1
|
Liu C, Yi F, Niu C, Li Q. Unravelling microbial interactions in a synthetic broad bean paste microbial community. Food Microbiol 2025; 130:104767. [PMID: 40210396 DOI: 10.1016/j.fm.2025.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/12/2024] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
The biotic factors governing the assembly and functionality of broad bean paste microbiota remain largely unexplored due to its highly complex fermentation ecosystem. This study constructed a synthetic community comprising Zygosaccharomyces rouxii, Staphylococcus carnosus, Bacillus subtilis, Bacillus amyloliquefaciens, Tetragenococcus halophilus and Weissella confusa, representing key microorganisms involved in broad bean paste fermentation. The generalized Lotka-Volterra (gLV) model revealed that the microbial interaction network among the six species was dominated by pairwise interactions. The abundances of most species in the multi-species communities at 2 and 4 days were accurately predicted using the gLV model, based on pairwise species combinations outcomes. Among pairwise interactions, negative interactions (57 %) were significantly more prevalent than positive interactions (37 %), with the former generally being stronger. Subsequent investigations demonstrated that the tested Z. rouxii inhibited acid accumulation by acid-producing bacteria, while the two strains belonging to the genus Bacillus stimulated lactic acid bacteria growth and lactic acid accumulation. The sequential inoculation strategy, informed by the interaction network, enhanced the synthetic community's bioaugmentation in broad bean paste, significantly improving ester and mellow flavors, reducing unpleasant odors, and increasing volatile flavor substances to 9.43 times that of natural fermentation. Overall, this study revealed the interaction network of six key microorganisms in broad bean paste using the gLV model and guided the application of the synthetic community in its fermentation, significantly enhancing flavor quality.
Collapse
Affiliation(s)
- Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Feng Yi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Lab of Brewing Science and Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Chen Z, Liang C, Xian W, Pauly D. Drivers of spatiotemporal community variations in estuarine ecosystems: A case study of the waters adjacent to the Yangtze Estuary. MARINE POLLUTION BULLETIN 2025; 217:118078. [PMID: 40339357 DOI: 10.1016/j.marpolbul.2025.118078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/26/2025] [Accepted: 04/29/2025] [Indexed: 05/10/2025]
Abstract
Understanding the processes and mechanisms driving species distribution and spatiotemporal variations in communities is a crucial theme in community ecology and conservation biology. Due to its complex geographical features and natural environmental gradients, the unique conditions of the waters adjacent to the Yangtze Estuary facilitate further research into estuarine community aggregation and diversity patterns. We used Variation Partitioning Analysis (VPA) to link community composition with environmental and spatiotemporal factors, quantifying the contributions of stochastic and deterministic processes to community spatiotemporal variations. Employing Canonical Correspondence Analysis (CCA), multi-variable regression, Mantel tests, and Spearman's rank correlation, we identified the main drivers for different species and communities. The results indicate that the community structure of fish and invertebrates in the waters adjacent to the Yangtze Estuary shows significant spatiotemporal variations. Temporal community changes are mainly driven by environmental factors, with significant biomass declines over years and seasonal β-diversity shifts. Despite the long time series of this study (2004-2022), the degree of seasonal variability in the community remains greater than interannual variability. Spatial variations in the community result from the combined effects of stochastic (random dispersal) and deterministic processes (environmental filtering), with non-demersal communities showing greater spatial changes. Temperature, chemical oxygen demand (COD), and pH are environmental factors with significant driving effects. This study quantitatively analyzed the significant impacts of environmental factors on fish and invertebrate communities by integrating neutral processes, specifically random dispersal, with environmental filtering. It thereby provides crucial information for systematic biodiversity conservation and water environment management planning.
Collapse
Affiliation(s)
- Zhaomin Chen
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Cui Liang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Weiwei Xian
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Daniel Pauly
- Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Liu H, Zhou W, Lu J, Wu D, Ge F. Construction of a synthetic microbial community and its application in salt-reduced soy sauce fermentation. Food Microbiol 2025; 128:104738. [PMID: 39952753 DOI: 10.1016/j.fm.2025.104738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/02/2025] [Accepted: 01/29/2025] [Indexed: 02/17/2025]
Abstract
High salt conditions negatively affect the fermentation efficiency of soy sauce and human health. This study aimed to construct a synthetic microbial community based on dominant functional microorganisms for salt-reduced soy sauce fermentation by investigating the succession and function of the microbial community during factory soy sauce fermentation. The findings revealed that the interplay between salinity and microorganisms influenced the dynamic changes of microbial communities. Furthermore, Aspergillus, Wickerhamomyces, Zygosaccharomyces, Staphylococcus, Weissella, and Tetragenococcus were analyzed to play key roles during soy sauce fermentation. Subsequently, the core strains were isolated and their strains and metabolic characteristics were evaluated. Finally, six strains (Aspergillus oryzae JQ09, Wickerhamomyces anomalus HJ07, Zygosaccharomyces rouxii JZ11, Staphylococcus carnosus QJ26, Weissella paramesenteroides ZJ19, and Tetragenococcus halophilus GY03) were employed to reconstruct the synthetic microbial community and conduct salt-reduced soy sauce fermentation. Biofortification increased the accumulation of metabolites in salt-reduced soy sauce. When the salt content was reduced to 14%, the sensory characteristics of soy sauce were closest to those of traditional soy sauce. Overall, this research presents a bottom-up approach to establish a simplified microbial community model with desired functions through deconstructing and reconstructing microbial structure and function. It has the potential to enhance the fermentation efficiency and realize the fermentation of salt-reduced traditional fermented food.
Collapse
Affiliation(s)
- Hua Liu
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China
| | - Wenjun Zhou
- Nanjing Huawei Medicine Technology Group Co., Ltd, No. 9 Weidi Road, Nanjing, 210046, PR China
| | - Jian Lu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, PR China
| | - Dianhui Wu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214122, PR China
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China.
| |
Collapse
|
4
|
Hasegawa R, Poulin R, Salloum PM. Testing for Consistency in Co-occurrence Patterns Among Bacterial Taxa Across the Microbiomes of Four Different Trematode Parasites. MICROBIAL ECOLOGY 2025; 88:45. [PMID: 40382531 DOI: 10.1007/s00248-025-02545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 05/08/2025] [Indexed: 05/20/2025]
Abstract
Elucidating the specific processes and drivers of community assembly in the host microbiome is essential to fully understand host biology. Toward this goal, an important first step is to describe co-occurrence patterns among different microbial taxa, which can be driven by numerous factors, such as host identity. While host identity can be an important influential factor on co-occurrence patterns, a limited number of studies have explored the relative importance of host identity after controlling for other environmental factors. Here, we examined microbial co-occurrence patterns in four phylogenetically distinct trematode species living within the same snail species, collected concomitantly from the same habitat. Our previous study determined that all these trematodes shared some bacterial taxa, and the relative abundance of microbial taxa differed among trematodes, possibly due to differences in their eco-physiological traits. Here, we specifically predict that pairwise microbial co-occurrence patterns also vary among trematode host species. Our results showed that co-occurrence patterns among eight microbial families varied greatly among the four trematode hosts, with some microbial families co-occurring in some trematode species, whereas no such patterns were observed in other trematodes. Our study suggests that the habitat identity (trematode species) and its associated biotic characteristics, such as physiological and ecological traits, can determine co-occurrence patterns among microbial taxa, with substantial effects on local community composition.
Collapse
Affiliation(s)
- Ryota Hasegawa
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| | - Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Priscila M Salloum
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
5
|
Fontanarrosa P, Clare C, Fedorec AJH, Barnes CP. MIMIC: a Python package for simulating, inferring, and predicting microbial community interactions and dynamics. Bioinformatics 2025; 41:btaf174. [PMID: 40408146 PMCID: PMC12119135 DOI: 10.1093/bioinformatics/btaf174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/04/2025] [Accepted: 05/21/2025] [Indexed: 05/25/2025] Open
Abstract
SUMMARY The study of microbial communities is vital for understanding their impact on environmental, health, and technological domains. The Modelling and Inference of MICrobiomes Project (MIMIC) introduces a Python package designed to advance the simulation, inference, and prediction of microbial community interactions and dynamics. Addressing the complex nature of microbial ecosystems, MIMIC integrates a suite of mathematical models, including previously used approaches such as Generalized Lotka-Volterra (gLV), Gaussian Processes (GP), and Vector Autoregression (VAR) plus newly developed models for integrating multi-omic data, to offer a versatile framework for analyzing microbial dynamics. By leveraging Bayesian inference and machine learning techniques, MIMIC provides the ability to infer the dynamics of microbial communities from empirical data, facilitating a deeper understanding of their complex biological processes, unveiling possible unknown ecological interactions, and enabling the design of microbial communities. Such insights could help to advance microbial ecology research, optimizing biotechnological applications, and contribute to environmental sustainability and public health strategies. MIMIC is designed for flexibility and ease of use, aiming to support researchers and practitioners in microbial ecology and microbiome research. AVAILABILITY AND IMPLEMENTATION MIMIC is freely available under the MIT License at https://github.com/ucl-cssb/MIMIC. It is implemented in Python (version 3.7 or higher) and is compatible with Windows, macOS, and Linux operating systems. MIMIC depends on standard Python libraries including NumPy, SciPy, and PyMC. Comprehensive examples and tutorials (including the main text demonstrations) are provided as Jupyter notebooks in the examples/directory and at the MIMIC Docs website, along with detailed installation instructions and real-world data use cases. The software will remain freely available for at least two years following publication. A code snapshot for this publication is also available at Zenodo: https://doi.org/10.5281/zenodo.15149003.
Collapse
Affiliation(s)
- Pedro Fontanarrosa
- Research Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Chania Clare
- Research Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Alex J H Fedorec
- Research Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Chris P Barnes
- Research Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
6
|
Wang J, Geng Y, Guo J, Peng J, Xu H, Zhao B, Huang S, Qin M, Du W, Tian J. The Subgingival Microbial Composition in Health and Periodontitis with Different Probing Depths. Microorganisms 2025; 13:930. [PMID: 40284767 PMCID: PMC12029188 DOI: 10.3390/microorganisms13040930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
The differences in microbiota between periodontitis and health have been extensively studied; however, knowledge about how the microbiota shifts from shallow to deep periodontal pockets remains limited despite its clinical importance in disease progres-sion and management. Patients diagnosed with stage III periodontitis commonly pre-sent varied probing depths (PD) within the same oral cavity, reflecting localized disease severity. This study aims to analyze the microbiome of subgingival plaques at various PDs in periodontitis patients. Subgingival plaques were collected from sixteen healthy subjects (health group) and periodontal pockets of sixteen stage III periodontitis pa-tients (PD 0-3 mm, PD 4-5 mm and PD 6-9 mm groups). A total of 64 subgingival plaque samples underwent 16S rRNA gene sequencing. The PD 6-9 mm group exhib-ited significantly higher alpha diversity than the health group, and distinct subgingival microbial community structures were observed in periodontitis patients, regardless of probing depth. The relative abundance of specific genera differed notably between health and periodontitis states; Corynebacterium and Cardiobacterium decreased, whereas Schaalia increased in shallow pockets (PD 0-3 mm) of periodontitis relative to the health group. Co-occurrence network analysis on the species level revealed that the PD 4-5 mm group had the most complex interspecies interactions, followed by the PD 6-9 mm and PD 0-3 mm groups. These findings indicate significant variations in mi-crobial diversity, composition, and interspecies interactions associated with periodon-tal health and periodontitis severity, highlighting their potential relevance for clinical diagnosis and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Jingyan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (J.W.); (J.P.); (H.X.); (B.Z.); (S.H.); (M.Q.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (Y.G.); (J.G.)
| | - Yiran Geng
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (Y.G.); (J.G.)
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jing Guo
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (Y.G.); (J.G.)
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jiahan Peng
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (J.W.); (J.P.); (H.X.); (B.Z.); (S.H.); (M.Q.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (Y.G.); (J.G.)
| | - He Xu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (J.W.); (J.P.); (H.X.); (B.Z.); (S.H.); (M.Q.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (Y.G.); (J.G.)
| | - Bingqian Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (J.W.); (J.P.); (H.X.); (B.Z.); (S.H.); (M.Q.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (Y.G.); (J.G.)
| | - Shiyan Huang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (J.W.); (J.P.); (H.X.); (B.Z.); (S.H.); (M.Q.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (Y.G.); (J.G.)
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (J.W.); (J.P.); (H.X.); (B.Z.); (S.H.); (M.Q.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (Y.G.); (J.G.)
| | - Wenbin Du
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Tian
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China; (J.W.); (J.P.); (H.X.); (B.Z.); (S.H.); (M.Q.)
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; (Y.G.); (J.G.)
| |
Collapse
|
7
|
Sonam W, Liu Y, Ren L. Differentiation and Interconnection of the Bacterial Community Associated with Silene nigrescens Along the Soil-To-Plant Continuum in the Sub-Nival Belt of the Qiangyong Glacier. PLANTS (BASEL, SWITZERLAND) 2025; 14:1190. [PMID: 40284077 PMCID: PMC12030249 DOI: 10.3390/plants14081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Plant microbiomes provide significant fitness advantages to their plant hosts, especially in the sub-nival belt. Studies to date have primarily focused on belowground communities in this region. Here, we utilized high-throughput DNA sequencing to quantify bacterial communities in the rhizosphere soil as well as in the root and leaf endosphere compartments of Silene nigrescens to uncover the differentiation and interconnections of these bacterial communities along the soil-to-plant continuum. Our findings reveal that the bacterial communities exhibit notable variation across different plant compartment niches: the rhizosphere soil, root endosphere, and leaf endosphere. There was a progressive decline in diversity, network complexity, network modularity, and niche breadth from the rhizosphere soil to the root endosphere, and further to the leaf endosphere. Conversely, both the host plant selection effect and the stability of these communities showed an increasing trend. Total nitrogen and total potassium emerged as crucial factors accounting for the observed differences in diversity and composition, respectively. Additionally, 3.6% of the total amplicon sequence variants (ASVs) were shared across the rhizosphere soil, root endosphere, and leaf endosphere. Source-tracking analysis further revealed bacterial community migration among these compartments. The genera Pseudomonas, IMCC26256, Mycobacterium, Phyllobacterium, and Sphingomonas constituted the core of the bacterial microbiome. These taxa are shared across all three compartment niches and function as key connector species. Notably, Pseudomonas stands out as the predominant taxon among these bacteria, with nitrogen being the most significant factor influencing its relative abundance. These findings deepen our understanding of the assembly principles and ecological dynamics of the plant microbiome in the sub-nival belt, offering an integrated framework for its study.
Collapse
Affiliation(s)
- Wangchen Sonam
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Luming Ren
- Nanning Garden Expo Park Management Center, Nanning Institute of Tropical Botany, Nanning 530299, China;
| |
Collapse
|
8
|
Bindels LB, Watts JEM, Theis KR, Carrion VJ, Ossowicki A, Seifert J, Oh J, Shao Y, Hilty M, Kumar P, Hildebrand F, Lovejoy C, Wigley P, Yu K, Zhang M, Zhang T, Walter J, Desai MS, Huws SA, Schriml LM, Ravel J, Fricke WF, Eloe-Fadrosh EA, Lee CK, Clavel T. A blueprint for contemporary studies of microbiomes. MICROBIOME 2025; 13:95. [PMID: 40200306 PMCID: PMC11977902 DOI: 10.1186/s40168-025-02091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025]
Abstract
This editorial piece co-authored by the Senior Editors at Microbiome aims to highlight current challenges in the field of environmental and host-associated microbiome research. We also take the opportunity to clarify our expectations for the articles submitted to the journal. At Microbiome, we are seeking studies that provide either new mechanistic insights into the role of microbiomes in health and environmental systems or substantial conceptual or technical advances. Manuscripts need to meet high standards of language accuracy, quality of microbiome analyses, and data and protocol availability, including detailed reporting of wet-lab and in silico protocols, all of which can critically enhance transparency and reproducibility. We think that such efforts are essential to push the boundaries of our knowledge on microbiomes in a concerted, international effort.
Collapse
Affiliation(s)
- Laure B Bindels
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Welbio Department, WEL Research Institute, Wavre, Belgium.
| | - Joy E M Watts
- School of Environment and Life Sciences, University of Portsmouth, Portsmouth, UK
| | - Kevin R Theis
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Víctor J Carrion
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Adam Ossowicki
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, Málaga, Spain
- Departamento de Protección de Cultivos, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Campus Universitario de Teatinos, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - Jana Seifert
- HoLMiR - Hohenheim Center for Livestock Microbiome Research, Functional Microbiology of Livestock, University of Hohenheim, Stuttgart, Germany
| | - Julia Oh
- Department of Dermatology, Duke University, Durham, NC, USA
| | - Yongqi Shao
- Faculty of Agriculture, Life and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Purnima Kumar
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, NR4 7UQ, UK
| | - Connie Lovejoy
- Département de Biologie and Institut de Biologie Intégrative Et Des Systèmes, Université Laval, Québec, QC, Canada
| | - Paul Wigley
- Bristol Veterinary School, Langford Campus, University of Bristol, Bristol, UK
| | - Ke Yu
- Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Meiling Zhang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China
- School of Public Health, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland
| | - Mahesh S Desai
- Nutrition, Microbiome and Immunity Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Sharon Ann Huws
- School of Biological Sciences, Institute for Global Food Security, Queen's University, Belfast, UK
| | - Lynn M Schriml
- Department of Epidemiology and Public Health, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jacques Ravel
- Center for Advanced Microbiome Research and Innovation, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W Florian Fricke
- Department of Microbiome Research and Applied Bioinformatics, University of Hohenheim, Stuttgart, Germany
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emiley A Eloe-Fadrosh
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Charles K Lee
- Environmental Research Institute, University of Waikato, Hamilton, New Zealand
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| |
Collapse
|
9
|
Mohammadzadeh R, Mahnert A, Shinde T, Kumpitsch C, Weinberger V, Schmidt H, Moissl-Eichinger C. Age-related dynamics of predominant methanogenic archaea in the human gut microbiome. BMC Microbiol 2025; 25:193. [PMID: 40181255 PMCID: PMC11969853 DOI: 10.1186/s12866-025-03921-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 03/20/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND The reciprocal relationship between aging and alterations in the gut microbiota is a subject of ongoing research. While the role of bacteria in the gut microbiome is well-documented, specific changes in the composition of methanogens during extreme aging and the impact of high methane production in general on health remain unclear. This study was designed to explore the association of predominant methanogenic archaea within the human gut and aging. METHODS Shotgun metagenomic data from the stool samples of young adults (n = 127, Age: 19-59 y), older adults (n = 86, Age: 60-99 y), and centenarians (n = 34, age: 100-109 years) were analyzed. RESULTS Our findings reveal a compelling link between age and the prevalence of high methanogen phenotype, while overall archaeal diversity diminishes. Surprisingly, the archaeal composition of methanogens in the microbiome of centenarians appears more akin to that of younger adults, showing an increase in Methanobrevibacter smithii, rather than Candidatus Methanobrevibacter intestini. Remarkably, Ca. M. intestini emerged as a central player in the stability of the archaea-bacteria network in adults, paving the way for M. smithii in older adults and centenarians. Notably, centenarians exhibit a highly complex and stable network of these two methanogens with other bacteria. The mutual exclusion between Lachnospiraceae and these methanogens throughout all age groups suggests that these archaeal communities may compensate for the age-related drop in Lachnospiraceae by co-occurring with Oscillospiraceae. CONCLUSIONS This study underscores the dynamics of archaeal microbiome in human physiology and aging. It highlights age-related shifts in methanogen composition, emphasizing the significance of both M. smithii and Ca. M. intestini and their partnership with butyrate-producing bacteria for potential enhanced health.
Collapse
Affiliation(s)
- Rokhsareh Mohammadzadeh
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Tejus Shinde
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Viktoria Weinberger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria
| | - Helena Schmidt
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, Graz, 8010, Austria.
- BioTechMed, Graz, 8010, Austria.
| |
Collapse
|
10
|
He Q, Wang S, Feng K, Hou W, Zhang W, Li F, Zhang Y, Hai W, Sun Y, Deng Y. The Same Source of Microbes has a Divergent Assembly Trajectory Along a Hot Spring Flowing Path. Mol Ecol 2025; 34:e17727. [PMID: 40087983 DOI: 10.1111/mec.17727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Hot spring microbial mats represent intricate biofilms that establish self-sustaining ecosystems, hosting diverse microbial communities which facilitate a range of biochemical processes and contribute to the structural and functional complexity of these systems. While community structuring across mat depth has received substantial attention, mechanisms shaping horizontal spatial composition and functional structure of these communities remain understudied. Here, we explored the contributions of species source, local environment and species interaction to microbial community assembly processes in six microbial mat regions following a flow direction with a temperature decreasing from 73.3°C to 52.8°C. Surprisingly, we found that despite divergent community structures and potential functions across different microbial mats, large proportions of the community members (45.50%-80.29%) in the recipient mat communities originated from the same source community at the upper limit of temperature for photosynthetic life. This finding indicated that the source species were dispersed with water and subsequently filtered and shaped by local environmental factors. Furthermore, critical species with specific functional attributes played a pivotal role in community assembly by influencing potential interactions with other microorganisms. Therefore, species dispersal via water flow, environmental variables, and local species interaction jointly governed microbial assembly, elucidating assembly processes in the horizontal dimension of hot spring microbial mats and providing insights into microbial community assembly within extreme biospheres.
Collapse
Affiliation(s)
- Qing He
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shang Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Weiguo Hou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Wenhui Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Fangru Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Yidi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Wanming Hai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Yuxuan Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Camacho-Mateu J, Lampo A, Castro M, Cuesta JA. Microbial populations hardly ever grow logistically and never sublinearly. Phys Rev E 2025; 111:044404. [PMID: 40411060 DOI: 10.1103/physreve.111.044404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/19/2025] [Indexed: 05/26/2025]
Abstract
We investigate the growth dynamics of microbial populations, challenging the conventional logistic model. By analyzing empirical data from various biomes, we demonstrate that microbial growth is better described by a generalized logistic model, the θ-logistic model. This accounts for different growth mechanisms and environmental fluctuations, leading to a generalized gamma distribution of abundance fluctuations. Our findings reveal that microbial growth is never sublinear, so they cannot endorse-at least in the microbial world-the recent proposal of this mechanism as a stability enhancer of highly diverse communities. These results have significant implications for understanding macroecological patterns and the stability of microbial ecosystems.
Collapse
Affiliation(s)
- José Camacho-Mateu
- Universidad Carlos III de Madrid, Departamento de Matemáticas, Grupo Interdisciplinar de Sistemas Complejos (GISC), 28911 Leganés, Spain
| | - Aniello Lampo
- Universidad Carlos III de Madrid, Departamento de Matemáticas, Grupo Interdisciplinar de Sistemas Complejos (GISC), 28911 Leganés, Spain
| | - Mario Castro
- Universidad Pontificia Comillas, Instituto de Investigación Tecnológica, Grupo Interdisciplinar de Sistemas Complejos (GISC), 28015 Madrid, Spain
| | - José A Cuesta
- Universidad Carlos III de Madrid, Departamento de Matemáticas, Grupo Interdisciplinar de Sistemas Complejos (GISC), 28911 Leganés, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
12
|
Hunter T, Chance L, Elphick CS, Hird SM. Archaeal diversity in the microbiomes of four wild bird species. Microbiol Spectr 2025; 13:e0287024. [PMID: 40130851 PMCID: PMC12053993 DOI: 10.1128/spectrum.02870-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/03/2025] [Indexed: 03/26/2025] Open
Abstract
Archaea are generally low-abundance members of the vertebrate microbiota that require specific PCR primers to be detected in metabarcoding studies, and the robust intraspecific sample size is necessary for well-supported conclusions about archaeal diversity. Using 16S rRNA gene amplicons generated using both Archaea-Specific and Universal primers, we investigated prokaryotic diversity in 110 fecal samples from four wild bird species from four different orders: Anna's Hummingbird (Calypte anna), Saltmarsh Sparrow (Ammospiza caudacuta), Ruddy Turnstone (Arenaria interpres), and Canada Goose (Branta canadensis). Our aim was to test the hypotheses that Archaea-Specific primers would offer higher resolution of archaeal diversity and that the four ecologically distinct host species would have distinct archaeal communities. Archaea-Specific primers resulted in increases in archaeal richness and detection of Archaea in all four birds compared to the Universal primers. The ammonia-oxidizing archaeal order Nitrososphaerales was detected in all four host species, and methanogenic orders were enriched in samples from Canada Geese. In Bacteria-Archaea co-occurrence networks, Archaea-Specific primers found many more significant interactions than the Universal primers alone. Methanogenic archaeal orders dominated the microbiota in Canada Geese and were found to a lesser extent in the other host species, suggesting an important functional role of methanogens in Canada Geese. Overall, this study advances our knowledge of the archaeal component of the microbiome in wild birds and provides insight into the potential functional roles Archaea play in studies of avian gastrointestinal microbiota. IMPORTANCE Archaea may be persistent members of host-associated microbiomes across diverse host taxa; their detection has been limited due to their low abundance and the inadequacy of Universal primers. Large-scale studies of Archaea in vertebrate microbiomes have historically had low intraspecific sample sizes for bird species and had conflicting results. This study demonstrates the improved capability of the Archaea-Specific primers to detect archaeal diversity in diverse avian host species compared to the widely used Universal primers. We also identified both shared and species-specific archaeal taxa across four ecologically distinct avian host species from four different orders with implications for functional importance. Future studies interested in comprehensively cataloging prokaryotic diversity in avian microbiomes using amplicon-based sequencing methods should include Archaea-Specific primers to adequately probe archaeal diversity.
Collapse
Affiliation(s)
- Trevor Hunter
- Molecular and Cell Biology Department, University of Connecticut, Storrs, Connecticut, USA
| | - Lauren Chance
- Molecular and Cell Biology Department, University of Connecticut, Storrs, Connecticut, USA
| | - Chris S. Elphick
- Ecology and Evolutionary Biology Department, University of Connecticut, Storrs, Connecticut, USA
| | - Sarah M. Hird
- Molecular and Cell Biology Department, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
13
|
Delgado-Baquerizo M, Eldridge DJ, Liu YR, Liu ZW, Coleine C, Trivedi P. Soil biodiversity and function under global change. PLoS Biol 2025; 23:e3003093. [PMID: 40146744 DOI: 10.1371/journal.pbio.3003093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2025] [Indexed: 03/29/2025] Open
Abstract
Soil organisms represent the most abundant and diverse organisms on the planet and support almost every ecosystem function we know, and thus impact our daily lives. Some of these impacts have been well-documented, such as the role of soil organisms in regulating soil fertility and carbon sequestration; processes that have direct implications for essential ecosystem services including food security and climate change mitigation. Moreover, soil biodiversity also plays a critical role in supporting other aspects from One Health-the combined health of humans, animals, and the environment-to the conservation of historic structures such as monuments. Unfortunately, soil biodiversity is also highly vulnerable to a growing number of stressors associated with global environmental change. Understanding how and when soil biodiversity supports these functions, and how it will adapt to changing environmental conditions, is crucial for conserving soils and maintaining soil processes for future generations. In this Essay, we discuss the fundamental importance of soil biodiversity for supporting multiple ecosystem services and One Health, and further highlight essential knowledge gaps that need to be addressed to conserve soil biodiversity for the next generations.
Collapse
Affiliation(s)
- Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Zhong-Wen Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, United States of America
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
14
|
Wang W, Bi S, Li F, Degen AA, Li S, Huang M, Luo B, Zhang T, Qi S, Qi T, Bai Y, Liu P, Shang Z. Soil organic matter composition affects ecosystem multifunctionality by mediating the composition of microbial communities in long-term restored meadows. ENVIRONMENTAL MICROBIOME 2025; 20:22. [PMID: 39923116 PMCID: PMC11807318 DOI: 10.1186/s40793-025-00678-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Soil organic matter composition and microbial communities are key factors affecting ecosystem multifunctionality (EMF) during ecosystem restoration. However, there is little information on their interacting mechanisms in degraded and restored meadows. To fill this knowledge gap, plant, root and soil samples from alpine swamp meadows, alpine Kobresia meadows, severely degraded alpine meadows, short-term restored meadows (< 5 years) and long-term restored meadows (6-14 years) were collected. We leveraged high-throughput sequencing, liquid chromatography and mass spectrometry to characterize soil microbial communities and soil organic matter composition, measured microbial carbon metabolism and determined EMF. RESULTS It emerged that the similarity of soil microorganisms in meadows decreased with increasing heterogeneity of soil properties. Dispersal limitation and ecological drift led to the homogenization of the bacterial community. Based on co-occurrence network analysis, an increase in microbial network complexity promoted EMF. Root total phosphorus and soil organic matter components were the key predictors of EMF, while organic acids and phenolic acids increased the stability of the microbial network in long-term restored meadows. Carbon metabolism did not increase in restored meadows, but the niche breadth of soil microorganisms and the utilization efficiency of small molecular carbon sources such as amino acids did increase. CONCLUSIONS These findings emphasize the importance of soil organic matter composition in ecological restoration and that the composition should be considered in management strategies aimed at enhancing EMF.
Collapse
Affiliation(s)
- Wenyin Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Sisi Bi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Fei Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - A Allan Degen
- Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 8410500, Beer Sheva, Israel
| | - Shanshan Li
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Mei Huang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Binyu Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Tao Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Shuai Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Tianyun Qi
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Yanfu Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Peipei Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhanhuan Shang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
15
|
Hervé V, Morelle J, Lambourdière J, Lopez PJ, Claquin P. Together throughout the year: seasonal patterns of bacterial and eukaryotic microbial communities in a macrotidal estuary. ENVIRONMENTAL MICROBIOME 2025; 20:8. [PMID: 39833892 PMCID: PMC11748528 DOI: 10.1186/s40793-025-00664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Estuaries are complex ecosystems linking river and marine environments, where microorganisms play a key role in maintaining ecosystem functions. In the present study, we investigated monthly 8 sites at two depth layers and over a one-year period the bacterial and eukaryotic community dynamics along the Seine macrotidal estuary (Normandy, France). To date, the taxonomy of the microbial diversity present in this anthropized estuary remains elusive and the drivers of the microbial community structure are still unknown. RESULTS The metabarcoding analysis of 147 samples revealed both a high bacterial and eukaryotic diversity, dominated by Proteobacteria, Bacteriodota, Actinobacteriota and Bacillariophyta, Spirotrichea, Dinophyceae, respectively. Along the estuary we only detected significant spatial patterns in the bacterial and eukaryotic community compositions for three and two months out of twelve, respectively. However, we found a clear seasonal effect on the diversity of both microbial communities driven by physical and chemical variables that were fluctuating over the year (temperature, irradiance, river flow). Biotic associations were also significant drivers of both alpha and beta diversity. Throughout the year, we identified a diverse and abundant core microbiota composed of 74 bacterial and 41 eukaryotic OTUs. These regionally abundant species include habitat generalists encompassing heterotrophs, phototrophs and consumers. Yet, many of these core OTUs remain taxonomically and functionally poorly assigned. CONCLUSIONS This molecular survey represents a milestone in the understanding of macrotidal estuary dynamics and the Seine ecosystem, through the identification of putative markers of ecosystem functioning. It also identifies seasons and biotic associations as main drivers of the Seine estuary microbiota and reveals the importance of a core microbiota throughout the year.
Collapse
Affiliation(s)
- Vincent Hervé
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91120, Palaiseau, France
| | - Jérôme Morelle
- Department of Biology and CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Josie Lambourdière
- UMR BOREA, Muséum National d'histoire Naturelle, CNRS-8067, Sorbonne Université, IRD, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Pascal Jean Lopez
- UMR BOREA, Muséum National d'histoire Naturelle, CNRS-8067, Sorbonne Université, IRD, Université de Caen Normandie, Université des Antilles, Paris, France
| | - Pascal Claquin
- Université de Caen Normandie, Laboratoire MERSEA UR 7482, Centre de Recherches en Environnement Côtier, 14530, Luc-sur-Mer, France.
| |
Collapse
|
16
|
Sundararajan P, Ghosh S, Kelbessa BG, Whisson SC, Dubey M, Chawade A, Vetukuri RR. The impact of spray-induced gene silencing on cereal phyllosphere microbiota. ENVIRONMENTAL MICROBIOME 2025; 20:1. [PMID: 39780216 PMCID: PMC11716504 DOI: 10.1186/s40793-024-00660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security. Spray-induced gene silencing (SIGS) is an alternative technique for tackling this devastating disease through foliar spraying with exogenous double-stranded RNA (dsRNA) to silence specific pathogen genes via RNA interference. This has the advantage of avoiding transgenic approaches, but several aspects of the technology require further development to make it a viable field-level management tool. One such existing knowledge gap is how dsRNA spraying affects the microbiota of the host plants. RESULTS We found that the diversity, structure and composition of the bacterial microbiota are subject to changes depending on dsRNA targeted and host studied, while the fungal microbiota in the phyllosphere remained relatively unchanged upon spraying with dsRNA. Analyses of fungal co-occurrence patterns also showed that F. graminearum established itself among the fungal communities through negative interactions with neighbouring fungi. Through these analyses, we have also found bacterial and fungal genera ubiquitous in the phyllosphere, irrespective of dsRNA treatment. These results suggest that although rarer and less abundant microbial species change upon dsRNA spray, the ubiquitous bacterial and fungal components of the phyllosphere in wheat and barley remain unchanged. CONCLUSION We show for the first time the effects of exogenous dsRNA spraying on bacterial and fungal communities in the wheat and barley phyllospheres using a high-throughput amplicon sequencing approach. The results obtained further validate the safety and target-specificity of SIGS and emphasize its potential as an environmentally friendly option for managing Fusarium head blight in wheat and barley.
Collapse
Affiliation(s)
- Poorva Sundararajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Samrat Ghosh
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Bekele Gelena Kelbessa
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Stephen C Whisson
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, UK
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
17
|
Long S, Xia Y, Liang L, Yang Y, Xie H, Wang X. PyNetCor: a high-performance Python package for large-scale correlation analysis. NAR Genom Bioinform 2024; 6:lqae177. [PMID: 39703431 PMCID: PMC11655297 DOI: 10.1093/nargab/lqae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
The development of multi-omics technologies has generated an abundance of biological datasets, providing valuable resources for investigating potential relationships within complex biological systems. However, most correlation analysis tools face computational challenges when dealing with these high-dimensional datasets containing millions of features. Here, we introduce pyNetCor, a fast and scalable tool for constructing correlation networks on large-scale and high-dimensional data. PyNetCor features optimized algorithms for both full correlation coefficient matrix computation and top-k correlation search, outperforming other tools in the field in terms of runtime and memory consumption. It utilizes a linear interpolation strategy to rapidly estimate P-values and achieve false discovery rate control, demonstrating a speedup of over 110 times compared to existing methods. Overall, pyNetCor supports large-scale correlation analysis, a crucial foundational step for various bioinformatics workflows, and can be easily integrated into downstream applications to accelerate the process of extracting biological insights from data.
Collapse
Affiliation(s)
- Shibin Long
- Department of Data Science, 01Life Institute, Shenzhen 518000, China
| | - Yan Xia
- Department of Data Science, 01Life Institute, Shenzhen 518000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Lifeng Liang
- Department of Data Science, 01Life Institute, Shenzhen 518000, China
| | - Ying Yang
- Department of Data Science, 01Life Institute, Shenzhen 518000, China
| | - Hailiang Xie
- Department of Data Science, 01Life Institute, Shenzhen 518000, China
| | - Xiaokai Wang
- Department of Data Science, 01Life Institute, Shenzhen 518000, China
| |
Collapse
|
18
|
Deng N, Nian L, Zhang S, Liang Y, Shang H, Li Y, Mao Z. Response of soil microbial community structure to temperature and nitrogen fertilizer in three different provenances of Pennisetum alopecuroides. Front Microbiol 2024; 15:1483150. [PMID: 39512941 PMCID: PMC11542641 DOI: 10.3389/fmicb.2024.1483150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Soil microorganisms are key indicators of soil health, and it is crucial to investigate the structure and interactions of soil microbial communities among three different provenances of Pennisetum alopecuroides under varying nitrogen fertilizer and temperature levels in Northwest China. This study aims to provide theoretical support for the sustainable use of artificial grassland in this region. Employing a two-factor pot-control experiment with three nitrogen fertilizer treatments and three temperature treatments, a total of all treatments was utilized to examine the composition and abundance of soil microbial communities associated with Pennisetum alopecuroides using high-throughput sequencing, PCR technology, and molecular ecological network analysis. The results revealed that Proteobacteria was the dominant bacterial phylum while Ascomycota was the dominant fungal phylum in the soil samples from three provenances of Pennisetum. Specifically, Proteobacteria exhibited higher abundance in the N3T2 treatment compared to other treatments under N3T2 (25-30°C, 3 g/pot) treatment conditions in Shaanxi and Gansu provinces; similarly, Proteobacteria was more abundant in the N1T2 (25-30°C, 1 g/pot) treatment in Inner Mongolia under N1T2. Moreover, Ascomycota displayed higher abundance than other treatments in both Inner Mongolia and Gansu provinces. Additionally, Pennisetum Ascomycota demonstrated greater prevalence under (25-30°C, 3 g/pot) treatment compared to other treatments; furthermore, Shaanxi's Pennisetum Ascomycota exhibited increased prevalence under N3T1 (18-23°C, 3 g/pot) treatment compared to other treatments. The richness and diversity of soil microbial communities were significantly influenced by nitrogen fertilizer and temperature changes, leading to notable alterations in their structure. Molecular ecological network analyses revealed strong collaborative relationships among microbial species in Shaanxi Pennisetum and Inner Mongolia Pennisetum under high nitrogen and high temperature treatments, while competitive relationships were observed among microbial species in Gansu Pennisetum under similar conditions. Redundancy analysis indicated that soil pH, total potassium, and total phosphorus were the primary environmental factors influencing microorganisms. In summary, this study offers a theoretical foundation for assessing the sustainable utilization of Pennisetum artificial grasslands in Northwest China by investigating the shifts in soil microbial communities and the driving factors under varying nitrogen fertilizer and temperature levels.
Collapse
Affiliation(s)
- Niandong Deng
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Lili Nian
- Gansu Academy Agricultural Sciences, Lanzhou, China
| | - Shuolun Zhang
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Yixuan Liang
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, China
| | - Huiying Shang
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, China
| | - Yang Li
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, China
| | - Zhuxin Mao
- Xi’an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, Xi’an, China
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an, China
| |
Collapse
|
19
|
Crits-Christoph A, Levy JI, Pekar JE, Goldstein SA, Singh R, Hensel Z, Gangavarapu K, Rogers MB, Moshiri N, Garry RF, Holmes EC, Koopmans MPG, Lemey P, Peacock TP, Popescu S, Rambaut A, Robertson DL, Suchard MA, Wertheim JO, Rasmussen AL, Andersen KG, Worobey M, Débarre F. Genetic tracing of market wildlife and viruses at the epicenter of the COVID-19 pandemic. Cell 2024; 187:5468-5482.e11. [PMID: 39303692 PMCID: PMC11427129 DOI: 10.1016/j.cell.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/01/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
Zoonotic spillovers of viruses have occurred through the animal trade worldwide. The start of the COVID-19 pandemic was traced epidemiologically to the Huanan Seafood Wholesale Market. Here, we analyze environmental qPCR and sequencing data collected in the Huanan market in early 2020. We demonstrate that market-linked severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversity is consistent with market emergence and find increased SARS-CoV-2 positivity near and within a wildlife stall. We identify wildlife DNA in all SARS-CoV-2-positive samples from this stall, including species such as civets, bamboo rats, and raccoon dogs, previously identified as possible intermediate hosts. We also detect animal viruses that infect raccoon dogs, civets, and bamboo rats. Combining metagenomic and phylogenetic approaches, we recover genotypes of market animals and compare them with those from farms and other markets. This analysis provides the genetic basis for a shortlist of potential intermediate hosts of SARS-CoV-2 to prioritize for serological and viral sampling.
Collapse
Affiliation(s)
| | - Joshua I Levy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA
| | - Jonathan E Pekar
- Department of Biomedical Informatics, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Stephen A Goldstein
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Reema Singh
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zach Hensel
- ITQB NOVA, Universidade NOVA de Lisboa, Av. da República, Oeiras, Lisbon 2780-157, Portugal
| | - Karthik Gangavarapu
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Matthew B Rogers
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Niema Moshiri
- Department of Computer Science & Engineering, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Robert F Garry
- Tulane University, School of Medicine, Department of Microbiology and Immunology, New Orleans, LA 70112, USA; Zalgen Labs, Frederick, MD 21703, USA; Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Edward C Holmes
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marion P G Koopmans
- Department of Viroscience, and Pandemic and Disaster Preparedness Centre, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Thomas P Peacock
- The Pirbright Institute, Woking GU24 0NF, Surrey, UK; Department of Infectious Disease, Imperial College London, London W2 1P, UK
| | - Saskia Popescu
- University of Maryland, School of Medicine, Department of Epidemiology & Public Health, Baltimore, MD 21201, USA
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - David L Robertson
- MRC-University of Glasgow Center for Virus Research, Glasgow G61 1QH, UK
| | - Marc A Suchard
- Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Joel O Wertheim
- Department of Medicine, University of California, San Diego, La Jolla, San Diego, CA, USA
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kristian G Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, San Diego, CA 92037, USA.
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA.
| | - Florence Débarre
- Institut d'Écologie et des Sciences de l'Environnement (IEES-Paris, UMR 7618), CNRS, Sorbonne Université, UPEC, IRD, INRAE, Paris, France.
| |
Collapse
|
20
|
Zhang M, Li X, Oladeinde A, Rothrock M, Pokoo-Aikins A, Zock G. A Novel Slope-Matrix-Graph Algorithm to Analyze Compositional Microbiome Data. Microorganisms 2024; 12:1866. [PMID: 39338540 PMCID: PMC11434172 DOI: 10.3390/microorganisms12091866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Networks are widely used to represent relationships between objects, including microorganisms within ecosystems, based on high-throughput sequencing data. However, challenges arise with appropriate statistical algorithms, handling of rare taxa, excess zeros in compositional data, and interpretation. This work introduces a novel Slope-Matrix-Graph (SMG) algorithm to identify microbiome correlations primarily based on slope-based distance calculations. SMG effectively handles any proportion of zeros in compositional data and involves: (1) searching for correlated relationships (e.g., positive and negative directions of changes) based on a "target of interest" within a setting, and (2) quantifying graph changes via slope-based distances between objects. Evaluations on simulated datasets demonstrated SMG's ability to accurately cluster microbes into distinct positive/negative correlation groups, outperforming methods like Bray-Curtis and SparCC in both sensitivity and specificity. Moreover, SMG demonstrated superior accuracy in detecting differential abundance (DA) compared to ZicoSeq and ANCOM-BC2, making it a robust tool for microbiome analysis. A key advantage is SMG's natural capacity to analyze zero-inflated compositional data without transformations. Overall, this simple yet powerful algorithm holds promise for diverse microbiome analysis applications.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Mathematics, University of North Georgia, 82 College Cir, Dahlonega, GA 30597, USA;
| | - Xiang Li
- U.S. National Poultry Research Center, Egg & Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (A.O.); (M.R.J.); (G.Z.)
| | - Adelumola Oladeinde
- U.S. National Poultry Research Center, Egg & Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (A.O.); (M.R.J.); (G.Z.)
| | - Michael Rothrock
- U.S. National Poultry Research Center, Egg & Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (A.O.); (M.R.J.); (G.Z.)
| | - Anthony Pokoo-Aikins
- U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA;
| | - Gregory Zock
- U.S. National Poultry Research Center, Egg & Poultry Production Safety Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Road, Athens, GA 30605, USA; (A.O.); (M.R.J.); (G.Z.)
| |
Collapse
|
21
|
Nef C, Pierella Karlusich JJ, Bowler C. From nets to networks: tools for deciphering phytoplankton metabolic interactions within communities and their global significance. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230172. [PMID: 39034691 PMCID: PMC11293860 DOI: 10.1098/rstb.2023.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 07/23/2024] Open
Abstract
Our oceans are populated with a wide diversity of planktonic organisms that form complex dynamic communities at the base of marine trophic networks. Within such communities are phytoplankton, unicellular photosynthetic taxa that provide an estimated half of global primary production and support biogeochemical cycles, along with other essential ecosystem services. One of the major challenges for microbial ecologists has been to try to make sense of this complexity. While phytoplankton distributions can be well explained by abiotic factors such as temperature and nutrient availability, there is increasing evidence that their ecological roles are tightly linked to their metabolic interactions with other plankton members through complex mechanisms (e.g. competition and symbiosis). Therefore, unravelling phytoplankton metabolic interactions is the key for inferring their dependency on, or antagonism with, other taxa and better integrating them into the context of carbon and nutrient fluxes in marine trophic networks. In this review, we attempt to summarize the current knowledge brought by ecophysiology, organismal imaging, in silico predictions and co-occurrence networks using 'omics data, highlighting successful combinations of approaches that may be helpful for future investigations of phytoplankton metabolic interactions within their complex communities.This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Charlotte Nef
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris75005, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris75016, France
| | | | - Chris Bowler
- Institut de Biologie de l’École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris75005, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans, Paris75016, France
| |
Collapse
|
22
|
Bian B, Zhang W, Yu N, Yang W, Xu J, Logan BE, Saikaly PE. Lactate-mediated medium-chain fatty acid production from expired dairy and beverage waste. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100424. [PMID: 38774191 PMCID: PMC11106833 DOI: 10.1016/j.ese.2024.100424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/24/2024]
Abstract
Fruits, vegetables, and dairy products are typically the primary sources of household food waste. Currently, anaerobic digestion is the most used bioprocess for the treatment of food waste with concomitant generation of biogas. However, to achieve a circular carbon economy, the organics in food waste should be converted to new chemicals with higher value than energy. Here we demonstrate the feasibility of medium-chain carboxylic acid (MCCA) production from expired dairy and beverage waste via a chain elongation platform mediated by lactate. In a two-stage fermentation process, the first stage with optimized operational conditions, including varying temperatures and organic loading rates, transformed expired dairy and beverage waste into lactate at a concentration higher than 900 mM C at 43 °C. This lactate was then used to produce >500 mM C caproate and >300 mM C butyrate via microbial chain elongation. Predominantly, lactate-producing microbes such as Lactobacillus and Lacticaseibacillus were regulated by temperature and could be highly enriched under mesophilic conditions in the first-stage reactor. In the second-stage chain elongation reactor, the dominating microbes were primarily from the genera Megasphaera and Caproiciproducens, shaped by varying feed and inoculum sources. Co-occurrence network analysis revealed positive correlations among species from the genera Caproiciproducens, Ruminococcus, and CAG-352, as well as Megasphaera, Bacteroides, and Solobacterium, indicating strong microbial interactions that enhance caproate production. These findings suggest that producing MCCAs from expired dairy and beverage waste via lactate-mediated chain elongation is a viable method for sustainable waste management and could serve as a chemical production platform in the context of building a circular bioeconomy.
Collapse
Affiliation(s)
- Bin Bian
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wenxiang Zhang
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Najiaowa Yu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wei Yang
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jiajie Xu
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- School of Marine Science, Ningbo University, Ningbo, 315211, China
| | - Bruce E. Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Pascal E. Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
23
|
Wei J, Chen W, Wen D. Rare biosphere drives deterministic community assembly, co-occurrence network stability, and system performance in industrial wastewater treatment system. ENVIRONMENT INTERNATIONAL 2024; 190:108887. [PMID: 39024826 DOI: 10.1016/j.envint.2024.108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
Bacterial community is strongly associated with activated sludge performance, but there still remains a knowledge gap regarding the rare bacterial community assembly and their influence on the system performance in industrial wastewater treatment plants (IWWTPs). Here, we investigated bacterial communities in 11 full-scale IWWTPs with similar process designs, aiming to uncover ecological processes and functional traits regulating abundant and rare communities. Our findings indicated that abundant bacterial community assembly was governed by stochastic processes; thereby, abundant taxa are generally present in wastewater treatment compartments across different industrial types. On the contrary, rare bacterial taxa were primarily driven by deterministic processes (homogeneous selection 61.9%-79.7%), thus they only exited in specific IWWTPs compartments and wastewater types. The co-occurrence networks analysis showed that the majority of keystone taxa were rare bacterial taxa, with rare taxa contributing more to network stability. Furthermore, rare bacteria rather than abundant bacteria in the oxic compartment contributed more to the degradation of xenobiotics compounds, and they were main potential drivers of pollutant removal. This study demonstrated the irreplaceable roles of rare bacterial taxa in maintaining system performance of IWWTPs, and called for environmental engineers and microbial ecologists to increase their attention on rare biosphere.
Collapse
Affiliation(s)
- Jie Wei
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weidong Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China.
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
24
|
Wang X, Zeng J, Chen F, Wang Z, Liu H, Zhang Q, Liu W, Wang W, Guo Y, Niu Y, Yuan L, Ren C, Yang G, Zhong Z, Han X. Aridity shapes distinct biogeographic and assembly patterns of forest soil bacterial and fungal communities at the regional scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174812. [PMID: 39019268 DOI: 10.1016/j.scitotenv.2024.174812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Climate change is exacerbating drought in arid and semi-arid forest ecosystems worldwide. Soil microorganisms play a key role in supporting forest ecosystem services, yet their response to changes in aridity remains poorly understood. We present results from a study of 84 forests at four south-to-north Loess Plateau sites to assess how increases in aridity level (1- precipitation/evapotranspiration) shapes soil bacterial and fungal diversity and community stability by influencing community assembly. We showed that soil bacterial diversity underwent a significant downward trend at aridity levels >0.39, while fungal diversity decreased significantly at aridity levels >0.62. In addition, the relative abundance of Actinobacteria and Ascomycota increased with higher aridity level, while the relative abundance of Acidobacteria and Basidiomycota showed the opposite trend. Bacterial communities also exhibited higher similarity-distance decay rates across geographic and environmental gradients than did fungal communities. Phylogenetic bin-based community assembly analysis revealed homogeneous selection and dispersal limitation as the two dominant processes in bacterial and fungal assembly. Dispersal limitation of bacterial communities monotonically increased with aridity levels, whereas homogeneous selection of fungal communities monotonically decreased. Importantly, aridity also increased the sensitivity of microbial communities to environmental disturbance and potentially decreased community stability, as evidenced by greater community similarity-environmental distance decay rates, narrower habitat niche breadth, and lower microbial network stability. Our study provides new insights into soil microbial drought response, with implications on the sustainability of ecosystems under environmental stress.
Collapse
Affiliation(s)
- Xing Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Jia Zeng
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Fang Chen
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Zhengchen Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Hanyu Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Qi Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Weichao Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Wenjie Wang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Yang Guo
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Yanfeng Niu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Linshan Yuan
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Chengjie Ren
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China
| | - Zekun Zhong
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| | - Xinhui Han
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
25
|
Meroz N, Livny T, Friedman J. Quantifying microbial interactions: concepts, caveats, and applications. Curr Opin Microbiol 2024; 80:102511. [PMID: 39002491 DOI: 10.1016/j.mib.2024.102511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
Microbial communities are fundamental to every ecosystem on Earth and hold great potential for biotechnological applications. However, their complex nature hampers our ability to study and understand them. A common strategy to tackle this complexity is to abstract the community into a network of interactions between its members - a phenomenological description that captures the overall effects of various chemical and physical mechanisms that underpin these relationships. This approach has proven useful for numerous applications in microbial ecology, including predicting community dynamics and stability and understanding community assembly and evolution. However, care is required in quantifying and interpreting interactions. Here, we clarify the concept of an interaction and discuss when interaction measurements are useful despite their context-dependent nature. Furthermore, we categorize different approaches for quantifying interactions, highlighting the research objectives each approach is best suited for.
Collapse
Affiliation(s)
- Nittay Meroz
- Institute of Environmental Sciences, Hebrew University, Rehovot
| | - Tal Livny
- Institute of Environmental Sciences, Hebrew University, Rehovot; Department of Immunology and Regenerative Biology, Weizmann Institute, Rehovot
| | | |
Collapse
|
26
|
Yu T, Luo Y, Tan X, Zhao D, Bi X, Li C, Zheng Y, Xiang H, Hu S. Global Marine Cold Seep Metagenomes Reveal Diversity of Taxonomy, Metabolic Function, and Natural Products. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzad006. [PMID: 39160620 PMCID: PMC12016038 DOI: 10.1093/gpbjnl/qzad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/25/2023] [Accepted: 09/20/2023] [Indexed: 08/21/2024]
Abstract
Cold seeps in the deep sea are closely linked to energy exploration as well as global climate change. The alkane-dominated chemical energy-driven model makes cold seeps an oasis of deep-sea life, showcasing an unparalleled reservoir of microbial genetic diversity. Here, by analyzing 113 metagenomes collected from 14 global sites across 5 cold seep types, we present a comprehensive Cold Seep Microbiomic Database (CSMD) to archive the genomic and functional diversity of cold seep microbiomes. The CSMD includes over 49 million non-redundant genes and 3175 metagenome-assembled genomes, which represent 1895 species spanning 105 phyla. In addition, beta diversity analysis indicates that both the sampling site and cold seep type have a substantial impact on the prokaryotic microbiome community composition. Heterotrophic and anaerobic metabolisms are prevalent in microbial communities, accompanied by considerable mixotrophs and facultative anaerobes, highlighting the versatile metabolic potential in cold seeps. Furthermore, secondary metabolic gene cluster analysis indicates that at least 98.81% of the sequences potentially encode novel natural products, with ribosomally synthesized and post-translationally modified peptides being the predominant type widely distributed in archaea and bacteria. Overall, the CSMD represents a valuable resource that would enhance the understanding and utilization of global cold seep microbiomes.
Collapse
Affiliation(s)
- Tao Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingfeng Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochun Bi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenji Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Sadeghi J, Zaib F, Heath DD. Genetic architecture and correlations between the gut microbiome and gut gene transcription in Chinook salmon (Oncorhynchus tshawytscha). Heredity (Edinb) 2024; 133:54-66. [PMID: 38822131 PMCID: PMC11222526 DOI: 10.1038/s41437-024-00692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
Population divergence through selection can drive local adaptation in natural populations which has implications for the effective restoration of declining and extirpated populations. However, adaptation to local environmental conditions is complicated when both the host and its associated microbiomes must respond via co-evolutionary change. Nevertheless, for adaptation to occur through selection, variation in both host and microbiome traits should include additive genetic effects. Here we focus on host immune function and quantify factors affecting variation in gut immune gene transcription and gut bacterial community composition in early life-stage Chinook salmon (Oncorhynchus tshawytscha). Specifically, we utilized a replicated factorial breeding design to determine the genetic architecture (sire, dam and sire-by-dam interaction) of gut immune gene transcription and microbiome composition. Furthermore, we explored correlations between host gut gene transcription and microbiota composition. Gene transcription was quantified using nanofluidic qPCR arrays (22 target genes) and microbiota composition using 16 S rRNA gene (V5-V6) amplicon sequencing. We discovered limited but significant genetic architecture in gut microbiota composition and transcriptional profiles. We also identified significant correlations between gut gene transcription and microbiota composition, highlighting potential mechanisms for functional interactions between the two. Overall, this study provides support for the co-evolution of host immune function and their gut microbiota in Chinook salmon, a species recognized as locally adapted. Thus, the inclusion of immune gene transcription profile and gut microbiome composition as factors in the development of conservation and commercial rearing practices may provide new and more effective approaches to captive rearing.
Collapse
Affiliation(s)
- Javad Sadeghi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
- Department of Physical & Environmental Sciences, University of Toronto-Scarborough, Toronto, ON, Canada
| | - Farwa Zaib
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada.
- Department of Integrative Biology, University of Windsor, Ontario, ON, Canada.
| |
Collapse
|
28
|
Guo ZF, Das K, Boeing WJ, Xu YY, Borgomeo E, Zhang D, Ao SC, Yang XR. Distance-decay equations of antibiotic resistance genes across freshwater reservoirs. WATER RESEARCH 2024; 258:121830. [PMID: 38823285 DOI: 10.1016/j.watres.2024.121830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Distance-decay (DD) equations can discern the biogeographical pattern of organisms and genes in a better way with advanced statistical methods. Here, we developed a data Compilation, Arrangement, and Statistics framework to advance quantile regression (QR) into the generation of DD equations for antibiotic resistance genes (ARGs) across various spatial scales using freshwater reservoirs as an illustration. We found that QR is superior at explaining dissemination potential of ARGs to the traditionally used least squares regression (LSR). This is because our model is based on the 'law of limiting factors', which reduces influence of unmeasured factors that reduce the efficacy of the LSR method. DD equations generated from the 99th QR model for ARGs were 'Sall = 90.03e-0.01Dall' in water and 'Sall = 92.31e-0.011Dall' in sediment. The 99th QR model was less impacted by uneven sample sizes, resulting in a better quantification of ARGs dissemination. Within an individual reservoir, the 99th QR model demonstrated that there is no dispersal limitation of ARGs at this smaller spatial scale. The QR method not only allows for construction of robust DD equations that better display dissemination of organisms and genes across ecosystems, but also provides new insights into the biogeography exhibited by key parameters, as well as the interactions between organisms and environment.
Collapse
Affiliation(s)
- Zhao-Feng Guo
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Kiranmoy Das
- Applied Statistics Division, Indian Statistical Institute, Kolkata 700108, India
| | - Wiebke J Boeing
- Department of Fish, Wildlife & Conservation Ecology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Yao-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| | - Edoardo Borgomeo
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom
| | - Dong Zhang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Si-Cheng Ao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Xiao-Ru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| |
Collapse
|
29
|
Robins K, O'Donnell G, Neumann A, Schmidt W, Hart A, Graham DW. Antimicrobial resistance in rural rivers: Comparative study of the Coquet (Northumberland) and Eden (Cumbria) River catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172348. [PMID: 38614353 DOI: 10.1016/j.scitotenv.2024.172348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Many studies have characterised resistomes in river microbial communities. However, few have compared resistomes in parallel rural catchments that have few point-source inputs of antimicrobial genes (ARGs) and organisms (i.e., AMR) - catchments where one can contrast more nebulous drivers of AMR in rural rivers. Here, we used quantitative microbial profiling (QMP) to compare resistomes and microbiomes in two rural river catchments in Northern England, the Coquet and Eden in Northumberland and Cumbria, respectively, with different hydrological and geographical conditions. The Eden has higher flow rates, higher annual surface runoff, and longer periods of soil saturation, whereas the Coquet is drier and has lower flowrates. QMP analysis showed the Eden contained significantly more abundant microbes associated with soil sources, animal faeces, and wastewater than the Coquet, which had microbiomes like less polluted rivers (Wilcoxon test, p < 0.01). The Eden also had greater ARG abundances and resistome diversity (Kruskal Wallis, p < 0.05), and higher levels of potentially clinically relevant ARGs. The Eden catchment had greater and flashier runoff and more extensive agricultural land use in its middle reach, which explains higher levels of AMR in the river. Hydrological and geographic factors drive AMR in rural rivers, which must be considered in environmental monitoring programmes.
Collapse
Affiliation(s)
- Katie Robins
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Greg O'Donnell
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Anke Neumann
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Wiebke Schmidt
- Chief Scientists Group, Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - Alwyn Hart
- Chief Scientists Group, Environment Agency, Horizon House, Deanery Road, Bristol BS1 5AH, UK
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
30
|
Engel E, de Paula Ribeiro AL, Lúcio AD, Pasini MPB, Buzzatti JZ, Rodrigues FT, Cassol LO, Godoy WAC. The Co-occurrence Matrix and the Correlation Network of Phytophagous Insects Are Driven by Abiotic and Biotic Variables: the Case of Canola. NEOTROPICAL ENTOMOLOGY 2024; 53:541-551. [PMID: 38358647 DOI: 10.1007/s13744-024-01136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Co-occurrence a correlation profiles are driven by different factors (exogenous and endogenous) and drawing a profile of association between species based on co-occurrence, without assessing how these species vary in terms of ecological niche can lead to wrong conclusions. The objective was to determine the co-occurrence and correlation patterns of phytophagous insects in canola crop and to evaluate how these patterns varied according to the crop stage (phenology-biotic) and sowing times (agricultural practice-abiotic). We found that the patterns of co-occurrence and correlation between species were reflections of population variations due to the phenology and sowing times of canola. Variations in the multi-species abundance matrix were influenced by mean air temperature and accumulated rainfall. The main species associated with canola in southern Brazil, in terms of abundance, were P. xylostella, D. speciosa, and N. viridula. These species were mostly negatively associated. When evaluating their population variations, we found that they explore different temporal niches, whether in terms of phenology or sowing times. Finally, we demonstrate empirically that despite being important, association patterns based on co-occurrence and correlation should be interpreted in light of the understanding of patterns of niche exploitation and temporal variation of species.
Collapse
Affiliation(s)
- Eduardo Engel
- Dept of Entomology and Acarology, University of São Paulo, ESALQ, Piracicaba, SP, Brazil.
| | - Ana Lúcia de Paula Ribeiro
- Laboratory of Entomology, Federal Institut Farroupilha, Campus São Vicente Do Sul, São Vicente do Sul, RS, Brazil
| | - Alessandro Dal'Col Lúcio
- Department of Crop Science, Federal University of Santa Maria, Santa Maria, Rio Grande Do Sul, Brazil
| | | | - Jerônimo Zamberlan Buzzatti
- Laboratory of Entomology, Federal Institut Farroupilha, Campus São Vicente Do Sul, São Vicente do Sul, RS, Brazil
| | - Francisco Teixeira Rodrigues
- Laboratory of Entomology, Federal Institut Farroupilha, Campus São Vicente Do Sul, São Vicente do Sul, RS, Brazil
| | - Luthyana Oliveira Cassol
- Laboratory of Entomology, Federal Institut Farroupilha, Campus São Vicente Do Sul, São Vicente do Sul, RS, Brazil
| | | |
Collapse
|
31
|
Sun QW, Chen JZ, Liao XF, Huang XL, Liu JM. Identification of keystone taxa in rhizosphere microbial communities using different methods and their effects on compounds of the host Cinnamomum migao. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171952. [PMID: 38537823 DOI: 10.1016/j.scitotenv.2024.171952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
Exploring keystone taxa affecting microbial community stability and host function is crucial for understanding ecosystem functions. However, identifying keystone taxa from humongous microbial communities remains challenging. We collected 344 rhizosphere and bulk soil samples from the endangered plant C. migao for 2 years consecutively. Used high-throughput sequencing 16S rDNA and ITS to obtain the composition of bacterial and fungal communities. We explored keystone taxa and the applicability and limitations of five methods (SPEC-OCCU, Zi-Pi, Subnetwork, Betweenness, and Module), as well as the impact of microbial community domain, time series, and rhizosphere boundary on the identification of keystone taxa in the communities. Our results showed that the five methods, identified abundant keystone taxa in rhizosphere and bulk soil microbial communities. However, the keystone taxa shared by the rhizosphere and bulk soil microbial communities over time decreased rapidly decrease in the five methods. Among five methods on the identification of keystone taxa in the rhizosphere community, Module identified 113 taxa, SPEC-OCCU identified 17 taxa, Betweenness identified 3 taxa, Subnetwork identified 3 taxa, and Zi-Pi identified 4 taxa. The keystone taxa are mainly conditionally rare taxa, and their ecological functions include chemoheterotrophy, aerobic chemoheterotrophy, nitrate reduction, and anaerobic photoautotrophy. The results of the random forest model and structural equation model predict that keystone taxa Mortierella and Ellin6513 may have an effects on the accumulation of 1, 4, 7, - Cycloundecatriene, 1, 5, 9, 9-tetramethyl-, Z, Z, Z-, beta-copaene, bicyclogermacrene, 1,8-Cineole in C. migao fruits, but their effects still need further evidence. Our study evidence an unstable microbial community in the bulk soil, and the definition of microbial boundary and ecologically functional affected the identification of keystone taxa in the community. Subnetwork and Module are more in line with the definition of keystone taxa in microbial ecosystems in terms of maintaining community stability and hosting function.
Collapse
Affiliation(s)
- Qing-Wen Sun
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Guizhou Province Key Laboratory of Chinese Pharmacology and Pharmacognosy, 550025, China
| | - Jing-Zhong Chen
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; Guizhou Province Key Laboratory of Chinese Pharmacology and Pharmacognosy, 550025, China.
| | | | | | - Ji-Ming Liu
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
32
|
Smith SK, Weaver JE, Ducoste JJ, de Los Reyes FL. Microbial community assembly in engineered bioreactors. WATER RESEARCH 2024; 255:121495. [PMID: 38554629 DOI: 10.1016/j.watres.2024.121495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/10/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Microbial community assembly (MCA) processes that shape microbial communities in environments are being used to analyze engineered bioreactors such as activated sludge systems and anaerobic digesters. The goal of studying MCA is to be able to understand and predict the effect of design and operation procedures on bioreactor microbial composition and function. Ultimately, this can lead to bioreactors that are more efficient, resilient, or resistant to perturbations. This review summarizes the ecological theories underpinning MCA, evaluates MCA analysis methods, analyzes how these MCA-based methods are applied to engineered bioreactors, and extracts lessons from case studies. Furthermore, we suggest future directions in MCA research in engineered bioreactor systems. The review aims to provide insights and guidance to the growing number of environmental engineers who wish to design and understand bioreactors through the lens of MCA.
Collapse
Affiliation(s)
- Savanna K Smith
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| | - Joseph E Weaver
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Joel J Ducoste
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA
| | - Francis L de Los Reyes
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
33
|
Madi N, Cato ET, Abu Sayeed M, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIU, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity, and pathogen genetic diversity in cholera patients. Science 2024; 384:eadj3166. [PMID: 38669570 DOI: 10.1126/science.adj3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of bacteriophage (phage)-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. In this work, we report a year-long, nationwide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative polymerase chain reaction while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of antiphage defenses, predation was "effective," with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of antiphage defenses, predation was "ineffective," with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Imam Ul Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Taufiqur R Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Jin Y, Ren S, Wu Y, Zhang X, Chen Z, Xie B. Microbial community structures and bacteria-Cylindrospermopsis raciborskii interactions in Yilong Lake. FEMS Microbiol Ecol 2024; 100:fiae048. [PMID: 38578661 PMCID: PMC11057442 DOI: 10.1093/femsec/fiae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024] Open
Abstract
Cylindrospermopsis raciborskii-dominated harmful algae blooms have been reported globally in recent years. However, our understanding of the ecology of C. raciborskii in natural conditions is still poor. In this study, we collected the water samples from a C. raciborskii-blooming lake, Yilong Lake, in Yunnan province, China, and used both culture-dependent and culture-independent approaches to investigate their microbial communities and the interactions between C. raciborskii and the other bacteria. The composition and diversity of microbial communities were revealed with 16S rRNA gene high-throughput sequencing data analysis. Microbial co-occurrences analysis suggests C. raciborskii may have complex associations with other bacteria. Based on co-inoculation tests, we obtained 14 strains of bacterial strains from the water samples that exhibited either algicidal or promoting effects on a strain of C. raciborskii. Two bacterial isolates exhibited a consistent performance between co-occurrence analysis and experimental results. Effects of these bacteria-algae interspecies interactions on the bloom event are discussed. All these results may provide new insights into the C. raciborskii-dominated blooms and how its interspecies relationships with other bacteria may influence the bloom events in eutrophic waters throughout the world.
Collapse
Affiliation(s)
- Yuanpei Jin
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Sanguo Ren
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Yichi Wu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Xu Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| | - Zhengjun Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Xie
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
35
|
Srinivasan S, Jnana A, Murali TS. Modeling Microbial Community Networks: Methods and Tools for Studying Microbial Interactions. MICROBIAL ECOLOGY 2024; 87:56. [PMID: 38587642 PMCID: PMC11001700 DOI: 10.1007/s00248-024-02370-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Microbial interactions function as a fundamental unit in complex ecosystems. By characterizing the type of interaction (positive, negative, neutral) occurring in these dynamic systems, one can begin to unravel the role played by the microbial species. Towards this, various methods have been developed to decipher the function of the microbial communities. The current review focuses on the various qualitative and quantitative methods that currently exist to study microbial interactions. Qualitative methods such as co-culturing experiments are visualized using microscopy-based techniques and are combined with data obtained from multi-omics technologies (metagenomics, metabolomics, metatranscriptomics). Quantitative methods include the construction of networks and network inference, computational models, and development of synthetic microbial consortia. These methods provide a valuable clue on various roles played by interacting partners, as well as possible solutions to overcome pathogenic microbes that can cause life-threatening infections in susceptible hosts. Studying the microbial interactions will further our understanding of complex less-studied ecosystems and enable design of effective frameworks for treatment of infectious diseases.
Collapse
Affiliation(s)
- Shanchana Srinivasan
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Apoorva Jnana
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
36
|
Zhang M, Zhou Y, Cui X, Zhu L. The Potential of Co-Evolution and Interactions of Gut Bacteria-Phages in Bamboo-Eating Pandas: Insights from Dietary Preference-Based Metagenomic Analysis. Microorganisms 2024; 12:713. [PMID: 38674657 PMCID: PMC11051890 DOI: 10.3390/microorganisms12040713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Bacteria and phages are two of the most abundant biological entities in the gut microbiome, and diet and host phylogeny are two of the most critical factors influencing the gut microbiome. A stable gut bacterial community plays a pivotal role in the host's physiological development and immune health. A phage is a virus that directly infects bacteria, and phages' close associations and interactions with bacteria are essential for maintaining the stability of the gut bacterial community and the entire microbial ecosystem. Here, we utilized 99 published metagenomic datasets from 38 mammalian species to investigate the relationship (diversity and composition) and potential interactions between gut bacterial and phage communities and the impact of diet and phylogeny on these communities. Our results highlight the co-evolutionary potential of bacterial-phage interactions within the mammalian gut. We observed a higher alpha diversity in gut bacteria than in phages and identified positive correlations between bacterial and phage compositions. Furthermore, our study revealed the significant influence of diet and phylogeny on mammalian gut bacterial and phage communities. We discovered that the impact of dietary factors on these communities was more pronounced than that of phylogenetic factors at the order level. In contrast, phylogenetic characteristics had a more substantial influence at the family level. The similar omnivorous dietary preference and closer phylogenetic relationship (family Ursidae) may contribute to the similarity of gut bacterial and phage communities between captive giant panda populations (GPCD and GPYA) and omnivorous animals (OC; including Sun bear, brown bear, and Asian black bear). This study employed co-occurrence microbial network analysis to reveal the potential interaction patterns between bacteria and phages. Compared to other mammalian groups (carnivores, herbivores, and omnivores), the gut bacterial and phage communities of bamboo-eating species (giant pandas and red pandas) exhibited a higher level of interaction. Additionally, keystone species and modular analysis showed the potential role of phages in driving and maintaining the interaction patterns between bacteria and phages in captive giant pandas. In sum, gaining a comprehensive understanding of the interaction between the gut microbiota and phages in mammals is of great significance, which is of great value in promoting healthy and sustainable mammals and may provide valuable insights into the conservation of wildlife populations, especially endangered animal species.
Collapse
Affiliation(s)
| | | | | | - Lifeng Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210098, China; (M.Z.); (Y.Z.); (X.C.)
| |
Collapse
|
37
|
Madi N, Cato ET, Sayeed MA, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIUL, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity and pathogen genetic diversity in cholera patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544933. [PMID: 37398242 PMCID: PMC10312676 DOI: 10.1101/2023.06.14.544933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of phage-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. Here we report a year-long, nation-wide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative PCR, while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of anti-phage defenses, predation was 'effective,' with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of anti-phage defenses, predation was 'ineffective,' with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T. Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md. Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Imam UL. Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Taufiqur R. Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A. Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S. Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I. Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B. Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J. Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
38
|
Pan C, Sun C, Qu X, Yu W, Guo J, Yu Y, Li X. Microbial community interactions determine the mineralization of soil organic phosphorus in subtropical forest ecosystems. Microbiol Spectr 2024; 12:e0135523. [PMID: 38334388 PMCID: PMC10913379 DOI: 10.1128/spectrum.01355-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
In subtropical forest ecosystems with few phosphorus (P) inputs, P availability and forest productivity depend on soil organic P (Po) mineralization. However, the mechanisms by which the microbial community determines the status and fate of soil Po mineralization remain unclear. In the present study, soils were collected from three typical forest types: secondary natural forest (SNF), mixed planting, and monoculture forest of Chinese fir. The P fractions, Po-mineralization ability, and microbial community in the soils of different forest types were characterized. In addition, we defined Po-mineralizing taxa with the potential to interact with the soil microbial community to regulate Po mineralization. We found that a higher labile P content persisted in SNF and was positively associated with the Po-mineralization capacity of the soil microbial community. In vitro cultures of soil suspensions revealed that soil Po mineralization of three forest types was distinguished by differences in the composition of fungal communities. We further identified broad phylogenetic lineages of Po-mineralizing fungi with a high intensity of positive interactions with the soil microbial community, implying that the facilitation of Po-mineralizing taxa is crucial for soil P availability. Our dilution experiments to weaken microbial interactions revealed that in SNF soil, which had the highest interaction intensity of Po-mineralizing taxa with the community, Po-mineralization capacity was irreversibly lost after dilution, highlighting the importance of microbial diversity protection in forest soils. In summary, this study demonstrates that the interactions of Po-mineralizing microorganisms with the soil microbial community are critical for P availability in subtropical forests.IMPORTANCEIn subtropical forest ecosystems with few phosphorus inputs, phosphorus availability and forest productivity depend on soil organic phosphorus mineralization. However, the mechanisms by which the microbial community interactions determine the mineralization of soil organic phosphorus remain unclear. In the present study, soils were collected from three typical forest types: secondary natural forest, mixed planting, and monoculture forest of Chinese fir. We found that a higher soil labile phosphorus content was positively associated with the organic phosphorus mineralization capacity of the soil microbial community. Soil organic phosphorus mineralization of three forest types was distinguished by the differences in the composition of fungal communities. The positive interactions between organic phosphorus-mineralizing fungi and the rest of the soil microbial community facilitated organic phosphorus mineralization. This study highlights the importance of microbial diversity protection in forest soils and reveals the microbial mechanism of phosphorus availability maintenance in subtropical forest ecosystems.
Collapse
Affiliation(s)
- Chang Pan
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- School of Life Sciences, Anqing Normal University, Anqing, China
| | - Chenchen Sun
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Xinjing Qu
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Wenruinan Yu
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Jiahuan Guo
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
| | - Yuanchun Yu
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaogang Li
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
39
|
Liu MK, Tian XH, Liu CY, Liu Y, Tang YM. Microbiologic surveys for Baijiu fermentation are affected by experimental design. Int J Food Microbiol 2024; 413:110588. [PMID: 38266376 DOI: 10.1016/j.ijfoodmicro.2024.110588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
The traditional Chinese alcoholic beverage Baijiu is produced by spontaneous fermentation of grains under anaerobic conditions. While numerous studies have used metagenomic technology to investigate the microbiome of Baijiu brewing, the microbial succession mechanism of Baijiu brewing has not been fully clarified, and metagenomic strategies for microecology surveys have not been comprehensively evaluated. Using the fermentation process of strong-flavor Baijiu as a model, we compared the data for bacterial communities based on short read 16S rRNA variable regions, V3-V4, and full-length 16S regions, V1-V9, to whole metagenomic shotgun sequencing (WMS) to measure the effect of technology selection on phylogenetic and functional profiles. The results showed differences in bacterial compositions and their relation to volatiles and physicochemical variables between sequencing methods. Furthermore, the percentage of V3-V4 sequences assigned to species level was higher than the percentage of V1-V9 sequences according to SILVA taxonomy, but lower according to NCBI taxonomy (P < 0.05). In both SILVA and NCBI taxonomies, the relative abundances of bacterial communities at both the genus and family levels were more positively correlated with WMS data in the V3-V4 dataset than in the V1-V9 dataset. The WMS identified changes in abundances of multiple metabolic pathways during fermentation (P < 0.05), including "starch and sucrose metabolism," "galactose metabolism," and "fatty acid biosynthesis." Although functional predictions derived from 16S data show similar patterns to WMS, most metabolic pathway changes are uncorrelated (P > 0.05). This study provided new technical and biological insights into Baijiu production that may assist in selection of methodologies for studies of fermentation systems.
Collapse
Affiliation(s)
- Mao-Ke Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China.
| | - Xin-Hui Tian
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| | - Cheng-Yuan Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| | - Yao Liu
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| | - Yu-Ming Tang
- Institute of Rice and Sorghum Sciences, Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China; Institute of Luzhou Liquor Making Science, Luzhou 646100, People's Republic of China; Deyang Branch of Sichuan Academy of Agricultural Sciences, Deyang 618000, People's Republic of China
| |
Collapse
|
40
|
Lyu X, Nuhu M, Candry P, Wolfanger J, Betenbaugh M, Saldivar A, Zuniga C, Wang Y, Shrestha S. Top-down and bottom-up microbiome engineering approaches to enable biomanufacturing from waste biomass. J Ind Microbiol Biotechnol 2024; 51:kuae025. [PMID: 39003244 PMCID: PMC11287213 DOI: 10.1093/jimb/kuae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/12/2024] [Indexed: 07/15/2024]
Abstract
Growing environmental concerns and the need to adopt a circular economy have highlighted the importance of waste valorization for resource recovery. Microbial consortia-enabled biotechnologies have made significant developments in the biomanufacturing of valuable resources from waste biomass that serve as suitable alternatives to petrochemical-derived products. These microbial consortia-based processes are designed following a top-down or bottom-up engineering approach. The top-down approach is a classical method that uses environmental variables to selectively steer an existing microbial consortium to achieve a target function. While high-throughput sequencing has enabled microbial community characterization, the major challenge is to disentangle complex microbial interactions and manipulate the structure and function accordingly. The bottom-up approach uses prior knowledge of the metabolic pathway and possible interactions among consortium partners to design and engineer synthetic microbial consortia. This strategy offers some control over the composition and function of the consortium for targeted bioprocesses, but challenges remain in optimal assembly methods and long-term stability. In this review, we present the recent advancements, challenges, and opportunities for further improvement using top-down and bottom-up approaches for microbiome engineering. As the bottom-up approach is relatively a new concept for waste valorization, this review explores the assembly and design of synthetic microbial consortia, ecological engineering principles to optimize microbial consortia, and metabolic engineering approaches for efficient conversion. Integration of top-down and bottom-up approaches along with developments in metabolic modeling to predict and optimize consortia function are also highlighted. ONE-SENTENCE SUMMARY This review highlights the microbial consortia-driven waste valorization for biomanufacturing through top-down and bottom-up design approaches and describes strategies, tools, and unexplored opportunities to optimize the design and stability of such consortia.
Collapse
Affiliation(s)
- Xuejiao Lyu
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mujaheed Nuhu
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pieter Candry
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Jenna Wolfanger
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexis Saldivar
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Cristal Zuniga
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | - Ying Wang
- Department of Soil and Crop Sciences, Texas A&M University, TX 77843, USA
| | - Shilva Shrestha
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
41
|
Anandakumar H, Rauch A, Wimmer MI, Yarritu A, Koch G, McParland V, Bartolomaeus H, Wilck N. Segmental patterning of microbiota and immune cells in the murine intestinal tract. Gut Microbes 2024; 16:2398126. [PMID: 39254265 PMCID: PMC11404582 DOI: 10.1080/19490976.2024.2398126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
The intestine exhibits distinct characteristics along its length, with a substantial immune cell reservoir and diverse microbiota crucial for maintaining health. This study investigates how anatomical location and regional microbiota influence intestinal immune cell abundance. Using conventionally colonized and germ-free mice, segment-specific immune cell composition and microbial communities were assessed. Metagenomic sequencing analyzed microbiome variations, while flow cytometry and immunofluorescence examined immune cell composition. Microbiome composition varied significantly along the intestine, with diversity and abundance increasing from upper to lower segments. Immune cells showed distinct segment-specific patterning influenced by microbial colonization and localization. T cell subsets displayed varied dependence on microbiome presence and anatomical location. This study highlights locoregional differences in intestinal immune cell and microbiome composition, identifying immune subsets susceptible to microbiota presence. The findings provide context for understanding immune cell alterations in disease models.
Collapse
Affiliation(s)
- Harithaa Anandakumar
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Ariana Rauch
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Moritz I Wimmer
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Alex Yarritu
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Gudrun Koch
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, Cooperation of Charité-Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
42
|
Cornell CR, Zhang Y, Ning D, Xiao N, Wagle P, Xiao X, Zhou J. Land use conversion increases network complexity and stability of soil microbial communities in a temperate grassland. THE ISME JOURNAL 2023; 17:2210-2220. [PMID: 37833523 PMCID: PMC10689820 DOI: 10.1038/s41396-023-01521-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/29/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Soils harbor highly diverse microbial communities that are critical to soil health, but agriculture has caused extensive land use conversion resulting in negative effects on critical ecosystem processes. However, the responses and adaptations of microbial communities to land use conversion have not yet been understood. Here, we examined the effects of land conversion for long-term crop use on the network complexity and stability of soil microbial communities over 19 months. Despite reduced microbial biodiversity in comparison with native tallgrass prairie, conventionally tilled (CT) cropland significantly increased network complexity such as connectivity, connectance, average clustering coefficient, relative modularity, and the number of species acting at network hubs and connectors as well as resulted in greater temporal variation of complexity indices. Molecular ecological networks under CT cropland became significantly more robust and less vulnerable, overall increasing network stability. The relationship between network complexity and stability was also substantially strengthened due to land use conversion. Lastly, CT cropland decreased the number of relationships between network structure and environmental properties instead being strongly correlated to management disturbances. These results indicate that agricultural disturbance generally increases the complexity and stability of species "interactions", possibly as a trade-off for biodiversity loss to support ecosystem function when faced with frequent agricultural disturbance.
Collapse
Affiliation(s)
- Carolyn R Cornell
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Ya Zhang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Daliang Ning
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Naijia Xiao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Pradeep Wagle
- USDA, Agricultural Research Service, Oklahoma and Central Plains Agricultural Research Center, El Reno, OK, USA
| | - Xiangming Xiao
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, Ok, USA.
- School of Computer Science, University of Oklahoma, Norman, OK, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
43
|
Houpt NSB, Kassen R. On the De Novo Emergence of Ecological Interactions during Evolutionary Diversification: A Conceptual Framework and Experimental Test. Am Nat 2023; 202:800-817. [PMID: 38033179 DOI: 10.1086/726895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractEcological interactions are crucial to the structure and function of biological communities, but we lack a causal understanding of the forces shaping their emergence during evolutionary diversification. Here we provide a conceptual framework linking different modes of diversification (e.g., ecological diversification), which depend on environmental characteristics, to the evolution of different forms of ecological interactions (e.g., resource partitioning) in asexual lineages. We tested the framework by examining the net interactions in communities of Pseudomonas aeruginosa produced via experimental evolution in nutritionally simple (SIM) or complex (COM) environments by contrasting the productivity and competitive fitness of whole evolved communities relative to their component isolates. As expected, we found that nutritional complexity drove the evolution of communities with net positive interactions whereas SIM communities had similar performance as their component isolates. A follow-up experiment revealed that high fitness in two COM communities was driven by rare variants (frequency <0.1%) that antagonized PA14, the ancestral strain and common competitor used in fitness assays. Our study suggests that the evolution of de novo ecological interactions in asexual lineages is predictable at a broad scale from environmental conditions. Further, our work demonstrates that rare variants can disproportionately impact the function of relatively simple microbial communities.
Collapse
|
44
|
Xu CCY, Lemoine J, Albert A, Whirter ÉM, Barrett RDH. Community assembly of the human piercing microbiome. Proc Biol Sci 2023; 290:20231174. [PMID: 38018103 PMCID: PMC10685111 DOI: 10.1098/rspb.2023.1174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/03/2023] [Indexed: 11/30/2023] Open
Abstract
Predicting how biological communities respond to disturbance requires understanding the forces that govern their assembly. We propose using human skin piercings as a model system for studying community assembly after rapid environmental change. Local skin sterilization provides a 'clean slate' within the novel ecological niche created by the piercing. Stochastic assembly processes can dominate skin microbiomes due to the influence of environmental exposure on local dispersal, but deterministic processes might play a greater role within occluded skin piercings if piercing habitats impose strong selection pressures on colonizing species. Here we explore the human ear-piercing microbiome and demonstrate that community assembly is predominantly stochastic but becomes significantly more deterministic with time, producing increasingly diverse and ecologically complex communities. We also observed changes in two dominant and medically relevant antagonists (Cutibacterium acnes and Staphylococcus epidermidis), consistent with competitive exclusion induced by a transition from sebaceous to moist environments. By exploiting this common yet uniquely human practice, we show that skin piercings are not just culturally significant but also represent ecosystem engineering on the human body. The novel habitats and communities that skin piercings produce may provide general insights into biological responses to environmental disturbances with implications for both ecosystem and human health.
Collapse
Affiliation(s)
- Charles C. Y. Xu
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Juliette Lemoine
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Avery Albert
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada H9X 3V9
- Trottier Space Institute, McGill University, Montreal, Quebec, Canada H3A 2A7
| | | | - Rowan D. H. Barrett
- Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0C4
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| |
Collapse
|
45
|
Wang X, Wang Z, Zhang Z, Yang Y, Cornell CR, Liu W, Zhang Q, Liu H, Zeng J, Ren C, Yang G, Zhong Z, Han X. Natural restoration exhibits better soil bacterial network complexity and stability than artificial restoration on the Loess Plateau, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119052. [PMID: 37742562 DOI: 10.1016/j.jenvman.2023.119052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Natural restoration (NR, e.g., secondary succession) and artificial restoration (AR, e.g., afforestation) are key approaches for rehabilitating degraded land; however, a comparative assessment of microbial network between these approaches is lacking. We compared bacterial networks under NR and AR in two different watersheds on the Loess Plateau. Our findings revealed significantly heightened network complexity under NR compared to AR, including metrics such as node, edge, modularity, degree, centrality, and keystone nodes. NR's network robustness exceeded AR by 19.45-35.9% and 7.79-17.74% in the two watersheds, aligning with the ecological principle that complexity begets stability. The significantly higher negative/positive cohesion and natural connectivity under NR also support its better network stability than AR. Integrated analysis of paired sequencing data from five Loess Plateau studies conducted on the Loess Plateau further confirmed the higher complexity and stability of bacterial networks under NR. Further analysis unveiled "biological interactions" as primary drivers of bacterial co-occurrence (on average 84.21% of links), surpassing the influence of environmental filtering (5.17%) or dispersal limitation (4.2%). Importantly, networked communities under NR exhibited generally stronger linkages with various ecosystem function than AR. Overall, our study provides insights into vegetation restoration strategies from the perspective of microbial network, underscoring natural regeneration's potential as a superior remedy for degraded-land restoration.
Collapse
Affiliation(s)
- Xing Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Zhengchen Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Zhenjiao Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Yang Yang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Carolyn R Cornell
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Weichao Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Qi Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Hanyu Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Jia Zeng
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Chengjie Ren
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Gaihe Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China
| | - Zekun Zhong
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, 712100, Shaanxi, PR China.
| | - Xinhui Han
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, PR China; Shaanxi Engineering Research Center of Circular Agriculture, Yangling, 712100, Shaanxi, PR China.
| |
Collapse
|
46
|
Li C, Yin L, He X, Jin Y, Zhu X, Wu R. Competition-cooperation mechanism between Escherichia coli and Staphylococcus aureus based on systems mapping. Front Microbiol 2023; 14:1192574. [PMID: 38029174 PMCID: PMC10657823 DOI: 10.3389/fmicb.2023.1192574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Interspecies interactions are a crucial driving force of species evolution. The genes of each coexisting species play a pivotal role in shaping the structure and function within the community, but how to identify them at the genome-wide level has always been challenging. Methods In this study, we embed the Lotka-Volterra ordinary differential equations in the theory of community ecology into the systems mapping model, so that this model can not only describe how the quantitative trait loci (QTL) of a species directly affects its own phenotype, but also describe the QTL of the species how to indirectly affect the phenotype of its interacting species, and how QTL from different species affects community behavior through epistatic interactions. Results By designing and implementing a co-culture experiment for 100 pairs of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), we mapped 244 significant QTL combinations in the interaction process of the two bacteria using this model, including 69 QTLs from E. coli and 59 QTLs from S. aureus, respectively. Through gene annotation, we obtained 57 genes in E. coli, among which the genes with higher frequency were ypdC, nrfC, yphH, acrE, dcuS, rpnE, and ptsA, while we obtained 43 genes in S. aureus, among which the genes with higher frequency were ebh, SAOUHSC_00172, capF, gdpP, orfX, bsaA, and phnE1. Discussion By dividing the overall growth into independent growth and interactive growth, we could estimate how QTLs modulate interspecific competition and cooperation. Based on the quantitative genetic model, we can obtain the direct genetic effect, indirect genetic effect, and genome-genome epistatic effect related to interspecific interaction genes, and then further mine the hub genes in the QTL networks, which will be particularly useful for inferring and predicting the genetic mechanisms of community dynamics and evolution. Systems mapping can provide a tool for studying the mechanism of competition and cooperation among bacteria in co-culture, and this framework can lay the foundation for a more comprehensive and systematic study of species interactions.
Collapse
Affiliation(s)
- Caifeng Li
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Lixin Yin
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaoqing He
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology, Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Yi Jin
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology, Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xuli Zhu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology, Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology, Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| |
Collapse
|
47
|
Maisnam P, Jeffries TC, Szejgis J, Bristol D, Singh BK, Eldridge DJ, Horn S, Chieppa J, Nielsen UN. Severe Prolonged Drought Favours Stress-Tolerant Microbes in Australian Drylands. MICROBIAL ECOLOGY 2023; 86:3097-3110. [PMID: 37878053 PMCID: PMC10640424 DOI: 10.1007/s00248-023-02303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023]
Abstract
Drylands comprise one-third of Earth's terrestrial surface area and support over two billion people. Most drylands are projected to experience altered rainfall regimes, including changes in total amounts and fewer but larger rainfall events interspersed by longer periods without rain. This transition will have ecosystem-wide impacts but the long-term effects on microbial communities remain poorly quantified. We assessed belowground effects of altered rainfall regimes (+ 65% and -65% relative to ambient) at six sites in arid and semi-arid Australia over a period of three years (2016-2019) coinciding with a significant natural drought event (2017-2019). Microbial communities differed significantly among semi-arid and arid sites and across years associated with variation in abiotic factors, such as pH and carbon content, along with rainfall. Rainfall treatments induced shifts in microbial community composition only at a subset of the sites (Milparinka and Quilpie). However, differential abundance analyses revealed that several taxa, including Acidobacteria, TM7, Gemmatimonadates and Chytridiomycota, were more abundant in the wettest year (2016) and that their relative abundance decreased in drier years. By contrast, the relative abundance of oligotrophic taxa such as Actinobacteria, Alpha-proteobacteria, Planctomycetes, and Ascomycota and Basidiomycota, increased during the prolonged drought. Interestingly, fungi were shown to be more sensitive to the prolonged drought and to rainfall treatment than bacteria with Basidiomycota mostly dominant in the reduced rainfall treatment. Moreover, correlation network analyses showed more positive associations among stress-tolerant dominant taxa following the drought (i.e., 2019 compared with 2016). Our result indicates that such stress-tolerant taxa play an important role in how whole communities respond to changes in aridity. Such knowledge provides a better understanding of microbial responses to predicted increases in rainfall variability and the impact on the functioning of semi-arid and arid ecosystems.
Collapse
Affiliation(s)
- Premchand Maisnam
- Hawkesbury Institute of Environment, Western Sydney University, Penrith, NSW, Australia.
| | - Thomas C Jeffries
- Hawkesbury Institute of Environment, Western Sydney University, Penrith, NSW, Australia
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Jerzy Szejgis
- Hawkesbury Institute of Environment, Western Sydney University, Penrith, NSW, Australia
| | - Dylan Bristol
- Hawkesbury Institute of Environment, Western Sydney University, Penrith, NSW, Australia
| | - Brajesh K Singh
- Hawkesbury Institute of Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - David J Eldridge
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sebastian Horn
- Hawkesbury Institute of Environment, Western Sydney University, Penrith, NSW, Australia
| | - Jeff Chieppa
- Hawkesbury Institute of Environment, Western Sydney University, Penrith, NSW, Australia
| | - Uffe N Nielsen
- Hawkesbury Institute of Environment, Western Sydney University, Penrith, NSW, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
48
|
Lange C, Boyer S, Bezemer TM, Lefort MC, Dhami MK, Biggs E, Groenteman R, Fowler SV, Paynter Q, Verdecia Mogena AM, Kaltenpoth M. Impact of intraspecific variation in insect microbiomes on host phenotype and evolution. THE ISME JOURNAL 2023; 17:1798-1807. [PMID: 37660231 PMCID: PMC10579242 DOI: 10.1038/s41396-023-01500-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
Microbes can be an important source of phenotypic plasticity in insects. Insect physiology, behaviour, and ecology are influenced by individual variation in the microbial communities held within the insect gut, reproductive organs, bacteriome, and other tissues. It is becoming increasingly clear how important the insect microbiome is for insect fitness, expansion into novel ecological niches, and novel environments. These investigations have garnered heightened interest recently, yet a comprehensive understanding of how intraspecific variation in the assembly and function of these insect-associated microbial communities can shape the plasticity of insects is still lacking. Most research focuses on the core microbiome associated with a species of interest and ignores intraspecific variation. We argue that microbiome variation among insects can be an important driver of evolution, and we provide examples showing how such variation can influence fitness and health of insects, insect invasions, their persistence in new environments, and their responses to global environmental changes. A and B are two stages of an individual or a population of the same species. The drivers lead to a shift in the insect associated microbial community, which has consequences for the host. The complex interplay of those consequences affects insect adaptation and evolution and influences insect population resilience or invasion.
Collapse
Affiliation(s)
- Claudia Lange
- Manaaki Whenua Landcare Research, Lincoln, New Zealand.
| | - Stéphane Boyer
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, Tours, France
| | - T Martijn Bezemer
- Above-Belowground Interactions Group, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | - Eva Biggs
- Manaaki Whenua Landcare Research, Lincoln, New Zealand
| | | | | | | | | | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
49
|
Hertel J, Heinken A, Fässler D, Thiele I. Causal inference on microbiome-metabolome relations in observational host-microbiome data via in silico in vivo association pattern analyses. CELL REPORTS METHODS 2023; 3:100615. [PMID: 37848031 PMCID: PMC10626217 DOI: 10.1016/j.crmeth.2023.100615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Understanding the effects of the microbiome on the host's metabolism is core to enlightening the role of the microbiome in health and disease. Herein, we develop the paradigm of in silico in vivo association pattern analyses, combining microbiome metabolome association studies with in silico constraint-based community modeling. Via theoretical dissection of confounding and causal paths, we show that in silico in vivo association pattern analyses allow for causal inference on microbiome-metabolome relations in observational data. We justify the corresponding theoretical criterion by structural equation modeling of host-microbiome systems, integrating deterministic microbiome community modeling into population statistics approaches. We show the feasibility of our approach on a published multi-omics dataset (n = 347), demonstrating causal microbiome-metabolite relations for 26 out of 54 fecal metabolites. In summary, we generate a promising approach for causal inference in metabolic host-microbiome interactions by integrating hypothesis-free screening association studies with knowledge-based in silico modeling.
Collapse
Affiliation(s)
- Johannes Hertel
- School of Medicine, University of Galway, Galway, Ireland; Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Almut Heinken
- School of Medicine, University of Galway, Galway, Ireland; UMRS Inserm 1256 NGERE (Nutrition-Genetics-Environmental Risks), Institute of Medical Research (Pôle BMS) - University of Lorraine, Vandoeuvre-les-Nancy, France
| | - Daniel Fässler
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland; Discipline of Microbiology, University of Galway, Galway, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; Ryan Institute, University of Galway, Galway, Ireland.
| |
Collapse
|
50
|
Redick MA, Cummings ME, Neuhaus GF, Ardor Bellucci LM, Thurber AR, McPhail KL. Integration of Untargeted Metabolomics and Microbial Community Analyses to Characterize Distinct Deep-Sea Methane Seeps. FRONTIERS IN MARINE SCIENCE 2023; 10:1197338. [PMID: 39268414 PMCID: PMC11392061 DOI: 10.3389/fmars.2023.1197338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Deep-sea methane seeps host highly diverse microbial communities whose biological diversity is distinct from other marine habitats. Coupled with microbial community analysis, untargeted metabolomics of environmental samples using high resolution tandem mass spectrometry provides unprecedented access to the unique specialized metabolisms of these chemosynthetic microorganisms. In addition, the diverse microbial natural products are of broad interest due to their potential applications for human and environmental health and well-being. In this exploratory study, sediment cores were collected from two methane seeps (-1000 m water depth) with very different gross geomorphologies, as well as a non-seep control site. Cores were subjected to parallel metabolomic and microbial community analyses to assess the feasibility of representative metabolite detection and identify congruent patterns between metabolites and microbes. Metabolomes generated using high resolution liquid chromatography tandem mass spectrometry were annotated with predicted structure classifications of the majority of mass features using SIRIUS and CANOPUS. The microbiome was characterized by analysis of 16S rRNA genes and analyzed both at the whole community level, as well as the small subgroup of Actinobacteria, which are known to produce societally useful compounds. Overall, the younger Dagorlad seep possessed a greater abundance of metabolites while there was more variation in abundance, number, and distribution of metabolites between samples at the older Emyn Muil seep. Lipid and lipid-like molecules displayed the greatest variation between sites and accounted for a larger proportion of metabolites found at the older seep. Overall, significant differences in composition of the microbial community mirrored the patterns of metabolite diversity within the samples; both varied greatly as a function of distance from methane seep, indicating a deterministic role of seepage. Interdisciplinary research to understand microbial and metabolic diversity is essential for understanding the processes and role of ubiquitous methane seeps in global systems and here we increase understanding of these systems by visualizing some of the chemical diversity that seeps add to marine systems.
Collapse
Affiliation(s)
- Margaret A Redick
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Milo E Cummings
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
| | - George F Neuhaus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Lila M Ardor Bellucci
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Andrew R Thurber
- Department of Microbiology, College of Science, Oregon State University, Corvallis, Oregon, USA
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|