1
|
Si Y, Zhang H, Du L, Deng Z. Abnormalities of brain dynamics based on large-scale cortical network modeling in autism spectrum disorder. Neural Netw 2025; 189:107561. [PMID: 40388872 DOI: 10.1016/j.neunet.2025.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/12/2025] [Accepted: 04/27/2025] [Indexed: 05/21/2025]
Abstract
Synaptic increase is a common phenomenon in the brain of autism spectrum disorder (ASD). However, the impact of increased synapses on the neurophysiological activity of ASD remains unclear. To address this, we propose a large-scale cortical network model based on empirical structural connectivity data using the Wendling model, which successfully simulates both pathological and physiological electroencephalography (EEG) signals. Building on this, the EEG functional network is constructed using the phase lag index, effectively characterizing the functional connectivity. Our modeling results indicate that EEG activity and functional network properties undergo significant changes by globally increasing synaptic coupling strength. Specifically, it leads to abnormal neural oscillations clinically reported in ASD, including the decreased dominant frequency, the decreased relative power in the α band and the increased relative power in the δ+θ band, particularly in the frontal lobe. At the same time, the clustering coefficient and global efficiency of the functional network decrease, while the characteristic path length increases, suggesting that the functional network of ASD is inefficient and poorly integrated. Additionally, we find insufficient functional connectivity across multiple brain regions in ASD, along with decreased wavelet coherence in the α band within the frontal lobe and between the frontal and temporal lobes. Considering that most of the synaptic increases in ASD are limited, brain regions are further randomly selected to increase the local synaptic coupling strength. The results show that disturbances in local brain regions can also facilitate the development of ASD. This study reveals the intrinsic link between synapse increase and abnormal brain activity in ASD, and inspires treatments related to synapse pruning.
Collapse
Affiliation(s)
- Youyou Si
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an, Shaanxi, 710072, China
| | - Honghui Zhang
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an, Shaanxi, 710072, China.
| | - Lin Du
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an, Shaanxi, 710072, China
| | - Zichen Deng
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
2
|
Girault JB. The developing visual system: A building block on the path to autism. Dev Cogn Neurosci 2025; 73:101547. [PMID: 40096794 PMCID: PMC11964655 DOI: 10.1016/j.dcn.2025.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Longitudinal neuroimaging studies conducted over the past decade provide evidence of atypical visual system development in the first years of life in autism spectrum disorder (ASD). Findings from genomic analyses, family studies, and postmortem investigations suggest that changes in the visual system in ASD are linked to genetic factors, making the visual system an important neural phenotype along the path from genes to behavior that deserves further study. This article reviews what is known about the developing visual system in ASD in the first years of life; it also explores the potential canalizing role that atypical visual system maturation may have in the emergence of ASD by placing findings in the context of developmental cascades involving brain development, attention, and social and cognitive development. Critical gaps in our understanding of human visual system development are discussed, and future research directions are proposed to improve our understanding of ASD as a complex neurodevelopmental disorder with origins in early brain development.
Collapse
Affiliation(s)
- Jessica B Girault
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
3
|
Farhat EK, Banjari I, Džidić-Krivić A, Ejubović M, Sher EK. Gut microbiota mediated regulation of vitamin B homeostasis in autism spectrum disorders. Brain Res 2025; 1860:149661. [PMID: 40324672 DOI: 10.1016/j.brainres.2025.149661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
The exact cause of autism spectrum disorder (ASD) is yet unknown, although possible causes include early childhood, foetal development, gestation, delivery mode, genetics, and environmental variables. Approximately 1% of children worldwide have ASD, and this percentage is rising. The immunological, endocrine, gut microbiota and brain-gut axis quality influence the intensity of ASD symptoms. Deficits in the composition and diversity of gut microbiota are common in children with ASD, accounting for 9-90% of these illnesses, including elevated inflammatory cytokines, inflammation, leaky gut syndrome, and pathological microflora growth. Dysbiosis can be made worse by eating issues that are prevalent in ASD. B vitamins, such as cobalamin and folate, which are essential methyl donors for DNA epigenetic changes, are usually produced by a healthy gut microbiota. 50% of people with ASD have a vitamin B deficit. This work summarises research on the impact of gut microbiota on DNA methylation and B vitamin synthesis in ASD, as well as etiological variables connected to dysbiosis. Probiotics, postbiotics, and vitamin B therapies in kids with ASD should be investigated in future studies.
Collapse
Affiliation(s)
- Esma Karahmet Farhat
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek 31000, Croatia; International Society of Engineering Science and Technology UK, United Kingdom
| | - Ines Banjari
- Department of Food and Nutrition Research, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Zenica 72000, Bosnia and Herzegovina; International Society of Engineering Science and Technology UK, United Kingdom
| | - Malik Ejubović
- Department of Internal Medicine, Cantonal Hospital Zenica, Zenica 72000, Bosnia and Herzegovina
| | - Emina Karahmet Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom; International Society of Engineering Science and Technology UK, United Kingdom.
| |
Collapse
|
4
|
Abromeit A, Hooijmans CR, LeMaoult C, Drion CM, Kas M. Animal studies reveal downregulation of the Beclin-1 autophagy pathway as shared mechanism in Autism Spectrum Disorder: a systematic review and meta-analysis. Mol Psychiatry 2025:10.1038/s41380-025-03028-7. [PMID: 40247126 DOI: 10.1038/s41380-025-03028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental condition with complex etiology, involving genetic and environmental influences on brain development and behavior. Dysregulation of mammalian target of rapamycin (mTOR) signaling alters neuronal growth and synaptic plasticity, and has emerged as a potential underlying pathway in ASD. GOAL AND METHODS To investigate mTOR dysregulation as a common mechanism in ASD, we performed a systematic review, and a meta-analysis of 192 studies examining mTOR signaling in diverse genetic and environmental animal models. RESULTS Our random-effects model identified significant alterations in mTOR pathway-related proteins. For several proteins (p-AKT, PTEN, p-mTOR, p-EIF4e, LC3-II, p-S6K and p-S6), subgroup analyses revealed clear species-, sex-, age-, or brain region-specific effects. Interestingly, Beclin-1 was consistently downregulated across all subgroups. CONCLUSION Our findings support mTOR-pathway dysregulation in ASD. The observed consistent downregulation of Beclin-1 highlights autophagy as a common mechanism, and provides new leads for novel ASD biomarker and treatment development.
Collapse
Affiliation(s)
- A Abromeit
- Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - C R Hooijmans
- Department of Anaesthesiology, Pain and Palliative Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C LeMaoult
- Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - C M Drion
- Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Mjh Kas
- Faculty of Science and Engineering, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
5
|
Payne JM, Haebich KM, Mitchell R, Bozaoglu K, Giliberto E, Lockhart PJ, Maier A, Velasco S, Ball G, North KN, Hocking DR. Brain volumes in genetic syndromes associated with mTOR dysregulation: a systematic review and meta-analysis. Mol Psychiatry 2025; 30:1676-1688. [PMID: 39633008 DOI: 10.1038/s41380-024-02863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND/OBJECTIVES Dysregulation of molecular pathways associated with mechanistic target of rapamycin (mTOR) and elevated rates of neurodevelopmental disorders are implicated in the genetic syndromes neurofibromatosis type 1 (NF1), tuberous sclerosis complex (TSC), fragile X syndrome (FXS), and Noonan syndrome (NS). Given shared molecular and clinical features, understanding convergent and divergent implications of these syndromes on brain development may offer unique insights into disease mechanisms. While an increasing number of studies have examined brain volumes in these syndromes, the effects of each syndrome on global and subcortical brain volumes are unclear. Therefore, the aim of the current study was to conduct a systematic review and meta-analysis to synthesize existing literature on volumetric brain changes across TSC, FXS, NF1, and NS. Study outcomes were the effect sizes of the genetic syndromes on whole brain, gray and white matter, and subcortical volumes compared to typically developing controls. SUBJECTS/METHODS We performed a series of meta-analyses synthesizing data from 23 studies in NF1, TSC, FXS, and NS (pooled N = 1556) reporting whole brain volume, gray and white matter volumes, and volumes of subcortical structures compared to controls. RESULTS Meta-analyses revealed significantly larger whole brain volume, gray and white matter volumes, and subcortical volumes in NF1 compared to controls. FXS was associated with increased whole brain, and gray and white matter volumes relative to controls, but effect sizes were smaller than those seen in NF1. In contrast, studies in NS indicated smaller whole brain and gray matter volumes, and reduced subcortical volumes compared to controls. For individuals with TSC, there were no significant differences in whole brain, gray matter, and white volumes compared to controls. Volumetric effect sizes were not moderated by age, sex, or full-scale IQ. CONCLUSIONS This meta-analysis revealed that dysregulation of mTOR signaling across pre- and post-natal periods of development can result in convergent and divergent consequences for brain volume among genetic syndromes. Further research employing advanced disease modeling techniques with human pluripotent stem cell-derived in vitro models is needed to further refine our understanding of between and within syndrome variability on early brain development and identify shared molecular mechanisms for the development of pharmaceutical interventions.
Collapse
Affiliation(s)
- Jonathan M Payne
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia.
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Kristina M Haebich
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca Mitchell
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Kiymet Bozaoglu
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Emma Giliberto
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Paul J Lockhart
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Alice Maier
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
| | - Silvia Velasco
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
- The Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW Melbourne, Melbourne, VIC, Australia
| | - Gareth Ball
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Kathryn N North
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Darren R Hocking
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Institute for Health & Sport, Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Chen X, Kim Y, Kawaguchi D. Development of the rodent prefrontal cortex: circuit formation, plasticity, and impacts of early life stress. Front Neural Circuits 2025; 19:1568610. [PMID: 40206866 PMCID: PMC11979153 DOI: 10.3389/fncir.2025.1568610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
The prefrontal cortex (PFC), located at the anterior region of the cerebral cortex, is a multimodal association cortex essential for higher-order brain functions, including decision-making, attentional control, memory processing, and regulation of social behavior. Structural, circuit-level, and functional abnormalities in the PFC are often associated with neurodevelopmental disorders. Here, we review recent findings on the postnatal development of the PFC, with a particular emphasis on rodent studies, to elucidate how its structural and circuit properties are established during critical developmental windows and how these processes influence adult behaviors. Recent evidence also highlights the lasting effects of early life stress on the PFC structure, connectivity, and function. We explore potential mechanisms underlying these stress-induced alterations, with a focus on epigenetic regulation and its implications for PFC maturation and neurodevelopmental disorders. By integrating these insights, this review provides an overview of the developmental processes shaping the PFC and their implications for brain health and disease.
Collapse
Affiliation(s)
| | | | - Daichi Kawaguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Al-Garni AM, Hosny SA, Almasabi F, Shati AA, Alzamil NM, ShamsEldeen AM, El-Shafei AA, Al-Hashem F, Zafrah H, Maarouf A, Al-Ani B, Bin-Jaliah I, Kamar SS. Identifying iNOS and glycogen as biomarkers for degenerated cerebellar purkinje cells in autism spectrum disorder: Protective effects of erythropoietin and zinc sulfate. PLoS One 2025; 20:e0317695. [PMID: 39946495 PMCID: PMC11824972 DOI: 10.1371/journal.pone.0317695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
Autism spectrum disorder (ASD) is a collective neurodevelopmental disorder affecting young children and accounting for 1% of the world's population. The cerebellum is the major part of the human brain affected by ASD and is associated with a substantial reduction in the number of Purkinje cells. An association between ASD and the expression of the nitrosative stress biomarker inducible nitric oxide synthase (iNOS), as well as glycogen deposition in damaged Purkinje cells, has not been previously reported in the medical literature. To explore this correlation, young rats were injected with propionic acid (PPA) (500 mg/kg) for 5 days (model group), while the protection groups were treated with either erythropoietin (EPO, 5,000 U/kg) or 2 mg/kg zinc sulfate immediately after the PPA injections. ASD-like features were developed in the model group, as evidenced by cerebellum damage (degeneration of Purkinje cells) and cerebellar dysfunction (behavioral impairment). This study documented the exclusive expression of iNOS in the degenerated Purkinje cells, along with glycogen deposition in these cells. Additionally, PPA significantly (p < 0.001) modulated cerebellar tissue levels of mammalian target of rapamycin (mTOR), gamma-aminobutyric acid (GABA), GABAA receptor, serotonin, the marker of neuronal loss (calbindin D28K), and social interaction deficit. Some of these parameters were differentially protected by EPO and zinc sulfate, with the former providing greater protection than zinc sulfate. Furthermore, a significant correlation between the iNOS score and these parameters associated with ASD was observed. These findings demonstrate the colocalization of iNOS and glycogen in the damaged Purkinje cells induced by ASD, along with the modulation of ASD parameters, which were protected by EPO and zinc sulfate treatments. Thus, these potential novel biomarkers may offer possible therapeutic targets for the treatment of ASD.
Collapse
Affiliation(s)
- Abdulaziz M. Al-Garni
- Psychiatry section, Department of Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Psychiatry, School of Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Sara A. Hosny
- Medical Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Faris Almasabi
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Norah M. Alzamil
- Department of Family and Community Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Asmaa A. El-Shafei
- Medical Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Fahaid Al-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Hind Zafrah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Amro Maarouf
- Department of Clinical Biochemistry, Russells Hall Hospital, Dudley, United Kingdom
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ismaeel Bin-Jaliah
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Samaa S. Kamar
- Medical Histology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Kasitipradit K, Thongkorn S, Kanlayaprasit S, Saeliw T, Lertpeerapan P, Panjabud P, Jindatip D, Hu VW, Kikkawa T, Osumi N, Sarachana T. Sex-specific effects of prenatal bisphenol A exposure on transcriptome-interactome profiles of autism candidate genes in neural stem cells from offspring hippocampus. Sci Rep 2025; 15:2882. [PMID: 39843912 PMCID: PMC11754746 DOI: 10.1038/s41598-025-86392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/10/2025] [Indexed: 01/30/2025] Open
Abstract
Bisphenol A (BPA), an endocrine-disrupting chemical, is increasingly linked to the pathogenesis of autism spectrum disorder (ASD). This study investigates the effects of prenatal BPA exposure on neural stem cells (NSCs) from the hippocampi of rat offspring, a brain region critical for neurodevelopment and implicated in ASD. Pregnant rats were administered with BPA or vehicle control once daily via oral gavage from gestational day 1 until parturition. NSCs were isolated from the offspring's hippocampi on postnatal day 1, and RNA sequencing was performed to examine transcriptomic alterations. Differentially expressed genes (DEGs) were identified through RNA-seq and further analyzed using Ingenuity Pathway Analysis (IPA) to explore disrupted pathways. In addition, in vitro proliferation assays were conducted, utilizing immunofluorescence staining for Sox2, a stem cell marker, and BrdU to quantify proliferating NSCs. Our results revealed that prenatal BPA exposure induced sex-specific alterations in NSC gene expression, with ASD-related genes such as Atp1a3, Nefl, and Grin1 being particularly dysregulated in male offspring. Moreover, sex-specific changes in NSC proliferation were observed. The study underscores BPA's potential as an environmental risk factor for ASD, emphasizing the need for further research into its role in sex-specific neurodevelopmental effects.
Collapse
Affiliation(s)
- Kasidit Kasitipradit
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Surangrat Thongkorn
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Songphon Kanlayaprasit
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Thanit Saeliw
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
| | - Pattanachat Lertpeerapan
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pawinee Panjabud
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Depicha Jindatip
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8577, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8577, Japan
| | - Tewarit Sarachana
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Toolan KP, McGrath BT, Brinkmeier ML, Camper SA, Bielas SL. Ash1l loss-of-function results in structural birth defects and altered cortical development. Brain 2025; 148:55-68. [PMID: 38943682 PMCID: PMC11706301 DOI: 10.1093/brain/awae218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/16/2024] [Accepted: 06/09/2024] [Indexed: 07/01/2024] Open
Abstract
The histone methyltransferase ASH1L plays a crucial role in regulating gene expression across various organ systems during development, yet its role in brain development remains largely unexplored. Over 130 individuals with autism harbour heterozygous loss-of-function ASH1L variants, and population studies confirm it as a high-risk autism gene. Previous studies on Ash1l deficient mice have reported autistic-like behaviours and provided insights into the underlying neuropathophysiology. In this study, we used mice with a cre-inducible deletion of Ash1l exon 4, which results in a frame shift and premature stop codon (p.V1693Afs*2). Our investigation evaluated the impact of Ash1l loss-of-function on survival and craniofacial skeletal development. Using a tamoxifen-inducible cre strain, we targeted Ash1l knockout early in cortical development [Emx1-Cre-ERT2; embryonic Day (e) 10.5]. Immunohistochemistry was utilized to assess cortical lamination, while EdU incorporation aided in birthdating cortical neurons. Additionally, single-cell RNA sequencing was employed to compare cortical cell populations and identify genes with differential expression. At e18.5, the proportion of homozygous Ash1l germline knockout embryos appeared normal; however, no live Ash1l null pups were present at birth (e18.5: n = 77, P = 0.90; p0: n = 41, P = 0.00095). Notably, Ash1l-/- exhibited shortened nasal bones (n = 31, P = 0.017). In the cortical-specific knockout model, SATB2 neurons showed increased numbers (n = 6/genotype, P = 0.0001) and were distributed through the cortical plate. Birthdating revealed generation of ectopically placed deep layer neurons that express SATB2 (e13.5 injection: n = 4/genotype, P = 0.0126). Single cell RNA sequencing revealed significant differences in gene expression between control and mutant upper layer neurons, leading to distinct clustering. Pseudotime analysis indicated that the mutant cluster followed an altered cell differentiation trajectory. This study underscores the essential role of Ash1l in postnatal survival and normal craniofacial development. In the cortex, ASH1L exerts broad effects on gene expression and is indispensable for determining the fate of upper layer cortical neurons. These findings provide valuable insights into the potential mechanisms of ASH1L neuropathology, shedding light on its significance in neurodevelopmental disorders like autism.
Collapse
Affiliation(s)
- Kevin P Toolan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI48109, USA
| | - Brian T McGrath
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI48109, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI48109, USA
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephanie L Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI48109, USA
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Du J, Wang S, Chen R, Wang S. Improving fMRI-Based Autism Severity Identification via Brain Network Distance and Adaptive Label Distribution Learning. IEEE Trans Neural Syst Rehabil Eng 2025; 33:162-174. [PMID: 40030844 DOI: 10.1109/tnsre.2024.3516216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Machine learning methodologies have been profoundly researched in the realm of autism spectrum disorder (ASD) diagnosis. Nonetheless, owing to the ambiguity of ASD severity labels and individual differences in ASD severity, current fMRI-based methods for identifying ASD severity still do not achieve satisfactory performance. Besides, the potential association between brain functional networks(BFN) and ASD symptom severity remains under investigation. To address these problems, we propose a low&high-level BFN distance method and an adaptive multi-label distribution(HBFND-AMLD) technique for ASD severity identification. First, a low-level and high-level BFN distance(HBFND) is proposed to construct BFN that reflects differences in ASD severity. This method can measure the distance between the ASD and the health control(HC) on the low-order and high-order BFN respectively, which can distinguish the severity of ASD. After that, a multi-task network is proposed for ASD severity identification which considers the individual differences of ASD severity in communication and society, which considers the individual differences in language and social skills of ASD patients. Finally, a novel adaptive label distribution(ALD) technique is employed to train the ASD severity identification model, effectively preventing network overfitting by restricting label probability distribution. We evaluate the proposed framework on the public ABIDE I dataset. The promising results obtained by our framework outperform the state-of-the-art methods with an increase in identification performance, indicating that it has a potential clinical prospect for practical ASD severity diagnosis.
Collapse
|
11
|
Chan SY, Chuah JSM, Huang P, Tan AP. Social behavior in ASD males: The interplay between cognitive flexibility, working memory, and functional connectivity deviations. Dev Cogn Neurosci 2025; 71:101483. [PMID: 39637639 PMCID: PMC11664134 DOI: 10.1016/j.dcn.2024.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/23/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Autism spectrum disorder (ASD) is highly heterogeneous in presentation. While abnormalities in brain functional connectivity are consistently observed in autistic males, the neurobiological basis underlying the different domains of autism symptoms is unclear. In this study, we evaluated whether individual variations in functional connectivity deviations map to social behavior in ASD males. Using neuroimaging data from the Autism Brain Imaging Data Exchange (ABIDE), we modeled normative trajectories of between-network resting-state functional connectivity (rsFC) in non-ASD males across childhood (n = 321). These normative charts were then applied to ASD males (n = 418) to calculate individual deviation scores (z-scores) that reflect the degree of rsFC atypicality. Deviations in rsFC patterns among the default mode network (DMN), ventral attention network (VAN), frontoparietal network (FPN), and somatomotor network (SMN) were associated with distinct dimensions of social behavior. Cognitive flexibility and working memory mediated the association between VANxDMN z-scores and social behavioral problems. Our findings underscore the potential of normative models to identify atypical brain connectivity at an individual level, revealing the neurobiological patterns associated with social behavioral problems in ASD that are critical for precision diagnosis and intervention. Social outcomes in ASD males may be improved by targeting cognitive flexibility and working memory.
Collapse
Affiliation(s)
- Shi Yu Chan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A⁎STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Jasmine Si Min Chuah
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A⁎STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Pei Huang
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A⁎STAR), 30 Medical Dr, Singapore 117609, Singapore
| | - Ai Peng Tan
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A⁎STAR), 30 Medical Dr, Singapore 117609, Singapore; Yong Loo Lin School of Medicine, National University of Singapore (NUS), 10 Medical Dr, Singapore 117597, Singapore; Department of Diagnostic Imaging, National University Health System, 1E Kent Ridge Rd, Singapore 119228, Singapore.
| |
Collapse
|
12
|
Tigga NP, Garg S, Goyal N, Raj J, Das B. Brain-region specific autism prediction from electroencephalogram signals using graph convolution neural network. Technol Health Care 2025; 33:77-101. [PMID: 38943414 DOI: 10.3233/thc-240550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
BACKGROUND Brain variations are responsible for developmental impairments, including autism spectrum disorder (ASD). EEG signals efficiently detect neurological conditions by revealing crucial information about brain function abnormalities. OBJECTIVE This study aims to utilize EEG data collected from both autistic and typically developing children to investigate the potential of a Graph Convolutional Neural Network (GCNN) in predicting ASD based on neurological abnormalities revealed through EEG signals. METHODS In this study, EEG data were gathered from eight autistic children and eight typically developing children diagnosed using the Childhood Autism Rating Scale at the Central Institute of Psychiatry, Ranchi. EEG recording was done using a HydroCel GSN with 257 channels, and 71 channels with 10-10 international equivalents were utilized. Electrodes were divided into 12 brain regions. A GCNN was introduced for ASD prediction, preceded by autoregressive and spectral feature extraction. RESULTS The anterior-frontal brain region, crucial for cognitive functions like emotion, memory, and social interaction, proved most predictive of ASD, achieving 87.07% accuracy. This underscores the suitability of the GCNN method for EEG-based ASD detection. CONCLUSION The detailed dataset collected enhances understanding of the neurological basis of ASD, benefiting healthcare practitioners involved in ASD diagnosis.
Collapse
Affiliation(s)
- Neha Prerna Tigga
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi, India
| | - Shruti Garg
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi, India
| | - Nishant Goyal
- Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, India
| | - Justin Raj
- Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, India
| | - Basudeb Das
- Department of Psychiatry, Central Institute of Psychiatry, Kanke, Ranchi, India
| |
Collapse
|
13
|
Corbett BA, Key AP, Klemencic ME, Muscatello RA, Jones D, Pilkington J, Burroughs C, Vandekar S. Investigating Social Competence in a Pilot Randomized Clinical Trial of a Theatre-Based Intervention Enhanced for Adults with Autism Spectrum Disorder. J Autism Dev Disord 2025; 55:130-146. [PMID: 38109034 PMCID: PMC11182891 DOI: 10.1007/s10803-023-06214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by challenges in social competence that persist in adulthood, yet few treatment options exist. A pilot randomized clinical trial (RCT) of a peer-mediated, theatre-based intervention with established efficacy in youth with ASD was examined in autistic adults. The final sample consisted of forty-seven 18-to-40-year-old participants randomized to the experimental (EXP N = 23) or waitlist control (WLC N = 24) condition. A multimodal, social interdependent model was employed to examine social competence changes in brain (incidental face memory (IFM) using event-related potentials), cognition (Wechsler Memory Scale-III), behavior (Contextual Assessment of Social Skills) and function (Social Responsiveness Scale (SRS); Adaptive Behavior Assessment Scale (ABAS) Social Composite). Using analysis of covariance in which pretest was controlled in the model, posttest between-group differences were observed on IFM (p = 0.016, η2 = 0.139, d = 0.79) and several social and adaptive functional (SRS, ABAS) outcomes in social communication and interaction (SCI) (p = 0.019, η2 = 0.121, d = -00.45), communication (p = 0.044 η2 = 0.09, d = -00.31), and motivation (p = 0.001, η2 = 0.229, d = -0.79) domains. At two-month follow-up, gains in social motivation remained (p = 0.041, η2 = 0.100, d = -0.77). The results offer preliminary support for a unique theatre-based social skills intervention for autistic adults who have few treatment options to enhance social competence. The trial was pre-registered with ClinicalTrials.gov (Identifier: NCT04349644).
Collapse
Affiliation(s)
- Blythe A Corbett
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN, USA.
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| | - Alexandra P Key
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark E Klemencic
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachael A Muscatello
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN, USA
| | - Dorita Jones
- Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, TN, USA
| | - Jennifer Pilkington
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christina Burroughs
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon Vandekar
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
14
|
Mediane DH, Basu S, Cahill EN, Anastasiades PG. Medial prefrontal cortex circuitry and social behaviour in autism. Neuropharmacology 2024; 260:110101. [PMID: 39128583 DOI: 10.1016/j.neuropharm.2024.110101] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) has proven to be highly enigmatic due to the diversity of its underlying genetic causes and the huge variability in symptom presentation. Uncovering common phenotypes across people with ASD and pre-clinical models allows us to better understand the influence on brain function of the many different genetic and cellular processes thought to contribute to ASD aetiology. One such feature of ASD is the convergent evidence implicating abnormal functioning of the medial prefrontal cortex (mPFC) across studies. The mPFC is a key part of the 'social brain' and may contribute to many of the changes in social behaviour observed in people with ASD. Here we review recent evidence for mPFC involvement in both ASD and social behaviours. We also highlight how pre-clinical mouse models can be used to uncover important cellular and circuit-level mechanisms that may underly atypical social behaviours in ASD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Diego H Mediane
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Shinjini Basu
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom
| | - Emma N Cahill
- Department of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, United Kingdom
| | - Paul G Anastasiades
- Department of Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, United Kingdom.
| |
Collapse
|
15
|
Zhao Y, Zhao L, Yang F, Tao C, Tang W, Cheng W, Zhang Y, Bu L. Assessing visual motor performance in autistic children based on Kinect and fNIRS: A case study. Neuroscience 2024; 563:10-19. [PMID: 39505138 DOI: 10.1016/j.neuroscience.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/19/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
In recent years, the incidence rate of children with autism has shown a significant upward trend. Rehabilitation training is an important part of recovery or improvement in autism children. However, during autism rehabilitation training, the methods that can visually reflect and objectively evaluate its effects are seldom considered. Therefore, this study aimed to objectively evaluate the rehabilitation impact of visual-motor skills training in children with autism via quantitative measures. In this study, vision sensors and functional near-infrared spectroscopy were used to monitor and analyze visual motor training task of 20 autism children. These children were divided into high- and low-score groups according to the autism behavior checklist (ABC). Results showed significant differences between the high- and low-score groups in the brain regions of the left and right temporal lobe, right motor cortex, and left occipital lobe; the difference in functional connectivity was greatest when the left hand was moving at the green light (p < 0.05). The differences in speed, acceleration, and angle between the high- and low-score groups were mainly reflected in left-hand movement. Moreover, analysis of multimodal data showed that visual motor training had a positive effect on brain activation and functional connectivity, and increasing the frequency of left-hand training and using more green light were beneficial to the improvement of brain function. These findings can be used as basis to help optimize rehabilitation programs and improve rehabilitation effectiveness.
Collapse
Affiliation(s)
- Yufei Zhao
- School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan 250101, China; Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Lei Zhao
- School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan 250101, China.
| | - Fei Yang
- Shandong Labor Vocational and Technical College, Jinan 250022, China
| | - Chunjing Tao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Weizhong Tang
- Department of Weizhong Children's Rehabilitation Center, Jinan 250000, China
| | - Wenming Cheng
- Department of Weizhong Children's Rehabilitation Center, Jinan 250000, China
| | - Yu Zhang
- Department of Weizhong Children's Rehabilitation Center, Jinan 250000, China
| | - Lingguo Bu
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250100, China.
| |
Collapse
|
16
|
Halliday AR, Vucic SN, Georges B, LaRoche M, Mendoza Pardo MA, Swiggard LO, McDonald K, Olofsson M, Menon SN, Francis SM, Oberman LM, White T, van der Velpen IF. Heterogeneity and convergence across seven neuroimaging modalities: a review of the autism spectrum disorder literature. Front Psychiatry 2024; 15:1474003. [PMID: 39479591 PMCID: PMC11521827 DOI: 10.3389/fpsyt.2024.1474003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Background A growing body of literature classifies autism spectrum disorder (ASD) as a heterogeneous, complex neurodevelopmental disorder that often is identified prior to three years of age. We aim to provide a narrative review of key structural and functional properties that differentiate the neuroimaging profile of autistic youth from their typically developing (TD) peers across different neuroimaging modalities. Methods Relevant studies were identified by searching for key terms in PubMed, with the most recent search conducted on September 1, 2023. Original research papers were included if they applied at least one of seven neuroimaging modalities (structural MRI, functional MRI, DTI, MRS, fNIRS, MEG, EEG) to compare autistic children or those with a family history of ASD to TD youth or those without ASD family history; included only participants <18 years; and were published from 2013 to 2023. Results In total, 172 papers were considered for qualitative synthesis. When comparing ASD to TD groups, structural MRI-based papers (n = 26) indicated larger subcortical gray matter volume in ASD groups. DTI-based papers (n = 14) reported higher mean and radial diffusivity in ASD participants. Functional MRI-based papers (n = 41) reported a substantial number of between-network functional connectivity findings in both directions. MRS-based papers (n = 19) demonstrated higher metabolite markers of excitatory neurotransmission and lower inhibitory markers in ASD groups. fNIRS-based papers (n = 20) reported lower oxygenated hemoglobin signals in ASD. Converging findings in MEG- (n = 20) and EEG-based (n = 32) papers indicated lower event-related potential and field amplitudes in ASD groups. Findings in the anterior cingulate cortex, insula, prefrontal cortex, amygdala, thalamus, cerebellum, corpus callosum, and default mode network appeared numerous times across modalities and provided opportunities for multimodal qualitative analysis. Conclusions Comparing across neuroimaging modalities, we found significant differences between the ASD and TD neuroimaging profile in addition to substantial heterogeneity. Inconsistent results are frequently seen within imaging modalities, comparable study populations and research designs. Still, converging patterns across imaging modalities support various existing theories on ASD.
Collapse
Affiliation(s)
- Amanda R. Halliday
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Samuel N. Vucic
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Brianna Georges
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Madison LaRoche
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - María Alejandra Mendoza Pardo
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Liam O. Swiggard
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Kaylee McDonald
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Michelle Olofsson
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Sahit N. Menon
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- School of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Sunday M. Francis
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Lindsay M. Oberman
- Noninvasive Neuromodulation Unit, Experimental Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Tonya White
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Isabelle F. van der Velpen
- Section on Social and Cognitive Developmental Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
17
|
Fischer M, Kukley M. Hidden in the white matter: Current views on interstitial white matter neurons. Neuroscientist 2024:10738584241282969. [PMID: 39365761 DOI: 10.1177/10738584241282969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The mammalian brain comprises two structurally and functionally distinct compartments: the gray matter (GM) and the white matter (WM). In humans, the WM constitutes approximately half of the brain volume, yet it remains significantly less investigated than the GM. The major cellular elements of the WM are neuronal axons and glial cells. However, the WM also contains cell bodies of the interstitial neurons, estimated to number 10 to 28 million in the adult bat brain, 67 million in Lar gibbon brain, and 450 to 670 million in the adult human brain, representing as much as 1.3%, 2.25%, and 3.5% of all neurons in the cerebral cortex, respectively. Many studies investigated the interstitial WM neurons (IWMNs) using immunohistochemistry, and some information is available regarding their electrophysiological properties. However, the functional role of IWMNs in physiologic and pathologic conditions largely remains unknown. This review aims to provide a concise update regarding the distribution and properties of interstitial WM neurons, highlight possible functions of these cells as debated in the literature, and speculate about other possible functions of the IWMNs and their interactions with glial cells. We hope that our review will inspire new research on IWMNs, which represent an intriguing cell population in the brain.
Collapse
Affiliation(s)
- Maximilian Fischer
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria Kukley
- Achucarro Basque Centre for Neuroscience, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
18
|
Megari K, Frantzezou CK, Polyzopoulou ZA, Tzouni SK. Neurocognitive features in childhood & adulthood in autism spectrum disorder: A neurodiversity approach. Int J Dev Neurosci 2024; 84:471-499. [PMID: 38953464 DOI: 10.1002/jdn.10356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
OBJECTIVES Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a diverse profile of cognitive functions. Heterogeneity is observed among both baseline and comorbid features concerning the diversity of neuropathology in autism. Symptoms vary depending on the developmental stage, level of severity, or comorbidity with other medical or psychiatric diagnoses such as intellectual disability, epilepsy, and anxiety disorders. METHOD The neurodiversity movement does not face variations in neurological and cognitive development in ASD as deficits but as normal non-pathological human variations. Thus, ASD is not identified as a neurocognitive pathological disorder that deviates from the typical, but as a neuro-individuality, a normal manifestation of a neurobiological variation within the population. RESULTS In this light, neurodiversity is described as equivalent to any other human variation, such as ethnicity, gender, or sexual orientation. This review will provide insights about the neurodiversity approach in children and adults with ASD. Using a neurodiversity approach can be helpful when working with children who have autism spectrum disorder (ASD). DISCUSSION This method acknowledges and values the various ways that people with ASD interact with one another and experience the world in order to embrace the neurodiversity approach when working with children with ASD.
Collapse
Affiliation(s)
- Kalliopi Megari
- Department of Psychology, CITY College, University of York, Europe Campus, Thessaloniki, Greece
| | | | - Zoi A Polyzopoulou
- Department of Psychology, University of Western Macedonia, Florina, Greece
| | - Stella K Tzouni
- Department of Psychology, University of Western Macedonia, Florina, Greece
| |
Collapse
|
19
|
Regev O, Shil A, Bronshtein T, Hadar A, Meiri G, Zigdon D, Michaelovski A, Hershkovitz R, Menashe I. Association between rare, genetic variants linked to autism and ultrasonography fetal anomalies in children with autism spectrum disorder. J Neurodev Disord 2024; 16:55. [PMID: 39350038 PMCID: PMC11443733 DOI: 10.1186/s11689-024-09573-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Recent evidence suggests that certain fetal anomalies detected upon prenatal ultrasound screenings are associated with autism spectrum disorder (ASD). In this cross-sectional study, we aimed to identify genetic variants associated with fetal ultrasound anomalies (UFAs) in children with ASD. METHODS The study included all children with ASD who are registered in the database of the Azrieli National Center of Autism and Neurodevelopment and for whom both prenatal ultrasound and whole exome sequencing (WES) data were available. We applied our in-house integrative bioinformatics pipeline, AutScore, to these WES data to prioritize rare, gene-disrupting variants (GDVs) probably contributing to ASD susceptibily. Univariate statistics and multivariable regression were used to assess the associations between UFAs and GDVs identified in these children. RESULTS The study sample comprised 126 children, of whom 43 (34.1%) had at least one UFA detected in the prenatal ultrasound scan. A total of 87 candidate ASD genetic variants were detected in 60 children, with 24 (40%) children carrying multiple variants. Children with UFAs were more likely to have loss-of-function (LoF) mutations (aOR = 2.55, 95%CI: 1.13-5.80). This association was particularly noticeable when children with structural anomalies or children with UFAs in their head and brain scans were compared to children without UFAs (any mutation: aOR = 8.28, 95%CI: 2.29-30.01; LoF: aOR = 5.72, 95%CI: 2.08-15.71 and any mutation: aOR = 6.39, 95%CI: 1.34-30.47; LoF: aOR = 4.50, 95%CI: 1.32-15.35, respectively). GDVs associated with UFAs were enriched in genes highly expressed across all tissues (aOR = 2.76, 95%CI: 1.14-6.68). There was a weak, but significant, correlation between the number of mutations and the number of abnormalities detected in the same children (r = 0.21, P = 0.016). CONCLUSIONS The results provide valuable insights into the potential genetic basis of prenatal organogenesis abnormalities associated with ASD and shed light on the complex interplay between genetic factors and fetal development.
Collapse
Affiliation(s)
- Ohad Regev
- Joyce & Irving Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Department of Epidemiology, Biostatistics and Community Health Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Apurba Shil
- Department of Epidemiology, Biostatistics and Community Health Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tal Bronshtein
- Joyce & Irving Goldman Medical School, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amnon Hadar
- Clalit Health Services, Beer-Sheva, Israel
- Division of Obstetrics and Gynecology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Gal Meiri
- Preschool Psychiatric Unit, Soroka University Medical Center, Beer-Sheva, Israel
- Azrieli National Center for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dikla Zigdon
- Preschool Psychiatric Unit, Soroka University Medical Center, Beer-Sheva, Israel
- Azrieli National Center for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Analya Michaelovski
- Azrieli National Center for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Child Development Center, Soroka University Medical Center, Beer-Sheva, Israel
| | - Reli Hershkovitz
- Division of Obstetrics and Gynecology, Soroka University Medical Center, Beer-Sheva, Israel
| | - Idan Menashe
- Department of Epidemiology, Biostatistics and Community Health Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
- Azrieli National Center for Autism and Neurodevelopment Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
20
|
Nakhal MM, Yassin LK, Alyaqoubi R, Saeed S, Alderei A, Alhammadi A, Alshehhi M, Almehairbi A, Al Houqani S, BaniYas S, Qanadilo H, Ali BR, Shehab S, Statsenko Y, Meribout S, Sadek B, Akour A, Hamad MIK. The Microbiota-Gut-Brain Axis and Neurological Disorders: A Comprehensive Review. Life (Basel) 2024; 14:1234. [PMID: 39459534 PMCID: PMC11508655 DOI: 10.3390/life14101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Microbes have inhabited the earth for hundreds of millions of years longer than humans. The microbiota-gut-brain axis (MGBA) represents a bidirectional communication pathway. These communications occur between the central nervous system (CNS), the enteric nervous system (ENS), and the emotional and cognitive centres of the brain. The field of research on the gut-brain axis has grown significantly during the past two decades. Signalling occurs between the gut microbiota and the brain through the neural, endocrine, immune, and humoral pathways. A substantial body of evidence indicates that the MGBA plays a pivotal role in various neurological diseases. These include Alzheimer's disease (AD), autism spectrum disorder (ASD), Rett syndrome, attention deficit hyperactivity disorder (ADHD), non-Alzheimer's neurodegeneration and dementias, fronto-temporal lobe dementia (FTLD), Wilson-Konovalov disease (WD), multisystem atrophy (MSA), Huntington's chorea (HC), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), temporal lobe epilepsy (TLE), depression, and schizophrenia (SCZ). Furthermore, the bidirectional correlation between therapeutics and the gut-brain axis will be discussed. Conversely, the mood of delivery, exercise, psychotropic agents, stress, and neurologic drugs can influence the MGBA. By understanding the MGBA, it may be possible to facilitate research into microbial-based interventions and therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Lidya K. Yassin
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Rana Alyaqoubi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Sara Saeed
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alreem Alderei
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Alya Alhammadi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Mirah Alshehhi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Afra Almehairbi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Haia Qanadilo
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| | - Yauhen Statsenko
- Department of Radiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Neuroscience Platform, ASPIRE Precision Medicine Institute in Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sarah Meribout
- Internal Medicine Department, Maimonides Medical Center, New York, NY 11219, USA;
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 1551, United Arab Emirates
| | - Amal Akour
- Department of Pharmacology & Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Bo Box 15551, United Arab Emirates; (B.S.); (A.A.)
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates (S.B.); (S.S.)
| |
Collapse
|
21
|
Litman A, Sauerwald N, Snyder LG, Foss-Feig J, Park CY, Hao Y, Dinstein I, Theesfeld CL, Troyanskaya OG. Decomposition of phenotypic heterogeneity in autism reveals distinct and coherent genetic programs. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.15.24312078. [PMID: 39185525 PMCID: PMC11343255 DOI: 10.1101/2024.08.15.24312078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Unraveling the phenotypic and genetic complexity of autism is extremely challenging yet critical for understanding the biology, inheritance, trajectory, and clinical manifestations of the many forms of the condition. Here, we leveraged broad phenotypic data from a large cohort with matched genetics to characterize classes of autism and their patterns of core, associated, and co-occurring traits, ultimately demonstrating that phenotypic patterns are associated with distinct genetic and molecular programs. We used a generative mixture modeling approach to identify robust, clinically-relevant classes of autism which we validate and replicate in a large independent cohort. We link the phenotypic findings to distinct patterns of de novo and inherited variation which emerge from the deconvolution of these genetic signals, and demonstrate that class-specific common variant scores strongly align with clinical outcomes. We further provide insights into the distinct biological pathways and processes disrupted by the sets of mutations in each class. Remarkably, we discover class-specific differences in the developmental timing of genes that are dysregulated, and these temporal patterns correspond to clinical milestone and outcome differences between the classes. These analyses embrace the phenotypic complexity of children with autism, unraveling genetic and molecular programs underlying their heterogeneity and suggesting specific biological dysregulation patterns and mechanistic hypotheses.
Collapse
Affiliation(s)
- Aviya Litman
- Quantitative and Computational Biology Program, Princeton University, NJ, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Natalie Sauerwald
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Jennifer Foss-Feig
- Simons Foundation, New York, NY, USA
- Department of Psychiatry, Mount Sinai Icahn School of Medicine, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Yun Hao
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Ilan Dinstein
- Cognitive and Brain Sciences Department, Ben Gurion University of the Negev, Be’er Sheva, Israel
- Azrieli National Centre for Autism and Neurodevelopment Research, Ben Gurion University of the Negev, Be’er Sheva, Israel
- Psychology Department, Ben Gurion University of the Negev, Be’er Sheva, Israel
| | - Chandra L. Theesfeld
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Princeton Precision Health, Princeton, NJ, USA
| | - Olga G. Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
- Princeton Precision Health, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| |
Collapse
|
22
|
Mohammad S, Gentreau M, Dubol M, Rukh G, Mwinyi J, Schiöth HB. Association of polygenic scores for autism with volumetric MRI phenotypes in cerebellum and brainstem in adults. Mol Autism 2024; 15:34. [PMID: 39113134 PMCID: PMC11304666 DOI: 10.1186/s13229-024-00611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Previous research on autism spectrum disorders (ASD) have showed important volumetric alterations in the cerebellum and brainstem. Most of these studies are however limited to case-control studies with small clinical samples and including mainly children or adolescents. Herein, we aimed to explore the association between the cumulative genetic load (polygenic risk score, PRS) for ASD and volumetric alterations in the cerebellum and brainstem, as well as global brain tissue volumes of the brain among adults at the population level. We utilized the latest genome-wide association study of ASD by the Psychiatric Genetics Consortium (18,381 cases, 27,969 controls) and constructed the ASD PRS in an independent cohort, the UK Biobank. Regression analyses controlled for multiple comparisons with the false-discovery rate (FDR) at 5% were performed to investigate the association between ASD PRS and forty-four brain magnetic resonance imaging (MRI) phenotypes among ~ 31,000 participants. Primary analyses included sixteen MRI phenotypes: total volumes of the brain, cerebrospinal fluid (CSF), grey matter (GM), white matter (WM), GM of whole cerebellum, brainstem, and ten regions of the cerebellum (I_IV, V, VI, VIIb, VIIIa, VIIIb, IX, X, CrusI and CrusII). Secondary analyses included twenty-eight MRI phenotypes: the sub-regional volumes of cerebellum including the GM of the vermis and both left and right lobules of each cerebellar region. ASD PRS were significantly associated with the volumes of seven brain areas, whereby higher PRS were associated to reduced volumes of the whole brain, WM, brainstem, and cerebellar regions I-IV, IX, and X, and an increased volume of the CSF. Three sub-regional volumes including the left cerebellar lobule I-IV, cerebellar vermes VIIIb, and X were significantly and negatively associated with ASD PRS. The study highlights a substantial connection between susceptibility to ASD, its underlying genetic etiology, and neuroanatomical alterations of the adult brain.
Collapse
Affiliation(s)
- Salahuddin Mohammad
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mélissa Gentreau
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Manon Dubol
- Department of Women's and Children's Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jessica Mwinyi
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology and Neuroscience Unit, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
23
|
Darwish M, El Hajj R, Khayat L, Alaaeddine N. Stem Cell Secretions as a Potential Therapeutic Agent for Autism Spectrum Disorder: A Narrative Review. Stem Cell Rev Rep 2024; 20:1252-1272. [PMID: 38630359 DOI: 10.1007/s12015-024-10724-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 07/04/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental illness characterized by impaired social interaction and restricted repetitive behaviors or interests. The rising prevalence of ASD diagnosis has triggered a surge in research into investigating the underlying neuropathological processes and finding new therapeutic approaches. ASD is characterized by neuroinflammation and dysregulation of neuro-immune cross-talk, which suggests that stem cell treatment might be a potential therapeutic approach. The beneficial and restorative effects of stem cells are mainly due to their paracrine activity, in which stem cells generate and release extracellular vesicles such as exosomes and distinct secreted non-vesicle soluble proteins, including, growth factors, chemokines, cytokines, and immunomodulatory molecules referred to as the Secretome. In this paper, we reviewed the existing research exploring the therapeutic potential of stem cell secretome focusing on their role in addressing ASD pathology. Furthermore, we proposed a comprehensive mechanism of action for stem cell secretions, encompassing the broader secretome as well as the specific contribution of exosomes, in alleviating ASD neuropathology. Across the reviewed studies, exosomes and secreted soluble factors of the transplanted stem cell demonstrate a potential efficacy in ameliorating autistic-like behaviors. The proposed mechanism of action involves the modulation of signaling pathways implicated in neuroinflammation, angiogenesis, cellular apoptosis, and immunomodulation.
Collapse
Affiliation(s)
- Mariam Darwish
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| | | | | | - Nada Alaaeddine
- Dean of Health Sciences, Modern University for Business & Science, Beirut, Lebanon.
| |
Collapse
|
24
|
Pravikova PD, Arssan MA, Zalivina EA, Kondaurova EM, Kulikova EA, Belokopytova II, Naumenko VS. Dopamine receptors and key elements of the neurotrophins (BDNF, CDNF) expression patterns during critical periods of ontogenesis in the brain structures of mice with autism-like behavior (BTBR) or its absence (С57BL/6 J). Vavilovskii Zhurnal Genet Selektsii 2024; 28:407-415. [PMID: 39027124 PMCID: PMC11253014 DOI: 10.18699/vjgb-24-46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 07/20/2024] Open
Abstract
Analysis of the mechanisms underlying autism spectrum disorder (ASD) is an urgent task due to the ever-increasing prevalence of this condition. The study of critical periods of neuroontogenesis is of interest, since the manifestation of ASD is often associated with prenatal disorders of the brain development. One of the currently promising hypotheses postulates a connection between the pathogenesis of ASD and the dysfunction of neurotransmitters and neurotrophins. In this study, we investigated the expression of key dopamine receptors (Drd1, Drd2), brain-derived neurotrophic factor (Bdnf), its receptors (Ntrkb2, Ngfr) and the transcription factor Creb1 that mediates BDNF action, as well as cerebral dopamine neurotrophic factor (Cdnf) during the critical periods of embryogenesis (e14 and e18) and postnatal development (p14, p28, p60) in the hippocampus and frontal cortex of BTBR mice with autism-like behavior compared to the neurotypical C57BL/6 J strain. In BTBR embryos, on the 14th day of prenatal development, an increase in the expression of the Ngfr gene encoding the p75NTR receptor, which may lead to the activation of apoptosis, was found in the hippocampus and frontal cortex. A decrease in the expression of Cdnf, Bdnf and its receptor Ntrkb2, as well as dopamine receptors (Drd1, Drd2) was detected in BTBR mice in the postnatal period of ontogenesis mainly in the frontal cortex, while in the hippocampus of mature mice (p60), only a decrease in the Drd2 mRNA level was revealed. The obtained results suggest that the decrease in the expression levels of CDNF, BDNF-TrkB and dopamine receptors in the frontal cortex in the postnatal period can lead to significant changes in both the morphology of neurons and dopamine neurotransmission in cortical brain structures. At the same time, the increase in p75NTR receptor gene expression observed on the 14th day of embryogenesis, crucial for hippocampus and frontal cortex development, may have direct relevance to the manifestation of early autism.
Collapse
Affiliation(s)
- P D Pravikova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M A Arssan
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Zalivina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E M Kondaurova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E A Kulikova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - I I Belokopytova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V S Naumenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
25
|
Ji J, Chao H, Chen H, Liao J, Shi W, Ye Y, Wang T, You Y, Liu N, Ji J, Petretto E. Decoding frontotemporal and cell-type-specific vulnerabilities to neuropsychiatric disorders and psychoactive drugs. Open Biol 2024; 14:240063. [PMID: 38864245 DOI: 10.1098/rsob.240063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024] Open
Abstract
Frontotemporal lobe abnormalities are linked to neuropsychiatric disorders and cognition, but the role of cellular heterogeneity between temporal lobe (TL) and frontal lobe (FL) in the vulnerability to genetic risk factors remains to be elucidated. We integrated single-nucleus transcriptome analysis in 'fresh' human FL and TL with genetic susceptibility, gene dysregulation in neuropsychiatric disease and psychoactive drug response data. We show how intrinsic differences between TL and FL contribute to the vulnerability of specific cell types to both genetic risk factors and psychoactive drugs. Neuronal populations, specifically PVALB neurons, were most highly vulnerable to genetic risk factors for psychiatric disease. These psychiatric disease-associated genes were mostly upregulated in the TL, and dysregulated in the brain of patients with obsessive-compulsive disorder, bipolar disorder and schizophrenia. Among these genes, GRIN2A and SLC12A5, implicated in schizophrenia and bipolar disorder, were significantly upregulated in TL PVALB neurons and in psychiatric disease patients' brain. PVALB neurons from the TL were twofold more vulnerable to psychoactive drugs than to genetic risk factors, showing the influence and specificity of frontotemporal lobe differences on cell vulnerabilities. These studies provide a cell type resolved map of the impact of brain regional differences on cell type vulnerabilities in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jiatong Ji
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
| | - Honglu Chao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Huimei Chen
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jun Liao
- High Performance Computing Center, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
| | - Wenqian Shi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yangfan Ye
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Tian Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yongping You
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Jing Ji
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
- Department of Neurosurgery, The Affiliated Kizilsu Kirghiz Autonomous Prefecture People's Hospital of Nanjing Medical University, Xinjiang, Artux 845350, People's Republic of China
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Enrico Petretto
- Institute for Big Data and Artificial Intelligence in Medicine, School of Science, China Pharmaceutical University (CPU), Nanjing, Jiangsu 211198, People's Republic of China
- Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
26
|
Adiba M, Rahman M, Akter H, Rahman MM, Uddin M, Ebihara A, Nabi A. Mutational landscape of mitochondrial cytochrome b and its flanking tRNA genes associated with increased mitochondrial DNA copy number and disease risk in children with autism. GENE REPORTS 2024; 35:101895. [DOI: 10.1016/j.genrep.2024.101895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
|
27
|
Nagai Y, Kirino E, Tanaka S, Usui C, Inami R, Inoue R, Hattori A, Uchida W, Kamagata K, Aoki S. Functional connectivity in autism spectrum disorder evaluated using rs-fMRI and DKI. Cereb Cortex 2024; 34:129-145. [PMID: 38012112 PMCID: PMC11065111 DOI: 10.1093/cercor/bhad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
We evaluated functional connectivity (FC) in patients with adult autism spectrum disorder (ASD) using resting-state functional MRI (rs-fMRI) and diffusion kurtosis imaging (DKI). We acquired rs-fMRI data from 33 individuals with ASD and 33 healthy controls (HC) and DKI data from 18 individuals with ASD and 17 HC. ASD showed attenuated FC between the right frontal pole (FP) and the bilateral temporal fusiform cortex (TFusC) and enhanced FC between the right thalamus and the bilateral inferior division of lateral occipital cortex, and between the cerebellar vermis and the right occipital fusiform gyrus (OFusG) and the right lingual gyrus, compared with HC. ASD demonstrated increased axial kurtosis (AK) and mean kurtosis (MK) in white matter (WM) tracts, including the right anterior corona radiata (ACR), forceps minor (FM), and right superior longitudinal fasciculus (SLF). In ASD, there was also a significant negative correlation between MK and FC between the cerebellar vermis and the right OFusG in the corpus callosum, FM, right SLF and right ACR. Increased DKI metrics might represent neuroinflammation, increased complexity, or disrupted WM tissue integrity that alters long-distance connectivity. Nonetheless, protective or compensating adaptations of inflammation might lead to more abundant glial cells and cytokine activation effectively alleviating the degeneration of neurons, resulting in increased complexity. FC abnormality in ASD observed in rs-fMRI may be attributed to microstructural alterations of the commissural and long-range association tracts in WM as indicated by DKI.
Collapse
Affiliation(s)
- Yasuhito Nagai
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
- Department of Psychiatry, Juntendo University Shizuoka Hospital, 1129 Nagaoka Izunokuni-shi Shizuoka 410-2295, Japan
- Juntendo Institute of Mental Health, 700-1 Fukuroyama Koshigaya-shi Saitama 343-0032, Japan
| | - Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, 7-1 Kioi-cho Chiyoda-ku Tokyo 102-8554, Japan
| | - Chie Usui
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Rie Inami
- Department of Psychiatry, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Reiichi Inoue
- Juntendo Institute of Mental Health, 700-1 Fukuroyama Koshigaya-shi Saitama 343-0032, Japan
| | - Aki Hattori
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo Bunkyo-ku Tokyo 113-8421, Japan
- Faculty of Health Data Science, Juntendo University, 6-8-1 Hinode Urayasu-shi Chiba 279-0013, Japan
| |
Collapse
|
28
|
Vilela J, Rasga C, Santos JX, Martiniano H, Marques AR, Oliveira G, Vicente AM. Bridging Genetic Insights with Neuroimaging in Autism Spectrum Disorder-A Systematic Review. Int J Mol Sci 2024; 25:4938. [PMID: 38732157 PMCID: PMC11084239 DOI: 10.3390/ijms25094938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is an early onset neurodevelopmental disorder characterized by impaired social interaction and communication, and repetitive patterns of behavior. Family studies show that ASD is highly heritable, and hundreds of genes have previously been implicated in the disorder; however, the etiology is still not fully clear. Brain imaging and electroencephalography (EEG) are key techniques that study alterations in brain structure and function. Combined with genetic analysis, these techniques have the potential to help in the clarification of the neurobiological mechanisms contributing to ASD and help in defining novel therapeutic targets. To further understand what is known today regarding the impact of genetic variants in the brain alterations observed in individuals with ASD, a systematic review was carried out using Pubmed and EBSCO databases and following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. This review shows that specific genetic variants and altered patterns of gene expression in individuals with ASD may have an effect on brain circuits associated with face processing and social cognition, and contribute to excitation-inhibition imbalances and to anomalies in brain volumes.
Collapse
Affiliation(s)
- Joana Vilela
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Célia Rasga
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - João Xavier Santos
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Hugo Martiniano
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Ana Rita Marques
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
| | - Astrid Moura Vicente
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| |
Collapse
|
29
|
Li Z, Wu X, Li H, Bi C, Zhang C, Sun Y, Yan Z. Complex interplay of neurodevelopmental disorders (NDDs), fractures, and osteoporosis: a mendelian randomization study. BMC Psychiatry 2024; 24:232. [PMID: 38539137 PMCID: PMC10967110 DOI: 10.1186/s12888-024-05693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/18/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs), such as Attention-Deficit/Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), and Tourette Syndrome (TS), have been extensively studied for their multifaceted impacts on social and emotional well-being. Recently, there has been growing interest in their potential relationship with fracture risks in adulthood. This study aims to explore the associations between these disorders and fracture rates, in order to facilitate better prevention and treatment. METHODS Employing a novel approach, this study utilized Mendelian randomization (MR) analysis to investigate the complex interplay between ADHD, ASD, TS, and fractures. The MR framework, leveraging extensive genomic datasets, facilitated a systematic examination of potential causal relationships and genetic predispositions. RESULTS The findings unveil intriguing bidirectional causal links between ADHD, ASD, and specific types of fractures. Notably, ADHD is identified as a risk factor for fractures, with pronounced associations in various anatomical regions, including the skull, trunk, and lower limbs. Conversely, individuals with specific fractures, notably those affecting the femur and lumbar spine, exhibit an increased genetic predisposition to ADHD and ASD. In this research, no correlation was found between TS and fractures, or osteoporosis.These results provide a genetic perspective on the complex relationships between NDDs and fractures, emphasizing the importance of early diagnosis, intervention, and a holistic approach to healthcare. CONCLUSION This research sheds new light on the intricate connections between NDDs and fractures, offering valuable insights into potential risk factors and causal links. The bidirectional causal relationships between ADHD, ASD, and specific fractures highlight the need for comprehensive clinical approaches that consider both NDDs and physical well-being.
Collapse
Affiliation(s)
- Zefang Li
- Department of The First Clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xueqiang Wu
- Department of Health Science, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Hanzheng Li
- Department of The First Clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cong Bi
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Can Zhang
- School of Biomedical Sciences, Shandong First Medical University, Jinan, China
| | - Yiqing Sun
- Department of The First Clinical medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaojun Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
30
|
Román P, Ruiz-González C, Rueda-Ruzafa L, Cardona D, Requena M, Alarcón R. Exposure to Environmental Pesticides and the Risk of Autism Spectrum Disorders: A Population-Based Case-Control Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:479. [PMID: 38541205 PMCID: PMC10972278 DOI: 10.3390/medicina60030479] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 06/10/2025]
Abstract
Background and Objectives: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by challenges in communication, social interactions, and repetitive behaviors. Although the factors that influence the development of this condition are unknown, certain chemical compounds such as pesticides have been proposed as possible contributors. Due to the lack of an established causal link between pesticide exposure and ASD, this study aimed to evaluate this potential association. Materials and Methods: A case-control study was carried out to ascertain the prevalence and risk associated with ASD in relation to pesticide exposure over a 21-year study period (2000-2021). Results: We included 2821 individuals diagnosed with ASD residing in areas of both high and low pesticide exposure in southern Spain. There was a rise in the ASD prevalence rate in regions with elevated pesticide use when compared to regions with low use [odds ratio (OR): 1.34, 95% confidence interval (CI), (1.24-1.44)]. Notably, men had the highest likelihood, with an OR: 1.42, 95% CI, (1.30-1.55). Furthermore, after performing multiple binary logistic regression adjusted for age, sex, and geographical area, males exhibited a higher likelihood compared to females [OR: 2.41, 95% CI, (2.21-2.62)]. Conclusions: Overall, this research suggests a connection between heightened environmental pesticide exposure due to increased agricultural use and autism.
Collapse
Affiliation(s)
- Pablo Román
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Carretera Sacramento s/n, La Cañada, 04120 Almeria, Spain (D.C.); (M.R.); (R.A.)
- Research Group CTS-1114 Health Sciences, University of Almeria, 04120 Almeria, Spain;
- Health Research Center, University of Almeria, Carretera Sacramento s/n, La Cañada, 04120 Almeria, Spain
| | - Cristofer Ruiz-González
- Research Group CTS-1114 Health Sciences, University of Almeria, 04120 Almeria, Spain;
- Torrecárdenas University Hospital, Calle Hermandad de Donantes de Sangre, s/n, 04009 Almeria, Spain
| | - Lola Rueda-Ruzafa
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Carretera Sacramento s/n, La Cañada, 04120 Almeria, Spain (D.C.); (M.R.); (R.A.)
- Research Group CTS-1114 Health Sciences, University of Almeria, 04120 Almeria, Spain;
| | - Diana Cardona
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Carretera Sacramento s/n, La Cañada, 04120 Almeria, Spain (D.C.); (M.R.); (R.A.)
- Health Research Center, University of Almeria, Carretera Sacramento s/n, La Cañada, 04120 Almeria, Spain
| | - Mar Requena
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Carretera Sacramento s/n, La Cañada, 04120 Almeria, Spain (D.C.); (M.R.); (R.A.)
- Health Research Center, University of Almeria, Carretera Sacramento s/n, La Cañada, 04120 Almeria, Spain
| | - Raquel Alarcón
- Department of Nursing, Physiotherapy and Medicine, Faculty of Health Sciences, University of Almeria, Carretera Sacramento s/n, La Cañada, 04120 Almeria, Spain (D.C.); (M.R.); (R.A.)
- Health Research Center, University of Almeria, Carretera Sacramento s/n, La Cañada, 04120 Almeria, Spain
| |
Collapse
|
31
|
Friedel EBN, Tebartz van Elst L, Schäfer M, Maier S, Runge K, Küchlin S, Reich M, Lagrèze WA, Kornmeier J, Ebert D, Endres D, Domschke K, Nickel K. Retinal Thinning in Adults with Autism Spectrum Disorder. J Autism Dev Disord 2024; 54:1143-1156. [PMID: 36550331 PMCID: PMC10907434 DOI: 10.1007/s10803-022-05882-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Since the retina shares its embryological origin with the central nervous system, optical coherence tomography (OCT), an imaging technique frequently employed in ophthalmology to analyze the macula and intraretinal layer thicknesses and volumes, has recently become increasingly important in psychiatric research. We examined 34 autistic and 31 neurotypical adults (NT) using OCT. Autistic adults had reduced overall macular and outer nuclear layer (ONL) thickness and volume compared to NT. Both macular and ONL thickness showed significant inverse associations with the severity of autistic symptoms measured with the Social Responsiveness Scale 2 (SRS-2). Longitudinal studies across different age groups are required to clarify whether retinal changes may represent a possible trait marker.
Collapse
Affiliation(s)
- Evelyn B N Friedel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ludger Tebartz van Elst
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mirjam Schäfer
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Maier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kimon Runge
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Küchlin
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Reich
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolf A Lagrèze
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Kornmeier
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
| | - Dieter Ebert
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Nickel
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
32
|
Faraji R, Ganji Z, Khandan Khadem Z, Akbari-Lalimi H, Eidy F, Zare H. Volume-based and Surface-Based Methods in Autism Compared with Healthy Controls Are Free surfer and CAT12 in Agreement? IRANIAN JOURNAL OF CHILD NEUROLOGY 2024; 18:93-118. [PMID: 38375127 PMCID: PMC10874516 DOI: 10.22037/ijcn.v18i1.43294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/07/2023] [Indexed: 02/21/2024]
Abstract
Objectives Autism Spectrum Disorder (ASD) encompasses a range of neurodevelopmental disorders, and early detection is crucial. This study aims to identify the Regions of Interest (ROIs) with significant differences between healthy controls and individuals with autism, as well as evaluate the agreement between FreeSurfer 6 (FS6) and Computational Anatomy Toolbox (CAT12) methods. Materials & Methods Surface-based and volume-based features were extracted from FS software and CAT12 toolbox for Statistical Parametric Mapping (SPM) software to estimate ROI-wise biomarkers. These biomarkers were compared between 18 males Typically Developing Controls (TDCs) and 40 male subjects with ASD to assess group differences for each method. Finally, agreement and regression analyses were performed between the two methods for TDCs and ASD groups. Results Both methods revealed ROIs with significant differences for each parameter. The Analysis of Covariance (ANCOVA) showed that both TDCs and ASD groups indicated a significant relationship between the two methods (p<0.001). The R2 values for TDCs and ASD groups were 0.692 and 0.680, respectively, demonstrating a moderate correlation between CAT12 and FS6. Bland-Altman graphs showed a moderate level of agreement between the two methods. Conclusion The moderate correlation and agreement between CAT12 and FS6 suggest that while some consistency is observed in the results, CAT12 is not a superior substitute for FS6 software. Further research is needed to identify a potential replacement for this method.
Collapse
Affiliation(s)
- Reyhane Faraji
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Ganji
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khandan Khadem
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Akbari-Lalimi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fereshteh Eidy
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoda Zare
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Al-Beltagi M. Pre-autism: What a paediatrician should know about early diagnosis of autism. World J Clin Pediatr 2023; 12:273-294. [PMID: 38178935 PMCID: PMC10762597 DOI: 10.5409/wjcp.v12.i5.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 12/08/2023] Open
Abstract
Autism, also known as an autism spectrum disorder, is a complex neurodevelopmental disorder usually diagnosed in the first three years of a child's life. A range of symptoms characterizes it and can be diagnosed at any age, including adolescence and adulthood. However, early diagnosis is crucial for effective management, prognosis, and care. Unfortunately, there are no established fetal, prenatal, or newborn screening programs for autism, making early detection difficult. This review aims to shed light on the early detection of autism prenatally, natally, and early in life, during a stage we call as "pre-autism" when typical symptoms are not yet apparent. Some fetal, neonatal, and infant biomarkers may predict an increased risk of autism in the coming baby. By developing a biomarker array, we can create an objective diagnostic tool to diagnose and rank the severity of autism for each patient. These biomarkers could be genetic, immunological, hormonal, metabolic, amino acids, acute phase reactants, neonatal brainstem function biophysical activity, behavioral profile, body measurements, or radiological markers. However, every biomarker has its accuracy and limitations. Several factors can make early detection of autism a real challenge. To improve early detection, we need to overcome various challenges, such as raising community awareness of early signs of autism, improving access to diagnostic tools, reducing the stigma attached to the diagnosis of autism, and addressing various culturally sensitive concepts related to the disorder.
Collapse
Affiliation(s)
- Mohammed Al-Beltagi
- Department of Pediatric, Faculty of Medicine, Tanta University, Tanta 31511, Algahrbia, Egypt
- Department of Pediatric, University Medical Center, King Abdulla Medical City, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Manama, Bahrain
| |
Collapse
|
34
|
Nisar S, Haris M. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder. Mol Psychiatry 2023; 28:4995-5008. [PMID: 37069342 PMCID: PMC11041805 DOI: 10.1038/s41380-023-02060-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023]
Abstract
Autism-spectrum disorders (ASDs) are developmental disabilities that manifest in early childhood and are characterized by qualitative abnormalities in social behaviors, communication skills, and restrictive or repetitive behaviors. To explore the neurobiological mechanisms in ASD, extensive research has been done to identify potential diagnostic biomarkers through a neuroimaging genetics approach. Neuroimaging genetics helps to identify ASD-risk genes that contribute to structural and functional variations in brain circuitry and validate biological changes by elucidating the mechanisms and pathways that confer genetic risk. Integrating artificial intelligence models with neuroimaging data lays the groundwork for accurate diagnosis and facilitates the identification of early diagnostic biomarkers for ASD. This review discusses the significance of neuroimaging genetics approaches to gaining a better understanding of the perturbed neurochemical system and molecular pathways in ASD and how these approaches can detect structural, functional, and metabolic changes and lead to the discovery of novel biomarkers for the early diagnosis of ASD.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
35
|
A Hosny S, M Abdelmenem A, Azouz T, S Kamar S, M ShamsEldeen A, A El-Shafei A. Beneficial Effect of Erythropoietin on Ameliorating Propionic Acid-Induced Autistic-Like Features in Young Rats. Acta Histochem Cytochem 2023; 56:77-86. [PMID: 37970239 PMCID: PMC10644041 DOI: 10.1267/ahc.23-00027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/22/2023] [Indexed: 11/17/2023] Open
Abstract
Autism is a neurodevelopmental disorder that impairs communication and social interaction. This study investigated the possible beneficial effects of erythropoietin (EPO) on experimental autistic-like behaviors induced by propionic acid (PPA). Twenty-four rats were distributed into three groups: (i) control; (ii) PPA_Gp: daily injected subcutaneously with PPA for five consecutive days; PPA+EPO-Gp: injected with PPA, then received intraperitoneal injection of EPO once daily for two weeks. Behavioral changes in the rats were assessed. Specimens from the cerebellar hemispheres were subjected to histological and ultrastructure examination, immunohistochemistry for glial fibrillary acidic protein (GFAP) and calbindin-D28K, and biochemical analysis for glutathione peroxidase (GSH-Px), malondialdehyde (MDA), gamma amino-butyric acid (GABA), and serotonin. PPA-Gp showed significant behavioral impairment, with a significant depletion in GSH-px, GABA, and serotonin and a significant increase in MDA. Histological examination revealed reduced Purkinje cell count with ultrastructural degeneration, irregularly arranged nerve fibers in the molecular layer, astrogliosis, and significantly decreased calbindin-immunostaining compared to the control. EPO protected cerebellar structure, increased Purkinje cell count, improved neuronal morphology, reduced PPA-induced autistic-like features, alleviated neuronal oxidative stress, increased intercellular antioxidant levels, and suppressed inflammation. EPO provided significant protection against PPA-induced autistic features in rats, with structural preservation of Purkinje cells.
Collapse
Affiliation(s)
- Sara A Hosny
- Histology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | | | - Taha Azouz
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Samaa S Kamar
- Histology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Asmaa M ShamsEldeen
- Physiology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Asmaa A El-Shafei
- Histology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| |
Collapse
|
36
|
Taylor MJ, van Leeuwen TM, Kuja-Halkola R, Lundström S, Larsson H, Lichtenstein P, Bölte S, Neufeld J. Genetic and environmental architecture of synaesthesia and its association with the autism spectrum-a twin study. Proc Biol Sci 2023; 290:20231888. [PMID: 37876199 PMCID: PMC10598415 DOI: 10.1098/rspb.2023.1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Synaesthesia is a sensory phenomenon where external stimuli, such as sounds or letters, trigger additional sensations (e.g. colours). Synaesthesia aggregates in families but its heritability is unknown. The phenomenon is more common in people on the autism spectrum compared with the general population and associated with higher autistic traits. Using classical twin design, we assessed the heritability of individual differences in self-reported synaesthesia and the genetic and environmental contributions to their association with autistic traits within a population twin cohort (n = 4262, age = 18 years). We estimated individual differences in synaesthesia to be heritable and influenced by environmental factors not shared between twins. The association between individual differences in synaesthesia and autistic traits was estimated to be predominantly under genetic influence and seemed to be mainly driven by non-social autistic traits (repetitive behaviours, restricted interests and attention to detail). Our study suggests that the link between synaesthesia and autism might reside in shared genetic causes, related to non-social autistic traits such as alterations in perception. Future studies building on these findings may attempt to identify specific groups of genes that influence both autism, synaesthesia and perception.
Collapse
Affiliation(s)
- Mark J. Taylor
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Tessa M. van Leeuwen
- Tilburg School of Humanities and Digital Sciences, Department of Communication and Cognition, Tilburg University, 5037 AB Tilburg, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Sebastian Lundström
- Gillberg Neuropsychiatry Centre, Centre for Ethics, Law and Mental Health, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden
- School of Medical Sciences, Örebro University, 70281 Örebro, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, 11364 Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, WA 66102 Perth, Western Australia
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, 11364 Stockholm, Sweden
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm Health Care Services, Region Stockholm, 11364 Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), 75238 Uppsala, Sweden
| |
Collapse
|
37
|
Tizabi Y, Bennani S, El Kouhen N, Getachew B, Aschner M. Interaction of Heavy Metal Lead with Gut Microbiota: Implications for Autism Spectrum Disorder. Biomolecules 2023; 13:1549. [PMID: 37892231 PMCID: PMC10605213 DOI: 10.3390/biom13101549] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Autism Spectrum Disorder (ASD), a neurodevelopmental disorder characterized by persistent deficits in social interaction and communication, manifests in early childhood and is followed by restricted and stereotyped behaviors, interests, or activities in adolescence and adulthood (DSM-V). Although genetics and environmental factors have been implicated, the exact causes of ASD have yet to be fully characterized. New evidence suggests that dysbiosis or perturbation in gut microbiota (GM) and exposure to lead (Pb) may play important roles in ASD etiology. Pb is a toxic heavy metal that has been linked to a wide range of negative health outcomes, including anemia, encephalopathy, gastroenteric diseases, and, more importantly, cognitive and behavioral problems inherent to ASD. Pb exposure can disrupt GM, which is essential for maintaining overall health. GM, consisting of trillions of microorganisms, has been shown to play a crucial role in the development of various physiological and psychological functions. GM interacts with the brain in a bidirectional manner referred to as the "Gut-Brain Axis (GBA)". In this review, following a general overview of ASD and GM, the interaction of Pb with GM in the context of ASD is emphasized. The potential exploitation of this interaction for therapeutic purposes is also touched upon.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Samia Bennani
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Nacer El Kouhen
- Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca 20100, Morocco
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC 20059, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
38
|
Fertan E, Wong AA, Montbrun TSGD, Purdon MK, Roddick KM, Yamamoto T, Brown RE. Early postnatal development of the MDGA2 +/- mouse model of synaptic dysfunction. Behav Brain Res 2023; 452:114590. [PMID: 37499910 DOI: 10.1016/j.bbr.2023.114590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Synaptic dysfunction underlies many neurodevelopmental disorders (NDDs). The membrane-associated mucin domain-containing glycosylphosphatidylinositol anchor proteins (MDGAs) regulate synaptic development by modulating neurexin-neuroligin complex formation. Since understanding the neurodevelopmental profile and the sex-based differences in the manifestation of the symptoms of NDDs is important for their early diagnosis, we tested a mouse model haploinsufficient for MDGA2 (MDGA2+/-) on a neurodevelopmental test battery, containing sensory, motor, and cognitive measures, as well as ultrasonic vocalizations. When male and female MDGA2+/- and wildtype (WT) C57BL/6 J mice were examined from 2 to 23 days of age using this test battery, genotype and sex differences in body weight, sensory-motor processes, and ultrasonic vocalizations were observed. The auditory startle reflex appeared earlier in the MDGA2+/- than in WT mice and the MDGA2+/- mice produced fewer ultrasonic vocalizations. The MDGA2+/- mice showed reduced locomotion and rearing than WT mice in the open field after 17 days of age and spent less time investigating a novel object than WT mice at 21 days of age. Female MDGA2+/- mice weighed less than WT females and showed lower grip strength, indicating a delay in sensory-motor development in MDGA2+/- mice, which appears to be more pronounced in females than males. The behavioural phenotypes resulting from MDGA2 haploinsufficiency suggests that it shows delayed development of motor behaviour, grip strength and exploratory behaviour, non-social phenotypes of NDDs.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | - Michaela K Purdon
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kyle M Roddick
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kagawa 761-0793, Japan
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
39
|
Rolland T, Cliquet F, Anney RJL, Moreau C, Traut N, Mathieu A, Huguet G, Duan J, Warrier V, Portalier S, Dry L, Leblond CS, Douard E, Amsellem F, Malesys S, Maruani A, Toro R, Børglum AD, Grove J, Baron-Cohen S, Packer A, Chung WK, Jacquemont S, Delorme R, Bourgeron T. Phenotypic effects of genetic variants associated with autism. Nat Med 2023; 29:1671-1680. [PMID: 37365347 PMCID: PMC10353945 DOI: 10.1038/s41591-023-02408-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
While over 100 genes have been associated with autism, little is known about the prevalence of variants affecting them in individuals without a diagnosis of autism. Nor do we fully appreciate the phenotypic diversity beyond the formal autism diagnosis. Based on data from more than 13,000 individuals with autism and 210,000 undiagnosed individuals, we estimated the odds ratios for autism associated to rare loss-of-function (LoF) variants in 185 genes associated with autism, alongside 2,492 genes displaying intolerance to LoF variants. In contrast to autism-centric approaches, we investigated the correlates of these variants in individuals without a diagnosis of autism. We show that these variants are associated with a small but significant decrease in fluid intelligence, qualification level and income and an increase in metrics related to material deprivation. These effects were larger for autism-associated genes than in other LoF-intolerant genes. Using brain imaging data from 21,040 individuals from the UK Biobank, we could not detect significant differences in the overall brain anatomy between LoF carriers and non-carriers. Our results highlight the importance of studying the effect of the genetic variants beyond categorical diagnosis and the need for more research to understand the association between these variants and sociodemographic factors, to best support individuals carrying these variants.
Collapse
Affiliation(s)
- Thomas Rolland
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France.
| | - Freddy Cliquet
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Richard J L Anney
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Clara Moreau
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Nicolas Traut
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Center for Research and Interdisciplinarity (CRI), Université Paris Descartes, Paris, France
| | - Alexandre Mathieu
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Guillaume Huguet
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
| | - Jinjie Duan
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Varun Warrier
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Swan Portalier
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Louise Dry
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Claire S Leblond
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Elise Douard
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Frédérique Amsellem
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Simon Malesys
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Anna Maruani
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Roberto Toro
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Center for Research and Interdisciplinarity (CRI), Université Paris Descartes, Paris, France
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Jakob Grove
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Department of Biomedicine and the iSEQ Centre, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Simon Baron-Cohen
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Wendy K Chung
- Simons Foundation, New York, NY, USA
- Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Sébastien Jacquemont
- Centre de Recherche du Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, Canada
- Département de Pédiatrie, Université de Montréal, Montréal, Québec, Canada
| | - Richard Delorme
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- Department of Child and Adolescent Psychiatry, Robert Debré Hospital, APHP, Paris, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France.
| |
Collapse
|
40
|
Pretzsch CM, Ecker C. Structural neuroimaging phenotypes and associated molecular and genomic underpinnings in autism: a review. Front Neurosci 2023; 17:1172779. [PMID: 37457001 PMCID: PMC10347684 DOI: 10.3389/fnins.2023.1172779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Autism has been associated with differences in the developmental trajectories of multiple neuroanatomical features, including cortical thickness, surface area, cortical volume, measures of gyrification, and the gray-white matter tissue contrast. These neuroimaging features have been proposed as intermediate phenotypes on the gradient from genomic variation to behavioral symptoms. Hence, examining what these proxy markers represent, i.e., disentangling their associated molecular and genomic underpinnings, could provide crucial insights into the etiology and pathophysiology of autism. In line with this, an increasing number of studies are exploring the association between neuroanatomical, cellular/molecular, and (epi)genetic variation in autism, both indirectly and directly in vivo and across age. In this review, we aim to summarize the existing literature in autism (and neurotypicals) to chart a putative pathway from (i) imaging-derived neuroanatomical cortical phenotypes to (ii) underlying (neuropathological) biological processes, and (iii) associated genomic variation.
Collapse
Affiliation(s)
- Charlotte M. Pretzsch
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
41
|
Schiavi S, Manduca A, Carbone E, Buzzelli V, Rava A, Feo A, Ascone F, Morena M, Campolongo P, Hill MN, Trezza V. Anandamide and 2-arachidonoylglycerol differentially modulate autistic-like traits in a genetic model of autism based on FMR1 deletion in rats. Neuropsychopharmacology 2023; 48:897-907. [PMID: 36114286 PMCID: PMC10156791 DOI: 10.1038/s41386-022-01454-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022]
Abstract
Autism spectrum disorder (ASD) has a multifactorial etiology. Major efforts are underway to understand the neurobiological bases of ASD and to develop efficacious treatment strategies. Recently, the use of cannabinoid compounds in children with neurodevelopmental disorders including ASD has received increasing attention. Beyond anecdotal reports of efficacy, however, there is limited current evidence supporting such an intervention and the clinical studies currently available have intrinsic limitations that make the interpretation of the findings challenging. Furthermore, as the mechanisms underlying the beneficial effects of cannabinoid compounds in neurodevelopmental disorders are still largely unknown, the use of drugs targeting the endocannabinoid system remains controversial. Here, we studied the role of endocannabinoid neurotransmission in the autistic-like traits displayed by the recently validated Fmr1-Δexon 8 rat model of autism. Fmr1-Δexon 8 rats showed reduced anandamide levels in the hippocampus and increased 2-arachidonoylglycerol (2-AG) content in the amygdala. Systemic and intra-hippocampal potentiation of anandamide tone through administration of the anandamide hydrolysis inhibitor URB597 ameliorated the cognitive deficits displayed by Fmr1-Δexon 8 rats along development, as assessed through the novel object and social discrimination tasks. Moreover, blockade of amygdalar 2-AG signaling through intra-amygdala administration of the CB1 receptor antagonist SR141716A prevented the altered sociability displayed by Fmr1-Δexon 8 rats. These findings demonstrate that anandamide and 2-AG differentially modulate specific autistic-like traits in Fmr1-Δexon 8 rats in a brain region-specific manner, suggesting that fine changes in endocannabinoid mechanisms contribute to ASD-related behavioral phenotypes.
Collapse
Affiliation(s)
- Sara Schiavi
- Department of Science, Roma Tre University, Rome, Italy
| | - Antonia Manduca
- Department of Science, Roma Tre University, Rome, Italy
- Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | | | - Maria Morena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Neuropsychopharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
- Departments of Cell Biology and Anatomy & Psychiatry, Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- Neuropsychopharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Matthew N Hill
- Departments of Cell Biology and Anatomy & Psychiatry, Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Viviana Trezza
- Department of Science, Roma Tre University, Rome, Italy.
| |
Collapse
|
42
|
Wang Z, He M, Lv Y, Ge E, Zhang S, Qiang N, Liu T, Zhang F, Li X, Ge B. Accurate corresponding fiber tract segmentation via FiberGeoMap learner with application to autism. Cereb Cortex 2023:7133663. [PMID: 37083279 DOI: 10.1093/cercor/bhad125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 04/22/2023] Open
Abstract
Fiber tract segmentation is a prerequisite for tract-based statistical analysis. Brain fiber streamlines obtained by diffusion magnetic resonance imaging and tractography technology are usually difficult to be leveraged directly, thus need to be segmented into fiber tracts. Previous research mainly consists of two steps: defining and computing the similarity features of fiber streamlines, then adopting machine learning algorithms for fiber clustering or classification. Defining the similarity feature is the basic premise and determines its potential reliability and application. In this study, we adopt geometric features for fiber tract segmentation and develop a novel descriptor (FiberGeoMap) for the corresponding representation, which can effectively depict fiber streamlines' shapes and positions. FiberGeoMap can differentiate fiber tracts within the same subject, meanwhile preserving the shape and position consistency across subjects, thus can identify common fiber tracts across brains. We also proposed a Transformer-based encoder network called FiberGeoMap Learner, to perform segmentation based on the geometric features. Experimental results showed that the proposed method can differentiate the 103 various fiber tracts, which outperformed the existing methods in both the number of categories and segmentation accuracy. Furthermore, the proposed method identified some fiber tracts that were statistically different on fractional anisotropy (FA), mean diffusion (MD), and fiber number ration in autism.
Collapse
Affiliation(s)
- Zhenwei Wang
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Mengshen He
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Yifan Lv
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Enjie Ge
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Shu Zhang
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Ning Qiang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Tianming Liu
- Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, United States
| | - Fan Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xiang Li
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Bao Ge
- Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an, China
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
43
|
Buch AM, Vértes PE, Seidlitz J, Kim SH, Grosenick L, Liston C. Molecular and network-level mechanisms explaining individual differences in autism spectrum disorder. Nat Neurosci 2023; 26:650-663. [PMID: 36894656 PMCID: PMC11446249 DOI: 10.1038/s41593-023-01259-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/17/2023] [Indexed: 03/11/2023]
Abstract
The mechanisms underlying phenotypic heterogeneity in autism spectrum disorder (ASD) are not well understood. Using a large neuroimaging dataset, we identified three latent dimensions of functional brain network connectivity that predicted individual differences in ASD behaviors and were stable in cross-validation. Clustering along these three dimensions revealed four reproducible ASD subgroups with distinct functional connectivity alterations in ASD-related networks and clinical symptom profiles that were reproducible in an independent sample. By integrating neuroimaging data with normative gene expression data from two independent transcriptomic atlases, we found that within each subgroup, ASD-related functional connectivity was explained by regional differences in the expression of distinct ASD-related gene sets. These gene sets were differentially associated with distinct molecular signaling pathways involving immune and synapse function, G-protein-coupled receptor signaling, protein synthesis and other processes. Collectively, our findings delineate atypical connectivity patterns underlying different forms of ASD that implicate distinct molecular signaling mechanisms.
Collapse
Affiliation(s)
- Amanda M Buch
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - So Hyun Kim
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Autism and the Developing Brain, Weill Cornell Medicine, White Plains, NY, USA
- School of Psychology, Korea University, Seoul, South Korea
| | - Logan Grosenick
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| | - Conor Liston
- Department of Psychiatry and Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
44
|
Zheng J, Shao L, Yan Z, Lai X, Duan F. Study subnetwork developing pattern of autism children by non-negative matrix factorization. Comput Biol Med 2023; 158:106816. [PMID: 37003070 DOI: 10.1016/j.compbiomed.2023.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND As a developmental disorder, the brain networks of autism children show abnormal patterns compared with that of typically developing. The differences between them are not stable due to the developing progress of children. It has become a choice to study the differences of developing trajectories between autistic and typically developing children by investigating the change of each group respectively. Related researches studied the developing of brain network by analyzing the relationship between network indices of the entire or sub brain networks and the cognitive developing scores. METHODS As a matrix decomposition algorithm, non-negative matrix factorization (NMF) was applied to decompose the association matrices of brain networks. By NMF, we can obtain subnetworks in an unsupervised way. The association matrices of autism and control children were estimated by their magnetoencephalography data. NMF was applied to decompose the matrices to obtain common subnetworks of both groups. Then we calculated the expression of each subnetwork in each child's brain network by two indices, energy and entropy. The relationship between the expression and the cognitive and development indices were investigated. RESULTS We found a subnetwork with left lateralization pattern in α band showed different expression tendency in two groups. The expression indices of two groups were correlated with cognitive indices in autism and control group in an opposite way. In γ band, a subnetwork with strong connections on right hemisphere of brain showed a negative correlation between the expression indices and development indices in autism group. CONCLUSION NMF algorithm can effectively decompose brain network to meaningful subnetworks. The finding of α band subnetworks confirms the results of abnormal lateralization of autistic children mentioned in relevant studies. We assume the results of decrease of expression of the subnetwork may relate to the dysfunction of mirror neuron. The decrease expression of γ subnetwork of autism may be related to the weaken process of high-frequency neurons in the neurotrophic competition.
Collapse
Affiliation(s)
- JinLin Zheng
- College of Information Science and Engineering, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - LiCheng Shao
- College of Information Science and Engineering, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Zheng Yan
- College of Information Science and Engineering, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - XiaoFei Lai
- College of Information Science and Engineering, Huaqiao University, 668 Jimei Road, Xiamen 361021, China
| | - Fang Duan
- College of Information Science and Engineering, Huaqiao University, 668 Jimei Road, Xiamen 361021, China.
| |
Collapse
|
45
|
Wu D, Zhu J, You L, Wang J, Zhang S, Liu Z, Xu Q, Yuan X, Yang L, Wang W, Tong M, Hong Q, Chi X. NRXN1 depletion in the medial prefrontal cortex induces anxiety-like behaviors and abnormal social phenotypes along with impaired neurite outgrowth in rat. J Neurodev Disord 2023; 15:6. [PMID: 36737720 PMCID: PMC9896742 DOI: 10.1186/s11689-022-09471-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) are a group of disorders induced by abnormal brain developmental processes. The prefrontal cortex (PFC) plays an essential role in executive function, and its role in NDDs has been reported. NDDs are associated with high-risk gene mutations and share partially overlapping genetic abnormalities. METHODS Neurexins (NRXNs) are related to autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). NRXN1, an essential susceptibility gene for NDDs, has been reported to be associated with NDDs. However, little is known about its key role in NDDs. RESULTS NRXN1 downregulation in the medial PFC induced anxiety-like behaviors and abnormal social phenotypes with impaired neurite outgrowth in Sh-NRXN1 in prefrontal neurons. Moreover, tandem mass tag (TMT)-based proteomic analysis of rat brain samples showed that NRXN1 downregulation led to significant proteome alterations, including pathways related to the extracellular matrix, cell membrane, and morphologic change. Furthermore, full-automatic immunoblotting analysis verified the differently expressed proteins related to cell morphology and membrane structure. CONCLUSIONS Our results confirmed the association of NRXN1 with abnormal behaviors in NDDs and provided richer insights into specific prefrontal knockdown in adolescence, potentially expanding the NRXN1 interactome and contributing to human health.
Collapse
Affiliation(s)
- Di Wu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.,The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiansheng Zhu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lianghui You
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingyu Wang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Sufen Zhang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhonghui Liu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qu Xu
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xiaojie Yuan
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Lei Yang
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Wang
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meiling Tong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qin Hong
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Xia Chi
- Department of Child Healthcare, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| |
Collapse
|
46
|
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, Krystal JH, Martínez-González KG, Giusti-Rodríguez P, Montalvo-Ortiz JL. Cross-Species Convergence of Brain Transcriptomic and Epigenomic Findings in Posttraumatic Stress Disorder: A Systematic Review. Complex Psychiatry 2023; 9:100-118. [PMID: 37404872 PMCID: PMC10315001 DOI: 10.1159/000529536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/31/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Posttraumatic stress disorder (PTSD) is a complex multifactorial disorder influenced by the interaction of genetic and environmental factors. Analyses of epigenomic and transcriptomic modifications may help to dissect the biological factors underlying the gene-environment interplay in PTSD. To date, most human PTSD epigenetics studies have used peripheral tissue, and these findings have complex and poorly understood relationships to brain alterations. Studies examining brain tissue may help characterize the brain-specific transcriptomic and epigenomic profiles of PTSD. In this review, we compiled and integrated brain-specific molecular findings of PTSD from humans and animals. Methods A systematic literature search according to the PRISMA criteria was performed to identify transcriptomic and epigenomic studies of PTSD, focusing on brain tissue from human postmortem samples or animal-stress paradigms. Results Gene- and pathway-level convergence analyses revealed PTSD-dysregulated genes and biological pathways across brain regions and species. A total of 243 genes converged across species, with 17 of them significantly enriched for PTSD. Chemical synaptic transmission and signaling by G-protein-coupled receptors were consistently enriched across omics and species. Discussion Our findings point out dysregulated genes highly replicated across PTSD studies in humans and animal models and suggest a potential role for the corticotropin-releasing hormone/orexin pathway in PTSD's pathophysiology. Further, we highlight current knowledge gaps and limitations and recommend future directions to address them.
Collapse
Affiliation(s)
- Diana Leandra Núñez-Rios
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - Sheila Tiemi Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | | | - Paola Giusti-Rodríguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| |
Collapse
|
47
|
Zhou X, Wei J, Li L, Shu Z, You L, Liu Y, Zhao R, Yao J, Wang J, Luo M, Shu Y, Yuan K, Qi H. Microglial Pten safeguards postnatal integrity of the cortex and sociability. Front Immunol 2022; 13:1059364. [PMID: 36591296 PMCID: PMC9795847 DOI: 10.3389/fimmu.2022.1059364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Microglial abnormalities may contribute to neurodevelopmental disorders. PTEN is implicated as a susceptibility gene for autism spectrum disorders and its germline ablation in mice causes behavioral abnormalities. Here we find postnatal PTEN deletion in microglia causes deficits in sociability and novel object recognition test. Mutant mice harbor markedly more activated microglia that manifest enhanced phagocytosis. Interestingly, two-week postponement of microglia PTEN ablation leads to no social interaction defects, even though mutant microglia remain abnormal in adult animals. Disturbed neurodevelopment caused by early PTEN deletion in microglia is characterized by insufficient VGLUT1 protein in synaptosomes, likely a consequence of enhanced removal by microglia. In correlation, in vitro acute slice recordings demonstrate weakened synaptic inputs to layer 5 pyramidal neurons in the developing cortex. Therefore, microglial PTEN safeguards integrity of neural substrates underlying sociability in a developmentally determined manner.
Collapse
Affiliation(s)
- Xing Zhou
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiacheng Wei
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Liang Li
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Zhenfeng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Ling You
- Department of Bioengineering, School of Medicine, Tsinghua University, Beijing, China,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yang Liu
- School of Life Sciences, Tsinghua University, Beijing, China,National Institute of Biological Science, Beijing, China
| | - Ruozhu Zhao
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jiacheng Yao
- Tsinghua-Peking Center for Life Sciences, Beijing, China,School of Life Sciences, Tsinghua University, Beijing, China
| | - Jianbin Wang
- Tsinghua-Peking Center for Life Sciences, Beijing, China,School of Life Sciences, Tsinghua University, Beijing, China
| | - Minmin Luo
- School of Life Sciences, Tsinghua University, Beijing, China,National Institute of Biological Science, Beijing, China
| | - Yousheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Kexin Yuan
- Department of Bioengineering, School of Medicine, Tsinghua University, Beijing, China,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China,*Correspondence: Hai Qi, ; Kexin Yuan,
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing, China,Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China,Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China,*Correspondence: Hai Qi, ; Kexin Yuan,
| |
Collapse
|
48
|
Camasio A, Panzeri E, Mancuso L, Costa T, Manuello J, Ferraro M, Duca S, Cauda F, Liloia D. Linking neuroanatomical abnormalities in autism spectrum disorder with gene expression of candidate ASD genes: A meta-analytic and network-oriented approach. PLoS One 2022; 17:e0277466. [PMID: 36441779 PMCID: PMC9704678 DOI: 10.1371/journal.pone.0277466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a set of developmental conditions with widespread neuroanatomical abnormalities and a strong genetic basis. Although neuroimaging studies have indicated anatomical changes in grey matter (GM) morphometry, their associations with gene expression remain elusive. METHODS Here, we aim to understand how gene expression correlates with neuroanatomical atypicalities in ASD. To do so, we performed a coordinate-based meta-analysis to determine the common GM variation pattern in the autistic brain. From the Allen Human Brain Atlas, we selected eight genes from the SHANK, NRXN, NLGN family and MECP2, which have been implicated with ASD, particularly in regards to altered synaptic transmission and plasticity. The gene expression maps for each gene were built. We then assessed the correlation between the gene expression maps and the GM alteration maps. Lastly, we projected the obtained clusters of GM alteration-gene correlations on top of the canonical resting state networks, in order to provide a functional characterization of the structural evidence. RESULTS We found that gene expression of most genes correlated with GM alteration (both increase and decrease) in regions located in the default mode network. Decreased GM was also correlated with gene expression of some ASD genes in areas associated with the dorsal attention and cerebellar network. Lastly, single genes were found to be significantly correlated with increased GM in areas located in the somatomotor, limbic and ganglia/thalamus networks. CONCLUSIONS This approach allowed us to combine the well beaten path of genetic and brain imaging in a novel way, to specifically investigate the relation between gene expression and brain with structural damage, and individuate genes of potential interest for further investigation in the functional domain.
Collapse
Affiliation(s)
- Alessia Camasio
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Department of Physics, University of Turin, Turin, Italy
| | - Elisa Panzeri
- School of Biological Sciences, University of Leicester, Leicester, United Kingdom
| | - Lorenzo Mancuso
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Mario Ferraro
- Department of Physics, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
49
|
Abstract
Despite decades of investigation into the genetics of autism spectrum disorder (ASD), a current consensus in the field persists that ASD risk is too heterogeneous to be diagnosed by a single set of genetic variants. As such, ASD research has broadened to include assessment of other molecular biomarkers implicated in the condition that may be reflective of environmental exposures or gene by environment interactions. Epigenetic variance, and specifically differential DNA methylation, have emerged as areas of particularly high interest to ASD, as the epigenetic markers from specific chromatin loci collectively can reflect influences of multiple genetic and environmental factors and can also result in differential gene expression patterns. This review examines recent studies of the ASD epigenome, detailing common gene pathways found to be differentially methylated in people with ASD, and considers how these discoveries may inform our understanding of ASD etiology. We also consider future applications of epigenetics in ASD research and clinical practice, focusing on substratification, biomarker development, and experimental preclinical models of ASD that test causality. In combination with other -omics approaches, epigenomics allows an improved conceptualization of the multifactorial nature of ASD, and opens future lines of inquiry for both basic research and clinical practice.
Collapse
Affiliation(s)
- Logan A Williams
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Davis, CA, USA
- Genome Center, University of California Davis, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California Davis, Davis, CA, USA.
- MIND Institute, University of California Davis, Davis, CA, USA.
- Genome Center, University of California Davis, Davis, CA, USA.
| |
Collapse
|
50
|
Lights on for Autism: Exploring Photobiomodulation as an Effective Therapeutic Option. Neurol Int 2022; 14:884-893. [PMID: 36412693 PMCID: PMC9680350 DOI: 10.3390/neurolint14040071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022] Open
Abstract
Autism is a neurodevelopmental condition that starts in childhood and continues into adulthood. The core characteristics include difficulties with social interaction and communication, together with restricted and repetitive behaviours. There are a number of key abnormalities of brain structure and function that trigger these behavioural patterns, including an imbalance of functional connectivity and synaptic transmission, neuronal death, gliosis and inflammation. In addition, autism has been linked to alterations in the gut microbiome. Unfortunately, as it stands, there are few treatment options available for patients. In this mini-review, we consider the effectiveness of a potential new treatment for autism, known as photobiomodulation, the therapeutic use of red to near infrared light on body tissues. This treatment has been shown in a range of pathological conditions-to improve the key changes that characterise autism, including the functional connectivity and survival patterns of neurones, the patterns of gliosis and inflammation and the composition of the microbiome. We highlight the idea that photobiomodulation may form an ideal treatment option for autism, one that is certainly worthy of further investigation.
Collapse
|