1
|
Huang X, Yu C, Lu L. Isolation and characterization of a roseophage representing a novel genus in the N4-like Rhodovirinae subfamily distributed in estuarine waters. BMC Genomics 2025; 26:295. [PMID: 40133813 PMCID: PMC11934525 DOI: 10.1186/s12864-025-11463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Roseobacteraceae, often referred to as the marine roseobacter clade (MRC), are pivotal constituents of bacterial communities in coastal and pelagic marine environments. During the past two decades, 75 roseophages that infect various Roseobacteraceae lineages have been isolated. The N4-like roseophage clade, which encompasses 15 members, represents the largest clade among these roseophages. N4-like phages form a monophyletic group, classified as family Schitoviridae. And all N4-like roseophages form a unique clade within Schitoviridae and has been classified as the Rhodovirinae subfamily. RESULTS In this study, we isolated a novel roseophage, vB_DshP-R7L, that infects Dinoroseobacter shibae DFL12 from Xiamen Bay in the East China Sea. Conserved genes of Schitoviridae have been identified in the genome of vB_DshP-R7L, and following phylogenetic analysis suggests that the newly isolated phage is a member of the Rhodovirinae subfamily and represents the sole member of a novel genus, Gonggongvirus. The genome of vB_DshP-R7L harbors six auxiliary metabolic genes (AMGs), most of which potentially enhance DNA de novo synthesis. Additionally, a gene encoding ribosomal protein was identified. Comparative genomic analysis of AMG content among Rhodovirinae indicates a distinct evolutionary history characterized by independent ancient horizontal gene transfer events. Read-mapping analysis reveals the prevalence of vB_DshP-R7L and other Rhodovirinae roseophages in estuarine waters. CONCLUSIONS Our work illustrates the genomic features of a novel roseophage clade among the subfamily Rhodovirinae. The AMG content of vB_DshP-R7L is under severe purification selection, which reveals their possible ecological importance. We also demonstrated that vB_DshP-R7L and other Rhodovirinae roseophages are only detected in estuaries. Our isolation and characterization of this novel phage expands the understanding of the phylogeny, gene transfer history, and biogeography of Rhodovirinae infecting marine Roseobacteraceae.
Collapse
Affiliation(s)
- Xingyu Huang
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, No. 16 Lincui Road, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Chen Yu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Longfei Lu
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Ministry of Natural Resources, Fourth Institute of Oceanography, Beihai, 536000, China.
| |
Collapse
|
2
|
Wei N, Lu L, Li Y, Ding B, Cai L, Yang Y. A novel roseosiphovirus infecting dinoroseobacter shibae DFL12 T represents a new genus. BMC Genomics 2025; 26:121. [PMID: 39923004 PMCID: PMC11806900 DOI: 10.1186/s12864-025-11274-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/22/2025] [Indexed: 02/10/2025] Open
Abstract
Bacteria belonging to the Roseobacter clade are key players in marine ecosystems, contributing significantly to carbon and sulfur cycles. Marine viruses, particularly those targeting Roseobacter, play crucial roles in regulating microbial communities and biogeochemical processes. Despite their importance, phages infecting organisms of the Roseobacter clade remain poorly understood. In this study, a novel roseophage, vB_DshS-R26L (R26L), infecting Dinoroseobacter shibae DFL12T, was isolated and characterized in terms of physiological and genomic properties. R26L has siphovirus morphology with an elongated head and a long, non-flexible tail. The phage has a narrow host range and demonstrates a long infection cycle with a latent period of 3.5 h and a burst size of 22 plaque-forming units (PFU cell- 1). R26L possesses a circular, double-stranded DNA genome of 79,534 bp with a G + C content of 62.6%, encoding a total of 116 open reading frames. Notably, seven auxiliary metabolic genes (AMGs), including those related to phosphate metabolism and queuosine biosynthesis, were identified. Phylogenetic and taxonomic analyses revealed that R26L represents a new genus, with its highest intergenomic similarities being 54.7% to another roseophage (R5C). By elucidating the unique characteristics of R26L, this study highlights the complexity of phage infections and the genomic diversity of roseophages, offering valuable insights into the ecological significance of Roseobacter-phage interactions in marine environments.
Collapse
Affiliation(s)
- Nana Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, 518055, China
| | - Longfei Lu
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Yingying Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Bo Ding
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lanlan Cai
- Earth, Ocean and Atmospheric Sciences Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China.
| | - Yunlan Yang
- Archaeal Biology Center, Synthetic Biology Research Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Key Laboratory of Marine Microbiome Engineering of Guangdong Higher Education Institutes, Institute for Advanced Study, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Chen Z, Zhou T, Chen X, Huan Z, Huang J, Lu S, Zeng M, Guo Y, Wang Z, Dong Z. Toxic effects of chronic exposure to BPAF and perturbation of gut microbiota homeostasis in marine medaka (Oryzias melastigma). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177745. [PMID: 39608261 DOI: 10.1016/j.scitotenv.2024.177745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Bisphenol AF (BPAF), a substitute for bisphenol A (BPA), exhibits potent endocrine-disrupting properties that pose a serious health hazard to organisms. This study employed marine medaka as a model, subjecting them to different concentrations of BPAF (0.61, 6.65, and 91.88 μg/L) from the embryonic stage for a period of 160 days. Findings showed that 91.88 μg/L BPAF reduced survival rates and altered sex ratios. Furthermore, exposure to BPAF at all concentrations led to a significant increase in body length and weight. Behavioral analysis revealed that BPAF exposure impaired the swimming ability of the medaka. Histological changes included disrupted ovarian development, reduced sperm count, liver inflammation, and intestinal damage. Gene expression analysis revealed impacts on nervous system (e.g., gap43, itr, elavl3), HPG axis (e.g., gthα, erα, 3βhsd), and liver genes (e.g., chgl, vtg2). Additionally, BPAF altered the diversity and richness of gut microbes in marine medaka, leading to significant changes in specific bacterial species and intestinal functions. In conclusion, long-term BPAF exposure induced neurotoxicity, reproductive toxicity, and impaired digestive and immune systems in marine medaka, with sex-specific effects. These results provide further evidence of the potential hazards of BPAF as an environmental pollutant.
Collapse
Affiliation(s)
- Zuchun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Tianyang Zhou
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaotian Chen
- Center for Industrial Analysis and Testing, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Zhang Huan
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianxuan Huang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shulan Lu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Manwen Zeng
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Wu Z, Liu T, Chen Q, Chen T, Hu J, Sun L, Wang B, Li W, Ni J. Unveiling the unknown viral world in groundwater. Nat Commun 2024; 15:6788. [PMID: 39117653 PMCID: PMC11310336 DOI: 10.1038/s41467-024-51230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
Viruses as the prevailing biological entities are poorly understood in underground realms. Here, we establish the first metagenomic Groundwater Virome Catalogue (GWVC) comprising 280,420 viral species ( ≥ 5 kb) detected from 607 monitored wells in seven geo-environmental zones throughout China. In expanding ~10-fold the global portfolio of known groundwater viruses, we uncover over 99% novel viruses and about 95% novel viral clusters. By linking viruses to hosts from 119 prokaryotic phyla, we double the number of microbial phyla known to be virus-infected in groundwater. As keystone ultrasmall symbionts in aquifers, CPR bacteria and DPANN archaea are susceptible to virulent viruses. Certain complete CPR viruses even likely infect non-CPR bacteria, while partial CPR/DPANN viruses harbor cell-surface modification genes that assist symbiont cell adhesion to free-living microbes. This study reveals the unknown viral world and auxiliary metabolism associated with methane, nitrogen, sulfur, and phosphorus cycling in groundwater, and highlights the importance of subsurface virosphere in viral ecology.
Collapse
Affiliation(s)
- Zongzhi Wu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tang Liu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Qian Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Jinyun Hu
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Liyu Sun
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Bingxue Wang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Wenpeng Li
- Center for Groundwater Monitoring, China Institute of Geo-environmental Monitoring, Beijing, 100081, PR China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
5
|
Wu Z, Guo L, Wu Y, Yang M, Du S, Shao J, Zhang Z, Zhao Y. Novel phage infecting the Roseobacter CHUG lineage reveals a diverse and globally distributed phage family. mSphere 2024; 9:e0045824. [PMID: 38926906 PMCID: PMC11288001 DOI: 10.1128/msphere.00458-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Bacteriophages play an essential role in shaping the diversity and metabolism of bacterial communities. Marine Roseobacter group is an abundant heterotrophic bacterial group that is involved in many major element cycles, especially carbon and sulfur. Members of the Roseobacter CHUG (Clade Hidden and Underappreciated Globally) lineage are globally distributed and are activated in pelagic marine environments. In this study, we isolated and characterized a phage, CRP-810, that infects the CHUG strain FZCC0198. The genome of CRP-810 was dissimilar to those of other known phages. Additionally, 251 uncultured viral genomes (UViGs) closely related to CRP-810 were obtained from the uncultivated marine viral contig databases. Comparative genomic and phylogenetic analyses revealed that CRP-810 and these related UViGs exhibited conserved genome synteny, representing a new phage family with at least eight subgroups. Most of the CRP-810-type phages contain an integrase gene, and CRP-810 can be integrated into the host genome. Further analysis revealed that three CRP-810-type members were prophages found in the genomes of marine SAR11, Poseidonocella, and Sphingomonadaceae. Finally, viromic read-mapping analysis showed that CRP-810-type phages were globally distributed and displayed distinct biogeographic patterns related to temperature and latitude. Many members with a lower G + C content were mainly distributed in the trade station, whereas members with a higher G + C content were mainly distributed in polar and westerlies station, indicating that the niche differentiation of phages was subject to host adaptation. Collectively, these findings identify a novel phage family and expand our understanding of phylogenetic diversity, evolution, and biogeography of marine phages. IMPORTANCE The Roseobacter CHUG lineage, affiliated with the Pelagic Roseobacter Cluster (PRC), is widely distributed in the global oceans and is active in oligotrophic seawater. However, knowledge of the bacteriophages that infect CHUG members is limited. In this study, a CHUG phage, CRP-810, that infects the CHUG strain FZCC0198, was isolated and shown to have a novel genomic architecture. In addition, 251 uncultured viral genomes closely related to CRP-810 were recovered and included in the analyses. Phylogenomic analyses revealed that the CRP-810-type phages represent a new phage family containing at least eight genus-level subgroups. Members of this family were predicted to infect various marine bacteria. We also demonstrated that the CRP-810-type phages are widely distributed in global oceans and display distinct biogeographic patterns related to latitude. Collectively, this study provides important insights into the genomic organization, diversity, and ecology of a novel phage family that infect ecologically important bacteria in the global ocean.
Collapse
Affiliation(s)
- Zuqing Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Luyuan Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sen Du
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiabing Shao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of JunCao Sciences and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Zhu Y, Yan S, Chen X, Li Y, Xie S. Thallium spill shifts the structural and functional characteristics of viral communities with different lifestyles in river sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174531. [PMID: 38971241 DOI: 10.1016/j.scitotenv.2024.174531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Thallium (Tl), a highly toxic heavy metal, can affect microbial community, while little is known about its effect on viral community. The present study investigated the variation of viral communities, as well as their interactions with microbial hosts under Tl stress. Tl in sediments significantly altered the composition and diversity of the viral communities, but showed no significant links with the prokaryotic communities, which may reveal a potential discrepancy in the sensitivity of the viral and prokaryotic communities to heavy metal stress. Auxiliary metabolic genes (AMGs) involved in denitrification, methane oxidation and organic sulfur transformation were enriched at T1-contaminated sites, while the abundance of AMGs related to methanogenesis and sulfate reduction were higher at pristine sites. Specially, the enrichment of AMGs involved in assimilatory sulfate reduction in Tl-contaminated sites could possibly reduce Tl bioavailability by enhancing the microbially-driven sulfur cycling to generate sulfides that could be complexed with Tl. Moreover, there was a significantly positive correlation between virus-carrying metal resistant genes and the sedimentary Tl concentration, implying that Tl contamination might enhance the metal resistant potential of the viruses. Serving as the functional gene reservoir, the response of viral AMGs to Tl stress could represent a potential pathway for microorganisms to be adapted to the metal-polluted environments. Our study provided novel insights into the impact of Tl spill on viral communities, shedding light on functional characteristics and the links of virus-host interaction with Tl level.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuang Yan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yangyang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Hahnke S, Giebel HA, Freese HM, Moraru C, Tindall BJ, Simon M, Brinkhoff T. Biogeography of Lentibacter algarum, description of a new strain isolated from the North Sea and emended genus and species descriptions. Int J Syst Evol Microbiol 2024; 74. [PMID: 39058551 DOI: 10.1099/ijsem.0.006472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
A new heterotrophic, aerobic alphaproteobacterium, designated strain SH36 (=DSM 23330=LMG 25292), was obtained from a seawater sample collected in the open North Sea during a phytoplankton bloom. Analysis of the 16S rRNA gene sequence revealed affiliation of strain SH36 to the species Lentibacter algarum (family Roseobacteraceae), showing 100 and 99.9 % sequence similarity to the 16S rRNA genes of the strains L. algarum ZXM098 and ZXM100T. Digital DNA-DNA hybridization of strain SH36 with the type strain of L. algarum showed 98.0 % relatedness, confirming that strain SH36 can be classified within the same species. All three L. algarum strains were compared by physiological, morphological, chemotaxonomic, and genotypic characteristics. The strains showed only minor differences in the composition of fatty acids and polar lipids, but considerable physiological differences. Comparison of the 16S rRNA gene sequence of SH36 with sequences present in GenBank revealed that phylotypes with ≥98.65 % sequence identity to the type strain of L. algarum were found at different marine and estuarine locations of temperate and subtropic regions. Furthermore, by using a specific PCR approach L. algarum was detected throughout annual cycles at the offshore station at Helgoland Roads in the German Bight, indicating that this species is a permanent member of the microbial community in the North Sea.
Collapse
Affiliation(s)
- Sarah Hahnke
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26129 Oldenburg, Germany
- Present address: Department of Human Medicine, University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26129 Oldenburg, Germany
| | - Heike M Freese
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26129 Oldenburg, Germany
- Present address: Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, 45141 Essen, Germany
| | - Brian J Tindall
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen, Inhoffenstr. 7B, D-38124 Braunschweig, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26129 Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Carl-von-Ossietzky-Str. 9-11, D-26129 Oldenburg, Germany
| |
Collapse
|
8
|
Du S, Wu Y, Ying H, Wu Z, Yang M, Chen F, Shao J, Liu H, Zhang Z, Zhao Y. Genome sequences of the first Autographiviridae phages infecting marine Roseobacter. Microb Genom 2024; 10. [PMID: 38630615 DOI: 10.1099/mgen.0.001240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
The ubiquitous and abundant marine phages play critical roles in shaping the composition and function of bacterial communities, impacting biogeochemical cycling in marine ecosystems. Autographiviridae is among the most abundant and ubiquitous phage families in the ocean. However, studies on the diversity and ecology of Autographiviridae phages in marine environments are restricted to isolates that infect SAR11 bacteria and cyanobacteria. In this study, ten new roseophages that infect marine Roseobacter strains were isolated from coastal waters. These new roseophages have a genome size ranging from 38 917 to 42 634 bp and G+C content of 44.6-50 %. Comparative genomics showed that they are similar to known Autographiviridae phages regarding gene content and architecture, thus representing the first Autographiviridae roseophages. Phylogenomic analysis based on concatenated conserved genes showed that the ten roseophages form three distinct subgroups within the Autographiviridae, and sequence analysis revealed that they belong to eight new genera. Finally, viromic read-mapping showed that these new Autographiviridae phages are widely distributed in global oceans, mostly inhabiting polar and estuarine locations. This study has expanded the current understanding of the genomic diversity, evolution and ecology of Autographiviridae phages and roseophages. We suggest that Autographiviridae phages play important roles in the mortality and community structure of roseobacters, and have broad ecological applications.
Collapse
Affiliation(s)
- Sen Du
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Ying Wu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Hanqi Ying
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zuqing Wu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Mingyu Yang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Jiabing Shao
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - He Liu
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Zefeng Zhang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| | - Yanlin Zhao
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, PR China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, PR China
| |
Collapse
|
9
|
Barrero-Canosa J, Wang L, Oyugi A, Klaes S, Fischer P, Adrian L, Szewzyk U, Cooper M. Characterization of phage vB_EcoS-EE09 infecting E. coli DSM613 Isolated from Wastewater Treatment Plant Effluent and Comparative Proteomics of the Infected and Non-Infected Host. Microorganisms 2023; 11:2688. [PMID: 38004701 PMCID: PMC10673088 DOI: 10.3390/microorganisms11112688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Phages influence microbial communities, can be applied in phage therapy, or may serve as bioindicators, e.g., in (waste)water management. We here characterized the Escherichia phage vB_EcoS-EE09 isolated from an urban wastewater treatment plant effluent. Phage vB_EcoS-EE09 belongs to the genus Dhillonvirus, class Caudoviricetes. It has an icosahedral capsid with a long non-contractile tail and a dsDNA genome with an approximate size of 44 kb and a 54.6% GC content. Phage vB_EcoS-EE09 infected 12 out of the 17 E. coli strains tested. We identified 16 structural phage proteins, including the major capsid protein, in cell-free lysates by protein mass spectrometry. Comparative proteomics of protein extracts of infected E. coli cells revealed that proteins involved in amino acid and protein metabolism were more abundant in infected compared to non-infected cells. Among the proteins involved in the stress response, 74% were less abundant in the infected cultures compared to the non-infected controls, with six proteins showing significant less abundance. Repressing the expression of these proteins may be a phage strategy to evade host defense mechanisms. Our results contribute to diversifying phage collections, identifying structural proteins to enable better reliability in annotating taxonomically related phage genomes, and understanding phage-host interactions at the protein level.
Collapse
Affiliation(s)
- Jimena Barrero-Canosa
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Luyao Wang
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Angelah Oyugi
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Simon Klaes
- Institute of Biotechnology, Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (S.K.)
- Helmholtz Centre for Environmental Research GmbH—UFZ, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Pascal Fischer
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Lorenz Adrian
- Institute of Biotechnology, Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (S.K.)
- Helmholtz Centre for Environmental Research GmbH—UFZ, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Ulrich Szewzyk
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| | - Myriel Cooper
- Institute of Environmental Technology, Chair of Environmental Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany; (L.W.); (A.O.); (P.F.); (U.S.); (M.C.)
| |
Collapse
|
10
|
Zheng K, Liang Y, Paez-Espino D, Zou X, Gao C, Shao H, Sung YY, Mok WJ, Wong LL, Zhang YZ, Tian J, Chen F, Jiao N, Suttle CA, He J, McMinn A, Wang M. Identification of hidden N4-like viruses and their interactions with hosts. mSystems 2023; 8:e0019723. [PMID: 37702511 PMCID: PMC10654107 DOI: 10.1128/msystems.00197-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/19/2023] [Indexed: 09/14/2023] Open
Abstract
IMPORTANCE The findings of this study are significant, as N4-like viruses represent a unique viral lineage with a distinct replication mechanism and a conserved core genome. This work has resulted in a comprehensive global map of the entire N4-like viral lineage, including information on their distribution in different biomes, evolutionary divergence, genomic diversity, and the potential for viral-mediated host metabolic reprogramming. As such, this work significantly contributes to our understanding of the ecological function and viral-host interactions of bacteriophages.
Collapse
Affiliation(s)
- Kaiyang Zheng
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yantao Liang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - David Paez-Espino
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Mammoth Biosciences Inc., South San Francisco, California, USA
| | - Xiao Zou
- Qingdao Central Hospital, Qingdao, China
| | - Chen Gao
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hongbing Shao
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu (UMT), Kuala Terengganu, Malaysia
| | - Yu-Zhong Zhang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Jiwei Tian
- Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Curtis A. Suttle
- Department of Earth, Ocean and Atmospheric Sciences, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianfeng He
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
| | - Andrew McMinn
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- Key Laboratory of Polar Oceanography and Global Ocean Change, Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Wang YH, Liu JC, Du YH, Xu JH, Du ZJ, Ye MQ. Psychromarinibacter sediminicola sp. nov., a novel moderately halophilic, metabolically diverse bacterium isolated from a solar saltern sediment, and comparison between members of family Roseobacteraceae. Arch Microbiol 2023; 205:331. [PMID: 37698663 DOI: 10.1007/s00203-023-03672-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Known for its species abundance and evolutionary status complexity, family Roseobacteraceae is an important subject of many studies on the discovery, identification, taxonomic status, and ecological properties of marine bacteria. This study compared and analyzed the phylogenetic, genomic, biochemical, and chemo taxonomical properties of seven species from three genera (Psychromarinibacter, Lutimaribacter, and Maritimibacter) of the family Roseobacteraceae. Moreover, a novel strain, named C21-152T was isolated from solar saltern sediment in Weihai, China. The values of 16S rRNA gene sequence similarity, the average nucleotide identity (ANI), the average amino acid identity (AAI), and the digital DNA-DNA hybridization (dDDH) between genomes of the novel strain and Psychromarinibacter halotolerans MCCC 1K03203T were 97.19, 78.49, 73.45, and 21.90%, respectively. Genome sequencing of strain C21-152T revealed a complete Sox enzyme system related to thiosulfate oxidization as well as a complete pathway for the final conversion of hydroxyproline to α-ketoglutarate. In addition, strain C21-152T was resistant to many antibiotics and had the ability to survive below 13% salinity. This strain had versatile survival strategies in saline environments including salt-in, compatible solute production and compatible solute transport. Some of its physiological features enriched and complemented the knowledge of the characteristics of the genus Psychromarinibacter. Optimum growth of strain C21-152T occurred at 37 ℃, with 5-6% (w/v) NaCl and at pH 7.5. According to the results of the phenotypic, chemotaxonomic characterization, phylogenetic properties and genome analysis, strain C21-152T should represent a novel specie of the genus Psychromarinibacter, for which the name Psychromarinibacter sediminicola sp. nov. is proposed. The type strain is C21-152T (= MCCC 1H00808T = KCTC 92746T = SDUM1063002T).
Collapse
Affiliation(s)
- Yu-Hui Wang
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Jun-Cheng Liu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Yi-Heng Du
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jin-Hao Xu
- SDU-ANU Joint Science College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, 264209, People's Republic of China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Meng-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, 264209, People's Republic of China.
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, Guangdong, People's Republic of China.
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Huang Y, Sun H, Wei S, Cai L, Liu L, Jiang Y, Xin J, Chen Z, Que Y, Kong Z, Li T, Yu H, Zhang J, Gu Y, Zheng Q, Li S, Zhang R, Xia N. Structure and proposed DNA delivery mechanism of a marine roseophage. Nat Commun 2023; 14:3609. [PMID: 37330604 PMCID: PMC10276861 DOI: 10.1038/s41467-023-39220-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
Tailed bacteriophages (order, Caudovirales) account for the majority of all phages. However, the long flexible tail of siphophages hinders comprehensive investigation of the mechanism of viral gene delivery. Here, we report the atomic capsid and in-situ structures of the tail machine of the marine siphophage, vB_DshS-R4C (R4C), which infects Roseobacter. The R4C virion, comprising 12 distinct structural protein components, has a unique five-fold vertex of the icosahedral capsid that allows genome delivery. The specific position and interaction pattern of the tail tube proteins determine the atypical long rigid tail of R4C, and further provide negative charge distribution within the tail tube. A ratchet mechanism assists in DNA transmission, which is initiated by an absorption device that structurally resembles the phage-like particle, RcGTA. Overall, these results provide in-depth knowledge into the intact structure and underlining DNA delivery mechanism for the ecologically important siphophages.
Collapse
Affiliation(s)
- Yang Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hui Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Liqin Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yanan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jiabao Xin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhenqin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Yuqiong Que
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Zhibo Kong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Tingting Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Hai Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Ying Gu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
| | - Qingbing Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen, 361102, China.
| |
Collapse
|
13
|
Zhang Z, Wu Z, Liu H, Yang M, Wang R, Zhao Y, Chen F. Genomic analysis and characterization of phages infecting the marine Roseobacter CHAB-I-5 lineage reveal a globally distributed and abundant phage genus. Front Microbiol 2023; 14:1164101. [PMID: 37138617 PMCID: PMC10149686 DOI: 10.3389/fmicb.2023.1164101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Marine phages play an important role in marine biogeochemical cycles by regulating the death, physiological metabolism, and evolutionary trajectory of bacteria. The Roseobacter group is an abundant and important heterotrophic bacterial group in the ocean, and plays an important role in carbon, nitrogen, sulfur and phosphorus cycling. The CHAB-I-5 lineage is one of the most dominant Roseobacter lineages, but remains largely uncultured. Phages infecting CHAB-I-5 bacteria have not yet been investigated due to the lack of culturable CHAB-I-5 strains. In this study, we isolated and sequenced two new phages (CRP-901 and CRP-902) infecting the CHAB-I-5 strain FZCC0083. We applied metagenomic data mining, comparative genomics, phylogenetic analysis, and metagenomic read-mapping to investigate the diversity, evolution, taxonomy, and biogeography of the phage group represented by the two phages. The two phages are highly similar, with an average nucleotide identity of 89.17%, and sharing 77% of their open reading frames. We identified several genes involved in DNA replication and metabolism, virion structure, DNA packing, and host lysis from their genomes. Metagenomic mining identified 24 metagenomic viral genomes closely related to CRP-901 and CRP-902. Genomic comparison and phylogenetic analysis demonstrated that these phages are distinct from other known viruses, representing a novel genus-level phage group (CRP-901-type). The CRP-901-type phages do not contain DNA primase and DNA polymerase genes, but possess a novel bifunctional DNA primase-polymerase gene with both primase and polymerase activities. Read-mapping analysis showed that the CRP-901-type phages are widespread across the world's oceans and are most abundant in estuarine and polar waters. Their abundance is generally higher than other known roseophages and even higher than most pelagiphages in the polar region. In summary, this study has greatly expanded our understanding of the genetic diversity, evolution, and distribution of roseophages. Our analysis suggests that the CRP-901-type phage is an important and novel marine phage group that plays important roles in the physiology and ecology of roseobacters.
Collapse
Affiliation(s)
- Zefeng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zuqing Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - He Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rui Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yanlin Zhao,
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
- Feng Chen,
| |
Collapse
|
14
|
Batinovic S, Stanton CR, Rice DTF, Rowe B, Beer M, Petrovski S. Tyroviruses are a new group of temperate phages that infect Bacillus species in soil environments worldwide. BMC Genomics 2022; 23:777. [PMID: 36443683 PMCID: PMC9703825 DOI: 10.1186/s12864-022-09023-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Bacteriophages are widely considered to be highly abundant and genetically diverse, with their role in the evolution and virulence of many pathogens becoming increasingly clear. Less attention has been paid on phages preying on Bacillus, despite the potential for some of its members, such as Bacillus anthracis, to cause serious human disease. RESULTS We have isolated five phages infecting the causative agent of anthrax, Bacillus anthracis. Using modern phylogenetic approaches we place these five new Bacillus phages, as well as 21 similar phage genomes retrieved from publicly available databases and metagenomic datasets into the Tyrovirus group, a newly proposed group named so due to the conservation of three distinct tyrosine recombinases. Genomic analysis of these large phages (~ 160-170 kb) reveals their DNA packaging mechanism and genomic features contributing to virion morphogenesis, host cell lysis and phage DNA replication processes. Analysis of the three tyrosine recombinases suggest Tyroviruses undergo a prophage lifecycle that may involve both host integration and plasmid stages. Further we show that Tyroviruses rely on divergent invasion mechanisms, with a subset requiring host S-layer for infection. CONCLUSIONS Ultimately, we expand upon our understanding on the classification, phylogeny, and genomic organisation of a new and substantial phage group that prey on critically relevant Bacillus species. In an era characterised by a rapidly evolving landscape of phage genomics the deposition of future Tyroviruses will allow the further unravelling of the global spread and evolutionary history of these Bacillus phages.
Collapse
Affiliation(s)
- Steven Batinovic
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia ,grid.268446.a0000 0001 2185 8709Present address: Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa Japan
| | - Cassandra R. Stanton
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Daniel T. F. Rice
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Brittany Rowe
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| | - Michael Beer
- grid.431245.50000 0004 0385 5290Defence Science and Technology Group, Fishermans Bend, Victoria, Australia
| | - Steve Petrovski
- grid.1018.80000 0001 2342 0938Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
15
|
Community Dynamics of Free-Living and Particle-Attached Bacteria over Sequential Blooms of Heterotrophic Dinoflagellate
Noctiluca scintillans
and Mixotrophic Ciliate
Mesodinium rubrum. Appl Environ Microbiol 2022; 88:e0132322. [PMID: 36326264 PMCID: PMC9680639 DOI: 10.1128/aem.01323-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Shifts in the bacterioplankton community composition during phytoplankton blooms have been studied extensively; however, investigations on protozoan blooms are rare. This study first evaluated the impact of perturbations caused by sequential protozoan blooms of the heterotrophic dinoflagellate
Noctiluca scintillans
and the mixotrophic ciliate
Mesodinium rubrum
on the structuring of these two bacterial communities.
Collapse
|
16
|
Locke H, Bidle KD, Thamatrakoln K, Johns CT, Bonachela JA, Ferrell BD, Wommack KE. Marine viruses and climate change: Virioplankton, the carbon cycle, and our future ocean. Adv Virus Res 2022; 114:67-146. [PMID: 39492214 DOI: 10.1016/bs.aivir.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interactions between marine viruses and microbes are a critical part of the oceanic carbon cycle. The impacts of virus-host interactions range from short-term disruptions in the mobility of microbial biomass carbon to higher trophic levels through cell lysis (i.e., the viral shunt) to long-term reallocation of microbial biomass carbon to the deep sea through accelerating the biological pump (i.e., the viral shuttle). The biogeochemical backdrop of the ocean-the physical, chemical, and biological landscape-influences the likelihood of both virus-host interactions and particle formation, and the fate and flow of carbon. As climate change reshapes the oceanic landscape through large-scale shifts in temperature, circulation, stratification, and acidification, virus-mediated carbon flux is likely to shift in response. Dynamics in the directionality and magnitude of changes in how, where, and when viruses mediate the recycling or storage of microbial biomass carbon is largely unknown. Integrating viral infection dynamics data obtained from experimental models and field systems, with particle motion microphysics and global observations of oceanic biogeochemistry, into improved ecosystem models will enable viral oceanographers to better predict the role of viruses in marine carbon cycling in the future ocean.
Collapse
Affiliation(s)
- Hannah Locke
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - Kay D Bidle
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | | | - Christopher T Johns
- Rutgers Univ., Dept. of Marine & Coastal Sciences, New Brunswick, NJ, United States
| | - Juan A Bonachela
- Rutgers Univ., Dept. of Ecology, Evolution & Natural Resources, New Brunswick, NJ, United States
| | - Barbra D Ferrell
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States
| | - K Eric Wommack
- Univ. of Delaware, Delaware Biotechnology Inst., Newark, DE, United States.
| |
Collapse
|
17
|
Newly identified HMO-2011-type phages reveal genomic diversity and biogeographic distributions of this marine viral group. THE ISME JOURNAL 2022; 16:1363-1375. [PMID: 35022515 PMCID: PMC9038755 DOI: 10.1038/s41396-021-01183-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Viruses play critical roles in influencing biogeochemical cycles and adjusting host mortality, population structure, physiology, and evolution in the ocean. Marine viral communities are composed of numerous genetically distinct subfamily/genus-level viral groups. Among currently identified viral groups, the HMO-2011-type group is known to be dominant and broadly distributed. However, only four HMO-2011-type cultivated representatives that infect marine SAR116 and Roseobacter strains have been reported to date, and the genetic diversity, potential hosts, and ecology of this group remain poorly elucidated. Here, we present the genomes of seven HMO-2011-type phages that were isolated using four Roseobacter strains and one SAR11 strain, as well as additional 207 HMO-2011-type metagenomic viral genomes (MVGs) identified from various marine viromes. Phylogenomic and shared-gene analyses revealed that the HMO-2011-type group is a subfamily-level group comprising at least 10 discernible genus-level subgroups. Moreover, >2000 HMO-2011-type DNA polymerase sequences were identified, and the DNA polymerase phylogeny also revealed that the HMO-2011-type group contains diverse subgroups and is globally distributed. Metagenomic read-mapping results further showed that most HMO-2011-type phages are prevalent in global oceans and display distinct geographic distributions, with the distribution of most HMO-2011-type phages being associated with temperature. Lastly, we found that members in subgroup IX, represented by pelagiphage HTVC033P, were among the most abundant HMO-2011-type phages, which implies that SAR11 bacteria are crucial hosts for this viral group. In summary, our findings substantially expand current knowledge regarding the phylogenetic diversity, evolution, and distribution of HMO-2011-type phages, highlighting HMO-2011-type phages as major ecological agents that can infect certain key bacterial groups.
Collapse
|
18
|
Bartlau N, Wichels A, Krohne G, Adriaenssens EM, Heins A, Fuchs BM, Amann R, Moraru C. Highly diverse flavobacterial phages isolated from North Sea spring blooms. THE ISME JOURNAL 2022; 16:555-568. [PMID: 34475519 PMCID: PMC8776804 DOI: 10.1038/s41396-021-01097-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/17/2021] [Indexed: 11/24/2022]
Abstract
It is generally recognized that phages are a mortality factor for their bacterial hosts. This could be particularly true in spring phytoplankton blooms, which are known to be closely followed by a highly specialized bacterial community. We hypothesized that phages modulate these dense heterotrophic bacteria successions following phytoplankton blooms. In this study, we focused on Flavobacteriia, because they are main responders during these blooms and have an important role in the degradation of polysaccharides. A cultivation-based approach was used, obtaining 44 lytic flavobacterial phages (flavophages), representing twelve new species from two viral realms. Taxonomic analysis allowed us to delineate ten new phage genera and ten new families, from which nine and four, respectively, had no previously cultivated representatives. Genomic analysis predicted various life styles and genomic replication strategies. A likely eukaryote-associated host habitat was reflected in the gene content of some of the flavophages. Detection in cellular metagenomes and by direct-plating showed that part of these phages were actively replicating in the environment during the 2018 spring bloom. Furthermore, CRISPR/Cas spacers and re-isolation during two consecutive years suggested that, at least part of the new flavophages are stable components of the microbial community in the North Sea. Together, our results indicate that these diverse flavophages have the potential to modulate their respective host populations.
Collapse
Affiliation(s)
- Nina Bartlau
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Antje Wichels
- Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Biologische Anstalt Helgoland, Heligoland, Germany
| | - Georg Krohne
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Anneke Heins
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | | | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
19
|
Krupovic M, Turner D, Morozova V, Dyall-Smith M, Oksanen HM, Edwards R, Dutilh BE, Lehman SM, Reyes A, Baquero DP, Sullivan MB, Uchiyama J, Nakavuma J, Barylski J, Young MJ, Du S, Alfenas-Zerbini P, Kushkina A, Kropinski AM, Kurtböke I, Brister JR, Lood C, Sarkar BL, Yigang T, Liu Y, Huang L, Wittmann J, Chanishvili N, van Zyl LJ, Rumnieks J, Mochizuki T, Jalasvuori M, Aziz RK, Łobocka M, Stedman KM, Shkoporov AN, Gillis A, Peng X, Enault F, Knezevic P, Lavigne R, Rhee SK, Cvirkaite-Krupovic V, Moraru C, Moreno Switt AI, Poranen MM, Millard A, Prangishvili D, Adriaenssens EM. Bacterial Viruses Subcommittee and Archaeal Viruses Subcommittee of the ICTV: update of taxonomy changes in 2021. Arch Virol 2021; 166:3239-3244. [PMID: 34417873 PMCID: PMC8497307 DOI: 10.1007/s00705-021-05205-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this article, we - the Bacterial Viruses Subcommittee and the Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) - summarise the results of our activities for the period March 2020 - March 2021. We report the division of the former Bacterial and Archaeal Viruses Subcommittee in two separate Subcommittees, welcome new members, a new Subcommittee Chair and Vice Chair, and give an overview of the new taxa that were proposed in 2020, approved by the Executive Committee and ratified by vote in 2021. In particular, a new realm, three orders, 15 families, 31 subfamilies, 734 genera and 1845 species were newly created or redefined (moved/promoted).
Collapse
Affiliation(s)
- Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Dann Turner
- Department of Applied Sciences, Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK
| | - Vera Morozova
- Laboratory of Molecular Microbiology, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
| | - Mike Dyall-Smith
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Australia
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Rob Edwards
- Flinders Accelerator for Microbiome Exploration, Adelaide, Australia
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Susan M Lehman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20903, USA
| | - Alejandro Reyes
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | | | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Department Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jumpei Uchiyama
- School of Veterinary Medicine, Azabu University, Sagamihara, Japan
| | - Jesca Nakavuma
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, Collegium Biologicum-Umultowska 89, 61-614, Poznan, Poland
| | - Mark J Young
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Shishen Du
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
| | | | - Alla Kushkina
- Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Kyiv, Ukraine
| | - Andrew M Kropinski
- Department of Food Science, University of Guelph, Guelph, Canada
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Ipek Kurtböke
- University of the Sunshine Coast, Sippy Downs, Australia
| | - J Rodney Brister
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | | | - B L Sarkar
- Emeritus ICMR-National Institute of Cholera and Enteric Diseases (NICED), Kolkata, India
| | - Tong Yigang
- Beijing University of Chemical Technology, Beijing, China
| | - Ying Liu
- Archaeal Virology Unit, Institut Pasteur, Paris, France
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Berlin, Germany
| | - Nina Chanishvili
- The Eliava Institute of Bacteriophage, MIcrobiology and Virology, Tbilisi, Georgia
| | | | - Janis Rumnieks
- Latvian Biomedical Research and Study Center, Riga, Latvia
| | - Tomohiro Mochizuki
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University and Microbiology and Immunology Research Program, Children's Cancer Hospital Egypt, Cairo, 57357, Egypt
| | - Małgorzata Łobocka
- Laboratory of Bacteriophage Biology, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland
| | - Kenneth M Stedman
- Biology Department and Center for Life in Extreme Environments, Portland State University, Portland, USA
| | | | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UC Louvain, Louvain-la-Neuve, Belgium
| | - Xu Peng
- Microbial Immunity Group, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGE, 63000, Clermont-Ferrand, France
| | - Petar Knezevic
- Faculty of Sciences Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | | | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, South Korea
| | | | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Andrea I Moreno Switt
- Escuela de Medicina Veterinaria, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Minna M Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
20
|
Genomic Characterization of Two Novel RCA Phages Reveals New Insights into the Diversity and Evolution of Marine Viruses. Microbiol Spectr 2021; 9:e0123921. [PMID: 34668749 PMCID: PMC8528129 DOI: 10.1128/spectrum.01239-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Viruses are the most abundant living entities in marine ecosystems, playing critical roles in altering the structure and function of microbial communities and driving ocean biogeochemistry. Phages that infect Roseobacter clade-affiliated (RCA) cluster strains are an important component of marine viral communities. Here, we characterize the genome sequences of two new RCA phages, CRP-9 and CRP-13, which infect RCA strain FZCC0023. Genomic analysis reveals that CRP-9 and CRP-13 represent a novel evolutionary lineage of marine phages. They both have a DNA replication module most similar to those in Cobavirus group phages. In contrast, their morphogenesis and packaging modules are distinct from those in cobaviruses but homologous to those in HMO-2011-type phages. The genomic architecture of CRP-9 and CRP-13 suggests a genomic recombination event between distinct phage groups. Metagenomic data sets were examined for metagenome-assembled viral genomes (MAVGs) with similar recombinant genome architectures. Fifteen CRP-9-type MAVGs were identified from marine viromes. Additionally, 158 MAVGs were identified containing HMO-2011-type morphogenesis and packaging modules with other types of DNA replication genes, providing more evidence that recombination between different phage groups is a major driver of phage evolution. Altogether, this study significantly expands the understanding of diversity and evolution of marine roseophages. Meanwhile, the analysis of these novel RCA phages and MAVGs highlights the critical role of recombination in shaping phage diversity. These phage sequences are valuable resources for inferring the evolutionary connection of distinct phage groups. IMPORTANCE Diversity and evolution of phages that infect the relatively slow-growing but dominant Roseobacter lineages are largely unknown. In this study, RCA phages CRP-9 and CRP-13 have been isolated on a Roseobacter RCA strain and shown to have a unique genomic architecture, which appears to be the result of a recombination event. CRP-9 and CRP-13 have a DNA replication module most similar to those in Cobavirus group phages and morphogenesis and packaging modules most similar to those in HMO-2011-type phages. HMO-2011-type morphogenesis and packaging modules are found in combination with distinct types of DNA replication genes, suggesting compatibility with various DNA replication modules. Altogether, this study contributes toward a better understanding of marine viral diversity and evolution.
Collapse
|
21
|
Rahlff J, Turzynski V, Esser SP, Monsees I, Bornemann TLV, Figueroa-Gonzalez PA, Schulz F, Woyke T, Klingl A, Moraru C, Probst AJ. Lytic archaeal viruses infect abundant primary producers in Earth's crust. Nat Commun 2021; 12:4642. [PMID: 34330907 PMCID: PMC8324899 DOI: 10.1038/s41467-021-24803-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
The continental subsurface houses a major portion of life's abundance and diversity, yet little is known about viruses infecting microbes that reside there. Here, we use a combination of metagenomics and virus-targeted direct-geneFISH (virusFISH) to show that highly abundant carbon-fixing organisms of the uncultivated genus Candidatus Altiarchaeum are frequent targets of previously unrecognized viruses in the deep subsurface. Analysis of CRISPR spacer matches display resistances of Ca. Altiarchaea against eight predicted viral clades, which show genomic relatedness across continents but little similarity to previously identified viruses. Based on metagenomic information, we tag and image a putatively viral genome rich in protospacers using fluorescence microscopy. VirusFISH reveals a lytic lifestyle of the respective virus and challenges previous predictions that lysogeny prevails as the dominant viral lifestyle in the subsurface. CRISPR development over time and imaging of 18 samples from one subsurface ecosystem suggest a sophisticated interplay of viral diversification and adapting CRISPR-mediated resistances of Ca. Altiarchaeum. We conclude that infections of primary producers with lytic viruses followed by cell lysis potentially jump-start heterotrophic carbon cycling in these subsurface ecosystems.
Collapse
Affiliation(s)
- Janina Rahlff
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
- Department of Biology and Environmental Science, Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Victoria Turzynski
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Sarah P Esser
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Indra Monsees
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Till L V Bornemann
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | - Perla Abigail Figueroa-Gonzalez
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Andreas Klingl
- Plant Development & Electron Microscopy, Biocenter LMU Munich, Planegg-Martinsried, Germany
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Oldenburg, Germany
| | - Alexander J Probst
- Department of Chemistry, Environmental Microbiology and Biotechnology (EMB), Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
22
|
Hoetzinger M, Nilsson E, Arabi R, Osbeck CMG, Pontiller B, Hutinet G, Bayfield OW, Traving S, Kisand V, Lundin D, Pinhassi J, Middelboe M, Holmfeldt K. Dynamics of Baltic Sea phages driven by environmental changes. Environ Microbiol 2021; 23:4576-4594. [PMID: 34190387 DOI: 10.1111/1462-2920.15651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
Phage predation constitutes a major mortality factor for bacteria in aquatic ecosystems, and thus, directly impacts nutrient cycling and microbial community dynamics. Yet, the population dynamics of specific phages across time scales from days to months remain largely unexplored, which limits our understanding of their influence on microbial succession. To investigate temporal changes in diversity and abundance of phages infecting particular host strains, we isolated 121 phage strains that infected three bacterial hosts during a Baltic Sea mesocosm experiment. Genome analysis revealed a novel Flavobacterium phage genus harboring gene sets putatively coding for synthesis of modified nucleotides and glycosylation of bacterial cell surface components. Another novel phage genus revealed a microdiversity of phage species that was largely maintained during the experiment and across mesocosms amended with different nutrients. In contrast to the newly described Flavobacterium phages, phages isolated from a Rheinheimera strain were highly similar to previously isolated genotypes, pointing to genomic consistency in this population. In the mesocosm experiment, the investigated phages were mainly detected after a phytoplankton bloom peak. This concurred with recurrent detection of the phages in the Baltic Proper during summer months, suggesting an influence on the succession of heterotrophic bacteria associated with phytoplankton blooms.
Collapse
Affiliation(s)
- Matthias Hoetzinger
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Rahaf Arabi
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Christofer M G Osbeck
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Oliver W Bayfield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Sachia Traving
- Nordcee and HADAL, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
23
|
Rihtman B, Puxty RJ, Hapeshi A, Lee YJ, Zhan Y, Michniewski S, Waterfield NR, Chen F, Weigele P, Millard AD, Scanlan DJ, Chen Y. A new family of globally distributed lytic roseophages with unusual deoxythymidine to deoxyuridine substitution. Curr Biol 2021; 31:3199-3206.e4. [PMID: 34033748 PMCID: PMC8323127 DOI: 10.1016/j.cub.2021.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 01/27/2023]
Abstract
Marine bacterial viruses (bacteriophages) are abundant biological entities that are vital for shaping microbial diversity, impacting marine ecosystem function, and driving host evolution.1, 2, 3 The marine roseobacter clade (MRC) is a ubiquitous group of heterotrophic bacteria4,5 that are important in the elemental cycling of various nitrogen, sulfur, carbon, and phosphorus compounds.6, 7, 8, 9, 10 Bacteriophages infecting MRC (roseophages) have thus attracted much attention and more than 30 roseophages have been isolated,11, 12, 13 the majority of which belong to the N4-like group (Podoviridae family) or the Chi-like group (Siphoviridae family), although ssDNA-containing roseophages are also known.14 In our attempts to isolate lytic roseophages, we obtained two new phages (DSS3_VP1 and DSS3_PM1) infecting the model MRC strain Ruegeria pomeroyi DSS-3. Here, we show that not only do these phages have unusual substitution of deoxythymidine with deoxyuridine (dU) in their DNA, but they are also phylogenetically distinct from any currently known double-stranded DNA bacteriophages, supporting the establishment of a novel family (“Naomiviridae”). These dU-containing phages possess DNA that is resistant to the commonly used library preparation method for metagenome sequencing, which may have caused significant underestimation of their presence in the environment. Nevertheless, our analysis of Tara Ocean metagenome datasets suggests that these unusual bacteriophages are of global importance and more diverse than other well-known bacteriophages, e.g., the Podoviridae in the oceans, pointing to an overlooked role for these novel phages in the environment. Two new roseophages isolated from the marine environment They have an unusual deoxythymidine to deoxyuridine substitution in their genomes These dU genomes are resistant to a common method of metagenome library preparation These phages represent a new family and are globally distributed in the oceans
Collapse
Affiliation(s)
- Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| | - Richard J Puxty
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Alexia Hapeshi
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Yan-Jiun Lee
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Yuanchao Zhan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Slawomir Michniewski
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Nicholas R Waterfield
- Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 E. Pratt Street, Baltimore, MD 21202, USA
| | - Peter Weigele
- Research Department, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Andrew D Millard
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK.
| |
Collapse
|
24
|
Forcone K, Coutinho FH, Cavalcanti GS, Silveira CB. Prophage Genomics and Ecology in the Family Rhodobacteraceae. Microorganisms 2021; 9:microorganisms9061115. [PMID: 34064105 PMCID: PMC8224337 DOI: 10.3390/microorganisms9061115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
Roseobacters are globally abundant bacteria with critical roles in carbon and sulfur biogeochemical cycling. Here, we identified 173 new putative prophages in 79 genomes of Rhodobacteraceae. These prophages represented 1.3 ± 0.15% of the bacterial genomes and had no to low homology with reference and metagenome-assembled viral genomes from aquatic and terrestrial ecosystems. Among the newly identified putative prophages, 35% encoded auxiliary metabolic genes (AMGs), mostly involved in secondary metabolism, amino acid metabolism, and cofactor and vitamin production. The analysis of integration sites and gene homology showed that 22 of the putative prophages were actually gene transfer agents (GTAs) similar to a GTA of Rhodobacter capsulatus. Twenty-three percent of the predicted prophages were observed in the TARA Oceans viromes generated from free viral particles, suggesting that they represent active prophages capable of induction. The distribution of these prophages was significantly associated with latitude and temperature. The prophages most abundant at high latitudes encoded acpP, an auxiliary metabolic gene involved in lipid synthesis and membrane fluidity at low temperatures. Our results show that prophages and gene transfer agents are significant sources of genomic diversity in roseobacter, with potential roles in the ecology of this globally distributed bacterial group.
Collapse
Affiliation(s)
- Kathryn Forcone
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, Miami, FL 33146, USA; (K.F.); (G.S.C.)
| | - Felipe H. Coutinho
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández de Elche, Aptdo. 18, Ctra. Alicante-Valencia, s/n, 03550 San Juan de Alicante, Spain;
| | - Giselle S. Cavalcanti
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, Miami, FL 33146, USA; (K.F.); (G.S.C.)
| | - Cynthia B. Silveira
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, Miami, FL 33146, USA; (K.F.); (G.S.C.)
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
- Correspondence:
| |
Collapse
|
25
|
Genome-Centric Metagenomic Insights into the Impact of Alkaline/Acid and Thermal Sludge Pretreatment on the Microbiome in Digestion Sludge. Appl Environ Microbiol 2020; 86:AEM.01920-20. [PMID: 32948522 DOI: 10.1128/aem.01920-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Pretreatment of waste-activated sludge (WAS) is an effective way to destabilize sludge floc structure and release organic matter for improving sludge digestion efficiency. Nonetheless, information on the impact of WAS pretreatment on digestion sludge microbiomes, as well as mechanistic insights into how sludge pretreatment improves digestion performance, remains elusive. In this study, a genome-centric metagenomic approach was employed to investigate the digestion sludge microbiome in four sludge digesters with different types of feeding sludge: WAS pretreated with 0.25 mol/liter alkaline/acid (APAD), WAS pretreated with 0.8 mol/liter alkaline/acid (HS-APAD), thermally pretreated WAS (thermal-AD), and fresh WAS (control-AD). We retrieved 254 metagenome-assembled genomes (MAGs) to identify the key functional populations involved in the methanogenic digestion process. These MAGs span 28 phyla, including 69 yet-to-be-cultivated lineages, and 30 novel lineages were characterized with metabolic potential associated with hydrolysis and fermentation. Interestingly, functional populations involving carbohydrate digestion were enriched in APAD and HS-APAD, while lineages related to protein and lipid fermentation were enriched in thermal-AD, corroborating the idea that different substrates are released from alkaline/acid and thermal pretreatments. Among the major functional populations (i.e., fermenters, syntrophic acetogens, and methanogens), significant correlations between genome sizes and abundance of the fermenters were observed, particularly in APAD and HS-APAD, which had improved digestion performance.IMPORTANCE Wastewater treatment generates large amounts of waste-activated sludge (WAS), which consists mainly of recalcitrant microbial cells and particulate organic matter. Though WAS pretreatment is an effective way to release sludge organic matter for subsequent digestion, detailed information on the impact of the sludge pretreatment on the digestion sludge microbiome remains scarce. Our study provides unprecedented genome-centric metagenomic insights into how WAS pretreatments change the digestion sludge microbiomes, as well as their metabolic networks. Moreover, digestion sludge microbiomes could be a unique source for exploring microbial dark matter. These results may inform future optimization of methanogenic sludge digestion and resource recovery.
Collapse
|
26
|
Tuttle MJ, Buchan A. Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence. Environ Microbiol 2020; 22:4919-4933. [PMID: 32935433 DOI: 10.1111/1462-2920.15233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/19/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
In the oceans, viruses that infect bacteria (phages) influence a variety of microbially mediated processes that drive global biogeochemical cycles. The nature of their influence is dependent upon infection mode, be it lytic or lysogenic. Temperate phages are predicted to be prevalent in marine systems where they are expected to execute both types of infection modes. Understanding the range and outcomes of temperate phage-host interactions is fundamental for evaluating their ecological impact. Here, we (i) review phage-mediated rewiring of host metabolism, with a focus on marine systems, (ii) consider the range and nature of temperate phage-host interactions, and (iii) draw on studies of cultivated model systems to examine the consequences of lysogeny among several dominant marine bacterial lineages. We also readdress the prevalence of lysogeny among marine bacteria by probing a collection of 1239 publicly available bacterial genomes, representing cultured and uncultivated strains, for evidence of complete prophages. Our conservative analysis, anticipated to underestimate true prevalence, predicts 18% of the genomes examined contain at least one prophage, the majority (97%) were found within genomes of cultured isolates. These results highlight the need for cultivation of additional model systems to better capture the diversity of temperate phage-host interactions in the oceans.
Collapse
Affiliation(s)
- Matthew J Tuttle
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Alison Buchan
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
27
|
Cryptic speciation of a pelagic Roseobacter population varying at a few thousand nucleotide sites. ISME JOURNAL 2020; 14:3106-3119. [PMID: 32814868 DOI: 10.1038/s41396-020-00743-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 01/14/2023]
Abstract
A drop of seawater contains numerous microspatial niches at the scale relevant to microbial activities. Examples are abiotic niches such as detrital particles that show different sizes and organic contents, and biotic niches resulting from bacteria-phage and bacteria-phytoplankton interactions. A common practice to investigate the impact of microenvironments on bacterial evolution is to separate the microenvironments physically and compare the bacterial inhabitants from each. It remains poorly understood, however, which microenvironment primarily drives bacterioplankton evolution in the pelagic ocean. By applying a dilution cultivation approach to an undisturbed coastal water sample, we isolate a bacterial population affiliated with the globally dominant Roseobacter group. Although varying at just a few thousand nucleotide sites across the whole genomes, members of this clonal population are diverging into two genetically separated subspecies. Genes underlying speciation are not unique to subspecies but instead clustered at the shared regions that represent ~6% of the genomic DNA. They are primarily involved in vitamin synthesis, motility, oxidative defense, carbohydrate, and amino acid utilization, consistent with the known strategies that roseobacters take to interact with phytoplankton and particles. Physiological assays corroborate that one subspecies outcompetes the other in these traits. Our results indicate that the microenvironments in the pelagic ocean represented by phytoplankton and organic particles are likely important niches that drive the cryptic speciation of the Roseobacter population, though microhabitats contributed by other less abundant pelagic hosts cannot be ruled out.
Collapse
|
28
|
Zhang Z, Chen F, Chu X, Zhang H, Luo H, Qin F, Zhai Z, Yang M, Sun J, Zhao Y. Diverse, Abundant, and Novel Viruses Infecting the Marine Roseobacter RCA Lineage. mSystems 2019; 4:e00494-19. [PMID: 31848303 PMCID: PMC6918029 DOI: 10.1128/msystems.00494-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/21/2019] [Indexed: 02/05/2023] Open
Abstract
Many major marine bacterial lineages such as SAR11, Prochlorococcus, SAR116, and several Roseobacter lineages have members that are abundant, relatively slow-growing, and genome streamlined. The isolation of phages that infect SAR11 and SAR116 have demonstrated the dominance of these phages in the marine virosphere. However, no phages have been isolated from bacteria in the Roseobacter RCA lineage, another abundant group of marine bacteria. In this study, seven RCA phages that infect three different RCA strains were isolated and characterized. All seven RCA phages belong to the Podoviridae family and have genome sizes ranging from 39.6 to 58.1 kb. Interestingly, three RCA phages (CRP-1, CRP-2, and CRP-3) show similar genomic content and architecture as SAR116 phage HMO-2011, which represents one of the most abundant known viral groups in the ocean. The high degree of homology among CRP-1, CRP-2, CRP-3, and HMO-2011 resulted in the contribution of RCA phages to the dominance of the HMO-2011-type group. CRP-4 and CRP-5 are similar to the Cobavirus group roseophages in terms of gene content and organization. The remaining two RCA phages, CRP-6 and CRP-7, show limited genomic similarity with known phages and represent two new phage groups. Metagenomic fragment recruitment analyses reveal that these RCA phage groups are much more abundant in the ocean than most existing marine roseophage groups. The characterization of these RCA phages has greatly expanded our understanding of the genomic diversity and evolution of marine roseophages and suggests the critical need for isolating phages from the abundant but "unculturable" bacteria.IMPORTANCE The RCA lineage of the marine Roseobacter group represents one of the slow-growing but dominant components of marine microbial communities. Although dozens of roseophages have been characterized, no phages infecting RCA strains have been reported. In this study, we reported on the first RCA phage genomes and investigated their distribution pattern and relative abundance in comparison with other important marine phage groups. Two of the four RCA phage groups were found closely related to previously reported SAR116 phage HMO-2011 and Cobavirus group roseophages, respectively. The remaining two groups are novel in the genome contents. Our study also revealed that RCA phages are widely distributed and exhibit high abundance in marine viromic data sets. Altogether, our findings have greatly broadened our understanding of RCA phages and emphasize the ecological and evolutionary importance of RCA phages in the marine virosphere.
Collapse
Affiliation(s)
- Zefeng Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, USA
| | - Xiao Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fang Qin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhiqiang Zhai
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mingyu Yang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Yanlin Zhao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
29
|
Korf IHE, Meier-Kolthoff JP, Adriaenssens EM, Kropinski AM, Nimtz M, Rohde M, van Raaij MJ, Wittmann J. Still Something to Discover: Novel Insights into Escherichia coli Phage Diversity and Taxonomy. Viruses 2019; 11:E454. [PMID: 31109012 PMCID: PMC6563267 DOI: 10.3390/v11050454] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to gain further insight into the diversity of Escherichia coli phagesfollowed by enhanced work on taxonomic issues in that field. Therefore, we present the genomiccharacterization and taxonomic classification of 50 bacteriophages against E. coli isolated fromvarious sources, such as manure or sewage. All phages were examined for their host range on a setof different E. coli strains, originating, e.g., from human diagnostic laboratories or poultry farms.Transmission electron microscopy revealed a diversity of morphotypes (70% Myo-, 22% Sipho-, and8% Podoviruses), and genome sequencing resulted in genomes sizes from ~44 to ~370 kb.Annotation and comparison with databases showed similarities in particular to T4- and T5-likephages, but also to less-known groups. Though various phages against E. coli are already describedin literature and databases, we still isolated phages that showed no or only few similarities to otherphages, namely phages Goslar, PTXU04, and KWBSE43-6. Genome-based phylogeny andclassification of the newly isolated phages using VICTOR resulted in the proposal of new generaand led to an enhanced taxonomic classification of E. coli phages.
Collapse
Affiliation(s)
- Imke H E Korf
- Leibniz Institute DSMZ⁻German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig,Germany.
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ⁻German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig,Germany.
| | | | - Andrew M Kropinski
- Departments of Food Science and Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Manfred Nimtz
- Protein Analytics Platform, Helmholtz-Centre for Infection Research (HZI), 38124 Braunschweig,Germany.
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Centre for Infection Research (HZI), 38124 Braunschweig,Germany.
| | - Mark J van Raaij
- Department of Macromolecular Structure, Centro Nacional de Biotecnologia CNB-CSIC, 28049 Madrid,Spain.
| | - Johannes Wittmann
- Leibniz Institute DSMZ⁻German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig,Germany.
| |
Collapse
|