1
|
Xue M, Deng Q, Deng L, Xun T, Huang T, Zhao J, Wei S, Zhao C, Chen X, Zhou Y, Liang Y, Yang X. Alterations of gut microbiota for the onset and treatment of psoriasis: A systematic review. Eur J Pharmacol 2025; 998:177521. [PMID: 40107339 DOI: 10.1016/j.ejphar.2025.177521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Psoriasis is a chronic, recurrent and systemic inflammatory skin disease which is mediated by immunoreaction. Its pathogenesis is multifactorial, and the exact driving factor remains unclear. Recent studies showed that gut microbiota, which maintain immune homeostasis of our bodies, is closely related with occurrence, development and prognosis of psoriasis. The intestinal microbial abundance and diversity in patients with psoriasis have changed significantly, including intestinal microbiota disorders and reduced production of short chain fatty acids (SCFAs), abnormalities in Firmicutes/Bacteroidetes (F/B), etc. Besides, the intestinal microbiota of psoriasis patients has also changed after treatment of systemic drugs, biologics and small molecule chemical drugs, suggesting that the intestinal microbiota may be a potential response-to-treatment biomarker for evaluating treatment effectiveness. Oral probiotics and prebiotics administration as well as fecal microbial transplantation were also reported to benefit well in psoriasis patients. Additionally, we also discussed the microbial changes from the skin and other organs, which regulated both the onset and treatment of psoriasis together with gut microbiota. Herein, we reviewed recent studies on the psoriasis-related microbiota in an attempt to confidently identify the "core" microbiota of psoriatic patients, understand how microbiota influence psoriasis through the gut-skin axis, and explore potential therapeutic strategies for psoriasis.
Collapse
Affiliation(s)
- Man Xue
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - QuanWen Deng
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Li Deng
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - TianRong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - TingTing Huang
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, China
| | - JingQian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Sui Wei
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - ChenYu Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xi Chen
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - YiWen Zhou
- Department of Clinical Laboratory Medicine, Shenzhen Hospital, Southern Medical University, China
| | - YanHua Liang
- Department of Dermatology, Cosmetology and Venereology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - XiXiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
2
|
Liao W, Hu R, Ji Y, Zhong Z, Huang X, Cai T, Zhou C, Wang Y, Ye Z, Yang P. Oleic acid regulates CD4+ T cells differentiation by targeting ODC1-mediated STAT5A phosphorylation in Vogt-Koyanagi-Harada disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156660. [PMID: 40203473 DOI: 10.1016/j.phymed.2025.156660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Vogt-Koyanagi-Harada (VKH) is a multisystemic autoimmune disorder characterized by bilateral panuveitis frequently accompanied by neurologic manifestations. While metabolic dysregulation is increasingly recognized in the context of autoimmune diseases, the role of specific metabolites in VKH disease remains unexplored. METHODS Non-targeted and targeted metabolomics analysis, phospho-antibody array, proteome microarray, surface plasmon resonance, and molecular simulation were used to identify molecular target of OA. RESULTS We investigated metabolic profile of VKH disease and found that oleic acid (OA) was enriched in this disease. A series of functional assays showed that OA could exacerbate experimental autoimmune uveitis (EAU) in association with increased frequency of Th1 and Th17 cells and decreased proportion of Treg cells in vitro. However, the specific molecular target of OA remains elusive. Through proteome microarrays, molecular simulations and surface plasmon resonance assays, Ornithine decarboxylase 1 (ODC1) was identified as target protein of OA. OA could bind to ODC1, increase ODC1 protein expression in both a time- and concentration-dependent manner and promote subsequently putrescine production. Phospho-antibody array analysis revealed that OA inhibited phosphorylation of STAT5A (Y694) in CD4+T cells, leading to imbalance of Th1/Th17 and Treg cells and decreased transcription of IL-10. OA upregulated ODC1 protein and putrescine levels through binding to LYS-78, inhibited phosphorylation of STAT5A protein and subsequently decreased binding of STAT5A at IL-10 promoter. CONCLUSION These results reveals that OA could be a crucial metabolite for modulation of CD4+T cell differentiation and that ODC1-mediated phosphorylation and transcriptional activity of STAT5A contributes to development of VKH disease progression, highlighting ODC1 as a novel therapeutic target in VKH disease.
Collapse
Affiliation(s)
- Weiting Liao
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Ruixue Hu
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Yan Ji
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Zhenyu Zhong
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Xinyue Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Jinfeng Laboratory, Chongqing, China
| | - Tao Cai
- The First Affiliated Hospital of Chongqing Medical University, department of Dermatology, Chongqing, China
| | - Chunjiang Zhou
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Yao Wang
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China
| | - Zi Ye
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China.
| | - Peizeng Yang
- Ophthalmology Medical Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Branch (Municipality Division) of National Clinical Research Centre for Ocular Diseases, Chongqing, China.
| |
Collapse
|
3
|
Kupczyk D, Bilski R, Szeleszczuk Ł, Mądra-Gackowska K, Studzińska R. The Role of Diet in Modulating Inflammation and Oxidative Stress in Rheumatoid Arthritis, Ankylosing Spondylitis, and Psoriatic Arthritis. Nutrients 2025; 17:1603. [PMID: 40362911 PMCID: PMC12073256 DOI: 10.3390/nu17091603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Rheumatic diseases such as rheumatoid arthritis (RA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA) are chronic autoimmune disorders characterized by persistent inflammation and oxidative stress, leading to joint damage and reduced quality of life. In recent years, increasing attention has been given to diet as a modifiable environmental factor that can complement pharmacological therapy. This review summarizes current evidence on how key dietary components-such as omega-3 fatty acids, fiber, polyphenols, and antioxidant vitamins-affect inflammatory pathways and oxidative balance. Special emphasis is placed on the Mediterranean diet, low-starch diets, and hypocaloric regimens, which have shown potential in improving disease activity. The gut microbiota emerges as a critical mediator between diet and immune function, with dietary interventions capable of restoring eubiosis and strengthening the intestinal barrier. Additionally, this paper discusses challenges in the clinical implementation of diet therapy, the need for personalized nutritional strategies, and the importance of integrating diet into holistic patient care. Collectively, findings suggest that dietary interventions may reduce disease activity, mitigate systemic inflammation, and enhance patients' overall well-being.
Collapse
Affiliation(s)
- Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Rafał Bilski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-093 Warsaw, Poland;
| | - Katarzyna Mądra-Gackowska
- Department of Geriatrics, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 Skłodowskiej Curie Str., 85-094 Bydgoszcz, Poland;
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 Jurasza Str., 85-089 Bydgoszcz, Poland;
| |
Collapse
|
4
|
Ni Q, Xia L, Huang Y, Yuan X, Gu W, Chen Y, Wang Y, Nian M, Wu S, Cai H, Huang J. Gut microbiota dysbiosis orchestrates vitiligo-related oxidative stress through the metabolite hippuric acid. MICROBIOME 2025; 13:112. [PMID: 40329424 PMCID: PMC12054231 DOI: 10.1186/s40168-025-02102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/26/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Vitiligo, a depigmenting autoimmune skin disease characterized by melanocyte dysfunction or death, is known to be associated with an imbalance in gut microbiota. Oxidative stress plays a critical role in the pathogenesis of vitiligo. However, the complex promising interaction between abnormal accumulation of reactive oxygen species (ROS) in the skin and gut microbiota has remained unclear. RESULTS Here, we compared transcriptome data of vitiligo lesions and normal skin and identified a high expression of oxidative stress-related genes in vitiligo lesions. We also established a vitiligo mouse model and found that the presence of gut microbiota influenced the expression of ROS-related genes. Depletion of gut microbiota reduced abnormal ROS accumulation and mitochondrial abnormalities in melanocytes, significantly improving depigmentation. Our findings from manipulating gut microbiota through cohousing, fecal microbiota transplantation (FMT), and probiotic supplementation showed that transferring gut microbiota from mice with severe vitiligo-like phenotypes exacerbated skin depigmentation while probiotics inhibited its progression. Targeted metabolomics of fecal, serum, and skin tissues revealed gut microbiota-dependent accumulation of hippuric acid, mediating excessive ROS in the skin. Elevated serum hippuric acid levels were also confirmed in vitiligo patients. Additionally, a microbiota-dependent increase in intestinal permeability in vitiligo mice mediated elevated hippuric acid levels, and we found that hippuric acid could directly bind to ROS-related proteins (NOS2 and MAPK14). CONCLUSIONS Our results suggested the important role of gut microbiota in regulating vitiligo phenotypes and oxidative stress. We identified hippuric acid, a gut microbiota-host co-metabolite, as a critical mediator of oxidative stress in vitiligo skin and its binding targets (NOS2 and MAPK14), resulting in oxidative stress. Validation in a small human cohort suggested that hippuric acid could serve as a novel diagnostic biomarker and therapeutic target for vitiligo. These findings provided new insights into how gut microbiota regulates skin oxidative stress in vitiligo and suggested potential treatment strategies for the disease. Video Abstract.
Collapse
Affiliation(s)
- Qingrong Ni
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, 100142, China.
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lin Xia
- Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Ye Huang
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, 100142, China
| | - Xiaoying Yuan
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, 100142, China
| | - Weijie Gu
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, 100142, China
| | - Yueqi Chen
- Department of Orthopedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yijin Wang
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, 100142, China
| | - Meng Nian
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Shengxi Wu
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China
| | - Hong Cai
- Department of Dermatology, Air Force Medical Center, Fourth Military Medical University, Beijing, 100142, China.
| | - Jing Huang
- Department of Neurobiology, Basic Medical Science Academy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Yu Z, Wang Y, Guo Y, Zhu R, Fang Y, Yao Q, Fu H, Zhou A, Ma L, Shou Q. Exploring the Therapeutic and Gut Microbiota-Modulating Effects of Qingreliangxuefang on IMQ-Induced Psoriasis. Drug Des Devel Ther 2025; 19:3269-3291. [PMID: 40322026 PMCID: PMC12048299 DOI: 10.2147/dddt.s492044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/24/2025] [Indexed: 05/08/2025] Open
Abstract
Purpose To investigate the therapeutic and gut microbiota-modulating effects of Qingreliangxuefang (QRLXF) on psoriasis. Materials and Methods We used network pharmacology, a computational approach, to identify key bioactive compounds and biological targets, and explored the molecular mechanisms of QRLXF. The effects of QRLXF on keratinocyte proliferation and inflammation were evaluated using a mouse model of psoriasis. Changes in the gut microbiota were analyzed via 16SrDNA sequencing, and T cell subsets were assessed using flow cytometry. Results Network pharmacology analysis suggested that QRLXF ameliorated psoriasis by modulating Th17 cell differentiation. Further experiments confirmed the anti-inflammatory effects and relief of psoriatic lesions in IMQ-induced mice. 16SrDNA sequencing revealed significant shifts in the gut microbiota, notably increases in Ligilactobacillus and Lactobacillus genera and decreases in Anaerotruncus, Negativibacillus, Bilophila, and Mucispirillum, suggesting a potential relationship between specific microbiota changes and Th17 cell differentiation. Conclusion QRLXF alleviated psoriatic dermatitis by regulating Th17 cell responses and modifying gut microbiota profiles, highlighting its therapeutic potential for psoriasis treatment.
Collapse
Affiliation(s)
- Zhengyao Yu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Yongkang Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang, 321300, People’s Republic of China
| | - Yingying Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Yingxue Guo
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Ruotong Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Yimiao Fang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| | - Qinghua Yao
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, 310005, People’s Republic of China
| | - Huiying Fu
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Yongkang Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang, 321300, People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| | - Ang Zhou
- Department of Dermatology, Yiwu Central Hospital Medical Community Choujiang Hospital District, Yiwu, Zhejiang, 322000, People’s Republic of China
| | - Lili Ma
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, Zhejiang, 310006, People’s Republic of China
| | - Qiyang Shou
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
- Yongkang Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang, 321300, People’s Republic of China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, People’s Republic of China
| |
Collapse
|
6
|
Zou YM, Wu MN, Zhou X, Bai YP. Mapping the global research landscape on psoriasis and the gut microbiota: visualization and bibliometric analysis. Front Cell Infect Microbiol 2025; 15:1531355. [PMID: 40353222 PMCID: PMC12062130 DOI: 10.3389/fcimb.2025.1531355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/26/2025] [Indexed: 05/14/2025] Open
Abstract
Background Psoriasis is a common chronic inflammatory skin disease with a complex pathogenesis. Recently, the role of gut microbiota in psoriasis has attracted increasing attention. A systematic bibliometric analysis of relevant literature is necessary to understand better the current state and development trends in this field. Materials and methods The Web of Science Core Collection database was searched for literature indexed from 2004 to October 15, 2024. Bibliometric analysis was conducted using Bibliometrix, CiteSpace (version 6.3.R1), R 4.2.2 with the Bibliometrix package, Scimago Graphica 1.0.45, and VOSviewer (version 1.6.20.0) to visualize publication types, years, authors, countries, institutions, journal sources, references, and keywords. Results The development of psoriasis and gut microbiota research can be divided into two phases: slow growth (2004-2014) and rapid development (2014-2024). Lidia Rudnicka is the most active and influential author. China produced the highest number of publications, followed by the United States, which had the highest number of citations per article. The International Journal of Molecular Sciences published the most articles. In contrast, articles in the Journal of Investigative Dermatology, British Journal of Dermatology, and Journal of Allergy and Clinical Immunology were cited over 1,000 times. Keyword and co-citation analyses identified evolving research hotspots. Early studies focused on the association between gut microbiota and comorbid inflammatory diseases. Recent research has delved into specific mechanisms, such as disruption of gut barrier function, short-chain fatty acid metabolism alterations, impaired regulatory T-cell function, and excessive activation of Th17 cells. These mechanisms highlight how gut dysbiosis exacerbates psoriasis patients' systemic inflammation and skin lesions. Conclusion The field of psoriasis and gut microbiota research is developing rapidly despite uneven research distribution. This bibliometric evaluation assesses the current state of research and provides new perspectives for understanding the complex interactions between microbes and the host. Future efforts should strengthen international collaboration to deeply explore the mechanisms of gut microbiota's role in psoriasis, especially its potential applications in disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yue-Min Zou
- Beijing University of Chinese Medicine, Beijing, China
| | - Man-Ning Wu
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiangnan Zhou
- Beijing University of Chinese Medicine, Beijing, China
- National Center for Integrative Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yan-Ping Bai
- Beijing University of Chinese Medicine, Beijing, China
- Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Chinese and Western Medicine, Beijing, China
| |
Collapse
|
7
|
Luan M, Mao B, Zhao Y, Chen J, Yang P, Li W, Lei H, Yang Y, Chang W, Mou K, Li P. Landscapes of gut microbiome and metabolic signatures in vitiligo patients with co-morbid emotional distress. J Dermatol Sci 2025:S0923-1811(25)00067-2. [PMID: 40368677 DOI: 10.1016/j.jdermsci.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025]
Abstract
BACKGROUND Vitiligo is a depigmentation disorder frequently associated with emotional distress; however, the precise mechanisms underlying this co-morbidity remain unclear. OBJECTIVE This study aims to investigate whether gut dysbiosis and gut metabolites contributes to emotional distress in patients with vitiligo. METHODS Depression and anxiety were assessed using the Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7, respectively. Totally enrolled 28 vitiligo patients were diagnosed with depression or anxiety (VWD), 44 without such conditions (VTD), and 37 healthy controls (HC). Stool samples were analyzed using 16S rRNA gene sequencing and liquid chromatography triple quadrupole tandem mass spectrometry. RESULTS The intestinal flora of VWD group changed significantly with reduced α-diversity. The β-diversity varied among groups. Megasphaera and Anaerostipes increased in the VWD group, whereas Bilophila etc. decreased. Linear Discriminant Analysis Effect Size revealed Lachnoclostridium as a representative flora in the VWD and Faecalibacterium as a representative flora in the VTD. Metabolites such as L-glutamic acid and indole were lower in the VWD group than in the HC, while oleamide, cuminaldehyde, and taurine were higher in the VWD with VTD group. Lachnoclostridium negatively correlated with indole and L-glutamic acid. This study identified notable variations in pathways involved in the biosynthesis of phenylalanine, tyrosine, and tryptophan bile secretion, GABAergic synapses, and taurine and hypotaurine metabolism between the VWD and HC groups. CONCLUSION Specific fecal microbes and metabolites may contribute to the pathogenesis of VWD. These findings provide a novel perspective for addressing emotional distress in patients with vitiligo by targeting the gut-brain-skin axis.
Collapse
Affiliation(s)
- Mei Luan
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Binyue Mao
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yixin Zhao
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Jianan Chen
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Pengju Yang
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Weizhe Li
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Hao Lei
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Yi Yang
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Wenwan Chang
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Kuanhou Mou
- Department of Dermatology, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China.
| | - Pan Li
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China.
| |
Collapse
|
8
|
Yang X, Che W, Zhang L, Zhang H, Chen X. Chronic airway inflammatory diseases and e-cigarette use: a review of health risks and mechanisms. Eur J Med Res 2025; 30:223. [PMID: 40170170 PMCID: PMC11959776 DOI: 10.1186/s40001-025-02492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025] Open
Abstract
Chronic airway inflammatory diseases, which primarily include chronic obstructive pulmonary disease (COPD), asthma, allergic rhinitis, and chronic sinusitis, continue to have a high global prevalence, highlighting their significant public health impact. Concurrently, the use of e-cigarettes (tobacco e-cigarettes) has been rising worldwide, with many users perceiving them as a safer alternative to traditional cigarettes. However, accumulating evidence from international studies suggests that e-cigarettes pose substantial health risks. This review aims to explore recent research on the relationship between e-cigarette use and chronic airway inflammatory diseases. The findings indicate that e-cigarette usage increases the risk of developing these conditions. Specifically, studies have shown that e-cigarettes exacerbate airway inflammatory responses, elevate levels of type 2 inflammatory cytokines such as IL-4, IL-5, and IL-13, increase cellular oxidative stress, and impair lung function. These mechanisms may collectively contribute to an increased risk of chronic airway inflammatory diseases potentially associated with e-cigarette use.
Collapse
Affiliation(s)
- Xing Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Wenqi Che
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lu Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Huanping Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiaoxue Chen
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Zhao W, Liu X, Tang J, Chen J, Liu D, Sun H, Qu J, Sun Y, Ouyang Z. Jinkui Shenqi decoction targets PAD4 to restrain NETosis and ameliorates psoriasis progression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156543. [PMID: 40010032 DOI: 10.1016/j.phymed.2025.156543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND The underlying pathogenesis of psoriasis was attributed to insufficient kidney qi and blood stasis arising from impeded blood circulation. Jinkui Shenqi decoction (JKSQD), was renowned for its capacity to warm and tonify kidney yang, as well as to invigorate blood circulation. However, there remains a dearth of studies on its specific therapeutic effects and underlying mechanisms of psoriasis. PURPOSE Aiming to investigate the effectiveness and mechanism of JKSQD in the treatment of psoriasis. METHODS Initially, we identified the compounds of JKSQD by UPLC-Q-TOF-MS/MS and constructed psoriasis-like mice to explore the effect of JKSQD on psoriasis. Subsequently, proteomic sequencing was conducted to identify key proteins and pathways involved in the therapeutic effect of JKSQD. Neutrophil extracellular traps (NETs) and peptidylarginine deiminase 4 (PAD4)-related indicators were detected to validate JKSQD mechanisms. At last, we analyzed metabolomic data to elucidate what metabolic pathway or metabolites worked during this procedure. RESULTS We found that JKSQD effectively reversed the progression of psoriasis and associated inflammation in mice. Proteomic analysis further illuminated that PAD4 involved in NETosis was notably downregulated in psoriasis-like mice after JKSQD treatment. And a series of experiments further revealed that JKSQD inhibited NETs formation and PAD4 expression. Moreover, metabolomics demonstrated JKSQD influenced D-Arginine and D-ornithine metabolism, offering deeper insights into the mechanisms of JKSQD on psoriasis. CONCLUSIONS This study unveiled that JKSQD could improve psoriasis progression by targeting PAD4 to inhibit NETs formation.
Collapse
Affiliation(s)
- Wanjun Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiaoyan Liu
- First Clinical College, Hubei University of Chinese Medicine, 16 Huangjiahu West Road, Wuhan 430065, China
| | - Jianing Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jieyu Chen
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China
| | - Dong Liu
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China
| | - Haiyan Sun
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Zijun Ouyang
- School of Food and Drug, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen 518055, China.
| |
Collapse
|
10
|
Liu X, Wang S, Jiang Y, Luo X, Yang Y, Huo L, Ye J, Zhou Y, Yang Z, Du F, Dong L, Mao C, Wang X. Treatment With Schistosoma Japonicum Peptide SJMHE1 and SJMHE1-Loaded Hydrogel for the Mitigation of Psoriasis. PSORIASIS (AUCKLAND, N.Z.) 2025; 15:85-104. [PMID: 40166485 PMCID: PMC11956717 DOI: 10.2147/ptt.s506624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
Purpose Harnessing helminth-induced immunomodulation offers a novel therapeutic avenue for autoimmune and inflammatory diseases; however, research on helminths against psoriasis remains limited. This study evaluates the effects of the peptide SJMHE1 from Schistosoma japonicum (S. japonicum) on the inflammatory response in imiquimod (IMQ)-induced psoriasis mice and LPS-stimulated keratinocytes, as well as the efficacy of SJMHE1-loaded hydrogel on psoriasis in mice. Methods SJMHE1 was administered to mice with IMQ-induced psoriasis via topical administration or subcutaneous injection, and effects were evaluated by detecting the skin inflammation of mice. LPS-stimulated HaCaT cells were used to assess the regulatory effects of SJMHE1 in vitro. Additionally, the effects of Poloxamer 407 (P407)-loaded SJMHE1 were evaluated in mice with IMQ-induced psoriasis through topical application. Results Topical administration and subcutaneous injection of SJMHE1 alleviated psoriasis-like skin lesions, improved PASI scores, reduced epidermal thickness and dermal inflammatory cell infiltration, and decreased expression of Ki67, a marker of keratinocyte proliferation or differentiation. SJMHE1 modulated pro-inflammatory and anti-inflammatory cytokine expression in LPS-treated HaCaT cells, down-regulating NF-κB and STAT3 activation. Both SJMHE1-loaded hydrogel and SJMHE1 treatment alleviated IMQ-induced psoriasis-like skin lesions, improved PASI scores, reduced the number of Ki67-positive epidermal cells, decreased the spleen index and T-cell infiltration, increased the proportion of regulatory T cells (Tregs), and decreased the percentage of Th17 cells, alongside reducing inflammatory cytokine expression and NF-κB and STAT3 activation in skin lesions. Notably, weight changes in the SJMHE1-loaded gel group were less than those in the betamethasone-positive control group on days 6, 7, and 8 post-IMQ administration. Conclusion SJMHE1-loaded hydrogel and SJMHE1 treatment inhibited NF-κB and STAT3 activation in skin lesions, improved Th17/Treg balance, and reduced inflammatory cytokine expression in psoriasis mice, thereby ameliorating psoriatic lesion symptoms. Furthermore, SJMHE1-loaded hydrogel exhibited fewer side effects compared to betamethasone, positioning it as a promising strategy against psoriasis.
Collapse
Affiliation(s)
- Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Shang Wang
- Tzu Chi International College of Traditional Chinese Medicine, Vancouver, BC, Canada
| | - Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Xinkai Luo
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
- Department of Nuclear Medicine, Institute of Digestive Diseases, and Institute of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Yanwei Yang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Liyue Huo
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Yuepeng Zhou
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Zhe Yang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Fengyi Du
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People’s Republic of China
| | - Liyang Dong
- Department of Nuclear Medicine, Institute of Digestive Diseases, and Institute of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Chaoming Mao
- Department of Nuclear Medicine, Institute of Digestive Diseases, and Institute of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
- Department of Nuclear Medicine, Institute of Digestive Diseases, and Institute of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, People’s Republic of China
| |
Collapse
|
11
|
Bakhshandi AK, Minasazi A, Yeganeh O, Behi M. Therapeutic potential of microbiota modulation in psoriasis: current evidence and future directions. Arch Dermatol Res 2025; 317:561. [PMID: 40074992 DOI: 10.1007/s00403-025-04097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
The human microbiota plays a significant role in health and the development of autoimmune diseases by maintaining gut-skin homeostasis through diverse microbial communities. Dysbiosis, or imbalance in these communities, is increasingly recognized as a contributing factor in the pathogenesis of autoimmune and inflammatory diseases, including psoriasis. Psoriasis is characterized by immune dysregulation, leading to red and scaly plaques that significantly reduce patients' quality of life. Current evidence highlights the gut microbiota's critical role in driving immune responses and chronic inflammation associated with psoriasis. Therapeutic strategies aimed at restoring microbial balance, such as probiotics, have demonstrated promise in reducing disease severity. Additionally, fecal microbiota transplantation (FMT) has emerged as a novel intervention, with early studies suggesting its potential to alleviate symptoms by correcting gut dysbiosis. These approaches underscore the importance of microbiota-targeted therapies in addressing the systemic nature of psoriasis and pave the way for advancements in personalized treatment strategies.
Collapse
Affiliation(s)
- Ali Karimi Bakhshandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
- Department of Natural Health Science, Selinus University, Bologna, Italy.
| | - Asal Minasazi
- Department of Analytical Chemistry, K.N. Toosi University of Technology, Tehran, Iran
| | - Omid Yeganeh
- Department of Microbiology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Behi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Mao M, Yuan Y, Li R, Kuang Y, Lu Y, Zhu W, Chen W. Modulation of gut propionate and intestinal mucosal protection by Bifidobacterium longum: Mitigating methotrexate side effects without compromising the efficacy of psoriasis therapy. Int Immunopharmacol 2025; 149:114196. [PMID: 39904035 DOI: 10.1016/j.intimp.2025.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Methotrexate (MTX) is a widely used medication that can also be employed in the treatment of psoriasis. Previous studies have emphasized that MTX can induce dysbiosis of the gut microbiota, leading to intestinal damage. In this study, the serum levels of calprotectin and zonulin were elevated in patients treated with MTX, while no significant increase in patients treated with MTX combined with probiotics. Furthermore, we established an imiquimod (IMQ) induced psoriasis-like dermatitis mouse model and treated it with MTX (50 µL, 0.3 mg/mL) and B. longum (200 µL, 1 × 1011 CFU/mL). The results showed that B. longum treatment reduced FITC-dextran intestinal permeability and lowered serum levels of calprotectin and zonulin. It also decreased the expression and secretion levels of inflammatory factors in intestinal tissues, such as IL-6, TNF-α, and IL-23A, while increasing the expression and secretion of the protective factor IL-10. Moreover, B. longum treatment maintained barrier integrity by increasing the abundance of propionate in the gut, thereby regulating the balance of Th17/Treg cells. In conclusion, this study suggests that incorporating B. longum into the traditional MTX regimen may enhance its effectiveness in treating psoriasis while preserving the integrity of the intestinal mucosa.
Collapse
Affiliation(s)
- Manyun Mao
- Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, Jiangsu, China
| | - Yan Yuan
- Chinese Academy of Medical Sciences Institute of Dermatology, Nanjing, Jiangsu, China
| | - Rao Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Yehong Kuang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Yan Lu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Wu Zhu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
| | - Wangqing Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China; Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
13
|
Tian Y, Tian R, He J, Guo Y, Yan P, Chen Y, Li R, Wang B. Toralactone alleviates cisplatin-induced acute kidney injury by modulating the gut microbiota-renal axis. Int Immunopharmacol 2024; 142:113115. [PMID: 39276451 DOI: 10.1016/j.intimp.2024.113115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Gut microbiota has been reported to be perturbed by cisplatin and to modulate the nephrotoxicity of chemotherapeutic agents. However, the critical role of toralactone, a bioactive components of Cassia obtusifolia L. seeds, in modulating the gut microbiota in the pathogenesis of cisplatin-induced nephrotoxicity remains to be elucidated. METHODS In this study, we verified the reno-protective effects of toralactone and compared the composition and function of the gut microbiota in the normal, cisplatin-treated and low or high dose of toralactone-treated mice using 16S rDNA gene sequencing. We also investigated the gut microbiota related LPS/TLR4/NF-κB/TNF-α pathway in renal tissue. To elucidate the causal relationship between gut dysbiosis and cisplatin nephrotoxicity, an antibiotic cocktail was administered to deplete the gut microbiota and fecal microbiota transplantation (FMT) was performed prior to cisplatin treatment. RESULTS The renal histopathology showed that toralactone significantly alleviated cisplatin-induced renal injury. 16S rDNA gene sequencing analysis demonstrated that toralactone treatment effectively reversed cisplatin-induced gut microbiota dysbiosis in mice. FMT from toralactone-treated mice to cisplatin-induced kidney injury mice was observed to have the reno-protective effects, and deletion of gut microbiota by antibiotics was found to negate the reno-protective effect of toralactone. Interestingly, the renal tissue of cisplatin-associated kidney injury mice showed activation of the LPS/TLR4/NF-κB pathway and increase in TNF-α within the renal tissue, whereas toralactone treatment was observed to inhibit the LPS/TLR4/NF-κB/TNF-α pathway. CONCLUSION This study elucidated the reno-protective effects for the first time, demonstrating that it exerts its beneficial effects through the gut microbiota, which mediate the LPS/TLR4/NF-κB/TNF-α inflammatory pathway. It may help to develop therapeutic approaches using toralactone and targeted restoration of the gut microbiota.
Collapse
Affiliation(s)
- Yan Tian
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Department of Endocrinology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Ruixue Tian
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Clinical Research Center, the Second Affiliated Hospital of Nanchang University, 1 Min De Road, Nanchang 330008, China
| | - Juan He
- The Third Clinical Medical College, Shanxi University of Chinese Medicine, 121 Da Xue Street, Jinzhong 030619, China
| | - Yafan Guo
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China
| | - Pan Yan
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China
| | - Yunxi Chen
- Department of Endocrinology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China
| | - Baodong Wang
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China.
| |
Collapse
|
14
|
Madaan T, Doan K, Hartman A, Gherardini D, Ventrola A, Zhang Y, Kotagiri N. Advances in Microbiome-Based Therapeutics for Dermatological Disorders: Current Insights and Future Directions. Exp Dermatol 2024; 33:e70019. [PMID: 39641544 PMCID: PMC11663288 DOI: 10.1111/exd.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
The human skin hosts an estimated 1000 bacterial species that are essential for maintaining skin health. Extensive clinical and preclinical studies have established the significant role of the skin microbiome in dermatological disorders such as atopic dermatitis, psoriasis, diabetic foot ulcers, hidradenitis suppurativa and skin cancers. In these conditions, the skin microbiome is not only altered but, in some cases, implicated in disease pathophysiology. Microbiome-based therapies (MBTs) represent an emerging category of live biotherapeutic products with tremendous potential as a novel intervention platform for skin diseases. Beyond using established wild-type strains native to the skin, these therapies can be enhanced to express targeted therapeutic molecules, offering more tailored treatment approaches. This review explores the role of the skin microbiome in various common skin disorders, with a particular focus on the development and therapeutic potential of MBTs for treating these conditions.
Collapse
Affiliation(s)
- Tushar Madaan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Kyla Doan
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Alexandra Hartman
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Dominick Gherardini
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Alec Ventrola
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Yuhang Zhang
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| | - Nalinikanth Kotagiri
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267
| |
Collapse
|
15
|
Duan J, Li Q, Cheng Y, Zhu W, Liu H, Li F. Therapeutic potential of Parabacteroides distasonis in gastrointestinal and hepatic disease. MedComm (Beijing) 2024; 5:e70017. [PMID: 39687780 PMCID: PMC11647740 DOI: 10.1002/mco2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing evidences indicate that the gut microbiota is involved in the development and therapy of gastrointestinal and hepatic disease. Imbalance of gut microbiota occurs in the early stages of diseases, and maintaining the balance of the gut microbiota provides a new strategy for the treatment of diseases. It has been reported that Parabacteroides distasonis is associated with multiple diseases. As the next-generation probiotics, several studies have demonstrated its positive regulation on the gastrointestinal and hepatic disease, including inflammatory bowel disease, colorectal cancer, hepatic fibrosis, and fatty liver. The function of P. distasonis and its metabolites mainly affect host immune system, intestinal barrier function, and metabolic networks. Manipulation of P. distasonis with natural components lead to the protective effect on enterohepatic disease. In this review, the metabolic pathways regulated by P. distasonis are summarized to illustrate its active metabolites and their impact on host metabolism, the role and action mechanism in gastrointestinal and hepatic disease are discussed. More importantly, the natural components can be used to manipulate P. distasonis as treatment strategies, and the challenges and perspectives of P. distasonis in clinical applications are discussed.
Collapse
Affiliation(s)
- Jinyi Duan
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Qinmei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Yan Cheng
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Weifeng Zhu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Hongning Liu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Fei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Gastroenterology & Hepatology, Huaxi Joint Centre for Gastrointestinal CancerState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
16
|
Li D, Li M, Gao H, Hu K, Xie R, Fan J, Huang M, Liao C, Han C, Guo Z, Chen X, Li M. Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids. Front Microbiol 2024; 15:1475984. [PMID: 39669776 PMCID: PMC11636970 DOI: 10.3389/fmicb.2024.1475984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
Keloid scarring is a fibroproliferative disease of the skin, which can significantly impact one's quality of life through cosmetic concerns, physical discomfort (itchy; painful), restricted movement, and psychological distress. Owing to the poorly understood pathogenesis of keloids and their high recurrence rate, the efficacy of keloid treatment remains unsatisfactory, particularly in patients susceptible to multiple keloids. We conducted fecal metagenomic analyzes and both untargeted and targeted plasma metabolomics in patients with multiple keloids (MK, n = 56) and controls with normal scars (NS, n = 60); tissue-untargeted metabolomics (MK, n = 35; NS, n = 32), tissue-targeted metabolomics (MK, n = 41; NS, n = 36), and single-cell sequencing analyzes (GSE163973). Differences in the gut microbiota composition, plasma metabolites, and tissue metabolites were observed between the MK and NS groups; the core gut microbiota, Oxalobacter formigenes, Bacteroides plebeius, and Parabacteroides distasonis, were identified via the gut microbiome co-occurrence network. Single-cell data helped clarify the specific cells affected by plasma metabolites. An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. These findings may open new avenues for understanding the multifactorial nature of keloid formation from the gut-skin axis and highlight the potential for novel therapeutic strategies targeting keloid lesions and the underlying systemic imbalances affected by the gut microbiome.
Collapse
Affiliation(s)
- Dang Li
- Nursing Department of Fujian Medical University Union Hospital, Fuzhou, China
| | - Minghao Li
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Hangqi Gao
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Kailun Hu
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Rongrong Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Fan
- Department of Gynecology, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Mingquan Huang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Chengxin Liao
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Chang Han
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd., Shanghai, China
| | - Zhihui Guo
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Xiaosong Chen
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Ming Li
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| |
Collapse
|
17
|
Mei A, Luan M, Li P, Chen J, Mou K. Knowledge, attitude, and practice of psoriatic arthritis among patients with psoriasis. Front Med (Lausanne) 2024; 11:1382806. [PMID: 39640973 PMCID: PMC11617161 DOI: 10.3389/fmed.2024.1382806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction This study aimed to investigate the knowledge, attitude and practice (KAP) of psoriatic arthritis among patients with psoriasis. The KAP questionnaire is a widely used tool in public health research, designed to assess individuals' understanding (knowledge), beliefs (attitude), and behaviors (practice) related to a specific health condition. Methods A cross-sectional study was conducted at Sinopharm Dongfeng General Hospital from September to November 2023. Demographic information and KAP scores were assessed using a structured questionnaire, which evaluated patient knowledge about psoriatic arthritis, their attitude toward managing it, and their practical engagement in preventive or treatment behaviors. Results In this study, 392 valid questionnaires were analyzed. Of these, 290 respondents (74.0%) were male, and 296 (75.5%) reported no comorbid conditions. The median scores for knowledge, attitude, and practice were 8 (interquartile range [IQR]: 6-10), 21 (IQR: 19-24), and 14 (IQR: 8-22), respectively. Multivariate logistic regression analysis indicated that practice was independently associated with being female (OR = 0.426, 95% CI: 0.259-0.703, p = 0.001), being aged 30-39 years (OR = 2.159, 95% CI: 1.223-3.811, p = 0.008) or 40-49 years (OR = 2.002, 95% CI: 1.019-3.936, p = 0.044), having a Dermatology Life Quality Index (DLQI) score of 11-30 (OR = 2.569, 95% CI: 1.158-5.700, p = 0.020), and not having psoriatic arthritis (OR = 0.300, 95% CI: 0.168-0.537, p < 0.001). Conclusion Patients with psoriasis had suboptimal knowledge, positive attitude and inactive practice toward psoriatic arthritis. To address this, healthcare providers should prioritize educational interventions, with a specific focus on younger patients, females, and individuals with a higher DLQI score, to enhance awareness and promote proactive management of psoriatic arthritis among this patient population.
Collapse
Affiliation(s)
- Aihua Mei
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Dermatology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Mei Luan
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Pan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jun Chen
- Department of Dermatology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Kuanhou Mou
- Department of Dermatology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
18
|
Xue Y, Lin S, Chen M, Ke J, Zhang J, Fan Q, Chen Y, Chen F. Altered colonic microflora and its metabolic profile in mice with acute viral myocarditis induced by coxsackievirus B3. Virol J 2024; 21:295. [PMID: 39550578 PMCID: PMC11568606 DOI: 10.1186/s12985-024-02571-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Mounting evidence suggests that the gut-heart axis is critical in the pathogenesis of cardiovascular diseases. The gut serves as the primary pathway through which Coxsackievirus B3 (CVB3) infects its host, leading to acute viral myocarditis (AVMC). However, little is known about the role of gut microflora and its metabolites in the development of AVMC. The AVMC model was established by intraperitoneal injection of CVB3 in mice. Then, 16S ribosomal RNA (16S rRNA) gene sequencing and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) untargeted metabolomics profiling were performed to analyze the microflora composition and metabolic profile of colonic contents. Compared to the Control mice, the AVMC mice displayed a significant reduction in gut microflora richness and diversity, as revealed by an increased abundance of Proteobacteria and a decreased abundance of Cyanobacteria and Desulfobacterota. LEfSe analysis indicated that the main genera differing between the two groups were Escherichia-Shigella, Lactobacillus, Clostridium_sensu_stricto_1, Prevotellaceae_UCG-001, and Odoribacter. Based on the criterion of OPLS-DA VIP ≥ 1.0 and p-value < 0.05, a total of 198 differential metabolites (DMs) were identified in the gut, including 79 upregulated and 119 downregulated metabolites, of which lipids and lipid-like molecules accounted for the largest proportion. Notably, both altered gut bacterial taxa and metabolites were significantly enriched in the Lipid metabolism pathway, with Traumatic acid (TA), Alpha-Linolenic acid (ALA), Eicosapentaenoic acid (EPA), and Docosahexaenoic acid (DHA) being the key DMs in the pathway. Additionally, significant positive correlations (|r| > 0.80 and p < 0.05) were found between TA levels and Anaerotruncus and Bilophila abundance, between EPA levels and Clostridium_sensu_stricto_1 abundance, and between DHA levels and Escherichia-Shigella abundance, respectively. CVB3 infection leads to notable alterations in gut microflora composition and its metabolic profile, which may participate in AVMC development. Our findings provide important clues for future in-depth studies on AVMC etiology.
Collapse
Affiliation(s)
- Yimin Xue
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Shirong Lin
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Mingguang Chen
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Jun Ke
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Jiuyun Zhang
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Qiaolian Fan
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Yimei Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China
| | - Feng Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
19
|
Jin L, Jiang Q, Huang H, Zhou X. Topical histone deacetylase inhibitor remetinostat improves IMQ-induced psoriatic dermatitis via suppressing dendritic cell maturation and keratinocyte differentiation and inflammation. Eur J Pharmacol 2024; 983:177011. [PMID: 39304110 DOI: 10.1016/j.ejphar.2024.177011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by excessive proliferation of keratinocytes and infiltration of immune cells. Although psoriasis has entered the era of biological treatment, there is still a need to explore more effective therapeutic targets and drugs due to the presence of resistance and adverse reactions to biologics. Remetinostat, an HDAC inhibitor, can maintain its potency within the skin with minimal systemic effects, making it a promising topical medication for treating psoriasis. But its effectiveness in treating psoriasis has not been evaluated. In this study, the topical application of remetinostat significantly improved psoriasiform inflammation in an imiquimod-induced mice model by inhibiting CD86 expression of CD11C+I-A/I-E+ dendritic cells (DCs) in the skin. Moreover, remetinostat could dampen the maturation and activation of bone marrow-derived DCs in vitro, as well as the expression of psoriasis-related inflammatory mediators by keratinocytes. In addition, remetinostat could promote keratinocyte differentiation without affecting its proliferation. Our findings demonstrate that remetinostat improves psoriasis by inhibiting the maturation and activation of DCs and the differentiation and inflammation of keratinocytes, which may facilitate the potential application of remetinostat in anti-psoriasis therapy.
Collapse
Affiliation(s)
- Liping Jin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Jiang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huining Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xingchen Zhou
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China; Furong Laboratory, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Zhang Q, Zhao L, Li Y, Wang S, Lu G, Wang H. Advances in the mechanism of action of short-chain fatty acids in psoriasis. Int Immunopharmacol 2024; 141:112928. [PMID: 39159566 DOI: 10.1016/j.intimp.2024.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Psoriasis is a prevalent chronic inflammatory and immunological disorder. Its lesions are present as scaly erythema or plaques. Disruptions in the body's immune system play a significant role in developing psoriasis. Recent evidence suggests a potential role of the gut microbiome in autoimmune diseases. Short-chain fatty acids (SCFAs) are the primary metabolites created by gut microbes and play a crucial fuction in autoimmunity. SCFAs act on various cells by mediating signaling to participate in host physiological and pathological processes. These processes encompass body metabolism, maintenance of intestinal barrier function, and immune system modulation. SCFAs can regulate immune cells to enhance the body's immune function, potentially influencing the prevention and treatment of psoriasis. However, the mechanisms underlying the role of SCFAs in psoriasis remain incompletely understood. This paper examines the relationship between SCFAs and psoriasis, elucidating how SCFAs influence the immune system, inflammatory response, and gut barrier in psoriasis. According to the study, in psoriasis, SCFAs have been shown to regulate neutrophils, macrophages, and dendritic cells in the adaptive immune system, as well as T and B cells in the innate immune system. Additionally, we explore the role of SCFAs in psoriasis by maintaining intestinal barrier function, restoring intestinal ecological homeostasis, and investigating the potential therapeutic benefits of SCFAs for psoriasis.
Collapse
Affiliation(s)
- Qin Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| | - Yu Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siyao Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiling Lu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Hongmei Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| |
Collapse
|
21
|
Tu Y, Gu H, Li N, Sun D, Yang Z, He L. Identification of Key Genes Related to Immune-Lipid Metabolism in Skin Barrier Damage and Analysis of Immune Infiltration. Inflammation 2024:10.1007/s10753-024-02174-4. [PMID: 39465470 DOI: 10.1007/s10753-024-02174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/23/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Several physical and chemical factors regulate skin barrier function. Skin barrier dysfunction causes many inflammatory skin diseases, such as atopic dermatitis and psoriasis. Activation of the immune response may lead to damage to the epidermal barrier. Abnormal lipid metabolism is defined as abnormally high or low values of plasma lipid components such as plasma cholesterol and triglycerides. The mouse skin barrier damage model was used for RNA sequencing. Bioinformatics analysis and validation were performed. Differently expressed genes (DEGs) related to immune and lipid metabolism were screened by differentially expressed gene analysis, and the enriched biological processes and pathways of these genes were identified by GO-KEGG. The interactions between DEGs were confirmed by constructing a PPI network. GSEA, transcription factor regulatory network, and immune infiltration analyses were performed for the 10 genes. Expression validation was performed by public datasets. The expression of key genes in mouse skin tissue was detected by qPCR. The expression of differentially expressed immune cell markers in the skin was detected by immunofluorescence. Based on the trans epidermal water loss (TEWL) score, the expression of key genes was detected by qPCR before skin barrier injury, at 4h and 7d, and at recovery from injury. Il17a, Il6, Tnf, Itgam, and Cxcl1 were immune-related key genes. Pla2g2f, Ptgs2, Plb1, Pla2g3, and Pla2g2d were key genes for lipid metabolism. Database validation and experimental results revealed that the expression trends of these genes were consistent with our analyses. The research value of these genes has been demonstrated through mouse datasets and experimental validation, and future therapeutic approaches may be able to mitigate the disease by targeting these genes to modulate the function of the skin barrier.
Collapse
Affiliation(s)
- Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, No. 295 XiChang Road, KunMing, 650032, China
| | - Hua Gu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, No. 295 XiChang Road, KunMing, 650032, China
| | - Na Li
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, No. 295 XiChang Road, KunMing, 650032, China
| | - Dongjie Sun
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, No. 295 XiChang Road, KunMing, 650032, China
| | - Zhenghui Yang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, No. 295 XiChang Road, KunMing, 650032, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, No. 295 XiChang Road, KunMing, 650032, China.
| |
Collapse
|
22
|
Kumar S, Mahajan S, Kale D, Chourasia N, Khan A, Asati D, Kotnis A, Sharma VK. Insights into the gut microbiome of vitiligo patients from India. BMC Microbiol 2024; 24:440. [PMID: 39468434 PMCID: PMC11514916 DOI: 10.1186/s12866-024-03529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Vitiligo is an autoimmune disease characterized by loss of pigmentation in the skin. It affects 0.4 to 2% of the global population, but the factors that trigger autoimmunity remain elusive. Previous work on several immune-mediated dermatological disorders has illuminated the substantial roles of the gut microbiome in disease pathogenesis. Here, we examined the gut microbiome composition in a cohort of vitiligo patients and healthy controls from India, including patients with a family history of the disease. RESULTS Our results show significant alterations in the gut microbiome of vitiligo patients compared to healthy controls, affecting taxonomic and functional profiles as well as community structure. We observed a reduction in the abundance of several bacterial taxa commonly associated with a healthy gut microbiome and noted a decrease in the abundance of SCFA (Short Chain Fatty Acids) producing taxa in the vitiligo group. Observation of a higher abundance of genes linked to bacteria-mediated degradation of intestinal mucus suggested a potential compromise of the gut mucus barrier in vitiligo. Functional analysis also revealed a higher abundance of fatty acid and lipid metabolism-related genes in the vitiligo group. Combined analysis with data from a French cohort of vitiligo also led to the identification of common genera differentiating healthy and gut microbiome across populations. CONCLUSION Our observations, together with available data, strengthen the role of gut microbiome dysbiosis in symptom exacerbation and possibly pathogenesis in vitiligo. The reported microbiome changes also showed similarities with other autoimmune disorders, suggesting common gut microbiome-mediated mechanisms in autoimmune diseases. Further investigation can lead to the exploration of dietary interventions and probiotics for the management of these conditions.
Collapse
Affiliation(s)
- Sudhir Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Shruti Mahajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Deeksha Kale
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Nidhi Chourasia
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Anam Khan
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Dinesh Asati
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, India.
| | - Vineet K Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
23
|
Zhou X, Shen S, Wang Z. Genetic evidence of bidirectional mendelian randomization study on the causality between gut microbiome and respiratory diseases contributes to gut-lung axis. Sci Rep 2024; 14:25550. [PMID: 39462039 PMCID: PMC11513010 DOI: 10.1038/s41598-024-77273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Observational studies and clinical trials have suggested the relationship between the gut microbiome and respiratory diseases, but the causality between them remains unclear. Firstly, we selected eight respiratory diseases Genome-wide association study (GWAS) datasets mainly from the FinnGen collaboration as outcomes. The exposure was based on GWAS statistics about the gut microbiome, sourced from the MiBioGen consortium, including gut microbial taxa. The causal link between the gut microbiome and respiratory illnesses was then estimated using a Two-sample Mendelian randomization (MR) analysis, including the inverse-variance weighted (IVW), weighted median, MR-Egger, simple mode, and weighted mode. To ensure reliability, F-statistics and sensitivity tests were conducted. Furthermore, we performed a reverse MR analysis of the pre-Mendelian positive findings to possible reverse causality. For the 196 gut microbe taxa, the IVW analysis suggested 88 potential associations with eight clinically prevalent respiratory diseases. Among them, 30 causal associations were found in more than one MR method. Multiple statistical corrections have confirmed three causal associations: genus Holdemanella was a risk factor for chronic obstructive pulmonary disease (COPD) (P = 1.3 × 10-4, OR = 1.18), family FamilyXIII was a protective factor for COPD (P = 1.3 × 10-3, OR = 0.75), and genus Oxalobacter was a risk factor for asthma (P = 2.1 × 10-4, OR = 1.09). Our MR analysis results indicate that there would be a causal relationship between the gut microbiome and respiratory diseases, contributing to the gut-lung axis. This finding offers new insights into the gut microbiome's roles in respiratory diseases' clinical prevention, pathogenesis, and improvement of clinical symptoms. Further randomized controlled trials are necessary to clarify the protective effect of probiotics and fecal microbial transplantation on respiratory health.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- The First Clinical College of Zhejiang Chinese Medical University, 548 Binwen, Hangzhou, Zhejiang, 310053, China
| | - Shuyan Shen
- The Second Clinical College of Zhejiang, Chinese Medical University, 548 Binwen, Hangzhou, Zhejiang, 310053, China
| | - Zhen Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
24
|
Zhao K, Zhao Y, Guo A, Xiao S, Tu C. Oral Microbiota Variations in Psoriasis Patients Without Comorbidity. Clin Cosmet Investig Dermatol 2024; 17:2231-2241. [PMID: 39399065 PMCID: PMC11468564 DOI: 10.2147/ccid.s473237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024]
Abstract
Background Psoriasis is a chronic inflammatory skin disease, and its etiology is still unclear. There is increasing evidence suggesting that microorganisms may trigger psoriasis. However, the relationship between psoriasis and oral microbiota remains poorly understood. Our aim is to identify differences in the composition and diversity of the oral microbiota between patients with psoriasis and healthy controls, and to discover oral microbial markers for assessing the severity of psoriasis. Methods This study recruited 20 psoriasis patients and 20 healthy individuals, collecting their saliva to analyze the composition of the oral microbiota in psoriasis patients. We employed 16S rRNA sequencing technology and utilized various methods for oral microbiome analysis, including the Shannon Index, Gini-Simpson Index, Principal Coordinates Analysis (PCoA), non-metric multidimensional scaling (NMDS), Linear discriminant analysis Effect Size (LEfSe), Wilcoxon test, and Spearman's rank correlation. Results The results showed that the alpha diversity of oral microbiota was higher in psoriasis patients. The relative abundances of certain bacterial taxa differed between psoriasis and healthy individuals, including Prevotella, Prevotella 7 and Porphyromonas gingivalis, which are increased in psoriasis. We also found a positive correlation between Alloprevotella, Porphyromonas, and Neisseria with the severity of psoriasis, while Veillonella showed a negative correlation. Conclusion In summary, this study found significant changes in the composition of the oral microbiota in patients with psoriasis. Some oral bacteria are associated with psoriasis severity. It provides a new perspective on the relationship between the oral microbiota and psoriasis.
Collapse
Affiliation(s)
- Kaidi Zhao
- Department of Dermatology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Yang Zhao
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Ao Guo
- Department of Dermatology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Shengxiang Xiao
- Department of Dermatology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| | - Chen Tu
- Department of Dermatology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710004, People’s Republic of China
| |
Collapse
|
25
|
Cui L, Wu Y, Chen Z, Li B, Cai J, Chang Z, Xiao W, Wang Y, Yang N, Wang Y, Yu Z, Yao L, Ma R, Wang X, Chen Y, Chen Q, Mei H, Lan Z, Yu Y, Chen R, Wu X, Yu Q, Lu J, Yu N, Zhang X, Liu J, Zhang L, Lai Y, Gao S, Gao Y, Guo C, Shi Y. N6-methyladenosine modification-tuned lipid metabolism controls skin immune homeostasis via regulating neutrophil chemotaxis. SCIENCE ADVANCES 2024; 10:eadp5332. [PMID: 39356764 PMCID: PMC11446281 DOI: 10.1126/sciadv.adp5332] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Disrupted N6-methyladenosine (m6A) modification modulates various inflammatory disorders. However, the role of m6A in regulating cutaneous inflammation remains elusive. Here, we reveal that the m6A and its methyltransferase METTL3 are down-regulated in keratinocytes in inflammatory skin diseases. Inducible deletion of Mettl3 in murine keratinocytes results in spontaneous skin inflammation and increases susceptibility to cutaneous inflammation with activation of neutrophil recruitment. Therapeutically, restoration of m6A alleviates the disease phenotypes in mice and suppresses inflammation in human biopsy specimens. We support a model in which m6A modification stabilizes the mRNA of the lipid-metabolizing enzyme ELOVL6 via the m6A reader IGF2BP3, leading to a rewiring of fatty acid metabolism with a reduction in palmitic acid accumulation and, consequently, suppressing neutrophil chemotaxis in cutaneous inflammation. Our findings highlight a previously unrecognized epithelial-intrinsic m6A modification-lipid metabolism pathway that is essential for maintaining epidermal and immune homeostasis and lay the basis for potential therapeutic targeting of m6A modulators to attenuate inflammatory skin diseases.
Collapse
Affiliation(s)
- Lian Cui
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - You Wu
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Zeyu Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Bingjie Li
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiangluyi Cai
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Zhanhe Chang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Weide Xiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuanyuan Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Nan Yang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yu Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Zengyang Yu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
- Department of Dermatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lingling Yao
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Rui Ma
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Xin Wang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Youdong Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
- Department of Dermatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qianyu Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Hao Mei
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
- Department of Dermatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyi Lan
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
- Department of Dermatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yingyuan Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Rongfen Chen
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Xingbiao Wu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Yu
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
- Department of Dermatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiajing Lu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Ning Yu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Xilin Zhang
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Jun Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lingjuan Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Yuping Lai
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Shaorong Gao
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai, China
| | - Yawei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Chunyuan Guo
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Shi
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
26
|
Niu MM, Li Y, Su Q, Chen SY, Li QH, Guo HX, Meng XC, Liu F. A mannose-rich exopolysaccharide-1 isolated from Bifidobacterium breve mitigates ovalbumin-induced intestinal damage in mice by modulation CD4 + T cell differentiation and inhibiting NF-κB signaling pathway. Int J Biol Macromol 2024; 280:135850. [PMID: 39326613 DOI: 10.1016/j.ijbiomac.2024.135850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Ovalbumin (OVA)-induced intestinal injury is a recurrent and potentially fatal condition. Previous studies have highlighted the roles of exopolysaccharides, particularly a mannose-rich (89.59 %) exopolysaccharide-1 (EPS-1) with a molecular weight of 39.9 kDa, isolated from Bifidobacterium breve H4-2, in repairing intestinal barriers and regulating immune responses. In this study, a mouse model of OVA-induced intestinal injury was used to investigate the effects of EPS-1 on intestinal barrier restoration. The results demonstrated that EPS-1 treatment (400 mg/kg. d) significantly reduced the allergic index (3.25 ± 0.43) in OVA-challenged mice (p < 0.05), improved the physical integrity of the intestinal barrier by increasing mucin content and goblet cell number in the ileum (p < 0.05). EPS-1 treatment (400 mg/kg. d) also maintained immune barrier integrity by restoring imbalanced CD4 + T/CD8 + T ratios from 0.86 ± 0.02 to 1.04 ± 0.06, regulating Th1/Th2 and Th17/Treg cells balance, as well as inhibited the NF-κB signaling pathway. Furthermore, EPS-1 maintained microbiota homeostasis by increasing the abundances of Ruminococcus, Butyricicoccus, and Muribaculaceae, while reducing Streptococcus and Candidatus arthromitus. This microbiota modulation enhanced the levels of metabolites such as tyrosine, methionine, tryptophan, triglycerides, and salidroside. In conclusion, EPS-1 shows promise as a functional polysaccharide for therapeutic use.
Collapse
Affiliation(s)
- Meng-Meng Niu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yan Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qian Su
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Si-Yuan Chen
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Qiao-Hui Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Huan-Xin Guo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiang-Chen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
27
|
Zhu Y, Xu F, Chen H, Zheng Q. The efficacy and safety of probiotics in the adjuvant treatment of psoriasis: a systematic review and meta-analysis of randomized controlled trials. Front Med (Lausanne) 2024; 11:1448626. [PMID: 39328313 PMCID: PMC11426359 DOI: 10.3389/fmed.2024.1448626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Background It has been reported that the imbalance of gut microbiota is involved in the pathogenesis of psoriasis. We retrieved randomized placebo-controlled trials to evaluate the efficacy and safety of probiotic administration in the treatment of psoriasis. Methods The outcomes were changes in Psoriasis Area and Severity Index (PASI), Dermatology Life Quality Index (DLQI), and serum inflammatory indicators after treatment, and adverse events (AEs). Risk ratios (RRs) and mean differences (MDs) were calculated using random or fixed effects model. Results Seven qualified studies were identified in our study. The pooled percentage of patients with ≥75% reduction from baseline in PASI was higher in the probiotic group than that in the placebo group (33.57% vs. 23.61%; RR 1.40, 95% CI 0.98-1.98, p = 0.06). Compared with the placebo group, the PASI (MD -3.09, 95% CI -5.04 to -0.74, p = 0.01) and CRP level (MD -2.36, 95% CI -2.77 to -1.95, p < 0.0001) were significantly reduced in the probiotic group. There was no significant difference in DLQI (MD -1.45, 95% CI -6.72 to 3.82, p = 0.59) and AEs (RR 0.68, 95% CI 0.37-1.25, p = 0.22) between the two groups. Conclusion Oral administration of probiotics can improve psoriasis; however, large randomized controlled trials are needed to support this conclusion. Systematic review registration PROSPERO, identifier CRD42024506286, https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024506286.
Collapse
Affiliation(s)
- Yiran Zhu
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Fan Xu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Hao Chen
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Quanhui Zheng
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
28
|
Zhai Z, Yang Y, Chen S, Wu Z. Long-Term Exposure to Polystyrene Microspheres and High-Fat Diet-Induced Obesity in Mice: Evaluating a Role for Microbiota Dysbiosis. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:97002. [PMID: 39226184 PMCID: PMC11370995 DOI: 10.1289/ehp13913] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/23/2024] [Accepted: 08/08/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Microplastics (MPs) have become a global environmental problem, emerging as contaminants with potentially alarming consequences. However, long-term exposure to polystyrene microspheres (PS-MS) and its effects on diet-induced obesity are not yet fully understood. OBJECTIVES We aimed to investigate the effect of PS-MS exposure on high-fat diet (HFD)-induced obesity and underlying mechanisms. METHODS In the present study, C57BL/6J mice were fed a normal diet (ND) or a HFD in the absence or presence of PS-MS via oral administration for 8 wk. Antibiotic depletion of the microbiota and fecal microbiota transplantation (FMT) were performed to assess the influence of PS-MS on intestinal microbial ecology. We performed 16S rRNA sequencing to dissect microbial discrepancies and investigated the dysbiosis-associated intestinal integrity and inflammation in serum. RESULTS Compared with HFD mice, mice fed the HFD with PS-MS exhibited higher body weight, liver weight, metabolic dysfunction-associated steatotic liver disease (MASLD) activity scores, and mass of white adipose tissue, as well as higher blood glucose and serum lipid concentrations. Furthermore, 16S rRNA sequencing of the fecal microbiota revealed that mice fed the HFD with PS-MS had greater α -diversity and greater relative abundances of Lachnospiraceae, Oscillospiraceae, Bacteroidaceae, Akkermansiaceae, Marinifilaceae, Deferribacteres, and Desulfovibrio, but lower relative abundances of Atopobiaceae, Bifidobacterium, and Parabacteroides. Mice fed the HFD with PS-MS exhibited lower expression of MUC2 mucin and higher levels of lipopolysaccharide and inflammatory cytokines [tumor necrosis factor-α (TNF-α ), interleukin-6 (IL-6), IL-1β , and IL-17A] in serum. Correlation analyses revealed that differences in the microbial flora of mice exposed to PS-MS were associated with obesity. Interestingly, microbiota-depleted mice did not show the same PS-MS-associated differences in Muc2 and Tjp1 expression in the distal colon, expression of inflammatory cytokines in serum, or obesity outcomes between HFD and HFD + PS-MS. Importantly, transplantation of feces from HFD + PS-MS mice to microbiota-depleted HFD-fed mice resulted in a lower expression of mucus proteins, higher expression of inflammatory cytokines, and obesity outcomes, similar to the findings in HFD + PS-MS mice. CONCLUSIONS Our findings provide a new gut microbiota-driven mechanism for PS-MS-induced obesity in HFD-fed mice, suggesting the need to reevaluate the adverse health effects of MPs commonly found in daily life, particularly in susceptible populations. https://doi.org/10.1289/EHP13913.
Collapse
Affiliation(s)
- Zhian Zhai
- Department of Companion Animal Science, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Ying Yang
- Department of Companion Animal Science, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
- Department of Food Science and Nutrition, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zhenlong Wu
- Department of Companion Animal Science, State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Zou X, Zou X, Gao L, Zhao H. Gut microbiota and psoriasis: pathogenesis, targeted therapy, and future directions. Front Cell Infect Microbiol 2024; 14:1430586. [PMID: 39170985 PMCID: PMC11335719 DOI: 10.3389/fcimb.2024.1430586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Background Psoriasis is one of the most common autoimmune skin diseases. Increasing evidence shows that alterations in the diversity and function of microbiota can participate in the pathogenesis of psoriasis through various pathways and mechanisms. Objective To review the connection between microbial changes and psoriasis, how microbial-targeted therapy can be used to treat psoriasis, as well as the potential of prebiotics, probiotics, synbiotics, fecal microbiota transplantation, diet, and Traditional Chinese Medicine as supplementary and adjunctive therapies. Methods Literature related to the relationship between psoriasis and gut microbiota was searched in PubMed and CNKI. Results Adjunct therapies such as dietary interventions, traditional Chinese medicine, and probiotics can enhance gut microbiota abundance and diversity in patients with psoriasis. These therapies stimulate immune mediators including IL-23, IL-17, IL-22, and modulate gamma interferon (IFN-γ) along with the NF-kB pathway, thereby suppressing the release of pro-inflammatory cytokines and ameliorating systemic inflammatory conditions. Conclusion This article discusses the direction of future research and clinical treatment of psoriasis from the perspective of intestinal microbiota and the mechanism of traditional Chinese medicine, so as to provide clinicians with more comprehensive diagnosis and treatment options and bring greater hope to patients with psoriasis.
Collapse
Affiliation(s)
- Xinyan Zou
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Xinfu Zou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Longxia Gao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Hanqing Zhao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| |
Collapse
|
30
|
Cui N, Xu X, Zhou F. Single-cell technologies in psoriasis. Clin Immunol 2024; 264:110242. [PMID: 38750947 DOI: 10.1016/j.clim.2024.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/30/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024]
Abstract
Psoriasis is a chronic and recurrent inflammatory skin disorder. The primary manifestation of psoriasis arises from disturbances in the cutaneous immune microenvironment, but the specific functions of the cellular components within this microenvironment remain unknown. Recent advancements in single-cell technologies have enabled the detection of multi-omics at the level of individual cells, including single-cell transcriptome, proteome, and metabolome, which have been successfully applied in studying autoimmune diseases, and other pathologies. These techniques allow the identification of heterogeneous cell clusters and their varying contributions to disease development. Considering the immunological traits of psoriasis, an in-depth exploration of immune cells and their interactions with cutaneous parenchymal cells can markedly advance our comprehension of the mechanisms underlying the onset and recurrence of psoriasis. In this comprehensive review, we present an overview of recent applications of single-cell technologies in psoriasis, aiming to improve our understanding of the underlying mechanisms of this disorder.
Collapse
Affiliation(s)
- Niannian Cui
- First School of Clinical Medicine, Anhui Medical University, Hefei 230032, China
| | - Xiaoqing Xu
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230022, China; The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Fusheng Zhou
- Department of Dermatology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, China; Institute of Dermatology, Anhui Medical University, Hefei, Anhui 230022, China; The Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China.
| |
Collapse
|
31
|
Korneev A, Peshkova M, Koteneva P, Gundogdu A, Timashev P. Modulation of the skin and gut microbiome by psoriasis treatment: a comprehensive systematic review. Arch Dermatol Res 2024; 316:374. [PMID: 38850443 DOI: 10.1007/s00403-024-03024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 06/10/2024]
Abstract
The microbiome is intricately linked to the development of psoriasis, serving as both a potential cause and consequence of the psoriatic process. In recent years, there has been growing interest among psoriasis researchers in exploring how psoriasis treatments affect the skin and gut microbiome. However, a comprehensive evaluation of the impact of modern treatment approaches on the microbiome has yet to be conducted. In this systematic review, we analyze studies investigating alterations in the skin and gut microbiome resulting from psoriasis treatment, aiming to understand how current therapies influence the role of the microbiome in psoriasis development. The systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. PubMed and Scopus databases were searched for eligible studies from the inception dates until July 5, 2023. Study selection, data extraction, and risk of bias assessment were carried out by three overlapping pairs of reviewers, resolving any disagreements through consensus. Our analysis of various treatments, including biologics, conventional medications, phototherapy, and probiotics, reveals significant shifts in microbial diversity and abundance. Importantly, favorable treatment outcomes are associated with microbiota alterations that approach those observed in healthy individuals. While the studies reviewed exhibit varying degrees of bias, underscoring the need for further research, this review supports the potential of microbiome modulation as both a preventive and therapeutic strategy for psoriasis patients. The findings underscore the importance of personalized therapeutic approaches, recognizing the profound impact of treatment on the microbiome. They also highlight the promise of probiotics, prebiotics, and dietary interventions in psoriasis management.
Collapse
Affiliation(s)
- Alexander Korneev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991.
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991.
- Laboratory of the Polymers Synthesis for Medical Applications, Sechenov University, Moscow, Russia, 119991.
| | - Maria Peshkova
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991
| | - Polina Koteneva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Design Center "Biofactory", Sechenov University, Moscow, Russia, 119991
| | - Aycan Gundogdu
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Erciyes University, 38039, Kayseri, Turkey
- Metagenomics Laboratory, Genome and Stem Cell Center, Erciyes University, 38039, Kayseri, Turkey
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia, 119991
| |
Collapse
|
32
|
Chen Y, Peng C, Zhu L, Wang J, Cao Q, Chen X, Li J. Atopic Dermatitis and Psoriasis: Similarities and Differences in Metabolism and Microbiome. Clin Rev Allergy Immunol 2024; 66:294-315. [PMID: 38954264 DOI: 10.1007/s12016-024-08995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
Atopic dermatitis and psoriasis are common chronic inflammatory diseases of high incidence that share some clinical features, including symptoms of pruritus and pain, scaly lesions, and histologically, acanthosis and hyperkeratosis. Meanwhile, they are both commonly comorbid with metabolic disorders such as obesity and diabetes, indicating that both diseases may exist with significant metabolic disturbances. Metabolomics reveals that both atopic dermatitis and psoriasis have abnormalities in a variety of metabolites, including lipids, amino acids, and glucose. Meanwhile, recent studies have highlighted the importance of the microbiome and its metabolites in the pathogenesis of atopic dermatitis and psoriasis. Metabolic alterations and microbiome dysbiosis can also affect the immune, inflammatory, and epidermal barrier, thereby influencing the development of atopic dermatitis and psoriasis. Focusing on the metabolic and microbiome levels, this review is devoted to elaborating the similarities and differences between atopic dermatitis and psoriasis, thus providing insights into the intricate relationship between both conditions.
Collapse
Affiliation(s)
- Yihui Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Jiayi Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Qiaozhi Cao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Furong Laboratory, Changsha, 410008, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| | - Jie Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Furong Laboratory, Changsha, 410008, China.
| |
Collapse
|
33
|
Chen L, Huang D, Huang Z, Liu X, He M, Luo M, Tang Z, Tan G, Guo Q, Xiong H. Decreased HMGCS1 inhibits proliferation and inflammatory response of keratinocytes and ameliorates imiquimod-induced psoriasis via the STAT3/IL-23 axis. Int Immunopharmacol 2024; 133:112033. [PMID: 38608446 DOI: 10.1016/j.intimp.2024.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/09/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Psoriasis is an immuno-inflammatory disease characterized by excessive keratinocyte proliferation, requiring extensive lipids. 3-hydroxy-3-methylglutaryl-coenzyme A synthase 1 (HMGCS1) is an essential enzyme in the mevalonate pathway, involved in cholesterol synthesis and the inflammatory response. However, the role of HMGCS1 in psoriasis has remained elusive. This study aims to elucidate the mechanism by which HMGCS1 controls psoriasiform inflammation. We discovered an increased abundance of HMGCS1 in psoriatic lesions when analyzing two Gene Expression Omnibus (GEO) datasets and confirmed this in psoriatic animal models and psoriatic patients by immunohistochemistry. In a TNF-α stimulated psoriatic HaCaT cell line, HMGCS1 was found to be overexpressed. Knockdown of HMGCS1 using siRNA suppressed the migration and proliferation of HaCaT cells. Mechanistically, HMGCS1 downregulation also reduced the expression of IL-23 and the STAT3 phosphorylation level. In imiquimod-induced psoriatic mice, intradermal injection of HMGCS1 siRNA significantly decreased the expression of HMGCS1 in the epidermis, which in turn led to an improvement in the Psoriasis Area and Severity Index score, epidermal thickening, and pathological Baker score. Additionally, expression levels of inflammatory cytokines IL-23, IL1-β, chemokine CXCL1, and innate immune mediator S100A7-9 were downregulated in the epidermis. In conclusion, HMGCS1 downregulation improved psoriasis in vitro and in vivo through the STAT3/IL-23 axis.
Collapse
Affiliation(s)
- Lin Chen
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Danqi Huang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhongzhou Huang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuting Liu
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mingjie He
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minqing Luo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zengqi Tang
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guozhen Tan
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Guo
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Xiong
- Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Department of Dermatology, Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
34
|
Liu W, Jiang J, Li Z, Xiao Y, Zhou S, Wang D, Zou Y, Liu T, Li K, Liang H, Wang N, Xiang X, Xie Q, Zhan R, Zhang J, Zhou X, Yang L, Chuong CM, Lei M. Energy competition remodels the metabolic glucose landscape of psoriatic epidermal cells. Theranostics 2024; 14:3339-3357. [PMID: 38855186 PMCID: PMC11155411 DOI: 10.7150/thno.93764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Rationale: Skin cells actively metabolize nutrients to ensure cell proliferation and differentiation. Psoriasis is an immune-disorder-related skin disease with hyperproliferation in epidermal keratinocytes and is increasingly recognized to be associated with metabolic disturbance. However, the metabolic adaptations and underlying mechanisms of epidermal hyperproliferation in psoriatic skin remain largely unknown. Here, we explored the role of metabolic competition in epidermal cell proliferation and differentiation in psoriatic skin. Methods: Bulk- and single-cell RNA-sequencing, spatial transcriptomics, and glucose uptake experiments were used to analyze the metabolic differences in epidermal cells in psoriasis. Functional validation in vivo and in vitro was done using imiquimod-like mouse models and inflammatory organoid models. Results: We observed the highly proliferative basal cells in psoriasis act as the winners of the metabolic competition to uptake glucose from suprabasal cells. Using single-cell metabolic analysis, we found that the "winner cells" promote OXPHOS pathway upregulation by COX7B and lead to increased ROS through glucose metabolism, thereby promoting the hyperproliferation of basal cells in psoriasis. Also, to prevent toxic damage from ROS, basal cells activate the glutathione metabolic pathway to increase their antioxidant capacity to assist in psoriasis progression. We further found that COX7B promotes psoriasis development by modulating the activity of the PPAR signaling pathway by bulk RNA-seq analysis. We also observed glucose starvation and high expression of SLC7A11 that causes suprabasal cell disulfide stress and affects the actin cytoskeleton, leading to immature differentiation of suprabasal cells in psoriatic skin. Conclusion: Our study demonstrates the essential role of cellular metabolic competition for skin tissue homeostasis.
Collapse
Affiliation(s)
- Weiwei Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zeming Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yang Xiao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Siyi Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Dehuan Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yi Zou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Tiantian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ke Li
- Shenzhen Accompany Technology Cooperation, ltd, Shenzhen 518000, China
| | - Huan Liang
- Shenzhen Accompany Technology Cooperation, ltd, Shenzhen 518000, China
| | - Nian'ou Wang
- Shenzhen Accompany Technology Cooperation, ltd, Shenzhen 518000, China
| | - Xiao Xiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Rixing Zhan
- State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Jinwei Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Dermatology, Chongqing General Hospital, Chongqing 401147, China
| | - Xun Zhou
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education & 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
35
|
Kim HJ, Jang J, Na K, Lee EH, Gu HJ, Lim YH, Joo SA, Baek SE, Roh JY, Maeng HJ, Kim YH, Lee YJ, Oh BC, Jung Y. TLR7-dependent eosinophil degranulation links psoriatic skin inflammation to small intestinal inflammatory changes in mice. Exp Mol Med 2024; 56:1164-1177. [PMID: 38689088 PMCID: PMC11148187 DOI: 10.1038/s12276-024-01225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
Recent evidence of gut microbiota dysbiosis in the context of psoriasis and the increased cooccurrence of inflammatory bowel disease and psoriasis suggest a close relationship between skin and gut immune responses. Using a mouse model of psoriasis induced by the Toll-like receptor (TLR) 7 ligand imiquimod, we found that psoriatic dermatitis was accompanied by inflammatory changes in the small intestine associated with eosinophil degranulation, which impaired intestinal barrier integrity. Inflammatory responses in the skin and small intestine were increased in mice prone to eosinophil degranulation. Caco-2 human intestinal epithelial cells were treated with media containing eosinophil granule proteins and exhibited signs of inflammation and damage. Imiquimod-induced skin and intestinal changes were attenuated in eosinophil-deficient mice, and this attenuation was counteracted by the transfer of eosinophils. Imiquimod levels and the distribution of eosinophils were positively correlated in the intestine. TLR7-deficient mice did not exhibit intestinal eosinophil degranulation but did exhibit attenuated inflammation in the skin and small intestine following imiquimod administration. These results suggest that TLR7-dependent bidirectional skin-to-gut communication occurs in psoriatic inflammation and that inflammatory changes in the intestine can accelerate psoriasis.
Collapse
Affiliation(s)
- Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea
| | - Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
| | - Kunhee Na
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
| | - Eun-Hui Lee
- Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Hyeon-Jung Gu
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
| | - Yoon Hee Lim
- Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Seul-A Joo
- College of Pharmacy, Gachon University, Incheon, 21936, Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, 50612, Korea
| | - Joo-Young Roh
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, Korea
- Department of Dermatology, Ewha Womans University Medical Center, College of Medicine, Ewha Womans University, Seoul, 07804, Korea
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon, 21936, Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, 50612, Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, 50612, Korea
| | - Young-Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - Byung-Chul Oh
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea
- Department of Physiology, College of Medicine, Gachon University, Incheon, 21999, Korea
| | - YunJae Jung
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, Korea.
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, Korea.
- Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, Korea.
| |
Collapse
|
36
|
Li Y, Yang P, Ye J, Xu Q, Wu J, Wang Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis 2024; 23:117. [PMID: 38649999 PMCID: PMC11034170 DOI: 10.1186/s12944-024-02108-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has garnered considerable attention globally. Changing lifestyles, over-nutrition, and physical inactivity have promoted its development. MASLD is typically accompanied by obesity and is strongly linked to metabolic syndromes. Given that MASLD prevalence is on the rise, there is an urgent need to elucidate its pathogenesis. Hepatic lipid accumulation generally triggers lipotoxicity and induces MASLD or progress to metabolic dysfunction-associated steatohepatitis (MASH) by mediating endoplasmic reticulum stress, oxidative stress, organelle dysfunction, and ferroptosis. Recently, significant attention has been directed towards exploring the role of gut microbial dysbiosis in the development of MASLD, offering a novel therapeutic target for MASLD. Considering that there are no recognized pharmacological therapies due to the diversity of mechanisms involved in MASLD and the difficulty associated with undertaking clinical trials, potential targets in MASLD remain elusive. Thus, this article aimed to summarize and evaluate the prominent roles of lipotoxicity, ferroptosis, and gut microbes in the development of MASLD and the mechanisms underlying their effects. Furthermore, existing advances and challenges in the treatment of MASLD were outlined.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jialu Ye
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qiyuan Xu
- Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
37
|
Zhou Q, Jin X, Li H, Wang Q, Tao M, Wang J, Cao Y. Cholesterol and low-density lipoprotein as a cause of psoriasis: Results from bidirectional Mendelian randomization. J Eur Acad Dermatol Venereol 2024; 38:710-718. [PMID: 38031463 DOI: 10.1111/jdv.19670] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Psoriasis is an inflammatory disease that affects many people. However, the causal effect of lipid metabolism on psoriasis has not yet been verified. This study aimed to identify the genetic relationship between serum lipid levels and psoriasis. METHODS Bidirectional two-sample Mendelian randomization (MR) was used to analyse the causal relationship between cholesterol and psoriasis. The outcome of the forward causality test was psoriasis. In the analysis of reverse causality, psoriasis was exposed, and 79 single-nucleotide polymorphisms were detected in the genome-wide association study (GWASs) database from the IEU GWASs Project. MR-Egger regression, inverse variance-weighted, weighted median, weighted mode and simple mode were used for the MR analyses. RESULTS The level of triglyceride, lipase member N, chylomicrons, extremely large very low-density lipoprotein (VLDL) particles, high-density lipoprotein (HDL) cholesterol levels, cholesterol esters in large HDL, cholesterol esters in medium HDL and cholesterol esters in medium VLDL have not affected the development of psoriasis. However, total cholesterol, total free cholesterol, low-density lipoprotein (LDL) cholesterol levels, cholesterol esters in large VLDL and cholesterol esters in medium LDL were unidirectional causal effects on psoriasis. CONCLUSION Bidirectional two-sample MR analysis indicated that high levels of total cholesterol, total free cholesterol, LDL cholesterol, cholesterol esters in large VLDL and cholesterol esters in medium LDL are genetic risk factors for psoriasis.
Collapse
Affiliation(s)
- Qiujun Zhou
- Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
- First Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaoliang Jin
- First Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hui Li
- First Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qionglin Wang
- First Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Maocan Tao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jinhui Wang
- Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
38
|
Wang Y, Yao T, Lin Y, Ge H, Huang B, Gao Y, Wu J. Association between gut microbiota and pan-dermatological diseases: a bidirectional Mendelian randomization research. Front Cell Infect Microbiol 2024; 14:1327083. [PMID: 38562964 PMCID: PMC10982508 DOI: 10.3389/fcimb.2024.1327083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Background Gut microbiota has been associated with dermatological problems in earlier observational studies. However, it is unclear whether gut microbiota has a causal function in dermatological diseases. Methods Thirteen dermatological diseases were the subject of bidirectional Mendelian randomization (MR) research aimed at identifying potential causal links between gut microbiota and these diseases. Summary statistics for the Genome-Wide Association Study (GWAS) of gut microbiota and dermatological diseases were obtained from public datasets. With the goal of evaluating the causal estimates, five acknowledged MR approaches were utilized along with multiple testing corrections, with inverse variance weighted (IVW) regression serving as the main methodology. Regarding the taxa that were causally linked with dermatological diseases in the forward MR analysis, reverse MR was performed. A series of sensitivity analyses were conducted to test the robustness of the causal estimates. Results The combined results of the five MR methods and sensitivity analysis showed 94 suggestive and five significant causal relationships. In particular, the genus Eubacterium_fissicatena_group increased the risk of developing psoriasis vulgaris (odds ratio [OR] = 1.32, pFDR = 4.36 × 10-3), family Bacteroidaceae (OR = 2.25, pFDR = 4.39 × 10-3), genus Allisonella (OR = 1.42, pFDR = 1.29 × 10-2), and genus Bacteroides (OR = 2.25, pFDR = 1.29 × 10-2) increased the risk of developing acne; and the genus Intestinibacter increased the risk of urticaria (OR = 1.30, pFDR = 9.13 × 10-3). A reverse MR study revealed insufficient evidence for a significant causal relationship. In addition, there was no discernible horizontal pleiotropy or heterogeneity. Conclusion This study provides novel insights into the causality of gut microbiota in dermatological diseases and therapeutic or preventive paradigms for cutaneous conditions.
Collapse
Affiliation(s)
- Yingwei Wang
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Yao
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunlu Lin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongping Ge
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bixin Huang
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Gao
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Wu
- Department of Dermatology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Zhang C, Cao X, Zhao L, Ni Z, Du H, Qu J, Zhu J, Sun H, Sun Y, Ouyang Z. Traditional Chinese Medicine Shi-Bi-Man ameliorates psoriasis via inhibiting IL-23/Th17 axis and CXCL16-mediated endothelial activation. Chin Med 2024; 19:38. [PMID: 38429819 PMCID: PMC10905932 DOI: 10.1186/s13020-024-00907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Psoriasis is a chronic inflammatory genetic disease, mainly manifesting in the skin. Conventional therapies, such as glucocorticosteroids and corticosteroids, have adverse effects that limit drug use. Hence, it is imperative to identify a new therapeutic strategy that exhibits a favorable safety profile. Shi-Bi-Man (SBM) is a safe herbal supplement sourced from various natural plants, including ginseng, angelica sinensis, polygonum multiflorum, and aloe vera. PURPOSE We aimed to find a potential treatment for psoriasis and investigate the underlying mechanism through which SBM alleviates psoriatic-like skin inflammation in mice. METHODS We investigated the effects of supplementing with SBM through intragastric administration or smear administration in a murine model of imiquimod-induced psoriasis. The changes in body weight and Psoriasis Area and Severity Index (PASI) score were recorded throughout the entire process. Additionally, we used hematoxylin-eosin staining to observe the skin structure and performed single-cell RNA sequencing to explore the underlying mechanism of SBM in influencing the psoriasis-like phenotype. Immunofluorescence was conducted to verify our findings. Furthermore, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to investigate the impact of Tetrahydroxy stilbene glycoside (TSG) on the expression levels of IL23 in HaCaT cells. RESULTS SBM remarkably alleviated the psoriasis-like phenotype by inhibiting IL-23/Th17 cell axis. Single-cell RNA sequencing analysis revealed a decrease in the expression of Il17 and Il23 in keratinocytes and T cells, concomitant with a reduction in the proportion of Th17 cells. Meanwhile, the activation of endothelial cells was inhibited, accompanied by a decrease in the expression of Cxcl16. In vitro, the addition of TSG to HaCaT cells resulted in significant suppression of IL23 expression stimulated by tumor necrosis factor-alpha (TNF-α).
Collapse
Affiliation(s)
- Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xinran Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lixin Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zitong Ni
- Jinling High School, 169 Zhongshan Road, Nanjing, 210008, China
| | - Haojie Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jianxia Zhu
- Shenzhen Sipimo Technology Co., Ltd, Shenzhen, China
| | - Haiyan Sun
- School of Food and Drug, Institute of Marine Biomedicine, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen, 518055, Guangdong, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China.
| | - Zijun Ouyang
- School of Food and Drug, Institute of Marine Biomedicine, Shenzhen Polytechnic University, 7098 Liuxian Avenue, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
40
|
Zhong Y, Wang F, Meng X, Zhou L. The associations between gut microbiota and inflammatory skin diseases: a bi-directional two-sample Mendelian randomization study. Front Immunol 2024; 15:1297240. [PMID: 38370414 PMCID: PMC10869565 DOI: 10.3389/fimmu.2024.1297240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Background Accumulating evidence shows that dysregulation of intestinal flora is associated with inflammatory skin diseases, specifically atopic dermatitis (AD), psoriasis (PSO), and rosacea (ROS). However, the causality is still unclear. Objectives To study the underlying causality between gut microbiota (GM) and AD, PSO, and ROS, a bi-directional two-sample Mendelian randomization (2SMR) analysis was conducted. Methods Summary statistics of gut microbiota, AD, PSO, and ROS were extracted from large-scale genome-wide association studies (GWASs). In 2SMR analysis, in addition to the inverse variance weighted as the principal method for evaluating causal association, four different methods were also used. Sensitivity analysis and reverse 2SMR study were implemented to evaluate the robustness of 2SMR results or reverse causal relationship, respectively. Results A total of 24 specific gut microbiota species related to AD, PSO, and ROS were identified by 2SMR analysis. After using the Bonferroni method for multiple testing correction, family FamilyXIII (ID: 1957) [OR = 1.28 (1.13, 1.45), p = 9.26e-05] and genus Eubacteriumfissicatenagroup (ID: 14373) [OR = 1.20 (1.09, 1.33), p = 1.65e-04] were associated with an increased risk for AD and PSO, respectively. The genus Dialister showed a negative association, suggesting a protective role against both atopic dermatitis and rosacea. Our reverse 2SMR analysis indicated no reverse causality between these inflammatory skin diseases and the identified gut microbiota. Conclusions In summary, this study provided evidence for the causality between GM and inflammatory skin diseases. These findings suggested that supplementing specific bacterial taxa may be an effective therapy for AD, PSO, and ROS.
Collapse
Affiliation(s)
- Yun Zhong
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Fan Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhou
- Department of Dermatology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Lu YW, Dong RJ, Yang LH, Liu J, Yang T, Xiao YH, Chen YJ, Wang RR, Li YY. Identification of gene signatures and molecular mechanisms underlying the mutual exclusion between psoriasis and leprosy. Sci Rep 2024; 14:2199. [PMID: 38273053 PMCID: PMC10810956 DOI: 10.1038/s41598-024-52783-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024] Open
Abstract
Leprosy and psoriasis rarely coexist, the specific molecular mechanisms underlying their mutual exclusion have not been extensively investigated. This study aimed to reveal the underlying mechanism responsible for the mutual exclusion between psoriasis and leprosy. We obtained leprosy and psoriasis data from ArrayExpress and GEO database. Differential expression analysis was conducted separately on the leprosy and psoriasis using DEseq2. Differentially expressed genes (DEGs) with opposite expression patterns in psoriasis and leprosy were identified, which could potentially involve in their mutual exclusion. Enrichment analysis was performed on these candidate mutually exclusive genes, and a protein-protein interaction (PPI) network was constructed to identify hub genes. The expression of these hub genes was further validated in an external dataset to obtain the critical mutually exclusive genes. Additionally, immune cell infiltration in psoriasis and leprosy was analyzed using single-sample gene set enrichment analysis (ssGSEA), and the correlation between critical mutually exclusive genes and immune cells was also examined. Finally, the expression pattern of critical mutually exclusive genes was evaluated in a single-cell transcriptome dataset. We identified 1098 DEGs in the leprosy dataset and 3839 DEGs in the psoriasis dataset. 48 candidate mutually exclusive genes were identified by taking the intersection. Enrichment analysis revealed that these genes were involved in cholesterol metabolism pathways. Through PPI network analysis, we identified APOE, CYP27A1, FADS1, and SOAT1 as hub genes. APOE, CYP27A1, and SOAT1 were subsequently validated as critical mutually exclusive genes on both internal and external datasets. Analysis of immune cell infiltration indicated higher abundance of 16 immune cell types in psoriasis and leprosy compared to normal controls. The abundance of 6 immune cell types in psoriasis and leprosy positively correlated with the expression levels of APOE and CYP27A1. Single-cell data analysis demonstrated that critical mutually exclusive genes were predominantly expressed in Schwann cells and fibroblasts. This study identified APOE, CYP27A1, and SOAT1 as critical mutually exclusive genes. Cholesterol metabolism pathway illustrated the possible mechanism of the inverse association of psoriasis and leprosy. The findings of this study provide a basis for identifying mechanisms and therapeutic targets for psoriasis.
Collapse
Affiliation(s)
- You-Wang Lu
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - Rong-Jing Dong
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - Lu-Hui Yang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jiang Liu
- Department of Reproduction and Genetics, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Ting Yang
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China
| | - Yong-Hong Xiao
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yong-Jun Chen
- Department of Dermatology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, China.
| | - Rui-Rui Wang
- College of Pharmaceutical Sciences, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China.
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
42
|
Zhao Q, Wu J, Ding Y, Pang Y, Jiang C. Gut microbiota, immunity, and bile acid metabolism: decoding metabolic disease interactions. LIFE METABOLISM 2023; 2:load032. [PMID: 39872860 PMCID: PMC11749371 DOI: 10.1093/lifemeta/load032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 01/03/2025]
Abstract
In recent decades, the global prevalence of metabolic syndrome has surged, posing a significant public health challenge. Metabolic disorders, encompassing diabetes, obesity, nonalcoholic fatty liver disease, and polycystic ovarian syndrome, have been linked to alterations in the gut microbiota. Nonetheless, the connection between gut microbiota and host metabolic diseases warrants further investigation. In this review, we delve into the associations between various metabolic disorders and the gut microbiota, focusing on immune responses and bile acid (BA) metabolism. Notably, T helper cells, innate lymphoid cells, macrophages, and dendritic cells have been shown to modulate host metabolism through interactions with intestinal microorganisms and the release of cytokines. Furthermore, secondary BA metabolites, derived from the microbiota, are involved in the pathogenesis of metabolic diseases via the farnesoid X receptor and Takeda G protein-coupled receptor 5. By covering both aspects of this immune system-microorganism axis, we present a comprehensive overview of the roles played by the gut microbiota, microbiota-derived BA metabolites, and immune responses in metabolic diseases, as well as the interplay between these systems.
Collapse
Affiliation(s)
- Qixiang Zhao
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jiayu Wu
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yong Ding
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanli Pang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
43
|
Zhu Q, Wu K, Yang Q, Meng B, Niu Y, Zhao F. Advances in psoriasis and gut microorganisms with co-metabolites. Front Microbiol 2023; 14:1192543. [PMID: 38033573 PMCID: PMC10687559 DOI: 10.3389/fmicb.2023.1192543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
This review summarizes the potential role of gut microbes and their metabolites as novel mediators of psoriasis, including their composition and function in disease pathogenesis, progression, and management. Gut microbiota network analysis, colony construction, and in vivo large-scale interaction experiments showed that different degrees of damage and repair in psoriasis, both in animals and humans, involve cross-border homeostasis of the microbial community. Which gut microbiota interactions are present in psoriasis and how they collaborate with immune cells and influence psoriasis development via the gut-skin axis remain incompletely elucidated. In this article, we review the latest information on the unique patterns of gut microbiota and co-metabolites involved in the pathogenesis of psoriasis and attempt to explore microbial-based therapeutic targets derived from mono-and polymicrobial probiotics, fecal microbiota transplantation, pharmacomicrobiomics, and dietary interventions as diagnostic or therapeutic approaches promising to provide new options and long-term management for psoriasis.
Collapse
Affiliation(s)
- Qiushuang Zhu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Kai Wu
- Department of Dermatology, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Qiuhong Yang
- Department of Chinese Medicine and Dermatology, People's Hospital of Nan Gang District, Harbin, China
| | - Bo Meng
- Department of Dermatology, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, China
| | - Fenglian Zhao
- Department of Dermatology, The 962nd Hospital of the PLA Joint Logistic Support Force, Harbin, China
| |
Collapse
|
44
|
Zhang X, Zhao Q, Li B. Current and promising therapies based on the pathogenesis of Graves' ophthalmopathy. Front Pharmacol 2023; 14:1217253. [PMID: 38035032 PMCID: PMC10687425 DOI: 10.3389/fphar.2023.1217253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Graves' ophthalmopathy (GO) is a hyperthyroidism-related and immune-mediated disease that poses a significant threat to human health. The pathogenesis of GO primarily involves T cells, B cells, and fibroblasts, suggesting a pivotal role for the thyrotropin-antibody-immunocyte-fibroblast axis. Traditional treatment approaches for Graves' disease (GD) or GO encompass antithyroid drugs (ATDs), radioactive iodine, and beta-blockers. However, despite decades of treatment, there has been limited improvement in the global incidence of GO. In recent years, promising therapies, including immunotherapy, have emerged as leading contenders, demonstrating substantial benefits in clinical trials by inhibiting the activation of immune cells like Th1 and B cells. Furthermore, the impact of diet, gut microbiota, and metabolites on GO regulation has been recognized, suggesting the potential of non-pharmaceutical interventions. Moreover, as traditional Chinese medicine (TCM) components have been extensively explored and have shown effective results in treating autoimmune diseases, remarkable progress has been achieved in managing GO with TCM. In this review, we elucidate the pathogenesis of GO, summarize current and prospective therapies for GO, and delve into the mechanisms and prospects of TCM in its treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qixiang Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bei Li
- Department of Ophthalmology, Chengdu Integrated TCM and Western Medicine Hospital/Chengdu First People’s Hospital, Chengdu, China
| |
Collapse
|
45
|
Tan J, Taitz J, Nanan R, Grau G, Macia L. Dysbiotic Gut Microbiota-Derived Metabolites and Their Role in Non-Communicable Diseases. Int J Mol Sci 2023; 24:15256. [PMID: 37894934 PMCID: PMC10607102 DOI: 10.3390/ijms242015256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Dysbiosis, generally defined as the disruption to gut microbiota composition or function, is observed in most diseases, including allergies, cancer, metabolic diseases, neurological disorders and diseases associated with autoimmunity. Dysbiosis is commonly associated with reduced levels of beneficial gut microbiota-derived metabolites such as short-chain fatty acids (SCFA) and indoles. Supplementation with these beneficial metabolites, or interventions to increase their microbial production, has been shown to ameliorate a variety of inflammatory diseases. Conversely, the production of gut 'dysbiotic' metabolites or by-products by the gut microbiota may contribute to disease development. This review summarizes the various 'dysbiotic' gut-derived products observed in cardiovascular diseases, cancer, inflammatory bowel disease, metabolic diseases including non-alcoholic steatohepatitis and autoimmune disorders such as multiple sclerosis. The increased production of dysbiotic gut microbial products, including trimethylamine, hydrogen sulphide, products of amino acid metabolism such as p-Cresyl sulphate and phenylacetic acid, and secondary bile acids such as deoxycholic acid, is commonly observed across multiple diseases. The simultaneous increased production of dysbiotic metabolites with the impaired production of beneficial metabolites, commonly associated with a modern lifestyle, may partially explain the high prevalence of inflammatory diseases in western countries.
Collapse
Affiliation(s)
- Jian Tan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Jemma Taitz
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Ralph Nanan
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- Sydney Medical School and Charles Perkins Centre Nepean, The University of Sydney, Sydney, NSW 2006, Australia
| | - Georges Grau
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Laurence Macia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (J.T.); (R.N.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia;
- Sydney Cytometry, The Centenary Institute and The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
46
|
Iancu MA, Profir M, Roşu OA, Ionescu RF, Cretoiu SM, Gaspar BS. Revisiting the Intestinal Microbiome and Its Role in Diarrhea and Constipation. Microorganisms 2023; 11:2177. [PMID: 37764021 PMCID: PMC10538221 DOI: 10.3390/microorganisms11092177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota represents a community of microorganisms (bacteria, fungi, archaea, viruses, and protozoa) that colonize the gut and are responsible for gut mucosal structural integrity and immune and metabolic homeostasis. The relationship between the gut microbiome and human health has been intensively researched in the past years. It is now widely recognized that gut microbial composition is highly responsible for the general health of the host. Among the diseases that have been linked to an altered gut microbial population are diarrheal illnesses and functional constipation. The capacity of probiotics to modulate the gut microbiome population, strengthen the intestinal barrier, and modulate the immune system together with their antioxidant properties have encouraged the research of probiotic therapy in many gastrointestinal afflictions. Dietary and lifestyle changes and the use of probiotics seem to play an important role in easing constipation and effectively alleviating diarrhea by suppressing the germs involved. This review aims to describe how probiotic bacteria and the use of specific strains could interfere and bring benefits as an associated treatment for diarrhea and constipation.
Collapse
Affiliation(s)
- Mihaela Adela Iancu
- Department of Family Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Ruxandra Florentina Ionescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Cardiology I, “Dr. Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
47
|
Du W, Wang Z, Dong Y, Hu H, Zhou H, He X, Hu J, Li Y. Electroacupuncture promotes skin wound repair by improving lipid metabolism and inhibiting ferroptosis. J Cell Mol Med 2023; 27:2308-2320. [PMID: 37307402 PMCID: PMC10424292 DOI: 10.1111/jcmm.17811] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023] Open
Abstract
Lipid metabolism plays an important role in the repair of skin wounds. Studies have shown that acupuncture is very effective in skin wound repair. However, there is little knowledge about the mechanism of electroacupuncture. Thirty-six SD rats were divided into three groups: sham-operated group, model group and electroacupuncture group, with 12 rats in each group. After the intervention, local skin tissues were collected for lipid metabolomics analysis, wound perfusion and ferroptosis-related indexes were detected and finally the effect of electroacupuncture on skin wound repair was comprehensively evaluated by combining wound healing rate and histology. Lipid metabolomics analysis revealed 37 differential metabolites shared by the three groups, mainly phospholipids, lysophospholipids, glycerides, acylcarnitine, sphingolipids and fatty acids, and they could be back-regulated after electroacupuncture. The recovery of blood perfusion and wound healing was faster in the electroacupuncture group than in the model group (p < 0.05). The levels of GPX4, FTH1, SOD and GSH-PX, which are related to ferroptosis, were higher in the electroacupuncture group than in the model group (p < 0.05). The levels of ACSL4 and MDA were lower in the electroacupuncture group than in the model group (p < 0.05). Electroacupuncture may promote skin wound repair by improving lipid metabolism and inhibiting ferroptosis in local tissues.
Collapse
Affiliation(s)
- Weibin Du
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Zhenwei Wang
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Yi Dong
- Shaoxing TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityZhejiangChina
| | - Huahui Hu
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Huateng Zhou
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture ResearchThe Third Clinical Medical College, Zhejiang Chinese Medical UniversityZhejiangChina
| | - Jintao Hu
- Orthopaedics and Traumatology DepartmentHangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical UniversityZhejiangChina
| | - Yong Li
- Research Institute of Orthopaedicsthe Affiliated Jiangnan Hospital of Zhejiang Chinese Medical UniversityZhejiangChina
- Hangzhou Xiaoshan Hospital of Traditional Chinese MedicineZhejiangChina
| |
Collapse
|
48
|
Li Y, Guo D, Wang Q, Li A, Yin S, Li S, Li Y, Wang B, Guo T, Feng S. Benzoylaconitine Alleviates Progression of Psoriasis via Suppressing STAT3 Phosphorylation in Keratinocytes. Molecules 2023; 28:molecules28114473. [PMID: 37298949 DOI: 10.3390/molecules28114473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Psoriasis is a chronic and multifactorial skin disease which is caused by inflammatory infiltrates, keratinocyte hyperproliferation, and accumulation of immune cells. As part of the Aconitum species, Benzoylaconitine (BAC) shows potential antiviral, anti-tumor, and anti-inflammatory effects. In this study, we investigated the effects and mechanisms of BAC on tumor necrosis factor-alpha (TNF-α)/LPS-induced HaCaT keratinocytes in a imiquimod(IMQ)-induced mice model. The results showed that BAC could relieve the symptoms of psoriasis by inhibiting cell proliferation, the release of inflammatory factors, and the accumulation of Th17 cells, while no obvious effect on cell viability and safety was observed both in vitro and in vivo. Additionally, BAC can markedly inhibit the protein and mRNA levels of inflammatory cytokines in TNF-α/LPS-induced HaCaT keratinocytes by inhibiting the phosphorylation of STAT3. In brief, our data indicated that BAC could alleviate the progression of psoriasis and may be a potential therapeutic agent for treating psoriasis in clinical practice.
Collapse
Affiliation(s)
- Yuanbo Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Sugai Yin
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|