aimed to be informed and contribute to the development of more effective treatments for GBM.
Collapse
Affiliation(s)
- Liyin Wang
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Min Gu
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Xiaoli Zhang
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | | | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Dan Zhang
- Shengjing Hospital of China Medical University, Liaoning, 110004, China
| | - Jingwu Li
- The First Hospital of China Medical University, Liaoning, 110001, China
| |
Collapse
|
33
|
Rosina P, Grube M. A mathematical model to predict network growth in Physarum polycephalum as a function of extracellular matrix viscosity, measured by a novel viscometer. J R Soc Interface 2025; 22:20240720. [PMID: 40037543 PMCID: PMC11879620 DOI: 10.1098/rsif.2024.0720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/20/2024] [Accepted: 01/28/2025] [Indexed: 03/06/2025] Open
Abstract
Physarum polycephalum is a slime mould that forms complex networks, making it an ideal model organism for studying network formation and adaptation. We introduce a novel viscometer capable of accurately measuring extracellular slime matrix (ECM) viscosity in small biological samples, overcoming the limitations of conventional instruments. Using this device, we measured the relative kinematic viscosity and developed continuous models to predict network size over time as a function of ECM viscosity. Our results show that increased ECM viscosity, driven by higher salt (MgCl2·6H2O) concentrations, significantly slows network expansion but does not affect the final network complexity. Fractal dimension analysis revealed that network complexity converged to a similar value across all viscosity conditions during the equilibrium state. The models demonstrated strong predictive power, with a mean squared error below 0.4%, closely aligning with experimental data. These findings highlight the critical role of ECM viscosity in influencing network expansion while demonstrating that complexity remains stable across varying conditions. This study advances our understanding of the physical parameters shaping P. polycephalum networks and provides a foundation for exploring network dynamics in other adaptive systems. These insights offer new tools for research in biological systems where sample material is limited.
Collapse
Affiliation(s)
- Philipp Rosina
- Department of Biology, University of Graz, Graz, Austria
| | - Martin Grube
- Department of Biology, University of Graz, Graz, Austria
| |
Collapse
|
34
|
Zheng M, Zhang H, Dai M, Yu H, Hu Y, Cheng L, Wang H, Chen Q, Tan M, Guo Y, Tang R, Cao Y, Liu W, Ran H. A PTT-Induced Feed-Back Carbon Nanosystem for Enhanced Breast Cancer Therapy by Extracellular Matrix Remodeling. NANO LETTERS 2025; 25:3180-3190. [PMID: 39945413 DOI: 10.1021/acs.nanolett.4c05625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
In the treatment of breast cancer, the dense extracellular matrix (ECM) severely impedes drug delivery and immune cell infiltration, resulting in poor therapeutic effects. Photothermal therapy (PTT) has achieved promise in preclinical breast cancer studies. However, in tumor immunogenic cell death (ICD) induced by PTT, immune cells are almost confined around the tumor periphery due to the ECM, which weakens the immune response. Thus, this study developed a carbon nanosystem (LCTi) to explore the effectiveness of enhancing PTT through the ECM remodeling. After intravenous injection, LCTi accumulated in the tumor through iRGD-mediated active targeting, subsequently destroying tumor cells and inducing ICD under 808 nm laser irradiation. Simultaneously, losartan was photothermal-responsively released from LCTi to remodel the ECM, consequently enhancing PTT efficacy by alleviating hypoxia and improving the tumor immune microenvironment. Focusing on ECM remodeling, this study provides an attractive "PTT-reinforced PTT" feed-back strategy for future breast cancer therapy.
Collapse
Affiliation(s)
- Min Zheng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hua Zhang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mingyuan Dai
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Huilin Yu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yaqin Hu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Long Cheng
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Haiyang Wang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Qiaoqi Chen
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mixiao Tan
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yuan Guo
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Rui Tang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yang Cao
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Weiwei Liu
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Haitao Ran
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Therapy, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
35
|
Haynes J, Manogaran P. Mechanisms and Strategies to Overcome Drug Resistance in Colorectal Cancer. Int J Mol Sci 2025; 26:1988. [PMID: 40076613 PMCID: PMC11901061 DOI: 10.3390/ijms26051988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer-related mortality worldwide, with a significant impact on public health. Current treatment options include surgery, chemotherapy, radiotherapy, molecular-targeted therapy, and immunotherapy. Despite advancements in these therapeutic modalities, resistance remains a significant challenge, often leading to treatment failure, poor progression-free survival, and cancer recurrence. Mechanisms of resistance in CRC are multifaceted, involving genetic mutations, epigenetic alterations, tumor heterogeneity, and the tumor microenvironment. Understanding these mechanisms at the molecular level is crucial for identifying novel therapeutic targets and developing strategies to overcome resistance. This review provides an overview of the diverse mechanisms driving drug resistance in sporadic CRC and discusses strategies currently under investigation to counteract this resistance. Several promising strategies are being explored, including targeting drug transport, key signaling pathways, DNA damage response, cell death pathways, epigenetic modifications, cancer stem cells, and the tumor microenvironment. The integration of emerging therapeutic approaches that target resistance mechanisms aims to enhance the efficacy of current CRC treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Jennifer Haynes
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, 1600 Medical Center Drive, Huntington, WV 25701, USA;
| | | |
Collapse
|
36
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
37
|
Xiong X, Zheng LW, Ding Y, Chen YF, Cai YW, Wang LP, Huang L, Liu CC, Shao ZM, Yu KD. Breast cancer: pathogenesis and treatments. Signal Transduct Target Ther 2025; 10:49. [PMID: 39966355 PMCID: PMC11836418 DOI: 10.1038/s41392-024-02108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/27/2024] [Accepted: 12/08/2024] [Indexed: 02/20/2025] Open
Abstract
Breast cancer, characterized by unique epidemiological patterns and significant heterogeneity, remains one of the leading causes of malignancy-related deaths in women. The increasingly nuanced molecular subtypes of breast cancer have enhanced the comprehension and precision treatment of this disease. The mechanisms of tumorigenesis and progression of breast cancer have been central to scientific research, with investigations spanning various perspectives such as tumor stemness, intra-tumoral microbiota, and circadian rhythms. Technological advancements, particularly those integrated with artificial intelligence, have significantly improved the accuracy of breast cancer detection and diagnosis. The emergence of novel therapeutic concepts and drugs represents a paradigm shift towards personalized medicine. Evidence suggests that optimal diagnosis and treatment models tailored to individual patient risk and expected subtypes are crucial, supporting the era of precision oncology for breast cancer. Despite the rapid advancements in oncology and the increasing emphasis on the clinical precision treatment of breast cancer, a comprehensive update and summary of the panoramic knowledge related to this disease are needed. In this review, we provide a thorough overview of the global status of breast cancer, including its epidemiology, risk factors, pathophysiology, and molecular subtyping. Additionally, we elaborate on the latest research into mechanisms contributing to breast cancer progression, emerging treatment strategies, and long-term patient management. This review offers valuable insights into the latest advancements in Breast Cancer Research, thereby facilitating future progress in both basic research and clinical application.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Le-Wei Zheng
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yu Ding
- Department of Breast and Thyroid, Guiyang Maternal and Child Health Care Hospital & Guiyang Children's Hospital, Guiyang, P. R. China
- Department of Clinical Medicine, Guizhou Medical University, Guiyang, P. R. China
| | - Yu-Fei Chen
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Yu-Wen Cai
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Lei-Ping Wang
- Department of Breast and Urologic Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Liang Huang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Cui-Cui Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
38
|
Zhang S, You H, Fan H, Chen Y, Song H, Zhao Z, Chen Q, Wang Y, Tian Z, Wu Y, Zhou Z, Guo Y, Su B, Li X, Jia R, Fang M, Jiang C, Sun T. Transcytosis-Triggering Nanoparticles for Overcoming Stromal Barriers and Reversing Immunosuppression in Pancreatic Cancer Combinatorial Therapy. NANO LETTERS 2025; 25:2949-2959. [PMID: 39914891 DOI: 10.1021/acs.nanolett.4c06372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), stromal cells and matrix proteins form a dense physical barrier that, while preventing the outward spread of tumor cells, also limits the penetration of drugs and CD8+ T cells inward. Additionally, the overactivated TGF-β/SMAD signaling pathway further promotes matrix proliferation and immune suppression. Therefore, crossing the stromal barrier while preserving the integrity of the stroma, releasing drugs intratumorally, remodeling the stroma, and activating the immune system is a promising drug delivery strategy. In this work, a type of enamine N-oxides modified nanoparticle was prepared, with stearic acid-modified gemcitabine prodrug (GemC18) and pSMAD2/3 inhibitor galunisertib encapsulated. The peripheral enamine N-oxides can trigger transcytosis and then respond to hypoxia and acidic microenvironments, turning the surface charge of the nanoparticles to a positive charge and enhancing penetration. The released galunisertib inhibits the TGF-β/SMAD signaling pathway, reshapes the matrix, activates antitumor immunity, and combines with gemcitabine (Gem) to kill tumor cells.
Collapse
Affiliation(s)
- Shilin Zhang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haoyu You
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hongrui Fan
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Haolin Song
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yu Wang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zonghua Tian
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuxing Wu
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zheng Zhou
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yun Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Boyu Su
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xuwen Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ru Jia
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mingzhu Fang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Pharmacy, Fudan University, Shanghai 201203, China
- Quzhou Fudan Institute, Quzhou 324003, China
| |
Collapse
|
39
|
Puttonen M, Almusa H, Böhling T, Koljonen V, Sihto H. Whole-exome sequencing identifies distinct genomic aberrations in eccrine porocarcinomas and poromas. Orphanet J Rare Dis 2025; 20:70. [PMID: 39948683 PMCID: PMC11823087 DOI: 10.1186/s13023-025-03586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Eccrine porocarcinoma (EPC) is a rare malignant skin tumor arising from the eccrine gland. Investigations into the genomic landscape of EPC have uncovered potential drivers of its development and progression. However, there is limited information on the discrepancies between EPC and its benign counterpart, eccrine poroma (EP). METHODS Formalin-fixed paraffin-embedded (FFPE) samples from 15 EPCs and 5 EPs were retrieved from Helsinki Biobank and Finnish Clinical Biobank Tampere. One EPC was found to be digital papillary adenocarcinoma in review of diagnoses. Whole-exome sequencing was used to conduct a comprehensive analysis to elucidate the genomic features of EPCs and EPs. RESULTS There was general heterogeneity within EPCs and EPs, with discrepancies such as exclusive TP53, NCOR1, and CDKN2A mutations in EPCs and a higher mutational load in EPCs than in EPs. Furthermore, we identified alterations in pathways associated with cell adhesion and the extracellular matrix in EPCs, while pathways associated with ketone body and amino acid metabolism were altered in EPs. The MAPK and Ras signaling pathways were enriched in genes mutated only in EPCs. CONCLUSIONS EPCs and EPs are generally heterogeneous tumor entities with a few distinct discrepancies from each other. The findings from this study emphasize the need to further verify the roles of disrupted genes and pathways in the initiation and progression of EPCs and EPs.
Collapse
Affiliation(s)
- Maya Puttonen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, P.O Box 63, 00014, Helsinki, Finland.
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Tom Böhling
- Department of Pathology, University of Helsinki and Helsinki University Hospital, P.O Box 63, 00014, Helsinki, Finland
| | - Virve Koljonen
- Department of Plastic Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Sihto
- Department of Pathology, University of Helsinki and Helsinki University Hospital, P.O Box 63, 00014, Helsinki, Finland
| |
Collapse
|
40
|
Patkowska E, Krzywdzinska A, Solarska I, Wojtas M, Prochorec-Sobieszek M. Diagnostic Approaches in Myeloid Sarcoma. Curr Issues Mol Biol 2025; 47:111. [PMID: 39996833 PMCID: PMC11853749 DOI: 10.3390/cimb47020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Myeloid sarcoma (MS), or extramedullary acute myeloid leukaemia tumour (eAML), is a rare hematopoietic neoplasm. Recognised as a distinct entity within acute myeloid leukaemia (AML), MS presents significant diagnostic challenges due to its rarity, clinical heterogeneity, and variable immunophenotypic and genetic characteristics. The mechanisms by which leukaemic stem cells (LSCs) migrate to form solid tumours in extramedullary (EM) sites remain unclear. MS can occur de novo, precede AML, and manifest alongside AML relapse. It can also develop with myelodysplastic syndromes (MDSs) or myeloproliferative neoplasms (MPNs). MS frequently presents in organs such as the skin, lymph nodes, gastrointestinal (GI) tract, and central nervous system (CNS), often resulting in diverse clinical manifestations. Diagnosis relies on a comprehensive approach, including tissue biopsy, bone marrow (BM) evaluation, and advanced imaging modalities. Accurate diagnosis is crucial for risk stratification and treatment selection. Prognosis is influenced by several factors: MS's anatomical location, timing of MS diagnosis, genetic profile, and possible treatment. This review emphasises the need for comprehensive diagnostic methods to better define individual MS characteristics and prognosis. It explores the role of novel targeted therapies in improving patient outcomes and further highlights the critical need for future multicentre data collection to optimise diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Elzbieta Patkowska
- Department of Haematopoietic Stem Cell Transplantation, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Agnieszka Krzywdzinska
- Immunophenotyping Laboratory, Department of Hematological Diagnostics, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| | - Iwona Solarska
- Molecular Biology Laboratory, Department of Hematological Diagnostics, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (I.S.); (M.W.)
| | - Magdalena Wojtas
- Molecular Biology Laboratory, Department of Hematological Diagnostics, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland; (I.S.); (M.W.)
| | - Monika Prochorec-Sobieszek
- Pathomorphology Laboratory, Department of Hematological Diagnostics, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland;
| |
Collapse
|
41
|
Marin LE, Zavaleta-Guzman DI, Gutierrez-Garcia JI, Racoceanu D, Casado FL. Prediction of biochemical prostate cancer recurrence from any Gleason score using robust tissue structure and clinically available information. Discov Oncol 2025; 16:128. [PMID: 39918772 PMCID: PMC11805747 DOI: 10.1007/s12672-025-01896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Biopsy information and protein Prostate-Specific Antigen (PSA) levels are the most robust information available to oncologists worldwide to diagnose and decide therapies for prostate cancer patients. However, prostate cancer presents a high risk of recurrence, and the technologies used to evaluate it demand more complex resources. This paper aims to predict Biochemical Recurrence (BCR) based on Whole Slide Images (WSI) of biopsies, Gleason scores, and PSA levels. A U-net model was used to segment phenotypic features and trained on images from the Prostate Cancer Grade Assessment (PANDA) database to segment tumorous regions from pre-processed and scored WSI of biopsies. Then, the model was tested on data from publicly available repositories achieving an Intersection over Union of 87%. Tissue features, Gleason scores, and PSA levels provided high accuracy and precision in classifying patients according to their risk of presenting recurrence, for any Gleason score sampled. The trained classifier model demonstrated a 79.2% relative accuracy, and a precision of 69.7% for patients experiencing recurrences before 24 months. Our results provide a robust, cost-efficient approach using already available information to predict the risk of BCR.
Collapse
Affiliation(s)
- Laura E Marin
- Institute of Omics Sciences and Applied Biotechnology, Pontificia Universidad Catolica del Peru, Lima, Peru
| | - Daniel I Zavaleta-Guzman
- Institute of Omics Sciences and Applied Biotechnology, Pontificia Universidad Catolica del Peru, Lima, Peru
| | - Jessyca I Gutierrez-Garcia
- Institute of Omics Sciences and Applied Biotechnology, Pontificia Universidad Catolica del Peru, Lima, Peru
| | - Daniel Racoceanu
- Sorbonne University, Paris Brain Institute, CNRS, Inria, Inserm, AP-HP, Paris, France
| | - Fanny L Casado
- Institute of Omics Sciences and Applied Biotechnology, Pontificia Universidad Catolica del Peru, Lima, Peru.
| |
Collapse
|
42
|
Wang S, Zhang T, Zhou Y, Jiao Z, Lu K, Liu X, Jiang W, Yang Z, Li H, Zhang X. GP73-mediated secretion of PKM2 and GP73 promotes angiogenesis and M2-like macrophage polarization in hepatocellular carcinoma. Cell Death Dis 2025; 16:69. [PMID: 39904999 PMCID: PMC11794714 DOI: 10.1038/s41419-025-07391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Abnormally high expression of Golgi protein 73 (GP73) and pyruvate kinase M2 (PKM2) is intimately associated with HCC progression. However, as secreted proteins, the role of their extracellular secretions in HCC progression remains unclear. Here, we demonstrated that the expression of extracellular GP73 was positively correlated with extracellular PKM2. GP73 interacted with PKM2 to promote SUMO1 modification of PKM2, which in turn enhanced the interaction of GP73 and PKM2. This process continuously promoted the transfer of PKM2 from the cytoplasm to the membrane in HCC cells, and finally secretion. Extracellular PKM2 and GP73 synergistically promoted angiogenesis and polarization of M2-type macrophages, thereby leading to malignant progression and sorafenib resistance in HCC. Sorafenib combined with shikonin, a specific inhibitor of PKM2, has a strong anti-tumor effect. This study reveals the role of GP73 in enhancing PKM2 and GP73 secretion in promoting HCC progression, providing a theoretical basis and drug targets for HCC therapy.
Collapse
Affiliation(s)
- Shujie Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China
| | - Tongjia Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China
| | - Yue Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China
| | - Zitao Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China
| | - Kejia Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China
| | - Xinyi Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China
| | - Wei Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Hui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China.
| | - Xiaowei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
43
|
Diniz-Filho JF, Silva ACM, Teixeira AL, Sousa BLN, Santos-Oliveira R, Silva GEB, dos Santos CC, Alencar LMR. Penile Cancer: Innovations in Ultrastructural and Vibrational Markers. ACS OMEGA 2025; 10:3449-3461. [PMID: 39926554 PMCID: PMC11800048 DOI: 10.1021/acsomega.4c07293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/11/2025]
Abstract
Penile cancer (PCa) is a disease that manifests predominantly as squamous cell carcinomas (SCCs), which, although rare, represents a significant public health problem, especially in regions with less socioeconomic development. One of the biggest challenges in managing this disease is the difficulty in differentiating tumor subtypes, making accurate diagnosis and treatment challenging. In this context, new characterization techniques are needed to investigate these tumors more completely. Atomic force microscopy (AFM) and Raman spectroscopy (RS) are valuable in this context, providing quantitative and qualitative ultrastructural data and vibrational signatures of the analyzed samples. In this study, AFM and RS techniques were employed to investigate subtypes of penile cancer, including the highly aggressive basaloid subtype, which is closely associated with human papillomavirus (HPV), and the sarcomatoid subtype, comparing them with nontumorous tissues. The AFM results revealed nanoscale changes in the ultrastructural properties of tumor samples, such as increased roughness in tumor tissues, with emphasis on the basaloid type associated with the HPV virus, and reduction in the surface area and volume of tumor tissues at the nanoscale, suggesting deeper tissue infiltration and greater deformability of tumor samples at the nanoscale. RS results detected significant spectral differences between normal and cancerous tissues and between tumor subtypes, particularly in vibrational modes related to proteins and lipids. Principal component analysis (PCA) confirmed a strong discriminative power between control and PCa groups. The data presented here offers new insights into the characteristics of penile tumors that, when integrated with clinical analyses, could improve the understanding of penile cancer behavior, contributing to more accurate diagnostic methods and targeted treatments.
Collapse
Affiliation(s)
- Joel Félix
Silva Diniz-Filho
- Biophysics
and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| | - Ana Caroline Muniz Silva
- Biophysics
and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| | - Antônio
Augusto Lima Teixeira
- Immunofluorescence
and Electron Microscopy Laboratory (LIME/HUUFMA), Department of Medicine, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| | - Bruna Larissa Nolêto Sousa
- Immunofluorescence
and Electron Microscopy Laboratory (LIME/HUUFMA), Department of Medicine, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| | - Ralph Santos-Oliveira
- Brazilian
Nuclear Energy Commission, Institute of
Nuclear Engineering, Laboratory of Nanoradiopharmacy and Synthesis
of New Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
- State
University of Rio de Janeiro, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | - Gyl Eanes Barros Silva
- Immunofluorescence
and Electron Microscopy Laboratory (LIME/HUUFMA), Department of Medicine, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| | - Clenilton Costa dos Santos
- Biophysics
and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Biophysics
and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| |
Collapse
|
44
|
Liu T, Lu C, Jiang X, Wang Y, Chen Z, Qi C, Xu X, Feng X, Wang Q. Nano-Based Strategies Aiming at Tumor Microenvironment for Improved Cancer Therapy. Mol Pharm 2025; 22:647-677. [PMID: 39818981 DOI: 10.1021/acs.molpharmaceut.4c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Malignant tumors pose a considerable threat to human life and health. Traditional treatments, such as radiotherapy and chemotherapy, often lack specificity, leading to collateral damage to normal tissues. Tumor microenvironment (TME) is characterized by hypoxia, acidity, redox imbalances, and elevated ATP levels factors that collectively promote tumor growth and metastasis. This review provides a comprehensive overview of the nanoparticles developed in recent years for TME-responsive strategies or TME-modulating methods for tumor therapy. The TME-responsive strategies focus on designing and synthesizing nanoparticles that can interact with the tumor microenvironment to achieve precisely controlled drug release. These nanoparticles activate drug release under specific conditions within the tumor environment, thereby enhancing the efficacy of the drugs while reducing toxicity to normal cells. Moreover, simply eliminating tumor cells does not fundamentally solve the problem. Only by comprehensively regulating the TME to make it unsuitable for tumor cell survival and proliferation can we achieve more thorough therapeutic effects and reduce the risk of tumor recurrence. TME regulation strategies aim to suppress the growth and metastasis of tumor cells by modulating various components within the TME. These strategies not only improve treatment outcomes but also have the potential to lay the foundation for future personalized cancer therapies.
Collapse
Affiliation(s)
- Tianhui Liu
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Changshun Lu
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Xue Jiang
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Yutong Wang
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Zhengrong Chen
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Chunshuang Qi
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Xiaoru Xu
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun 130117, China
| | - Xiangru Feng
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| | - Qingshuang Wang
- College of Life Science and Technology, Changchun University of Science and Technology, 7089 Satellite Road, Changchun 130022, China
| |
Collapse
|
45
|
Świerczewska M, Nowacka M, Stasiak P, Iżycki D, Sterzyńska K, Płóciennik A, Nowicki M, Januchowski R. Doxorubicin and topotecan resistance in ovarian cancer: Gene expression and microenvironment analysis in 2D and 3D models. Biomed Pharmacother 2025; 183:117804. [PMID: 39787968 DOI: 10.1016/j.biopha.2024.117804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
This study explores the mechanisms underlying chemotherapy resistance in ovarian cancer (OC) using doxorubicin (DOX) and topotecan (TOP)-resistant cell lines derived from the drug-sensitive A2780 ovarian cancer cell line. Both two-dimensional (2D) monolayer cell cultures and three-dimensional (3D) spheroid models were employed to examine the differential drug responses in these environments. The results revealed that 3D spheroids demonstrated significantly higher resistance to DOX and TOP than 2D cultures, suggesting a closer mimicry of in vivo tumour conditions. Molecular analyses identified overexpression of essential drug resistance-related genes, including MDR1 and BCRP, and extracellular matrix (ECM) components, such as MYOT and SPP1, which were more pronounced in resistant cell lines. MDR1 and BCRP overexpression contribute to chemotherapy resistance in OC by expelling drugs like DOX and TOP. Targeting these transporters with inhibitors or gene silencing could improve drug efficacy, making them key therapeutic targets to enhance treatment outcomes for drug-resistant OC. The study further showed that EMT-associated markers, including VIM, SNAIL1, and SNAIL2, were upregulated in the 3D spheroids, reflecting a more mesenchymal phenotype. These findings suggest that factors beyond gene expression, such as spheroid architecture, cell-cell interactions, and drug penetration, contribute to the enhanced resistance observed in 3D cultures. These results highlight the importance of 3D cell culture models for a more accurate representation of tumour drug resistance mechanisms in ovarian cancer, providing valuable insights for therapeutic development.
Collapse
Affiliation(s)
- Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland; Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| | - Marta Nowacka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Piotr Stasiak
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, Garbary 15 St., Poznan 61-866, Poland.
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Artur Płóciennik
- Department of Plant Ecophysiology, Adam Mickiewicz University, Wieniawskiego 1 St., Poznan 61-712, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznan 61-781, Poland.
| | - Radosław Januchowski
- Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland.
| |
Collapse
|
46
|
Liu J, Song Q, Yin W, Li C, An N, Le Y, Wang Q, Feng Y, Hu Y, Wang Y. Bioactive scaffolds for tissue engineering: A review of decellularized extracellular matrix applications and innovations. EXPLORATION (BEIJING, CHINA) 2025; 5:20230078. [PMID: 40040827 PMCID: PMC11875452 DOI: 10.1002/exp.20230078] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 03/06/2025]
Abstract
Decellularized extracellular matrix (dECM) offers a three-dimensional, non-immunogenic scaffold, enriched with bioactive components, making it a suitable candidate for tissue regeneration. Although dECM-based scaffolds have been successfully implemented in preclinical and clinical settings within tissue engineering and regenerative medicine, the mechanisms of tissue remodeling and functional restoration are not fully understood. This review critically assesses the state-of-the-art in dECM scaffolds, including decellularization techniques for various tissues, quality control and cross-linking. It highlights the functional properties of dECM components and their latest applications in multiorgan tissue engineering and biomedicine. Additionally, the review addresses current challenges and limitations of decellularized scaffolds and offers perspectives on future directions in the field.
Collapse
Affiliation(s)
- Juan Liu
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Key Laboratory of Digital Intelligence HepatologyMinistry of EducationSchool of Clinical MedicineTsinghua UniversityBeijingChina
| | - Qingru Song
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Wenzhen Yin
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Chen Li
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- College of Chemistry and Life SciencesBeijing University of TechnologyBeijingChina
| | - Ni An
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| | - Yinpeng Le
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Institute of Smart Biomedical MaterialsSchool of Materials Science and EngineeringZhejiang Sci‐Tech UniversityHangzhouPeople's Republic of China
| | - Qi Wang
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Yutian Feng
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
| | - Yuelei Hu
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Hospital of Jilin UniversityJilin UniversityChangchunChina
| | - Yunfang Wang
- Hepato‐Pancreato‐Biliary CenterBeijing Tsinghua Changgung HospitalSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Key Laboratory of Digital Intelligence HepatologyMinistry of EducationSchool of Clinical MedicineTsinghua UniversityBeijingChina
- Clinical Translational Science CenterBeijing Tsinghua Changgung HospitalTsinghua UniversityBeijingChina
| |
Collapse
|
47
|
Chen H, Yang J, Yang Q, Jia Y, Guo X. Protein prenylation in mechanotransduction: implications for disease and therapy. Trends Pharmacol Sci 2025; 46:163-179. [PMID: 39818521 DOI: 10.1016/j.tips.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 01/18/2025]
Abstract
The process by which cells translate external mechanical cues into intracellular biochemical signals involves intricate mechanisms that remain unclear. In recent years, research into post-translational modifications (PTMs) has offered valuable insights into this field, spotlighting protein prenylation as a crucial mechanism in cellular mechanotransduction and various human diseases. Protein prenylation, which involves the covalent attachment of isoprenoid groups to specific substrate proteins, profoundly affects the functions of key mechanotransduction proteins such as Rho, Ras, and lamins. This review provides the first comprehensive examination of the connections between prenylation and mechanotransduction, exploring both the mechanistic details and its impact on mechanosensitive cellular behaviors. We further highlight recent evidence linking protein prenylation to diseases associated with disrupted mechanical homeostasis, and outline emerging targeted therapeutic strategies.
Collapse
Affiliation(s)
- Heng Chen
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Yang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingzhen Yang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, China; MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanbo Jia
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, P.R. China; Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an 710004, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
48
|
Yu B, Shao S, Ma W. Frontiers in pancreatic cancer on biomarkers, microenvironment, and immunotherapy. Cancer Lett 2025; 610:217350. [PMID: 39581219 DOI: 10.1016/j.canlet.2024.217350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Pancreatic cancer remains one of the most challenging malignancies to treat due to its late-stage diagnosis, aggressive progression, and high resistance to existing therapies. This review examines the latest advancements in early detection, and therapeutic strategies, with a focus on emerging biomarkers, tumor microenvironment (TME) modulation, and the integration of artificial intelligence (AI) in data analysis. We highlight promising biomarkers, including microRNAs (miRNAs) and circulating tumor DNA (ctDNA), that offer enhanced sensitivity and specificity for early-stage diagnosis when combined with multi-omics panels. A detailed analysis of the TME reveals how components such as cancer-associated fibroblasts (CAFs), immune cells, and the extracellular matrix (ECM) contribute to therapy resistance by creating immunosuppressive barriers. We also discuss therapeutic interventions that target these TME components, aiming to improve drug delivery and overcome immune evasion. Furthermore, AI-driven analyses are explored for their potential to interpret complex multi-omics data, enabling personalized treatment strategies and real-time monitoring of treatment response. We conclude by identifying key areas for future research, including the clinical validation of biomarkers, regulatory frameworks for AI applications, and equitable access to innovative therapies. This comprehensive approach underscores the need for integrated, personalized strategies to improve outcomes in pancreatic cancer.
Collapse
Affiliation(s)
- Baofa Yu
- Taimei Baofa Cancer Hospital, Dongping, Shandong, 271500, China; Jinan Baofa Cancer Hospital, Jinan, Shandong, 250000, China; Beijing Baofa Cancer Hospital, Beijing, 100010, China; Immune Oncology Systems, Inc, San Diego, CA, 92102, USA.
| | - Shengwen Shao
- Institute of Microbiology and Immunology, Huzhou University School of Medicine, Huzhou, Zhejiang, 313000, China.
| | - Wenxue Ma
- Department of Medicine, Sanford Stem Cell Institute, and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
49
|
Ju M, Jin Z, Yu X, Huang C, Li Y, Gao Z, Li H, Huang H, Zheng C, Jia S, Zhang Y, Liu X, Zhou H, Zhang X, Li K. Gastric Cancer Models Developed via GelMA 3D Bioprinting Accurately Mimic Cancer Hallmarks, Tumor Microenvironment Features, and Drug Responses. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409321. [PMID: 39811968 DOI: 10.1002/smll.202409321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Current in vitro models for gastric cancer research, such as 2D cell cultures and organoid systems, often fail to replicate the complex extracellular matrix (ECM) found in vivo. For the first time, this study utilizes a gelatin methacryloyl (GelMA) hydrogel, a biomimetic ECM-like material, in 3D bioprinting to construct a physiologically relevant gastric cancer model. GelMA's tunable mechanical properties allow for the precise manipulation of cellular behavior within physiological ranges. Genetic and phenotypic analyses indicate that the 3D bioprinted GelMA (3Db) model accurately mimics the clinical tumor characteristics and reproduces key cancer hallmarks, such as cell proliferation, invasion, migration, angiogenesis, and the Warburg effect. Comparisons of gene expression and drug responses between the 3Db model and patient-derived xenograft models, both constructed from primary gastric cancer cells, validate the model's clinical relevance. The ability of the 3Db model to closely simulate in vivo conditions highlights its crucial role in identifying treatment targets and predicting patient-specific responses, showcasing its potential in high-throughput drug screening and clinical applications. This study is the first to report the pivotal role of GelMA-based 3D bioprinting in advancing gastric cancer research and regenerative medicine.
Collapse
Affiliation(s)
- Mingguang Ju
- Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Zhizhong Jin
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xue Yu
- Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Caihao Huang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, 110122, China
| | - Ziming Gao
- Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - He Li
- Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Haibo Huang
- Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Chen Zheng
- Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Shiheng Jia
- Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yixiao Zhang
- Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaofang Liu
- Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Heng Zhou
- Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Kai Li
- Department of Surgical Oncology and General Surgery Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| |
Collapse
|
50
|
Shen Z, Tao L, Wang Y, Zhu Y, Pan H, Li Y, Jiang S, Zheng J, Cai J, Liu Y, Lin K, Li S, Tong Y, Shangguan L, Xu J, Liang X. Synergistic Anticancer Strategy Targeting ECM Stiffness: Integration of Matrix Softening and Mechanical Signal Transduction Blockade in Primary Liver Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403040. [PMID: 39703167 PMCID: PMC11809367 DOI: 10.1002/advs.202403040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/30/2024] [Indexed: 12/21/2024]
Abstract
The development of primary liver cancer (hepatocellular carcinoma [HCC] and intrahepatic cholangiocarcinoma [ICC]) is linked to its physical microenvironment, particularly extracellular matrix (ECM) stiffness. Potential anticancer strategies targeting ECM stiffness include prevention/reversal of the stiffening process and disruption of the response of cancer cells to mechanical signals from ECM. However, each strategy has limitations. Therefore, the authors propose integrating them to maximize their strengths. Compared with HCC, ICC has a stiffer ECM and a worse prognosis. Therefore, ICC is selected to investigate mechanisms underlying the influence of ECM stiffness on cancer progression and application of the integrated anticancer strategy targeting ECM stiffness. In summary, immunofluorescence results for 181 primary liver cancer tissue chips (ICC, n = 91; HCC, n = 90) and analysis of TCGA mRNA-sequencing demonstrate that ECM stiffness can affect phenotypes of primary liver cancers. The YAP1/ABHD11-AS1/STAU2/ZYX/p-YAP1 pathway is a useful entry point for exploration of specific mechanisms of mechanical signal conduction from the ECM in ICC cells and their impact on cancer progression. Moreover, a synergistic anticancer strategy targeting ECM stiffness (ICCM@NPs + siABHD11-AS1@BAPN) is constructed by integrating ECM softening and blocking intracellular mechanical signal transduction in ICC and can provide insights for the treatment of cancers characterized by stiff ECM.
Collapse
|