1
|
Hou Z, Mo F, Zhou Q, Gao D, Zheng T, Tao Z, Lu Y. Illuminating the nexus between non-biodegradable microplastics and soil nitrogen dynamics: A modulation through plant-derived organic matter. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137913. [PMID: 40107101 DOI: 10.1016/j.jhazmat.2025.137913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
The characteristics of vegetation cover significantly influence nitrogen (N) cycling in soils. However, there is currently a lack of comprehensive assessment regarding how altered vegetation cover types affect soil N cycling in the context of emerging contaminants, such as non-biodegradable microplastics (MPs). Initial observations indicated substantial priming effects across all experimental groups upon the introduction of polystyrene MPs (PSMPs). Shrub soil demonstrated greatest resistance and resilience to PSMPs disturbance, while tree soils exhibited lower tolerance. In contrast, grass soils displayed maximum sensitivity, as evidenced by early peaks in N₂O emissions in shrub group, primarily driven by denitrification and nitrification before and after emission peaks, respectively. From a microbial perspective, Rhizobiales and Xanthomonadales/Nitrososphaerales exhibited significant roles in enhancing the resistance and resilience of shrub soils by facilitating efficient N transformation (particularly oxidation reaction-mediated N₂O emissions) and retention (manifested by stable amino acids and reduced bio-available dissolved organic matter). These findings contribute crucial theoretical insights into the capacity of vegetation cover to mitigate N₂O emissions induced by MP inputs, underscoring the pivotal role of biodiversity in maintaining ecosystem stability.
Collapse
Affiliation(s)
- Zelin Hou
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban, Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban, Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Tong Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zongxin Tao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yin Lu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban, Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| |
Collapse
|
2
|
Yan Y, Shi J, Fan Z, Peng Y, Wang X. Changes in long-term land use alter deep soil microbial necromass and organic carbon stabilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125589. [PMID: 40311367 DOI: 10.1016/j.jenvman.2025.125589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 04/13/2025] [Accepted: 04/26/2025] [Indexed: 05/03/2025]
Abstract
Carbon sequestration in grassland ecosystems plays an important role in alleviating global climate changes. However, the conversion of natural grassland to agricultural cropland has a profound implication for soil organic carbon (OC) sequestration, particularly regarding deep soil carbon stability. Here, we addressed the uncertainties surrounding deep soil OC mineralization by investigating the distribution and stabilization of OC pools in topsoil (0-20 cm) in comparison with that in deep soil (80-100 cm) after 11 and 40 years of agricultural cropland conversion from natural grassland at Hulunbuir, China. It was observed that the conversion substantially reduced the bulk OC in the deep soil, from 44.70 g kg-1 in grassland to 8.76-6.22 g kg-1 in agricultural cropland. Despite this decline, the contribution of mineral-associated OC (MAOC), conversion of microbial necromass C to bulk soil OC, and potential stability of OC increased, indicating a shift towards stabler soil OC forms in agricultural soils. The dissolved organic carbon of the topsoil in the agricultural cropland became more recalcitrant than that in the grassland, while the aliphatic carbon of the MAOC in the deep soil was increased. Although OC mineralization rates were lower in agricultural soils than in the grassland, the temperature sensitivity of OC decomposition (Q10) increased. These findings underscore the importance of assessing soil OC stability under long-term land use changes, with implications for sustainable agricultural management and deep soil carbon's role in climate regulation.
Collapse
Affiliation(s)
- Yuxin Yan
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Jia Shi
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Zhongmin Fan
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yumei Peng
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Xiang Wang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
3
|
Aminzadeh M, Kokate T, Shokri N. Microplastics in sandy soils: Alterations in thermal conductivity, surface albedo, and temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125956. [PMID: 40024513 DOI: 10.1016/j.envpol.2025.125956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 03/04/2025]
Abstract
Rapid growth in plastic production has exacerbated disposal of plastic wastes in terrestrial ecosystems. Unfortunately, soils represent large reservoirs for disposal of microplastics (MPs). MPs infiltrate into the soil through various pathways and alter its intrinsic properties. Despite advances in understanding the impact of MPs on soil physical, biological, and hydrological processes, their influence on surface energy balance and soil temperature remains understudied. Such information is more necessary than ever, considering the ongoing changes to soil systems caused by climate variations and extremes. We conducted laboratory experiments on sandy soils to investigate how MPs with different characteristics impact soil temperature dynamics. The changes in the soil thermal conductivity and surface albedo, in the presence of polyethylene (PE) and polyvinylchloride (PVC) particles at various concentrations were measured. The results demonstrate that MPs, and particularly PVC, with amorphous characteristics may decrease effective thermal conductivity of sand by 38%. Moreover, the deposition of MPs at the surface of samples may increase surface albedo by 28% and 77% with addition of 5% PVC and 5% PE, respectively. Such effects are pronounced at higher soil moisture contents, facilitating migration and deposition of MPs on the surface. We ultimately examined the impact of changes in soil thermal and radiative properties on soil temperature dynamics by monitoring the thermal regime in drying sand columns. Our findings indicate that MPs significantly alter evaporative flux and subsurface temperature profile, hence providing insights into understanding the changes in soil energy balance due to the presence of MPs.
Collapse
Affiliation(s)
- Milad Aminzadeh
- Institute of Geo-Hydroinformatics, Hamburg University of Technology, 21073 Hamburg, Germany; United Nations University Hub on Engineering to Face Climate Change at the Hamburg University of Technology, United Nations University Institute for Water, Environment and Health (UNU-INWEH), Hamburg, Germany.
| | - Tanmay Kokate
- Institute of Geo-Hydroinformatics, Hamburg University of Technology, 21073 Hamburg, Germany
| | - Nima Shokri
- Institute of Geo-Hydroinformatics, Hamburg University of Technology, 21073 Hamburg, Germany; United Nations University Hub on Engineering to Face Climate Change at the Hamburg University of Technology, United Nations University Institute for Water, Environment and Health (UNU-INWEH), Hamburg, Germany.
| |
Collapse
|
4
|
SiMa X, Li Y, Yu Z, Gu H, Liu J, Liu J, Fang R, Hu X, Liu X, Wang G, Tang C, Franks A, Wu J, Miao S, Qiao Y, Jin J. Long-term warming offsets the beneficial effect of elevated CO 2 on mineral associated organic carbon in Mollisols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 966:178698. [PMID: 39914322 DOI: 10.1016/j.scitotenv.2025.178698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 03/01/2025]
Abstract
The stability of soil organic carbon (SOC) is fundamentally important to the carbon-climate feedback because soils act as a major carbon source or sink under climate change. The uncertainty of SOC stability in farming soils in response to climate change necessitates mechanistic studies on microbial attributes to the change of SOC. Here, we used open-top chambers to simulate elevated CO2 (eCO2) and warming for 12 years in a soybean-grown Mollisol. We did not find the change of SOC stock under eCO2 or warming. Although eCO2 resulted in the accumulation of mineral-associated organic carbon, this effect diminished under warming. The amplicon sequencing of 16S gene indicated a significant change in microbial community composition under warming or eCO2. The metagenomic sequencing demonstrated that warming increased the abundances of microbial genes related to decomposition of labile carbon such as hemicellulose and pectin. The warming-induced stimulation of microbial catabolic metabolisms on organic carbon decomposition might have accelerated SOC turnover, which may offset the increased mineral-associated organic carbon of the Mollisol under eCO2. Long-term eCO2 and warming might not significantly alter the SOC stock or stability but accelerate carbon cycling in farming Mollisols.
Collapse
Affiliation(s)
- Xinqi SiMa
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yansheng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhenhua Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Haidong Gu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junjie Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Judong Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Rui Fang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaojing Hu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guanghua Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Caixian Tang
- La Trobe Institute for Sustainable Agriculture and Food, Department of Ecology, Plant and Animal Sciences, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia
| | - Ashley Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia
| | - Junjiang Wu
- Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Shujie Miao
- School of Applied Meteorology, Nanjing University of Information Sciences & Technology, Nanjing 210044, China
| | - Yunfa Qiao
- School of Applied Meteorology, Nanjing University of Information Sciences & Technology, Nanjing 210044, China
| | - Jian Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; La Trobe Institute for Sustainable Agriculture and Food, Department of Ecology, Plant and Animal Sciences, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia; Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| |
Collapse
|
5
|
Reed K, Dang C, Walkup J, Purcell A, Hungate B, Morrissey E. Comparing field and lab quantitative stable isotope probing for nitrogen assimilation in soil microbes. Appl Environ Microbiol 2025; 91:e0184924. [PMID: 39817737 PMCID: PMC11837507 DOI: 10.1128/aem.01849-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/15/2024] [Indexed: 01/18/2025] Open
Abstract
Soil microbial communities play crucial roles in nutrient cycling and can help retain nitrogen in agricultural soils. Quantitative stable isotope probing (qSIP) is a useful method for investigating taxon-specific microbial growth and utilization of specific nutrients, such as nitrogen (N). Typically, qSIP is performed in a highly controlled lab setting, so the field relevance of lab qSIP studies remains unknown. We conducted and compared tandem lab and field qSIP to quantify the assimilation of 15N by maize-associated soil prokaryotic communities at two agricultural sites. Here, we show that field qSIP with 15N can be used to measure taxon-specific microbial N assimilation. Relative 15N assimilation rates were generally lower in the field, and the magnitude of this difference varied by site. Rates differed by method (lab vs field) for 19% of the top N assimilating genera. The field and lab measures were more comparable when relative assimilation rates were weighted by relative abundance to estimate the proportion of N assimilated by each genus with only ~10% of taxa differing by method. Of those that differed, the taxa consistently higher in the lab were inclined to have opportunistic lifestyle strategies, whereas those higher in the field had niches reliant on plant roots or in-tact soil structure (biofilms, mycelia). This study demonstrates that 15N-qSIP can be successfully performed using field-incubated soils to identify microbial allies in N retention and highlights the strengths and limitations of field and lab qSIP approaches. IMPORTANCE Soil microbes are responsible for critical biogeochemical processes in natural and agricultural ecosystems. Despite their importance, the functional traits of most soil organisms remain woefully under-characterized, limiting our ability to understand how microbial populations influence the transformation of elements such as nitrogen (N) in soil. Quantitative stable isotope probing (qSIP) is a powerful tool to measure the traits of individual taxa. This method has rarely been applied in the field or with 15N to measure nitrogen assimilation. In this study, we measured genus-specific microbial nitrogen assimilation in two agricultural soils and compared field and lab 15N qSIP methods. Our results identify taxa important for nitrogen assimilation in agricultural soils, shed light on the field relevance of lab qSIP studies, and provide guidance for the future application of qSIP to measure microbial traits in the field.
Collapse
Affiliation(s)
- Kinsey Reed
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Jeth Walkup
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| | - Alicia Purcell
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
| | - Bruce Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Ember Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
6
|
Zhang N, Zhou Z, Wang Y, Zhou S, Ma J, Sun J, Chen K. Vertical Stratification Reduces Microbial Network Complexity and Disrupts Nitrogen Balance in Seasonally Frozen Ground at Qinghai Lake in Tibet. Microorganisms 2025; 13:459. [PMID: 40005823 PMCID: PMC11858239 DOI: 10.3390/microorganisms13020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Global climate change has accelerated the reduction of permafrost regions across different altitude gradients, shortening the duration of the freezing period to varying extents. However, the response of the soil microorganisms of frozen soils along altitude gradients remains unclear. In this study, we employed 16S rRNA sequencing and LC-MS metabolomics to investigate the response of soil microbial communities and soil metabolites to vertical stratification in the permafrost soils of the Qinghai Lake region. The results indicated that Proteobacteria, Firmicutes, and Actinobacteria were key soil bacterial phyla in the permafrost soils of Qinghai Lake during the freezing period, with Proteobacteria and Firmicutes showing significant sensitivity to vertical stratification (p < 0.05). The majority of the physicochemical factors exhibited a trend of initially increasing and then decreasing with increasing altitude, whereas pH showed the opposite trend. pH and moisture content were identified as the most important environmental factors influencing soil bacterial community structure. Deterministic processes dominated the assembly of bacterial communities of frozen soils in the Qinghai Lake basin. Co-occurrence network analysis showed that increasing altitude gradients led to a higher average degree of the bacterial network, while reducing network complexity and inter-species connectivity. Soil metabolomics analysis revealed that vertical stratification altered the metabolic profiles of 27 metabolites, with the significantly changed metabolites primarily associated with carbohydrate and amino acid metabolism. In conclusion, the characteristics of the Qinghai Lake permafrost were regulated by regional vertical stratification, which further influenced microbial community structure and soil metabolic characteristics, thereby altering carbon and nitrogen stocks. Specifically, higher altitudes were more favorable for the retention of the carbon and nitrogen stocks of frozen soils in the Qinghai Lake basin.
Collapse
Affiliation(s)
- Ni Zhang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Zhiyun Zhou
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Yijun Wang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Shijia Zhou
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Jing Ma
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Jianqing Sun
- Qinghai Lake National Nature Reserve Administration, Xining 810008, China;
| | - Kelong Chen
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| |
Collapse
|
7
|
Zhao X, Liang X, Zhu Z, Yuan Z, Yu S, Liu Y, Wang J, Mason-Jones K, Kuzyakov Y, Chen J, Ge T, Wang S. Phages Affect Soil Dissolved Organic Matter Mineralization by Shaping Bacterial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2070-2081. [PMID: 39836728 DOI: 10.1021/acs.est.4c08274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Viruses are considered to regulate bacterial communities and terrestrial nutrient cycling, yet their effects on bacterial metabolism and the mechanisms of carbon (C) dynamics during dissolved organic matter (DOM) mineralization remain unknown. Here, we added active and inactive bacteriophages (phages) to soil DOM with original bacterial communities and incubated them at 18 or 23 °C for 35 days. Phages initially (1-4 days) reduced CO2 efflux rate by 13-21% at 18 °C and 3-30% at 23 °C but significantly (p < 0.05) increased by 4-29% at 18 °C and 9-41% at 23 °C after 6 days, raising cumulative CO2 emissions by 14% at 18 °C and 21% at 23 °C. Phages decreased dominant bacterial taxa and increased bacterial community diversity (consistent with a "cull-the-winner" dynamic), thus altering the predicted microbiome functions. Specifically, phages enriched some taxa (such as Pseudomonas, Anaerocolumna, and Caulobacter) involved in degrading complex compounds and consequently promoted functions related to C cycling. Higher temperature facilitated phage-bacteria interactions, increased bacterial diversity, and enzyme activities, boosting DOM mineralization by 16%. Collectively, phages impact soil DOM mineralization by shifting microbial communities and functions, with moderate temperature changes modulating the magnitude of these processes but not qualitatively altering their behavior.
Collapse
Affiliation(s)
- Xiaolei Zhao
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiaolong Liang
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zhenke Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhaofeng Yuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Senxiang Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yalong Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Jingkuan Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
| | - Kyle Mason-Jones
- Department of Geoscience, University of Tübingen, 72074 Tübingen, Germany
| | - Yakov Kuzyakov
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, 37077 Goettingen, Germany
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shuang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
8
|
Bak GR, Lee KK, Clark IM, Mauchline TH, Kavamura VN, Jee S, Lee JT, Kim H, Lee YH. Changes in the potato rhizosphere microbiota richness and diversity occur in a growth stage-dependent manner. Sci Rep 2025; 15:2284. [PMID: 39825038 PMCID: PMC11748701 DOI: 10.1038/s41598-025-86944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/15/2025] [Indexed: 01/20/2025] Open
Abstract
Plant root and soil-associated microbiomes are influenced by niches, including bulk and rhizosphere soil. In this work, we collected bulk and rhizosphere soil samples at four potato developmental stages (leaf growth, flowering, tuber elongation and harvest) to identify whether rhizosphere microbiota are structured in a growth stage-dependent manner. The bacterial and fungal microbiota showed significant temporal differences in the rhizosphere and bulk soil. Rhizobacteria were most diverse at the tuber elongation stage, and dominant ASVs identified as Sphingomonas, Rhodanobacter, Sphingobium, Hyphomicrobium, and Solirubrobacter spp. In contrast, rhizosphere fungal diversity peaked at flowering stage, with Lecanicillium spp. being prominent. Furthermore, the abundance of saprophytic fungal genera, including Colletotrichum and Fusarium, and Alternaria, sharply increased at harvest stage, likely contributing to plant residue decomposition. Indicator taxa analysis highlighted the dominance of these genera at harvest. Network analysis revealed increased microbial complexity during the later growth stage, with 721 edges compared to 521 edges in the early growth stage. This increase included positive correlations between bacteria and negative correlations between bacteria and fungi. These changes suggest that microbial interactions become more interconnected and complex as potato plants mature. Our findings highlight the potential role of saprophytic fungi in shaping microbial dynamics during the later growth stage in rhizosphere soil.
Collapse
Affiliation(s)
- Gye-Ryeong Bak
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kiseok Keith Lee
- Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, IL, 60637, USA
| | - Ian M Clark
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Tim H Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | | - Samnyu Jee
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Jeong-Tae Lee
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang, 25342, Republic of Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Plant Microbiome Research, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Marzouk SH, Kwaslema DR, Omar MM, Mohamed SH. "Harnessing the power of soil microbes: Their dual impact in integrated nutrient management and mediating climate stress for sustainable rice crop production" A systematic review. Heliyon 2025; 11:e41158. [PMID: 39758363 PMCID: PMC11699367 DOI: 10.1016/j.heliyon.2024.e41158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/07/2025] Open
Abstract
Sustainable agricultural practices are essential to meet food demands for the increased population while minimizing the environmental impact. Considering rice as staple food for most of the world's population, it requires innovative approaches to ensure sustainable production. In this paper, we create a hypothesis that integrated nutrient management (INM) acts as a source of energy for microbes and improves the physical, chemical and biological properties of soils, but the current understanding of how soil microbiomes interact in integrated nutrient management toward mediating climate stress to support sustainable rice crop production is limited. Hence, we develop literature search through Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) to explore the hidden knowledge related to that question. The outcomes of the study are postulated as a viable option to minimize excessive chemical fertilizers and promote organic-based nutrient management that directly impacts microbial consortia. This review uncovered that plant-microbe interactions and nutrient transformation depend heavily on soil microbes while the abundance, diversity, and activity of soil microbiome is enhanced more with integrated nutrient management than with sole synthetic fertilizers. Through their ability to enhance nutrient availability and uptake, improve soil structure, heavy metal detoxification, salinity and drought tolerance, and suppress pathogens, they can alleviate abiotic stress associated with climate change. Therefore, optimization of microbial communities serves as a potential mechanism for INM to enhance rice yield and mitigate climate stress. This would improve soil health and enhance the resilience of the rice plant to climate change. However, despite various benefits obtained through INM and microbes in paddy production systems, the literature indicated that adoption of this technology is limited to smallholder farmers due to lack of knowledge, unavailability of sufficient organic materials and poor understanding of the long-term impacts associated with over-application of chemical fertilizers. Therefore, scientists must translate several research discoveries related to sustainable agriculture into simple language that can be adopted by farmers and future research should be a farmers-participatory approach to generate awareness investments and knowledge of farmers in adopting sustainability measures. Additionally, research could focus on identifying mechanisms by which microbiomes improve nutrient uptake and rice growth and how these mechanisms can be optimized through integrated nutrient management strategies with regard to climate stresses.
Collapse
Affiliation(s)
- Said H. Marzouk
- Ministry of Education and vocational training, Zanzibar, Tanzania
| | - Damiano R. Kwaslema
- Department of Soil and Geological Science, Sokoine University of Agriculture, Tanzania
| | - Mohd M. Omar
- Tanzania Agricultural Research Institute (TARI), Mlingano Center, Tanzania
| | - Said H. Mohamed
- Department of Molecular Biology and Biotechnology, University of Dar-es-salaam, Tanzania
| |
Collapse
|
10
|
Bajracharya A, Timilsina S, Cao R, Jiang Q, Dickey BA, Wasti A, Xi J, Weingartner M, Baerson SR, Roman GW, Han Y, Qiu Y. Developing affordable and efficient heating devices for enhanced live cell imaging in confocal microscopy. FRONTIERS IN PLANT SCIENCE 2025; 15:1499831. [PMID: 39866313 PMCID: PMC11760603 DOI: 10.3389/fpls.2024.1499831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025]
Abstract
Temperature control is crucial for live cell imaging, particularly in studies involving plant responses to high ambient temperatures and thermal stress. This study presents the design, development, and testing of two cost-effective heating devices tailored for confocal microscopy applications: an aluminum heat plate and a wireless mini-heater. The aluminum heat plate, engineered to integrate seamlessly with the standard 160 mm × 110 mm microscope stage, supports temperatures up to 36°C, suitable for studies in the range of non-stressful warm temperatures (e.g., 25-27°C for Arabidopsis thaliana) and moderate heat stress (e.g., 30-36°C for A. thaliana). We also developed a wireless mini-heater that offers rapid, precise heating directly at the sample slide, with a temperature increase rate over 30 times faster than the heat plate. The wireless heater effectively maintained target temperatures up to 50°C, ideal for investigating severe heat stress and heat shock responses in plants. Both devices performed well in controlled studies, including the real-time analysis of heat shock protein accumulation and stress granule formation in A. thaliana. Our designs are effective and affordable, with total construction costs lower than $300. This accessibility makes them particularly valuable for small laboratories with limited funding. Future improvements could include enhanced heat uniformity, humidity control to mitigate evaporation, and more robust thermal management to minimize focus drift during extended imaging sessions. These modifications would further solidify the utility of our heating devices in live cell imaging, offering researchers reliable, budget-friendly tools for exploring plant thermal biology.
Collapse
Affiliation(s)
| | - Sampada Timilsina
- Department of Biology, University of Mississippi, University, MS, United States
| | - Ruofan Cao
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, United States
| | - Qingrui Jiang
- Department of Mechanical Engineering, University of Mississippi, University, MS, United States
| | - Berry A. Dickey
- Department of Biology, University of Mississippi, University, MS, United States
| | - Anupa Wasti
- Department of Biology, University of Mississippi, University, MS, United States
| | - Jing Xi
- Natural Products Utilization Research Unit, U.S. Department of Agriculture, Agricultural Research Service, University, MS, United States
| | - Magdalena Weingartner
- Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, Germany
| | - Scott R. Baerson
- Natural Products Utilization Research Unit, U.S. Department of Agriculture, Agricultural Research Service, University, MS, United States
| | - Gregg W. Roman
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, United States
| | - Yiwei Han
- Department of Mechanical Engineering, University of Mississippi, University, MS, United States
| | - Yongjian Qiu
- Department of Biology, University of Mississippi, University, MS, United States
| |
Collapse
|
11
|
Zhang H, Lv X, Ni Y, Zhang Q, Wang J, Ma L. Time-lag effects of NEP and NPP to meteorological factors in the source regions of the Yangtze and Yellow Rivers. FRONTIERS IN PLANT SCIENCE 2025; 15:1502384. [PMID: 39866316 PMCID: PMC11757257 DOI: 10.3389/fpls.2024.1502384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025]
Abstract
Vegetation productivity and ecosystem carbon sink capacity are significantly influenced by seasonal weather patterns. The time lags between changes in these patterns and ecosystem (including vegetation) responses is a critical aspect in vegetation-climate and ecosystem-climate interactions. These lags can vary considerably due to the spatial heterogeneity of vegetation and ecosystems. In this study focused on the source regions of the Yangtze and Yellow Rivers (SCRYR), we utilized long-term datasets of Net Primary Productivity (NPP) and model-estimated Net Ecosystem Productivity (NEP) from2015 to 2020, combined with reconstructed 8-day scale climate sequences, to conduct partial correlation regression analysis (isolating the influence of individual meteorological factors on the lag effects). The study found that the length of lag effects varies depending on regional topography, vegetation types, and the sensitivity of their ecological environments to changes in meteorological factors. In the source region of the Yangtze River (SCR), the lag times for NPP and NEP in response to temperature (Tem) are longer, compared to the source region of the Yellow River (SYR), where the lags are generally less than 10 days. The long lag effects of NPP with precipitation (Pre), ranging from 50 to 60 days, were primarily concentrated in the northwestern part of the SCR, while the long lag effects of NEP with precipitation, ranging from 34 to 48 days, covered a broad region in the western part of the study area. NPP exhibits the least sensitivity to changes in solar radiation (SR), with lag times exceeding 54 days in 99.30% of the region. In contrast, NEP showed varying lag effects with respect to SR: short lag effects (ranging from 0 to 15 days) were observed in carbon source areas, while long lag effects (ranging from 55 to 64 days) were evident in carbon sink areas. The sensitivity of vegetation to meteorological changes is highest for SVL, followed by C3A, PW, BDS, and C3 in descending order. This study examined the spatiotemporal impacts of climatic drivers on NPP and NEP from both vegetation and ecosystem perspectives. The findings are crucial for enhancing vegetation productivity and ecosystem carbon sequestration capacity at important water sources in China.
Collapse
Affiliation(s)
| | - Xizhi Lv
- Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Yellow Basin Ecological Protection and Restoration, Zhengzhou, China
| | | | | | | | | |
Collapse
|
12
|
Tripolskaja L, Kazlauskaite-Jadzevice A, Razukas A, Baksiene E. Perennial Grasses on Stony Sandy Loam Arenosol: Summary of Results of Long-Term Experiment in Northern Europe Region (1995-2024). PLANTS (BASEL, SWITZERLAND) 2025; 14:166. [PMID: 39861520 PMCID: PMC11768326 DOI: 10.3390/plants14020166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Grasses can sustain soil functions despite nutrient depletion, which can have serious consequences for soil processes and ecosystem services. This paper summarizes the results of the long-term experiment (1995-2024) carried out in Arenosol within a temperate climate zone, focusing on the productivity of natural and managed grasslands; their succession changes over time, and so do the effects on soil chemical properties, and soil organic carbon (SOC) sequestration. The results indicated that two land uses-abandoned land (AL) and grassland fertilized with mineral fertilizers (MGf)-can be effectively applied to prevent Arenosol soil degradation. SOC accumulation occurs more rapidly in AL soils, and their chemical properties show less change over time. The ability of grasses to sequester SOC is better reflected by SOC stocks across the Ah horizon, where thickness varies over long-term grassland use. Significant changes in soil properties were observed more than 20 years after converting arable to herbaceous land use. While MGf has the highest biomass productivity, the use of fertilizers leads to soil acidification. The biomass productivity of AL and MGf increased with longer grassland use; however, in MG, productivity decreased without fertilizers, reaching AL's productivity levels after 20 years. As the age of AL increased, plant biodiversity decreased, and drought-resistant plants began to spread.
Collapse
Affiliation(s)
- Liudmila Tripolskaja
- Voke Branch, Lithuanian Research Centre for Agriculture and Forestry, Zalioji 2, LT-02232 Vilnius, Lithuania; (A.R.); (E.B.)
| | - Asta Kazlauskaite-Jadzevice
- Voke Branch, Lithuanian Research Centre for Agriculture and Forestry, Zalioji 2, LT-02232 Vilnius, Lithuania; (A.R.); (E.B.)
| | | | | |
Collapse
|
13
|
Rao K, Sarma D, Deb Burman PK, Agarwal G, Datye A, Tiwari YK, Gogoi N. Subtropical forest floor CO 2 emission at the Kaziranga National Park in Northeast India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:133. [PMID: 39760750 DOI: 10.1007/s10661-024-13586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/14/2024] [Indexed: 01/07/2025]
Abstract
This study investigates the seasonal and diurnal variations of soil CO2 flux (Fc) and the impact of meteorological variables on its dynamics. The study took place in the subtropical forest ecosystem of Kaziranga National Park (KNP), from November 2019 to March 2020. The highest Fc (6.24 gC m-2 day-1) was observed in the pre-monsoon season (March), and the lowest (0.85 gC m-2 day-1) in winter (February), with the mean value of 2.19 ± 0.84 gC m-2 day-1. Fc is primarily influenced by changes in air temperature (Tair), soil temperature (Tsoil), solar radiation (Rg), vapor pressure deficit (VPD), and photosynthetically active radiation (PAR). This is evident from the strong positive correlations of Fc with Tair, Tsoil, Rg, VPD, and PAR (correlation coefficients being 0.75, 0.67, 0.37, 0.59, and 0.37, respectively; all significant at 99% level) indicating their critical role in driving soil respiration. Conversely, relative humidity (RH) and atmospheric pressure (Pair) negatively affect Fc. Soil moisture (SoilM) influenced Fc to some extent, but its effect was less pronounced compared to Tair, Tsoil, and Rg. Diurnal variations revealed higher Fc during the daytime (between 10:00 and 14:00 IST) and the lowest in the night-time (between 05:30 and 07:00 IST). These findings underline the strong seasonal and diurnal controls of environmental factors on soil respiration enhancing our understanding of carbon dynamics in subtropical forest ecosystems.
Collapse
Affiliation(s)
- Karuna Rao
- Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | - Dipankar Sarma
- Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | - Pramit Kumar Deb Burman
- Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India.
- Department of Atmospheric and Space Sciences, Savitribai Phule Pune University, Pune, India.
- Department of Environmental Science, Savitribai Phule Pune University, Pune, India.
| | - Geetika Agarwal
- School of Computer Engineering and Technology, MIT World Peace University, Pune, India
| | - Amey Datye
- Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | - Yogesh K Tiwari
- Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune, India
| | - Nirmali Gogoi
- Department of Environmental Sciences, Tezpur University, Tezpur, India
| |
Collapse
|
14
|
Wepking C, Lucas JM, Boulos VS, Strickland MS. Antibiotic legacies shape the temperature response of soil microbial communities. Front Microbiol 2024; 15:1476016. [PMID: 39777145 PMCID: PMC11703895 DOI: 10.3389/fmicb.2024.1476016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Soil microbial communities are vulnerable to anthropogenic disturbances such as climate change and land management decisions, thus altering microbially-mediated ecosystem functions. Increasingly, multiple stressors are considered in investigations of ecological response to disturbances. Typically, these investigations involve concurrent stressors. Less studied is how historical stressors shape the response of microbial communities to contemporary stressors. Here we investigate how historical exposure to antibiotics drives soil microbial response to subsequent temperature change. Specifically, grassland plots were treated with 32-months of manure additions from cows either administered an antibiotic or control manure from cows not treated with an antibiotic. In-situ antibiotic exposure initially increased soil respiration however this effect diminished over time. Following the 32-month field portion, a subsequent incubation experiment showed that historical antibiotic exposure caused an acclimation-like response to increasing temperature (i.e., lower microbial biomass at higher temperatures; lower respiration and mass-specific respiration at intermediate temperatures). This response was likely driven by a differential response in the microbial community of antibiotic exposed soils, or due to indirect interactions between manure and soil microbial communities, or a combination of these factors. Microbial communities exposed to antibiotics tended to be dominated by slower-growing, oligotrophic taxa at higher temperatures. Therefore, historical exposure to one stressor is likely to influence the microbial community to subsequent stressors. To predict the response of soils to future stress, particularly increasing soil temperatures, historical context is necessary.
Collapse
Affiliation(s)
- Carl Wepking
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Jane M. Lucas
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, United States
- Cary Institute of Ecosystem Studies, Millbrook, NY, United States
| | - Virginia S. Boulos
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Michael S. Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, United States
| |
Collapse
|
15
|
Zhang P, Wang D, Zhang Z, Liu X, Guo Q. How biochar curbs the negative impacts of plastic mulching on soil enzymes and microorganisms while elevating crop yields in ridge-furrow systems. ENVIRONMENTAL RESEARCH 2024; 263:120155. [PMID: 39414102 DOI: 10.1016/j.envres.2024.120155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Ridge-furrow tillage is an important tillage and yield enhancement method used in dry farming areas; however, the spatial characteristics of the soil microenvironment under ridge-furrow tillage and the response of crop yields to mulching and biochar addition are not known. In this study, we conducted a three-year field experiment in which mulch and biochar, alone or combined, were introduced into ridge-furrow tillage system to explore their interactive effects on soil enzyme activities, bacterial communities, functional genes, and crop yields. The findings reveal significant spatial differences in soil physicochemical composition, enzyme activity, microbial communities, and functional genes under ridge-furrow tillage, which are further exacerbated by the addition of mulching and biochar. Under the premise of ridge-furrow tillage, both mulching and biochar addition reduce the α diversity of bacterial communities. Mulching simplifies the bacterial network, while biochar addition has the opposite effect. Mulching and biochar addition increase the relative abundance of carbon, nitrogen, and phosphorus functional genes and accelerate nutrient cycling, especially on the ridges. Mulching significantly improves crop yield but is detrimental to alkaline phosphatase activity and the abundance of the gene function. The addition of biochar mitigates the harm of mulching and further increases alfalfa yield. These findings not only provide scientific support for optimizing ridge-furrow tillage but also deepen our comprehensive understanding of the soil biochemical environment after the addition of mulching and biochar, further revealing their positive effects on yield formation.
Collapse
Affiliation(s)
- Peng Zhang
- College of Soil and Water Conservation, Hohai University, Nanjing, Jiangsu, 210098, China; School of Soil and Water Conservation, Beijing Forestry University, Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing, 100083, China; College of Agricultural Science and Engineering, Hohai University, Nanjing, Jiangsu, 210098, China; Jiangsu Province engineering research Center for Agricultural Soil-water efficient Utilization, Carbon Sequestration and emission reduction, Nanjing, 210098, China
| | - Dongmei Wang
- School of Soil and Water Conservation, Beijing Forestry University, Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing, 100083, China.
| | - Zezhou Zhang
- School of Soil and Water Conservation, Beijing Forestry University, Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing, 100083, China
| | - Xinyu Liu
- School of Soil and Water Conservation, Beijing Forestry University, Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing, 100083, China
| | - Qiao Guo
- School of Soil and Water Conservation, Beijing Forestry University, Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing, 100083, China
| |
Collapse
|
16
|
Fu G, Li T, Zha X. Temperature sensitivity quandary of soil microbial community structure in Tibetan alpine grasslands: A meta-analysis and field experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176961. [PMID: 39419210 DOI: 10.1016/j.scitotenv.2024.176961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Soil microorganisms act as the primary decomposers in global terrestrial ecosystems. Whether climate warming will lead to the convergence of the temperature sensitivity of soil microbial community structure and the convergence of the responses of soil microbial community structure to warming remains controversial. This study explored how warming amplitude affected the temperature sensitivity of soil bacteria and fungi community structures, and how it influenced the responses of soil bacteria and fungi community structures to warming on the Qinghai-Tibet Plateau based on meta-analysis and a single-site warming experiment. The temperature sensitivity of soil microbial community structure did not consistently decline with increasing warming magnitude; instead, it even rose, which might be associated with the nonlinear relationships of the warming magnitude with the temperature sensitivity of ecological processes of soil microbial community assembly or the topological parameters of species co-occurrence network. Meta-analysis indicated that responses of soil microbial community to warming were independent of warming amplitude. However, the single-site warming experiment demonstrated that responses of soil microbial community to warming varied with warming amplitude. These inconsistent results might be attributed to distinct spatial scales, grassland types, climatic conditions and warming magnitudes between the single-site experiment and the meta-analysis. Therefore, the temperature sensitivity of soil microbial community and its response to climate warming cannot be simply characterized as monotonically decreasing or increasing in relation to increasing warming magnitude.
Collapse
Affiliation(s)
- Gang Fu
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tianyu Li
- Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjie Zha
- Xi'an University of Finance and Economics, Xi'an, China
| |
Collapse
|
17
|
Wang M, Xing X, Zhang Y, Sui X, Zheng C. Geographic Distribution Pattern Determines Soil Microbial Community Assembly Process in Acanthopanax senticosus Rhizosphere Soil. Microorganisms 2024; 12:2506. [PMID: 39770709 PMCID: PMC11728389 DOI: 10.3390/microorganisms12122506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
The geographic distribution patterns of soil microbial communities associated with cultivated Acanthopanax senticosus plants in Northeast China were investigated. High-throughput sequencing revealed that the diversity and community assembly of bacterial and fungal communities in the inter-root soil varied significantly with geographic location. The study found that bacterial communities were predominantly assembled through stochastic processes at most sites, while fungal communities showed greater variation, with both stochastic and deterministic processes involved. The complexity of bacterial-fungal co-occurrence networks also varied with longitude and latitude, demonstrating both positive and negative interactions. PICRUSt 2.0 and FUNGuild were used to predict the potential functions of soil bacterial and fungal microbiota, respectively, during different land use patterns. The average taxonomic distinctness (AVD) index indicated varying degrees of community stability across sites. Key microbial taxa contributing to community variability were identified through Random Forest modeling, with Bacteriap25 and Sutterellaceae standing out among bacteria, and Archaeorhizomyces and Clavaria among fungi. Soil chemical properties, including pH, TN, TP, EC, and SOC, significantly correlated with microbial diversity, composition, and co-occurrence networks. Structural equation modeling revealed that geographic distribution patterns directly and indirectly influenced soil chemical properties and microbial communities. Overall, the study provides insights into the geographic distribution patterns of soil microbial communities associated with A. senticosus and highlights the need for further research into the underlying mechanisms shaping these patterns.
Collapse
Affiliation(s)
| | | | | | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (M.W.); (X.X.); (Y.Z.)
| | - Chunying Zheng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (M.W.); (X.X.); (Y.Z.)
| |
Collapse
|
18
|
Foley MM, Stone BWG, Caro TA, Sokol NW, Koch BJ, Blazewicz SJ, Dijkstra P, Hayer M, Hofmockel K, Finley BK, Mack M, Marks J, Mau RL, Monsaint-Queeney V, Morrissey E, Propster J, Purcell A, Schwartz E, Pett-Ridge J, Fierer N, Hungate BA. Growth rate as a link between microbial diversity and soil biogeochemistry. Nat Ecol Evol 2024; 8:2018-2026. [PMID: 39294403 DOI: 10.1038/s41559-024-02520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/25/2024] [Indexed: 09/20/2024]
Abstract
Measuring the growth rate of a microorganism is a simple yet profound way to quantify its effect on the world. The absolute growth rate of a microbial population reflects rates of resource assimilation, biomass production and element transformation-some of the many ways in which organisms affect Earth's ecosystems and climate. Microbial fitness in the environment depends on the ability to reproduce quickly when conditions are favourable and adopt a survival physiology when conditions worsen, which cells coordinate by adjusting their relative growth rate. At the population level, relative growth rate is a sensitive metric of fitness, linking survival and reproduction to the ecology and evolution of populations. Techniques combining omics and stable isotope probing enable sensitive measurements of the growth rates of microbial assemblages and individual taxa in soil. Microbial ecologists can explore how the growth rates of taxa with known traits and evolutionary histories respond to changes in resource availability, environmental conditions and interactions with other organisms. We anticipate that quantitative and scalable data on the growth rates of soil microorganisms, coupled with measurements of biogeochemical fluxes, will allow scientists to test and refine ecological theory and advance process-based models of carbon flux, nutrient uptake and ecosystem productivity. Measurements of in situ microbial growth rates provide insights into the ecology of populations and can be used to quantitatively link microbial diversity to soil biogeochemistry.
Collapse
Affiliation(s)
- Megan M Foley
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - Bram W G Stone
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tristan A Caro
- Department of Geological Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Noah W Sokol
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Steven J Blazewicz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Kirsten Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Brianna K Finley
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michelle Mack
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jane Marks
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Victoria Monsaint-Queeney
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Ember Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Jeffrey Propster
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biology, New Mexico Highlands University, Las Vegas, NM, USA
| | - Alicia Purcell
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of California, Merced, Merced, CA, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| |
Collapse
|
19
|
Yang WT, Agathokleous E, Wu JH, Chen HY, Wu RJ, Huang HC, Ren BJ, Wen SL, Shen LD, Wang WQ. Methane Production Is More Sensitive to Temperature Increase than Aerobic and Anaerobic Methane Oxidation in Chinese Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18723-18732. [PMID: 39396191 DOI: 10.1021/acs.est.4c04494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Methane emissions from paddy fields can increase under future warming scenarios. Nevertheless, a comprehensive comparison of the temperature sensitivity of methane-related microbial processes remains elusive. Here, we revealed that the temperature sensitivity of methane production (activation energy (Ea) = 0.94 eV; 95% confidence interval (CI), 0.78-1.10 eV) and aerobic (Ea = 0.49 eV; 95% CI, 0.34-0.65 eV) and anaerobic (Ea = 0.46 eV; 95% CI, 0.30-0.62 eV) methane oxidation exhibited notable spatial heterogeneity across 12 Chinese paddy fields spanning 35° longitude and 18° latitude. In addition, the Ea values of aerobic and anaerobic methane oxidation were significantly positively and negatively correlated to the latitude, respectively, while there was no significant correlation between the Ea of methane production and the latitude. Overall, there were no soil factors that had a significant effect on the Ea of methane production. The Ea of aerobic methane oxidation was primarily influenced by the contents of ammonium and clay, whereas the Ea of anaerobic methane oxidation was mainly influenced by the conductivity. Despite the variation, the overall temperature sensitivity of methane production was significantly higher than that of oxidation at a continental scale; therefore, an increase in the emission of methane from paddy fields will be predicted under future warming. Taken together, our study revealed the characteristics of temperature sensitivity of methane production and aerobic and anaerobic methane oxidation simultaneously in Chinese paddy fields, highlighting the potential roles of soil factors in influencing temperature sensitivity.
Collapse
Affiliation(s)
- Wang-Ting Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jiang-Hua Wu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Environment and Sustainability, School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada
| | - Hong-Yang Chen
- Northeast Asia Ecosystem Carbon Sink Research Center (NACC), Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Rong-Jun Wu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - He-Chen Huang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Bing-Jie Ren
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Si-le Wen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Li-Dong Shen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Wei-Qi Wang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
20
|
Kan ZR, Xu Y, Virk AL, Liu M, Pei X, Li Y, Yang H, Chen C. Organic fertilizer substitution benefits microbial richness and wheat yield under warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174007. [PMID: 38885710 DOI: 10.1016/j.scitotenv.2024.174007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Climate warming poses a serious threat to soil biodiversity and crop yield. Application of organic fertilizer has been extensively practiced to improve soil health and crop productivity. However, information is limited about the effects of organic fertilizer on microbial communities and diversity (richness) under warming. Thus, to investigate the interactive effects of temperature (ambient temperature and warming) and fertilizer (chemical fertilizer and partial substitution of chemical fertilizer with organic fertilizer) on microbial properties and wheat yield, a two-factorial pot experiment was conducted using soils with high and low fertility The results showed that warming and organic fertilizer had minor effects on bacterial Shannon and Simpson indexes. Due to concomitant reductions in soil moisture, warming decreased the average Chao index by 5.4 % and Ace index by 3.8 % for soils with high and low fertility (P < 0.05). High-throughput sequence presented that dominated genus was Bacillus with spore-forming ability. Under warming and drying conditions, microbes with adaptive traits (spore-forming ability) would outcompete the other microbes, and decrease microbial Chao and Ace index (richness). However, organic fertilizer counteracted the adverse effects of warming on microbial richness attributed to positive interaction between temperature and fertilizer on soil nutrients and organic carbon. The strong relationships between bacterial richness and wheat yield, as well as soil nutrients, highlighted the importance of soil biodiversity in improving soil nutrients and crop productivity. Partial substitution of chemical fertilizer with organic fertilizer significantly increased wheat yield by 27.1 % and 14.9 % under ambient temperature and by 28.0 % and 19.6 % under warming for soils with high and low fertility, respectively. Overall, this study provided the possibility to increase bacterial richness related to nutrient turnover and crop production by organic fertilizer application with reduced chemical fertilizer, especially under climate warming.
Collapse
Affiliation(s)
- Zheng-Rong Kan
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yinan Xu
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ahmad Latif Virk
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Mengting Liu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Pei
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanling Li
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haishui Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Changqing Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
21
|
Li L, Li C, Guo H, Liu Y, Sheng J, Guo S, Shen Q, Ling N, Guo J. Enhanced carbon use efficiency and warming resistance of soil microorganisms under organic amendment. ENVIRONMENT INTERNATIONAL 2024; 192:109043. [PMID: 39369561 DOI: 10.1016/j.envint.2024.109043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
The frequency and intensity of extreme weather events, including rapid temperature fluctuations, are increasing because of climate change. Long-term fertilization practices have been observed to alter microbial physiology and community structure, thereby affecting soil carbon sequestration. However, the effects of warming on the carbon sequestration potential of soil microbes adapted to long-term fertilization remain poorly understood. In this study, we utilized 18O isotope labeling to assess microbial carbon use efficiency (CUE) and employed stable isotope probing (SIP) with 18O-H2O to identify growing taxa in response to temperature changes (5-35 °C). Organic amendment with manure or straw residue significantly increased microbial CUE by 86-181 % compared to unfertilized soils. The microorganisms inhabiting organic amended soils displayed greater resistance of microbial CUE to high temperatures (25-35 °C) compared to those inhabiting soils fertilized only with minerals. Microbial growth patterns determined by the classification of taxa into incorporators or non-incorporators based on 18O incorporation into DNA exhibited limited phylogenetic conservation in response to temperature changes. Microbial clusters were identified by grouping taxa with similar growth patterns across different temperatures. Organic amendments enriched microbial clusters associated with increased CUE, whereas clusters in unfertilized or mineral-only fertilized soils were linked to decreased CUE. Specifically, shifts in the composition of growing bacteria were correlated with enhanced microbial CUE, whereas modifications in the composition of growing fungi were associated with diminished CUE. Notably, the responses of microbial CUE to temperature fluctuations were primarily driven by changes in the bacterial composition. Overall, our findings demonstrate that organic amendments enhance soil microbial CUE and promote the enrichment of specific microbial clusters that are better equipped to cope with temperature changes. This study establishes a theoretical foundation for manipulating soil microbes to enhance carbon sequestration under global climate scenarios.
Collapse
Affiliation(s)
- Ling Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China; Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
| | - Chenhua Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang 830011, China
| | - Hanyue Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunhua Liu
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Jiandong Sheng
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China; Center for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China
| | - Junjie Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
22
|
Wang M, Li D, Liu X, Chen C, Frey B, Sui X, Li MH. Global hierarchical meta-analysis to identify the factors for controlling effects of antibiotics on soil microbiota. ENVIRONMENT INTERNATIONAL 2024; 192:109038. [PMID: 39357259 DOI: 10.1016/j.envint.2024.109038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
It is widely known that antibiotics can affect the structure and function of soil microbial communities, but the specific degree of impact and controlled factors on different indicators remain inconclusive. We conducted a multiple hierarchical mixed effects meta-analysis on 2564 observations that were extracted from 60 publications, to comprehensively assess the impact of antibiotics on soil microbiota. The results showed that antibiotics had significant negative effects on soil microbial biomass, α-diversity and soil enzyme activity. Under neutral initial soil, when soil was derived from agricultural land or had a fine-textured, the negative impacts of antibiotics on soil microbial community were exacerbated. Both single and mixed additions of antibiotics had significant inhibitory effects on soil microbial enzyme activities. The Random Forest model predicted the following key moderators involved in the effects of antibiotics on the soil microbiome, and antibiotics type, soil texture were key moderators on the severity of soil microbial biomass changes. Soil texture, temperature and single or combined application constitute of antibiotics were the main drivers of effects on soil enzyme activities. The reported results can be helpful to assess the ecological risk of antibiotics in a soil environment and provides a scientific basis for the rational of antibiotics use in the soil environment.
Collapse
Affiliation(s)
- Mingyu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, PR China
| | - Detian Li
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Xiangyu Liu
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Chengrong Chen
- Griffith School of Environment and Science and the Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Beat Frey
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, PR China.
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland; Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, PR China; School of Life Science, Hebei University, Baoding, PR China.
| |
Collapse
|
23
|
Pei J, Fang C, Li B, Nie M, Li J. Direct Evidence for Microbial Regulation of the Temperature Sensitivity of Soil Carbon Decomposition. GLOBAL CHANGE BIOLOGY 2024; 30:e17523. [PMID: 39377428 DOI: 10.1111/gcb.17523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 09/07/2024] [Indexed: 10/09/2024]
Abstract
Soil physicochemical protection, substrates, and microorganisms are thought to modulate the temperature sensitivity of soil carbon decomposition (Q10), but their regulatory roles have yet to be distinguished because of the confounding effects of concurrent changes of them. Here, we sought to differentiate these effects through microorganism reciprocal transplant and aggregate disruption experiments using soils collected from seven sites along a 5000-km latitudinal transect encompassing a wide range of climatic conditions and from a 4-year laboratory incubation experiment. We found direct microbial regulation of Q10, with a higher Q10 being associated with greater fungal:bacterial ratios. However, no significant direct effects of physicochemical protection and substrate were observed on the variation in Q10 along the latitudinal transect or among different incubation time points. These findings highlight that we should move forward from physicochemical protection and substrate to microbial mechanisms regulating soil carbon decomposition temperature sensitivity to understand and better predict soil carbon-climate feedback.
Collapse
Affiliation(s)
- Junmin Pei
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Changming Fang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinquan Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Xiong R, Qian D, Qiu Z, Hou Y, Li Q, Shen W. Land-use intensification exerts a greater influence on soil microbial communities than seasonal variations in the Taihu Lake region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173630. [PMID: 38823709 DOI: 10.1016/j.scitotenv.2024.173630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
The Taihu Lake region has undergone intensive land-use conversions from natural wetlands (NW) to conventional rice-wheat rotation fields (RW) and further to greenhouse vegetable fields (GH). Nevertheless, the effects of these conversions on soil microbes, particularly in wetland ecosystem, are not well explicit. To explore the impact of land-use intensification on soil microbial communities, monthly soil samples were obtained from replicate plots representing three land-use types (NW, RW, and GH) in subtropical wetlands and then subjected to amplicon sequencing. Land-use intensification had direct effects on bacterial and fungal community composition, with a more pronounced impact on bacteria than on fungi. These changes in bacterial communities were closely correlated with variations in soil environmental variables, such as NO3--N, pH, and electrical conductivity. Land-use intensification led to a decrease in bacterial deterministic processes, with an opposing trend observed in the fungal community. In addition, arable lands (RW and GH), which are affected by anthropogenic activities, exhibited more complex networks. Potential metabolic functional groups in GH had higher absolute abundance. Seasonal variations significantly influenced microbial diversity, composition, and potential metabolic functional groups within each land-use type, particularly in summer, although the magnitude of this impact was much smaller than the impact of land-use intensification. Our findings emphasize the importance of comprehending the ecological consequences of land-use intensification in wetlands for sustainable resource management and biodiversity conservation.
Collapse
Affiliation(s)
- Ruonan Xiong
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Dong Qian
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zijian Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yixin Hou
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qing Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Weishou Shen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
25
|
Ren C, Zhou Z, Delgado-Baquerizo M, Bastida F, Zhao F, Yang Y, Zhang S, Wang J, Zhang C, Han X, Wang J, Yang G, Wei G. Thermal sensitivity of soil microbial carbon use efficiency across forest biomes. Nat Commun 2024; 15:6269. [PMID: 39054311 PMCID: PMC11272934 DOI: 10.1038/s41467-024-50593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Understanding the large-scale pattern of soil microbial carbon use efficiency (CUE) and its temperature sensitivity (CUET) is critical for understanding soil carbon-climate feedback. We used the 18O-H2O tracer method to quantify CUE and CUET along a north-south forest transect. Climate was the primary factor that affected CUE and CUET, predominantly through direct pathways, then by altering soil properties, carbon fractions, microbial structure and functions. Negative CUET (CUE decreases with measuring temperature) in cold forests (mean annual temperature lower than 10 °C) and positive CUET (CUE increases with measuring temperature) in warm forests (mean annual temperature greater than 10 °C) suggest that microbial CUE optimally operates at their adapted temperature. Overall, the plasticity of microbial CUE and its temperature sensitivity alter the feedback of soil carbon to climate warming; that is, a climate-adaptive microbial community has the capacity to reduce carbon loss from soil matrices under corresponding favorable climate conditions.
Collapse
Affiliation(s)
- Chengjie Ren
- State key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, Shaanxi, China
| | - Zhenghu Zhou
- School of ecology, Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, Sevilla, Spain
| | - Felipe Bastida
- CEBAS-CSIC, Department of Soil and Water Conservation, Campus Universitario de Espinardo, Murcia, Spain
| | - Fazhu Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shuohong Zhang
- State key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, Shaanxi, China
| | - Jieying Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi, China
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinhui Han
- State key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, Shaanxi, China
| | - Jun Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi, China
| | - Gaihe Yang
- State key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, Shaanxi, China.
| | - Gehong Wei
- State key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
26
|
Graham EB, Garayburu-Caruso VA, Wu R, Zheng J, McClure R, Jones GD. Genomic fingerprints of the world's soil ecosystems. mSystems 2024; 9:e0111223. [PMID: 38722174 PMCID: PMC11237643 DOI: 10.1128/msystems.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/25/2024] [Indexed: 06/19/2024] Open
Abstract
Despite the explosion of soil metagenomic data, we lack a synthesized understanding of patterns in the distribution and functions of soil microorganisms. These patterns are critical to predictions of soil microbiome responses to climate change and resulting feedbacks that regulate greenhouse gas release from soils. To address this gap, we assay 1,512 manually curated soil metagenomes using complementary annotation databases, read-based taxonomy, and machine learning to extract multidimensional genomic fingerprints of global soil microbiomes. Our objective is to uncover novel biogeographical patterns of soil microbiomes across environmental factors and ecological biomes with high molecular resolution. We reveal shifts in the potential for (i) microbial nutrient acquisition across pH gradients; (ii) stress-, transport-, and redox-based processes across changes in soil bulk density; and (iii) greenhouse gas emissions across biomes. We also use an unsupervised approach to reveal a collection of soils with distinct genomic signatures, characterized by coordinated changes in soil organic carbon, nitrogen, and cation exchange capacity and in bulk density and clay content that may ultimately reflect soil environments with high microbial activity. Genomic fingerprints for these soils highlight the importance of resource scavenging, plant-microbe interactions, fungi, and heterotrophic metabolisms. Across all analyses, we observed phylogenetic coherence in soil microbiomes-more closely related microorganisms tended to move congruently in response to soil factors. Collectively, the genomic fingerprints uncovered here present a basis for global patterns in the microbial mechanisms underlying soil biogeochemistry and help beget tractable microbial reaction networks for incorporation into process-based models of soil carbon and nutrient cycling.IMPORTANCEWe address a critical gap in our understanding of soil microorganisms and their functions, which have a profound impact on our environment. We analyzed 1,512 global soils with advanced analytics to create detailed genetic profiles (fingerprints) of soil microbiomes. Our work reveals novel patterns in how microorganisms are distributed across different soil environments. For instance, we discovered shifts in microbial potential to acquire nutrients in relation to soil acidity, as well as changes in stress responses and potential greenhouse gas emissions linked to soil structure. We also identified soils with putative high activity that had unique genomic characteristics surrounding resource acquisition, plant-microbe interactions, and fungal activity. Finally, we observed that closely related microorganisms tend to respond in similar ways to changes in their surroundings. Our work is a significant step toward comprehending the intricate world of soil microorganisms and its role in the global climate.
Collapse
Affiliation(s)
- Emily B. Graham
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | | | - Ruonan Wu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jianqiu Zheng
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Gerrad D. Jones
- Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
27
|
Wang E, Yu B, Zhang J, Gu S, Yang Y, Deng Y, Guo X, Wei B, Bi J, Sun M, Feng H, Song A, Fan F. Low Carbon Loss from Long-Term Manure-Applied Soil during Abrupt Warming Is Realized through Soil and Microbiome Interplay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9658-9668. [PMID: 38768036 DOI: 10.1021/acs.est.3c08319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Manure application is a global approach for enhancing soil organic carbon (SOC) sequestration. However, the response of SOC decomposition in manure-applied soil to abrupt warming, often occurring during diurnal temperature fluctuations, remains poorly understood. We examined the effects of long-term (23 years) continuous application of manure on SOC chemical composition, soil respiration, and microbial communities under temperature shifts (15 vs 25 °C) in the presence of plant residues. Compared to soil without fertilizer, manure application reduced SOC recalcitrance indexes (i.e., aliphaticity and aromaticity) by 17.45 and 21.77%, and also reduced temperature sensitivity (Q10) of native SOC decomposition, plant residue decomposition, and priming effect by 12.98, 15.98, and 52.83%, respectively. The relative abundances of warm-stimulated chemoheterotrophic bacteria and fungi were lower in the manure-applied soil, whereas those of chemoautotrophic Thaumarchaeota were higher. In addition, the microbial network of the manure-applied soil was more interconnected, with more negative connections with the warm-stimulated taxa than soils without fertilizer or with chemical fertilizer applied. In conclusion, our study demonstrated that the reduced loss of SOC to abrupt warming by manure application arises from C chemistry modification, less warm-stimulated microorganisms, a more complex microbial community, and the higher CO2 intercepting capability by Thaumarchaeota.
Collapse
Affiliation(s)
- Enzhao Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bing Yu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiayin Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Songsong Gu
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunfeng Yang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Deng
- Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xue Guo
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100864, China
| | - Buqing Wei
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Bi
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaomiao Sun
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huaqi Feng
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Alin Song
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fenliang Fan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
28
|
Prieto-Fernández F, Lambert S, Kujala K. Assessment of microbial communities from cold mine environments and subsequent enrichment, isolation and characterization of putative antimony- or copper-metabolizing microorganisms. Front Microbiol 2024; 15:1386120. [PMID: 38855773 PMCID: PMC11160943 DOI: 10.3389/fmicb.2024.1386120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 06/11/2024] Open
Abstract
Mining activities, even in arctic regions, create waste materials releasing metals and metalloids, which have an impact on the microorganisms inhabiting their surroundings. Some species can persist in these areas through tolerance to meta(loid)s via, e.g., metabolic transformations. Due to the interaction between microorganisms and meta(loid)s, interest in the investigation of microbial communities and their possible applications (like bioremediation or biomining) has increased. The main goal of the present study was to identify, isolate, and characterize microorganisms, from subarctic mine sites, tolerant to the metalloid antimony (Sb) and the metal copper (Cu). During both summer and winter, samples were collected from Finnish mine sites (site A and B, tailings, and site C, a water-treatment peatland) and environmental parameters were assessed. Microorganisms tolerant to Sb and Cu were successfully enriched under low temperatures (4°C), creating conditions that promoted the growth of aerobic and fermenting metal(loid) tolerating or anaerobic metal(loid) respiring organism. Microbial communities from the environment and Sb/Cu-enriched microorganisms were studied via 16S rRNA amplicon sequencing. Site C had the highest number of taxa and for all sites, an expected loss of biodiversity occurred when enriching the samples, with genera like Prauserella, Pseudomonas or Clostridium increasing their relative abundances and others like Corynebacterium or Kocuria reducing in relative abundance. From enrichments, 65 putative Sb- and Cu-metabolizing microorganisms were isolated, showing growth at 0.1 mM to 10 mM concentrations and 0°C to 40°C temperatures. 16S rRNA gene sequencing of the isolates indicated that most of the putative anaerobically Sb-respiring tolerators were related to the genus Clostridium. This study represents the first isolation, to our knowledge, of putative Sb-metabolizing cold-tolerant microorganisms and contributes to the understanding of metal (loid)-tolerant microbial communities in Arctic mine sites.
Collapse
|
29
|
Pei L, Ye S, Xie L, Zhou P, He L, Yang S, Ding X, Yuan H, Dai T, Laws EA. Differential effects of warming on the complexity and stability of the microbial network in Phragmites australis and Spartina alterniflora wetlands in Yancheng, Jiangsu Province, China. Front Microbiol 2024; 15:1347821. [PMID: 38601935 PMCID: PMC11004437 DOI: 10.3389/fmicb.2024.1347821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
The impact of climate warming on soil microbial communities can significantly influence the global carbon cycle. Coastal wetlands, in particular, are susceptible to changes in soil microbial community structure due to climate warming and the presence of invasive plant species. However, there is limited knowledge about how native and invasive plant wetland soil microbes differ in their response to warming. In this study, we investigated the temporal dynamics of soil microbes (prokaryotes and fungi) under experimental warming in two coastal wetlands dominated by native Phragmites australis (P. australis) and invasive Spartina alterniflora (S. alterniflora). Our research indicated that short-term warming had minimal effects on microbial abundance, diversity, and composition. However, it did accelerate the succession of soil microbial communities, with potentially greater impacts on fungi than prokaryotes. Furthermore, in the S. alterniflora wetland, experimental warming notably increased the complexity and connectivity of the microbial networks. While in the P. australis wetland, it decreased these factors. Analysis of robustness showed that experimental warming stabilized the co-occurrence network of the microbial community in the P. australis wetland, but destabilized it in the S. alterniflora wetland. Additionally, the functional prediction analysis using the Faprotax and FunGuild databases revealed that the S. alterniflora wetland had a higher proportion of saprotrophic fungi and prokaryotic OTUs involved in carbon degradation (p < 0.05). With warming treatments, there was an increasing trend in the proportion of prokaryotic OTUs involved in carbon degradation, particularly in the S. alterniflora wetland. Therefore, it is crucial to protect native P. australis wetlands from S. alterniflora invasion to mitigate carbon emissions and preserve the health of coastal wetland ecosystems under future climate warming in China.
Collapse
Affiliation(s)
- Lixin Pei
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Siyuan Ye
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Liujuan Xie
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Pan Zhou
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Lei He
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Shixiong Yang
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Xigui Ding
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Hongming Yuan
- Qingdao Institute of Marine Geology, China Geologic Survey, Qingdao, China
- Laboratory for Marine Geology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, China
| | - Edward A. Laws
- Department of Environmental Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
30
|
Zhao X, Cui H, Song H, Chen J, Wang J, Liu Z, Ali I, Yang Z, Hou X, Zhou X, Xiao S, Chen S. Contrasting responses of α- and β-multifunctionality to aboveground plant community in the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170464. [PMID: 38290671 DOI: 10.1016/j.scitotenv.2024.170464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
The aboveground plant communities are crucial in driving ecosystem functioning, particularly being the primary producers in terrestrial ecosystems. Numerous studies have investigated the impacts of aboveground plant communities on multiple ecosystem functions at α-scale. However, such critical effects have been unexplored at β-scale and the comparative assessment of the effects and underlying mechanisms of aboveground plant communities on α- and β-multifunctionality has been lacking. In this study, we examined the effects of aboveground plant communities on soil multifunctionality both at α- and β-scale in the alpine meadow of the Tibetan Plateau. Additionally, we quantified the direct effects of aboveground plant communities, as well as the indirect effects mediated by changes in biotic and abiotic factors, on soil multifunctionality at both scales. Our findings revealed that: 1) Aboveground plant communities had significantly positive effects on α-multifunctionality whereas, β-multifunctionality was not affected significantly. 2) Aboveground plant communities directly influence α- and β-multifunctionality in contrasting ways, with positive and negative effects, respectively. Apart from the direct effects of plant community, we found that soil water content and bacterial β-diversity serving as the primary predictors for the responses of α- and β-multifunctionality to the presence of aboveground plant communities, respectively. And β-soil biodiversity appeared to be a stronger predictor of multifunctionality relative to α-soil biodiversity. Our findings provide novel insights into the drivers of ecosystem multifunctionality at different scales, highlight the importance of maintaining biodiversity at multiple scales and offer valuable knowledge for the maintenance of ecosystem functioning and the restoration of alpine meadow ecosystems.
Collapse
Affiliation(s)
- Xia Zhao
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Hanwen Cui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Hongxian Song
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Jingwei Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Jiajia Wang
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Ziyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Izhar Ali
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Zi Yang
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiao Hou
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Xianhui Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Sa Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China
| | - Shuyan Chen
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu 730000, People's Republic of China.
| |
Collapse
|
31
|
Wang C, Song Z, Zhang H, Sun Y, Hu X. Deciphering variations in the surficial bacterial compositions and functional profiles in the intersection between North and South Yellow Sea. MARINE ENVIRONMENTAL RESEARCH 2024; 195:106355. [PMID: 38244366 DOI: 10.1016/j.marenvres.2024.106355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The coastal ocean systems play paramount role in the nutrient biogeochemistry because of its interconnected environment. To gain a novel insight into coupling relationships between bacterial community, functioning properties and nutrient metabolism, we conducted analysis on the patterns and driving factors of planktonic bacterial functional community across subsurface water of marine ranching near the Yellow Sea in both summer and winter. Illumina HiSeq Sequencing and a corresponding set of biogeochemical data were used to assess distribution patterns of taxa, adaptive mechanism and metabolic function. Results demonstrated that Proteobacteria, Cyanobacteria, Actinobacteriota and Bacteroidota were dominant phyla both in summer and winter. Taxonomic profiles related to nutrient variation were found to be highly correlated with Dissolved Oxygen (DO) and Chlorophyll fluorescence (FLUO), and distinct diversity differences were also found between summer and winter samples. Functional activity in summer associated with the relative abundance of phototrophy and photoautotrophy were the highest in the subsurface water, while in winter the dominant functional properties were mainly include chemoheterotrophy and aerobic_ chemoheterotrophy. A significant difference related to functional activity between summer and winter, mainly representing ligninolysis and iron_respiration. In general, our study provides a framework for understanding the relative importance of environmental factors, temperature variation and nutrient availability in shaping the metabolic processes of aquatic microorganisms, particularly in ocean mariculture systems.
Collapse
Affiliation(s)
- Caixia Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zenglei Song
- Yantai Vocational College, Yantai, 264003, China
| | - Haikun Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China
| | - Yanyu Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China
| | - Xiaoke Hu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264403, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266237, China.
| |
Collapse
|
32
|
Metze D, Schnecker J, de Carlan CLN, Bhattarai B, Verbruggen E, Ostonen I, Janssens IA, Sigurdsson BD, Hausmann B, Kaiser C, Richter A. Soil warming increases the number of growing bacterial taxa but not their growth rates. SCIENCE ADVANCES 2024; 10:eadk6295. [PMID: 38394199 PMCID: PMC10889357 DOI: 10.1126/sciadv.adk6295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Soil microorganisms control the fate of soil organic carbon. Warming may accelerate their activities putting large carbon stocks at risk of decomposition. Existing knowledge about microbial responses to warming is based on community-level measurements, leaving the underlying mechanisms unexplored and hindering predictions. In a long-term soil warming experiment in a Subarctic grassland, we investigated how active populations of bacteria and archaea responded to elevated soil temperatures (+6°C) and the influence of plant roots, by measuring taxon-specific growth rates using quantitative stable isotope probing and 18O water vapor equilibration. Contrary to prior assumptions, increased community growth was associated with a greater number of active bacterial taxa rather than generally faster-growing populations. We also found that root presence enhanced bacterial growth at ambient temperatures but not at elevated temperatures, indicating a shift in plant-microbe interactions. Our results, thus, reveal a mechanism of how soil bacteria respond to warming that cannot be inferred from community-level measurements.
Collapse
Affiliation(s)
- Dennis Metze
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria
| | - Jörg Schnecker
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | - Biplabi Bhattarai
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Erik Verbruggen
- Research Group Plants and Ecosystems, University of Antwerp, Antwerp, Belgium
| | - Ivika Ostonen
- Department of Geography, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Ivan A. Janssens
- Research Group Plants and Ecosystems, University of Antwerp, Antwerp, Belgium
| | - Bjarni D. Sigurdsson
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, Hvanneyri, Borgarnes, Iceland
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christina Kaiser
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- International Institute for Applied Systems Analysis, Advancing Systems Analysis Program, Laxenburg, Austria
| |
Collapse
|
33
|
Hou Z, Mo F, Zhou Q, Xie Y, Liu X, Zheng T, Tao Z. Key Role of Vegetation Cover in Alleviating Microplastic-Enhanced Carbon Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38319346 DOI: 10.1021/acs.est.3c10017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Microplastics (MPs) are considered to influence fundamental biogeochemical processes, but the effects of plant residue-MP interactions on soil carbon turnover in urban greenspaces are virtually unknown. Here, an 84-day incubation experiment was constructed using four types of single-vegetation-covered soils (6 years), showing that polystyrene MP (PSMP) pollution caused an unexpectedly large increase in soil CO2 emissions. The additional CO2 originating from highly bioavailable active dissolved organic matter molecules (<380 °C, predominantly polysaccharides) was converted from persistent carbon (380-650 °C, predominantly aromatic compounds) rather than PSMP derivatives. However, the priming effect of PSMP derivatives was weakened in plant-driven soils (resistivity: shrub > tree > grass). This can be explained from two perspectives: (1) Plant residue-driven humification processes reduced the percentage of bioavailable active dissolved organic matter derived from the priming effects of PSMPs. (2) Plant residues accelerated bacterial community succession (dominated by plant residue types) but slowed fungal community demise (retained carbon turnover-related functional taxa), enabling specific enrichment of glycolysis, the citric acid cycle and the pentose phosphate pathway. These results provide a necessary theoretical basis to understand the role of plant residues in reducing PSMP harm at the ecological level and refresh knowledge about the importance of biodiversity for ecosystem stability.
Collapse
Affiliation(s)
- Zelin Hou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fan Mo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingying Xie
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xueju Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tong Zheng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zongxin Tao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
34
|
Khan A, Ball BA. Soil microbial responses to simulated climate change across polar ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168556. [PMID: 37979872 DOI: 10.1016/j.scitotenv.2023.168556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The polar regions are among the most biologically constrained in the world, characterized by cold temperatures and reduced liquid water. These limitations make them among the most climate-sensitive regions on Earth. Despite the overwhelming constraints from low temperatures and resource availability, many polar ecosystems, including polar deserts and tundras across the Arctic and Antarctic host uniquely diverse microbial communities. Polar regions have warmed more rapidly than the global average, with continued warming predicted for the future, which will reduce constraints on soil microbial activity. This could alter polar carbon (C) cycles, increasing CO2 emissions into the atmosphere. The objective of this study was to determine how increased temperature and moisture availability impacts microbial respiration in polar regions, by focusing on a diversity of ecosystem types (polar desert vs. tundra) that are geographically distant across Antarctica and the Arctic. We found that polar desert soil microbes were co-limited by temperature and moisture, though C and nitrogen (N) mineralization were only stimulated at the coldest and driest of the two polar deserts. Only bacterial biomass was impacted at the less harsh of the polar deserts, suggesting microbial activity is limited by factors other than temperature and moisture. Of the tundra sites, only the Antarctic tundra was climate-sensitive, where increased temperature decreased C and N mineralization while water availability stimulated it. The greater availability of soil resources and vegetative biomass at the Arctic tundra site might lead to its lack of climate-sensitivity. Notably, while C and N dynamics were climate-sensitive at some of our polar sites, P availability was not impacted at any of them. Our results demonstrate that soil microbial processes in some polar ecosystems are more sensitive to changes in temperature and moisture than others, with implications for soil C and N storage that are not uniformly predictable across polar regions.
Collapse
Affiliation(s)
- Ana Khan
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, AZ 85306, USA
| | - Becky A Ball
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, AZ 85306, USA.
| |
Collapse
|
35
|
Liu B, Qi L, Zheng Y, Zhang C, Zhou J, An Z, Wang B, Lin Z, Yao C, Wang Y, Yin G, Dong H, Li X, Liang X, Han P, Liu M, Zhang G, Cui Y, Hou L. Four years of climate warming reduced dark carbon fixation in coastal wetlands. THE ISME JOURNAL 2024; 18:wrae138. [PMID: 39052319 PMCID: PMC11308615 DOI: 10.1093/ismejo/wrae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
Dark carbon fixation (DCF), conducted mainly by chemoautotrophs, contributes greatly to primary production and the global carbon budget. Understanding the response of DCF process to climate warming in coastal wetlands is of great significance for model optimization and climate change prediction. Here, based on a 4-yr field warming experiment (average annual temperature increase of 1.5°C), DCF rates were observed to be significantly inhibited by warming in coastal wetlands (average annual DCF decline of 21.6%, and estimated annual loss of 0.08-1.5 Tg C yr-1 in global coastal marshes), thus causing a positive climate feedback. Under climate warming, chemoautotrophic microbial abundance and biodiversity, which were jointly affected by environmental changes such as soil organic carbon and water content, were recognized as significant drivers directly affecting DCF rates. Metagenomic analysis further revealed that climate warming may alter the pattern of DCF carbon sequestration pathways in coastal wetlands, increasing the relative importance of the 3-hydroxypropionate/4-hydroxybutyrate cycle, whereas the relative importance of the dominant chemoautotrophic carbon fixation pathways (Calvin-Benson-Bassham cycle and W-L pathway) may decrease due to warming stress. Collectively, our work uncovers the feedback mechanism of microbially mediated DCF to climate warming in coastal wetlands, and emphasizes a decrease in carbon sequestration through DCF activities in this globally important ecosystem under a warming climate.
Collapse
Affiliation(s)
- Bolin Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lin Qi
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chao Zhang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhirui An
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Bin Wang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhuke Lin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Cheng Yao
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yixuan Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ping Han
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Guosen Zhang
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ying Cui
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
36
|
Gu L, Yan W, Yue X, Zhong H, Wang D. Spatio-temporal distribution characteristics and influencing factors of protoporphyrin IX in the estuarine-coastal ecosystems. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106297. [PMID: 38096713 DOI: 10.1016/j.marenvres.2023.106297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/29/2023] [Accepted: 12/05/2023] [Indexed: 01/02/2024]
Abstract
Protoporphyrin IX (PPIX), a key precursor for the synthesis of chlorophyll and heme, is fundamental to photosynthetic eukaryotic cells and participates in light absorption, energy transduction, and numerous other cellular metabolic activities. Along with the application of genetic and biochemical techniques over the past few years, our understanding of the formation of PPIX has been largely advanced, especially regarding possible metabolic pathways. However, the ecological role and function of PPIX in natural ecosystems remains unclear. We have previously established a method for quantifying PPIX in marine ecosystems. Here, our results provide evidence that PPIX is not only subtly linked to nutrient uptake but also triggers phytoplankton productivity. PPIX and its derivatives are dynamic spatiotemporally in direct response to increased nutrient availability. Using 16 S rRNA gene amplicon sequencing, PPIX was revealed to interact strongly with many microorganisms, indicating that PPIX serves as a critical metabolite in maintaining microbial metabolism and community development. In summary, we observed that PPIX is linearly related to nutrient availability and microbial diversity. The levels of microbial PPIX reflect ecological health, and the availability of PPIX and nutrients jointly affect microbial community composition.
Collapse
Affiliation(s)
- Lide Gu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Wanli Yan
- College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xinli Yue
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Haowen Zhong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Deli Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
37
|
Purcell AM, Dijkstra P, Hungate BA, McMillen K, Schwartz E, van Gestel N. Rapid growth rate responses of terrestrial bacteria to field warming on the Antarctic Peninsula. THE ISME JOURNAL 2023; 17:2290-2302. [PMID: 37872274 PMCID: PMC10689830 DOI: 10.1038/s41396-023-01536-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Ice-free terrestrial environments of the western Antarctic Peninsula are expanding and subject to colonization by new microorganisms and plants, which control biogeochemical cycling. Measuring growth rates of microbial populations and ecosystem carbon flux is critical for understanding how terrestrial ecosystems in Antarctica will respond to future warming. We implemented a field warming experiment in early (bare soil; +2 °C) and late (peat moss-dominated; +1.2 °C) successional glacier forefield sites on the western Antarctica Peninsula. We used quantitative stable isotope probing with H218O using intact cores in situ to determine growth rate responses of bacterial taxa to short-term (1 month) warming. Warming increased the growth rates of bacterial communities at both sites, even doubling the number of taxa exhibiting significant growth at the early site. Growth responses varied among taxa. Despite that warming induced a similar response for bacterial relative growth rates overall, the warming effect on ecosystem carbon fluxes was stronger at the early successional site-likely driven by increased activity of autotrophs which switched the ecosystem from a carbon source to a carbon sink. At the late-successional site, warming caused a significant increase in growth rate of many Alphaproteobacteria, but a weaker and opposite gross ecosystem productivity response that decreased the carbon sink-indicating that the carbon flux rates were driven more strongly by the plant communities. Such changes to bacterial growth and ecosystem carbon cycling suggest that the terrestrial Antarctic Peninsula can respond fast to increases in temperature, which can have repercussions for long-term elemental cycling and carbon storage.
Collapse
Affiliation(s)
- Alicia M Purcell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Kelly McMillen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Natasja van Gestel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- TTU Climate Center, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
38
|
Song Y, Sun L, Song C, Li M, Liu Z, Zhu M, Chen S, Yuan J, Gao J, Wang X, Wang W. Responses of soil microbes and enzymes to long-term warming incubation in different depths of permafrost peatland soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165733. [PMID: 37490945 DOI: 10.1016/j.scitotenv.2023.165733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Soil microbes and enzymes mediate soil carbon-climate feedback, and their responses to increasing temperature partly affect soil carbon stability subjected to the effects of climate change. We performed a 50-month incubation experiment to determine the effect of long-term warming on soil microbes and enzymes involved in carbon cycling along permafrost peatland profile (0-150 cm) and investigated their response to water flooding in the active soil layer. Soil bacteria, fungi, and most enzymes were observed to be sensitive to changes in temperature and water in the permafrost peatland. Bacterial and fungal abundance decreased in the active layer soil but increased in the deepest permafrost layer under warming. The highest decrease in the ratio of soil bacteria to fungi was observed in the deepest permafrost layer under warming. These results indicated that long-term warming promotes recalcitrant carbon loss in permafrost because fungi are more efficient in decomposing high-molecular-weight compounds. Soil microbial catabolic activity measured using Biolog Ecoplates indicated a greater degree of average well color development at 15 °C than at 5 °C. The highest levels of microbial catabolic activity, functional diversity, and carbon substrate utilization were found in the permafrost boundary layer (60-80 cm). Soil polyphenol oxidase that degrades recalcitrant carbon was more sensitive to increases in temperature than β-glucosidase, N-acetyl-β-glucosaminidase, and acid phosphatase, which degrade labile carbon. Increasing temperature and water flooding exerted a synergistic effect on the bacterial and fungal abundance and β-glucosidase, acid phosphatase, and RubisCO activity in the topsoil. Structural equation modeling analysis indicated that soil enzyme activity significantly correlated with ratio of soil bacteria to fungi and microbial catabolic activity. Our results provide valuable insights into the linkage response of soil microorganisms, enzymes to climate change and their feedback to permafrost carbon loss.
Collapse
Affiliation(s)
- Yanyu Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Li Sun
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Mengting Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; College of Tourism and Geographical Science, Jilin Normal University, Siping 136000, China
| | - Zhendi Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy Sciences, Beijing 100049, China
| | - Mengyuan Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy Sciences, Beijing 100049, China
| | - Shuang Chen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jiabao Yuan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy Sciences, Beijing 100049, China
| | - Jinli Gao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xianwei Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wenjuan Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
39
|
Liu L, Xu F, Lei J, Wang P, Zhang L, Wang J, Zhao J, Mao D, Ye X, Huang Y, Hu G, Cui Z, Li Z. Genome analysis of a plasmid-bearing myxobacterim Myxococcus sp. strain MxC21 with salt-tolerant property. Front Microbiol 2023; 14:1250602. [PMID: 37789850 PMCID: PMC10544341 DOI: 10.3389/fmicb.2023.1250602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Myxobacteria are widely distributed in various habitats of soil and oceanic sediment. However, it is unclear whether soil-dwelling myxobacteria tolerate a saline environment. In this study, a salt-tolerant myxobacterium Myxococcus sp. strain MxC21 was isolated from forest soil with NaCl tolerance >2% concentration. Under 1% salt-contained condition, strain MxC21 could kill and consume bacteria prey and exhibited complex social behaviors such as S-motility, biofilm, and fruiting body formation but adopted an asocial living pattern with the presence of 1.5% NaCl. To investigate the genomic basis of stress tolerance, the complete genome of MxC21 was sequenced and analyzed. Strain MxC21 consists of a circular chromosome with a total length of 9.13 Mbp and a circular plasmid of 64.3 kb. Comparative genomic analysis revealed that the genomes of strain MxC21 and M. xanthus DK1622 share high genome synteny, while no endogenous plasmid was found in DK1622. Further analysis showed that approximately 21% of its coding genes from the genome of strain MxC21 are predominantly associated with signal transduction, transcriptional regulation, and protein folding involved in diverse niche adaptation such as salt tolerance, which enables social behavior such as gliding motility, sporulation, and predation. Meantime, a high number of genes are also found to be involved in defense against oxidative stress and production of antimicrobial compounds. All of these functional genes may be responsible for the potential salt-toleration. Otherwise, strain MxC21 is the second reported myxobacteria containing indigenous plasmid, while only a small proportion of genes was specific to the circular plasmid of strain MxC21, and most of them were annotated as hypothetical proteins, which may have a direct relationship with the habitat adaptation of strain MxC21 under saline environment. This study provides an inspiration of the adaptive evolution of salt-tolerant myxobacterium and facilitates a potential application in the improvement of saline soil in future.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fengjuan Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jinhui Lei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peiwen Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jihong Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jingya Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dongmei Mao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gang Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Shi J, Wang Z, Peng Y, Fan Z, Zhang Z, Wang X, Zhu K, Shang J, Wang J. Effects of Microplastics on Soil Carbon Mineralization: The Crucial Role of Oxygen Dynamics and Electron Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13588-13600. [PMID: 37647508 DOI: 10.1021/acs.est.3c02133] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Although our understanding of the effects of microplastics on the dynamics of soil organic matter (SOM) has considerably advanced in recent years, the fundamental mechanisms remain unclear. In this study, we examine the effects of polyethylene and poly(lactic acid) microplastics on SOM processes via mineralization incubation. Accordingly, we evaluated the changes in carbon dioxide (CO2) and methane (CH4) production. An O2 planar optical sensor was used to detect the temporal behavior of dissolved O2 during incubation to determine the microscale oxygen heterogeneity caused by microplastics. Additionally, the changes in soil dissolved organic matter (DOM) were evaluated using a combination of spectroscopic approaches and ultrahigh-resolution mass spectrometry. Microplastics increased cumulative CO2 emissions by 160-613%, whereas CH4 emissions dropped by 45-503%, which may be attributed to the oxygenated porous habitats surrounding microplastics. Conventional and biodegradable microplastics changed the quantities of soil dissolved organic carbon. In the microplastic treatments, DOM with more polar groups was detected, suggesting a higher level of electron transport. In addition, there was a positive correlation between the carbon concentration, electron-donating ability, and CO2 emission. These findings suggest that microplastics may facilitate the mineralization of SOM by modifying O2 microenvironments, DOM concentration, and DOM electron transport capability. Accordingly, this study provides new insights into the impact of microplastics on soil carbon dynamics.
Collapse
Affiliation(s)
- Jia Shi
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zi Wang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yumei Peng
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhongmin Fan
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ziyun Zhang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiang Wang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Kun Zhu
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianying Shang
- Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
41
|
Tong D, Wang Y, Yu H, Shen H, Dahlgren RA, Xu J. Viral lysing can alleviate microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components in soil. THE ISME JOURNAL 2023; 17:1247-1256. [PMID: 37248401 PMCID: PMC10356844 DOI: 10.1038/s41396-023-01438-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Viruses are critical for regulating microbial communities and biogeochemical processes affecting carbon/nutrient cycling. However, the role of soil phages in controlling microbial physiological traits and intrinsic dissolved organic matter (DOM) properties remains largely unknown. Herein, microcosm experiments with different soil phage concentrates (including no-added phages, inactive phages, and three dilutions of active phages) at two temperatures (15 °C and 25 °C) were conducted to disclose the nutrient and DOM dynamics associated with viral lysing. Results demonstrated three different phases of viral impacts on CO2 emission at both temperatures, and phages played a role in maintaining Q10 within bounds. At both temperatures, microbial nutrient limitations (especially P limitation) were alleviated by viral lysing as determined by extracellular enzyme activity (decreased Vangle with active phages). Additionally, the re-utilization of lysate-derived DOM by surviving microbes stimulated an increase of microbial metabolic efficiency and recalcitrant DOM components (e.g., SUV254, SUV260 and HIX). This research provides direct experimental evidence that the "viral shuttle" exists in soils, whereby soil phages increase recalcitrant DOM components. Our findings advance the understanding of viral controls on soil biogeochemical processes, and provide a new perspective for assessing whether soil phages provide a net "carbon sink" vs. "carbon source" in soils.
Collapse
Affiliation(s)
- Di Tong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Youjing Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Haodan Yu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Haojie Shen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
42
|
Cheng Z, Wu S, Du J, Liu Y, Sui X, Yang L. Reduced Arbuscular Mycorrhizal Fungi (AMF) Diversity in Light and Moderate Fire Sites in Taiga Forests, Northeast China. Microorganisms 2023; 11:1836. [PMID: 37513008 PMCID: PMC10385377 DOI: 10.3390/microorganisms11071836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Forest fires are an important disturbance factor in forest ecosystems, and obviously change the soil environment. Arbuscular mycorrhizal fungi, as a medium and bridge between vegetation and soil, play a crucial role in mediating plant nutrient uptake and regulating the productivity, stability, and succession of vegetation-soil systems. To investigate the effects of forest fires on the community structure and diversity of arbuscular mycorrhizal fungi in cold-temperate Larix gmelinii forests, we collected soils from light, moderate, and heavy fire disturbance forests and a natural forest as a control forest in Greater Khingan Larix gmelinii forests, in the northeast of China. The community structure and diversity of arbuscular mycorrhizal fungi was sequenced using Illumina MiSeq technology and we analyzed the correlation with the soil physicochemical characteristics. The results showed that the contents of microbial biomass content (MBC), moisture content (MC), total nitrogen (TN), and available phosphors (AP) increased significantly (p < 0.05) with increasing fire intensity (from Light to heavy fire), but available potassium (AK) decreased significantly (p < 0.05). These changes were not significant. A total of 14,554 valid sequences from all sequences were classified into 66 ASVs that belonged into one phylum, one order, four families, and four genera. The genera included Glomus, Ambispora, Paraglomus, and Acaulospora, and Glomus was the dominant genus (the genera with the five most relative abundances) in the control and heavy-fire forests. Non-metric multidimensional scaling (NMDS) analysis showed that forest fires significantly affected the community structure of arbuscular mycorrhizal fungi (p < 0.01). Redundancy analysis (RDA) showed that MBC, SOC, and AP contents significantly affected the composition structure and diversity of arbuscular mycorrhizal fungi communities. This study indicated that forest fires affected the composition and diversity of soil arbuscular mycorrhizal fungi communities through changing the soil physicochemical parameters (MBC, SOC, and AP) in cold-temperate Larix gmelinii forests. The study of soil physicochemical properties and arbuscular mycorrhizal fungi diversity in cold-temperate Larix gmelinii forests in the Greater Khingan Mountains after forest fires provides a reference basis for the revegetation and reconstruction of fire sites.
Collapse
Affiliation(s)
- Zhichao Cheng
- Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Song Wu
- Science and Technology Innovation Center, Institute of Scientific and Technical Information of Heilongjiang Province, Harbin 150028, China
| | - Jun Du
- Heilongjiang Huzhong National Nature Reserve, Huzhong 165038, China
| | - Yongzhi Liu
- Heilongjiang Huzhong National Nature Reserve, Huzhong 165038, China
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Libin Yang
- Key Laboratory of Biodiversity, Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
- Heilongjiang Huzhong National Nature Reserve, Huzhong 165038, China
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
43
|
Walkup J, Dang C, Mau RL, Hayer M, Schwartz E, Stone BW, Hofmockel KS, Koch BJ, Purcell AM, Pett-Ridge J, Wang C, Hungate BA, Morrissey EM. The predictive power of phylogeny on growth rates in soil bacterial communities. ISME COMMUNICATIONS 2023; 3:73. [PMID: 37454187 PMCID: PMC10349831 DOI: 10.1038/s43705-023-00281-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
Predicting ecosystem function is critical to assess and mitigate the impacts of climate change. Quantitative predictions of microbially mediated ecosystem processes are typically uninformed by microbial biodiversity. Yet new tools allow the measurement of taxon-specific traits within natural microbial communities. There is mounting evidence of a phylogenetic signal in these traits, which may support prediction and microbiome management frameworks. We investigated phylogeny-based trait prediction using bacterial growth rates from soil communities in Arctic, boreal, temperate, and tropical ecosystems. Here we show that phylogeny predicts growth rates of soil bacteria, explaining an average of 31%, and up to 58%, of the variation within ecosystems. Despite limited overlap in community composition across these ecosystems, shared nodes in the phylogeny enabled ancestral trait reconstruction and cross-ecosystem predictions. Phylogenetic relationships could explain up to 38% (averaging 14%) of the variation in growth rates across the highly disparate ecosystems studied. Our results suggest that shared evolutionary history contributes to similarity in the relative growth rates of related bacteria in the wild, allowing phylogeny-based predictions to explain a substantial amount of the variation in taxon-specific functional traits, within and across ecosystems.
Collapse
Affiliation(s)
- Jeth Walkup
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Chansotheary Dang
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Rebecca L Mau
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Michaela Hayer
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Bram W Stone
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Kirsten S Hofmockel
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Benjamin J Koch
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Alicia M Purcell
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Physical and Life Science Directorate, Livermore, CA, USA
- University of California Merced, Life & Environmental Sciences Department, Merced, CA, 95343, USA
| | - Chao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, LN, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society (Ecoss), Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Ember M Morrissey
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
44
|
Zhang J, Feng Y, Maestre FT, Berdugo M, Wang J, Coleine C, Sáez-Sandino T, García-Velázquez L, Singh BK, Delgado-Baquerizo M. Water availability creates global thresholds in multidimensional soil biodiversity and functions. Nat Ecol Evol 2023; 7:1002-1011. [PMID: 37169879 DOI: 10.1038/s41559-023-02071-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
Soils support an immense portion of Earth's biodiversity and maintain multiple ecosystem functions which are essential for human well-being. Environmental thresholds are known to govern global vegetation patterns, but it is still unknown whether they can be used to predict the distribution of soil organisms and functions across global biomes. Using a global field survey of 383 sites across contrasting climatic and vegetation conditions, here we showed that soil biodiversity and functions exhibited pervasive nonlinear patterns worldwide and are mainly governed by water availability (precipitation and potential evapotranspiration). Changes in water availability resulted in drastic shifts in soil biodiversity (bacteria, fungi, protists and invertebrates) and soil functions including plant-microbe interactions, plant productivity, soil biogeochemical cycles and soil carbon sequestration. Our findings highlight that crossing specific water availability thresholds can have critical consequences for the provision of essential ecosystem services needed to sustain our planet.
Collapse
Affiliation(s)
- Jianwei Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Youzhi Feng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China.
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio 'Ramón Margalef', Universidad de Alicante, Alicante, Spain
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | - Miguel Berdugo
- Department of Environment Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Depatamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| | - Juntao Wang
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Claudia Coleine
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Tadeo Sáez-Sandino
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain
| | - Laura García-Velázquez
- Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain
| | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain.
| |
Collapse
|
45
|
Morales-Manzo II, Ribes-Moya AM, Pallotti C, Jimenez-Belenguer A, Moro CP, Raigón MD, Rodríguez-Burruezo A, Fita A. Root-Soil Interactions for Pepper Accessions Grown under Organic and Conventional Farming. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091873. [PMID: 37176931 PMCID: PMC10180822 DOI: 10.3390/plants12091873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023]
Abstract
Modern agriculture has boosted the production of food based on the use of pesticides and fertilizers and improved plant varieties. However, the impact of some such technologies is high and not sustainable in the long term. Although the importance of rhizospheres in final plant performance, nutrient cycling, and ecosystems is well recognized, there is still a lack of information on the interactions of their main players. In this paper, four accessions of pepper are studied at the rhizosphere and root level under two farming systems: organic and conventional. Variations in soil traits, such as induced respiration, enzymatic activities, microbial counts, and metabolism of nitrogen at the rhizosphere and bulk soil, as well as measures of root morphology and plant production, are presented. The results showed differences for the evaluated traits between organic and conventional management, both at the rhizosphere and bulk soil levels. Organic farming showed higher microbial counts, enzymatic activities, and nitrogen mobilization. Our results also showed how some genotypes, such as Serrano or Piquillo, modified the properties of the rhizospheres in a very genotype-dependent way. This specificity of the soil-plant interaction should be considered for future breeding programs for soil-tailored agriculture.
Collapse
Affiliation(s)
- Ivan I Morales-Manzo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Edificio 8E Escalera J, CPI, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ana M Ribes-Moya
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Edificio 8E Escalera J, CPI, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Claudia Pallotti
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Edificio 8E Escalera J, CPI, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ana Jimenez-Belenguer
- Centro Avanzado de Microbiología Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Clara Pérez Moro
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Edificio 8E Escalera J, CPI, Universitat Politècnica de València, 46022 Valencia, Spain
| | - María Dolores Raigón
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Edificio 8E Escalera J, CPI, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Adrián Rodríguez-Burruezo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Edificio 8E Escalera J, CPI, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Ana Fita
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Edificio 8E Escalera J, CPI, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
46
|
Hou Z, Zhou Q, Mo F, Kang W, Ouyang S. Enhanced carbon emission driven by the interaction between functional microbial community and hydrocarbons: An enlightenment for carbon cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161402. [PMID: 36638996 DOI: 10.1016/j.scitotenv.2023.161402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Soil microbial communities are usually regarded as one of the key players in the global element cycling. Moreover, an important consequence of oil contamination altering the structure of microbial communities is likely to result in an increased carbon emission. However, understanding of the complex interactions between environmental factors and biological communities is clearly lagging behind. Here it showed that the flux of carbon emissions increased in oil-contaminated soils, up to 13.64 g C·(kg soil)-1·h-1. This phenomenon was mainly driven by the enrichment of rare degrading microorganisms (e.g., Methylosinus, Marinobacter, Pseudomonas, Alcanivorax, Yeosuana, Halomonas and Microbulbifer) in the aerobic layer, rather than the anaerobic layer, which is more conducive to methane formation. In addition, petroleum hydrocarbons and environmental factors are equally important in shaping the structure of microbial communities (the ecological stability) and functional traits (e.g., fatty acid metabolism, lipid metabolism and amino acid metabolism) due to the different ecological sensitivities of microorganisms. Thus, it can be believed that the variability of rare hydrocarbon degrading microorganisms is of greater concern than changes in dominant microorganisms in oil-contaminated soil. Undoubtedly, this study could reveal the unique characterization of bacterial communities that mediate carbon emission and provide evidence for understanding the conversion from carbon stores to carbon gas release in oil-contaminated soils.
Collapse
Affiliation(s)
- Zelin Hou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shaohu Ouyang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Carbon Neutrality Science Center, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
47
|
Distinct Growth Responses of Tundra Soil Bacteria to Short-Term and Long-Term Warming. Appl Environ Microbiol 2023; 89:e0154322. [PMID: 36847530 PMCID: PMC10056963 DOI: 10.1128/aem.01543-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Increases in Arctic temperatures have thawed permafrost and accelerated tundra soil microbial activity, releasing greenhouse gases that amplify climate warming. Warming over time has also accelerated shrub encroachment in the tundra, altering plant input abundance and quality, and causing further changes to soil microbial processes. To better understand the effects of increased temperature and the accumulated effects of climate change on soil bacterial activity, we quantified the growth responses of individual bacterial taxa to short-term warming (3 months) and long-term warming (29 years) in moist acidic tussock tundra. Intact soil was assayed in the field for 30 days using 18O-labeled water, from which taxon-specific rates of 18O incorporation into DNA were estimated as a proxy for growth. Experimental treatments warmed the soil by approximately 1.5°C. Short-term warming increased average relative growth rates across the assemblage by 36%, and this increase was attributable to emergent growing taxa not detected in other treatments that doubled the diversity of growing bacteria. However, long-term warming increased average relative growth rates by 151%, and this was largely attributable to taxa that co-occurred in the ambient temperature controls. There was also coherence in relative growth rates within broad taxonomic levels with orders tending to have similar growth rates in all treatments. Growth responses tended to be neutral in short-term warming and positive in long-term warming for most taxa and phylogenetic groups co-occurring across treatments regardless of phylogeny. Taken together, growing bacteria responded distinctly to short-term and long-term warming, and taxa growing in each treatment exhibited deep phylogenetic organization. IMPORTANCE Soil carbon stocks in the tundra and underlying permafrost have become increasingly vulnerable to microbial decomposition due to climate change. The microbial responses to Arctic warming must be understood in order to predict the effects of future microbial activity on carbon balance in a warming Arctic. In response to our warming treatments, tundra soil bacteria grew faster, consistent with increased rates of decomposition and carbon flux to the atmosphere. Our findings suggest that bacterial growth rates may continue to increase in the coming decades as faster growth is driven by the accumulated effects of long-term warming. Observed phylogenetic organization of bacterial growth rates may also permit taxonomy-based predictions of bacterial responses to climate change and inclusion into ecosystem models.
Collapse
|
48
|
Zhang Y, Li JT, Xu X, Chen HY, Zhu T, Xu JJ, Xu XN, Li JQ, Liang C, Li B, Fang CM, Nie M. Temperature fluctuation promotes the thermal adaptation of soil microbial respiration. Nat Ecol Evol 2023; 7:205-213. [PMID: 36635341 DOI: 10.1038/s41559-022-01944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 10/25/2022] [Indexed: 01/14/2023]
Abstract
The magnitude of the feedback between soil microbial respiration and increased mean temperature may decrease (a process called thermal adaptation) or increase over time, and accurately representing this feedback in models improves predictions of soil carbon loss rates. However, climate change entails changes not only in mean temperature but also in temperature fluctuation, and how this fluctuation regulates the thermal response of microbial respiration has never been systematically evaluated. By analysing subtropical forest soils from a 2,000 km transect across China, we showed that although a positive relationship between soil microbial biomass-specific respiration and temperature was observed under increased constant incubation temperature, an increasing temperature fluctuation had a stronger negative effect. Our results further indicated that changes in bacterial community composition and reduced activities of carbon degradation enzymes promoted the effect of temperature fluctuation. This adaptive response of soil microbial respiration suggests that climate warming may have a lesser exacerbating effect on atmospheric CO2 concentrations than predicted.
Collapse
Affiliation(s)
- Yan Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jin-Tao Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiao Xu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Hong-Yang Chen
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
- Research Center for Northeast Asia Carbon Sink, Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ting Zhu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian-Jun Xu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiao-Ni Xu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Jin-Quan Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Chao Liang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Chang-Ming Fang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Pastore MA, Classen AT, English ME, Frey SD, Knorr MA, Rand K, Adair EC. Soil microbial legacies influence freeze–thaw responses of soil. Funct Ecol 2023. [DOI: 10.1111/1365-2435.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Melissa A. Pastore
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA
- Gund Institute for Environment University of Vermont Burlington Vermont USA
| | - Aimée T. Classen
- Gund Institute for Environment University of Vermont Burlington Vermont USA
- Ecology and Evolutionary Biology Department University of Michigan Ann Arbor Michigan USA
- University of Michigan Biological Station Pellston Michigan USA
| | - Marie E. English
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA
| | - Serita D. Frey
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire USA
| | - Melissa A. Knorr
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire USA
| | - Karin Rand
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA
| | - E. Carol Adair
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA
- Gund Institute for Environment University of Vermont Burlington Vermont USA
| |
Collapse
|
50
|
Elevated temperature and CO 2 strongly affect the growth strategies of soil bacteria. Nat Commun 2023; 14:391. [PMID: 36693873 PMCID: PMC9873651 DOI: 10.1038/s41467-023-36086-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
The trait-based strategies of microorganisms appear to be phylogenetically conserved, but acclimation to climate change may complicate the scenario. To study the roles of phylogeny and environment on bacterial responses to sudden moisture increases, we determine bacterial population-specific growth rates by 18O-DNA quantitative stable isotope probing (18O-qSIP) in soils subjected to a free-air CO2 enrichment (FACE) combined with warming. We find that three growth strategies of bacterial taxa - rapid, intermediate and slow responders, defined by the timing of the peak growth rates - are phylogenetically conserved, even at the sub-phylum level. For example, members of class Bacilli and Sphingobacteriia are mainly rapid responders. Climate regimes, however, modify the growth strategies of over 90% of species, partly confounding the initial phylogenetic pattern. The growth of rapid bacterial responders is more influenced by phylogeny, whereas the variance for slow responders is primarily explained by environmental conditions. Overall, these results highlight the role of phylogenetic and environmental constraints in understanding and predicting the growth strategies of soil microorganisms under global change scenarios.
Collapse
|