1
|
Lee S, Lee J, Lyoo KS, Shin Y, Shin DM, Kim JW, Yang JS, Kim KC, Lee JY, Hwang GS. Unraveling metabolic signatures in SARS-CoV-2 variant infections using multiomics analysis. Front Immunol 2024; 15:1473895. [PMID: 39759510 PMCID: PMC11697598 DOI: 10.3389/fimmu.2024.1473895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, notably delta and omicron, has significantly accelerated the global pandemic, worsening conditions worldwide. However, there is a lack of research concerning the molecular mechanisms related to immune responses and metabolism induced by these variants. Methods Here, metabolomics combined with transcriptomics was performed to elucidate the immunometabolic changes in the lung of hamsters infected with delta and omicron variants. Results Both variants caused acute inflammation and lung pathology in intranasally infected hamsters. Principal component analysis uncovered the delta variant significantly altered lung metabolite levels between the pre- and post-infection states. Additionally, metabolic pathways determined by assessment of metabolites and genes in lung revealed significant alterations in arginine biosynthesis, glutathione metabolism, and tryptophan metabolism upon infection with both variants and closely linked to inflammatory cytokines, indicating immune activation and oxidative stress in response to both variants. These metabolic changes were also evident in the serum, validating the presence of systemic alterations corresponding to those identified in lung. Notably, the delta variant induced a more robust metabolic regulation than the omicron variant. Discussion The study suggests that multi-omics is a valuable approach for understanding immunometabolic responses to infectious diseases, and providing insights for effective treatment strategies.
Collapse
Affiliation(s)
- Sunho Lee
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Jueun Lee
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Kwang-Soo Lyoo
- College of Health Sciences, Wonkwang University, Iksan, Republic of Korea
| | - Yourim Shin
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Dong-Min Shin
- Bioinformatics Department, Theragen Bio, Seongnam, Republic of Korea
| | - Jun-Won Kim
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jeong-Sun Yang
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Kyung-Chang Kim
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Joo-Yeon Lee
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Li J, Zheng M, Ouyang F, Ye J, Huang J, Zhao Y, Wang J, Shan F, Li Z, Yu S, Yao F, Tian D, Cheng L, Jing J. Interleukin-3 Modulates Macrophage Phagocytic Activity and Promotes Spinal Cord Injury Repair. CNS Neurosci Ther 2024; 30:e70181. [PMID: 39697159 DOI: 10.1111/cns.70181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Effective clearance of lipid-rich debris by macrophages is critical for neural repair and regeneration after spinal cord injury (SCI). Interleukin-3 (IL-3) has been implicated in programming microglia to cluster and clear pathological aggregates in neurodegenerative disease. Yet, the influence of IL-3 on lipid debris clearance post-SCI is not well characterized. METHODS We established a mouse model of spinal cord compression injury to investigate the role of IL-3. Blockage of IL-3 was achieved through intrathecal delivery of an IL-3-neutralizing antibody, while IL-3 activation was augmented via in situ injection of recombinant IL-3 into the lesion site immediately post-SCI. Immunofluorescence staining was performed to determine IL-3 and IL-3Rα sources and distribution, lipid droplet accumulation, neuron preservation, and axon regeneration after SCI. The Basso Mouse Scale (BMS) and footprint analysis were employed to evaluate locomotor function recovery. RESULTS We found that IL-3 expression was significantly upregulated post-SCI, peaking at 14 days post-injury (dpi) and persisting until 28 dpi. Notably, IL-3 was primarily secreted by astrocytes surrounding the lesion epicenter. Correspondingly, IL-3Rα was predominantly observed in macrophages within the injury core, also elevating at 14 dpi. Neutralization of IL-3 led to increased lipid droplet accumulation, along with markedly widespread of macrophages and decreased neuronal survival, resulting in severe motor deficits compared to controls. Conversely, in situ injection of IL-3 reduced lipid droplet accumulation in macrophages, preserved neurons, promoted axon regeneration, and ultimately contributed to the recovery of motor function after SCI. CONCLUSION Our findings shed light on the role of IL-3 in modulating macrophage phagocytic activity and suggest that the IL-3/IL-3Rα pathway may be a potential therapeutic target for enhancing neural repair and functional recovery after SCI.
Collapse
Affiliation(s)
- Jianjian Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meige Zheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fangru Ouyang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianan Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinxin Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuanzhe Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingwen Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fangli Shan
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ziyu Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuishen Yu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fei Yao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Cong B, Dong X, Yang Z, Yu P, Chai Y, Liu J, Zhang M, Zang Y, Kang J, Feng Y, Liu Y, Feng W, Wang D, Deng W, Li F, Song Z, Wang Z, Chen X, Qin H, Yu Q, Li Z, Liu S, Xu X, Zhong N, Ren X, Qin C, Liu L, Wang J, Cao X. Single-cell spatiotemporal analysis of the lungs reveals Slamf9 + macrophages involved in viral clearance and inflammation resolution. Cell Discov 2024; 10:104. [PMID: 39414783 PMCID: PMC11484945 DOI: 10.1038/s41421-024-00734-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/18/2024] Open
Abstract
How the lung achieves immune homeostasis after a pulmonary infection is not fully understood. Here, we analyzed the spatiotemporal changes in the lungs over a 2-week natural recovery from severe pneumonia in a Syrian hamster model of SARS-CoV-2 infection. We find that SARS-CoV-2 infects multiple cell types and causes massive cell death at the early stage, including alveolar macrophages. We identify a group of monocyte-derived Slamf9+ macrophages, which are induced after SARS-CoV-2 infection and resistant to impairment caused by SARS-CoV-2. Slamf9+ macrophages contain SARS-CoV-2, recruit and interact with Isg12+Cst7+ neutrophils to clear the viruses. After viral clearance, Slamf9+ macrophages differentiate into Trem2+ and Fbp1+ macrophages, contributing to inflammation resolution at the late stage, and finally replenish alveolar macrophages. These findings are validated in a SARS-CoV-2-infected hACE2 mouse model and confirmed with publicly available human autopsy single-cell RNA-seq data, demonstrating the potential role of Slamf9+ macrophages and their coordination with neutrophils in post-injury tissue repair and inflammation resolution.
Collapse
Affiliation(s)
- Boyi Cong
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zongheng Yang
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Pin Yu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangyang Chai
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqi Liu
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Meihan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | - Yu Feng
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yi Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | - Dehe Wang
- Changping Laboratory, Beijing, China
| | - Wei Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Fengdi Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiqi Song
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziqiao Wang
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaosu Chen
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hua Qin
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qinyi Yu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiqing Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Shuxun Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | | | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China.
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China.
| | - Xuetao Cao
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China.
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Cong B, Dong X, Yang Z, Yu P, Chai Y, Liu J, Zhang M, Zang Y, Kang J, Feng Y, Liu Y, Feng W, Wang D, Deng W, Li F, Song Z, Wang Z, Chen X, Qin H, Yu Q, Li Z, Liu S, Xu X, Zhong N, Ren X, Qin C, Liu L, Wang J, Cao X. Single-cell spatiotemporal analysis reveals alveolar dendritic cell-T cell immunity hubs defending against pulmonary infection. Cell Discov 2024; 10:103. [PMID: 39414763 PMCID: PMC11484931 DOI: 10.1038/s41421-024-00733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/18/2024] Open
Abstract
How immune cells are spatiotemporally coordinated in the lung to effectively monitor, respond to, and resolve infection and inflammation in primed form needs to be fully illustrated. Here we apply immunocartography, a high-resolution technique that integrates spatial and single-cell RNA sequencing (scRNA-seq) through deconvolution and co-localization analyses, to the SARS-CoV-2-infected Syrian hamster model. We generate a comprehensive transcriptome map of the whole process of pulmonary infection from physiological condition, infection initiation, severe pneumonia to natural recovery at organ scale and single-cell resolution, with 142,965 cells and 45 lung lobes from 25 hamsters at 5 time points. Integrative analysis identifies that alveolar dendritic cell-T cell immunity hubs, where Ccr7+Ido1+ dendritic cells, Cd160+Cd8+ T cells, and Tnfrsf4+Cd4+ T cells physiologically co-localize, rapidly expand during SARS-CoV-2 infection, eliminate SARS-CoV-2 with the aid of Slamf9+ macrophages, and then restore to physiological levels after viral clearance. We verify the presence of these cell subpopulations in the immunity hubs in normal and SARS-CoV-2-infected hACE2 mouse models, as well as in publicly available human scRNA-seq datasets, demonstrating the potential broad relevance of our findings in lung immunity.
Collapse
Affiliation(s)
- Boyi Cong
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuan Dong
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zongheng Yang
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Pin Yu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Yangyang Chai
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiaqi Liu
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Meihan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | - Yu Feng
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Yi Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | - Dehe Wang
- Changping Laboratory, Beijing, China
| | - Wei Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Fengdi Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiqi Song
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Ziqiao Wang
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaosu Chen
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Hua Qin
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Qinyi Yu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhiqing Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Shuxun Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Navy Medical University, Shanghai, China
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | | | | | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China.
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, Guangdong, China.
| | - Xuetao Cao
- State Key Laboratory of Medicinal Chemical Biology, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China.
- Department of Immunology, Center for Immunotherapy, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
6
|
Abady MM, Saadeldin IM, Han A, Bang S, Kang H, Seok DW, Kwon HJ, Cho J, Jeong JS. Melatonin and resveratrol alleviate molecular and metabolic toxicity induced by Bisphenol A in endometrial organoids. Reprod Toxicol 2024; 128:108628. [PMID: 38848930 DOI: 10.1016/j.reprotox.2024.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Bisphenol A (BPA), a widespread environmental contaminant, poses concerns due to its disruptive effects on physiological functions of the uterine endometrium. In contrast, melatonin (MT) and Resveratrol (RSV) are under scrutiny for their potential protective roles against BPA-induced damage. For the efficacy and ethical concerns in the animal test, endometrial organoids, three-dimensional models mimicking endometrium, serve as crucial tools for unraveling the impact of environmental factors on reproductive health. This study aimed to comprehensively characterize the morphological, molecular and metabolic responses of porcine endometrial organoids to BPA and assess the potential protective effects of MT and RSV. Porcine uteri were prepared, digested with collagenase, mixed with Matrigel, and incubated at 38°C with 5 % CO2. Passaging involved dissociation through trypsin-EDTA treatment and subculturing. The culture medium was refreshed every 2-3 days. To investigate the environmental impact on reproductive health, endometrial organoids were treated with BPA (0.5 µM), MT (with/without BPA at 0.1 µM), and/or RSV (10 µM). Various molecular screening using gene expression, western blotting, immunofluorescence staining, and metabolites profiling were assessed the effects of BPA, MT, and RSV in terms of cell viability, morphology, reproductivity, and metabolism alteration in the endometrial organoids. As expected, BPA induced structural and molecular disruptions in organoids, affecting cytoskeletal proteins, Wnt/β-catenin signaling, and epithelial/mesenchymal markers. It triggered oxidative stress and apoptotic pathways, altered miRNA expression, and disrupted the endocannabinoid system. The level of glucose, galactose, and essential amino acids were increased or decreased by approximately 1.5-3 times in BPA-treated groups compared to the control groups (p-value < 0.05), indicating metabolic changes. Moreover, MT and RSV treated groups exhibited protective effects, mitigating BPA-induced disruptions across multiple pathways. For the first time, our study models endometrial organoids, advancing understanding of environmental impacts on reproductive health.
Collapse
Affiliation(s)
- Mariam M Abady
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Nutrition and Food Science, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Islam M Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ayeong Han
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Heejae Kang
- College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong Wook Seok
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Ha-Jeong Kwon
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| | - Ji-Seon Jeong
- Organic Metrology Group, Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; Department of Bio-Analytical Science, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
7
|
Barroso-Arévalo S, Sánchez-Morales L, Porras N, Díaz-Frutos M, Barasona JA, Isla J, López D, Gortázar C, Domínguez L, Sánchez-Vizcaíno JM. Comparative SARS-CoV-2 Omicron BA.5 variant and D614G-Wuhan strain infections in ferrets: insights into attenuation and disease progression during subclinical to mild COVID-19. Front Vet Sci 2024; 11:1435464. [PMID: 39211479 PMCID: PMC11358085 DOI: 10.3389/fvets.2024.1435464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction As the SARS-CoV-2 virus continues to evolve and new variants emerge, it becomes crucial to understand the comparative pathological and immunological responses elicited by different strains. This study focuses on the original Wuhan strain and the Omicron variant, which have demonstrated significant differences in clinical outcomes and immune responses. Methods We employed ferrets as an experimental model to assess the D614G variant (a derivative of the Wuhan strain) and the Omicron BA.5 variant. Each variant was inoculated into separate groups of ferrets to compare disease severity, viral dissemination, and immune responses. Results The D614G variant induced more severe disease and greater viral spread than the Omicron variant. Notably, ferrets infected with the D614G variant exhibited a robust neutralizing antibody response, whereas those infected with the Omicron variant failed to produce a detectable neutralizing antibody response. Despite the clearance of the virus from nearly all tissues by 7 days post-infection, an increase in pathological lesions was observed from 14 to 21 days, particularly in those infected with the D614G variant, suggesting a sustained immune response even after viral clearance. Discussion These findings underscore the adaptability of SARS-CoV-2 and illuminate how susceptibility and clinical manifestations vary across different strains and species. The results emphasize the necessity of considering both the direct effects of viral infection and the indirect, often prolonged, impacts of the immune response in evaluating the outcomes of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Sandra Barroso-Arévalo
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Lidia Sánchez-Morales
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Néstor Porras
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Marta Díaz-Frutos
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose A. Barasona
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Débora López
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Christian Gortázar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Lucas Domínguez
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| | - Jose M. Sánchez-Vizcaíno
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
- VISAVET Health Surveillance Centre, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Deng W, Bao L, Song Z, Zhang L, Yu P, Xu Y, Wang J, Zhao W, Zhang X, Han Y, Li Y, Liu J, Lv Q, Liang X, Li F, Qi F, Deng R, Wang S, Xiong Y, Xiao R, Wang H, Qin C. Infection with SARS-CoV-2 can cause pancreatic impairment. Signal Transduct Target Ther 2024; 9:98. [PMID: 38609366 PMCID: PMC11014980 DOI: 10.1038/s41392-024-01796-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
Evidence suggests associations between COVID-19 patients or vaccines and glycometabolic dysfunction and an even higher risk of the occurrence of diabetes. Herein, we retrospectively analyzed pancreatic lesions in autopsy tissues from 67 SARS-CoV-2 infected non-human primates (NHPs) models and 121 vaccinated and infected NHPs from 2020 to 2023 and COVID-19 patients. Multi-label immunofluorescence revealed direct infection of both exocrine and endocrine pancreatic cells by the virus in NHPs and humans. Minor and limited phenotypic and histopathological changes were observed in adult models. Systemic proteomics and metabolomics results indicated metabolic disorders, mainly enriched in insulin resistance pathways, in infected adult NHPs, along with elevated fasting C-peptide and C-peptide/glucose ratio levels. Furthermore, in elder COVID-19 NHPs, SARS-CoV-2 infection causes loss of beta (β) cells and lower expressed-insulin in situ characterized by islet amyloidosis and necrosis, activation of α-SMA and aggravated fibrosis consisting of lower collagen in serum, an increase of pancreatic inflammation and stress markers, ICAM-1 and G3BP1, along with more severe glycometabolic dysfunction. In contrast, vaccination maintained glucose homeostasis by activating insulin receptor α and insulin receptor β. Overall, the cumulative risk of diabetes post-COVID-19 is closely tied to age, suggesting more attention should be paid to blood sugar management in elderly COVID-19 patients.
Collapse
Affiliation(s)
- Wei Deng
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Linlin Bao
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Zhiqi Song
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Ling Zhang
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Pin Yu
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Yanfeng Xu
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Jue Wang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Wenjie Zhao
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Xiuqin Zhang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yunlin Han
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Yanhong Li
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Jiangning Liu
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Qi Lv
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Xujian Liang
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Fengdi Li
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Feifei Qi
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Ran Deng
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Siyuan Wang
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Yibai Xiong
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China
| | - Ruiping Xiao
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, 100871, China.
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, 100871, China.
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
| | - Hongyang Wang
- Chinese Academy of Engineering, Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Yangpu District, Shanghai, 200438, China.
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai, 200438, PR China.
- National Laboratory for Oncogenes and Related Genes, Cancer Institute of Shanghai Jiao Tong University, Shanghai, 200441, PR China.
| | - Chuan Qin
- NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, 100021, China.
- Changping National laboratory (CPNL), Beijing, 102206, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, National Health Commission of the People's Republic of China, Beijing, PR China.
| |
Collapse
|
9
|
Chen L, Wang X, Liu C, Deng P, Pan L, Yang L, Cheng J, Zhang X, Reiter RJ, Yu Z, Pi H, Zhou Z, Hu H. Melatonin ameliorates atherosclerosis by suppressing S100a9-mediated vascular inflammation. Eur J Pharmacol 2023; 957:175965. [PMID: 37625682 DOI: 10.1016/j.ejphar.2023.175965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Atherosclerosis (AS)-associated cardiovascular diseases are predominant causes of morbidity and mortality worldwide. Melatonin, a circadian hormone with anti-inflammatory activity, may be a novel therapeutic intervention for AS. However, the exact mechanism is unclear. This research intended to investigate the mechanism of melatonin in treating AS. Melatonin (20 mg/kg/d) was intraperitoneally administered in a high-fat diet (HFD)-induced AS model using apolipoprotein E-deficient (ApoE-/-) mice for 12 weeks. Immunohistochemical and immunofluorescence analyses, data-independent acquisition (DIA)-based protein profiling, ingenuity pathway analysis (IPA), and western blotting were employed to investigate the therapeutic effects of melatonin in treating HFD-induced AS. An adeno-associated virus (AAV) vector was further used to confirm the antiatherosclerotic mechanism of melatonin. Melatonin treatment markedly attenuated atherosclerotic lesions, induced stable phenotypic sclerotic plaques, inhibited macrophage infiltration, and suppressed the production of proinflammatory cytokines in ApoE-/- mice with HFD-induced AS. Notably, DIA-based quantitative proteomics together with IPA identified S100a9 as a pivotal mediator in the protective effects of melatonin. Moreover, melatonin significantly suppressed HFD-induced S100a9 expression at both the mRNA and protein levels. The overexpression of S100a9 significantly activated the NF-κB signaling pathway and markedly abolished the antagonistic effect of melatonin on HFD-induced vascular inflammation during atherogenesis. Melatonin exerts a significant antiatherogenic effect by inhibiting S100a9/NF-κB signaling pathway-mediated vascular inflammation. Our findings reveal a novel antiatherosclerotic mechanism of melatonin and underlie its potential clinical use in modulating AS with good availability and affordability.
Collapse
Affiliation(s)
- Liyuan Chen
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xue Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, 400038, China
| | - Chang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, 400038, China
| | - Lina Pan
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lingling Yang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, 400038, China
| | - Juan Cheng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Xutao Zhang
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, TX, 78229, USA
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, 400038, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing, 400038, China.
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Houyuan Hu
- Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
10
|
Cupertino MDC, Freitas AND, Meira GSB, Silva PAMD, Pires SDS, Cosendey TDA, Fernandes TM, Mayers NAJ, Siqueira-Batista R. COVID-19 and One Health: potential role of human and animals in SARS-CoV-2 life cycle. SCIENCE IN ONE HEALTH 2023; 2:100017. [PMID: 39077046 PMCID: PMC10238119 DOI: 10.1016/j.soh.2023.100017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/01/2023] [Indexed: 07/31/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) in humans has zoonotic tendencies, which can potentially provoke cross-species transmission, including human-to-animal and animal-to-human infection. Consequently, the objective was to analyze the scientific evidence regarding SARS-CoV-2 animal infections from potential human transmission. A systematic review was executed following the PRISMA guidelines, in the PubMed/MEDLINE, Google Scholar and LILACS, using the descriptors combined in the following way: (("SARS-CoV-2" OR "COVID-19" OR "2019-nCoV") AND (animals OR zoonosis)). The results contemplated the viral susceptibility of about thirty animal species when induced naturally and/or experimentally. The mink & hamster species demonstrated ostensible animal-to-human transmission. Overall, there have been more reports of human contamination by other species than human retransmission from the pathogen. The natural infection of the virus was discovered in domestic dogs & cats, wild cats, deer, minks, rabbits and hamsters. Several animals, including the African green monkeys and rabbits, manifested high levels of viremia, respiratory secretions and fecal excretions of infectious virus conducive to environmental/aerosol transmission. It is still inadequately documented the intrinsic role of such processes, such as the animals' involvement in viral mutations, the emergence of new variants/lineages and the role of the animal host species. Accordingly, this research model type, natural and experimental analysis on varying animal species, corroborates the link between the two aforementioned forms of transmission. Epidemiological surveillance through extensive sequencing of the viral genomes of infected animals and humans can reveal the SARS-CoV-2 transmission routes and anticipate appropriate prophylactic strategies.
Collapse
Affiliation(s)
- Marli do Carmo Cupertino
- School of Medicine, Faculdade Dinâmica do Vale do Piranga (FADIP), Ponte Nova, MG, Brazil
- Department of Medicine and Nursing, Federal University of Viçosa (UFV), Viçosa, MG, Brazil
- Department of Veterinary Medicine, Federal University of Viçosa (UFV), Viçosa, MG, Brazil
| | - Ana Nery Dias Freitas
- School of Medicine, Faculdade Dinâmica do Vale do Piranga (FADIP), Ponte Nova, MG, Brazil
| | | | | | - Sarah de Souza Pires
- School of Medicine, Faculdade Dinâmica do Vale do Piranga (FADIP), Ponte Nova, MG, Brazil
| | | | | | | | - Rodrigo Siqueira-Batista
- School of Medicine, Faculdade Dinâmica do Vale do Piranga (FADIP), Ponte Nova, MG, Brazil
- Department of Medicine and Nursing, Federal University of Viçosa (UFV), Viçosa, MG, Brazil
| |
Collapse
|
11
|
Li Z, Wang Q, Lv N, Xu G, Yang X, Zhu B. Genome-wide identification of endogenous retrovirus elements and their active transcription in mink genome. MLIFE 2023; 2:201-208. [PMID: 38817617 PMCID: PMC10989824 DOI: 10.1002/mlf2.12074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/12/2023] [Accepted: 05/15/2023] [Indexed: 06/01/2024]
Abstract
Mammalian endogenous retroviruses (ERVs) are ancient retroviruses that have been integrated into genomes. ERVs were believed to be inactive until the discovery of ERV transcription in the mouse genome. However, the transcription level and function of ERV elements in mammalian genomes are not well understood. In this study, we performed the first genome-wide scanning of ERV loci in the American mink (Neogale vison) genome (NeoERV) followed by transcriptomic analysis to detect actively transcribed NeoERV elements. A total of 365,791 NeoERV loci were identified, and161,205 (44%) of these loci were found to be actively transcribed based on transcriptomic data from three types of tissues (amygdala, trachea and lung). More than one third of the actively transcribed NeoERV loci were tissue-specific. Furthermore, some of the active loci were associated with host gene transcription, and the level of NeoERV transcription was positively correlated with that of host genes, specifically when active loci were located in overlapped gene regions. An in-depth analysis of the envelope protein coding env gene showed that, in general, its transcription level was higher than that of NeoERVs, which is believed to be associated with host immunity.
Collapse
Affiliation(s)
- Zheng Li
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing Wang
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- Jiangxi Science and Technology Normal UniversityNanchangChina
| | - Na Lv
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
| | - Guojin Xu
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Xuemei Yang
- Beijing Pediatric Research InstituteBeijingChina
| | - Baoli Zhu
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Jinan Microecological Biomedicine Shandong LaboratoryJinanChina
- Department of Pathogenic Biology, School of Basic Medical SciencesSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
12
|
Berezhnoy G, Bissinger R, Liu A, Cannet C, Schäfer H, Kienzle K, Bitzer M, Häberle H, Göpel S, Trautwein C, Singh Y. Maintained imbalance of triglycerides, apolipoproteins, energy metabolites and cytokines in long-term COVID-19 syndrome patients. Front Immunol 2023; 14:1144224. [PMID: 37228606 PMCID: PMC10203989 DOI: 10.3389/fimmu.2023.1144224] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Background Deep metabolomic, proteomic and immunologic phenotyping of patients suffering from an infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have matched a wide diversity of clinical symptoms with potential biomarkers for coronavirus disease 2019 (COVID-19). Several studies have described the role of small as well as complex molecules such as metabolites, cytokines, chemokines and lipoproteins during infection and in recovered patients. In fact, after an acute SARS-CoV-2 viral infection almost 10-20% of patients experience persistent symptoms post 12 weeks of recovery defined as long-term COVID-19 syndrome (LTCS) or long post-acute COVID-19 syndrome (PACS). Emerging evidence revealed that a dysregulated immune system and persisting inflammation could be one of the key drivers of LTCS. However, how these biomolecules altogether govern pathophysiology is largely underexplored. Thus, a clear understanding of how these parameters within an integrated fashion could predict the disease course would help to stratify LTCS patients from acute COVID-19 or recovered patients. This could even allow to elucidation of a potential mechanistic role of these biomolecules during the disease course. Methods This study comprised subjects with acute COVID-19 (n=7; longitudinal), LTCS (n=33), Recov (n=12), and no history of positive testing (n=73). 1H-NMR-based metabolomics with IVDr standard operating procedures verified and phenotyped all blood samples by quantifying 38 metabolites and 112 lipoprotein properties. Univariate and multivariate statistics identified NMR-based and cytokine changes. Results Here, we report on an integrated analysis of serum/plasma by NMR spectroscopy and flow cytometry-based cytokines/chemokines quantification in LTCS patients. We identified that in LTCS patients lactate and pyruvate were significantly different from either healthy controls (HC) or acute COVID-19 patients. Subsequently, correlation analysis in LTCS group only among cytokines and amino acids revealed that histidine and glutamine were uniquely attributed mainly with pro-inflammatory cytokines. Of note, triglycerides and several lipoproteins (apolipoproteins Apo-A1 and A2) in LTCS patients demonstrate COVID-19-like alterations compared with HC. Interestingly, LTCS and acute COVID-19 samples were distinguished mostly by their phenylalanine, 3-hydroxybutyrate (3-HB) and glucose concentrations, illustrating an imbalanced energy metabolism. Most of the cytokines and chemokines were present at low levels in LTCS patients compared with HC except for IL-18 chemokine, which tended to be higher in LTCS patients. Conclusion The identification of these persisting plasma metabolites, lipoprotein and inflammation alterations will help to better stratify LTCS patients from other diseases and could help to predict ongoing severity of LTCS patients.
Collapse
Affiliation(s)
- Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Rosi Bissinger
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Anna Liu
- Research Institute of Women’s Health, University of Tübingen, Tübingen, Germany
| | - Claire Cannet
- Bruker BioSpin, Applied Industrial and Clinical Division, Ettlingen, Germany
| | - Hartmut Schäfer
- Bruker BioSpin, Applied Industrial and Clinical Division, Ettlingen, Germany
| | - Katharina Kienzle
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Michael Bitzer
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- Center for Personalized Medicine, University Hospital Tübingen, Tubingen, Germany
| | - Helene Häberle
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Siri Göpel
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University of Tübingen, Tübingen, Germany
| | - Yogesh Singh
- Research Institute of Women’s Health, University of Tübingen, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Next Generation Sequencing (NGS) Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Liu JF, Peng WJ, Wu Y, Yang YH, Wu SF, Liu DP, Liu JN, Yang JT. Proteomic and phosphoproteomic characteristics of the cortex, hippocampus, thalamus, lung, and kidney in COVID-19-infected female K18-hACE2 mice. EBioMedicine 2023; 90:104518. [PMID: 36933413 PMCID: PMC10017276 DOI: 10.1016/j.ebiom.2023.104518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Neurological damage caused by coronavirus disease 2019 (COVID-19) has attracted increasing attention. Recently, through autopsies of patients with COVID-19, the direct identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in their central nervous system (CNS) has been reported, indicating that SARS-CoV-2 might directly attack the CNS. The need to prevent COVID-19-induced severe injuries and potential sequelae is urgent, requiring the elucidation of large-scale molecular mechanisms in vivo. METHODS In this study, we performed liquid chromatography-mass spectrometry-based proteomic and phosphoproteomic analyses of the cortex, hippocampus, thalamus, lungs, and kidneys of SARS-CoV-2-infected K18-hACE2 female mice. We then performed comprehensive bioinformatic analyses, including differential analyses, functional enrichment, and kinase prediction, to identify key molecules involved in COVID-19. FINDINGS We found that the cortex had higher viral loads than did the lungs, and the kidneys did not have SARS-COV-2. After SARS-CoV-2 infection, RIG-I-associated virus recognition, antigen processing and presentation, and complement and coagulation cascades were activated to different degrees in all five organs, especially the lungs. The infected cortex exhibited disorders of multiple organelles and biological processes, including dysregulated spliceosome, ribosome, peroxisome, proteasome, endosome, and mitochondrial oxidative respiratory chain. The hippocampus and thalamus had fewer disorders than did the cortex; however, hyperphosphorylation of Mapt/Tau, which may contribute to neurodegenerative diseases, such as Alzheimer's disease, was found in all three brain regions. Moreover, SARS-CoV-2-induced elevation of human angiotensin-converting enzyme 2 (hACE2) was observed in the lungs and kidneys, but not in the three brain regions. Although the virus was not detected, the kidneys expressed high levels of hACE2 and exhibited obvious functional dysregulation after infection. This indicates that SARS-CoV-2 can cause tissue infections or damage via complicated routes. Thus, the treatment of COVID-19 requires a multipronged approach. INTERPRETATION This study provides observations and in vivo datasets for COVID-19-associated proteomic and phosphoproteomic alterations in multiple organs, especially cerebral tissues, of K18-hACE2 mice. In mature drug databases, the differentially expressed proteins and predicted kinases in this study can be used as baits to identify candidate therapeutic drugs for COVID-19. This study can serve as a solid resource for the scientific community. The data in this manuscript will serve as a starting point for future research on COVID-19-associated encephalopathy. FUNDING This study was supported by grants from the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, the National Natural Science Foundation of China, and the Natural Science Foundation of Beijing.
Collapse
Affiliation(s)
- Jiang-Feng Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wan-Jun Peng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
| | - Yue Wu
- School of Statistics and Data Science, Nankai University, Tianjin 300071, China
| | - Ye-Hong Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Song-Feng Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Jiang-Ning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China.
| | - Jun-Tao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
14
|
Zhang D, Li X, Zheng W, Gui L, Zeng W, Zeng Y, Yang Y, Fan R, Lu Y, Liu Y, Hu X, Mao N, Guan J, Li T, Cheng J, Yang H, Gong M. Probing the biocompatibility of Mo2C nanosheet through an integrated metabolomics approach: Toward boosting energy metabolism. Biointerphases 2022; 19:061002. [PMID: 39513732 DOI: 10.1116/6.0003872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024] Open
Abstract
An Mo2C nanosheet is an important two-dimensional nanomaterial with distinguished catalytic activity in biochemical applications. However, detailed information on Mo2C-induced changes in metabolic shifts, biosafety, and molecular mechanisms is insufficient. Integrated metabolomics (including aqueous metabolomics, lipidomics, and spatial metabolomics) has provided an excellent choice with massive bioinformation. In addition, the notion of "nanometabolomics" was first proposed and utilized to refer to these metabolomics studies on the biosafety, biocompatibility, and biological response of nanomaterials. Nanometabolomics innovatively combined nanoscience and metabolomics with massive bioinformation at the molecular level. For instance, in this work, nanometabolomics specialized in probing an Mo2C-induced metabolic shift of human umbilical vein endothelial cells (HUVECs) through integrated metabolomics. Furthermore, integrated metabolomics was used to examine the metabolic shift of HUVECs at the metabolome and lipidome levels, as well as the spatial distribution of different metabolites. The findings demonstrated that high doses (1 mg/ml) of an Mo2C nanosheet might produce an immediate improvement in HUVECs' energy metabolism, which was closely related to the improved morphology and function of mitochondria. The integrated metabolomics outcomes of this unique "Mo2C-cell" system increased our understanding of an Mo2C nanosheet. The proposed new word "nanometabolomics" could also be considered an excellent notion in representing nanomaterial-involved metabolomics studies.
Collapse
Affiliation(s)
- Dingkun Zhang
- Department of Pain Management, Anesthesia & Operation Center, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Li
- Department of Pain Management, Anesthesia & Operation Center, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wen Zheng
- Department of Pain Management, Anesthesia & Operation Center, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Luolan Gui
- Department of Pain Management, Anesthesia & Operation Center, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wenjuan Zeng
- Department of Pain Management, Anesthesia & Operation Center, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yu Zeng
- Department of Pain Management, Anesthesia & Operation Center, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yin Yang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong and Chengdu Research Institute, City University of Hong Kong, Chengdu 999077, People's Republic of China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong and Chengdu Research Institute, City University of Hong Kong, Chengdu 999077, People's Republic of China
| | - Yueqiu Liu
- Department of Pain Management, Anesthesia & Operation Center, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xinyi Hu
- Department of Pain Management, Anesthesia & Operation Center, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ning Mao
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610055, China
| | - Junwen Guan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Li
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Department of Pain Management, Anesthesia & Operation Center, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Department of Pain Management, Anesthesia & Operation Center, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Gong
- Department of Pain Management, Anesthesia & Operation Center, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Qi F, Qin C. Characteristics of animal models for COVID-19. Animal Model Exp Med 2022; 5:401-409. [PMID: 36301011 PMCID: PMC9610135 DOI: 10.1002/ame2.12278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19), the most consequential pandemic of this century, threatening human health and public safety. SARS-CoV-2 has been continuously evolving through mutation of its genome and variants of concern have emerged. The World Health Organization R&D Blueprint plan convened a range of expert groups to develop animal models for COVID-19, a core requirement for the prevention and control of SARS-CoV-2 pandemic. The animal model construction techniques developed during the SARS-CoV and MERS-CoV pandemics were rapidly deployed and applied in the establishment of COVID-19 animal models. To date, a large number of animal models for COVID-19, including mice, hamsters, minks and nonhuman primates, have been established. Infectious diseases produce unique manifestations according to the characteristics of the pathogen and modes of infection. Here we classified animal model resources around the infection route of SARS-CoV-2, and summarized the characteristics of the animal models constructed via transnasal, localized, and simulated transmission routes of infection.
Collapse
Affiliation(s)
- Feifei Qi
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina,National Center of Technology Innovation for Animal ModelBeijingChina
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijingChina,National Center of Technology Innovation for Animal ModelBeijingChina
| |
Collapse
|
16
|
Worobey M, Levy JI, Serrano LM, Crits-Christoph A, Pekar JE, Goldstein SA, Rasmussen AL, Kraemer MUG, Newman C, Koopmans MPG, Suchard MA, Wertheim JO, Lemey P, Robertson DL, Garry RF, Holmes EC, Rambaut A, Andersen KG. The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science 2022; 377:951-959. [PMID: 35881010 PMCID: PMC9348750 DOI: 10.1126/science.abp8715] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022]
Abstract
Understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 is critical to preventing future zoonotic outbreaks before they become the next pandemic. The Huanan Seafood Wholesale Market in Wuhan, China, was identified as a likely source of cases in early reports, but later this conclusion became controversial. We show here that the earliest known COVID-19 cases from December 2019, including those without reported direct links, were geographically centered on this market. We report that live SARS-CoV-2-susceptible mammals were sold at the market in late 2019 and that within the market, SARS-CoV-2-positive environmental samples were spatially associated with vendors selling live mammals. Although there is insufficient evidence to define upstream events, and exact circumstances remain obscure, our analyses indicate that the emergence of SARS-CoV-2 occurred through the live wildlife trade in China and show that the Huanan market was the epicenter of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Joshua I. Levy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lorena Malpica Serrano
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Alexander Crits-Christoph
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jonathan E. Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Stephen A. Goldstein
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Angela L. Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon SK S7N 5E3, Canada
- Center for Global Health Science and Security, Georgetown University, Washington, DC 20057, USA
| | | | - Chris Newman
- Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Oxford OX13 5QL, UK
| | - Marion P. G. Koopmans
- Pandemic and Disaster Preparedness Centre, Erasmus University Medical Center, 3015 CE Rotterdam, Netherlands
- Department of Viroscience, Erasmus University Medical Center, 3015 CE Rotterdam, Netherlands
| | - Marc A. Suchard
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000 Leuven, Belgium
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - David L. Robertson
- MRC-University of Glasgow Center for Virus Research, Glasgow G61 1QH, UK
| | - Robert F. Garry
- Global Virus Network (GVN), Baltimore, MD 21201, USA
- Tulane University, School of Medicine, Department of Microbiology and Immunology, New Orleans, LA 70112, USA
- Zalgen Labs, Frederick, MD 21703, USA
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| |
Collapse
|
17
|
Unbalanced IDO1/IDO2 Endothelial Expression and Skewed Keynurenine Pathway in the Pathogenesis of COVID-19 and Post-COVID-19 Pneumonia. Biomedicines 2022; 10:biomedicines10061332. [PMID: 35740354 PMCID: PMC9220124 DOI: 10.3390/biomedicines10061332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite intense investigation, the pathogenesis of COVID-19 and the newly defined long COVID-19 syndrome are not fully understood. Increasing evidence has been provided of metabolic alterations characterizing this group of disorders, with particular relevance of an activated tryptophan/kynurenine pathway as described in this review. Recent histological studies have documented that, in COVID-19 patients, indoleamine 2,3-dioxygenase (IDO) enzymes are differentially expressed in the pulmonary blood vessels, i.e., IDO1 prevails in early/mild pneumonia and in lung tissues from patients suffering from long COVID-19, whereas IDO2 is predominant in severe/fatal cases. We hypothesize that IDO1 is necessary for a correct control of the vascular tone of pulmonary vessels, and its deficiency in COVID-19 might be related to the syndrome’s evolution toward vascular dysfunction. The complexity of this scenario is discussed in light of possible therapeutic manipulations of the tryptophan/kynurenine pathway in COVID-19 and post-acute COVID-19 syndromes.
Collapse
|
18
|
Virtanen J, Aaltonen K, Kegler K, Venkat V, Niamsap T, Kareinen L, Malmgren R, Kivelä O, Atanasova N, Österlund P, Smura T, Sukura A, Strandin T, Dutra L, Vapalahti O, Nordgren H, Kant R, Sironen T. Experimental Infection of Mink with SARS-COV-2 Omicron Variant and Subsequent Clinical Disease. Emerg Infect Dis 2022; 28:1286-1288. [PMID: 35608951 PMCID: PMC9155874 DOI: 10.3201/eid2806.220328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report an experimental infection of American mink with SARS-CoV-2 Omicron variant and show that mink remain positive for viral RNA for days, experience clinical signs and histopathologic changes, and transmit the virus to uninfected recipients. Preparedness is crucial to avoid spread among mink and spillover to human populations.
Collapse
|