1
|
Bu S, Wang Q, Zhang G, Zhang Z, Dai J, Zhang Z. Inflammation molecular network alterations in a depressive-like primate model. J Affect Disord 2025; 379:410-420. [PMID: 40081592 DOI: 10.1016/j.jad.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/01/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
At present, there are no definitive biomarkers for major depressive disorder (MDD). Previous studies prompted that neuroimmunoinflammation is involved in the pathogenesis of depression and its factors become potential diagnostic biomarkers. Non-human primates exhibit depression-like behavior similar to humans in chronically stressed environments. Therefore, in the present study, after completing Whole transcriptome sequencing of peripheral blood, neurology-related and inflammatory molecules in plasma and cerebrospinal fluid were measured by Olink proximity extension assay technology simultaneously in 4 natural depressive-like (DL) cynomolgus monkeys and 4 normal controls to screen potential biological markers. Further, postmortem brain tissues and peripheral blood RNA sequencing data from MDD patients available in the Gene Expression Omnibus (GEO) database were used for cross-species validation. Compared to control monkeys, depressive-like monkeys exhibited elevated levels of neurocan (NCAN). RNA sequencing revealed Toll-like receptor 4 (TLR4) and the interacting S100 calcium-binding protein A family as key molecules in the inflammatory gene network. GEO brain tissue data showed up-regulation of S100A8 and S100A9 in the anterior cingulate cortex of MDD patients. These findings suggest that depressive-like monkeys are in a state of chronic low-grade inflammation and identify NCAN and TLR4 inflammatory network molecules as potential biomarkers of MDD.
Collapse
Affiliation(s)
- Siyuan Bu
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease of Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Qingyun Wang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 999077, Hong Kong
| | - Gaojia Zhang
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease of Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China; Department of Psychology and Sleep Medicine, the Second Hospital of Anhui Medical University, Hefei 230000, China
| | - Zhiting Zhang
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ji Dai
- Shenzhen Technological Research Center for Primate Translational Medicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhijun Zhang
- Department of Neurology in Affiliated ZhongDa Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institution of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease of Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China; Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, Department of Mental Health and Public Health, Faculty of Life and Health Sciences of Shenzhen University of Advanced Technology, The Brain Cognition and Brain Disease Institute of Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Killick R, Hooper C, Fernandes C, Elliott C, Aarsland D, Kjosavik SR, Østerhus R, Williams G. Transcription-Driven Repurposing of Cardiotonic Steroids for Lithium Treatment of Severe Depression. Cells 2025; 14:575. [PMID: 40277900 PMCID: PMC12025515 DOI: 10.3390/cells14080575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Lithium is prescribed as a mood stabilizer for bipolar disorder and severe depression. However, the mechanism of action of lithium is unknown and there are major side effects associated with prolonged medication. This motivates a search for safer alternative drug repurposing candidates. Given that the drug mechanism may be encoded in transcriptional changes, we generated the gene expression profile for acute lithium treatment of cortical neuronal cultures. We found that the lithium-associated transcription response harbors a significant component that is the reverse of that seen in human brain samples from patients with major depression, bipolar disorder, and a mouse model of depression. Interrogating publicly available drug-driven expression data, we found that cardiotonic steroids drive gene expression in a correlated manner to our acute lithium profile. An analysis of the psychiatric medication cohort of the Norwegian Prescription Database showed that cardiotonic prescription is associated with a lower incidence of lithium prescription. Our transcriptional and epidemiological observations point towards cardiotonic steroids as possible repurposing candidates for lithium. These observations motivate a controlled trial to establish a causal connection and genuine therapeutic benefit in the context of depression.
Collapse
Affiliation(s)
- Richard Killick
- Centre for Healthy Brain Aging, IoPPN, King’s College London, London SE5 9RT, UK
| | - Claudie Hooper
- IHU HealthAge, Gérontopôle, Department of Geriatrics, CHU Toulouse, 31059 Toulouse, France
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, IoPPN, King’s College London, London SE5 8AF, UK
- MRC Centre for Neurodevelopmental Disorders, IoPPN, King’s College London, London SE1 1UL, UK
| | - Christina Elliott
- Faculty of Medical Sciences, School of Biomedical, Nutritional and Sport Sciences, Newcastle University, Newcastle NE4 5TG, UK
| | - Dag Aarsland
- Centre for Healthy Brain Aging, IoPPN, King’s College London, London SE5 9RT, UK
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, 4011 Stavanger, Norway
| | - Svein R. Kjosavik
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, 4011 Stavanger, Norway
- General Practice and Care Coordination Research Group, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Ragnhild Østerhus
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, 4011 Stavanger, Norway
| | - Gareth Williams
- Wolfson SPaRC, IoPPN, King’s College London, London SE1 1UL, UK
| |
Collapse
|
3
|
Borrego-Ruiz A, Borrego JJ. Involvement of virus infections and antiviral agents in schizophrenia. Psychol Med 2025; 55:e73. [PMID: 40059820 PMCID: PMC12055031 DOI: 10.1017/s0033291725000467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Schizophrenia is a chronic and complex mental disorder resulting from interactions between cumulative and synergistic genetic and environmental factors. Viral infection during the prenatal stage constitutes one of the most relevant risk factors for the development of schizophrenia later in adulthood. METHODS A narrative review was conducted to explore the link between viral infections and schizophrenia, as well as the neuropsychiatric effects of antiviral drugs, particularly in the context of this specific mental condition. Literature searches were performed using the PubMed, Scopus, and Web of Science databases. RESULTS Several viral infections, such as herpesviruses, influenza virus, Borna disease virus, and coronaviruses, can directly or indirectly disrupt normal fetal brain development by modifying gene expression in the maternal immune system, thereby contributing to the pathophysiological symptoms of schizophrenia. In addition, neuropsychiatric effects caused by antiviral drugs are frequent and represent significant adverse outcomes for viral treatment. CONCLUSIONS Epidemiological evidence suggests a potential relationship between viruses and schizophrenia. Increases in inflammatory cytokine levels and changes in the expression of key genes observed in several viral infections may constitute potential links between these viral infections and schizophrenia. Furthermore, antivirals may affect the central nervous system, although for most drugs, their mechanisms of action are still unclear, and a strong relationship between antivirals and schizophrenia has not yet been established.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
4
|
Chestnykh D, Mühle C, Schumacher F, Kalinichenko LS, Löber S, Gmeiner P, Alzheimer C, von Hörsten S, Kleuser B, Uebe S, Ekici AB, Gulbins E, Kornhuber J, Jin HK, Bae JS, Lourdusamy A, Müller CP. Acid sphingomyelinase activity suggests a new antipsychotic pharmaco-treatment strategy for schizophrenia. Mol Psychiatry 2025:10.1038/s41380-025-02893-6. [PMID: 39825014 DOI: 10.1038/s41380-025-02893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/10/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
Schizophrenia is a chronic and severe mental disorder. It is currently treated with antipsychotic drugs (APD). However, APD's work only in a limited number of patients and may have cognition impairing side effects. A growing body of evidence points out the potential involvement of abnormal sphingolipid metabolism in the pathophysiology of schizophrenia. Here, an analysis of human gene polymorphisms and brain gene expression in schizophrenia patients identified an association of SMPD1 and SMPD3 genes coding for acid- (ASM) and neutral sphingomyelinase-2 (NSM). In a rat model of psychosis using amphetamine hypersensitization, we found a locally restricted increase of ASM activity in the prefrontal cortex (PFC). Short-term haloperidol (HAL) treatment reversed behavioral symptoms and the ASM activity. A sphingolipidomic analysis confirmed an altered ceramide metabolism in the PFC during psychosis. Targeting enhanced ASM activity in a psychotic-like state with the ASM inhibitor KARI201 reversed psychotic like behavior and associated changes in the sphingolipidome. While effective HAL treatment led to locomotor decline and cognitive impairments, KARI201 did not. An RNA sequencing analysis of the PFC suggested a dysregulation of numerous schizophrenia related genes including Olig1, Fgfr1, Gpr17, Gna12, Abca2, Sox1, Dpm2, and Rab2a in the rat model of psychosis. HAL and KARI201 antipsychotic effects were associated with targeting expression of other schizophrenia associated genes like Col6a3, Slc22a8, and Bmal1, or Nr2f6a, respectively, but none affecting expression of sphingolipid regulating genes. Our data provide new insight into a potentially pathogenic mechanism of schizophrenia and suggest a new pharmaco-treatment strategy with reduced side effects.
Collapse
Affiliation(s)
- Daria Chestnykh
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stefan Löber
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
- FAUNeW-Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Medicinal Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
- FAUNeW-Research Center New Bioactive Compounds, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, 45147, Essen, Germany
- Department of Surgery, University of Cincinnati, College of Medicine, University of Cincinnati, Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267-0558, USA
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hee Kyung Jin
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, South Korea
| | - Jae-Sung Bae
- KNU Alzheimer's Disease Research Institute, Kyungpook National University, Daegu, 41566, South Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, 41944, South Korea
| | - Anbarasu Lourdusamy
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
5
|
Jia C, Zhang M, Wu X, Zhang X, Lv Z, Zhao K, Zhang J, Su Y, Zhu F. HERV-W Env Induces Neuron Pyroptosis via the NLRP3-CASP1-GSDMD Pathway in Recent-Onset Schizophrenia. Int J Mol Sci 2025; 26:520. [PMID: 39859234 PMCID: PMC11765033 DOI: 10.3390/ijms26020520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/01/2025] [Accepted: 01/05/2025] [Indexed: 01/30/2025] Open
Abstract
HERVs (Human endogenous retroviruses) are remnants of ancient exogenous retroviruses that have integrated into the human genome, particularly in germ-line cells. Among these, the envelope protein gene HERV-W env (Human endogenous retroviruses W family envelope protein), located on chromosome 7 and primarily expressed in the human placenta, has been closely linked to various neuropsychiatric disorders, including schizophrenia, as well as autoimmune diseases and cancer. Recent studies have highlighted the abnormal expression of cytokines as a key factor in the pathophysiology of schizophrenia. Notably, elevated serum levels of IL-1β (interleukin 1 beta) in schizophrenia, a cytokine associated with inflammation, are a characteristic feature of pyroptosis-a form of pro-inflammatory programmed cell death. Although previous research has observed significant upregulation of pyroptosis-related genes such as CASP1 (Caspase-1), NLRP3 (NLR family pyrin domain containing 3), and IL1B (interleukin 1 beta) in the serum of schizophrenia patients, and extensive neuron pyroptosis has been documented in various neuropsychiatric disorders, including Alzheimer's disease, epilepsy, and multiple sclerosis, the occurrence of neuron pyroptosis in schizophrenia remains uncertain. Furthermore, the mechanisms underlying pyroptosis in schizophrenia and its potential connection with HERV-W env have yet to be fully elucidated. In this study, we found that the expression levels of pyroptosis-related genes, specifically CASP1, GSDMD (Gasdermin D), and IL1B, were significantly elevated in patients with schizophrenia compared to healthy controls. Furthermore, our analysis revealed a strong positive correlation between HERV-W env expression and the levels of CASP1/GSDMD/IL1B in these patients. Experimental evidence further demonstrated that HERV-W env promoted the activation of Caspase-1 and the cleavage of Gasdermin D, leading to increased release of LDH (lactate dehydrogenase) and IL-1β. Importantly, inhibitors targeting NLRP3, CASP1, and GSDMD significantly reduced the releases of LDH and IL-1β induced by HERV-W env, whereas BID (BH3 interacting domain death agonist) inhibitors did not have a notable effect. This suggests that HERV-W env induces CASP1-GSDMD-dependent pyroptosis through the NLRP3-CASP1-GSDMD signaling pathway. As pyroptosis is increasingly recognized for its connection to neurodegenerative diseases, this study provides insights into the molecular mechanisms of neuronal pyroptosis mediated by the NLRP3 inflammasome in the context of HERV-W env. Additionally, it explores the potential facilitation of HERV-W env in the development of schizophrenia via pyroptosis, proposing that certain pyroptosis indicators could serve as potential biomarkers for schizophrenia. Based on our existing research results and the findings of previous researchers, we infer that HERV-W env acts as a bridge in the onset and progression of schizophrenia. Furthermore, HERV-W env may serve as a potential target for the clinical treatment of schizophrenia, suggesting that monoclonal antibody therapy targeting HERV-W env could represent a novel approach to managing this disease.
Collapse
Affiliation(s)
- Chen Jia
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Mengqi Zhang
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xu Zhang
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhao Lv
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Kexin Zhao
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiahang Zhang
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yaru Su
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan 430071, China
| |
Collapse
|
6
|
Castro-Martínez JA, Vargas E, Díaz-Beltrán L, Esteban FJ. Enhancing Transcriptomic Insights into Neurological Disorders Through the Comparative Analysis of Shapley Values. Curr Issues Mol Biol 2024; 46:13583-13606. [PMID: 39727940 PMCID: PMC11726880 DOI: 10.3390/cimb46120812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Neurological disorders such as Autism Spectrum Disorder (ASD), Schizophrenia (SCH), Bipolar Disorder (BD), and Major Depressive Disorder (MDD) affect millions of people worldwide, yet their molecular mechanisms remain poorly understood. This study describes the application of the Comparative Analysis of Shapley values (CASh) to transcriptomic data from nine datasets associated with these complex disorders, demonstrating its effectiveness in identifying differentially expressed genes (DEGs). CASh, which combines Game Theory with Bootstrap resampling, offers a robust alternative to traditional statistical methods by assessing the contribution of each gene in the broader context of the complete dataset. Unlike conventional approaches, CASh is highly effective at detecting subtle but meaningful molecular patterns that are often missed. These findings highlight the potential of CASh to enhance the precision of transcriptomic analysis, providing a deeper understanding of the molecular mechanisms underlying these disorders and establishing a solid basis to improve diagnostic techniques and developing more targeted therapeutic interventions.
Collapse
Affiliation(s)
- José A. Castro-Martínez
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| | - Eva Vargas
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| | - Leticia Díaz-Beltrán
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
- Clinical Research Unit, Department of Medical Oncology, University Hospital of Jaén, 23007 Jaén, Spain
| | - Francisco J. Esteban
- Systems Biology Unit, Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, 23071 Jaén, Spain; (J.A.C.-M.); (E.V.)
| |
Collapse
|
7
|
Li W, Xue X, Li X, Wu X, Zhou P, Xia Y, Zhang J, Zhang M, Zhu F. Ancestral retrovirus envelope protein ERVWE1 upregulates circ_0001810, a potential biomarker for schizophrenia, and induces neuronal mitochondrial dysfunction via activating AK2. Cell Biosci 2024; 14:138. [PMID: 39543767 PMCID: PMC11566632 DOI: 10.1186/s13578-024-01318-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Increasingly studies highlight the crucial role of the ancestral retrovirus envelope protein ERVWE1 in the pathogenic mechanisms of schizophrenia, a severe psychiatric disorder affecting approximately 1% of the global population. Recent studies also underscore the significance of circular RNAs (circRNAs), crucial for neurogenesis and synaptogenesis, in maintaining neuronal functions. However, the precise relationship between ERVWE1 and circRNAs in the etiology of schizophrenia remains elusive. RESULTS This study observed elevated levels of hsa_circ_0001810 (circ_0001810) in the blood samples of schizophrenia patients, displaying a significant positive correlation with ERVWE1 expression. Interestingly, in vivo studies demonstrated that ERVWE1 upregulated circ_0001810 in neuronal cells. Circ_0001810, acting as a competing endogenous RNA (ceRNA), bound to miR-1197 and facilitated the release of adenylate kinase 2 (AK2). The bioinformatics analysis of the schizophrenia datasets revealed increased levels of AK2 and enrichment of mitochondrial dynamics. Notably, miR-1197 was reduced in schizophrenia patients, while AK2 levels were increased. Additionally, AK2 showed positive correlations with ERVWE1 and circ_0001810. Further studies demonstrated that AK2 led to mitochondrial dysfunction, characterized by loss of intracellular ATP, mitochondrial depolarization, and disruption of mitochondrial dynamics. Our comprehensive investigation suggested that ERVWE1 influenced ATP levels, promoted mitochondrial depolarization, and disrupted mitochondrial dynamics through the circ_0001810/AK2 pathway. CONCLUSIONS Circ_0001810 and AK2 were increased in schizophrenia and positively correlated with ERVWE1. Importantly, ERVWE1 triggered mitochondrial dysfunction through circ_0001810/miR-1197/AK2 pathway. Recent focus on the impact of mitochondrial dynamics on schizophrenia development had led to our discovery of a novel mechanism by which ERVWE1 contributed to the etiology of schizophrenia, particularly through mitochondrial dynamics. Moreover, these findings collectively proposed that circ_0001810 might serve as a potential blood-based biomarker for schizophrenia. Consistent with our previous theories, ERVWE1 is increasingly recognized as a promising therapeutic target for schizophrenia.
Collapse
Affiliation(s)
- Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Xing Xue
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Yaru Xia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Jiahang Zhang
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Mengqi Zhang
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Science, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
8
|
Santarriaga S, Gerlovin K, Layadi Y, Karmacharya R. Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophr Res 2024; 273:78-97. [PMID: 36925354 PMCID: PMC10500041 DOI: 10.1016/j.schres.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is the strongest predictor of functional outcomes in schizophrenia and is hypothesized to result from synaptic dysfunction. However, targeting synaptic plasticity and cognitive deficits in patients remains a significant clinical challenge. A comprehensive understanding of synaptic plasticity and the molecular basis of learning and memory in a disease context can provide specific targets for the development of novel therapeutics targeting cognitive impairments in schizophrenia. Here, we describe the role of synaptic plasticity in cognition, summarize evidence for synaptic dysfunction in schizophrenia and demonstrate the use of patient derived induced-pluripotent stem cells for studying synaptic plasticity in vitro. Lastly, we discuss current advances and future technologies for bridging basic science research of synaptic dysfunction with clinical and translational research that can be used to predict treatment response and develop novel therapeutics.
Collapse
Affiliation(s)
- Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Layadi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chimie ParisTech, Université Paris Sciences et Lettres, Paris, France
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
9
|
Yang ZH, Cai X, Zhang CY, Zhang Q, Li M, Ding ZL, Guo Y, Ma G, Yang CH, Guo L, Chang H, Wang C, Li M, Xiao X. NEK4 modulates circadian fluctuations of emotional behaviors and synaptogenesis in male mice. Nat Commun 2024; 15:9180. [PMID: 39448584 PMCID: PMC11502819 DOI: 10.1038/s41467-024-53585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
GWASs have linked the 3p21.1 locus, which is associated with the expression levels of NEK4, to bipolar disorder. Here, we use integrative analyses of GWAS statistics and eQTL annotations to establish that elevated NEK4 expression in the hippocampus is associated with an increased risk of bipolar disorder. To further study this association, we generate transgenic male mice that conditionally overexpress NEK4 in the pyramidal neurons of the adult forebrain, or use AAV to overexpress NEK4 in the dorsal hippocampus. Compared to the control mice, male mice of both strains exhibit a shift from a diurnal anxiety state to a nocturnal normal or anxiolytic-like state. Overexpression of NEK4 also affects the circadian fluctuations in dendritic spine morphology and synaptic structure. Furthermore, we show that treatment with lithium ameliorates the effects of NEK4 overexpression in male mice. We then perform phosphoproteomic analyses to demonstrate that the diurnal and nocturnal phosphoproteomic profiles of male control and NEK4 overexpressing mice are different. These results suggest that male mice with different NEK4 expression levels may recapitulate some of the core features observed in patients with bipolar disorder, indicating that interruption of the homeostatic dynamics of synapses may underlie the emotional swings in bipolar disorder.
Collapse
Affiliation(s)
- Zhi-Hui Yang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin Cai
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Qing Zhang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Miao Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Zhong-Li Ding
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yingqi Guo
- Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Guolan Ma
- Institutional Center for Shared Technologies and Facilities of Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chao-Hao Yang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lei Guo
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Hong Chang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chuang Wang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Ming Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Xiao Xiao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
10
|
Zhang H, Zheng R, Yu B, Yu Y, Luo X, Yin S, Zheng Y, Shi J, Ai S. Dissecting shared genetic architecture between depression and body mass index. BMC Med 2024; 22:455. [PMID: 39394142 PMCID: PMC11481102 DOI: 10.1186/s12916-024-03681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND A growing body of evidence supports the comorbidity between depression (DEP) and obesity, yet the genetic mechanisms underlying this association remain unclear. Our study explored the shared genetic architecture and causal associations of DEP with BMI. METHODS We investigated the multigene overlap and genetic correlation between DEP (N > 1.3 million) and BMI (N = 806,834) based on genome-wide association studies (GWAS) and using the bivariate causal mixture model and linkage disequilibrium score regression (LDSC). The causal association was explored by bi-directional Mendelian randomization (MR). Common risk loci were identified through cross-trait meta-analyses. Stratified LDSC and multi-marker gene annotation analyses were applied to investigate single-nucleotide polymorphisms enrichment across tissue types, cell types, and functional categories. Finally, we explored shared functional genes by Summary Data-Based Mendelian Randomization (SMR) and further detected differential expression genes (DEG) in brain tissues of individuals with depression and obesity. RESULTS We found a positive genetic correlation between DEP and BMI (rg = 0.19, P = 4.07 × 10-26), which was more evident in local genomic regions. Cross-trait meta-analyses identified 16 shared genetic loci, 5 of which were newly identified, and they had influence on both diseases in the same direction. MR analysis showed a bidirectional causal association between DEP and BMI, with comparable effect sizes estimated in both directions. Combined with gene expression information, we found that genetic correlations between DEP and BMI were enriched in 6 brain regions, predominantly in the nucleus accumbens and anterior cingulate cortex. Moreover, 6 specific cell types and 23 functional genes were found to have an impact on both DEP and BMI across the brain regions. Of which, NEGR1 was identified as the most significant functional gene and associated with DEP and BMI at the genome-wide significance level (P < 5 × 10-8). Compared with healthy controls, the expression levels of NEGR1 gene were significant lower in brain tissues of individuals with depression and obesity. CONCLUSIONS Our study reveals shared genetic basis underpinnings between DEP and BMI, including genetic correlations and common genes. These insights offer novel opportunities and avenues for future research into their comorbidities.
Collapse
Affiliation(s)
- Hengyu Zhang
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
| | - Rui Zheng
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China
| | - Binhe Yu
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center, Weihui, 453100, Henan, China
| | - Yuefeng Yu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Xiaomin Luo
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shujuan Yin
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China
| | - Yingjun Zheng
- Department of Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China.
| | - Jie Shi
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Haidian District, 38 Xueyuan Road, Beijing, 100191, China.
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing, 100191, China.
| | - Sizhi Ai
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, 36 Mingxin Road, Guangzhou, Guangdong, China.
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 511436, China.
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center, Weihui, 453100, Henan, China.
| |
Collapse
|
11
|
Chen CW, Yeh WL, Charoensaensuk V, Lin C, Yang LY, Chen MK, Yeh T, Tsai CF, Lu DY. Oral administration of osthole mitigates maladaptive behaviors through PPARα activation in mice subjected to repeated social defeat stress. Neurochem Int 2024; 179:105811. [PMID: 39053771 DOI: 10.1016/j.neuint.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Psychological stress induces neuroinflammatory responses, which are associated with the pathogenesis of various psychiatric disorders, such as posttraumatic stress disorder and anxiety. Osthole-a natural coumarin isolated from the seeds of the Chinese herb Cnidium monnieri-exerts anti-inflammatory and antioxidative effects on the central nervous system. However, the therapeutic benefits of osthole against psychiatric disorders remain largely unknown. We previously demonstrated that mice subjected to repeated social defeat stress (RSDS) in the presence of aggressor mice exhibited symptoms of posttraumatic stress disorder, such as social avoidance and anxiety-like behaviors. In this study, we investigated the therapeutic effects of osthole and the underlying molecular mechanisms. Osthole exerted therapeutic effects on cognitive behaviors, mitigating anxiety-like behaviors and social avoidance in a mouse model of RSDS. The anti-inflammatory response induced by the oral administration of osthole was strengthened through the upregulation of heme oxygenase-1 expression. The expression of PPARα was inhibited in mice subjected to RSDS. Nonetheless, osthole treatment reversed the inhibition of PPARα expression. We identified a positive correlation between heme oxygenase-1 expression and PPARα expression in osthole-treated mice. In conclusion, osthole has potential as a Chinese herbal medicine for anxiety disorders. When designing novel drugs for psychiatric disorders, researchers should consider targeting the activation of PPARα.
Collapse
Affiliation(s)
- Chao-Wei Chen
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan
| | - Wei-Lan Yeh
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan; Department of Biochemistry, School of Medicine, China Medical University, Taichung, Taiwan
| | - Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Mao-Kai Chen
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Tong Yeh
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
12
|
Hughes H, Brady LJ, Schoonover KE. GABAergic dysfunction in postmortem dorsolateral prefrontal cortex: implications for cognitive deficits in schizophrenia and affective disorders. Front Cell Neurosci 2024; 18:1440834. [PMID: 39381500 PMCID: PMC11458443 DOI: 10.3389/fncel.2024.1440834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
The microcircuitry within superficial layers of the dorsolateral prefrontal cortex (DLPFC), composed of excitatory pyramidal neurons and inhibitory GABAergic interneurons, has been suggested as the neural substrate of working memory performance. In schizophrenia, working memory impairments are thought to result from alterations of microcircuitry within the DLPFC. GABAergic interneurons, in particular, are crucially involved in synchronizing neural activity at gamma frequency, the power of which increases with working memory load. Alterations of GABAergic interneurons, particularly parvalbumin (PV) and somatostatin (SST) subtypes, are frequently observed in schizophrenia. Abnormalities of GABAergic neurotransmission, such as deficiencies in the 67 kDA isoform of GABA synthesis enzyme (GAD67), vesicular GABA transporter (vGAT), and GABA reuptake transporter 1 (GAT1) in presynaptic boutons, as well as postsynaptic alterations in GABA A receptor subunits further contribute to impaired inhibition. This review explores GABAergic abnormalities of the postmortem DLPFC in schizophrenia, with a focus on the roles of interneuron subtypes involved in cognition, and GABAergic neurotransmission within presynaptic boutons and postsynaptic alterations. Where available, comparisons between schizophrenia and affective disorders that share cognitive pathology such as bipolar disorder and major depressive disorder will be made. Challenges in directly measuring GABA levels are addressed, emphasizing the need for innovative techniques. Understanding GABAergic abnormalities and their implications for neural circuit dysfunction in schizophrenia is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Hannah Hughes
- Graduate Biomedical Sciences Program, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Lillian J. Brady
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
| | - Kirsten E. Schoonover
- Department of Psychiatry, School of Medicine, University of Alabama at Birmingham, Tuskegee, AL, United States
- Comprehensive Neuroscience Center, University of Alabama at Birmingham, Tuskegee, AL, United States
- Department of Psychology and Sociology, College of Arts and Sciences, Tuskegee University, Tuskegee, AL, United States
| |
Collapse
|
13
|
Liu W, Su JP, Zeng LL, Shen H, Hu DW. Gene expression and brain imaging association study reveals gene signatures in major depressive disorder. Brain Commun 2024; 6:fcae258. [PMID: 39185029 PMCID: PMC11342243 DOI: 10.1093/braincomms/fcae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/03/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Major depressive disorder is often characterized by changes in the structure and function of the brain, which are influenced by modifications in gene expression profiles. How the depression-related genes work together within the scope of time and space to cause pathological changes remains unclear. By integrating the brain-wide gene expression data and imaging data in major depressive disorder, we identified gene signatures of major depressive disorder and explored their temporal-spatial expression specificity, network properties, function annotations and sex differences systematically. Based on correlation analysis with permutation testing, we found 345 depression-related genes significantly correlated with functional and structural alteration of brain images in major depressive disorder and separated them by directional effects. The genes with negative effect for grey matter density and positive effect for functional indices are enriched in downregulated genes in the post-mortem brain samples of patients with depression and risk genes identified by genome-wide association studies than genes with positive effect for grey matter density and negative effect for functional indices and control genes, confirming their potential association with major depressive disorder. By introducing a parameter of dispersion measure on the gene expression data of developing human brains, we revealed higher spatial specificity and lower temporal specificity of depression-related genes than control genes. Meanwhile, we found depression-related genes tend to be more highly expressed in females than males, which may contribute to the difference in incidence rate between male and female patients. In general, we found the genes with negative effect have lower network degree, more specialized function, higher spatial specificity, lower temporal specificity and more sex differences than genes with positive effect, indicating they may play different roles in the occurrence and development of major depressive disorder. These findings can enhance the understanding of molecular mechanisms underlying major depressive disorder and help develop tailored diagnostic and treatment strategies for patients of depression of different sex.
Collapse
Affiliation(s)
- Wei Liu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Jian-Po Su
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Ling-Li Zeng
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - Hui Shen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| | - De-Wen Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, P.R. China
| |
Collapse
|
14
|
Reichert Plaska C, Heslegrave A, Bruno D, Ramos-Cejudo J, Han Lee S, Osorio R, Imbimbo BP, Zetterberg H, Blennow K, Pomara N. Evidence for reduced anti-inflammatory microglial phagocytic response in late-life major depression. Brain Behav Immun 2024; 120:248-255. [PMID: 38795783 PMCID: PMC11270917 DOI: 10.1016/j.bbi.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Major depressive disorder (MDD) is associated with Alzheimer's disease (AD) but the precise mechanisms underlying this relationship are not understood. While it is well established that cerebrospinal fluid (CSF) soluble levels of triggering receptor expressed on myeloid cells 2 (sTREM2) increase during early stages of AD, how sTREM2 levels behave in subjects with MDD is not known. In a longitudinal study, we measured CSF sTREM2 levels in 27 elderly cognitively intact individuals with late-life major depression (LLMD) and in 19 healthy controls. We tested the hypothesis that, similarly to what happens in early stages of AD, CSF sTREM2 would be elevated in MDD. In addition, we compared the associations of CSF sTREM2, pro- and anti- inflammatory, and AD biomarkers in LLMD and control subjects. Surprisingly, we found that mean CSF sTREM2 levels were significantly reduced in LLMD compared to controls. This reduction was no longer significant at the 3-year follow-up visit when depression severity improved. In addition, we found that CSF sTREM2 was associated with AD biomarkers and proinflammatory cytokines in controls but not in LLMD. These findings suggest that impaired microglia phagocytic response to AD pathology may be a novel link between MDD and AD.
Collapse
Affiliation(s)
- Chelsea Reichert Plaska
- Geriatric Psychiatry Division, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom
| | - Davide Bruno
- School of Psychology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jaime Ramos-Cejudo
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; VA Boston Cooperative Studies Program MAVERIC, VA Boston Healthcare System, Boston, MA, USA
| | - Sang Han Lee
- Geriatric Psychiatry Division, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Ricardo Osorio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA; Clinical Research Department, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Bruno P Imbimbo
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, P.R. China
| | - Nunzio Pomara
- Geriatric Psychiatry Division, Nathan S Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry and Pathology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
15
|
Yao Y, Jin C, Liao Y, Huang X, Wei Z, Zhang Y, Li D, Su H, Han W, Qin D. Schizophrenia-Like Behaviors Arising from Dysregulated Proline Metabolism Are Associated with Altered Neuronal Morphology and Function in Mice with Hippocampal PRODH Deficiency. Aging Dis 2024; 15:1952-1968. [PMID: 37815900 PMCID: PMC11272211 DOI: 10.14336/ad.2023.0902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/02/2023] [Indexed: 10/12/2023] Open
Abstract
Despite decades of research being conducted to understand what physiological deficits in the brain are an underlying basis of psychiatric diseases like schizophrenia, it has remained difficult to establish a direct causal relationship between neuronal dysfunction and specific behavioral phenotypes. Moreover, it remains unclear how metabolic processes, including amino acid metabolism, affect neuronal function and consequently modulate animal behaviors. PRODH, which catalyzes the first step of proline degradation, has been reported as a susceptibility gene for schizophrenia. It has consistently been shown that PRODH knockout mice exhibit schizophrenia-like behaviors. However, whether the loss of PRODH directly impacts neuronal function or whether such neuronal deficits are linked to schizophrenia-like behaviors has not yet been examined. Herein, we first ascertained that dysregulated proline metabolism in humans is associated with schizophrenia. We then found that PRODH was highly expressed in the oreins layer of the mouse dorsal hippocampus. By using AAV-mediated shRNA, we depleted PRODH expression in the mouse dorsal hippocampus and subsequently observed hyperactivity and impairments in the social behaviors, learning, and memory of these mice. Furthermore, the loss of PRODH led to altered neuronal morphology and function both in vivo and in vitro. Our study demonstrates that schizophrenia-like behaviors may arise from dysregulated proline metabolism due to the loss of PRODH and are associated with altered neuronal morphology and function in mice.
Collapse
Affiliation(s)
- Yuxiao Yao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| | - Chenchen Jin
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Yilie Liao
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Xiang Huang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Ziying Wei
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| | - Yahong Zhang
- Guangzhou Laboratory, Guangzhou, Guangdong, China.
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| | - Huanxing Su
- Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences; Hong Kong SAR, China.
| |
Collapse
|
16
|
Carceller H, Hidalgo MR, Escartí MJ, Nacher J, de la Iglesia-Vayá M, García-García F. The impact of sex on gene expression in the brain of schizophrenic patients: a systematic review and meta-analysis of transcriptomic studies. Biol Sex Differ 2024; 15:59. [PMID: 39068467 PMCID: PMC11282642 DOI: 10.1186/s13293-024-00635-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Schizophrenia is a severe neuropsychiatric disorder characterized by altered perception, mood, and behavior that profoundly impacts patients and society despite its relatively low prevalence. Sex-based differences have been described in schizophrenia epidemiology, symptomatology and outcomes. Different studies explored the impact of schizophrenia in the brain transcriptome, however we lack a consensus transcriptomic profile that considers sex and differentiates specific cerebral regions. METHODS We performed a systematic review on bulk RNA-sequencing studies of post-mortem brain samples. Then, we fulfilled differential expression analysis on each study and summarized their results with regions-specific meta-analyses (prefrontal cortex and hippocampus) and a global all-studies meta-analysis. Finally, we used the consensus transcriptomic profiles to functionally characterize the impact of schizophrenia in males and females by protein-protein interaction networks, enriched biological processes and dysregulated transcription factors. RESULTS We discovered the sex-based dysregulation of 265 genes in the prefrontal cortex, 1.414 genes in the hippocampus and 66 genes in the all-studies meta-analyses. The functional characterization of these gene sets unveiled increased processes related to immune response functions in the prefrontal cortex in male and the hippocampus in female schizophrenia patients and the overexpression of genes related to neurotransmission and synapses in the prefrontal cortex of female schizophrenia patients. Considering a meta-analysis of all brain regions available, we encountered the relative overexpression of genes related to synaptic plasticity and transmission in females and the overexpression of genes involved in organizing genetic information and protein folding in male schizophrenia patients. The protein-protein interaction networks and transcription factors activity analyses supported these sex-based profiles. CONCLUSIONS Our results report multiple sex-based transcriptomic alterations in specific brain regions of schizophrenia patients, which provides new insight into the role of sex in schizophrenia. Moreover, we unveil a partial overlapping of inflammatory processes in the prefrontal cortex of males and the hippocampus of females.
Collapse
Affiliation(s)
- Hector Carceller
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Joint unit in Biomedical Imaging FISABIO-CIPF, Head of Computational Biomedicine Laboratory, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Eduardo Primo Yúfera Street, 3, 46012, València, Spain
| | - Marta R Hidalgo
- Joint unit in Biomedical Imaging FISABIO-CIPF, Head of Computational Biomedicine Laboratory, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Eduardo Primo Yúfera Street, 3, 46012, València, Spain
- Computational Biomedicine Laboratory, Principe Felipe Research Centre (CIPF), Eduardo Primo Yúfera Street, 3, Valencia, 46012, Spain
| | - María José Escartí
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISC III, Avda. Blasco Ibáñez 15, Valencia, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
- Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Maria de la Iglesia-Vayá
- Spanish National Network for Research in Mental Health, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
- Joint unit in Biomedical Imaging FISABIO-CIPF, Head of Computational Biomedicine Laboratory, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Eduardo Primo Yúfera Street, 3, 46012, València, Spain
| | - Francisco García-García
- Joint unit in Biomedical Imaging FISABIO-CIPF, Head of Computational Biomedicine Laboratory, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, Eduardo Primo Yúfera Street, 3, 46012, València, Spain.
- Computational Biomedicine Laboratory, Principe Felipe Research Centre (CIPF), Eduardo Primo Yúfera Street, 3, Valencia, 46012, Spain.
| |
Collapse
|
17
|
Sun Y, Wu D, Yang X, Tang B, Xia C, Luo C, Gong Q, Lui S, Hu N. The associations of peripheral interleukin alterations and hippocampal subfield volume deficits in schizophrenia. Cereb Cortex 2024; 34:bhae308. [PMID: 39077921 DOI: 10.1093/cercor/bhae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
The hippocampus is one of the brain regions most vulnerable to inflammatory insults, and the relationships between peripheral inflammation and hippocampal subfields in patients with schizophrenia remain unclear. In this study, forty-six stably medicated patients with schizophrenia and 48 demographically matched healthy controls (HCs) were recruited. The serum levels of IL - 1β, IL-6, IL-10, and IL-12p70 were measured, and 3D high-resolution T1-weighted magnetic resonance imaging was performed. The IL levels and hippocampal subfield volumes were both compared between patients and HCs. The associations of altered IL levels with hippocampal subfield volumes were assessed in patients. Patients with schizophrenia demonstrated higher serum levels of IL-6 and IL-10 but lower levels of IL-12p70 than HCs. In patients, the levels of IL-6 were positively correlated with the volumes of the left granule cell layer of the dentate gyrus (GCL) and cornu Ammonis (CA) 4, while the levels of IL-10 were negatively correlated with the volumes of those subfields. IL-6 and IL-10 might have antagonistic roles in atrophy of the left GCL and CA4. This suggests a complexity of peripheral cytokine dysregulation and the potential for its selective effects on hippocampal substructures, which might be related to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Yuan Sun
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Dongsheng Wu
- Department of Radiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 18, Section 3, South Renmin Road, Chengdu 610041, China
| | - Xiyue Yang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Biqiu Tang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Chao Xia
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Chunyan Luo
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| | - Na Hu
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu 610041, China
| |
Collapse
|
18
|
Hofstra BM, Hoeksema EE, Kas MJH, Verbeek DS. Cross-species analysis uncovers the mitochondrial stress response in the hippocampus as a shared mechanism in mouse early life stress and human depression. Neurobiol Stress 2024; 31:100643. [PMID: 38800537 PMCID: PMC11127276 DOI: 10.1016/j.ynstr.2024.100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Depression, or major depressive disorder, poses a significant burden for both individuals and society, affecting approximately 10.8% of the general population. This psychiatric disorder leads to approximately 800,000 deaths per year. A combination of genetic and environmental factors such as early life stress (ELS) increase the risk for development of depression in humans, and a clear role for the hippocampus in the pathophysiology of depression has been shown. Nevertheless, the underlying mechanisms of depression remain poorly understood, resulting in a lack of effective treatments. To better understand the core mechanisms underlying the development of depression, we used a cross-species design to investigate shared hippocampal pathophysiological mechanisms in mouse ELS and human depression. Mice were subjected to ELS by a maternal separation paradigm, followed by RNA sequencing analysis of the adult hippocampal tissue. This identified persistent transcriptional changes linked to mitochondrial stress response pathways, with oxidative phosphorylation and protein folding emerging as the main mechanisms affected by maternal separation. Remarkably, there was a significant overlap between the pathways involved in mitochondrial stress response we observed and publicly available RNAseq data from hippocampal tissue of depressive patients. This cross-species conservation of changes in gene expression of mitochondria-related genes suggests that mitochondrial stress may play a pivotal role in the development of depression. Our findings highlight the potential significance of the hippocampal mitochondrial stress response as a core mechanism underlying the development of depression. Further experimental investigations are required to expand our understanding of these mechanisms.
Collapse
Affiliation(s)
- Bente M. Hofstra
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Emmy E. Hoeksema
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Martien JH. Kas
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Dineke S. Verbeek
- Department of Genetics, University of Groningen, University Medical Center Groningen, the Netherlands
| |
Collapse
|
19
|
Chen Z, Ge R, Wang C, Elazab A, Fu X, Min W, Qin F, Jia G, Fan X. Identification of important gene signatures in schizophrenia through feature fusion and genetic algorithm. Mamm Genome 2024; 35:241-255. [PMID: 38512459 DOI: 10.1007/s00335-024-10034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/07/2024] [Indexed: 03/23/2024]
Abstract
Schizophrenia is a debilitating psychiatric disorder that can significantly affect a patient's quality of life and lead to permanent brain damage. Although medical research has identified certain genetic risk factors, the specific pathogenesis of the disorder remains unclear. Despite the prevalence of research employing magnetic resonance imaging, few studies have focused on the gene level and gene expression profile involving a large number of screened genes. However, the high dimensionality of genetic data presents a great challenge to accurately modeling the data. To tackle the current challenges, this study presents a novel feature selection strategy that utilizes heuristic feature fusion and a multi-objective optimization genetic algorithm. The goal is to improve classification performance and identify the key gene subset for schizophrenia diagnostics. Traditional gene screening techniques are inadequate for accurately determining the precise number of key genes associated with schizophrenia. Our innovative approach integrates a filter-based feature selection method to reduce data dimensionality and a multi-objective optimization genetic algorithm for improved classification tasks. By combining the filtering and wrapper methods, our strategy leverages their respective strengths in a deliberate manner, leading to superior classification accuracy and a more efficient selection of relevant genes. This approach has demonstrated significant improvements in classification results across 11 out of 14 relevant datasets. The performance on the remaining three datasets is comparable to the existing methods. Furthermore, visual and enrichment analyses have confirmed the practicality of our proposed method as a promising tool for the early detection of schizophrenia.
Collapse
Affiliation(s)
| | - Ruiquan Ge
- Hangzhou Dianzi University, Hangzhou, China.
- Hangzhou Institute of Advanced Technology, Hangzhou, China.
- Key Laboratory of Discrete Industrial Internet of Things of Zhejiang Province, Hangzhou, China.
| | - Changmiao Wang
- Shenzhen Research Institute of Big Data, Shenzhen, China
| | - Ahmed Elazab
- Computer Science Department, Misr Higher Institute for Commerce and Computers, Mansoura, Egypt
| | - Xianjun Fu
- School of Artificial Intelligence, Zhejiang College of Security Technology, Wenzhou, China
| | - Wenwen Min
- School of Information Science and Engineering, Yunnan University, Kunming, China
| | - Feiwei Qin
- Hangzhou Dianzi University, Hangzhou, China
| | | | - Xiaopeng Fan
- Hangzhou Institute of Advanced Technology, Hangzhou, China
| |
Collapse
|
20
|
Daskalakis NP, Iatrou A, Chatzinakos C, Jajoo A, Snijders C, Wylie D, DiPietro CP, Tsatsani I, Chen CY, Pernia CD, Soliva-Estruch M, Arasappan D, Bharadwaj RA, Collado-Torres L, Wuchty S, Alvarez VE, Dammer EB, Deep-Soboslay A, Duong DM, Eagles N, Huber BR, Huuki L, Holstein VL, Logue ΜW, Lugenbühl JF, Maihofer AX, Miller MW, Nievergelt CM, Pertea G, Ross D, Sendi MSE, Sun BB, Tao R, Tooke J, Wolf EJ, Zeier Z, Berretta S, Champagne FA, Hyde T, Seyfried NT, Shin JH, Weinberger DR, Nemeroff CB, Kleinman JE, Ressler KJ. Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood. Science 2024; 384:eadh3707. [PMID: 38781393 PMCID: PMC11203158 DOI: 10.1126/science.adh3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones. Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in both disorders and propose potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Nikolaos P. Daskalakis
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Artemis Iatrou
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Chris Chatzinakos
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, 11209, USA
| | - Aarti Jajoo
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Clara Snijders
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Dennis Wylie
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Christopher P. DiPietro
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Ioulia Tsatsani
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | | | - Cameron D. Pernia
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Marina Soliva-Estruch
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Rahul A. Bharadwaj
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stefan Wuchty
- Departments of Computer Science, University of Miami, Miami, FL, 33146, USA
- Department of Biology, University of Miami, Miami, FL, 33146, USA
| | - Victor E. Alvarez
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Eric B Dammer
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Amy Deep-Soboslay
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Duc M. Duong
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Nick Eagles
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Bertrand R. Huber
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Louise Huuki
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Vincent L Holstein
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Μark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Justina F. Lugenbühl
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Adam X. Maihofer
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Mark W. Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Geo Pertea
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Deanna Ross
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
| | - Mohammad S. E Sendi
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Ran Tao
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - James Tooke
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Erika J. Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Zane Zeier
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine; Miami, FL, 33136, USA
| | | | - Sabina Berretta
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Thomas Hyde
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Charles B. Nemeroff
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin; Austin, TX, 78712, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Kerry J. Ressler
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
| |
Collapse
|
21
|
Sokolov AV, Lafta MS, Nordberg DOT, Jonsson J, Schiöth HB. Depression proteomic profiling in adolescents with transcriptome analyses in independent cohorts. Front Psychiatry 2024; 15:1372106. [PMID: 38812487 PMCID: PMC11133714 DOI: 10.3389/fpsyt.2024.1372106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction Depression is a major global burden with unclear pathophysiology and poor treatment outcomes. Diagnosis of depression continues to rely primarily on behavioral rather than biological methods. Investigating tools that might aid in diagnosing and treating early-onset depression is essential for improving the prognosis of the disease course. While there is increasing evidence of possible biomarkers in adult depression, studies investigating this subject in adolescents are lacking. Methods In the current study, we analyzed protein levels in 461 adolescents assessed for depression using the Development and Well-Being Assessment (DAWBA) questionnaire as part of the domestic Psychiatric Health in Adolescent Study conducted in Uppsala, Sweden. We used the Proseek Multiplex Neuro Exploratory panel with Proximity Extension Assay technology provided by Olink Bioscience, followed by transcriptome analyses for the genes corresponding to the significant proteins, using four publicly available cohorts. Results We identified a total of seven proteins showing different levels between DAWBA risk groups at nominal significance, including RBKS, CRADD, ASGR1, HMOX2, PPP3R1, CD63, and PMVK. Transcriptomic analyses for these genes showed nominally significant replication of PPP3R1 in two of four cohorts including whole blood and prefrontal cortex, while ASGR1 and CD63 were replicated in only one cohort. Discussion Our study on adolescent depression revealed protein-level and transcriptomic differences, particularly in PPP3R1, pointing to the involvement of the calcineurin pathway in depression. Our findings regarding PPP3R1 also support the role of the prefrontal cortex in depression and reinforce the significance of investigating prefrontal cortex-related mechanisms in depression.
Collapse
Affiliation(s)
| | | | | | | | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Nascimento C, Villela Nunes P, Paraizo Leite RE, Grinberg LT, Suemoto CK, Lafer B. The relationship of neuropsychiatric symptoms with inflammatory markers in the hippocampus and cingulate cortex of bipolar disorder subjects: A post-mortem study. J Psychiatr Res 2024; 173:25-33. [PMID: 38479345 PMCID: PMC11037553 DOI: 10.1016/j.jpsychires.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 03/01/2024] [Indexed: 04/17/2024]
Abstract
Increased levels of inflammation markers have been found in the peripheral tissue of individuals with bipolar disorder (BD), especially during mood episodes. Previous studies found distinctive inflammatory profiles across different brain regions, but potential associations with clinical symptoms are still lacking. This study aims to evaluate the association of neuropsychiatric symptoms with inflammatory markers in the hippocampus and cingulate of individuals with BD. Levels of IL-1β, IL-6, IL-17A, cortisol, and C-reactive protein (CRP) were measured in the hippocampus and anterior cingulate of 14 BD individuals and their non-psychiatric controls. Neuropsychiatric symptoms present in the three months before death were assessed using the Neuropsychiatric Inventory (NPI). In the BD group, greater NPI scores were associated with higher IL-6 in the hippocampus (p = 0.011) and cingulate (p = 0.038) and higher IL-1β (p = 0.039) in the hippocampus. After adjusting for age, sex and CDR, IL-1β and IL-6 were still associated with higher NPI in the hippocampus. In correlation analysis considering both BD and their controls, moderate positive associations were found between NPI and IL-6 and cortisol in the hippocampus (p < 0.001 and p = 0.006) and cingulate (p = 0.024 and p = 0.016), IL-1β (p < 0.001) and IL-17A in the hippocampus (p = 0.002). No difference in inflammatory markers was found according to type of psychotropic medication used. Hence, in individuals with BD, neuropsychiatric symptoms were differently associated with specific inflammatory cytokines and CRP in the hippocampus and cingulate. These results suggest that the neuroinflammatory changes occurring in BD may be more complex than previously expected and could be associated with clinical manifestations.
Collapse
Affiliation(s)
- Camila Nascimento
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil; Federal University of Sao Paulo - School of Medicine, Department of Biochemistry, Discipline of Molecular Biology, Sao Paulo, SP, Brazil.
| | - Paula Villela Nunes
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil; Memory and Aging Center University of California, Department of Neurology, San Francisco, USA
| | - Renata Elaine Paraizo Leite
- Biobank for Aging Studies, LIM-22, Department of Pathology, University of São Paulo Medical School, Sao Paulo, SP, Brazil
| | - Lea Tenenholz Grinberg
- Biobank for Aging Studies, LIM-22, Department of Pathology, University of São Paulo Medical School, Sao Paulo, SP, Brazil; Memory and Aging Center University of California, Department of Neurology, San Francisco, USA
| | - Claudia Kimie Suemoto
- Biobank for Aging Studies, LIM-22, Department of Pathology, University of São Paulo Medical School, Sao Paulo, SP, Brazil
| | - Beny Lafer
- Bipolar Disorder Program (PROMAN), Department of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, SP, Brazil
| |
Collapse
|
23
|
Liu D, Jin Z, Wei H, Zhu C, Liu K, You P, Ju J, Xu J, Zhu W, Xu Q. Anti-SFT2D2 autoantibodies alter dendrite spine and cause psychotic behavior in mice. J Psychiatr Res 2024; 171:99-107. [PMID: 38262166 DOI: 10.1016/j.jpsychires.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Autoimmunity plays an important role in schizophrenia (SCZ). Autoantibodies against SFT2D2 have been reported in patients with SCZ; however, the specific mechanism remains unclear. This study aimed to describe an autoimmune model, namely, mice immunized against SFT2D2-peptides. METHODS ApoE-/- and WT mice (C57BL/6) were immunized four times (day 0, day 14, day 21, day 35) with SFT2D2 peptide or KLH via subcutaneous injection. Behavioral tests were conducted after the third immunization, and immunochemistry of brain tissue were performed after the sacrifice of the mice. RESULTS Active immunization with KLH-coupled SFT2D2-derived peptides in both WT and ApoE-/- (compromised blood-brain barrier) mice led to high circulating levels of anti-SFT2D2 IgG. While there was no detectable deficit in WT mice, impaired pre-pulse inhibition, motor impairments, and reduced cognition in ApoE-/- mice, without signs of anxiety and depression were observed. In addition, immunohistochemical assays demonstrated that activated microglia and astrocytes were increased but neuronal dendritic spine densities were decreased, accompanied by increased expression of complement molecule C4 across brain regions in ApoE-/- mice. CONCLUSIONS In model mice with compromised blood-brain barrier, endogenous anti-SFT2D2 IgG can activate glial cells and modulate synaptic plasticity, and induce a series of psychosis-like changes. These antibodies may reveal valuable therapeutic targets, which may improve the treatment strategies for a subgroup of SCZ patients.
Collapse
Affiliation(s)
- Duilin Liu
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhongman Jin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Kejiang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Pengsheng You
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jiahang Ju
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Jinming Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
24
|
Zarrella JA, Tsurumi A. Genome-wide transcriptome profiling and development of age prediction models in the human brain. Aging (Albany NY) 2024; 16:4075-4094. [PMID: 38428408 PMCID: PMC10968712 DOI: 10.18632/aging.205609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 03/28/2023] [Indexed: 03/03/2024]
Abstract
Aging-related transcriptome changes in various regions of the healthy human brain have been explored in previous works, however, a study to develop prediction models for age based on the expression levels of specific panels of transcripts is lacking. Moreover, studies that have assessed sexually dimorphic gene activities in the aging brain have reported discrepant results, suggesting that additional studies would be advantageous. The prefrontal cortex (PFC) region was previously shown to have a particularly large number of significant transcriptome alterations during healthy aging in a study that compared different regions in the human brain. We harmonized neuropathologically normal PFC transcriptome datasets obtained from the Gene Expression Omnibus (GEO) repository, ranging in age from 21 to 105 years, and found a large number of differentially regulated transcripts in the old and elderly, compared to young samples overall, and compared female and male-specific expression alterations. We assessed the genes that were associated with age by employing ontology, pathway, and network analyses. Furthermore, we applied various established (least absolute shrinkage and selection operator (Lasso) and Elastic Net (EN)) and recent (eXtreme Gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LightGBM)) machine learning algorithms to develop accurate prediction models for chronological age and validated them. Studies to further validate these models in other large populations and molecular studies to elucidate the potential mechanisms by which the transcripts identified may be related to aging phenotypes would be advantageous.
Collapse
Affiliation(s)
- Joseph A. Zarrella
- Department of Health Policy and Management, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Shriner's Hospitals for Children-Boston, Boston, MA 02114, USA
| |
Collapse
|
25
|
Arakelyan A, Avagyan S, Kurnosov A, Mkrtchyan T, Mkrtchyan G, Zakharyan R, Mayilyan KR, Binder H. Temporal changes of gene expression in health, schizophrenia, bipolar disorder, and major depressive disorder. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:19. [PMID: 38368435 PMCID: PMC10874418 DOI: 10.1038/s41537-024-00443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
The molecular events underlying the development, manifestation, and course of schizophrenia, bipolar disorder, and major depressive disorder span from embryonic life to advanced age. However, little is known about the early dynamics of gene expression in these disorders due to their relatively late manifestation. To address this, we conducted a secondary analysis of post-mortem prefrontal cortex datasets using bioinformatics and machine learning techniques to identify differentially expressed gene modules associated with aging and the diseases, determine their time-perturbation points, and assess enrichment with expression quantitative trait loci (eQTL) genes. Our findings revealed early, mid, and late deregulation of expression of functional gene modules involved in neurodevelopment, plasticity, homeostasis, and immune response. This supports the hypothesis that multiple hits throughout life contribute to disease manifestation rather than a single early-life event. Moreover, the time-perturbed functional gene modules were associated with genetic loci affecting gene expression, highlighting the role of genetic factors in gene expression dynamics and the development of disease phenotypes. Our findings emphasize the importance of investigating time-dependent perturbations in gene expression before the age of onset in elucidating the molecular mechanisms of psychiatric disorders.
Collapse
Affiliation(s)
- Arsen Arakelyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia.
- Armenian Bioinformatics Institute, Yerevan, Armenia.
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia.
| | | | | | - Tigran Mkrtchyan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
| | | | - Roksana Zakharyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan, Armenia
| | - Karine R Mayilyan
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- Department of Therapeutics, Faculty of General Medicine, University of Traditional Medicine, Yerevan, Armenia
| | - Hans Binder
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| |
Collapse
|
26
|
Carvalho Silva R, Martini P, Hohoff C, Mattevi S, Bortolomasi M, Menesello V, Gennarelli M, Baune BT, Minelli A. DNA methylation changes in association with trauma-focused psychotherapy efficacy in treatment-resistant depression patients: a prospective longitudinal study. Eur J Psychotraumatol 2024; 15:2314913. [PMID: 38362742 PMCID: PMC10878335 DOI: 10.1080/20008066.2024.2314913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Background: Stressful events increase the risk for treatment-resistant depression (TRD), and trauma-focused psychotherapy can be useful for TRD patients exposed to early life stress (ELS). Epigenetic processes are known to be related to depression and ELS, but there is no evidence of the effects of trauma-focused psychotherapy on methylation alterations.Objective: We performed the first epigenome-wide association study to investigate methylation changes related to trauma-focused psychotherapies effects in TRD patients.Method: Thirty TRD patients assessed for ELS underwent trauma-focused psychotherapy, of those, 12 received trauma-focused cognitive behavioural therapy, and 18 Eye Movement Desensitization and Reprocessing (EMDR). DNA methylation was profiled with Illumina Infinium EPIC array at T0 (baseline), after 8 weeks (T8, end of psychotherapy) and after 12 weeks (T12 - follow-up). We examined differentially methylated CpG sites and regions, as well as pathways analysis in association with the treatment.Results: Main results obtained have shown 110 differentially methylated regions (DMRs) with a significant adjusted p-value area associated with the effects of trauma-focused psychotherapies in the entire cohort. Several annotated genes are related to inflammatory processes and psychiatric disorders, such as LTA, GFI1, ARID5B, TNFSF13, and LST1. Gene enrichment analyses revealed statistically significant processes related to tumour necrosis factor (TNF) receptor and TNF signalling pathway. Stratified analyses by type of trauma-focused psychotherapy showed statistically significant adjusted p-value area in 141 DMRs only for the group of patients receiving EMDR, with annotated genes related to inflammation and psychiatric disorders, including LTA, GFI1, and S100A8. Gene set enrichment analyses in the EMDR group indicated biological processes related to inflammatory response, particularly the TNF signalling pathway.Conclusion: We provide preliminary valuable insights into global DNA methylation changes associated with trauma-focused psychotherapies effects, in particular with EMDR treatment.
Collapse
Affiliation(s)
- Rosana Carvalho Silva
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Christa Hohoff
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Stefania Mattevi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Valentina Menesello
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bernhard T. Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
27
|
Nomiya H, Sakurai K, Miyamoto Y, Oka M, Yoneda Y, Hikida T, Yamada M. A Kpna1-deficient psychotropic drug-induced schizophrenia model mouse for studying gene-environment interactions. Sci Rep 2024; 14:3376. [PMID: 38336912 PMCID: PMC10858057 DOI: 10.1038/s41598-024-53237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
KPNA1 is a mediator of nucleocytoplasmic transport that is abundantly expressed in the mammalian brain and regulates neuronal differentiation and synaptic function. De novo mutations in Kpna1 have been identified using genome-wide association studies in humans with schizophrenia; however, it remains unclear how KPNA1 contributes to schizophrenia pathogenesis. Recent studies have suggested a complex combination of genetic and environmental factors that are closely related to psychiatric disorders. Here, we found that subchronic administration of phencyclidine, a psychotropic drug, induced vulnerability and behavioral abnormalities consistent with the symptoms of schizophrenia in Kpna1-deficient mice. Microarray assessment revealed that the expression levels of dopamine d1/d2 receptors, an RNA editing enzyme, and a cytoplasmic dynein component were significantly altered in the nucleus accumbens brain region in a gene-environment (G × E) interaction-dependent manner. Our findings demonstrate that Kpna1-deficient mice may be useful as a G × E interaction mouse model for psychiatric disorders and for further investigation into the pathogenesis of such diseases and disorders.
Collapse
Affiliation(s)
- Hirotaka Nomiya
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshihiro Yoneda
- The Research Foundation for Microbial Diseases Osaka University, Integrated Life Science Building, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamada-oka, Suita, Osaka, 565-0871, Japan.
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8397, Japan.
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
- Life Science Innovation Center, University of Fukui, 3-9-1, Bunkyo, Fukui-City, Fukui, 910-8507, Japan.
| |
Collapse
|
28
|
Kim J, Seol S, Kim TE, Lee J, Koo JW, Kang HJ. Synaptotagmin-4 induces anhedonic responses to chronic stress via BDNF signaling in the medial prefrontal cortex. Exp Mol Med 2024; 56:329-343. [PMID: 38297157 PMCID: PMC10907712 DOI: 10.1038/s12276-024-01156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/22/2023] [Accepted: 12/08/2023] [Indexed: 02/02/2024] Open
Abstract
Stressful circumstances are significant contributors to mental illnesses such as major depressive disorder. Anhedonia, defined as loss of the ability to enjoy pleasure in pleasurable situations, including rewarding activities or social contexts, is considered a key symptom of depression. Although stress-induced depression is associated with anhedonia in humans and animals, the underlying molecular mechanisms of anhedonic responses remain poorly understood. In this study, we demonstrated that synaptotagmin-4 (SYT4), which is involved in the release of neurotransmitters and neurotrophic factors, is implicated in chronic stress-induced anhedonia. Employing chronic unpredictable stress (CUS), we evaluated two subpopulations of mice, susceptible (SUS, anhedonic) and resilient (RES, nonanhedonic), based on sucrose preference, which was strongly correlated with social reward. The FosTRAP (targeted recombination in active populations) system and optogenetic approach revealed that neural activity in the medial prefrontal cortex (mPFC) was significantly associated with CUS-induced anhedonic behavioral phenotypes. By conducting weighted gene coexpression network analysis of RNA sequencing data from the mPFC of SUS and RES mice, we identified Syt4 as a hub gene in a gene network that was unique to anhedonia. We also confirmed that Syt4 overexpression in the mPFC was pro-susceptible, while Syt4 knockdown was pro-resilient; the pro-susceptible effects of SYT4 were mediated through a reduction in brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) signaling in the mPFC. These findings suggest that SYT4-BDNF interactions in the mPFC represent a crucial regulatory mechanism of anhedonic susceptibility to chronic stress.
Collapse
Affiliation(s)
- Jeongseop Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Dong-gu, Daegu, 41062, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Sihwan Seol
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Tae-Eun Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Dong-gu, Daegu, 41062, Republic of Korea
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Joonhee Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute (KBRI), Dong-gu, Daegu, 41062, Republic of Korea.
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Dalseong-gun, Daegu, 42988, Republic of Korea.
| | - Hyo Jung Kang
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
29
|
Wang Y, Zhang X. The role of immune inflammation in electroconvulsive therapy for schizophrenia: Treatment mechanism, and relationship with clinical efficacy: Immune-inflammation in ECT for schizophrenia. Psychiatry Res 2024; 332:115708. [PMID: 38171169 DOI: 10.1016/j.psychres.2023.115708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Schizophrenia is a devastating psychiatric disorder that has detrimental effects on a significant portion of the global population. Electroconvulsive therapy (ECT), as a safe and effective physical therapy for schizophrenia, has demonstrated the ability to rapidly improve both positive and negative symptoms. Despite being used to treat schizophrenia for over 80 years, the therapeutic mechanisms of ECT are still in the early stages of exploration. Evidence has suggested that immune inflammation contributes to the pathogenesis of schizophrenia by interacting with neurotransmitters, neurodevelopment, and neurodegeneration. Given the importance of ECT as a fast-acting physical therapy for schizophrenia, gaining a deeper understanding of the role of immune inflammation may lead to developing innovative therapeutic approaches. This review summarized existing research that examined changes in peripheral inflammation following ECT in schizophrenia patients, and the effects of electroconvulsive stimulation (ECS) on neuroinflammation in animal studies.
Collapse
Affiliation(s)
- Yu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
30
|
Zhang D, Wu X, Xue X, Li W, Zhou P, Lv Z, Zhao K, Zhu F. Ancient dormant virus remnant ERVW-1 drives ferroptosis via degradation of GPX4 and SLC3A2 in schizophrenia. Virol Sin 2024; 39:31-43. [PMID: 37690733 PMCID: PMC10877354 DOI: 10.1016/j.virs.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of retroviral infections in human germline cells from millions of years ago. Among these, ERVW-1 (also known as HERV-W-ENV, ERVWE1, or ENVW) encodes the envelope protein of the HERV-W family, which contributes to the pathophysiology of schizophrenia. Additionally, neuropathological studies have revealed cell death and disruption of iron homeostasis in the brains of individuals with schizophrenia. Here, our bioinformatics analysis showed that differentially expressed genes in the human prefrontal cortex RNA microarray dataset (GSE53987) were mainly related to ferroptosis and its associated pathways. Clinical data demonstrated significantly lower expression levels of ferroptosis-related genes, particularly Glutathione peroxidase 4 (GPX4) and solute carrier family 3 member 2 (SLC3A2), in schizophrenia patients compared to normal controls. Further in-depth analyses revealed a significant negative correlation between ERVW-1 expression and the levels of GPX4/SLC3A2 in schizophrenia. Studies indicated that ERVW-1 increased iron levels, malondialdehyde (MDA), and transferrin receptor protein 1 (TFR1) expression while decreasing glutathione (GSH) levels and triggering the loss of mitochondrial membrane potential, suggesting that ERVW-1 can induce ferroptosis. Ongoing research has shown that ERVW-1 reduced the expression of GPX4 and SLC3A2 by inhibiting their promoter activities. Moreover, Ferrostatin-1 (Fer-1), the ferroptosis inhibitor, reversed the iron accumulation and mitochondrial membrane potential loss, as well as restored the expressions of ferroptosis markers GSH, MDA, and TFR1 induced by ERVW-1. In conclusion, ERVW-1 could promote ferroptosis by downregulating the expression of GPX4 and SLC3A2, revealing a novel mechanism by which ERVW-1 contributes to neuronal cell death in schizophrenia.
Collapse
Affiliation(s)
- Dongyan Zhang
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiulin Wu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xing Xue
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ping Zhou
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhao Lv
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Kexin Zhao
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology and Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
31
|
Wang R, Li L, Chen M, Li X, Liu Y, Xue Z, Ma Q, Chen J. Gene expression insights: Chronic stress and bipolar disorder: A bioinformatics investigation. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:392-414. [PMID: 38303428 DOI: 10.3934/mbe.2024018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Bipolar disorder (BD) is a psychiatric disorder that affects an increasing number of people worldwide. The mechanisms of BD are unclear, but some studies have suggested that it may be related to genetic factors with high heritability. Moreover, research has shown that chronic stress can contribute to the development of major illnesses. In this paper, we used bioinformatics methods to analyze the possible mechanisms of chronic stress affecting BD through various aspects. We obtained gene expression data from postmortem brains of BD patients and healthy controls in datasets GSE12649 and GSE53987, and we identified 11 chronic stress-related genes (CSRGs) that were differentially expressed in BD. Then, we screened five biomarkers (IGFBP6, ALOX5AP, MAOA, AIF1 and TRPM3) using machine learning models. We further validated the expression and diagnostic value of the biomarkers in other datasets (GSE5388 and GSE78936) and performed functional enrichment analysis, regulatory network analysis and drug prediction based on the biomarkers. Our bioinformatics analysis revealed that chronic stress can affect the occurrence and development of BD through many aspects, including monoamine oxidase production and decomposition, neuroinflammation, ion permeability, pain perception and others. In this paper, we confirm the importance of studying the genetic influences of chronic stress on BD and other psychiatric disorders and suggested that biomarkers related to chronic stress may be potential diagnostic tools and therapeutic targets for BD.
Collapse
Affiliation(s)
- Rongyanqi Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lan Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Man Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiaojuan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yueyun Liu
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhe Xue
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jiaxu Chen
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
32
|
Fiorito AM, Fakra E, Sescousse G, Ibrahim EC, Rey R. Molecular mapping of a core transcriptional signature of microglia-specific genes in schizophrenia. Transl Psychiatry 2023; 13:386. [PMID: 38092734 PMCID: PMC10719376 DOI: 10.1038/s41398-023-02677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Besides playing a central role in neuroinflammation, microglia regulate synaptic development and is involved in plasticity. Converging lines of evidence suggest that these different processes play a critical role in schizophrenia. Furthermore, previous studies reported altered transcription of microglia genes in schizophrenia, while microglia itself seems to be involved in the etiopathology of the disease. However, the regional specificity of these brain transcriptional abnormalities remains unclear. Moreover, it is unknown whether brain and peripheral expression of microglia genes are related. Thus, we investigated the expression of a pre-registered list of 10 genes from a core signature of human microglia both at brain and peripheral levels. We included 9 independent Gene Expression Omnibus datasets (764 samples obtained from 266 individuals with schizophrenia and 237 healthy controls) from 8 different brain regions and 3 peripheral tissues. We report evidence of a widespread transcriptional alteration of microglia genes both in brain tissues (we observed a decreased expression in the cerebellum, associative striatum, hippocampus, and parietal cortex of individuals with schizophrenia compared with healthy controls) and whole blood (characterized by a mixed altered expression pattern). Our results suggest that brain underexpression of microglia genes may represent a candidate transcriptional signature for schizophrenia. Moreover, the dual brain-whole blood transcriptional alterations of microglia/macrophage genes identified support the model of schizophrenia as a whole-body disorder and lend weight to the use of blood samples as a potential source of biological peripheral biomarkers.
Collapse
Affiliation(s)
- Anna M Fiorito
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - Eric Fakra
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guillaume Sescousse
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France
- Centre Hospitalier Le Vinatier, Bron, France
| | - El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, INT, Institut de Neurosciences de la Timone, Marseille, France
| | - Romain Rey
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France.
- Centre Hospitalier Le Vinatier, Bron, France.
- Fondation FondaMental, Créteil, France.
| |
Collapse
|
33
|
Singh M, Saxena S, Mohan KN. DNMT1 downregulation as well as its overexpression distinctly affect mostly overlapping genes implicated in schizophrenia, autism spectrum, epilepsy, and bipolar disorders. Front Mol Neurosci 2023; 16:1275697. [PMID: 38125006 PMCID: PMC10731955 DOI: 10.3389/fnmol.2023.1275697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Data on schizophrenia (SZ), epilepsy (EPD) and bipolar disorders (BPD) suggested an association of DNMT1 overexpression whereas certain variants of the gene were predicted to result in its increased expression in autism spectrum disorder (ASD). In addition, loss of DNMT1 in frontal cortex resulted in behavioral abnormalities in mice. Here we investigated the effects of increased as well as lack of DNMT1 expression using Dnmt1tet/tet neurons as a model for abnormal neurogenesis and 10,861 genes showing transcript level dysregulation in datasets from the four disorders. In case of overexpression, 3,211 (∼ 30%) genes were dysregulated, affecting pathways involved in neurogenesis, semaphorin signaling, ephrin receptor activity, etc. A disproportionately higher proportion of dysregulated genes were associated with epilepsy. When transcriptome data of Dnmt1tet/tet neurons treated with doxycycline that downregulated DNMT1 was used, 3,356 genes (∼31%) were dysregulated with a significant proportion involved in pathways similar to those in untreated cells. Both conditions resulted in ∼68% of dysregulated genes wherein a majority showed similar patterns of transcript level changes. Among the genes with transcripts returning to normal levels, ribosome assembly/biogenesis was most significant whereas in absence of DNMT1, a new set of 903 genes became dysregulated and are involved in similar pathways as mentioned above. These findings provide support for overexpression of DNMT1 as well as its downregulation as risk factor for the four disorders and that its levels within a tight range are essential for normal neurodevelopment/mental health.
Collapse
Affiliation(s)
- Minali Singh
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad, India
| | - Sonal Saxena
- Centre for Human Disease Research, Birla Institute of Technology and Science, Pilani, Hyderabad, India
| | - Kommu Naga Mohan
- Molecular Biology and Genetics Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad, India
- Centre for Human Disease Research, Birla Institute of Technology and Science, Pilani, Hyderabad, India
| |
Collapse
|
34
|
He S, Shi Y, Ye J, Yin J, Yang Y, Liu D, Shen T, Zeng D, Zhang M, Li S, Xu F, Cai Y, Zhao F, Li H, Peng D. Does decreased autophagy and dysregulation of LC3A in astrocytes play a role in major depressive disorder? Transl Psychiatry 2023; 13:362. [PMID: 38001115 PMCID: PMC10673997 DOI: 10.1038/s41398-023-02665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Astrocytic dysfunction contributes to the molecular pathogenesis of major depressive disorder (MDD). However, the astrocytic subtype that mainly contributes to MDD etiology and whether dysregulated autophagy in astrocytes is associated with MDD remain unknown. Using a single-nucleus RNA sequencing (snRNA-seq) atlas, three astrocyte subtypes were identified in MDD, while C2 State-1Q astrocytes showed aberrant changes in both cell proportion and most differentially expressed genes compared with other subtypes. Moreover, autophagy pathways were commonly inhibited in astrocytes in the prefrontal cortices (PFCs) of patients with MDD, especially in C2 State-1Q astrocytes. Furthermore, by integrating snRNA-seq and bulk transcriptomic data, we found significant reductions in LC3A expression levels in the PFC region of CUMS-induced depressed mice, as well as in postmortem PFC tissues and peripheral blood samples from patients with MDD. These results were further validated by qPCR using whole-blood samples from patients with MDD and healthy controls. Finally, LC3A expression in the whole blood of patients with MDD was negatively associated with the severity of depressive symptoms. Overall, our results underscore autophagy inhibition in PFC astrocytes as a common molecular characteristic in MDD and might reveal a novel potential diagnostic marker LC3A.
Collapse
Affiliation(s)
- Shen He
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinmei Ye
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Yin
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufang Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dan Liu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Shen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duan Zeng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyuan Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feikang Xu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyun Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Faming Zhao
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Huafang Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Daihui Peng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Wu X, Liu L, Xue X, Li X, Zhao K, Zhang J, Li W, Yao W, Ding S, Jia C, Zhu F. Captive ERVWE1 triggers impairment of 5-HT neuronal plasticity in the first-episode schizophrenia by post-transcriptional activation of HTR1B in ALKBH5-m6A dependent epigenetic mechanisms. Cell Biosci 2023; 13:213. [PMID: 37990254 PMCID: PMC10664518 DOI: 10.1186/s13578-023-01167-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Abnormalities in the 5-HT system and synaptic plasticity are hallmark features of schizophrenia. Previous studies suggest that the human endogenous retrovirus W family envelope (ERVWE1) is an influential risk factor for schizophrenia and inversely correlates with 5-HT4 receptor in schizophrenia. To our knowledge, no data describes the effect of ERVWE1 on 5-HT neuronal plasticity. N6-methyladenosine (m6A) regulates gene expression and impacts synaptic plasticity. Our research aims to systematically investigate the effects of ERVWE1 on 5-HT neuronal plasticity through m6A modification in schizophrenia. RESULTS HTR1B, ALKBH5, and Arc exhibited higher levels in individuals with first-episode schizophrenia compared to the controls and showed a strong positive correlation with ERVWE1. Interestingly, HTR1B was also correlated with ALKBH5 and Arc. Further analyses confirmed that ALKBH5 may be an independent risk factor for schizophrenia. In vitro studies, we discovered that ERVWE1 enhanced HTR1B expression, thereby activating the ERK-ELK1-Arc pathway and reducing the complexity and spine density of 5-HT neurons. Furthermore, ERVWE1 reduced m6A levels through ALKBH5 demethylation. ERVWE1 induced HTR1B upregulation by improving its mRNA stability in ALKBH5-m6A-dependent epigenetic mechanisms. Importantly, ALKBH5 mediated the observed alterations in 5-HT neuronal plasticity induced by ERVWE1. CONCLUSIONS Overall, HTR1B, Arc, and ALKBH5 levels were increased in schizophrenia and positively associated with ERVWE1. Moreover, ALKBH5 was a novel risk gene for schizophrenia. ERVWE1 impaired 5-HT neuronal plasticity in ALKBH5-m6A dependent mechanism by the HTR1B-ERK-ELK1-Arc pathway, which may be an important contributor to aberrant synaptic plasticity in schizophrenia.
Collapse
Affiliation(s)
- Xiulin Wu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | | | - Xing Xue
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuhang Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Kexin Zhao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiahang Zhang
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenshi Li
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wei Yao
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shuang Ding
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Chen Jia
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fan Zhu
- State Key Laboratory of Virology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Province Key Laboratory of Allergy & Immunology, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
36
|
Bartal G, Yitzhaky A, Segev A, Hertzberg L. Multiple genes encoding mitochondrial ribosomes are downregulated in brain and blood samples of individuals with schizophrenia. World J Biol Psychiatry 2023; 24:829-837. [PMID: 37158323 DOI: 10.1080/15622975.2023.2211653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVES Schizophrenia is a chronic, debilitating mental disorder whose pathophysiology is complex and not fully understood. Numerous studies suggest mitochondrial dysfunction may contribute to the development of schizophrenia. While mitochondrial ribosomes (mitoribosomes) are essential for proper mitochondrial functioning, their gene expression levels have not been studied yet in schizophrenia. METHODS We performed a systematic meta-analysis of the expression of 81 mitoribosomes subunits encoding genes, integrating ten brain samples datasets of patients with schizophrenia compared to healthy controls (overall 422 samples, 211 schizophrenia, and 211 controls). We also performed a meta-analysis of their expression in blood, integrating two blood sample datasets (overall 90 samples, 53 schizophrenia, and 37 controls). RESULTS Multiple mitoribosomes subunits were significantly downregulated in brain samples (18 genes) and in blood samples (11 genes) of individuals with schizophrenia, where two showed significant downregulation in both brain and blood, MRPL4 and MRPS7. CONCLUSIONS Our results support the accumulating evidence of impaired mitochondrial activity in schizophrenia. While further research is needed to validate mitoribosomes' role as biomarkers, this direction has the potential to promote patients' stratification and personalised treatment for schizophrenia.
Collapse
Affiliation(s)
- Gideon Bartal
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Aviv Segev
- The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Shalvata Mental Health Center, Hod Hasharon, Israel
| | - Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Shalvata Mental Health Center, Hod Hasharon, Israel
| |
Collapse
|
37
|
Chen J, Jiang X, Gao X, Wu W, Gu Z, Yin G, Sun R, Li J, Wang R, Zhang H, Du B, Bi X. Ferroptosis-related genes as diagnostic markers for major depressive disorder and their correlations with immune infiltration. Front Med (Lausanne) 2023; 10:1215180. [PMID: 37942417 PMCID: PMC10627962 DOI: 10.3389/fmed.2023.1215180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Background Major depression disorder (MDD) is a devastating neuropsychiatric disease, and one of the leading causes of suicide. Ferroptosis, an iron-dependent form of regulated cell death, plays a pivotal role in numerous diseases. The study aimed to construct and validate a gene signature for diagnosing MDD based on ferroptosis-related genes (FRGs) and further explore the biological functions of these genes in MDD. Methods The datasets were downloaded from the Gene Expression Omnibus (GEO) database and FRGs were obtained from the FerrDb database and other literatures. Least absolute shrinkage and selection operator (LASSO) regression and stepwise logistic regression were performed to develop a gene signature. Receiver operating characteristic (ROC) curves were utilized to assess the diagnostic power of the signature. Gene ontology (GO) enrichment analysis was used to explore the biological roles of these diagnostic genes, and single sample gene set enrichment analysis (ssGSEA) algorithm was used to evaluate immune infiltration in MDD. Animal model of depression was constructed to validate the expression of the key genes. Results Eleven differentially expressed FRGs were identified in MDD patients compared with healthy controls. A signature of three FRGs (ALOX15B, RPLP0, and HP) was constructed for diagnosis of MDD. Afterwards, ROC analysis confirmed the signature's discriminative capacity (AUC = 0.783, 95% CI = 0.719-0.848). GO enrichment analysis revealed that the differentially expressed genes (DEGs) related to these three FRGs were mainly involved in immune response. Furthermore, spearman correlation analysis demonstrated that these three FRGs were associated with infiltrating immune cells. ALOX15B and HP were significantly upregulated and RPLP0 was significantly downregulated in peripheral blood of the lipopolysaccharide (LPS)-induced depressive model. Conclusion Our results suggest that the novel FRG signature had a good diagnostic performance for MDD, and these three FRGs correlated with immune infiltration in MDD.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaolong Jiang
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, Shanghai, China
| | - Xin Gao
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wen Wu
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhengsheng Gu
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ge Yin
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Rui Sun
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jiasi Li
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ruoru Wang
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hailing Zhang
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Bingying Du
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaoying Bi
- Department of Neurology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
38
|
Yu H, Ni P, Tian Y, Zhao L, Li M, Li X, Wei W, Wei J, Du X, Wang Q, Guo W, Deng W, Ma X, Coid J, Li T. Association of the plasma complement system with brain volume deficits in bipolar and major depressive disorders. Psychol Med 2023; 53:6102-6112. [PMID: 36285542 DOI: 10.1017/s0033291722003282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Inflammation plays a crucial role in the pathogenesis of major depressive disorder (MDD) and bipolar disorder (BD). This study aimed to examine whether the dysregulation of complement components contributes to brain structural defects in patients with mood disorders. METHODS A total of 52 BD patients, 35 MDD patients, and 53 controls were recruited. The human complement immunology assay was used to measure the levels of complement factors. Whole brain-based analysis was performed to investigate differences in gray matter volume (GMV) and cortical thickness (CT) among the BD, MDD, and control groups, and relationships were explored between neuroanatomical differences and levels of complement components. RESULTS GMV in the medial orbital frontal cortex (mOFC) and middle cingulum was lower in both patient groups than in controls, while the CT of the left precentral gyrus and left superior frontal gyrus were affected differently in the two disorders. Concentrations of C1q, C4, factor B, factor H, and properdin were higher in both patient groups than in controls, while concentrations of C3, C4 and factor H were significantly higher in BD than in MDD. Concentrations of C1q, factor H, and properdin showed a significant negative correlation with GMV in the mOFC at the voxel-wise level. CONCLUSIONS BD and MDD are associated with shared and different alterations in levels of complement factors and structural impairment in the brain. Structural defects in mOFC may be associated with elevated levels of certain complement factors, providing insight into the shared neuro-inflammatory pathogenesis of mood disorders.
Collapse
Affiliation(s)
- Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peiyan Ni
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Yang Tian
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Liansheng Zhao
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Mingli Li
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Xiaojing Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinxue Wei
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Xiangdong Du
- Suzhou Psychiatry Hospital, Affiliated Guangji Hospital of Soochow University, Suzhou, 215137, Jiangsu, China
| | - Qiang Wang
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaohong Ma
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Jeremy Coid
- The Psychiatric Laboratory and Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P R China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Bloch Priel S, Yitzhaky A, Gurwitz D, Hertzberg L. Cannabinoid receptor gene CNR1 is downregulated in subcortical brain samples and upregulated in blood samples of individuals with schizophrenia: A participant data systematic meta-analysis. Eur J Neurosci 2023; 58:3540-3554. [PMID: 37611908 DOI: 10.1111/ejn.16122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/01/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023]
Abstract
Cannabis use leads to symptom exacerbation in schizophrenia patients, and endocannabinoid ligands have been studied as tentative schizophrenia therapeutics. Here, we aimed to characterise the connection between schizophrenia and the cannabinoid receptor 1 gene (CNR1) and explore possible mechanisms affecting its expression in schizophrenia. We performed a participant data systematic meta-analysis of CNR1 gene expression and additional endocannabinoid system genes in both brain (subcortical areas) and blood samples. We integrated eight brain sample datasets (overall 316 samples; 149 schizophrenia and 167 controls) and two blood sample datasets (overall 90 samples; 53 schizophrenia and 37 controls) while following the PRISMA meta-analysis guidelines. CNR1 was downregulated in subcortical regions and upregulated in blood samples of patients with schizophrenia. CNR2 and genes encoding endocannabinoids synthesis and degradation did not show differential expression in the brain or blood, except fatty acid amide hydrolase (FAAH), which showed a downregulation trend in blood. In addition, the brain expression levels of CNR1 and three GABA receptor genes, GABRA1, GABRA6 and GABRG2, were positively correlated (R = .57, .36, .54; p = 2.7 × 10-14 , 6.9 × 10-6 and 1.1 × 10-12 , respectively). Brain CNR1 downregulation and the positive correlation with three GABA receptor genes suggest an association with GABA neurotransmission and possible effects on negative schizophrenia symptoms. Further studies are required for clarifying the opposite CNR1 dysregulation in the brain and blood of schizophrenia patients and the potential of endocannabinoid ligands as schizophrenia therapeutics.
Collapse
Affiliation(s)
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - David Gurwitz
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Libi Hertzberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- Shalvata Mental Health Center, affiliated with the Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
40
|
Shamir A, Yitzhaky A, Segev A, Haroutunian V, Katsel P, Hertzberg L. Up-Regulation of S100 Gene Family in Brain Samples of a Subgroup of Individuals with Schizophrenia: Meta-analysis. Neuromolecular Med 2023; 25:388-401. [PMID: 37005977 DOI: 10.1007/s12017-023-08743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/12/2023] [Indexed: 04/04/2023]
Abstract
The S100 proteins family is known to affect neuroinflammation and astrocyte activation, which have been suggested to be contributors to the pathogenesis of schizophrenia. We conducted a systematic meta-analysis of S100 genes differential expression in postmortem samples of patients with schizophrenia vs. healthy controls, following the commonly used Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Twelve microarray datasets met the inclusion criteria (overall 511 samples, 253 schizophrenia and 258 controls were analyzed). Nine out of 21 genes were significantly up-regulated or with tendency for up-regulation. A per-sample fold change analysis indicated that the S100 genes' up-regulation was concentrated in a subgroup of the patients. None of the genes have been found to be down-regulated. ANXA3, which encodes Annexin 3 protein and was associated with neuroinflammation, was up-regulated and positively correlated with the S100 genes' expression pattern. In addition, astrocytes and endothelial cell markers were significantly correlated with S100A8 expression. S100 correlation with ANXA3 and endothelial cell markers suggests that the up-regulation we detected reflects increased inflammation. However, it might also reflect astrocytes abundance or activation. The fact that S100 proteins were shown to be up-regulated in blood samples and other body fluids of patients with schizophrenia suggests a potential role as biomarkers, which might help disease subtyping, and the development of etiological treatments for immune dysregulation in schizophrenia.
Collapse
Affiliation(s)
- Anat Shamir
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Aviv Segev
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Shalvata Mental Health Center, 13 Aliat Hanoar St, 45100, Hod Hasharon, Israel
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| | - Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Libi Hertzberg
- The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel.
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
- Shalvata Mental Health Center, 13 Aliat Hanoar St, 45100, Hod Hasharon, Israel.
| |
Collapse
|
41
|
Dowling KF, Dienel SJ, Barile Z, Bazmi HH, Lewis DA. Localization and Diagnostic Specificity of Glutamic Acid Decarboxylase Transcript Alterations in the Dorsolateral Prefrontal Cortex in Schizophrenia. Biol Psychiatry 2023; 94:322-331. [PMID: 37061080 PMCID: PMC10524522 DOI: 10.1016/j.biopsych.2023.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Working memory (WM) deficits in schizophrenia are thought to reflect altered inhibition in the dorsolateral prefrontal cortex (DLPFC). This interpretation is supported by findings of lower transcript levels of the 2 enzymes, GAD67 and GAD65, which mediate basal and activity-dependent GABA (gamma-aminobutyric acid) synthesis, respectively. However, the relative magnitude, location within the depth of the DLPFC, and specificity to the disease process of schizophrenia of alterations in GAD67 and/or GAD65 remain unclear. METHODS Levels of GAD67 and GAD65 messenger RNAs (mRNAs) in superficial (layers 2/superficial 3) and deep (deep layer 6/white matter) zones of the DLPFC were quantified by quantitative polymerase chain reaction in subjects with schizophrenia (n = 41), major depression (n = 42), or bipolar disorder (n = 39) and unaffected comparison (n = 43) subjects. RESULTS Relative to the unaffected comparison group, GAD67 and GAD65 mRNA levels in the schizophrenia group were lower (p = .039, effect size = -0.69 and p = .027, effect size = -0.72, respectively) in the superficial zone but were unaltered in the deep zone. In the major depression group, only GAD67 mRNA levels were lower and only in the superficial zone (p = .089, effect size = 0.70). No differences were detected in the bipolar disorder group. Neither GAD67 nor GAD65 mRNA alterations were explained by psychosis, mood disturbance, or common comorbid factors. CONCLUSIONS Alterations in markers of GABA synthesis demonstrated transcript, DLPFC zone, and diagnostic specificity. Given the dependence of WM on GABA neurotransmission in the superficial DLPFC, our findings suggest that limitations to GABA synthesis in this location contribute to WM impairments in schizophrenia, especially during demanding WM tasks, when GABA synthesis requires the activity of both GAD67 and GAD65.
Collapse
Affiliation(s)
- Kevin F Dowling
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Samuel J Dienel
- Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Zackery Barile
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - H Holly Bazmi
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
42
|
Teng P, Li Y, Ku L, Wang F, Goldsmith DR, Wen Z, Yao B, Feng Y. The human lncRNA GOMAFU suppresses neuronal interferon response pathways affected in neuropsychiatric diseases. Brain Behav Immun 2023; 112:175-187. [PMID: 37301236 PMCID: PMC10527610 DOI: 10.1016/j.bbi.2023.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/26/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play multifaceted roles in regulating brain gene networks. LncRNA abnormalities are thought to underlie the complex etiology of numerous neuropsychiatric disorders. One example is the human lncRNA gene GOMAFU, which is found dysregulated in schizophrenia (SCZ) postmortem brains and harbors genetic variants that contribute to the risk of SCZ. However, transcriptome-wide biological pathways regulated by GOMAFU have not been determined. How GOMAFU dysregulation contributes to SCZ pathogenesis remains elusive. Here we report that GOMAFU is a novel suppressor of human neuronal interferon (IFN) response pathways that are hyperactive in the postmortem SCZ brains. We analyzed recently released transcriptomic profiling datasets in clinically relevant brain areas derived from multiple SCZ cohorts and found brain region-specific dysregulation of GOMAFU. Using CRISPR-Cas9 to delete the GOMAFU promoter in a human neural progenitor cell model, we identified transcriptomic alterations caused by GOMAFU deficiency in pathways commonly affected in postmortem brains of SCZ and autism spectrum disorder (ASD), with the most striking effects on upregulation of numerous genes underlying IFN signaling. In addition, expression levels of GOMAFU target genes in the IFN pathway are differentially affected in SCZ brain regions and negatively associated with GOMAFU alterations. Furthermore, acute exposure to IFN-γ causes a rapid decline of GOMAFU and activation of a subclass of GOMAFU targets in stress and immune response pathways that are affected in SCZ brains, which form a highly interactive molecular network. Together, our studies unveiled the first evidence of lncRNA-governed neuronal response pathways to IFN challenge and suggest that GOMAFU dysregulation may mediate environmental risks and contribute to etiological neuroinflammatory responses by brain neurons of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Peng Teng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States
| | - Li Ku
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States
| | - David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States; Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, United States.
| | - Yue Feng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322, United States.
| |
Collapse
|
43
|
Głodek M, Skibinska M, Suwalska A. Diet and physical activity and metabolic disorders in patients with schizophrenia and bipolar affective disorder in the Polish population. PeerJ 2023; 11:e15617. [PMID: 37456885 PMCID: PMC10348314 DOI: 10.7717/peerj.15617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction There are numerous reports of a higher prevalence of metabolic disorders in patients with schizophrenia and bipolar disorder (BD), yet its connections to diet and physical activity remain not fully explained. This article aimed to evaluate diet, physical activity and selected biochemical and anthropometric parameters associated with metabolism in patients with schizophrenia and BD and to analyse the relationships between these variables in the subjects. Materials and Methods A total of 126 adults participated in the study: 47 patients with schizophrenia, 54 patients with BD and 25 patients in mental illness remission (reference group). Data were collected on the underlying illness and concomitant illnesses, and the severity of symptoms of the current episode was assessed using the following scales: PANSS, MADRS and YMRS. An assessment of the subjects' diet (KomPAN questionnaire) and their physical activity (International Physical Activity Questionnaire) was carried out. Anthropometric and blood pressure measurements were taken and BMI and WHR were calculated. Serum concentrations of fasting glucose, TSH, total cholesterol, LDL and HDL fractions, triglycerides and leptin, ghrelin and resistin were determined. For statistical analysis, the significance level was set at 0.05. For multiple comparisons one way ANOVA or Kruskal Wallis were used with post hoc Tukey and Dunn tests, respectively. To determine correlation of variables, Pearson's linear correlation coefficient or Spearman's rank correlation coefficient were used. Results A total of 50.8% of the subjects had at least one metabolic disorder-most commonly excessive body weight (66.7%) and abdominal obesity (64.3%). Patients did not differ significantly in terms of physical activity, but they did differ in mean time spent sitting-with this being significantly longer for all groups than in the general population. The subjects differed in diet: patients with BD consumed less unhealthy foods than patients with schizophrenia. The highest correlations between physical activity, diet and variables defining metabolic disorders were found in patients with BD. Only in patients with schizophrenia were there significant correlations between the course of the disease and physical activity. Discussion The results suggest the existence of associations between diet, physical activity, and metabolic disorders in both BD and schizophrenia patients. They also suggest a tendency among those patients to spend long periods of time sitting.
Collapse
Affiliation(s)
- Magdalena Głodek
- Department of Mental Health, Chair of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
- Department of Adult Psychiatry, Chair of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| | - Maria Skibinska
- Department of Genetics in Psychiatry, Chair of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| | - Aleksandra Suwalska
- Department of Mental Health, Chair of Psychiatry, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
44
|
Zhu Y, Webster MJ, Walker AK, Massa P, Middleton FA, Weickert CS. Increased prefrontal cortical cells positive for macrophage/microglial marker CD163 along blood vessels characterizes a neuropathology of neuroinflammatory schizophrenia. Brain Behav Immun 2023; 111:46-60. [PMID: 36972743 DOI: 10.1016/j.bbi.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Transcript levels of cytokines and SERPINA3 have been used to define a substantial subset (40%) of individuals with schizophrenia with elevated inflammation and worse neuropathology in the dorsolateral prefrontal cortex (DLPFC). In this study, we tested if inflammatory proteins are likewise related to high and low inflammatory states in the human DLFPC in people with schizophrenia and controls. Levels of inflammatory cytokines (IL6, IL1β, IL18, IL8) and a macrophage marker (CD163 protein) were measured in brains obtained from the National Institute of Mental Health (NIMH) (N = 92). First, we tested for diagnostic differences in protein levels overall, then we determined the percentage of individuals that could be defined as "high" inflammation using protein levels. IL-18 was the only cytokine to show increased expression in schizophrenia compared to controls overall. Interestingly, two-step recursive clustering analysis showed that IL6, IL18, and CD163 protein levels could be used as predictors of "high and low" inflammatory subgroups. By this model, a significantly greater proportion of schizophrenia cases (18/32; 56.25%; SCZ) were identified as belonging to the high inflammatory (HI) subgroup compared to control cases (18/60; 30%; CTRL) [χ2(1) = 6.038, p = 0.014]. When comparing across inflammatory subgroups, IL6, IL1β, IL18, IL8, and CD163 protein levels were elevated in both SCZ-HI and CTRL-HI compared to both low inflammatory subgroups (all p < 0.05). Surprisingly, TNFα levels were significantly decreased (-32.2%) in schizophrenia compared to controls (p < 0.001), and were most diminished in the SCZ-HI subgroup compared to both CTRL-LI and CTRL-HI subgroups (p < 0.05). Next, we asked if the anatomical distribution and density of CD163+ macrophages differed in those with schizophrenia and high inflammation status. Macrophages were localized to perivascular sites and found surrounding small, medium and large blood vessels in both gray matter and white matter, with macrophage density highest at the pial surface in all schizophrenia cases examined. A higher density of CD163+ macrophages, that were also larger and more darkly stained, was found in the SCZ-HI subgroup (+154% p < 0.05). We also confirmed the rare existence of parenchymal CD163+ macrophages in both high inflammation subgroups (schizophrenia and controls). Brain CD163+ cell density around blood vessels positively correlated with CD163 protein levels. In conclusion, we find a link between elevated interleukin cytokine protein levels, decreased TNFα protein levels, and elevated CD163+ macrophage densities especially along small blood vessels in those with neuroinflammatory schizophrenia.
Collapse
Affiliation(s)
- Yunting Zhu
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Adam K Walker
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Laboratory of Immunopsychiatry, Neuroscience Research Australia, Sydney, NSW, Australia; Monash Institute of Pharmaceutical Science, Monash University, Parkville, Vic, Australia
| | - Paul Massa
- Department of Neurology, Upstate Medical University, Syracuse, NY 13210, USA; Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Frank A Middleton
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Cynthia Shannon Weickert
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY 13210, USA; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW 2031, Australia.
| |
Collapse
|
45
|
Mekiten O, Yitzhaky A, Gould N, Rosenblum K, Hertzberg L. Ribosome subunits are upregulated in brain samples of a subgroup of individuals with schizophrenia: A systematic gene expression meta-analysis. J Psychiatr Res 2023; 164:372-381. [PMID: 37413782 DOI: 10.1016/j.jpsychires.2023.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
One of the new theories accounting for the underlying pathophysiology of schizophrenia is excitation/inhibition imbalance. Interestingly, perturbation in protein synthesis machinery as well as oxidative stress can lead to excitation/inhibition imbalance. We thus performed a systematic meta-analysis of the expression of 79 ribosome subunit genes and two oxidative-stress related genes, HIF1A and NQO1, in brain samples of individuals with schizophrenia vs. healthy controls. We integrated 12 gene expression datasets, following the PRISMA guidelines (overall 511 samples, 253 schizophrenia and 258 controls). Five ribosome subunit genes were significantly upregulated in a subgroup of the patients with schizophrenia, while 24 (30%) showed a tendency for upregulation. HIF1A and NQO1 were also found to be significantly upregulated. Moreover, HIF1A and NQO1 showed positive correlation with the expression of the upregulated ribosome subunit genes. Our results, together with previous findings, suggest a possible role for altered mRNA translation in the pathogenesis of schizophrenia, in association with markers of increased oxidative stress in a subgroup of patients. Further studies should define whether the upregulation of ribosome subunits result in altered mRNA translation, which proteins are modulated and how it characterizes a subgroup of the patients with schizophrenia.
Collapse
Affiliation(s)
- Ori Mekiten
- Faculty of Medicine, Tel-Aviv University, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Nathaniel Gould
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel; Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Libi Hertzberg
- Faculty of Medicine, Tel-Aviv University, Israel; Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel; Shalvata Mental Health Center, Israel.
| |
Collapse
|
46
|
Nascimento C, Kyunghee Kim H, Villela Nunes P, Paraiso Leite RE, Katia Cristina DO, Barbosa A, Bernardi Bertonha F, Moreira-Filho CA, Jacob-Filho W, Nitrini R, Pasqualucci CA, Tenenholz Grinberg L, Kimie Suemoto C, Brentani HP, Lafer B. Gene expression alterations in the postmortem hippocampus from older patients with bipolar disorder - A hypothesis generating study. J Psychiatr Res 2023; 164:329-334. [PMID: 37393798 DOI: 10.1016/j.jpsychires.2023.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
Bipolar disorder (BD) presents with a progressive course in a subset of patients. However, our knowledge of molecular changes in older BD is limited. In this study, we examined gene expression changes in the hippocampus of BD from the Biobank of Aging Studies to identify genes of interest that warrant further exploration. RNA was extracted from the hippocampus from 11 subjects with BD and 11 age and sex-matched controls. Gene expression data was generated using the SurePrint G3 Human Gene Expression v3 microarray. Rank feature selection was performed to identify a subset of features that can optimally differentiate BD and controls. Genes ranked in the top 0.1% with log2 fold change >1.2 were identified as genes of interest. Average age of the subjects was 64 years old; duration of disease was 21 years and 82% were female. Twenty-five genes were identified, of which all but one was downregulated in BD. Of these, CNTNAP4, MAP4, SLC4A1, COBL, and NEURL4 had been associated with BD and other psychiatric conditions in previous studies. We believe our findings have identified promising targets to inform future studies aiming to understand the pathophysiology of BD in later life.
Collapse
Affiliation(s)
- Camila Nascimento
- Bipolar Disorder Program, Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil; Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil.
| | | | - Paula Villela Nunes
- Bipolar Disorder Program, Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil; Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil.
| | | | | | - André Barbosa
- Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil.
| | | | | | - Wilson Jacob-Filho
- Division of Geriatrics, University of Sao Paulo Medical School, SP, Brazil.
| | - Ricardo Nitrini
- Department of Neurology, University of Sao Paulo Medical School, SP, Brazil.
| | | | - Lea Tenenholz Grinberg
- Department of Pathology, University of Sao Paulo Medical School, SP, Brazil; Memory and Aging Center University of California, San Francisco, USA.
| | | | | | - Beny Lafer
- Bipolar Disorder Program, Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil; Department of Psychiatry, University of Sao Paulo Medical School, SP, Brazil.
| |
Collapse
|
47
|
El-Agnaf O, Bensmail I, Al-Nesf MAY, Flynn J, Taylor M, Majbour NK, Abdi IY, Vaikath NN, Farooq A, Vemulapalli PB, Schmidt F, Ouararhni K, Al-Siddiqi HH, Arredouani A, Wijten P, Al-Maadheed M, Mohamed-Ali V, Decock J, Abdesselem HB. Uncovering a neurological protein signature for severe COVID-19. Neurobiol Dis 2023; 182:106147. [PMID: 37178811 PMCID: PMC10174474 DOI: 10.1016/j.nbd.2023.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023] Open
Abstract
Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sparked a global pandemic with severe complications and high morbidity rate. Neurological symptoms in COVID-19 patients, and neurological sequelae post COVID-19 recovery have been extensively reported. Yet, neurological molecular signature and signaling pathways that are affected in the central nervous system (CNS) of COVID-19 severe patients remain still unknown and need to be identified. Plasma samples from 49 severe COVID-19 patients, 50 mild COVID-19 patients, and 40 healthy controls were subjected to Olink proteomics analysis of 184 CNS-enriched proteins. By using a multi-approach bioinformatics analysis, we identified a 34-neurological protein signature for COVID-19 severity and unveiled dysregulated neurological pathways in severe cases. Here, we identified a new neurological protein signature for severe COVID-19 that was validated in different independent cohorts using blood and postmortem brain samples and shown to correlate with neurological diseases and pharmacological drugs. This protein signature could potentially aid the development of prognostic and diagnostic tools for neurological complications in post-COVID-19 convalescent patients with long term neurological sequelae.
Collapse
Affiliation(s)
- Omar El-Agnaf
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Maryam A Y Al-Nesf
- Department of Medicine, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar; Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK
| | | | | | - Nour K Majbour
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Ilham Y Abdi
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Nishant N Vaikath
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Abdulaziz Farooq
- Aspetar Hospital, Orthopaedic and Sports Medicine, Hospital, FIFA Medical Centre of Excellence, Doha, Qatar
| | | | - Frank Schmidt
- Proteomics Core, Weill Cornell Medicine - Qatar, Doha, Qatar
| | - Khalid Ouararhni
- Genomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Heba H Al-Siddiqi
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Abdelilah Arredouani
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Patrick Wijten
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Mohammed Al-Maadheed
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Vidya Mohamed-Ali
- Center of Metabolism and Inflammation, Division of Medicine, Royal Free Campus, University College London, Rowland Hill Road, London NW3 2PF, UK; Anti-Doping Laboratory Qatar, Doha, Qatar
| | - Julie Decock
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Translational Cancer and Immunity Center (TCIC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Houari B Abdesselem
- Neurological Disorders Research Center (NDRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar; Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
48
|
Liu H, Li W, Liu N, Tang J, Sun L, Xu J, Ji Y, Xie Y, Ding H, Ye Z, Yu C, Qin W. Structural covariances of prefrontal subregions selectively associate with dopamine-related gene coexpression and schizophrenia. Cereb Cortex 2023; 33:8035-8045. [PMID: 36935097 DOI: 10.1093/cercor/bhad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/20/2023] Open
Abstract
Evidence highlights that dopamine (DA) system dysregulation and prefrontal cortex (PFC) dysfunction may underlie the pathophysiology of schizophrenia. However, the associations among DA genes, PFC morphometry, and schizophrenia have not yet been fully clarified. Based on the brain gene expression dataset from Allen Human Brain Atlas and structural magnetic resonance imaging data (NDIS = 1727, NREP = 408), we first identified 10 out of 22 PFC subregions whose gray matter volume (GMV) covariance profiles were reliably associated with their DA genes coexpression profiles, then four out of the identified 10 PFC subregions demonstrated abnormally increased GMV covariance with the hippocampus, insula, and medial frontal areas in schizophrenia patients (NCASE = 100; NCONTROL = 102). Moreover, based on a schizophrenia postmortem expression dataset, we found that the DA genes coexpression of schizophrenia was significantly reduced between the middle frontal gyrus and hippocampus, in which 21 DA genes showed significantly unsynchronized expression changes, and the 21 genes' brain expression were enriched in brain activity invoked by working memory, reward, speech production, and episodic memory. Our findings indicate the DA genes selectively regulate the structural covariance of PFC subregions by their coexpression profiles, which may underlie the disrupted GMV covariance and impaired cognitive functions in schizophrenia.
Collapse
Affiliation(s)
- Huaigui Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Nana Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jie Tang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lixin Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yuan Ji
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Xie
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Ding
- School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
49
|
Ni RJ, Wang YY, Gao TH, Wang QR, Wei JX, Zhao LS, Ma YR, Ma XH, Li T. Depletion of microglia with PLX3397 attenuates MK-801-induced hyperactivity associated with regulating inflammation-related genes in the brain. Zool Res 2023; 44:543-555. [PMID: 37147908 PMCID: PMC10236309 DOI: 10.24272/j.issn.2095-8137.2022.389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/28/2023] [Indexed: 05/07/2023] Open
Abstract
Acute administration of MK-801 (dizocilpine), an N-methyl-D-aspartate receptor (NMDAR) antagonist, can establish animal models of psychiatric disorders. However, the roles of microglia and inflammation-related genes in these animal models of psychiatric disorders remain unknown. Here, we found rapid elimination of microglia in the prefrontal cortex (PFC) and hippocampus (HPC) of mice following administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor PLX3397 (pexidartinib) in drinking water. Single administration of MK-801 induced hyperactivity in the open-field test (OFT). Importantly, PLX3397-induced depletion of microglia prevented the hyperactivity and schizophrenia-like behaviors induced by MK-801. However, neither repopulation of microglia nor inhibition of microglial activation by minocycline affected MK-801-induced hyperactivity. Importantly, microglial density in the PFC and HPC was significantly correlated with behavioral changes. In addition, common and distinct glutamate-, GABA-, and inflammation-related gene (116 genes) expression patterns were observed in the brains of PLX3397- and/or MK-801-treated mice. Moreover, 10 common inflammation-related genes ( CD68, CD163, CD206, TMEM119, CSF3R, CX3CR1, TREM2, CD11b, CSF1R, and F4/80) with very strong correlations were identified in the brain using hierarchical clustering analysis. Further correlation analysis demonstrated that the behavioral changes in the OFT were most significantly associated with the expression of inflammation-related genes ( NLRP3, CD163, CD206, F4/80, TMEM119, and TMEM176a), but not glutamate- or GABA-related genes in PLX3397- and MK-801-treated mice. Thus, our results suggest that microglial depletion via a CSF1R/c-Kit kinase inhibitor can ameliorate the hyperactivity induced by an NMDAR antagonist, which is associated with modulation of immune-related genes in the brain.
Collapse
Affiliation(s)
- Rong-Jun Ni
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Yi-Yan Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Tian-Hao Gao
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Qi-Run Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Jin-Xue Wei
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Lian-Sheng Zhao
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Yang-Rui Ma
- Golden Apple Jincheng NO.1 Secondary School, Chengdu, Sichuan 610213, China
| | - Xiao-Hong Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China. E-mail:
| | - Tao Li
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310014, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, Guangdong 510799, China. E-mail:
| |
Collapse
|
50
|
Giangreco B, Dwir D, Klauser P, Jenni R, Golay P, Cleusix M, Baumann PS, Cuénod M, Conus P, Toni N, Do KQ. Characterization of early psychosis patients carrying a genetic vulnerability to redox dysregulation: a computational analysis of mechanism-based gene expression profile in fibroblasts. Mol Psychiatry 2023; 28:1983-1994. [PMID: 37002404 PMCID: PMC10575782 DOI: 10.1038/s41380-023-02034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In view of its heterogeneity, schizophrenia needs new diagnostic tools based on mechanistic biomarkers that would allow early detection. Complex interaction between genetic and environmental risk factors may lead to NMDAR hypofunction, inflammation and redox dysregulation, all converging on oxidative stress. Using computational analysis, the expression of 76 genes linked to these systems, known to be abnormally regulated in schizophrenia, was studied in skin-fibroblasts from early psychosis patients and age-matched controls (N = 30), under additional pro-oxidant challenge to mimic environmental stress. To evaluate the contribution of a genetic risk related to redox dysregulation, we investigated the GAG trinucleotide polymorphism in the key glutathione (GSH) synthesizing enzyme, glutamate-cysteine-ligase-catalytic-subunit (gclc) gene, known to be associated with the disease. Patients and controls showed different gene expression profiles that were modulated by GAG-gclc genotypes in combination with oxidative challenge. In GAG-gclc low-risk genotype patients, a global gene expression dysregulation was observed, especially in the antioxidant system, potentially induced by other risks. Both controls and patients with GAG-gclc high-risk genotype (gclcGAG-HR) showed similar gene expression profiles. However, under oxidative challenge, a boosting of other antioxidant defense, including the master regulator Nrf2 and TRX systems was observed only in gclcGAG-HR controls, suggesting a protective compensation against the genetic GSH dysregulation. Moreover, RAGE (redox/inflammation interaction) and AGMAT (arginine pathway) were increased in the gclcGAG-HR patients, suggesting some additional risk factors interacting with this genotype. Finally, the use of a machine-learning approach allowed discriminating patients and controls with an accuracy up to 100%, paving the way towards early detection of schizophrenia.
Collapse
Affiliation(s)
- Basilio Giangreco
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Golay
- Service of Community Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Michel Cuénod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Nicolas Toni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| |
Collapse
|