1
|
Wang J, Luo Y, Wu Y, Du F, Shi S, Duan Y, Chen A, Zhang J, Yu S. Single-cell Raman spectroscopy as a novel platform for unveiling the heterogeneity of mesenchymal stem cells. Talanta 2025; 292:127933. [PMID: 40081243 DOI: 10.1016/j.talanta.2025.127933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/15/2025]
Abstract
Despite the significant potential of mesenchymal stem cells (MSC) therapy in clinical settings, challenges persist regarding the efficient detection of consistency and uniformity of MSC populations. Raman spectroscopy is a fast, convenient, and nondestructive technique to acquire molecular properties of biomolecules across laboratory and mass-production settings. Here we utilized Raman spectroscopy to evaluate the heterogeneity of primary MSC from varying donors, passages, and distinct culture conditions, and compared its effectiveness with conventional techniques such as flow cytometry. Although these MSC exhibited insignificant differences in morphology and surface markers in flow cytometry analysis, they could be distinctly clustered into different populations by Raman spectroscopy and the subsequent machine learning using linear discriminant analysis. Principal component analysis demonstrated limited efficiency in clustering Raman data from diverse sources, which could be enhanced through combination with support vector machine or deterministic finite automation. These findings highlight the sensitivity of Raman spectroscopy in detecting subtle differences. Moreover, the analysis of characteristic Raman peaks attributed to cellular biomolecules in MSC from passages 2 (P2) to P10 revealed a gradual decrease in the levels of nucleic acids, lipids, and proteins with increasing passages, and a significant increase in carotenoids from P8. These results suggest the potential use of Raman spectroscopy to assess cellular biochemical characteristics such as aging, with carotenoids emerging as a potential marker of cell aging. In conclusion, Raman spectroscopy demonstrates the ability to rapidly and non-invasively detect cellular heterogeneity and biochemical status, offering significant potential for quality control in stem cell therapy.
Collapse
Affiliation(s)
- Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Yanjun Luo
- Shanghai D-Band Medical Technology Co., LTD, Shanghai, 201802, China
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Shuaiguang Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuhan Duan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Aoying Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China; Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China; Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
2
|
Del Prete C, Gaspari G, Kosior MA, Merlo B, Iacono E, Longobardi C, Martino NA, Dell'Aquila ME, Damiano S, Cocchia N, Gasparrini B, Lange-Consiglio A. Effects of Wharton's jelly mesenchymal stromal/stem cells-derived conditioned medium and platelet-rich plasma on in vitro induced equine endometrial inflammation. Theriogenology 2025; 241:117423. [PMID: 40198937 DOI: 10.1016/j.theriogenology.2025.117423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
Over the years, regenerative therapies have emerged as promising alternatives for persistent breeding-induced endometritis. In vitro studies testing the effects of these therapies on equine endometrial cells are still scarce. This study aimed to evaluate in vitro the effect of Wharton's jelly (WJ) mesenchymal stromal/stem cell (MSCs)-derived conditioned medium (WJ-CM) and platelet-rich plasma (PRP) on equine endometrial cells, with or without lipopolysaccharide (LPS)-induced inflammation. The WJ-CM was obtained after 24 h of starvation in Ringer's lactate of WJ-MSCs and PRP was prepared using the double centrifugation. Endometrial epithelial cells obtained from 3 diestrus mare uteri at slaughterhouse were treated for 24 h according to six experimental groups: DMEM standard complete medium (CTRL); 10 ng/mL LPS (LPS); 10 % WJ-CM (CM); 5 % PRP (PRP); 10 ng/mL LPS and 10 % WJ-CM (LPS + CM); 10 ng/mL LPS and 5 % PRP (LPS + PRP). After 6, 12, and 24 h, endometrial cells were evaluated for viability (apoptosis and necrosis), mitochondrial activity and reactive oxygen species (ROS) generation. PGE-2 and IL-10 concentrations in spent medium were measured. The WJ-CM alone did not affect endometrial cell viability and prevented the detrimental effect of LPS on endometrial cells; it suppressed the production of PGE-2. PRP had a deleterious effect on endometrial cell viability, induced the secretion of PGE-2, as well as increased mitochondrial activity and ROS production. Endometrial benefits of the WJ-CM treatment are evident even after an LPS challenge, while unexpectedly PRP showed a deleterious effect.
Collapse
Affiliation(s)
- Chiara Del Prete
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Giulia Gaspari
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Via Celoria, 10, Lodi, 20133, Milano, Italy
| | - Michal Andrzej Kosior
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Barbara Merlo
- Department of Veterinary Medical Sciences DIMEVET, Università di Bologna, Italy
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences DIMEVET, Università di Bologna, Italy
| | - Consiglia Longobardi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Elena Dell'Aquila
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Natascia Cocchia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Bianca Gasparrini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Anna Lange-Consiglio
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università degli Studi di Milano, Via Celoria, 10, Lodi, 20133, Milano, Italy
| |
Collapse
|
3
|
Saha T, Mehrotra S, Gupta P, Kumar A. Exosomal miRNA combined with anti-inflammatory hyaluronic acid-based 3D bioprinted hepatic patch promotes metabolic reprogramming in NAFLD-mediated fibrosis. Biomaterials 2025; 318:123140. [PMID: 39892017 DOI: 10.1016/j.biomaterials.2025.123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/03/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex metabolic disorder, where the underlying molecular mechanisms are mostly not well-understood and therefore, warrants the need for therapeutic interventions targeting several metabolic pathways as a unified response. Of late, promising outcomes have been observed with mesenchymal stem cell-derived exosomes. However, reduced bioavailability due to systemic delivery and the need for repeated fresh isolation hinders their feasibility for clinical applications. In this regard, an 'off-the-shelf' 3D bioprinted hyaluronic acid-based hepatic patch to deliver encapsulated exosomes alone/or with hepatocytes (as dual-therapy) is developed as a holistic approach for ameliorating the disease condition and promoting tissue regeneration. The bioprinted hepatic patch demonstrated sustained and localized release of exosomes (∼82 % in 21 days), and healthy liver tissue-like mechanical properties while being biocompatible and biodegradable. Assessment in NAFLD rat models displayed alleviation of the altered biochemical parameters such as fat deposition, deranged liver functions, disrupted lipid, glucose, and insulin metabolism along with a reduction in localized inflammation, and associated liver fibrosis. The study suggests that a synergistic effect between the miRNA population of released exosomes, cell therapy, and the bioprinted matrix materials is crucial in targeting multiple complex metabolic pathways associated with the severity of the disease.
Collapse
Affiliation(s)
- Triya Saha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| | - Purva Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India; Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| |
Collapse
|
4
|
Budi HS, Handajani J, Amir LR, Soekanto SA, Ulfa NM, Wulansari SA, Shen YK, Yamada S. Nanoemulgel Development of Stem Cells from Human Exfoliated Deciduous Teeth-Derived Conditioned Medium as a Novel Nanocarrier Growth Factors. Eur J Dent 2025. [PMID: 40267955 DOI: 10.1055/s-0045-1806963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVE We aimed to develop a nanoemulgel of stem cells from human exfoliated deciduous teeth-derived conditioned medium (SHED-CM) for oral wound biotherapy candidate. MATERIALS AND METHODS Deciduous tooth pulp was collected from two patients aged 6 years. The mesenchymal stem cell marker expression was analyzed by immunocytochemistry of CD45, CD90, and CD105. Alizarin red staining was performed to differentiate SHEDs from osteoblasts. The quantitative and quantification of transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF) secreted into conditioned media were measured using sodium dodecyl sulfate polyacrylamide gel electrophoresis and enzyme-linked immunosorbent assay. The characteristics of the nanoemulgel of SHED-CM (NESCM) were analyzed in terms of organoleptic properties, pH, and homogeneity. The cytotoxicity of NESCM 1.5% was analyzed in human gingival fibroblast (hGF) cell and osteoblast cell line (MC3T3) by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. STATISTICAL ANALYSIS The results were presented as mean ± standard deviation (X ± SD), and the differences between groups were analyzed using the post hoc Tukey's test at a significance level of p-value < 0.05. RESULTS SHEDs were successfully isolated, which were characterized for positive marker expressions of CD90 and CD105 and negative expression of CD45 as well as their osteogenic commitment. In SHED-CM, TGF-β and VEGF were detected on day 1 of conditioning and afterward. Notably, the growth factor enriched as the duration of conditioning increased. The generated nanoemulgel with SHED-CM was stable and homogeneous, and had limited cytotoxic effects on hGF and MC3T3 cell culture. CONCLUSION SHED-CM containing the growth factors can potentially be used as oral wound biotherapy in the form of nanoemulgel.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
- Cell and Biology Research, Surabaya Science Laboratory, Surabaya, Indonesia
| | - Juni Handajani
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Lisa Rinanda Amir
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Sri Angky Soekanto
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Ninik Mas Ulfa
- Department of Pharmaceutica, Pharmacology and Clinical Pharmacy, Surabaya Pharmacy Academy, Surabaya, Indonesia
| | - Silvi Ayu Wulansari
- Department of Pharmaceutica, Pharmacology and Clinical Pharmacy, Surabaya Pharmacy Academy, Surabaya, Indonesia
| | - Yung-Kang Shen
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shuntaro Yamada
- Center of Translational Oral Research, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Raik S, Kaur B, Kumar S, Rattan V, Kumar N, Bhattacharyya S. Secretome Derived From Mesenchymal Stem Cells Cultured as Monolayer Show Enhanced Bone Regeneration Compared to Secretome From 3D Spheroid - Clues From the Proteome. Adv Healthc Mater 2025:e2500885. [PMID: 40249147 DOI: 10.1002/adhm.202500885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Repair and reconstruction of critical-sized bone defects present a significant challenge due to poor clinical outcomes of conventional bone repair strategies, such as autologous and allogenic bone grafts. The present study underscores the potential of human dental pulp stem cell-derived trophic factors to promote bone repair and regeneration, thus evading the risks associated with cell-based therapy. This study utilizes pre-osteoblast cells to evaluate the osteogenic potential of 2 Dimensional (2D) and 3 Dimensional (3D) secretome from monolayer and spheroid cultures of dental pulp stem cells (DPSCs), respectively. In-vitro results on pre-osteoblast cells (MC3T3-EI) treated with 2D and 3D secretome reveal lower mineralization and mRNA expression of osteogenic specific genes in 3D secretome in comparison to 2D secretome. Furthermore, 2D secretome shows better bone regeneration ability in rat models of calvarial bone defect compared to the 3D secretome. The proteomic profiles of 2D and 3D secretomes are also in concordance with these results and reveal key molecules governing bone regeneration potential. This data highlights the influence of culture conditions on the secretory pattern of mesenchymal stem cells and provides valuable insights for the development of a more effective secretome-based cell-free alternative for novel bone repair and regeneration.
Collapse
Affiliation(s)
- Shalini Raik
- Department of Biophysics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Bhavneet Kaur
- Department of Cytology and Gynecologic Pathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Saroj Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Vidya Rattan
- Unit of oral and maxillofacial surgery, Department of Oral Health Sciences, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| |
Collapse
|
6
|
Shi M, Feng J, Chen P, Zhu B, Sun L, Ma Y, Zhang Y, Wang X. Targeted Dual Microdroplets for Modulating Osteoclast Differentiation and Function: A Novel Therapeutic Approach to Combat Osteoporosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22232-22244. [PMID: 40181685 PMCID: PMC12012778 DOI: 10.1021/acsami.4c21489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Osteoporosis, a condition marked by reduced bone mass and structural deterioration, continues to be a major public health concern, especially as global populations age. Excessive osteoclast formation is a hallmark of osteoporosis. The transcription factor nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) is indispensable for the early differentiation of osteoclasts, orchestrating the expression of essential genes, while at the later stages, cathepsin K (CTSK) is essential for bone resorption activities of mature osteoclasts. Here, we fabricated ultrasound-responsive microdroplets (MDs) by modulating both the early stages of osteoclast differentiation and the functions of mature osteoclasts via targeting the NFATc1 and CTSK. The internalization of these dual MDs was evaluated in human bone marrow-derived mesenchymal stromal cells (hBMSCs) and murine RAW 264.7 macrophages, alongside the biocompatibility assay. Their effects on osteogenesis and osteoclastogenesis were further investigated in vitro, followed by in vivo analysis in osteoporotic rat models. The dual MDs exhibited a well-defined core-shell structure and demonstrated efficient cellular uptake with minimal cytotoxicity. Furthermore, dual MDs showed a minimal effect on the osteogenic differentiation of the hBMSCs. In in vitro osteoclastogenesis assays, dual MDs effectively suppressed both osteoclast differentiation and formation through a synergistic inhibitory effect. In vivo studies demonstrated that osteoporotic rats receiving dual MDs showed significant protection against bone loss induced by ovariectomy. These results highlight the potential of dual MDs as a sophisticated, targeted therapeutic approach to osteoporosis treatment.
Collapse
Affiliation(s)
- Maobiao Shi
- Department
of Orthopaedic Surgery, Affiliated Hospital
of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Jin Feng
- Department
of Clinical Laboratory, Affiliated Hospital
of Zunyi Medical University, Zunyi, Guizhou 563099, China
| | - Ping Chen
- Department
of Orthopaedic Surgery, Affiliated Hospital
of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Binsong Zhu
- Department
of Orthopaedic Surgery, Affiliated Hospital
of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Langlang Sun
- Department
of Orthopaedic Surgery, Affiliated Hospital
of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Yaping Ma
- Department
of Orthopaedic Surgery, Affiliated Hospital
of Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Yi Zhang
- Department
of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, China
- Key Laboratory
of Maternal and Child Health and Exposure Science, Guizhou Provincial
Department of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Xin Wang
- Department
of Orthopaedic Surgery, Affiliated Hospital
of Zunyi Medical University, Zunyi, Guizhou 563003, China
- Guizhou Provincial
Key Laboratory of Medicinal Biotechnology in Colleges and Universities, Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
7
|
Ribeiro M. Advances in Cell-based therapies for peripheral arterial disease. Tissue Cell 2025; 95:102909. [PMID: 40250109 DOI: 10.1016/j.tice.2025.102909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
PURPOSE To examine recent advances in cell-based therapies for peripheral arterial disease (PAD), focusing on mechanisms of action, clinical applications, and regulatory considerations. The review aimed to evaluate the therapeutic potential of various cell types and assess their efficacy in addressing the unmet needs of PAD patients,particularly those with critical limb ischemia (CLI). METHODS The review analysed current literature on cell-based therapies for PAD, including preclinical studies using animal models, clinical trials from phase I to III, and regulatory frameworks. Multiple cell types were evaluated, including mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), bone marrow mononuclear cells (BMMNCs),and adipose-derived stem cells (ADSCs). RESULTS Preclinical studies demonstrated significant improvements in limb perfusion and neovascularization across various cell types. Clinical trials, particularly those utilizing MSCs and BM-MNCs, showed encouraging outcomes in wound healing and reduced amputation rates. The therapeutic effects were mediated through multiple mechanisms, including direct vessel formation, paracrine signalling, immunomodulation, and tissue repair. The FDA's implementation of a tiered, risk-based system for human cells, tissues, and cellular and tissue-based products (HCT/Ps) has provided a regulatory framework balancing innovation with safety. CONCLUSION Cell-based therapies show promising potential for PAD treatment, particularly for patients with limited conventional treatment options. While clinical trials demonstrate encouraging results, challenges remain in standardizing cell characterization methods and establishing appropriate potency assays. Future research should focus on optimizing cell delivery methods, identifying the most effective cell types, and conducting larger clinical trials to establish definitive efficacy.
Collapse
Affiliation(s)
- Maisa Ribeiro
- Medical College, Health Sciences Academic Unit, University Center of Mineiros, Mineiros, Goias, Brazil.
| |
Collapse
|
8
|
Keshavarz S, Alavi CE, Aghayan H, Jafari-Shakib R, Vojoudi E. Advancements in Degenerative Disc Disease Treatment: A Regenerative Medicine Approach. Stem Cell Rev Rep 2025:10.1007/s12015-025-10882-z. [PMID: 40232618 DOI: 10.1007/s12015-025-10882-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Regenerative medicine represents a transformative approach to treating nucleus pulposus degeneration and offers hope for patients suffering from chronic low back pain due to disc degeneration. By focusing on restoring the natural structure and function of the nucleus pulposus rather than merely alleviating symptoms, these innovative therapies hold the potential to significantly improve patient outcomes. As research continues to advance in this field, we may soon witness a paradigm shift in how we approach spinal health and degenerative disc disease. The main purpose of this review is to provide an overview of the various regenerative approaches that target the restoration of the nucleus pulposus, a primary site for initiation of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Samaneh Keshavarz
- School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Cyrus Emir Alavi
- Department of Anesthesiology, Neuroscience Research Center, Avicenna University Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular- Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari-Shakib
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, P.O.Box 41635 - 3363, Rasht, Iran.
| | - Elham Vojoudi
- Regenerative Medicine, Organ Procurement and Transplantation Multidisciplinary Center, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
9
|
Zhao G, Dai J, Hu Y. Development of regenerative therapies targeting fibrotic endometrium in intrauterine adhesion or thin endometrium to restore uterine function. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2842-6. [PMID: 40232669 DOI: 10.1007/s11427-024-2842-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 04/16/2025]
Abstract
Intrauterine adhesions (IUA) and thin endometrium (TE) represent significant challenges in human reproduction. The condition arises frequently from damage to the endometrial basal layer, leading to fibrous tissue replacing the functional endometrium and impairing the uterus's ability to accept embryo implantation. Conventional treatments, mainly including hysteroscopic adhesiolysis and estrogen therapies, have shown limited success, particularly in severe cases. Regenerative medicine, with its focus on stem cell-based therapies and biomaterials, offers a promising avenue for restoring endometrial function and structure. This review synthesizes the current landscape of endometrial regeneration, focusing on the therapeutic potential of stem cells, the supportive role of biomaterials, and the importance of understanding molecular mechanisms to develop effective strategies for reconstruction of endometrial functional and fertility restoration.
Collapse
Affiliation(s)
- Guangfeng Zhao
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Nanjing University Medical School, Nanjing University, Nanjing, 210009, China
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yali Hu
- Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Nanjing University Medical School, Nanjing University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Chen X, Jin J, Chen X, Wu Y, Guo Y, Qian Z, Huang H. Umbilical cord stem cells therapy against bacterial pneumonia based on zebrafish pneumonia model. Front Pharmacol 2025; 16:1546193. [PMID: 40271073 PMCID: PMC12014609 DOI: 10.3389/fphar.2025.1546193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Background The increasing incidence and mortality rates of respiratory system diseases globally pose a significant public health challenge. Bacterial pneumonia is one of the leading risk factors for acute lung injury. Conventional antibiotics face inherent limitations, particularly the increase in bacterial resistance and inability to suppress inflammatory states, underscoring the urgent need for novel approaches to combat bacterial pneumonia. Methods This study evaluated the therapeutic effects of umbilical cord mesenchymal stem cells (UC-MSCs) on bacterial pneumonia in a zebrafish model, focusing on their impact on macrophage and neutrophil counts and their inhibitory effects on in vivo inflammatory responses. The anti-inflammatory mechanisms of UC-MSCs, including their effects on the secretion of inflammatory factors IL-1β, IL-6, and TNF-α, as well as their regulation of NLRP3, TLR4, and NF-kB mRNA expression and NLRP3, p65, and TLR4 protein levels, were further investigated. Results Our study found that UC-MSCs can effectively inhibit the development of bacterial pneumonia, primarily by reducing the number of macrophages and neutrophils and inhibiting the secretion of inflammatory factors IL-1β, IL-6, and TNF-α, thereby suppressing in vivo inflammatory reactions. Additionally, UC-MSCs significantly downregulated the expression of NLRP3, TLR4, and NF-kB mRNA, as well as the levels of NLRP3,TLR4, and p65 proteins. Conclusion UC-MSCs demonstrate promising potential in the treatment of bacterial pneumonia. This study provides important reference for the therapeutic effects and mechanisms of stem cell treatment of bacterial pneumonia, offering new avenues for clinical applications.
Collapse
Affiliation(s)
- Xueli Chen
- Department of pediatric pulmonology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Jian Jin
- Department of Medical Equipment, Wuhan No. 1 Hospital, Wuhan, China
| | - Xia Chen
- Department of pediatric pulmonology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Yabin Wu
- Department of pediatric pulmonology, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Youjun Guo
- Beijing Duan-Dian Pharmaceutical Research and Development Co., Ltd., Beijing, China
| | - Zuoyu Qian
- Beijing Duan-Dian Pharmaceutical Research and Development Co., Ltd., Beijing, China
| | - Hui Huang
- Beijing Duan-Dian Pharmaceutical Research and Development Co., Ltd., Beijing, China
| |
Collapse
|
11
|
Nunes A, Zhang T, Mu X, Robbins PD. Therapeutic application of extracellular vesicles in human diseases. Mol Ther 2025:S1525-0016(25)00276-X. [PMID: 40186351 DOI: 10.1016/j.ymthe.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025] Open
Abstract
Extracellular vesicles (EVs) are membrane vesicles released or secreted from almost all cell types. EVs are derived from multivesicular bodies or from the plasma membrane and contain a subset of proteins, lipids, and nucleic acids (e.g., DNA, RNA, and microRNA [miRNA]) derived from the parent cell. EVs play important roles in intercellular communication by efficiently transferring the content between cells both locally and systemically. Given their natural ability to transfer cargo to cells, sometimes in a targeted manner, and their apparent lack of immunogenicity, EVs are being engineered for delivery of therapeutic RNAs, DNAs, miRNAs, viral particles, drugs, and even proteins. In addition, many of the therapeutic effects of stem cell treatments are mediated by stem cell-derived EVs, which are safer and potentially more effective than the parental stem cells. Here we provide an overview of the use of EVs for delivery of different therapeutic nucleic acids, viruses, and drugs, as well as the use of therapeutic stem cell-derived EVs.
Collapse
Affiliation(s)
- Allancer Nunes
- Masonic Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tianpeng Zhang
- Masonic Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaodong Mu
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Paul D Robbins
- Masonic Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
12
|
Costa-Ferro ZSM, Cunha RS, Rossi EA, Loiola EC, Cipriano BP, Figueiredo JCQ, da Silva EA, de Lima AVR, de Jesus Ribeiro AM, Moitinho Junior VS, Adanho CSA, Nonaka CKV, Silva AMDS, da Silva KN, Rocha GV, De Felice FG, do Prado-Lima PAS, Souza BSDF. Extracellular vesicles derived from mesenchymal stem cells alleviate depressive-like behavior in a rat model of chronic stress. Life Sci 2025; 366-367:123479. [PMID: 39983828 DOI: 10.1016/j.lfs.2025.123479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/03/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Depression is a prevalent chronic psychiatric disorder with a growing impact on global health. Current treatments often fail to achieve full remission, highlighting the need for alternative therapeutic strategies. Mesenchymal stem cells (MSCs) have attracted significant interest for their therapeutic potential in neuropsychiatric disorders, primarily due to their capacity to target neuroinflammation. This study aimed to investigate if extracellular vesicles derived from human umbilical MSCs (hucMSCs) promote behavioral beneficial actions in a rat model of chronic unpredictable mild stress (CUMS). We show that a single dose of hucMSCs or their derived EVs (hucMSC-EVs) via the tail vein alleviated depressive-like behavior in rats, reduced markers of neuroinflammation, reduced pro-inflammatory cytokines (IL-1β and TNF-α), and increased the number and dendritic complexity of DCX-positive cells in the dentate gyrus. Proteomic analysis of EVs revealed the presence of proteins involved in modulation of inflammatory processes and cell activation. Our study demonstrates EVs derived from hucMSCs can effectively mitigate depressive symptoms by modulating neuroinflammatory pathways and enhancing neurogenesis. These findings support further exploration of MSC-derived EVs as a novel therapeutic option for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zaquer Suzana Munhoz Costa-Ferro
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Rachel Santana Cunha
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Erik Aranha Rossi
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil; Pioneer Science Initiative, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Erick Correia Loiola
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Barbara Porto Cipriano
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Júlio César Queiroz Figueiredo
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Elisama Araújo da Silva
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Adne Vitória Rocha de Lima
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Adlas Michel de Jesus Ribeiro
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | | | - Corynne Stephanie Ahouefa Adanho
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | | | - Kátia Nunes da Silva
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Gisele Vieira Rocha
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil
| | - Fernanda Guarino De Felice
- D'OR Institute for Research and Education, Rio de Janeiro, Brazil; Centre for Neuroscience Studies, Departments of Biomedical and Molecular Sciences & Psychiatry, Queen's University, Kingston, ON, Canada; Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, RJ, Brazil; Pioneer Science Initiative, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | | | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil; D'Or Institute for Research and Education, Salvador, Brazil; Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil; Pioneer Science Initiative, D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Kwon J(E, Kang C, Moghtader A, Shahjahan S, Bibak Bejandi Z, Alzein A, Djalilian AR. Emerging Treatments for Persistent Corneal Epithelial Defects. Vision (Basel) 2025; 9:26. [PMID: 40265394 PMCID: PMC12015846 DOI: 10.3390/vision9020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Persistent corneal epithelial defects (PCEDs) are a challenging ocular condition characterized by the failure of complete corneal epithelial healing after an insult or injury, even after 14 days of standard care. There is a lack of therapeutics that target this condition and encourage re-epithelialization of the corneal surface in a timely and efficient manner. This review aims to provide an overview of current standards of management for PCEDs, highlighting novel, emerging treatments in this field. While many of the current non-surgical treatments aim to provide lubrication and mechanical support, novel non-surgical approaches are undergoing development to harness the proliferative and healing properties of human mesenchymal stem cells, platelets, lufepirsen, hyaluronic acid, thymosin ß4, p-derived peptide, and insulin-like growth factor for the treatment of PCEDs. Novel surgical treatments focus on corneal neurotization and limbal cell reconstruction using novel scaffold materials and cell-sources. This review provides insights into future PCED treatments that build upon current management guidelines.
Collapse
Affiliation(s)
- Jeonghyun (Esther) Kwon
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.K.); (A.M.); (S.S.); (Z.B.B.); (A.A.)
| | - Christie Kang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA;
| | - Amirhossein Moghtader
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.K.); (A.M.); (S.S.); (Z.B.B.); (A.A.)
| | - Sumaiya Shahjahan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.K.); (A.M.); (S.S.); (Z.B.B.); (A.A.)
| | - Zahra Bibak Bejandi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.K.); (A.M.); (S.S.); (Z.B.B.); (A.A.)
| | - Ahmad Alzein
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.K.); (A.M.); (S.S.); (Z.B.B.); (A.A.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (J.K.); (A.M.); (S.S.); (Z.B.B.); (A.A.)
| |
Collapse
|
14
|
Zhao B, Wang C, Sun M, Ma X, Zeng Q, Xi J, Zhou J, Pei X, Jia Y, Yue W. UC-MSCs based on biomimetic microniche exert excellent regulatory effects on acute brain inflammation through advantageous properties. Biomaterials 2025; 315:122945. [PMID: 39522143 DOI: 10.1016/j.biomaterials.2024.122945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/13/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Neuroinflammation triggered by activated microglia leads to neuronal damage and, to a certain extent, neurodegeneration. Human umbilical cord mesenchymal stem cells (UC-MSCs) have good immunomodulatory and neuroprotective effects as well as therapeutic potential for neuroinflammation-related diseases. However, the complex microenvironment created by neuroinflammation poses a challenge to transplanted UC-MSCs. The emerging biomimetic microniche (BN)-based culture technology provides new opportunities to optimize the preparation of UC-MSCs; but the fundamental changes in the characteristics of UC-MSCs based on BN remain unclear, and more reliable preclinical data are needed to support their ability to regulate inflammation. Here, we systematically studied the cellular properties and inflammation regulatory capacity of UC-MSCs in conventional static planar culture (SP-UCMSCs) and suspension culture based on BN (BN-UCMSCs). In vitro, compared with SP-UCMSCs, BN-UCMSCs not only maintained the fundamental characteristics of MSCs, but also significantly enhanced cell proliferation, adhesion, and migration capabilities, etc; notably, the paracrine function and anti-inflammatory capacity of BN-UCMSCs were also enhanced. We further established a murine model of acute brain inflammation and demonstrated that the expression level of pro-inflammatory cytokines in hippocampal and cortical tissues of the BN-UCMSCs group was significantly decreased compared with that in the SP-UCMSCs group. Subsequent transcriptomic analysis of hippocampal and cortical tissues revealed that BN-UCMSCs had the advantage of significantly reducing the expression of pro-inflammatory cytokines through the TLR4-Myd88-NF-κB axis, which was further validated at the gene and protein levels. Taken together, these data strongly indicated that BN-UCMSCs exerts excellent regulatory effects on acute brain inflammation through advantageous properties.
Collapse
Affiliation(s)
- Bichun Zhao
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chao Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Manqiang Sun
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiaocao Ma
- Institute of Stomatology & Oral Maxilla Facial Key Laboratory, Chinese PLA General Hospital, Beijing, 100853, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jiafei Xi
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Junnian Zhou
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Yali Jia
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
15
|
An C, Zhao Y, Guo L, Zhang Z, Yan C, Zhang S, Zhang Y, Shao F, Qi Y, wang X, Wang H, Zhang L. Innovative approaches to boost mesenchymal stem cells efficacy in myocardial infarction therapy. Mater Today Bio 2025; 31:101476. [PMID: 39896290 PMCID: PMC11787032 DOI: 10.1016/j.mtbio.2025.101476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Stem cell-based therapy has emerged as a promising approach for heart repair, potentially regenerating damaged heart tissue and improving outcomes for patients with heart disease. However, the efficacy of stem cell-based therapies remains limited by several challenges, including poor cell survival, low retention rates, poor integration, and limited functional outcomes. This article reviews current enhancement strategies to optimize mesenchymal stem cell therapy for cardiac repair. Key approaches include optimizing cell delivery methods, enhancing cell engraftment, promoting cell functions through genetic and molecular modifications, enhancing the paracrine effects of stem cells, and leveraging biomaterials and tissue engineering techniques. By focusing on these enhancement techniques, the paper highlights innovative approaches that can potentially transform stem cell therapy into a more viable and effective treatment option for cardiac repair. The ongoing research and technological advancements continue to push the boundaries, hoping to make stem cell therapy a mainstream treatment for heart disease.
Collapse
Affiliation(s)
- Chuanfeng An
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| | - Yuan Zhao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
| | - Lipeng Guo
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| | - Zhijian Zhang
- Department of Ophthalmology, Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, PR China
| | - Chunxiao Yan
- Department of Ophthalmology, Third People's Hospital of Dalian, Dalian Medical University, Dalian, 116033, PR China
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen, 518060, PR China
| | - Yujie Zhang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
| | - Fei Shao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
| | - Yuanyuan Qi
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| | - Xun wang
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| | - Huanan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Liaoning, Dalian, 116024, PR China
| | - Lijun Zhang
- Ophthalmology and Transformational Innovation Research Center, Faculty of Medicine of Dalian University of Technology&Dalian Third People's Hospital, Dalian, 116033, PR China
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116033, PR China
| |
Collapse
|
16
|
Wang Z, Wang L, Li S, Chen X, Chen B, Lou Z, Li Z, Deng R, Xie L, Wang J, Liu X, Kang R. Crosslinking stabilization strategy: A novel approach to cartilage-like repair of annulus fibrosus (AF) defects. Mater Today Bio 2025; 31:101625. [PMID: 40124345 PMCID: PMC11929887 DOI: 10.1016/j.mtbio.2025.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/05/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Lumbar disc degeneration due to annulus fibrosus (AF) defects poses a significant challenge in clinical treatment Current treatments exhibit limited repair efficacy and a high recurrence rate. To address this, we devised a novel approach of crosslinking stabilization strategy. We integrated fibrinogen, thrombin, genipin, and human bone marrow-derived mesenchymal stem cells (hBMSCs) hydrogel (FTGB) with acellular scaffold and fascia (FTGB@S@F) to remediate AF defects. FTIR analysis confirmed stable chemical crosslinking within the FTGB hydrogel. FTGB hydrogel demonstrated superior biocompatibility compared to the FB hydrogel, with significantly higher cell viability (97.60 ± 2.02 % vs 81.43 ± 4.50 %, P < 0.01) and enhanced proliferation and migration, as shown in DAPI, Edu and phalloidin staining. Atomic force microscopy (AFM) revealed that FTGB@S has a dense reticular structure, enhancing material performance with higher elastic modulus than FB@S. MTS testing showed that FTGB@S@F outperformed other groups in resisting cyclic axial load (25.53 ± 1.17 MPa) and maintaining disc height (0.57 ± 0.12 mm), with stable axial compression resistance and minimal deformation. It also exhibited the lowest rupture ROM (1.45 ± 0.17 mm) and a rupture modulus close to the Intact control, demonstrating its potential to restore AF mechanical function. MRI imaging revealed that the FTGB@S@F group preserved an intact AF structure with high signal intensity, a significantly larger NP area (223.64 ± 73.32 mm2 vs 137.30 ± 75.31 mm2, P < 0.05), and higher disc height (102.5 ± 73.32 % vs 88.50 ± 12.86 %, P < 0.05). Histology confirmed superior AF repair and reduced NP degeneration in the FTGB@S@F group compared to the Un-repair and FB@S@F groups. Transcriptomic analysis identified upregulation of PIGR and downregulation of COL4A3, linked to the PI3K-Akt pathway. Immunohistochemical and qPCR analyses showed enhanced expression of COL1, Aggrecan, and RhoA, indicating effective regeneration.
Collapse
Affiliation(s)
- Zihan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, 210028, PR China
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, 214000, PR China
| | - Lei Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, 210028, PR China
| | - Shaoshuo Li
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, 214000, PR China
| | - Xin Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, 210028, PR China
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Bo Chen
- Materials Science and Devices Institute, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Zhichao Lou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province, 210037, PR China
| | - Zheng Li
- Peking Union Medical College Hospital, Beijing, 100730, PR China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, 210028, PR China
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, 210028, PR China
| | - Jianwei Wang
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu Province, 214000, PR China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, 210028, PR China
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province, 210028, PR China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu Province, 210028, PR China
| |
Collapse
|
17
|
Kamrani S, Naseramini R, Khani P, Razavi ZS, Afkhami H, Atashzar MR, Nasri F, Alavimanesh S, Saeidi F, Ronaghi H. Mesenchymal stromal cells in bone marrow niche of patients with multiple myeloma: a double-edged sword. Cancer Cell Int 2025; 25:117. [PMID: 40140850 PMCID: PMC11948648 DOI: 10.1186/s12935-025-03741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/08/2025] [Indexed: 03/28/2025] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy defined by the abnormal proliferation and accumulation of plasma cells (PC) within the bone marrow (BM). While multiple myeloma impacts the bone, it is not classified as a primary bone cancer. The bone marrow microenvironment significantly influences the progression of myeloma and its treatment response. Mesenchymal stromal cells (MSCs) in this environment engage with myeloma cells and other bone marrow components via direct contact and the secretion of soluble factors. This review examines the established roles of MSCs in multiple facets of MM pathology, encompassing their pro-inflammatory functions, contributions to tumor epigenetics, effects on immune checkpoint inhibitors (ICIs), influence on reprogramming, chemotherapy resistance, and senescence. This review investigates the role of MSCs in the development and progression of MM.
Collapse
Affiliation(s)
- Sina Kamrani
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Reza Naseramini
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouria Khani
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Mohammad Reza Atashzar
- Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Farzad Nasri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Alavimanesh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farzane Saeidi
- Department of Medical Genetics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Hossein Ronaghi
- Department of Orthopedic, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
18
|
Guan A, Alibrandi L, Verma E, Sareen N, Guan Q, Lionetti V, Dhingra S. Clinical translation of mesenchymal stem cells in ischemic heart failure: Challenges and future perspectives. Vascul Pharmacol 2025; 159:107491. [PMID: 40112941 DOI: 10.1016/j.vph.2025.107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Myocardial infarction (MI) with resulting congestive heart failure is one of the leading causes of death worldwide. Current therapies for treating MI, such as devices, traditional medicine, and surgeries, come with many limitations as patients in their final stages of heart failure have little chances of experiencing any reversible changes. In recent decades, Mesenchymal stem cell (MSC) based therapy has become one of the most popular and rapidly developing fields in treating MI. Their supremacy for clinical applications is partially due to their unique properties and encouraging pre-clinical outcomes in various animal disease models. However, the majority of clinical trials registered for MSC therapy for diverse human diseases, including MI, have fallen short of expectations. This review intends to discuss the recent advances in the clinical application of using MSCs for cardiac repair and discuss challenges facing the clinical translation of MSCs for cardiac regeneration such as restoration of endothelial-cardiomyocyte crosstalk, immunomodulation and immune rejection, poor homing and migration, as well as low retention and survival. Furthermore, we will discuss recent strategies being investigated to help overcome some of these challenges.
Collapse
Affiliation(s)
- Anqi Guan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Lisa Alibrandi
- TrancriLab, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Qingdong Guan
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba; Department of Immunology and Internal Medicina, University of Manitoba, Winnipeg, Canada
| | - Vincenzo Lionetti
- TrancriLab, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy.; UOSVD Anesthesiology and Intensive Care, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada.
| |
Collapse
|
19
|
Cui C, Lin F, Xia L, Zhang X. Mesenchymal stem cells therapy for the treatment of non-union fractures: a systematic review and meta-analysis. BMC Musculoskelet Disord 2025; 26:245. [PMID: 40069694 PMCID: PMC11900535 DOI: 10.1186/s12891-025-08365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND This meta-analysis aimed to pool the existing evidence to determine the clinical efficacy and safety of mesenchymal stem cells (MSC) in patients with non-unions. METHODS A systematic search in PubMed and Scopus was performed until October 2024 to gather pertinent studies. The inclusion criteria included participants with non-unions, the intervention of MSC administration, a comparator of standard treatment (bone graft), and outcomes focused on healing rate, healing time, or side effects. The Jadad score Newcastle-Ottawa Scale (NOS) was used to assess the risk of bias in randomized and non-randomized studies, respectively. Moreover, GRADE criteria were used to assess the quality of evidence. Using a random effects model, odds ratios (OR) with 95% confidence intervals (CIs) were calculated for healing and complication rates, while standardized mean differences (SMD) with their 95% CIs were used to assess the impact of MSC therapy on bone union time. RESULTS Twenty-one studies, with 866 patients, were included. The bone healing rates were 44% at 3 months, 73% at 6 months, 90% at 9 months, and 86% at 12 months, eventually reaching 91% after 12 months of follow-up. MSC therapy, with or without scaffolds, was linked to higher odds of bone healing rate at 3 and 6 months, compared to bone grafts as the standard care (OR = 1.69). The time to union following the treatment was 6.30 months (95%CI: 86-96%), with patients treated with MSC/Scaffold experiencing a shorter time compared to MSC alone (5.85 vs. 6.36 months). MSC therapy significantly decreased bone union time (SMD:-0.54 months, 95% CI: -0.75 to -0.33). The complication rate was 1% (MSC/Scaffold: 0%, MSC alone: 2%), with MSC alone or MSC/Scaffold showing a lower risk than the standard care (OR = 0.41, 95% CI: 0.22-0.78). CONCLUSION MSC is a potential adjunct therapy for patients with non-union fractures. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Cunbao Cui
- Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, NO. 105, Jiefang Road, Jinan, 250013, China
| | - Feng Lin
- Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, NO. 105, Jiefang Road, Jinan, 250013, China
| | - Liang Xia
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, NO. 105, Jiefang Road, Jinan, 250013, China
| | - Xinguang Zhang
- Department of Joint Surgery, Central Hospital Affiliated to Shandong First Medical University, NO. 105, Jiefang Road, Jinan, 250013, China.
| |
Collapse
|
20
|
Miłek O, Schwarz K, Miletić A, Reisinger J, Kovar A, Behm C, Andrukhov O. Regulation and functional importance of human periodontal ligament mesenchymal stromal cells with various rates of CD146+ cells. Front Cell Dev Biol 2025; 13:1532898. [PMID: 40123853 PMCID: PMC11925893 DOI: 10.3389/fcell.2025.1532898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) with high expression of CD146 have superior properties for tissue regeneration. However, high variability in the rate of CD146+ cells among donors is observed. In this study, the possible reasons behind this variability in human periodontal ligament MSCs (hPDL-MSCs) were explored. Methods hPDL-MSCs were isolated from 22 different donors, and rates of CD146+ cells were analyzed by flow cytometry. Furthermore, populations with various rates of CD146+ cells were isolated with magnetic separation. The dependency of cell proliferation, viability, cell cycle, and osteogenic differentiation on the rates of CD146+ cells was investigated. Besides, the effects of various factors, like cell density, confluence, and inflammatory environment on the CD146+ rate and expression were analyzed. Results The rate of CD146+ cells exhibited high variability between donors, with the percentage of CD146+ cells ranging from 3% to 67%. Higher percentage of CD146+ cells was associated with higher proliferation, presumably due to the higher percentage of cells in the S-phase, and higher osteogenic differentiation potential. Prolonged cell confluence and higher cell seeding density led to the decline in the rate of CD146+ cells. The surface rate of CD146 in hPDL-MSCs was stimulated by the treatment with interleukin-1β and tumor necrosis factor-α, and inhibited by the treatment with interferon-γ. Conclusion These results suggest that hPDL-MSCs with high rate of CD146+ cells are a promising subpopulation for enhancing the effectiveness of MSC-based regenerative therapies, however the rate of CD146 is affected by various factors, which must be considered for cell propagation and their potential application in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Wang S, Chen X, Liu Y, Jiang Y, Li J, Ren L, Wang J, Wang Z, Li Y, Wu H, Zhang Y, Gao Y, Wang L. Hybrid Biomembrane-Functionalized Nanorobots Penetrate the Vitreous Body of the Eye for the Treatment of Retinal Vein Occlusion. ACS NANO 2025; 19:7728-7741. [PMID: 39964811 DOI: 10.1021/acsnano.4c12327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Intravitreal injections of antivascular endothelial growth factor (VEGF) agents are the primary method for treating retinal vein occlusion (RVO). However, the complex structure of eye anatomy presents ocular barriers that impede drug delivery. Additionally, these drugs only manage the complications associated with RVO and fail to address the underlying cause of vessel occlusions. Here, we describe a method that utilizes functionalized magnetically driven nanorobots to overcome ocular barriers and treat RVO. These nanorobots are developed using a hybrid biomembrane that combines stem cell membranes with liposome-derived membranes, enveloping perfluorohexane, iron oxide nanoparticles, and l-arginine. After intravitreal injection, the nanorobots can move directionally through and penetrate the vitreous body to reach the retina, driven by an external magnetic field. Subsequently, the nanorobots actively target the inflammation sites at occluded vessels due to the presence of stem cell membranes. In a rat model of RVO, enhanced targeting and accumulation in ischemic retinal vessels were demonstrated following intravitreal injections. Furthermore, the application of ultrasound triggers the release of l-arginine at the site of occlusion, stimulating the production of nitric oxide, which promotes vasodilation and restores blood flow, thereby achieving excellent therapeutic efficacy for RVO. We believe these methods hold significant promise for overcoming challenges in ocular drug delivery and effectively treating RVO in clinical applications.
Collapse
Affiliation(s)
- Siyu Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Xinmeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yewei Liu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yishuo Jiang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jie Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lili Ren
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jiahui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Zhixuan Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Yichong Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Haoan Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| |
Collapse
|
22
|
Pan Y, Li L, Cao N, Liao J, Chen H, Zhang M. Advanced nano delivery system for stem cell therapy for Alzheimer's disease. Biomaterials 2025; 314:122852. [PMID: 39357149 DOI: 10.1016/j.biomaterials.2024.122852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Alzheimer's Disease (AD) represents one of the most significant neurodegenerative challenges of our time, with its increasing prevalence and the lack of curative treatments underscoring an urgent need for innovative therapeutic strategies. Stem cells (SCs) therapy emerges as a promising frontier, offering potential mechanisms for neuroregeneration, neuroprotection, and disease modification in AD. This article provides a comprehensive overview of the current landscape and future directions of stem cell therapy in AD treatment, addressing key aspects such as stem cell migration, differentiation, paracrine effects, and mitochondrial translocation. Despite the promising therapeutic mechanisms of SCs, translating these findings into clinical applications faces substantial hurdles, including production scalability, quality control, ethical concerns, immunogenicity, and regulatory challenges. Furthermore, we delve into emerging trends in stem cell modification and application, highlighting the roles of genetic engineering, biomaterials, and advanced delivery systems. Potential solutions to overcome translational barriers are discussed, emphasizing the importance of interdisciplinary collaboration, regulatory harmonization, and adaptive clinical trial designs. The article concludes with reflections on the future of stem cell therapy in AD, balancing optimism with a pragmatic recognition of the challenges ahead. As we navigate these complexities, the ultimate goal remains to translate stem cell research into safe, effective, and accessible treatments for AD, heralding a new era in the fight against this devastating disease.
Collapse
Affiliation(s)
- Yilong Pan
- Department of Cardiology, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| | - Long Li
- Department of Neurosurgery, First Hospital of China Medical University, Liaoning, 110001, China.
| | - Ning Cao
- Army Medical University, Chongqing, 400000, China
| | - Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| | - Huiyue Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, 110001, China.
| | - Meng Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Liaoning, 110004, China.
| |
Collapse
|
23
|
Casado-Santos A, González-Cubero E, García-Rodríguez MB, Carrera-Serna Á, González-Fernández ML, Villar-Suárez V. The therapeutic potential of mesenchymal stromal cell secretome in treating spontaneous chronic corneal epithelial defects in dogs. Res Vet Sci 2025; 185:105559. [PMID: 39923345 DOI: 10.1016/j.rvsc.2025.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/25/2024] [Accepted: 01/26/2025] [Indexed: 02/11/2025]
Abstract
Corneal ulcers in dogs pose a significant challenge in veterinary ophthalmology, often leading to prolonged visual impairment and discomfort. This study aimed to assess the efficacy of adipose tissue-derived mesenchymal stromal cell (ASCs) secretome as a treatment for complicated corneal ulcers in dogs. Ten dogs with spontaneous chronic corneal epithelial defects, were treated with topical application of ASC secretome eye drops. Our results showed that secretome therapy facilitated complete healing of all corneal ulcers within 4 weeks, with an average healing time of 1.2 weeks. Notably, secretome treatment was effective even in cases that had previously failed to respond to conventional therapies. Clinical signs such as blepharospasm, conjunctival hyperemia, and photophobia were alleviated promptly following secretome administration. Secretome therapy was well-tolerated, with no adverse reactions reported, further supporting its safety profile. The findings suggest that ASC secretome represents a promising cell-free and minimally invasive therapeutic approach for the treatment of complicated corneal ulcers in dogs.
Collapse
Affiliation(s)
- Alejandro Casado-Santos
- Department of Surgery, Medicine and Veterinary Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana, University of Léon-Universidad de León, 24071, Spain
| | - Elsa González-Cubero
- Department of Neurosurgery, Stanford School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Mª Belén García-Rodríguez
- Department of Surgery, Medicine and Veterinary Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana, University of Léon-Universidad de León, 24071, Spain.
| | | | - Mª Luisa González-Fernández
- Department of Surgery, Medicine and Veterinary Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana, University of Léon-Universidad de León, 24071, Spain
| | - Vega Villar-Suárez
- Department of Surgery, Medicine and Veterinary Anatomy, Faculty of Veterinary Sciences, Campus de Vegazana, University of Léon-Universidad de León, 24071, Spain; Institute of Biomedicine (IBIOMED), Faculty of Veterinary Sciences, Campus de Vegazana, University of León, 24071, Spain
| |
Collapse
|
24
|
Jiu J, Liu H, Li D, Li X, Zhang J, Yan L, Fan Z, Li S, Du G, Li JJ, Wu A, Liu W, Du Y, Zhao B, Wang B. 3D Mechanical Response Stem Cell Complex Repairs Spinal Cord Injury by Promoting Neurogenesis and Regulating Tissue Homeostasis. Adv Healthc Mater 2025; 14:e2404925. [PMID: 39853962 DOI: 10.1002/adhm.202404925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment. In this study, mechanical response stem cell complex (MRSCC) is created as an innovative therapeutic strategy for SCI, utilizing 3D bioprinting technology and gelatin microcarriers (GM) loaded with mesenchymal stem cells (MSCs). GM creates an optimal microenvironment for MSCs growth and paracrine activity. Meanwhile, 3D bioprinting allows accurate control of spatial pore architecture and mechanical characteristics of the cell construct to encourage neuroregeneration. The mechanical microenvironment created by MRSCC is found to activate the Piezo1 channel and prevent excessive nuclear translocation of YAP, thereby increasing neural-related gene expression in MSCs. Transplanting MRSCC in rats with spinal cord injuries boosts sensory and motor recovery, reduces inflammation, and stimulates the regeneration of neurons and glial cells. The MRSCC offers a new tissue engineering solution that can promote spinal cord repair.
Collapse
Affiliation(s)
- Jingwei Jiu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Dijun Li
- Department of Orthopedics, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443000, China
| | - Xiaoke Li
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Zhang
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, China
| | - Lei Yan
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zijuan Fan
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Songyan Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Guangyuan Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Aimin Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wei Liu
- Development of Research, Beijing Hua Niche Biotechnology Co., LTD, Beijing, 100084, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bin Zhao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| |
Collapse
|
25
|
Kavaldzhieva K, Mladenov N, Markova M, Belemezova K. Mesenchymal Stem Cell Secretome: Potential Applications in Human Infertility Caused by Hormonal Imbalance, External Damage, or Immune Factors. Biomedicines 2025; 13:586. [PMID: 40149563 PMCID: PMC11940137 DOI: 10.3390/biomedicines13030586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are a source of a wide range of soluble factors, including different proteins, growth factors, cytokines, chemokines, and DNA and RNA molecules, in addition to numerous secondary metabolites and byproducts of their metabolism. MSC secretome can be formally divided into secretory and vesicular parts, both of which are very important for intercellular communication and are involved in processes such as angiogenesis, proliferation, and immunomodulation. Exosomes are thought to have the same content and function as the MSCs from which they are derived, but they also have a number of advantages over stem cells, including low immunogenicity, unaltered functional activity during freezing and thawing, and a lack of tumor formation. In addition, MSC pre-treatment with various inflammatory factors or hypoxia can alter their secretomes so that it can be modified into a more effective treatment. Paracrine factors secreted by MSCs improve the survival of other cell populations by several mechanisms, including immunomodulatory (mostly anti-inflammatory) activity and anti-apoptotic activity partly based on Hsp27 upregulation. Reproductive medicine is one of the fields in which this cell-free approach has been extensively researched. This review presents the possible applications and challenges of using MSC secretome in the treatment of infertility. MSCs and their secretions have been shown to have beneficial effects in various models of female and male infertility resulting from toxic damage, endocrine disorders, trauma, infectious agents, and autoimmune origin.
Collapse
Affiliation(s)
| | | | | | - Kalina Belemezova
- Department of Biology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.K.); (N.M.); (M.M.)
| |
Collapse
|
26
|
Kim M, Kong D, Kim NG, Kim MJ, Kim HY, Choi JJ, Choi YS, Lee HE, Farzaneh KS, Kwon D, Lee S, Kang KS. Therapeutic effect of long-interval repeated subcutaneous administration of canine amniotic membrane-derived mesenchymal stem cells in atopic dermatitis mouse model. BMC Vet Res 2025; 21:115. [PMID: 40011929 DOI: 10.1186/s12917-025-04554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic and inflammatory disease. According to a recent study, administration of canine MSCs is a potential therapy for immunological diseases. However, most related studies involve short-term experiments and acute atopic dermatitis animal models. Thus, studies of repeated subcutaneous injection of canine MSCs for ameliorating long-term inflammatory skin disorders have not yet been established. In this study, we evaluated the effects of long-term canine amniotic mesenchymal stem cells (cAM-MSCs) and calcineurin inhibitors (CNIs) treatments in mouse AD model for up to 8 weeks and compared the differences in therapeutic effect through canine peripheral blood mononuclear cells (PBMCs). Using a mouse model, we validated the therapeutic impact of cAM-MSCs in comparison to pimecrolimus (Pime), the most widely used CNIs, as a therapy for canine AD. Based on our results, we verified that the cAM-MSC treatment group exhibited substantially lower scores for tissue pathologic alterations, inflammatory cytokines, and dermatologic symptoms than the PBS control group. Importantly, compared with Pime, cAM-MSCs were more effective at preventing wound dysfunction and regulating mast cell activity. Additionally, we confirmed that immune modulation proteins (TGF-β1, IDO1, and COX-2) were increased in the cAM-MSCs treatment group. Furthermore, we examined the immunoregulatory effect of cAM-MSCs through the proliferation of T lymphocytes from activated canine PBMCs. As a result, cAM-MSCs suppressed the proliferative capacity of effector T cells from canine PBMCs more effectively than Pime. In conclusion, this study suggested that the cAM-MSCS could be an effective canine treatment for long-term canine AD through regeneration and immunomodulation.
Collapse
Grants
- 23A0101L1 The Ministry of Science and ICT, the Ministry of Health & Welfare
- 23A0101L1 The Ministry of Science and ICT, the Ministry of Health & Welfare
- 23A0101L1 The Ministry of Science and ICT, the Ministry of Health & Welfare
- 23A0101L1 The Ministry of Science and ICT, the Ministry of Health & Welfare
- 23A0101L1 The Ministry of Science and ICT, the Ministry of Health & Welfare
- 23A0101L1 The Ministry of Science and ICT, the Ministry of Health & Welfare
- 23A0101L1 The Ministry of Science and ICT, the Ministry of Health & Welfare
- 23A0101L1 The Ministry of Science and ICT, the Ministry of Health & Welfare
- 23A0101L1 The Ministry of Science and ICT, the Ministry of Health & Welfare
- 23A0101L1 The Ministry of Science and ICT, the Ministry of Health & Welfare
- 23A0101L1 The Ministry of Science and ICT, the Ministry of Health & Welfare
Collapse
Affiliation(s)
- Minsoo Kim
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dasom Kong
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nam Gyo Kim
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min-Ji Kim
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee-Yeong Kim
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Ju Choi
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu-Seung Choi
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ha-Eun Lee
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Khaligh Seyedeh Farzaneh
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dohyung Kwon
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd., Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Kyung-Sun Kang
- The Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
27
|
Gasanov VAO, Kashirskikh DA, Khotina VA, Kuzmina DM, Nikitochkina SY, Mukhina IV, Vorotelyak EA, Vasiliev AV. Preclinical Evaluation of the Safety, Toxicity and Efficacy of Genetically Modified Wharton's Jelly Mesenchymal Stem/Stromal Cells Expressing the Antimicrobial Peptide SE-33. Cells 2025; 14:341. [PMID: 40072070 PMCID: PMC11898551 DOI: 10.3390/cells14050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) offer promising therapeutic potential in cell-based therapies for various diseases. However, the safety of genetically modified MSCs remains poorly understood. This study aimed to evaluate the general toxicity and safety of Wharton's Jelly-Derived MSCs (WJ-MSCs) engineered to express the antimicrobial peptide SE-33 in an animal model. Genetically modified WJ-MSCs expressing SE-33 were administered to C57BL/6 mice at both therapeutic and excessive doses, either once or repeatedly. Animal monitoring included mortality, clinical signs, and behavioral observations. The toxicity assessment involved histopathological, hematological, and biochemical analyses of major organs and tissues, while immunotoxicity and immunogenicity were examined through humoral and cellular immune responses, macrophage phagocytic activity, and lymphocyte blast transformation. Antimicrobial efficacy was evaluated in a Staphylococcus aureus-induced pneumonia model by monitoring animal mortality and assessing bacterial load and inflammatory processes in the lungs. Mice receiving genetically modified WJ-MSCs exhibited no acute or chronic toxicity, behavioral abnormalities, or pathological changes, regardless of the dose or administration frequency. No significant immunotoxicity or alterations in immune responses were observed, and there were no notable changes in hematological or biochemical serum parameters. Infected animals treated with WJ-MSC-SE33 showed a significant reduction in bacterial load and lung inflammation and improved survival compared to control groups, demonstrating efficacy over native WJ-MSCs. Our findings suggest that WJ-MSCs expressing SE-33 are well tolerated, displaying a favorable safety profile comparable to native WJ-MSCs and potent antimicrobial activity, significantly reducing bacterial load, inflammation, and mortality in an S. aureus pneumonia model. These data support the safety profile of WJ-MSCs expressing SE-33 as a promising candidate for cell-based therapies for bacterial infections, particularly those complicated by antibiotic resistance.
Collapse
Affiliation(s)
- Vagif Ali oglu Gasanov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | | | - Victoria Alexandrovna Khotina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | - Daria Mikhailovna Kuzmina
- Department of Normal Physiology, Privolzhsky Research Medical University of Ministry of Health of the Russian Federation, Nizhny Novgorod 603005, Russia; (D.M.K.); (I.V.M.)
| | - Sofya Yurievna Nikitochkina
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| | - Irina Vasilievna Mukhina
- Department of Normal Physiology, Privolzhsky Research Medical University of Ministry of Health of the Russian Federation, Nizhny Novgorod 603005, Russia; (D.M.K.); (I.V.M.)
| | - Ekaterina Andreevna Vorotelyak
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
- Department of Cell Biology, Biological Faculty, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Andrey Valentinovich Vasiliev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (D.A.K.); (E.A.V.)
| |
Collapse
|
28
|
Deng Q, Du F, Pan S, Xia Y, Zhu Y, Zhang J, Li C, Yu S. Activation of angiopoietin-1 signaling with engineering mesenchymal stem cells promoted efficient angiogenesis in diabetic wound healing. Stem Cell Res Ther 2025; 16:75. [PMID: 39985096 PMCID: PMC11846275 DOI: 10.1186/s13287-025-04207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Vascular insufficiency is associated with the pathogenesis and therapeutic outcomes of diabetic foot ulcers (DFU). While mesenchymal stem cells (MSCs) hold potential for DFU treatment, further enhancement in promoting angiogenesis in the challenging DFU wounds is imperative. METHODS The differential expression of pro- and anti-angiogenic factors during both normal and diabetic wound healing was compared using quantitative PCR. MSCs derived from the umbilical cord was prepared, and the engineered MSC (MSCANG1) overexpressing both the candidate pro-angiogenic gene, angiopoietin-1 (ANG1), and green fluorescent protein (GFP) was constructed using a lentiviral system. The pro-vascular stabilizing effects of MSCANG1 were assessed in primary endothelial cell cultures. Subsequently, MSCANG1 was transplanted into streptozotocin (STZ)-induced diabetic wound models to evaluate therapeutic effects on angiogenesis and wound healing. The underlying mechanisms were further examined both in vitro and in vivo. RESULTS The comprehensive analysis of the temporal expression of pro- and anti-angiogenic factors revealed a consistent impairment in ANG1 expression throughout diabetic wound healing. MSCANG1 exhibited robust EGFP expression in 80% of cells, with overexpression and secretion of the ANG1 protein. MSCANG1 notably enhanced the survival and tubulogenesis of endothelial cells and promoted the expression of junction proteins, facilitating the establishment of functional vasculature with improved vascular leakage. Although MSCANG1 did not enhance the survival of engrafted MSCs in diabetic wounds, it significantly promoted angiogenesis in diabetic wound healing, fostering the establishment of stable vasculature during the healing process. Activation of the protein kinase B (Akt) pathway and suppression of proto-oncogene tyrosine kinase Src (Src) activity in MSCANG1-treated diabetic wounds confirmed efficient angiogenesis process. Consequently, epidermal and dermal reconstruction, as well as skin appendage regeneration were markedly accelerated in MSCANG1-treated diabetic wounds compared to MSC-treated wounds. CONCLUSION Treatment with MSCs alone promotes angiogenesis and DFU healing, while the engineering of MSCs with ANG1 provides substantial additional benefits to this therapeutic process. The engineering of MSCs with ANG1 presents a promising avenue for developing innovative strategies in managing DFU.
Collapse
Affiliation(s)
- Qiong Deng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shenzhen Pan
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuchen Xia
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuxin Zhu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
29
|
An W, Zhang W, Qi J, Xu W, Long Y, Qin H, Yao K. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: a promising strategy for treating retinal degenerative diseases. Mol Med 2025; 31:75. [PMID: 39984849 PMCID: PMC11846226 DOI: 10.1186/s10020-025-01120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic strategy in regenerative medicine, demonstrating significant potential for clinical applications. Evidence suggests that MSCs not only exhibit multipotent differentiation potential but also exert critical therapeutic effects in retinal degenerative diseases via robust paracrine mechanisms. MSCs protect retinal cells from degenerative damage by modulating inflammation, inhibiting apoptosis, alleviating oxidative stress, and suppressing cell death pathways. Furthermore, MSCs contribute to retinal structural and functional stability by facilitating vascular remodeling and donating mitochondria to retinal cells. Of particular interest, MSC-derived exosomes have gained widespread attention as a compelling cell-free therapy. Owing to their potent anti-inflammatory, anti-apoptotic, and vascular-stabilizing properties, exosomes show significant promise for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Wenjing An
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wenliang Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jia Qi
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yushan Long
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
30
|
Tew VK, Barathan M, Nordin F, Law JX, Ng MH. Emerging Role of Mesenchymal Stromal Cell and Exosome Therapies in Treating Cognitive Impairment. Pharmaceutics 2025; 17:284. [PMID: 40142948 PMCID: PMC11945939 DOI: 10.3390/pharmaceutics17030284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 03/28/2025] Open
Abstract
Cognitive aging, characterized by the gradual decline in cognitive functions such as memory, attention, and problem-solving, significantly impacts daily life. This decline is often accelerated by neurodegenerative diseases, particularly Alzheimer's Disease (AD) and Parkinson's Disease (PD). AD is marked by the accumulation of amyloid-beta plaques and tau tangles, whereas PD involves the degeneration of dopaminergic neurons. Both conditions lead to severe cognitive impairment, greatly diminishing the quality of life for affected individuals. Recent advancements in regenerative medicine have highlighted mesenchymal stromal cells (MSCs) and their derived exosomes as promising therapeutic options. MSCs possess regenerative, neuroprotective, and immunomodulatory properties, which can promote neurogenesis, reduce inflammation, and support neuronal health. Exosomes, nanosized vesicles derived from MSCs, provide an efficient means for delivering bioactive molecules across the blood-brain barrier, targeting the underlying pathologies of AD and PD. While these therapies hold great promise, challenges such as variability in MSC sources, optimal dosing, and effective delivery methods need to be addressed for clinical application. The development of robust protocols, along with rigorous clinical trials, is crucial for validating the safety and efficacy of MSC and exosome therapies. Future research should focus on overcoming these barriers, optimizing treatment strategies, and exploring the integration of MSC and exosome therapies with lifestyle interventions. By addressing these challenges, MSC- and exosome-based therapies could offer transformative solutions for improving outcomes and enhancing the quality of life for individuals affected by cognitive aging and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Min Hwei Ng
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia (F.N.); (J.X.L.)
| |
Collapse
|
31
|
Pinheiro-Machado E, de Haan BJ, Engelse MA, Smink AM. Secretome Analysis of Human and Rat Pancreatic Islets Co-Cultured with Adipose-Derived Stromal Cells Reveals a Signature with Enhanced Regenerative Capacities. Cells 2025; 14:302. [PMID: 39996773 PMCID: PMC11854805 DOI: 10.3390/cells14040302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Pancreatic islet transplantation (PIT) is a promising treatment for type 1 diabetes (T1D) but faces challenges pre- and post-transplantation. Co-transplantation with mesenchymal stromal cells (MSCs), known for their regenerative properties, has shown potential in improving PIT outcomes. This study examined the secretome of islets cultured alone compared to the secretomes of islets co-cultured with adipose-derived stromal cells (ASCs), a subtype of MSCs, under transplantation-relevant stressors: normoxia, cytokines, high glucose, hypoxia, and combined hypoxia and high glucose. Islet co-culture with ASCs significantly altered the proteome, affecting pathways related to energy metabolism, angiogenesis, extracellular matrix organization, and immune modulation. Key signaling molecules (e.g., VEGF, PDGF, bFGF, Collagen I alpha 1, IL-1α, and IL-10) were differentially regulated depending on culture conditions and ASC presence. Functional assays demonstrated that the co-culture secretome could enhance angiogenesis, collagen deposition, and immune modulation, depending on the stress conditions. These findings highlight possible mechanisms through which ASCs may support islet survival and function, offering insights into overcoming PIT challenges. Moreover, this work contributes to identifying biomarkers of the post-transplantation microenvironment, advancing therapeutic strategies for T1D and regenerative medicine.
Collapse
Affiliation(s)
- Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Bart J. de Haan
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Marten A. Engelse
- Leiden Transplant Center, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Alexandra M. Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
32
|
Sun Y, Song X, Jin C, Peng Y, Zhou J, Zheng X. Cerebral Small Vessel Disease: Current and Emerging Therapeutic Strategies. Aging Dis 2025:AD.2024.1515. [PMID: 39965248 DOI: 10.14336/ad.2024.1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025] Open
Abstract
Cerebral small vessel disease (CSVD) is a common disease in older people, characterized by damage to intracranial microvessels, leading to cognitive decline, increased risk of stroke, and dementia. This review reviews the current therapeutic approaches for CSVD and the latest research advances, encompassing traditional pharmacological therapies, emerging targeted interventions grounded in pathophysiology, exploratory immune-related treatments, and advances in genetic research. In addition, the role of lifestyle modifications in disease management is discussed. The review emphasizes the importance of a holistic, personalized treatment strategy to improve outcomes. More clinical trials are needed to validate these treatments and optimize individualized treatment options for CSVD patients.
Collapse
|
33
|
Valencia J, Yáñez RM, Muntión S, Fernández-García M, Martín-Rufino JD, Zapata AG, Bueren JA, Vicente Á, Sánchez-Guijo F. Improving the therapeutic profile of MSCs: Cytokine priming reduces donor-dependent heterogeneity and enhances their immunomodulatory capacity. Front Immunol 2025; 16:1473788. [PMID: 40034706 PMCID: PMC11872697 DOI: 10.3389/fimmu.2025.1473788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction MSCs exhibit regenerative, anti-inflammatory and immunomodulatory properties due to the large amount of cytokines, chemokines and growth factors they secrete. MSCs have been extensively evaluated in clinical trials, however, in some cases their therapeutic effects are variable. Therefore, strategies to improve their therapeutic potential, such as preconditioning with proinflammatory factors, have been proposed. Several priming approaches have provided non-conclusive results, and the duration of priming effects on MSC properties or their response to a second inflammatory stimulus have not been fully addressed. Methods We have investigated the impact of triple cytokine priming in MSCs on their characterization and viability, their transcriptomic profile, the functionality of innate and acquired immune cells, as well as the maintenance of the response to priming over time, their subsequent responsiveness to a second inflammatory stimulus. Results Priming MSCs with proinflammatory cytokines (CK-MSCs) do not modify the differentiation capacity of MSCs, nor their immunophenotype and viability. Moreover, cytokine priming enhances the anti-inflammatory and immunomodulatory properties of MSCs against NK and dendritic cells, while maintaining the same T cell immunomodulatory capacity as unstimulated MSCs. Thus, they decrease T-lymphocytes and NK cell proliferation, inhibit the differentiation and allostimulatory capacity of dendritic cells and promote the differentiation of monocytes with an immunosuppressive profile. In addition, we have shown for the first time that proinflammatory priming reduces the variability between different donors and MSC origins. Finally, the effect on CK-MSC is maintained over time and even after a secondary inflammatory stimulus. Conclusions Cytokine-priming improves the therapeutic potential of MSCs and reduces inter-donor variability.
Collapse
Affiliation(s)
- Jaris Valencia
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- Heath Research Institute Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rosa M. Yáñez
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Sandra Muntión
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, University of Salamanca and Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, Salamanca, Spain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, Salamanca, Spain
| | - María Fernández-García
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jorge Diego Martín-Rufino
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Agustín G. Zapata
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Cell Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
- Heath Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Juan A. Bueren
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Heath Research Institute-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Ángeles Vicente
- Department of Cell Biology, School of Medicine, Complutense University of Madrid, Madrid, Spain
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Heath Research Institute Hospital 12 de Octubre (I+12), Madrid, Spain
| | - Fermín Sánchez-Guijo
- RICORS TERAV, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, University of Salamanca and Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, Salamanca, Spain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y León, Salamanca, Spain
| |
Collapse
|
34
|
Liu G, Lin J, Chen X, Liu R. Gingival fibroblast suppress the osteogenesis process mediated by bone substitute materials via WNT/β-catenin signaling pathway in vitro and in vivo. Front Bioeng Biotechnol 2025; 13:1521134. [PMID: 39995594 PMCID: PMC11847790 DOI: 10.3389/fbioe.2025.1521134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Background The regeneration of bone tissue is a critical challenge in oral and maxillofacial surgery, with the success of such procedures often depending on the ability to promote osteogenesis while managing the soft tissue environment. The role of gingival fibroblasts in modulating the osteogenic potential of mandible mesenchymal stem cells (MMSCs) mediated by bone substitute materials (BSMs) is not fully understood. This study aimed to investigate the impact of gingival fibroblasts on the osteogenic differentiation of MSCs in the presence of BSMs and to elucidate the underlying mechanisms, focusing on the WNT/β-catenin signaling pathway. Methods Gingival fibroblasts and BSMs co-culture conditioned medium was used to culture MMSCs, and the expression and activity of alkaline phosphatase (ALP), as well as osteogenic and fibrogenic gene and protein expression, were evaluated. Additionally, the expression of key factors of WNT/β-catenin signaling pathway were investigated. In vivo animal experiments were conducted to assess the effect of gingival fibroblasts on BSM-mediated bone regeneration. Results Gingival fibroblasts and BSMs co-culture environment did not affect MMSCs proliferation but significantly inhibited ALP expression and activity, as well as osteogenic gene and protein expression, while promoting expression of fibrogenic markers. This suppression was associated with the downregulation of key factors in the WNT/β-catenin signaling pathway. In vivo, increased suppression of bone defect repair was observed with higher amounts of gingival fibroblasts, confirming the in vitro findings. Conclusion Our study demonstrates that gingival fibroblasts can suppress the osteogenic potential of BSMs by inhibiting the autocrine WNT expression and the activation of the WNT/β-catenin signaling pathway in MMSCs. These findings highlight the importance of considering the cellular microenvironment in tissue engineering and regenerative medicine and suggest potential targets for modulating MMSCs behavior to enhance bone regeneration.
Collapse
Affiliation(s)
| | | | | | - Runheng Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
35
|
González-González A, Álvarez-Iglesias I, García-Sánchez D, Dotta M, Reyes R, Alfonso-Fernández A, Bolado-Carrancio A, Díaz-Rodríguez P, Pérez-Núñez MI, Rodríguez-Rey JC, Delgado-Calle J, Pérez-Campo FM. Paracrine activity of Smurf1-silenced mesenchymal stem cells enhances bone regeneration and reduces bone loss in postmenopausal osteoporosis. Stem Cell Res Ther 2025; 16:50. [PMID: 39920824 PMCID: PMC11806587 DOI: 10.1186/s13287-025-04165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Osteoporosis (OP), characterized by reduced bone mass and mineral density, is a global metabolic disorder that severely impacts the quality of life in affected individuals. Although current pharmacological treatments are effective, their long-term use is often associated with adverse effects, highlighting the need for safer, more sustainable therapeutic strategies. This study investigates the pro-osteogenic and anti-resorptive potential of the secretome from Smurf1-silenced mesenchymal stem cells (MSCs) as a promising cell-free therapy for bone regeneration. METHODS Conditioned media (CM) from Smurf1-silenced rat (rCM-Smur1) and human MSCs (hCM-Smurf1) was collected and analyzed. Pro-osteogenic potential was assessed by measuring in vitro mineralization in human and rat MSCs cultures. In vivo, studies were conducted using a rat ectopic bone formation model and a post-menopausal osteoporotic mouse model. Additionally, primary human osteoporotic MSCs were preconditioned with hCM-Smurf1, and their osteogenic capacity was compared to that induced by BMP2 treatment. Ex vivo, human bone explants were treated with hCM-Smurf1 to assess anti-resorptive effects. Proteomic analysis of the soluble and vesicular CM fractions identified key proteins involved in bone regeneration. RESULTS CM from Smurf1-silenced MSCs significantly enhanced mineralization in vitro and bone formation in vivo. Preconditioning human osteoporotic MSCs with hCM-Smurf1 significantly increases in vitro mineralization, with levels comparable to those achieved with BMP2 treatment. Additionally, in ex vivo human bone cultures, treatment with hCM-Smurf1 significantly reduced RANKL expression without affecting OPG levels, indicating an anti-resorptive effect. In vivo, CM from Smurf1-silenced MSCs significantly increased bone formation in a rat ectopic model, and its local administration reduced trabecular bone loss by 50% in a post-menopausal osteoporotic mouse model after a single administration within just four weeks. Proteomic analysis revealed both soluble and vesicular fractions of hCM-Smurf1 were enriched with proteins essential for ossification and extracellular matrix organization, enhancing osteogenic differentiation. CONCLUSIONS The Smurf1-silenced MSCs' secretome shows potent osteogenic and anti-resorptive effects, significantly enhancing bone formation and reducing bone loss. This study provides compelling evidence for the therapeutic potential of Smurf1-silenced MSC-derived secretome as a non-toxic and targeted treatment for osteoporosis. These findings warrant further in vivo studies and clinical trials to validate its therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Alberto González-González
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012, Santander, Spain
| | - Itziar Álvarez-Iglesias
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012, Santander, Spain
| | - Daniel García-Sánchez
- Department of Physiology and Cell Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Monica Dotta
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012, Santander, Spain
| | - Ricardo Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38206, La Laguna, Spain
| | - Ana Alfonso-Fernández
- Department of Traumatology, Hospital Universitario Marqués de Valdecilla, University of Cantabria, 39008, Santander, Spain
| | - Alfonso Bolado-Carrancio
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Patricia Díaz-Rodríguez
- I+D Farma Group (GI-1645), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - María Isabel Pérez-Núñez
- Department of Traumatology, Hospital Universitario Marqués de Valdecilla, University of Cantabria, 39008, Santander, Spain
| | - José Carlos Rodríguez-Rey
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012, Santander, Spain
| | - Jesús Delgado-Calle
- Department of Physiology and Cell Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Flor M Pérez-Campo
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Cantabria-IDIVAL, 39012, Santander, Spain.
| |
Collapse
|
36
|
Tang Y, Li Y, Yang W, Tao Z, Shi W, Yu M, Xu B, Lu X. Nasal mucosal mesenchymal stem cells promote repair of sciatic nerve injury in rats by modulating the inflammatory microenvironment. Neurosci Lett 2025; 848:138112. [PMID: 39742941 DOI: 10.1016/j.neulet.2024.138112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Sciatic nerve injury (SNI) represents the most prevalent form of peripheral nerve damage, resulting in the rapid activation of macrophages into the M1 phenotype following injury. This activation induces an inflammatory microenvironment that negatively impacts nerve regeneration. Ectodermal mesenchymal stem cells (EMSCs), isolated from nasal mucosa, possess the capacity for multidirectional differentiation and exhibit immunomodulatory effects. Modulating macrophage polarization to create a favorable environment for nerve repair may represent a potential approach to facilitate nerve recovery. This investigation sought to explore the effects of EMSCs transplantation on macrophage polarization and nerve regeneration in SNI, as well as to identify the underlying mechanisms. An in vivo SNI model was established, and behavioral and histological analyses demonstrated that EMSCs transplantation facilitated nerve function recovery. Furthermore, immunofluorescence and Western blot assays revealed an increase in M2 macrophage presence and the secretion of anti-inflammatory cytokines following EMSCs transplantation, thereby promoting nerve regeneration. In vitro, EMSCs were found to enhance M2 macrophage polarization and the production of anti-inflammatory factors. Additionally, it was confirmed that EMSCs regulate macrophage polarization through the PI3K/AKT/NF-κB signaling pathway, thereby fostering an optimal inflammatory environment for nerve regeneration.
Collapse
Affiliation(s)
- Yushi Tang
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Yilu Li
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Wenhui Yang
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Zhenxing Tao
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Wentao Shi
- Department of Neurosurgery, Jiangnan University Medical Center ,Wuxi, Jiangsu Province, 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Mengyuan Yu
- Wuxi neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China
| | - Bai Xu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center ,Wuxi, Jiangsu Province, 214122, PR China.
| | - Xiaojie Lu
- Neuroscience Center, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; Department of Neurosurgery, Jiangnan University Medical Center ,Wuxi, Jiangsu Province, 214122, PR China; Wuxi neurosurgical Institute, Wuxi, Jiangsu Province, 214122, PR China.
| |
Collapse
|
37
|
Yarahmadi A, Dorri Giv M, Hosseininejad R, Rezaie A, Mohammadi N, Afkhami H, Farokhi A. Mesenchymal stem cells and their extracellular vesicle therapy for neurological disorders: traumatic brain injury and beyond. Front Neurol 2025; 16:1472679. [PMID: 39974358 PMCID: PMC11835705 DOI: 10.3389/fneur.2025.1472679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/08/2025] [Indexed: 02/21/2025] Open
Abstract
Traumatic brain injury (TBI) is a complex condition involving mechanisms that lead to brain dysfunction and nerve damage, resulting in significant morbidity and mortality globally. Affecting ~50 million people annually, TBI's impact includes a high death rate, exceeding that of heart disease and cancer. Complications arising from TBI encompass concussion, cerebral hemorrhage, tumors, encephalitis, delayed apoptosis, and necrosis. Current treatment methods, such as pharmacotherapy with dihydropyridines, high-pressure oxygen therapy, behavioral therapy, and non-invasive brain stimulation, have shown limited efficacy. A comprehensive understanding of vascular components is essential for developing new treatments to improve blood vessel-related brain damage. Recently, mesenchymal stem cells (MSCs) have shown promising results in repairing and mitigating brain damage. Studies indicate that MSCs can promote neurogenesis and angiogenesis through various mechanisms, including releasing bioactive molecules and extracellular vesicles (EVs), which help reduce neuroinflammation. In research, the distinctive characteristics of MSCs have positioned them as highly desirable cell sources. Extensive investigations have been conducted on the regulatory properties of MSCs and their manipulation, tagging, and transportation techniques for brain-related applications. This review explores the progress and prospects of MSC therapy in TBI, focusing on mechanisms of action, therapeutic benefits, and the challenges and potential limitations of using MSCs in treating neurological disorders.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Masoumeh Dorri Giv
- Nuclear Medicine Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Hosseininejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Azin Rezaie
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Narges Mohammadi
- Department of Molecular Cell Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Arastoo Farokhi
- Department of Anesthesiology, Kermanshah University of Medical Sciences, Imam Reza Hospital, Kermanshah, Iran
| |
Collapse
|
38
|
Hodgson-Garms M, Moore MJ, Martino MM, Kelly K, Frith JE. Proteomic profiling of iPSC and tissue-derived MSC secretomes reveal a global signature of inflammatory licensing. NPJ Regen Med 2025; 10:7. [PMID: 39905050 PMCID: PMC11794695 DOI: 10.1038/s41536-024-00382-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/03/2024] [Indexed: 02/06/2025] Open
Abstract
Much of the therapeutic potential of mesenchymal stromal cells (MSCs) is underpinned by their secretome which varies significantly with source, donor and microenvironmental cues. Understanding these differences is essential to define the mechanisms of MSC-based tissue repair and optimise cell therapies. This study analysed the secretomes of bone-marrow (BM.MSCs), umbilical-cord (UC.MSCs), adipose-tissue (AT.MSCs) and clinical/commercial-grade induced pluripotent stem cell-derived MSCs (iMSCs), under resting and inflammatory licenced conditions. iMSCs recapitulated the inflammatory licensing process, validating their comparability to tissue-derived MSCs. Overall, resting secretomes were defined by extracellular matrix (ECM) and pro-regenerative proteins, while licensed secretomes were enriched in chemotactic and immunomodulatory proteins. iMSC and UC.MSC secretomes contained proteins indicating proliferative potential and telomere maintenance, whereas adult tissue-derived secretomes contained fibrotic and ECM-related proteins. The data and findings from this study will inform the optimum MSC source for particular applications and underpin further development of MSC therapies.
Collapse
Affiliation(s)
- Margeaux Hodgson-Garms
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC, Australia.
- Cynata Therapeutics, Melbourne, VIC, Australia.
| | - Matthew J Moore
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC, Australia
| | - Mikaël M Martino
- Australian Regenerative Medicine Institute, Melbourne, VIC, Australia
- Victorian Heart Institute, Monash University, Melbourne, VIC, Australia
| | | | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC, Australia.
- Australian Regenerative Medicine Institute, Melbourne, VIC, Australia.
| |
Collapse
|
39
|
Rajasekar V, Abdalla MM, Basbrain MS, Neelakantan P, Yiu CK. Odontogenic differentiation of dental pulp stem cells by glycogen synthase kinase-3β inhibitory peptides. Stem Cell Res Ther 2025; 16:34. [PMID: 39901291 PMCID: PMC11792195 DOI: 10.1186/s13287-025-04150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/15/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND To investigate the effects of peptide-based substrate competitive inhibitors of GSK-3β (GSK-3βi) on promoting odontogenic differentiation of human dental pulp stem cells (hDPSCs). METHODS The biocompatibility and proliferation of hDPSCs treated with GSK-3βi peptides (pS9, LRP 6a, L803, and L803-mts) were evaluated using the tetrazolium reduction assay and cell counting kit-8 assay, respectively. The differentiation of hDPSCs following peptide treatment was determined using the alkaline phosphatase assay (ALP), calcium mineralization (alizarin red staining), and quantification of mRNA expression of differentiation markers via quantitative real-time polymerase chain reaction. The accumulation of β-catenin in the nucleus of GSK3-βi-treated hDPSCs was determined using immunofluorescence staining. The effect of peptide treatment on hDPSC migration was characterized using the transwell assay. RESULTS All tested concentrations of the peptides were found to be biocompatible with the hDPSCs, with no significant difference compared to the control (p > 0.05). The peptides had no effect on the proliferation of hDPSCs compared to the control (p > 0.05). However, all the tested peptides significantly increased ALP activity and calcium deposition in a dose-dependent manner (p < 0.05). Specifically, L803-mts showed significantly greater ALP activity and mineralization compared to the other peptides and the controls (p < 0.05). Additionally, L803-mts showed a significant increase (p < 0.05) in the expression of DSPP, DMP-1, Runx-2, along with increased protein expression of DSPP and DMP-1 compared to the control. Furthermore, it enhanced the nuclear translocation of β-catenin and increased the chemotactic migratory potential of hDPSCs. CONCLUSIONS L803-mts, a peptide-based substrate competitive inhibitor of GSK-3β, enhanced the odontogenic differentiation of hDPSCs by activating the Wnt signaling pathway.
Collapse
Affiliation(s)
- Vidhyashree Rajasekar
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, Hong Kong, SAR
| | - Mohamed Mahmoud Abdalla
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, Hong Kong, SAR
- Dental Biomaterials, Faculty of Dental Medicine, Al-Azhar University, Cairo, 11651, Egypt
| | - Mohammed S Basbrain
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, Hong Kong, SAR
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong, SAR
- Retsorative Dental Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Prasanna Neelakantan
- Mike Petryk School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Cynthia Ky Yiu
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong, Hong Kong, SAR.
| |
Collapse
|
40
|
Zhang X, Guo Y, Fang K, Huang X, Lan D, Wang M, Jia L, Ji X, Meng R, Zhou D. Therapeutic potential of mesenchymal stem cell-derived extracellular vesicles in ischemic stroke: A meta-analysis of preclinical studies. Brain Res Bull 2025; 221:111219. [PMID: 39837375 DOI: 10.1016/j.brainresbull.2025.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/22/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Ischemic stroke (IS) remains a significant global health burden, necessitating the development of novel therapeutic strategies. This study aims to systematically evaluate the therapeutic effects of mesenchymal stem cell-derived exosomes (MSC-Exos) on IS outcomes in rodent models. METHODS A comprehensive literature search was conducted across multiple databases to identify studies investigating the effects of MSC-Exos on rodent models of IS. Following rigorous inclusion and exclusion criteria, 73 high-quality studies were selected for meta-analysis. Primary outcomes included reductions in infarct volume/ratio and improvements in functional recovery scores. Data extraction and analysis were performed using RevMan 5.3 software. RESULTS Pooled data indicated that MSC-Exos administration significantly reduced infarct size and improved functional recovery scores in rodent models of IS. Treatment within 24 hours and beyond 24 hours of stroke induction both demonstrated substantial reductions in infarct volume/ratio compared to controls. Furthermore, MSC-Exos-treated groups exhibited marked improvements in functional recovery, as assessed by various neurobehavioral tests. The meta-analysis showed no significant publication bias, and heterogeneity levels were acceptable. CONCLUSIONS MSC-Exos reveal significant therapeutic potential for IS, with evidence supporting their efficacy in reducing infarct size and enhancing functional recovery in preclinical rodent models. These findings pave the way for further research and potential clinical translation.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Yibing Guo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Kun Fang
- Capital Medical University, Beijing 100069, China.
| | - Xiangqian Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Duo Lan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Mengqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Lina Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing 100053, China; National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
41
|
Pico OA, Espinoza F, Cádiz MI, Sossa CL, Becerra-Bayona SM, Salgado MCC, Rodríguez JER, Cárdenas OFV, Cure JMQ, Khoury M, Arango-Rodríguez ML. Efficacy of a single dose of cryopreserved human umbilical cord mesenchymal stromal cells for the treatment of knee osteoarthritis:a randomized, controlled, double-blind pilot study. Cytotherapy 2025; 27:188-200. [PMID: 39503681 DOI: 10.1016/j.jcyt.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Knee osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disorder, which is particularly common in older population. While conventional treatments have limited effectiveness, the development of more effective therapeutic strategies is necessary to address this primary source of pain and disability. Umbilical cord mesenchymal stromal cells (UC-MSCs) offer a promising therapeutic approach for treating knee OA. AIM This randomized, prospective, double-blind and controlled pilot study was carried out to evaluate and compare the safety and therapeutic efficacy of a single intra-articular injection of a standardized product CellistemOA (5 × 106 ± 5 × 105 UC-MSCs), vs. triamcinolone (a synthetic corticosteroid) (10 mg/mL) in thirty patients with symptomatic knee OA (Kellgren-Lawrence grade II or III). METHODS The outcomes included changes in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores based on a Likert scale, numerical rating score (NRS) for pain, Magnetic Resonance Imaging (MRI), and quality of life (SF-36 questionnaire), from baseline and throughout 12-months of follow-up. RESULTS Patients treated with CellistemOA showed significant improvement in WOMAC score (including the three subscale scores (pain, stiffness and function), NRS in pain, and SF-36 profile from baseline to 12 months (p < 0.05) compared to the triamcinolone group, and no severe adverse events were reported. There were no significant differences in MRI WORMS scores between the two groups. However, patients who received the cellular treatment experienced a significant improvement in their SF-36 profile (p < 0.05). CONCLUSIONS This pilot study revealed that a single dose of CellistemOA is safe and superior to the active comparator in knee OA at 1-year of follow-up, making it a compelling therapeutic alternative to treat symptomatic OA patients.
Collapse
Affiliation(s)
- Omar Amado Pico
- Fundación Oftalmológica de Santander - FOSCAL, Floridablanca, Colombia; Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia
| | - Francisco Espinoza
- Cells for Cells & Consorcio Regenero, Santiago, Chile; Program for Translational Research in Cell Therapy, Universidad de los Andes, Santiago, Chile; Department of Rheumatology, Universidad de los Andes, Santiago, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - María Ignacia Cádiz
- Cells for Cells & Consorcio Regenero, Santiago, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Universidad de los Andes, Santiago, Chile
| | - Claudia L Sossa
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia; Programa para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), Floridablanca, Colombia
| | - Silvia M Becerra-Bayona
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia
| | - María C Canencio Salgado
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia
| | | | | | | | - Maroun Khoury
- Cells for Cells & Consorcio Regenero, Santiago, Chile; Program for Translational Research in Cell Therapy, Universidad de los Andes, Santiago, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile; Laboratory of Nano-Regenerative Medicine, Universidad de los Andes, Santiago, Chile
| | - Martha L Arango-Rodríguez
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga - UNAB, Bucaramanga, Colombia; Banco Multitejidos y Centro de Terapias Avanzadas, Clínica FOSCAL Internacional, Floridablanca, Colombia.
| |
Collapse
|
42
|
Zhou L, Lu X, Qiao G. Single-cell transcriptomic sequencing analysis of mechanistic insights into the IFN-γ signaling pathway in different tumor cells. Clin Transl Oncol 2025; 27:745-755. [PMID: 39090422 DOI: 10.1007/s12094-024-03574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE This study aimed to investigate the relationship between the interferon-gamma (IFN-γ) pathway in different tumor microenvironments (TME) and patients' prognosis, as well as the regulatory mechanisms of this pathway in tumor cells. METHODS Using RNA-seq data from the TCGA database, we analyzed the predictive value of the IFN-γ pathway across various tumors. We employed a univariate Cox regression model to assess the prognostic significance of IFN-γ signaling in different tumor types. Additionally, we analyzed single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database to examine the distribution characteristics of the IFN-γ pathway and explore its regulatory mechanisms, highlighting how IFN-γ influenced cellular interactions within the TME. RESULTS Our analysis revealed a significant association between the IFN-γ pathway and adverse prognosis in pan-cancer tissues (P < 0.001). Interestingly, this correlation varied regarding positive and negative regulation across different tumor types. Through a detailed examination of scRNA-seq data, we found that the IFN-γ pathway exerted substantial regulatory effects on stromal and immune cells. In contrast, its expression and regulatory patterns in tumor cells exhibited diversity and heterogeneity. Further analysis indicated that the IFN-γ pathway not only enhanced the immunogenicity of tumor cells but also inhibited their proliferation. Cell-cell interaction analysis confirmed the pivotal role of the IFN-γ pathway within the overall regulatory network. Moreover, we identified HMGB2 (high mobility group box 2) in T cells as a potential key regulator of tumor cell proliferation. CONCLUSIONS The IFN-γ pathway exhibited a dual function by both suppressing tumor cell proliferation and enhancing their immunogenicity, positioning it as a pivotal target for refined cancer diagnosis and cancer strategies.
Collapse
Affiliation(s)
- Lifang Zhou
- Department of Clinical Laboratory, Yixing People's Hospital, Affiliated to Jiangsu University, Yixing, 214200, China
| | - Xu Lu
- Department of Clinical Laboratory, Yixing People's Hospital, Affiliated to Jiangsu University, Yixing, 214200, China
| | - Guohong Qiao
- Department of Clinical Laboratory, Yixing People's Hospital, Affiliated to Jiangsu University, Yixing, 214200, China.
| |
Collapse
|
43
|
Rajagopalan K, Selvan Christyraj JD, Balamurugan N, Selvan Christyraj JRS, Dan VM, Radhakrishnan P, Vaidhyalingham AB, Nagaiah HP. Low-energy electric shock ameliorates cell proliferation, morphallaxis, and regeneration via driving key regenerative proteins in earthworm and 3T3 cells. Bioelectrochemistry 2025; 161:108824. [PMID: 39326348 DOI: 10.1016/j.bioelechem.2024.108824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Electric stimulation regulates many cellular processes like cell proliferation, differentiation, apoptosis and cellular migration. Despite its crucial role in regulating stem cells and regeneration, it remains underexplored in both in-vivo and in-vitro settings. In this study, Eudrilus eugeniae are subjected to electric stimulation (1.5 V) prior and after amputation and which augments regeneration up to double-time. Blocking epimorphosis using 2 M thymidine retracts regeneration kinetics to one-third but such inhibition was rescued by applying electric stimulation which propels an overactive morphallaxis pattern of regeneration. Excreting electric stimulation on control worms shows minimal impact, whereas it enhances the key regenerative proteins like VEGF, COX2, YAP, c-Myc, and Wnt3a on amputated worms. Upon blocking epimorphosis, all these key regenerative proteins are down-regulated but through electric stimulation, the cells are reprogrammed to express a triple fold of the mentioned regenerative proteins, that further promotes morphallaxis. In 3T3 cells, electric stimulation accelerates cell proliferation and migrations in 5 secs exposure and it exerts its function by overexpressing VEGF mediated by MEK1. Wnt3a expression was gradually upregulated in increasing exposure (5 and 25 secs) which aids in maintaining the stemness property. The molecular mechanism underlying regeneration capability can assist in designing novel therapeutic applications.
Collapse
Affiliation(s)
- Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai, Tamil Nadu, India.
| | - Nivetha Balamurugan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | - Vipin Mohan Dan
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Trivandrum, Kerala, India
| | - Periyasamy Radhakrishnan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ashwin Barath Vaidhyalingham
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology (Deemed to be University), Chennai, Tamil Nadu, India
| | | |
Collapse
|
44
|
Razavi ZS, Aliniay Sharafshadehi S, Yousefi MH, Javaheri F, Rahimi Barghani MR, Afkhami H, Heidari F. Application of novel strategies in chronic wound management with focusing on pressure ulcers: new perspective. Arch Dermatol Res 2025; 317:320. [PMID: 39888392 DOI: 10.1007/s00403-024-03790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 02/01/2025]
Abstract
Invading blood cells, extracellular tissue, and soluble mediators all play important roles in the wound-healing process. There is a substantial global burden of disease and mortality attributable to skin defects that do not heal. About 1% to 2% of the population in industrialized nations suffers from chronic wounds that don't heal, despite healthcare breakthroughs; this condition is very costly, costing about $25 billion each year in the US alone. Amputation, infection (affecting as many as 25% of chronic wounds), sepsis, and dermal replacements are all consequences of conventional therapeutic approaches like growth factor therapy and diabetic foot ulcers account for 85% of lower limb amputations. Despite these obstacles, scientists are constantly looking for new ways to speed healing and close wounds. The unique immunomodulatory capabilities and multipotency of mesenchymal stem cells (MSCs) have made them a potential therapeutic choice in tissue engineering and regenerative medicine. Animal models of wound healing have shown that MSCs can speed up the process by as much as 40% through enhancing angiogenesis, modulating inflammation, and promoting fibroblast migration. Clinical trials provide more evidence of their effectiveness; for instance, one RCT found that, after 12 weeks, patients treated with MSCs had a 72% smaller wound size than those in the control group. This review offers a thorough examination of MSCs by combining the latest research with preclinical evidence. Highlighting their potential to transform treatment paradigms, it delves into their biological properties, how they work during regeneration and healing, and therapeutic usefulness in controlling chronic wounds.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Aliniay Sharafshadehi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Fatemeh Javaheri
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
45
|
Yang J, Yuan J, Wen YQ, Wu L, Liao JJ, Qi HB. Bone marrow mesenchymal stem cells promote uterine healing by activating the PI3K/AKT pathway and modulating inflammation in rat models. World J Stem Cells 2025; 17:98349. [PMID: 39866893 PMCID: PMC11752458 DOI: 10.4252/wjsc.v17.i1.98349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/02/2024] [Accepted: 12/10/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Uterine injury can cause uterine scarring, leading to a series of complications that threaten women's health. Uterine healing is a complex process, and there are currently no effective treatments. Although our previous studies have shown that bone marrow mesenchymal stem cells (BMSCs) promote uterine damage repair, the underlying mechanisms remain unclear. However, exploring the specific regulatory roles of BMSCs in uterine injury treatment is crucial for further understanding their functions and enhancing therapeutic efficacy. AIM To investigate the underlying mechanism by which BMSCs promote the process of uterine healing. METHODS In in vivo experiments, we established a model of full-thickness uterine injury and injected BMSCs into the uterine wound. Transcriptome sequencing was performed to determine the enrichment of differentially expressed genes at the wound site. In in vitro experiments, we isolated rat uterine smooth muscle cells (USMCs) and cocultured them with BMSCs to observe the interaction between BMSCs and USMCs in the microenvironment. RESULTS We found that the differentially expressed genes were mainly related to cell growth, tissue repair, and angiogenesis, while the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway was highly enriched. Quantitative reverse-transcription polymerase chain reaction was used to validate differentially expressed genes, and the results demonstrated that BMSCs can upregulate genes related to regeneration and downregulate genes related to inflammation. Coculturing BMSCs promoted the migration and proliferation of USMCs, and the USMC microenvironment promoted the myogenic differentiation of BMSCs. Finally, we validated the PI3K/AKT pathway in tissues and cells and showed that BMSCs activate the PI3K/AKT pathway to promote the regeneration of uterine smooth muscle both in vivo and in vitro. CONCLUSION BMSCs upregulated uterine wound regeneration and anti-inflammatory factors and enhanced uterine smooth muscle proliferation through the PI3K/AKT pathway both in vivo and in vitro.
Collapse
Affiliation(s)
- Jing Yang
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Obstetrics and Gynecology, Guizhou Provincial People's Hospital, Guiyang 557300, Guizhou Province, China
| | - Jun Yuan
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yan-Qing Wen
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Li Wu
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Jiu-Jiang Liao
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hong-Bo Qi
- Women and Children's Hospital of Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China
- Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
46
|
Tan Q, Deng S, Xiong L. Role of Kynurenine and Its Derivatives in Liver Diseases: Recent Advances and Future Clinical Perspectives. Int J Mol Sci 2025; 26:968. [PMID: 39940736 PMCID: PMC11816720 DOI: 10.3390/ijms26030968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Liver health is integral to overall human well-being and the pathogenesis of various diseases. In recent years, kynurenine and its derivatives have gradually been recognized for their involvement in various pathophysiological processes, especially in the regulation of liver diseases, such as acute liver injury, non-alcoholic fatty liver disease, cirrhosis, and liver cancer. Kynurenine and its derivatives are derived from tryptophan, which is broken down by the enzymes indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO), converting the essential amino acid tryptophan into kynurenine (KYN) and other downstream metabolites, such as kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), xanthurenic acid (XA), and quinolinic acid (QA). In liver diseases, kynurenine and its derivatives can promote the activity of the transcription factor aryl hydrocarbon receptor (AhR), suppress T cell activity for immune modulation, inhibit the activation of inflammatory signaling pathways, such as NF-κB for anti-inflammatory effects, and inhibit the activation of hepatic stellate cells to slow down fibrosis progression. Additionally, kynurenine and other downstream metabolites can influence the progression of liver diseases by modulating the gut microbiota. Therefore, in this review, we summarize and explore the mechanisms by which kynurenine and its derivatives regulate liver diseases to help develop new diagnostic or prognostic biomarkers and effective therapies targeting the kynurenine pathway for liver disease treatment.
Collapse
Affiliation(s)
- Qiwen Tan
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Shenghe Deng
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lijuan Xiong
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Department of Nosocomial Infection Management, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
47
|
Lu Y, Xu Y, Zhou L, Wang S, Han Y, Wang K, Qin C. Bone marrow mesenchymal stem cells derived cytokines associated with AKT/IAPs signaling ameliorate Alzheimer's disease development. Stem Cell Res Ther 2025; 16:14. [PMID: 39849525 PMCID: PMC11755981 DOI: 10.1186/s13287-025-04131-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative condition affecting around 50 million people worldwide. Bone marrow-derived mesenchymal stem cells (BMMSCs) have emerged as a promising source for cellular therapy due to their ability to differentiate into multiple cell types and their paracrine effects. However, the direct injection of BMMSCs can lead to potential unpredictable impairments, prompting a renewed interest in their paracrine effects for AD treatment. The specific mechanism and central role of cytokines in this process have not been fully elucidated. METHODS Mouse BMMSCs were isolated, validated, and then transplanted intracerebrally into APP/PS1 female mice. The behavioral tests, including open-field test, novel object recognition test, and Morris water maze were performed, followed by β-amyloidosis plaque and neuron apoptosis analyses. Then the tissue RNA sequencing and mBMMSC cytokine analysis were performed. A cytokine antibody array for BMMSCs and the brain slice models were performed with AD model tissues were used to elucidate the molecular mechanisms. Finally, APP/PS1 mice were administrated with cytokine mixture for cognitive recovery. RESULTS Our results demonstrated that BMMSCs significantly improved cognitive function, reduced beta-amyloid plaque deposition, and decreased apoptotic neurons through the activation of the AKT signaling pathway. Using a cytokine antibody array, we identified three highly expressed AKT pathway regulated neuroprotective factors in BMMSCs: IGF1, VEGF, and Periostin2. These cytokines were found to upregulate inhibitors of apoptosis family proteins (IAPs) and suppress Caspase-3 activity in brain slices induced with beta amyloidosis (Aβ), okadaic acid (OA), and lipopolysaccharide (LPS). When injection of this cytokine mixture to APP/PS1 mice also resulted in a mitigation of cognitive impairment. CONCLUSIONS These findings suggest that the secretory factors IGF1, VEGF, and Periostin2 derived from BMMSCs play a crucial role in neuroprotection by modulating the AKT/IAPs pathway to restore neuronal function. These cytokine sets could be a potential therapeutic strategy for AD and lay the groundwork for promising clinical applications.
Collapse
Affiliation(s)
- Yalan Lu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Yanfeng Xu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Li Zhou
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Siyuan Wang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Yunlin Han
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Kewei Wang
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.
- Changping National Laboratory (CPNL), Beijing, 102200, China.
| |
Collapse
|
48
|
Meenakshi Sundaram RS, Rupert S, Srinivasan P, Sathyanesan J, Govarthanan K, Jeyaraman N, Ramasubramanian S, Jeyaraman M, Chung HY, Gangadaran P, Ahn BC. Decoding Cytokine Dynamics: Wharton's Jelly Stromal Cells and Chondro-Differentiates in PHA-Stimulated Co-Culture. Cells 2025; 14:174. [PMID: 39936966 PMCID: PMC11817647 DOI: 10.3390/cells14030174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION Articular cartilage damage presents a significant clinical challenge, with limited options for effective regeneration. Mesenchymal stromal cells (MSCs) derived from Wharton's jelly (WJ) are a promising cell source for cartilage repair due to their regenerative and immunomodulatory properties. While undifferentiated MSCs have demonstrated potent immunoregulatory effects, the immunomodulatory potential of chondrocytes derived from WJ-MSCs remains underexplored, particularly under inflammatory conditions. This study investigates the differential cytokine expression profiles of WJ-MSC-derived chondrocytes and undifferentiated MSCs under inflammatory stimulation with phytohemagglutinin (PHA) to understand their immunomodulatory capacities. MATERIALS AND METHODS WJ-MSCs were differentiated into chondrocytes using a micromass culture system. Differentiated chondrocytes were then co-cultured with immune cells under PHA-induced inflammatory conditions. Control groups included co-cultured cells without PHA activation and chondrocytes activated with PHA in the absence of immune cell interaction. Cytokine expression profiles were analyzed using the RT2 Customized Gene Array to evaluate pro- and anti-inflammatory markers. Morphological changes were assessed microscopically. The immunomodulatory responses of chondrocytes were compared to those of undifferentiated MSCs under the same experimental conditions. RESULTS Chondrocytes co-cultured with immune cells under PHA activation exhibited downregulation of IDO, HLA-G, PDGF, IL-10, TNF-α, IL-6, and IFN-γ compared to undifferentiated MSCs in similar conditions. In non-PHA co-cultured conditions, chondrocytes showed increased expression of IL-6, IFN-γ, IL-4, VEGF, iNOS, PDGF, PTGS-2 and TGF-β, while TNF-α, IL-10, IDO and HLA-G were decreased. In contrast, chondrocytes activated with PHA without immune cell interaction displayed reduced expression of HLA-G and TNF-α, with no significant changes in IL-6, IFN-γ, IL-4, IL-10, VEGF, PDGF, PTGS-2, TGF-β, IDO, and iNOS compared to PHA-stimulated undifferentiated MSCs. CONCLUSION This study demonstrates that chondrocytes derived from WJ-MSCs exhibit limited immunomodulatory potential compared to undifferentiated MSCs, particularly under PHA-induced inflammatory conditions. Undifferentiated MSCs showed superior regulation of key cytokines associated with immune modulation. These findings suggest that maintaining MSCs in an undifferentiated state may be advantageous for therapeutic applications targeting inflammatory conditions, such as osteoarthritis. Future research should explore strategies to enhance the immunomodulatory efficacy of chondrocytes, potentially through genetic modification or adjunctive therapies.
Collapse
Affiliation(s)
- Raja Sundari Meenakshi Sundaram
- Department of Regenerative Medicine and Research, Government Stanley Hospital, Chennai 600001, Tamil Nadu, India; (R.S.M.S.); (S.R.); (P.S.)
| | - Secunda Rupert
- Department of Regenerative Medicine and Research, Government Stanley Hospital, Chennai 600001, Tamil Nadu, India; (R.S.M.S.); (S.R.); (P.S.)
| | - Prasanna Srinivasan
- Department of Regenerative Medicine and Research, Government Stanley Hospital, Chennai 600001, Tamil Nadu, India; (R.S.M.S.); (S.R.); (P.S.)
| | - Jeswanth Sathyanesan
- Department of Regenerative Medicine and Research, Government Stanley Hospital, Chennai 600001, Tamil Nadu, India; (R.S.M.S.); (S.R.); (P.S.)
| | - Kavitha Govarthanan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India;
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600017, Tamil Nadu, India; (N.J.); (M.J.)
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India;
| | - Swaminathan Ramasubramanian
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India;
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600017, Tamil Nadu, India; (N.J.); (M.J.)
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India;
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, CMRI, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea;
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
49
|
da Silva KN, Marim FM, Rocha GV, Costa-Ferro ZSM, França LSDA, Nonaka CKV, Paredes BD, Rossi EA, Loiola EC, Adanho CSA, Cunha RS, Silva MMAD, Cruz FF, Costa VV, Zanette DL, Rocha CAG, Aguiar RS, Rocco PRM, Souza BSDF. Functional heterogeneity of mesenchymal stem cells and their therapeutic potential in the K18-hACE2 mouse model of SARS-CoV-2 infection. Stem Cell Res Ther 2025; 16:15. [PMID: 39849557 PMCID: PMC11756204 DOI: 10.1186/s13287-024-04086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/28/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Despite many years of investigation into mesenchymal stem cells (MSCs) and their potential for treating inflammatory conditions such as COVID-19, clinical outcomes remain variable due to factors like donor variability, different tissue sources, and diversity within MSC populations. Variations in MSCs' secretory and proliferation profiles, and their proteomic and transcriptional characteristics significantly influence their therapeutic potency, highlighting the need for enhanced characterization methods to better predict their efficacy. This study aimed to evaluate the biological characteristics of MSCs from different tissue origins, selecting the most promising line for further validation in a K18-hACE2 mouse model of SARS-CoV-2 infection. METHODS We studied nine MSC lines sourced from either bone marrow (hBMMSC), dental pulp (hDPMSC), or umbilical cord tissue (hUCMSC). The cells were assessed for their proliferative capacity, immunophenotype, trilineage differentiation, proteomic profile, and in vitro immunomodulatory potential by co-culture with activated lymphocytes. The most promising MSC line was selected for further experimental validation using the K18-hACE2 mouse model of SARS-CoV-2 infection. RESULTS The analyzed cells met the minimum criteria for defining MSCs, including the expression of surface molecules and differentiation capacity, showing genetic stability and proliferative potential. Proteomic analysis revealed distinct protein profiles that correlate with the tissue origin of MSCs. The immunomodulatory response exhibited variability, lacking a discernible pattern associated with their origin. In co-culture assays with lymphocytes activated with anti-CD3/CD28 beads, all MSC lines demonstrated the ability to inhibit TNF-α, to induce TGF-β and Indoleamine 2,3-dioxygenase (IDO), with varying degrees of inhibition observed for IFN-γ and IL-6, or induction of IL-10 expression. A module of proteins was found to statistically correlate with the potency of IL-6 modulation, leading to the selection of one of the hUCMSCs as the most promising line. Administration of hUCMSC to SARS-CoV-2-infected K18 mice expressing hACE2 was effective in improving lung histology and modulating of a panel of cytokines. CONCLUSIONS Our study assessed MSCs derived from various tissues, uncovering significant variability in their characteristics and immunomodulatory capacities. Particularly, hUCMSCs demonstrated potential in mitigating lung pathology in a SARS-CoV-2 infection model, suggesting their promising therapeutic efficacy.
Collapse
Affiliation(s)
- Kátia Nunes da Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Fernanda Martins Marim
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gisele Vieira Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | | | | | | | | | - Erik Aranha Rossi
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Erick Correia Loiola
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | | | - Rachel Santana Cunha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Mayck Medeiros Amaral da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Clarissa Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Renato Santana Aguiar
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSaúde, Research Support Foundation of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.
- D'Or Institute for Research and Education (IDOR), Salvador, Brazil.
| |
Collapse
|
50
|
Wang YW, Luo CW. Unveiling the signal valve specifically tuning the TGF-β1 suppression of osteogenesis: mediation through a SMAD1-SMAD2 complex. Cell Commun Signal 2025; 23:38. [PMID: 39844165 PMCID: PMC11752969 DOI: 10.1186/s12964-025-02051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND TGF-β1 is the most abundant cytokine in bone, in which it serves as a vital factor to interdict adipogenesis and osteogenesis of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, how TGF-β1 concurrently manipulates differentiation into these two distinct lineages remains elusive. METHODS Treatments with ligands or inhibitors followed by biochemical characterization, reporter assay, quantitative PCR and induced differentiation were applied to MSC line or primary BM-MSCs for signaling dissection. In vivo adipogenesis and ex vivo culture of bone explants were used to verify the functions of different SMAD complexes. Ingenuity Pathway Analysis, and analysis of transcriptomic datasets from human BM-MSCs in combination with hierarchical clustering and STRING assay were used to decipher the interplaying co-repressors. Mouse models of chronic and acute bone loss followed by biochemical assays and micro-computed tomography demonstrated the bone effects when functionally blocking the critical co-repressor HDAC1. RESULTS Distinct from the TGF-β1 inhibition on adipogenesis through canonical SMAD2/3 signaling, we clarified that TGF-β1 suppresses osteogenesis by inducing the formation of previously unidentified mixed SMADs mainly composed of SMAD1 and SMAD2, in which SMAD2 recruits more TGF-β1-induced co-repressors including HDAC1, TGIF1 and ATF3, whereas SMAD1 allows directing the whole transcriptional suppression complex to the cis-elements of osteogenic genes. Depletion of the cross-activation to the mixed SMADs dismantled specifically the TGF-β1 suppression on osteogenesis without affecting its inhibition on adipogenesis. Such phenomena can be reproduced via knockdown of co-repressors such as Hdac1 or addition of HDAC1 inhibitors in TGF-β1-treated MSCs. In either the chronic or the acute bone loss model, we demonstrated that the TGF-β signaling was augmented in the bone niche during osteolysis, whereas administration of HDAC1 inhibitors significantly improved bone quality. CONCLUSION This study identifies a new signal valve through which TGF-β1 can inhibit osteogenesis specifically. Functional interruption of this valve can tilt the seesaw balance of BM-MSC differentiation towards osteogenesis, highlighting the interplaying co-repressors, such as HDAC1, as promising therapeutic targets to combat diverse degenerative orthopedic diseases.
Collapse
Affiliation(s)
- Ying-Wen Wang
- Department of Life Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112, Taiwan
| | - Ching-Wei Luo
- Department of Life Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, 155 Li-Nong Street, Section 2, Beitou, Taipei, 112, Taiwan.
| |
Collapse
|