1
|
Strom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Bäckman J, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O'Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, et alStrom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Bäckman J, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O'Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, Riddle MA, Ripke S, Rosário MC, Sampaio AS, Schiele MA, Skogholt AH, Sloofman LG, Smit J, Artigas MS, Thomas LF, Tifft E, Vallada H, van Kirk N, Veenstra-VanderWeele J, Vulink NN, Walker CP, Wang Y, Wendland JR, Winsvold BS, Yao Y, Zhou H, Agrawal A, Alonso P, Berberich G, Bucholz KK, Bulik CM, Cath D, Denys D, Eapen V, Edenberg H, Falkai P, Fernandez TV, Fyer AJ, Gaziano JM, Geller DA, Grabe HJ, Greenberg BD, Hanna GL, Hickie IB, Hougaard DM, Kathmann N, Kennedy J, Lai D, Landén M, Hellard SL, Leboyer M, Lochner C, McCracken JT, Medland SE, Mortensen PB, Neale BM, Nicolini H, Nordentoft M, Pato M, Pato C, Pauls DL, Piacentini J, Pittenger C, Posthuma D, Ramos-Quiroga JA, Rasmussen SA, Richter MA, Rosenberg DR, Ruhrmann S, Samuels JF, Sandin S, Sandor P, Spalletta G, Stein DJ, Stewart SE, Storch EA, Stranger BE, Turiel M, Werge T, Andreassen OA, Børglum AD, Walitza S, Hveem K, Hansen BK, Rück C, Martin NG, Milani L, Mors O, Reichborn-Kjennerud T, Ribasés M, Kvale G, Mataix-Cols D, Domschke K, Grünblatt E, Wagner M, Zwart JA, Breen G, Nestadt G, Kaprio J, Arnold PD, Grice DE, Knowles JA, Ask H, Verweij KJ, Davis LK, Smit DJ, Crowley JJ, Scharf JM, Stein MB, Gelernter J, Mathews CA, Derks EM, Mattheisen M. Genome-wide analyses identify 30 loci associated with obsessive-compulsive disorder. Nat Genet 2025:10.1038/s41588-025-02189-z. [PMID: 40360802 DOI: 10.1038/s41588-025-02189-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025]
Abstract
Obsessive-compulsive disorder (OCD) affects ~1% of children and adults and is partly caused by genetic factors. We conducted a genome-wide association study (GWAS) meta-analysis combining 53,660 OCD cases and 2,044,417 controls and identified 30 independent genome-wide significant loci. Gene-based approaches identified 249 potential effector genes for OCD, with 25 of these classified as the most likely causal candidates, including WDR6, DALRD3 and CTNND1 and multiple genes in the major histocompatibility complex (MHC) region. We estimated that ~11,500 genetic variants explained 90% of OCD genetic heritability. OCD genetic risk was associated with excitatory neurons in the hippocampus and the cortex, along with D1 and D2 type dopamine receptor-containing medium spiny neurons. OCD genetic risk was shared with 65 of 112 additional phenotypes, including all the psychiatric disorders we examined. In particular, OCD shared genetic risk with anxiety, depression, anorexia nervosa and Tourette syndrome and was negatively associated with inflammatory bowel diseases, educational attainment and body mass index.
Collapse
Affiliation(s)
- Nora I Strom
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany.
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Zachary F Gerring
- Department of Mental Health and Neuroscience, Translational Neurogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Department of Population Health and Immunity, Healthy Development and Ageing, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Marco Galimberti
- Department of Psychiatry, Human Genetics, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dongmei Yu
- Department of Center for Genomic Medicine, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew W Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Cristina Rodriguez-Fontenla
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Genomics and Bioinformatics, University of Santiago de Compostela, Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, Genetics, Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
| | - Julia M Sealock
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Tim Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA NY Harbor Healthcare System, Brooklyn, NY, USA
| | - Jonathan R Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK
| | - Behrang Mahjani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jackson G Thorp
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Christie L Burton
- Department of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jurjen J Luykx
- Department of Psychiatry, Brain University Medical Center Utrecht, Utrecht, the Netherlands
- Second Opinion Outpatient Clinic, GGNet, Warnsveld, the Netherlands
| | - Gwyneth Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Christine Andre
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Kathleen D Askland
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Hamilton, Ontario, Canada
| | - Julia Bäckman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Judith Becker Nissen
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
- Institute of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - O Joseph Bienvenu
- Department of Psychiatry and Behavioral Sciences, General Hospital Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Black
- Departments of Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael H Bloch
- Department of Child Study Center and Psychiatry, Yale University, New Haven, CT, USA
| | - Sigrid Børte
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, HUNT Center for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Rosa Bosch
- Department of Child and Adolescent Mental Health, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Instituto de Salut Carlos III, Centro de Investigación Biomédica en Red de Salut Mental (CIBERSAM), Madrid, Spain
| | - Michael Breen
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian P Brennan
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Helena Brentani
- Department of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Joseph D Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Enda M Byrne
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Judit Cabana-Dominguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Beatriz Camarena
- Pharmacogenetics Department, Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Mexico City, México
| | | | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
- Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Angel Carracedo
- CiMUS, Genomics and Bioinformatics Group, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galician Foundation of Genomic Medicine, Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Medicina Genómica, Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Miguel Casas
- Programa MIND Escoles, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
- Departamento de Psiquiatría y Medicina Legal, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Edwin H Cook
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Jesse Crosby
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bernadette A Cullen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elles J De Schipper
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Richard Delorme
- Child and Adolesccent Psychiatry Department, APHP, Paris, France
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jason A Elias
- Psychiatry, McLean Hospital OCDI, Harvard Medical School, Belmont, MA, USA
- Adult Psychological Services, CBTeam LLC, Lexington, MA, USA
| | - Xavier Estivill
- qGenomics (Quantitative Genomics Laboratories), Esplugues de Llobregat, Spain
| | - Martha J Falkenstein
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bengt T Fundin
- Department of Medical Epidemiology and Biostatistics, Center for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| | - Lauryn Garner
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Christina Gironda
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Fernando S Goes
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Marco A Grados
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus, Denmark
| | - Wei Guo
- Genetic Epidemiology Research Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Kristen Hagen
- Department of Psychiatry, Møre og Romsdal Hospital Trust, Molde, Norway
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Mental Health, Norwegian University for Science and Technology, Trondheim, Norway
| | - Kelly Harrington
- Million Veteran Program (MVP) Coordinating Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Alexandra Havdahl
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Kira D Höffler
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Dr. Einar Martens Research Group for Biological Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ana G Hounie
- Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Donald Hucks
- Department of Medicine, Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christina Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Janecka
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Eric Jenike
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Elinor K Karlsson
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Kelley
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Janice E Krasnow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christoph Lange
- Department of Biostatistics, T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Daniel Levey
- Department of Psychiatry, Yale University, West Haven, CT, USA
- Office of Research and Development, United States Department of Veterans Affairs, West Haven, CT, USA
| | - Kerstin Lindblad-Toh
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Fabio Macciardi
- Department of Psychiatry, University of California, Irvine, Irvine, CA, USA
| | - Brion Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brittany Mathes
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Nicole C McLaughlin
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
- Butler Hospital, Providence, RI, USA
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Euripedes C Miguel
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maureen Mulhern
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Paul S Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | - Erika L Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin S O'Connell
- Department of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Lisa Osiecki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Harvard Medical School, Boston, MA, USA
| | - Olga Therese Ousdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Haukeland University Hospital, Bergen, Norway
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Department of Clinical Neuroscience and Neurorehabilitation, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sriramya Potluri
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics, IBUB, Universitat de Barcelona, Barcelona, Spain
- CIBERER, Centro de Investigación Biomédica en Red, Madrid, Spain
- Department of Human Molecular Genetics, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, Division of Neurogenetics and Molecular Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, Medical Faculty, University Hospital Bonn, Bonn, Germany
- DZNE Bonn, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Cologne Excellence Cluster for Stress Responses in Ageing-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Scott Rauch
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Abraham Reichenberg
- Department of Mental Disorders, Norwegian Institute of Public Health, New York, NY, USA
| | - Mark A Riddle
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Site Berlin-Potsdam, German Center for Mental Health (DZPG), Berlin, Germany
| | - Maria C Rosário
- Department of Psychiatry, Child and Adolescent Psychiatry Unit (UPIA), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Aline S Sampaio
- Department of Neurosciences and Mental Health, Medical School, Federal University of Bahia, Salvador, Brazil
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
| | - Anne Heidi Skogholt
- Department of Public Health and Nursing, HUNT Center for Molecular and Clinical Epidemiology, Trondheim, Norway
| | - Laura G Sloofman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jan Smit
- Department of Psychiatry, Faculty of Medicine, Locaion VUmc, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Laurent F Thomas
- Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway
- Department of Public Health and Nursing, K.G. Jebsen Center for Genetic Epidemiology, NTNU, Trondheim, Norway
- BioCore, Bioinformatics Core Facility, NTNU, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eric Tifft
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Homero Vallada
- Department of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
- Department of Molecular Medicine and Surgery, CMM, Karolinska Institutet, Stockholm, Sweden
| | - Nathanial van Kirk
- OCD Institute, Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, USA
- Department of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Nienke N Vulink
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Ying Wang
- Department of Neurology, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jens R Wendland
- Laboratory of Clinical Science, NIMH Intramural Research Program, Bethesda, MD, USA
| | - Bendik S Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
| | - Yin Yao
- Department of Computional Biology, Institute of Life Science, Fudan University, Fudan, China
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Pino Alonso
- Department of Psychiatry, OCD Clinical and Research Unit, Bellvitge Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
- Department of Psychiatry and Mental Health, Bellvitge Biomedical Research Institute IDIBELLL, Barcelona, Spain
- CIBERSAM, Mental Health Network Biomedical Research Center, Madrid, Spain
| | - Götz Berberich
- Psychosomatic Department, Windach Hospital of Neurobehavioural Research and Therapy, Windach, Germany
| | - Kathleen K Bucholz
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danielle Cath
- Departments of Rijksuniversiteit Groningen and Psychiatry, University Medical Center Groningen, Groningen, the Netherlands
- Department of Specialized Training, Drenthe Mental Health Care Institute, Groningen, the Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Institute of the Royal Netherlands Academy of Arts and Sciences (NIN-KNAW), Amsterdam, the Netherlands
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW, Sydney, New South Wales, Australia
- Academic Unit of Child Psychiatry South-West Sydney, South-West Sydney Clinical School, SWSLHD and Ingham Institute, Sydney, New South Wales, Australia
| | - Howard Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Department of Psychiatry, Max Planck Institute, Munich, Germany
| | - Thomas V Fernandez
- Child Study Center and Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Abby J Fyer
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - J M Gaziano
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Mass General Brigham, Boston, MA, USA
| | - Dan A Geller
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Child Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Benjamin D Greenberg
- COBRE Center on Neuromodulation, Butler Hospital, Providence, RI, USA
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Gregory L Hanna
- Department of Psychiatry, Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ian B Hickie
- Brain and Mind Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - David M Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - James Kennedy
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Stéphanie Le Hellard
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Marion Leboyer
- Department of Addictology and Psychiatry, Université Paris-Est Créteil, AP-HP, Inserm, Paris, France
| | - Christine Lochner
- Department of Psychiatry, SA MRC Unit on Risk and Resilience in Mental Disorders, Stellenbosch University, Stellenbosch, South Africa
| | - James T McCracken
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah E Medland
- Department of Mental Health, Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Preben B Mortensen
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Benjamin M Neale
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Humberto Nicolini
- Department of Psychiatry, Psychiatry, Carracci Medical Group, Mexico City, México
- Psiquiatría, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Merete Nordentoft
- Mental Health Center Copenhagen, Copenhagen Research Center for Mental Health, Mental Health Services in the Capital Region of Denmark, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michele Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - Carlos Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - David L Pauls
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John Piacentini
- Department of Psychiatry and Biobehavioral Sciences, Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | | | - Danielle Posthuma
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Amsterdam, the Netherlands
- Department of Child and Adolescent Psychiatric, Section Complex Trait Genetics, VU Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Group of Psychiatry, Mental Health and Addictions, Psychiatric Genetics Unit, Vall d'Hebron Research Institute, Barcelona, Spain
- CIBERSAM, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Steven A Rasmussen
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Margaret A Richter
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - David R Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Child and Adolescent Psychiatry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jack F Samuels
- Department of Psychiatry and Behavioral Sciences, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sven Sandin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul Sandor
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Division of Neuropsychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, SAMRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - S Evelyn Stewart
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada
| | - Eric A Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Barbara E Stranger
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Copenhagen University Hospital, Mental Health Services (RHP), Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole A Andreassen
- Institute of Clinical Medicine, NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Center for Precision Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Research, Innovation and Education, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjarne K Hansen
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Centre for Crisis Psychology, Psychology, University of Bergen, Bergen, Norway
| | - Christian Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Nicholas G Martin
- Department of Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ole Mors
- Psychosis Research Unit, Psychiatry, Aarhus University Hospital, Aarhus, Denmark
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Gerd Kvale
- Department of Mental Health, Norwegian University for Science and Technology, Trondheim, Norway
- Department of Clinical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Medical Center-University of Freiburg, Freiburg, Germany
- Partner Site Berlin, DZPG, Berlin, Germany
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- DZNE, Bonn, Germany
| | - John-Anker Zwart
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway
- Department of Research and Innovation, Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatric Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Paul D Arnold
- Department of Psychiatry, the Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dorothy E Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James A Knowles
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Helga Ask
- PsychGen Center for Genetic Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Karin J Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Lea K Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dirk J Smit
- Department of Psychiatry, Amsterdam UMC location AMC, Amsterdam, the Netherlands
| | - James J Crowley
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Services, Region Stockholm, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremiah M Scharf
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry and School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Human Genetics (Psychiatry), Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Carol A Mathews
- Psychiatry and Genetics Institute, Evelyn F. and William L. Mc Knight Brain Institute, Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA
| | - Eske M Derks
- Department of Mental Health and Neuroscience, QIMR Berghofer, Brisbane, Queensland, Australia
| | - Manuel Mattheisen
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Department of Community Health and Epidemiology and Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
2
|
Xu Y, Liu H, Liu H, Lin D, Wu S, Peng Z. Brain Network Abnormalities in Obsessive-Compulsive Disorder: Insights from Edge Functional Connectivity Analysis. Behav Sci (Basel) 2025; 15:488. [PMID: 40282109 PMCID: PMC12024440 DOI: 10.3390/bs15040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
Functional differences in key brain networks, including the dorsal attention network (DAN), control network (CN), and default mode network (DMN), have been identified in individuals with obsessive-compulsive disorder (OCD). However, the precise nature of these differences remains unclear. In this study, we further explored these differences and validated previous findings using a novel edge functional connectivity (eFC) approach, which enables a more refined analysis of brain network interaction. By employing this advanced method, we sought to gain deeper insights into FC alterations that may underlie the pathology of OCD. We collected data during movie watching from 44 patients with OCD and 33 healthy controls (HCs). The two-sample t test was used to assess differences in entropy between the DAN, CN, and DMN between groups. The analysis was performed with control for potentially confounding variables to ensure the robustness of the findings. Significant differences in network entropy were found between the OCD and HC groups. Relative to HCs, patients with OCD showed significantly reduced entropy in the DAN and increased entropy in the CN and DMN. The decreased entropy in the DAN and increased entropy in the CN and DMN observed in this study may be related to the core symptoms of OCD, such as attention deficit, impaired cognitive control, and self-referential thinking. These results provide valuable insights into the neurobiological mechanisms of OCD and highlight the potential of network entropy as a biomarker for the disorder. Future research should further explore the relationship between these network changes and the severity of OCD symptoms, as well as assess their implications for the development of treatment strategies.
Collapse
Affiliation(s)
- Yongwang Xu
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China; (Y.X.); (H.L.)
- Key Laboratory of Brain, Cognition and Education Sciences, Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Hongfei Liu
- School of Artificial Intelligence, South China Normal University, Foshan 510631, China; (H.L.); (D.L.)
| | - Haiyan Liu
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China; (Y.X.); (H.L.)
- Key Laboratory of Brain, Cognition and Education Sciences, Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
| | - Defeng Lin
- School of Artificial Intelligence, South China Normal University, Foshan 510631, China; (H.L.); (D.L.)
| | - Sipeng Wu
- Aberdeen Institute of Data Science and Artificial Intelligence, South China Normal University, Guangzhou 510631, China;
| | - Ziwen Peng
- Center for the Study of Applied Psychology, Guangdong Key Laboratory of Mental Health and Cognitive Science, School of Psychology, South China Normal University, Guangzhou 510631, China; (Y.X.); (H.L.)
- Key Laboratory of Brain, Cognition and Education Sciences, Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, Guangzhou 510631, China
| |
Collapse
|
3
|
Zhang QY, Su CW, Luo Q, Grebogi C, Huang ZG, Jiang J. Adaptive Whole-Brain Dynamics Predictive Method: Relevancy to Mental Disorders. RESEARCH (WASHINGTON, D.C.) 2025; 8:0648. [PMID: 40190349 PMCID: PMC11971527 DOI: 10.34133/research.0648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 04/09/2025]
Abstract
The Hopf whole-brain model, based on structural connectivity, overcomes limitations of traditional structural or functional connectivity-focused methods by incorporating heterogeneity parameters, quantifying dynamic brain characteristics in healthy and diseased states. Traditional parameter fitting techniques lack precision, restricting broader use. To address this, we validated parameter fitting methods using simulated networks and synthetic models, introducing improvements such as individual-specific initialization and optimized gradient descent, which reduced individual data loss. We also developed an approximate loss function and gradient adjustment mechanism, enhancing parameter fitting accuracy and stability. Applying this refined method to datasets for major depressive disorder (MDD) and autism spectrum disorder (ASD), we identified differences in brain regions between patients and healthy controls, explaining related anomalies. This rigorous validation is crucial for clinical application, paving the way for precise neuropathological identification and novel treatments in neuropsychiatric research, demonstrating substantial potential in clinical neurology.
Collapse
Affiliation(s)
- Qian-Yun Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, China
- Research Center for Brain-inspired Intelligence,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Chun-Wang Su
- Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, China
- Research Center for Brain-inspired Intelligence,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital,
Fudan University, Shanghai 200433, China
- Institutes of Brain Science and Human Phenome Institute,
Fudan University, Shanghai 200032, China
- School of Psychology and Cognitive Science,
East China Normal University, Shanghai 200241, China
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology,
University of Aberdeen, Aberdeen AB24 3UE, UK
- School of Automation and Information Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China
| | - Zi-Gang Huang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, China
- Research Center for Brain-inspired Intelligence,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Junjie Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi’an Jiaotong University, Xi’an, China
- Research Center for Brain-inspired Intelligence,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| |
Collapse
|
4
|
Moreau AL, Hansen I, Bogdan R. A systematic review of structural neuroimaging markers of psychotherapeutic and pharmacological treatment for obsessive-compulsive disorder. Front Psychiatry 2025; 15:1432253. [PMID: 40018086 PMCID: PMC11865061 DOI: 10.3389/fpsyt.2024.1432253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/19/2024] [Indexed: 03/01/2025] Open
Abstract
Identifying individual difference factors associated with treatment response and putative mechanisms of therapeutic change may improve treatment for Obsessive Compulsive Disorder (OCD). Our systematic review of structural neuroimaging markers (i.e., morphometry, structural connectivity) of psychotherapy and medication treatment response for OCD identified 26 eligible publications from 20 studies (average study total n=54 ± 41.6 [range: 11-175]; OCD group n=29 ± 19) in child, adolescent, and adult samples evaluating baseline brain structure correlates of treatment response as well as treatment-related changes in brain structure. Findings were inconsistent across studies; significant associations within the anterior cingulate cortex (3/5 regional, 2/8 whole brain studies) and orbitofrontal cortex (5/10 regional, 2/7 whole brain studies) were most common, but laterality and directionality were not always consistent. Structural neuroimaging markers of treatment response do not currently hold clinical utility. Given increasing evidence that associations between complex behavior and brain structure are characterized by small, but potentially meaningful, effects, much larger samples are likely needed. Multivariate approaches (e.g., machine learning) may also improve the clinical predictive utility of neuroimaging data.
Collapse
Affiliation(s)
- Allison L. Moreau
- Department of Psychological and Brain Sciences, Washington University in St. Louis, Saint Louis, MO, United States
| | | | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
5
|
Koch K, Manrique DR, Gigl S, Ruan H, Gürsel DA, Rus-Oswald G, Reess T, Berberich G. Decoding Obsessive-Compulsive Disorder: The Regional Vulnerability Index and Its Association With Clinical Symptoms. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00036-9. [PMID: 39914728 DOI: 10.1016/j.bpsc.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Patients with obsessive-compulsive disorder (OCD) exhibit notable alterations in brain structure, which are likely to be of clinical relevance. Recently, in schizophrenia, the regional vulnerability index (RVI) was introduced to translate findings from ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) studies to the individual level. Building on this framework, in the current study, we sought to investigate whether the RVI might also serve as a vulnerability index for OCD. METHODS Toward this aim, we assessed subcortical volume and cortical thickness in a sample of 250 participants (140 patients with OCD, 110 healthy volunteers) and calculated the RVI by leveraging ENIGMA-derived deficits as the "ground truth" for expected regional brain alterations. RESULTS Subcortical volume and cortical thickness RVI values were significantly different in patients compared with healthy control participants. In addition, RVI values based on subcortical volume were significantly correlated with the severity of clinical symptoms. Moreover, RVI values for both subcortical volume and cortical thickness were significantly different in medicated subgroups while there was no significant difference in unmedicated patients. CONCLUSIONS The current results suggest that the RVI may represent an individual characteristic that reflects the degree of correspondence between individual patterns of structural alterations and disease-characteristic patterns of structural alterations. However, our findings also indicate that relatively large effect sizes in the meta-analytic ground truth are a prerequisite for obtaining a meaningful RVI parameter that can also be related to clinical severity. Therefore, the current findings require further validation through additional research to confirm the RVI's robustness and determine its predictive value.
Collapse
Affiliation(s)
- Kathrin Koch
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany.
| | - Daniela Rodriguez Manrique
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University, Munich, Germany
| | - Sandra Gigl
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany
| | - Hanyang Ruan
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Deniz A Gürsel
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Georgiana Rus-Oswald
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany; Department of Clinical Psychology, Leiden University, Leiden, the Netherlands
| | - Tim Reess
- School of Medicine and Health, Department of Diagnostic and Interventional Neuroradiology, Technical University of Munich, Munich, Germany; School of Medicine and Health, Technical University of Munich Neuroimaging Center, Technical University of Munich, Munich, Germany
| | - Götz Berberich
- Windach Institute and Hospital of Neurobehavioural Research and Therapy, Windach, Germany
| |
Collapse
|
6
|
Hossain SI, Sarker R, Islam SMA, Bhuiyan MA, Qusar MS, Islam MR. Altered eotaxin-1 and interleukin-34 levels in obsessive-compulsive disorder: a case-control observational study in Bangladesh. Osong Public Health Res Perspect 2025; 16:72-80. [PMID: 39663903 PMCID: PMC11917376 DOI: 10.24171/j.phrp.2024.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a prevalent mental health condition that impacts daily life. It is thought to be associated with genetic, biological, and structural brain changes, serotonergic abnormalities, altered neuromodulation, and environmental factors. Limited observational studies have examined cytokines in Bangladeshi patients with OCD. This study aimed to assess the levels of eotaxin-1 and interleukin (IL)-34 in individuals with this disorder. METHODS This case-control observational study included 58 patients with OCD and 30 healthy controls (HCs) matched for age, sex, and body mass index. The severity of OCD was assessed using the Yale-Brown obsessive-compulsive scale (Y-BOCS). Psychiatrists evaluated participants according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Serum levels of eotaxin-1 and IL-34 were measured using enzyme-linked immunosorbent assay kits. RESULTS Patients with OCD exhibited significantly higher serum eotaxin-1 levels (121.13±7.84 pg/mL) than HCs (85.52±9.42 pg/mL). Conversely, IL-34 levels were considerably lower in patients than in HCs (119.02±14.53 pg/mL vs. 179.96±27.88 pg/mL). The Cohen d values for eotaxin-1 and IL-34 were 0.55 and -0.48, respectively. Among patients with OCD, a significant positive correlation was found between serum eotaxin-1 level and Y-BOCS score, along with a negative correlation between serum eotaxin-1 and IL-34 levels. CONCLUSION The findings suggest that altered eotaxin-1 and IL-34 levels may be associated with OCD. These chemokines and cytokines could serve as primary tools for assessing the risk of OCD, warranting further clinical investigation. This could potentially support more extensive research and the development of diagnostic and therapeutic strategies targeting these pathways.
Collapse
Affiliation(s)
| | - Rapty Sarker
- Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh
| | | | | | - Mma Shalahuddin Qusar
- Department of Psychiatry, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | |
Collapse
|
7
|
Algin S, Sajib MWH, Ahmed SN, Siddique MR, Reza MM, Tanzilla NJ, Ahmed T, Islam MK, Patel P, Haque M. Unraveling Gender Differences in Obsessive-Compulsive Disorder: A Focus on Key Micronutrients. Cureus 2025; 17:e79667. [PMID: 40017580 PMCID: PMC11865865 DOI: 10.7759/cureus.79667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/01/2025] Open
Abstract
Introduction Obsessive-compulsive disorder (OCD) is a persistent psychiatric condition that causes significant clinical and functional impairments. Recent research suggests a link between deficiencies in micronutrients, particularly vitamin B12, folic acid, and elevated homocysteine, and the development of OCD. This study investigates the blood levels of these micronutrients and their relationship to OCD severity, with an emphasis on potential gender differences. Methods This cross-sectional study included 300 drug-free OCD patients. Serum levels of vitamin B12, folic acid, and homocysteine were measured using established biochemical methods. The Yale-Brown Obsessive Compulsive Scale (Y-BOCS) was used to assess clinical severity. Data were examined to determine relationships between micronutrient levels and OCD severity and differences between male and female patients. Results This study found that women had higher levels of vitamin B12 (405.3 ± 15.1 vs. 360.4 ± 14.3) and folic acid (7.18 ± 0.27 vs. 5.76 ± 0.25) but lower levels of homocysteine (9.35 ± 0.64 vs. 14.4 ± 0.60) compared to men. Higher folic acid levels were linked to study participants having higher levels of education (at a college or university, where subjects are studied at an advanced level) compared to those with primary-level education. Lower vitamin B12 levels were linked to family mental health history and noncommunicable diseases. Women exhibited lower levels of substance use but higher rates of self-harm and suicide attempts. Elevated homocysteine levels were linked to longer illness duration and more severe OCD symptoms. Conclusion These findings suggest that imbalances in micronutrients, particularly vitamin B12, folic acid, and homocysteine, may contribute to OCD severity and treatment resistance. Gender-specific variations in micronutrient levels could provide valuable insights into personalized OCD therapy choices. Further longitudinal studies are needed to understand these relationships and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Sultana Algin
- Department of Psychiatry, Bangabandhu Sheikh Mujib Medical University, Dhaka, BGD
| | | | | | | | - Md Munim Reza
- Department of Psychiatry, Enam Medical College and Hospital, Savar, BGD
| | | | - Tanbir Ahmed
- Department of Psychiatry, Bangabandhu Sheikh Mujib Medical University, Dhaka, BGD
| | - Md Kamrul Islam
- Department of Psychiatry, Bangabandhu Sheikh Mujib Medical University, Dhaka, BGD
| | - Pratiksha Patel
- Department of Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| | - Mainul Haque
- Department of Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
- Department of Research, Karnavati School of Dentistry, Karnavati University, Gandhinagar, IND
| |
Collapse
|
8
|
Lounici A, Iacob A, Hongler K, Mölling MA, Drechsler M, Hersberger L, Sethi S, Lang UE, Liwinski T. Ketogenic Diet as a Nutritional Metabolic Intervention for Obsessive-Compulsive Disorder: A Narrative Review. Nutrients 2024; 17:31. [PMID: 39796465 PMCID: PMC11723184 DOI: 10.3390/nu17010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The substantial evidence supporting the ketogenic diet (KD) in epilepsy management has spurred research into its effects on other neurological and psychiatric conditions. Despite differences in characteristics, symptoms, and underlying mechanisms, these conditions share common pathways that the KD may influence. The KD reverses metabolic dysfunction. Moreover, it has been shown to support neuroprotection through mechanisms such as neuronal energy support, inflammation reduction, amelioration of oxidative stress, and reversing mitochondrial dysfunction. The adequate intake of dietary nutrients is essential for maintaining normal brain functions, and strong evidence supports the role of nutrition in the treatment and prevention of many psychiatric and neurological disorders. Obsessive-compulsive disorder (OCD) is a neuropsychiatric condition marked by persistent, distressing thoughts or impulses (obsessions) and repetitive behaviors performed in response to these obsessions (compulsions). Recent studies have increasingly examined the role of nutrition and metabolic disorders in OCD. This narrative review examines current evidence on the potential role of the KD in the treatment of OCD. We explore research on the KD's effects on psychiatric disorders to assess its potential relevance for OCD treatment. Additionally, we identify key gaps in the preclinical and clinical research that warrant further study in applying the KD as a metabolic therapy for OCD.
Collapse
Affiliation(s)
- Astrid Lounici
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| | - Ana Iacob
- Pôle de Psychiatrie et Psychothérapie (PPP), Unité de Psychiatrie de Liaison, Hôpital du Valais, 1950 Sion, Switzerland;
| | - Katarzyna Hongler
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| | | | - Maria Drechsler
- Stiftung für Ganzheitliche Medizin (SGM), Klinik SGM Langenthal, 4900 Langenthal, Switzerland; (M.D.); (L.H.)
| | - Luca Hersberger
- Stiftung für Ganzheitliche Medizin (SGM), Klinik SGM Langenthal, 4900 Langenthal, Switzerland; (M.D.); (L.H.)
| | - Shebani Sethi
- Metabolic Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA;
| | - Undine E. Lang
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| | - Timur Liwinski
- Clinic for Adults, University Psychiatric Clinics Basel, University of Basel, 4031 Basel, Switzerland; (A.L.); (K.H.); (U.E.L.)
| |
Collapse
|
9
|
Del Casale A, Ferracuti S, Mancino S, Arena JF, Bilotta I, Alcibiade A, Romano A, Bozzao A, Pompili M. A coordinate-based meta-analysis of grey matter volume differences between adults with obsessive-compulsive disorder (OCD) and healthy controls. Psychiatry Res Neuroimaging 2024; 345:111908. [PMID: 39396483 DOI: 10.1016/j.pscychresns.2024.111908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/11/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
According to the cortico-striato-thalamo-cortical (CSTC) model of obsessive-compulsive disorder (OCD), the striatum plays a primary role in its neuropathophysiology. Hypothesising that volumetric alterations are more pronounced in subcortical areas of patients within the CSTC circuit compared to healthy controls (HCs), we conducted a coordinate-based meta-analysis of magnetic resonance imaging (MRI) studies. We included 26 whole-brain MRI studies, comprising 3,010 subjects: 1,508 patients (788 men, 720 women; mean age: 30.26 years, SD = 8.16) and 1,502 HCs (801 men, 701 women; mean age: 29.47 years, SD = 7.88). This meta-analysis demonstrated significant grey matter volume increases in the bilateral putamen, lateral globus pallidus, left parietal cortex, right pulvinar, and left cerebellum in adults with OCD, alongside decreases in the right hippocampus/caudate, bilateral medial frontal gyri, and other cortical regions. Volume increases were predominantly observed in subcortical areas, with the exception of the left parietal cortex and cerebellar dentate, while volume decreases were primarily cortical, aside from the right hippocampus/caudate. Further exploration of these neuropathophysiological correlates could inform specific prevention and treatment strategies, advancing precision mental health in clinical applications.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy; Unit of Psychiatry, Sant'Andrea University Hospital, 00189 Rome, Italy.
| | - Stefano Ferracuti
- Department of Human Neuroscience, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; Unit of Risk Management, Sant'Andrea University Hospital, 00189 Rome, Italy
| | - Serena Mancino
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Jan Francesco Arena
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bilotta
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Alessandro Alcibiade
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy; Marina Militare Italiana (Italian Navy), Ministry of Defence, Piazza della Marina, 4, 00196 Rome, Italy
| | - Andrea Romano
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy; Unit of Neuroradiology, 'Sant'Andrea' University Hospital, 00189 Rome, Italy
| | - Alessandro Bozzao
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy; Unit of Neuroradiology, 'Sant'Andrea' University Hospital, 00189 Rome, Italy
| | - Maurizio Pompili
- Unit of Psychiatry, Sant'Andrea University Hospital, 00189 Rome, Italy; Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| |
Collapse
|
10
|
Jahanshad N, Lenzini P, Bijsterbosch J. Current best practices and future opportunities for reproducible findings using large-scale neuroimaging in psychiatry. Neuropsychopharmacology 2024; 50:37-51. [PMID: 39117903 PMCID: PMC11526024 DOI: 10.1038/s41386-024-01938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Research into the brain basis of psychopathology is challenging due to the heterogeneity of psychiatric disorders, extensive comorbidities, underdiagnosis or overdiagnosis, multifaceted interactions with genetics and life experiences, and the highly multivariate nature of neural correlates. Therefore, increasingly larger datasets that measure more variables in larger cohorts are needed to gain insights. In this review, we present current "best practice" approaches for using existing databases, collecting and sharing new repositories for big data analyses, and future directions for big data in neuroimaging and psychiatry with an emphasis on contributing to collaborative efforts and the challenges of multi-study data analysis.
Collapse
Affiliation(s)
- Neda Jahanshad
- Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90292, USA.
| | - Petra Lenzini
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Janine Bijsterbosch
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
11
|
Farhad S, Metin SZ, Uyulan Ç, Makouei STZ, Metin B, Ergüzel TT, Tarhan N. Application of Hybrid DeepLearning Architectures for Identification of Individuals with Obsessive Compulsive Disorder Based on EEG Data. Clin EEG Neurosci 2024; 55:543-552. [PMID: 38192213 DOI: 10.1177/15500594231222980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Objective: Obsessive-compulsive disorder (OCD) is a highly common psychiatric disorder. The symptoms of this condition overlap and co-occur with those of other psychiatric illnesses, making diagnosis difficult. The availability of biomarkers could be useful for aiding in diagnosis, although prior neuroimaging studies were unable to provide such biomarkers. Method: In this study, patients with OCD were classified from healthy controls using 2 different hybrid deep learning models: one-dimensional convolutional neural networks (1DCNN) together with long-short term memory (LSTM) and gradient recurrent units (GRU), respectively. Results: Both models exhibited exceptional classification accuracies in cross-validation and external validation phases. The mean classification accuracies in the cross-validation stage were 90.88% and 85.91% for the 1DCNN-LSTM and 1DCNN-GRU models, respectively. The inferior frontal, temporal, and occipital electrodes were predominant in providing discriminative features. Conclusion: Our findings underscore the potential of hybrid deep learning architectures utilizing EEG data to effectively differentiate patients with OCD from healthy controls. This promising approach holds implications for advancing clinical decision-making by offering valuable insights into diagnostic markers for OCD.
Collapse
Affiliation(s)
- Shams Farhad
- Department of Neuroscience, Uskudar University, Istanbul, Turkey
| | | | - Çağlar Uyulan
- Department of Mechanical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | | | - Barış Metin
- Medical Faculty, Neurology Department, Uskudar University, Istanbul, Turkey
| | - Türker Tekin Ergüzel
- Faculty of Engineering and Natural Sciences, Department of Software Engineering, Uskudar University, Istanbul, Turkey
| | - Nevzat Tarhan
- Department of Psychiatry, Uskudar University, Istanbul, Turkey
| |
Collapse
|
12
|
Vandewouw MM, Ye Y(J, Crosbie J, Schachar RJ, Iaboni A, Georgiades S, Nicolson R, Kelley E, Ayub M, Jones J, Arnold PD, Taylor MJ, Lerch JP, Anagnostou E, Kushki A. Dataset factors associated with age-related changes in brain structure and function in neurodevelopmental conditions. Hum Brain Mapp 2024; 45:e26815. [PMID: 39254138 PMCID: PMC11386318 DOI: 10.1002/hbm.26815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/11/2024] Open
Abstract
With brain structure and function undergoing complex changes throughout childhood and adolescence, age is a critical consideration in neuroimaging studies, particularly for those of individuals with neurodevelopmental conditions. However, despite the increasing use of large, consortium-based datasets to examine brain structure and function in neurotypical and neurodivergent populations, it is unclear whether age-related changes are consistent between datasets and whether inconsistencies related to differences in sample characteristics, such as demographics and phenotypic features, exist. To address this, we built models of age-related changes of brain structure (regional cortical thickness and regional surface area; N = 1218) and function (resting-state functional connectivity strength; N = 1254) in two neurodiverse datasets: the Province of Ontario Neurodevelopmental Network and the Healthy Brain Network. We examined whether deviations from these models differed between the datasets, and explored whether these deviations were associated with demographic and clinical variables. We found significant differences between the two datasets for measures of cortical surface area and functional connectivity strength throughout the brain. For regional measures of cortical surface area, the patterns of differences were associated with race/ethnicity, while for functional connectivity strength, positive associations were observed with head motion. Our findings highlight that patterns of age-related changes in the brain may be influenced by demographic and phenotypic characteristics, and thus future studies should consider these when examining or controlling for age effects in analyses.
Collapse
Affiliation(s)
- Marlee M. Vandewouw
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - Yifan (Julia) Ye
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Division of Engineering ScienceUniversity of TorontoTorontoCanada
| | - Jennifer Crosbie
- Department of PsychiatryUniversity of TorontoTorontoCanada
- Department of PsychiatryThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Russell J. Schachar
- Department of PsychiatryUniversity of TorontoTorontoCanada
- Department of PsychiatryThe Hospital for Sick ChildrenTorontoOntarioCanada
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonCanada
| | | | - Elizabeth Kelley
- Department of PsychologyQueen's UniversityKingstonCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonCanada
- Department of PsychiatryQueen's UniversityKingstonCanada
| | - Muhammad Ayub
- Department of PsychiatryQueen's UniversityKingstonCanada
- Division of PsychiatryUniversity of College LondonLondonUK
| | - Jessica Jones
- Department of PsychologyQueen's UniversityKingstonCanada
- Centre for Neuroscience StudiesQueen's UniversityKingstonCanada
- Department of PsychiatryQueen's UniversityKingstonCanada
| | - Paul D. Arnold
- The Mathison Centre for Mental Health Research & Education, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Margot J. Taylor
- Department of Diagnostic and Interventional RadiologyThe Hospital for Sick ChildrenTorontoCanada
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Department of PsychologyUniversity of TorontoTorontoCanada
- Department of Medical ImagingUniversity of TorontoTorontoCanada
| | - Jason P. Lerch
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
- Institute of Medical ScienceUniversity of TorontoTorontoCanada
| | - Azadeh Kushki
- Autism Research Centre, Bloorview Research InstituteHolland Bloorview Kids Rehabilitation HospitalTorontoOntarioCanada
- Institute of Biomedical EngineeringUniversity of TorontoTorontoCanada
| |
Collapse
|
13
|
Uhre CF, Ritter M, Jepsen JRM, Uhre VF, Lønfeldt NN, Müller AD, Plessen KJ, Vangkilde S, Blair RJ, Pagsberg AK. Atypical neurocognitive functioning in children and adolescents with obsessive-compulsive disorder (OCD). Eur Child Adolesc Psychiatry 2024; 33:2291-2300. [PMID: 37917157 PMCID: PMC11255040 DOI: 10.1007/s00787-023-02301-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/11/2023] [Indexed: 11/03/2023]
Abstract
Atypical neurocognitive functioning has been found in adult patients with obsessive-compulsive disorder (OCD). However, little work has been done in children and adolescents with OCD. In this study, we investigated neurocognitive functioning in a large and representative sample of newly diagnosed children and adolescents with OCD compared to non-psychiatric controls. Children and adolescents with OCD (n = 119) and non-psychiatric controls (n = 90) underwent psychopathological assessment, intelligence testing, and a neurocognitive test battery spanning cognitive flexibility, planning and decision-making, working memory, fluency, and processing speed. The MANOVA main effect revealed that children and adolescents with OCD performed significantly worse than the control group (p < .001, η p 2 = 0.256). Atypical patient performance was particularly found for indices of cognitive flexibility, decision-making, working memory, and processing speed. We found no evidence of differences in planning or fluency. Moreover, we found no significant associations between neurocognitive performance and OCD symptom severity or comorbidity status. Our results indicate that children and adolescents with OCD show selective atypical neurocognitive functioning. These difficulties do not appear to drive their OCD symptoms. However, they may contribute to lifespan difficulties and interfere with treatment efficacy, an objective of our research currently.
Collapse
Affiliation(s)
- Camilla Funch Uhre
- The Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark.
- Center for Clinical Neuropsychology, Children and Adolescents, Rigshospitalet, Copenhagen, Denmark.
| | - Melanie Ritter
- The Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Jens Richardt Møllegaard Jepsen
- The Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Copenhagen University Hospital - Mental Health Services CPH, Glostrup, Denmark
- Center for Neuropsychiatric Schizophrenia Research (CNSR), Copenhagen University Hospital - Mental Health Services CPH, Glostrup, Denmark
| | - Valdemar Funch Uhre
- The Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Nicole Nadine Lønfeldt
- The Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Anne Dorothee Müller
- The Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kerstin Jessica Plessen
- The Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Signe Vangkilde
- The Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Robert James Blair
- The Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Katrine Pagsberg
- The Child and Adolescent Mental Health Center, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Echevarria MAN, Batistuzzo MC, Silva RMF, Brunoni AR, Sato JR, Miguel EC, Hoexter MQ, Shavitt RG. Increases in functional connectivity between the default mode network and sensorimotor network correlate with symptomatic improvement after transcranial direct current stimulation for obsessive-compulsive disorder. J Affect Disord 2024; 355:175-183. [PMID: 38548207 DOI: 10.1016/j.jad.2024.03.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Non-invasive neuromodulation is a promising intervention for obsessive-compulsive disorder (OCD), although its neurobiological mechanisms of action are still poorly understood. Recent evidence suggests that abnormalities in the connectivity of the default mode network (DMN) and the supplementary motor area (SMA) with other brain regions and networks are involved in OCD pathophysiology. We examined if transcranial direct current stimulation (tDCS) alters these connectivity patterns and if they correlate with symptom improvement in treatment-resistant OCD. METHODS In 23 patients from a larger clinical trial (comparing active tDCS to sham) who underwent pre- and post-treatment MRI scans, we assessed resting-state functional MRI (rs-fMRI) data. The treatment involved 30-minute daily tDCS sessions for four weeks (weekdays only), with the cathode over the SMA and the anode over the left deltoid. We conducted whole-brain connectivity analysis comparing active tDCS-treated to sham-treated patients. RESULTS We found that active tDCS, but not sham, led to connectivity increasing between the DMN and the bilateral pre/postcentral gyri (p = 0.004, FDR corrected) and temporal-auditory areas plus the SMA (p = 0.028, FDR corrected). Also, symptom improvement was directly associated with connectivity increasing between the left lateral sensorimotor network and the left precuneus (r = 0.589, p = 0.034). LIMITATIONS Limited sample size (23 participants with resting-state neuroimaging), inability to analyze specific OCD symptom dimensions (e.g., harm, sexual/religious, symmetry/checking, cleaning/contamination). CONCLUSIONS These data offer novel information concerning functional connectivity changes associated with non-invasive neuromodulation interventions in OCD and can guide new brain stimulation interventions in the framework of personalized interventions.
Collapse
Affiliation(s)
- M A N Echevarria
- LIM-23, Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil.
| | - M C Batistuzzo
- LIM-23, Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil; Department of Methods and Techniques in Psychology, Pontifical Catholic University, São Paulo, SP, Brazil
| | - R M F Silva
- LIM-23, Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| | - A R Brunoni
- LIM-23, Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| | - J R Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, SP, Brazil
| | - E C Miguel
- LIM-23, Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| | - M Q Hoexter
- LIM-23, Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| | - R G Shavitt
- LIM-23, Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, SP, Brazil
| |
Collapse
|
15
|
Kim BG, Kim G, Abe Y, Alonso P, Ameis S, Anticevic A, Arnold PD, Balachander S, Banaj N, Bargalló N, Batistuzzo MC, Benedetti F, Bertolín S, Beucke JC, Bollettini I, Brem S, Brennan BP, Buitelaar JK, Calvo R, Castelo-Branco M, Cheng Y, Chhatkuli RB, Ciullo V, Coelho A, Couto B, Dallaspezia S, Ely BA, Ferreira S, Fontaine M, Fouche JP, Grazioplene R, Gruner P, Hagen K, Hansen B, Hanna GL, Hirano Y, Höxter MQ, Hough M, Hu H, Huyser C, Ikuta T, Jahanshad N, James A, Jaspers-Fayer F, Kasprzak S, Kathmann N, Kaufmann C, Kim M, Koch K, Kvale G, Kwon JS, Lazaro L, Lee J, Lochner C, Lu J, Manrique DR, Martínez-Zalacaín I, Masuda Y, Matsumoto K, Maziero MP, Menchón JM, Minuzzi L, Moreira PS, Morgado P, Narayanaswamy JC, Narumoto J, Ortiz AE, Ota J, Pariente JC, Perriello C, Picó-Pérez M, Pittenger C, Poletti S, Real E, Reddy YCJ, van Rooij D, Sakai Y, Sato JR, Segalas C, Shavitt RG, Shen Z, Shimizu E, Shivakumar V, Soreni N, Soriano-Mas C, Sousa N, Sousa MM, Spalletta G, Stern ER, Stewart SE, Szeszko PR, Thomas R, Thomopoulos SI, Vecchio D, Venkatasubramanian G, Vriend C, Walitza S, Wang Z, Watanabe A, Wolters L, et alKim BG, Kim G, Abe Y, Alonso P, Ameis S, Anticevic A, Arnold PD, Balachander S, Banaj N, Bargalló N, Batistuzzo MC, Benedetti F, Bertolín S, Beucke JC, Bollettini I, Brem S, Brennan BP, Buitelaar JK, Calvo R, Castelo-Branco M, Cheng Y, Chhatkuli RB, Ciullo V, Coelho A, Couto B, Dallaspezia S, Ely BA, Ferreira S, Fontaine M, Fouche JP, Grazioplene R, Gruner P, Hagen K, Hansen B, Hanna GL, Hirano Y, Höxter MQ, Hough M, Hu H, Huyser C, Ikuta T, Jahanshad N, James A, Jaspers-Fayer F, Kasprzak S, Kathmann N, Kaufmann C, Kim M, Koch K, Kvale G, Kwon JS, Lazaro L, Lee J, Lochner C, Lu J, Manrique DR, Martínez-Zalacaín I, Masuda Y, Matsumoto K, Maziero MP, Menchón JM, Minuzzi L, Moreira PS, Morgado P, Narayanaswamy JC, Narumoto J, Ortiz AE, Ota J, Pariente JC, Perriello C, Picó-Pérez M, Pittenger C, Poletti S, Real E, Reddy YCJ, van Rooij D, Sakai Y, Sato JR, Segalas C, Shavitt RG, Shen Z, Shimizu E, Shivakumar V, Soreni N, Soriano-Mas C, Sousa N, Sousa MM, Spalletta G, Stern ER, Stewart SE, Szeszko PR, Thomas R, Thomopoulos SI, Vecchio D, Venkatasubramanian G, Vriend C, Walitza S, Wang Z, Watanabe A, Wolters L, Xu J, Yamada K, Yun JY, Zarei M, Zhao Q, Zhu X, Thompson PM, Bruin WB, van Wingen GA, Piras F, Piras F, Stein DJ, van den Heuvel OA, Simpson HB, Marsh R, Cha J. White matter diffusion estimates in obsessive-compulsive disorder across 1653 individuals: machine learning findings from the ENIGMA OCD Working Group. Mol Psychiatry 2024; 29:1063-1074. [PMID: 38326559 PMCID: PMC11176060 DOI: 10.1038/s41380-023-02392-6] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/27/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024]
Abstract
White matter pathways, typically studied with diffusion tensor imaging (DTI), have been implicated in the neurobiology of obsessive-compulsive disorder (OCD). However, due to limited sample sizes and the predominance of single-site studies, the generalizability of OCD classification based on diffusion white matter estimates remains unclear. Here, we tested classification accuracy using the largest OCD DTI dataset to date, involving 1336 adult participants (690 OCD patients and 646 healthy controls) and 317 pediatric participants (175 OCD patients and 142 healthy controls) from 18 international sites within the ENIGMA OCD Working Group. We used an automatic machine learning pipeline (with feature engineering and selection, and model optimization) and examined the cross-site generalizability of the OCD classification models using leave-one-site-out cross-validation. Our models showed low-to-moderate accuracy in classifying (1) "OCD vs. healthy controls" (Adults, receiver operator characteristic-area under the curve = 57.19 ± 3.47 in the replication set; Children, 59.8 ± 7.39), (2) "unmedicated OCD vs. healthy controls" (Adults, 62.67 ± 3.84; Children, 48.51 ± 10.14), and (3) "medicated OCD vs. unmedicated OCD" (Adults, 76.72 ± 3.97; Children, 72.45 ± 8.87). There was significant site variability in model performance (cross-validated ROC AUC ranges 51.6-79.1 in adults; 35.9-63.2 in children). Machine learning interpretation showed that diffusivity measures of the corpus callosum, internal capsule, and posterior thalamic radiation contributed to the classification of OCD from HC. The classification performance appeared greater than the model trained on grey matter morphometry in the prior ENIGMA OCD study (our study includes subsamples from the morphometry study). Taken together, this study points to the meaningful multivariate patterns of white matter features relevant to the neurobiology of OCD, but with low-to-moderate classification accuracy. The OCD classification performance may be constrained by site variability and medication effects on the white matter integrity, indicating room for improvement for future research.
Collapse
Affiliation(s)
- Bo-Gyeom Kim
- Department of Psychology, College of Social Sciences, Seoul National University, Seoul, Republic of Korea
| | - Gakyung Kim
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yoshinari Abe
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Department of Psychiatry, Kyoto City, Japan
| | - Pino Alonso
- Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
- CIBER of Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Stephanie Ameis
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Srinivas Balachander
- OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nuria Bargalló
- Center of Image Diagnostic, Hospital Clínic de Barcelona, Barcelona, Spain
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marcelo C Batistuzzo
- Departamento e Instituto de Psiquiatria do Hospital das Clinicas, IPQ HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Department of Methods and Techniques in Psychology, Pontifical Catholic University, São Paulo, SP, Brazil
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Sara Bertolín
- CIBER of Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Bellvitge Biomedical Research Institute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
| | - Jan Carl Beucke
- Department of Psychology, Humboldt-Universitat zu Berlin, Berlin, Germany
- Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Psychology, Medical School Hamburg, Hamburg, Germany
| | - Irene Bollettini
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Brian P Brennan
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jan K Buitelaar
- Radboudumc, Department of Cognitive Neuroscience, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, The Netherlands
| | - Rosa Calvo
- CIBER of Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic Universitari, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548, Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ritu Bhusal Chhatkuli
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University, Chiba University and University of Fukui, Suita, Japan
| | - Valentina Ciullo
- Laboratory of Neuropsychiatry, Department of Clinical and Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Beatriz Couto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Sara Dallaspezia
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Benjamin A Ely
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Martine Fontaine
- Columbia University Medical College, Columbia University, New York, NY, USA
| | - Jean-Paul Fouche
- SAMRC Genomics of Brain Disorders Unit, Department of Psychiatry, Cape Town, South Africa
| | - Rachael Grazioplene
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Patricia Gruner
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Kristen Hagen
- Hospital of Molde, Møre og Romsdal Hospital Trust, Molde, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Bjarne Hansen
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Centre for Crisis Psychology, University of Bergen, Bergen, Norway
| | - Gregory L Hanna
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University, Chiba University and University of Fukui, Suita, Japan
| | - Marcelo Q Höxter
- Departamento e Instituto de Psiquiatria do Hospital das Clinicas, IPQ HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Morgan Hough
- Highfield Unit Oxford, Warneford Hospital, Warneford Lane, Headington, Oxford, Oxfordshire, OX3 7JX, UK
| | - Hao Hu
- Shanghai Mental Health Center, Shanghai, China
| | - Chaim Huyser
- Levvel, academic center for child and adolescent care, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands
| | - Toshikazu Ikuta
- Department of Communication Sciences and Disorders, University of Mississippi, Oxford, MS, USA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, Los Angeles, CA, USA
| | - Anthony James
- Department of Psychiatry University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Fern Jaspers-Fayer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Selina Kasprzak
- Amsterdam UMC, Vrije Universteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universitat zu Berlin, Berlin, Germany
| | - Christian Kaufmann
- Department of Psychology, Humboldt-Universitat zu Berlin, Berlin, Germany
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kathrin Koch
- TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universitat Munchen, München, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Gerd Kvale
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Psychology, University of Bergen, Bergen, Norway
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Luisa Lazaro
- CIBER of Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic Universitari, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Junhee Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Uijeongbu, Republic of Korea
| | - Christine Lochner
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Jin Lu
- Department of Psychiatry, First Affiliated Hospitalof Kunming Medical University, Kunming, China
| | - Daniela Rodriguez Manrique
- TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universitat Munchen, München, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Ignacio Martínez-Zalacaín
- Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
- Department of Radiology, Bellvitge University Hospital, Barcelona, Spain
| | | | - Koji Matsumoto
- Chiba University Hospital, Chiba University, Chiba, Japan
| | - Maria Paula Maziero
- LIM 23, Instituto de Psiquiatria, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
- Faculty of Medicine, City University of Sao Paulo, Sao Paulo, Brazil
| | - Jose M Menchón
- Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
- CIBER of Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Luciano Minuzzi
- Anxiety Treatment and Research Clinic, St. Joseph's Hamilton Healthcare, Hamilton, ON, Canada
- Dapartmente of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Psychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Janardhanan C Narayanaswamy
- OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Jin Narumoto
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ana E Ortiz
- Department of Child and Adolescent Psychiatry and Psychology, Institute of Neurosciences, Hospital Clínic Universitari, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Junko Ota
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University, Chiba University and University of Fukui, Suita, Japan
| | - Jose C Pariente
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chris Perriello
- University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castelló de la Plana, Spain
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Child Study Center, Yale University, New Haven, CT, USA
- Center for Brain and Mind Health, Yale University, New Haven, CT, USA
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Eva Real
- CIBER of Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Y C Janardhan Reddy
- OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Daan van Rooij
- Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Department of Cognitive Neuroscience, Nijmegen, The Netherlands
| | - Yuki Sakai
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil
- Big Data, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Cinto Segalas
- CIBER of Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Roseli G Shavitt
- Departamento de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Zonglin Shen
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Eiji Shimizu
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University, Chiba University and University of Fukui, Suita, Japan
- Department of Cognitive Behavioral Physiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Venkataram Shivakumar
- National Institute of Mental Health and Neurosciences, Department of Integrative Medicine, Bengaluru, India
| | - Noam Soreni
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- Offord Centre for Child Studies, Hamilton, Ontario, Canada
| | - Carles Soriano-Mas
- CIBER of Mental Health (CIBERSAM), Carlos III Health Institute, Madrid, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
- Department of Social Psychology and Quantitative Psychology, University of Barcelona, Barcelona, Spain
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Mafalda Machado Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimaraes, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
- Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, USA
| | - Emily R Stern
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Clinical Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - S Evelyn Stewart
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital, Psychiatry, Vancouver, BC, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Philip R Szeszko
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Rajat Thomas
- Weill-Cornell Medicine Qatar, Education City, Doha, Qatar
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, Los Angeles, CA, USA
| | - Daniela Vecchio
- Laboratory of Neuropsychiatry, Department of Clinical and Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ganesan Venkatasubramanian
- OCD clinic, Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Chris Vriend
- Amsterdam UMC, Vrije Universteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, The Netherlands
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anri Watanabe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Lidewij Wolters
- Norwegian University of Science and Technology (NTNU), Faculty of Medicine, Regional Centre for Child and Youth Mental Health and Child Welfare (RKBU Central Norway), Klostergata 46, 7030, Trondheim, Norway
| | - Jian Xu
- Department of Internal Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea
- Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Qing Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Zhu
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, Los Angeles, CA, USA
| | - Willem B Bruin
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, The Netherlands
- Amsterdam UMC, Universiteit van Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands
| | - Guido A van Wingen
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, The Netherlands
- Amsterdam UMC, Universiteit van Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands
| | - Federica Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Neuroscience and Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- SAMRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | | | - Rachel Marsh
- Columbia University Medical College, Columbia University, New York, NY, USA
| | - Jiook Cha
- Department of Psychology, College of Social Sciences, Seoul National University, Seoul, Republic of Korea.
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Strom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Boberg J, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, German C, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O’Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, et alStrom NI, Gerring ZF, Galimberti M, Yu D, Halvorsen MW, Abdellaoui A, Rodriguez-Fontenla C, Sealock JM, Bigdeli T, Coleman JR, Mahjani B, Thorp JG, Bey K, Burton CL, Luykx JJ, Zai G, Alemany S, Andre C, Askland KD, Banaj N, Barlassina C, Nissen JB, Bienvenu OJ, Black D, Bloch MH, Boberg J, Børte S, Bosch R, Breen M, Brennan BP, Brentani H, Buxbaum JD, Bybjerg-Grauholm J, Byrne EM, Cabana-Dominguez J, Camarena B, Camarena A, Cappi C, Carracedo A, Casas M, Cavallini MC, Ciullo V, Cook EH, Crosby J, Cullen BA, De Schipper EJ, Delorme R, Djurovic S, Elias JA, Estivill X, Falkenstein MJ, Fundin BT, Garner L, German C, Gironda C, Goes FS, Grados MA, Grove J, Guo W, Haavik J, Hagen K, Harrington K, Havdahl A, Höffler KD, Hounie AG, Hucks D, Hultman C, Janecka M, Jenike E, Karlsson EK, Kelley K, Klawohn J, Krasnow JE, Krebs K, Lange C, Lanzagorta N, Levey D, Lindblad-Toh K, Macciardi F, Maher B, Mathes B, McArthur E, McGregor N, McLaughlin NC, Meier S, Miguel EC, Mulhern M, Nestadt PS, Nurmi EL, O’Connell KS, Osiecki L, Ousdal OT, Palviainen T, Pedersen NL, Piras F, Piras F, Potluri S, Rabionet R, Ramirez A, Rauch S, Reichenberg A, Riddle MA, Ripke S, Rosário MC, Sampaio AS, Schiele MA, Skogholt AH, Sloofman LGSG, Smit J, Soler AM, Thomas LF, Tifft E, Vallada H, van Kirk N, Veenstra-VanderWeele J, Vulink NN, Walker CP, Wang Y, Wendland JR, Winsvold BS, Yao Y, Zhou H, Agrawal A, Alonso P, Berberich G, Bucholz KK, Bulik CM, Cath D, Denys D, Eapen V, Edenberg H, Falkai P, Fernandez TV, Fyer AJ, Gaziano JM, Geller DA, Grabe HJ, Greenberg BD, Hanna GL, Hickie IB, Hougaard DM, Kathmann N, Kennedy J, Lai D, Landén M, Le Hellard S, Leboyer M, Lochner C, McCracken JT, Medland SE, Mortensen PB, Neale BM, Nicolini H, Nordentoft M, Pato M, Pato C, Pauls DL, Piacentini J, Pittenger C, Posthuma D, Ramos-Quiroga JA, Rasmussen SA, Richter MA, Rosenberg DR, Ruhrmann S, Samuels JF, Sandin S, Sandor P, Spalletta G, Stein DJ, Stewart SE, Storch EA, Stranger BE, Turiel M, Werge T, Andreassen OA, Børglum AD, Walitza S, Hveem K, Hansen BK, Rück CP, Martin NG, Milani L, Mors O, Reichborn-Kjennerud T, Ribasés M, Kvale G, Mataix-Cols D, Domschke K, Grünblatt E, Wagner M, Zwart JA, Breen G, Nestadt G, Kaprio J, Arnold PD, Grice DE, Knowles JA, Ask H, Verweij KJ, Davis LK, Smit DJ, Crowley JJ, Scharf JM, Stein MB, Gelernter J, Mathews CA, Derks EM, Mattheisen M. Genome-wide association study identifies 30 obsessive-compulsive disorder associated loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.13.24304161. [PMID: 38712091 PMCID: PMC11071577 DOI: 10.1101/2024.03.13.24304161] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Obsessive-compulsive disorder (OCD) affects ~1% of the population and exhibits a high SNP-heritability, yet previous genome-wide association studies (GWAS) have provided limited information on the genetic etiology and underlying biological mechanisms of the disorder. We conducted a GWAS meta-analysis combining 53,660 OCD cases and 2,044,417 controls from 28 European-ancestry cohorts revealing 30 independent genome-wide significant SNPs and a SNP-based heritability of 6.7%. Separate GWAS for clinical, biobank, comorbid, and self-report sub-groups found no evidence of sample ascertainment impacting our results. Functional and positional QTL gene-based approaches identified 249 significant candidate risk genes for OCD, of which 25 were identified as putatively causal, highlighting WDR6, DALRD3, CTNND1 and genes in the MHC region. Tissue and single-cell enrichment analyses highlighted hippocampal and cortical excitatory neurons, along with D1- and D2-type dopamine receptor-containing medium spiny neurons, as playing a role in OCD risk. OCD displayed significant genetic correlations with 65 out of 112 examined phenotypes. Notably, it showed positive genetic correlations with all included psychiatric phenotypes, in particular anxiety, depression, anorexia nervosa, and Tourette syndrome, and negative correlations with a subset of the included autoimmune disorders, educational attainment, and body mass index.. This study marks a significant step toward unraveling its genetic landscape and advances understanding of OCD genetics, providing a foundation for future interventions to address this debilitating disorder.
Collapse
Affiliation(s)
- Nora I. Strom
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Zachary F. Gerring
- Department of Mental Health and Neuroscience, Translational Neurogenomics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Department of Population Health and Immunity, Healthy Development and Ageing, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Marco Galimberti
- Department of Psychiatry, Human Genetics, Yale University, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dongmei Yu
- Department of Center for Genomic Medicine, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Matthew W. Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Cristina Rodriguez-Fontenla
- CIMUS (Center for Research in Molecular Medicine and Chronic Diseases), Genomics and Bioinformatics, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
- Grupo de Medicina Xenómica, Genetics, FIDIS (Instituto de Investigación Sanitaria de Santiago de Compostela), Santiago de Compostela, A Coruña, Spain
| | - Julia M. Sealock
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Tim Bigdeli
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
- VA NY Harbor Healthcare System, Brooklyn, NY, USA
| | - Jonathan R. Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
- National Institute for Health and Care Research Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, United Kingdom
| | - Behrang Mahjani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jackson G. Thorp
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Christie L. Burton
- Department of Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Jurjen J. Luykx
- Department of Psychiatry, Brain, University Medical Center Utrecht, Utrecht, The Netherlands
- Second opinion outpatient clinic, GGNet, Warnsveld, The Netherlands
| | - Gwyneth Zai
- Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health,, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Christine Andre
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Kathleen D. Askland
- Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Judith Becker Nissen
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
- Institute of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - O. Joseph Bienvenu
- Department of Psychiatry and Behavioral Sciences, General Hospital Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Donald Black
- Departments of Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael H. Bloch
- Department of Child Study Center and Psychiatry, Yale University, New Haven, CT, USA
| | - Julia Boberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
| | - Sigrid Børte
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, HUNT Center for Molecular and Clinical Epidemiology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Rosa Bosch
- Department of Child and Adolescent Mental Health, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Instituto de Salut Carlos III, Centro de Investigación Biomédica en Red de Salut Mental (CIBERSAM), Madrid, Spain
| | - Michael Breen
- Department of Psychiatry, Icahn School of Medicine At Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine At Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine At Mount Sinai, New York, NY, USA
| | - Brian P. Brennan
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Helena Brentani
- Department of Psychiatry, Universidade De São Paulo, São Paulo, Brazil
| | - Joseph D. Buxbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Enda M. Byrne
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Judit Cabana-Dominguez
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Beatriz Camarena
- Pharmacogenetics Department, Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramon de la Fuente Muñiz, Mexico City, México
| | | | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai Hospital, New York, NY, USA
- Department of Psychiatry, University of Sao Paulo, Sao Paulo, Brazil
| | - Angel Carracedo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Genomics and Bioinformatics Group, University of Santiago de Compostela, Santiago de Compostela, Spain
- Galiician Foundation of Genomic Medicine, Grupo de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago -IDIS-, Santiago de Compostela, Spain
- Medicina Genómica, Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - Miguel Casas
- Programa MIND Escoles, Hospital Sant Joan de Déu , Esplugues de Llobregat, Barcelona, Spain
- Departamento de Psiquiatría y Medicina Legal, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | - Valentina Ciullo
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Edwin H. Cook
- Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Jesse Crosby
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bernadette A. Cullen
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore , MD, USA
- Department of Mental Health, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elles J. De Schipper
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
| | - Richard Delorme
- Child and Adolesccent Psycchiatry Department, APHP, Paris, France
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jason A. Elias
- Psychiatry, McLean Hospital OCDI, Harvard Medical School, Belmont, MA, USA
- Adult Psychological Services, CBTeam LLC, Lexington, MA, USA
| | - Xavier Estivill
- qGenomics (Quantitative Genomics Laboratories), Esplugues de Llobregat, Barcelona, Spain
| | - Martha J. Falkenstein
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bengt T. Fundin
- Department of Medical Epidemiology and Biostatistics, Center for Eating Disorders Innovation, Karolinska Institutet, Stockholm, Sweden
| | - Lauryn Garner
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | | | - Christina Gironda
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Fernando S. Goes
- Department of Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Marco A. Grados
- Department of Psychiatry and Behavioral Sciences, Child & Adolescent Psychiatry, Johns Hopkins University, Baltimore, MD, USA
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus, Denmark
| | - Wei Guo
- Genetic Epidemiology Research Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Kristen Hagen
- Department of Psychiatry, Møre og Romsdal Hospital Trust, Molde, Norway
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Mental Health, Norwegian University for Science and Technology, Trondheim, Norway
| | - Kelly Harrington
- Million Veteran Program (MVP) Coordinating Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexandra Havdahl
- PsychGen Centre for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Kira D. Höffler
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Medical Genetics, Dr. Einar Martens Research Group for Biological Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Ana G. Hounie
- Department of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Donald Hucks
- Department of Medicine, Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christina Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Magdalena Janecka
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric Jenike
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Elinor K. Karlsson
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kara Kelley
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Janice E. Krasnow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kristi Krebs
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christoph Lange
- Department of Biostatistics, T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Daniel Levey
- Department of Psychiatry, Yale University, West Haven, CT, USA
- Office of Research & Development, United States Department of Veterans Affairs, West Haven, CT, USA
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Vertebrate Genomics, Broad Institute, Cambridge, MA, USA
| | - Fabio Macciardi
- Department of Psychiatry, University of California, Irvine (UCI), Irvine, CA, USA
| | - Brion Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brittany Mathes
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Evonne McArthur
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Nicole C. McLaughlin
- Department of Psychiatry & Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
- Butler Hospital, Providence, RI, USA
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Euripedes C. Miguel
- Department of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Maureen Mulhern
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Paul S. Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | - Erika L. Nurmi
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kevin S. O’Connell
- Department of Clinical Medicine, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT, University of Oslo, Oslo, Norway
| | - Lisa Osiecki
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Harvard Medical School, Boston, MA, USA
| | - Olga Therese Ousdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Biomedicine, Haukeland University Hospital, Bergen, Norway
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland - FIMM, University of Helsinki, Helsinki, Finland
| | - Nancy L. Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Department of Clinical Neuroscience and Neurorehabilitation, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sriramya Potluri
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Raquel Rabionet
- Department of Genetics, microbiology and statistics, IBUB, Universitat de Barcelona, Barcelona, Spain
- CIBERER, Centro de investigación biomédica en red, Madrid, Spain
- Department of Human Molecular Genetics, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, Division of Neurogenetics and Molecular Psychiatry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany
- DZNE Bonn, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
- Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), University of Cologne, Cologne, Germany
| | - Scott Rauch
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Abraham Reichenberg
- Department of Mental disorders, Norwegian Institute of Public Health, New York, NY, USA
| | - Mark A. Riddle
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephan Ripke
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin, Berlin, Germany
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- site Berlin-Potsdam, German Center for Mental Health (DZPG), Berlin, Germany
| | - Maria C. Rosário
- Department of Psychiatry, Child and Adolescent Psychiatry Unit (UPIA), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Aline S. Sampaio
- Department of Neurosciences and Mental Health, Medical School, Federal University of Bahia, Salvador, Brazil
| | - Miriam A. Schiele
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
| | - Anne Heidi Skogholt
- Department of Public Health and Nursing, HUNT Center for Molecular and Clinical Epidemiology, Trondheim, Norway
| | | | - Jan Smit
- Department of Psychiatry, Faculty of Medicine, Locaion Vumc, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Artigas María Soler
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Laurent F. Thomas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Public Health and Nursing, K. G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim, Norway
- BioCore - Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St.Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Eric Tifft
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA, USA
| | - Homero Vallada
- Department of Psychiatry, Universidade de Sao Paulo, São Paulo, Brazil
- Department of Molecular Medicine and Surgery, CMM, Karolinska Institutet, Stockholm, Sweden
| | - Nathanial van Kirk
- OCD Institute, Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Division of Child and Adolescent Psychiatry, Columbia University, New York, NY, USA
- Department of Child and Adolescent Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Nienke N. Vulink
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ying Wang
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jens R. Wendland
- Laboratory of Clinical Science, NIMH Intramural Research Program, Bethesda, MD, USA
| | - Bendik S. Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yin Yao
- Department of Computional Biology, Institute of Life Science, Fudan University, Fudan, China
| | - Hang Zhou
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | - Arpana Agrawal
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Pino Alonso
- Department of Psychiatry, OCD Clinical and Research Unit, Bellvitge Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
- Department of Psychiatry and Mental Health, Bellvitge Biomedical Research Institute IDIBELLL, Barcelona, Spain
- CIBERSAM, Mental Health Network Biomedical Research Center, Madrid, Spain
| | - Götz Berberich
- Psychosomatic Department, Windach Hospital of Neurobehavioural Research and Therapy, Windach, Germany
| | - Kathleen K. Bucholz
- Department of Psychiatry, Washington U. School of Medicine, St Louis, MO, USA
| | - Cynthia M. Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Danielle Cath
- Departments of Rijksuniversiteit Groningen and Psychiatry, University Medical Center Groninge, Groningen, The Netherlands
- Department of Specialized Training, Drenthe Mental Health Care Institute, Groningen, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Institute of The Royal Netherlands Academy of Arts and Sciences (NIN-KNAW), Amsterdam, The Netherlands
| | - Valsamma Eapen
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, UNSW, Sydney, NSW, Australia
- Academic Unit of Child Psychiatry South-West Sydney (AUCS), South-West Sydney Clinical School, SWSLHD & Ingham Institute, Sydney, NSW, Australia
| | - Howard Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital LMU, Munich, Germany
- Department of Psychiatry, Max Planck Institute, Munich, Germany
| | - Thomas V. Fernandez
- Child Study Center and Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Abby J. Fyer
- Department of Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, , Columbia University Medical Center, New York, NY, USA
| | - J M. Gaziano
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Mass General Brigham, Boston, MA, USA
| | - Dan A. Geller
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Child Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Hans J. Grabe
- Department of Psychiatry & Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Benjamin D. Greenberg
- COBRE Center on Neuromodulation, Butler Hospital, Providence, RI, USA
- Center for Neurorestoration and Neurotechnology, VA Providence Healthcare System, Providence, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Gregory L. Hanna
- Department of Psychiatry, Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Ian B. Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - David M. Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - James Kennedy
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Dongbing Lai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Stéphanie Le Hellard
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Bergen Center for brain plasticity, Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Marion Leboyer
- Department of Addictology and Psychiatry, Univ Paris Est Créteil, AP-HP, Inserm, Paris, France
| | - Christine Lochner
- Department of Psychiatry, SA MRC Unit on Risk and Resilience in Mental Disorders, Stellenbosch University, Stellenbosch, South Africa
| | - James T. McCracken
- Department of Psychiatry and Biobehavioral Sciences, Division of Child and Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah E. Medland
- Department of Mental Health, Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Preben B. Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- National Centre for Register-based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - Benjamin M. Neale
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, , Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Humberto Nicolini
- Department of Psychiatry, Psychiatry, Carracci Medical Group, Mexico City, México
- Psiquiatría, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Merete Nordentoft
- Mental Health Center Copenhagen, Copenhagen Research Center for Mental Health, Mental Health services in the Capital Region of Denmark, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michele Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - Carlos Pato
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA
| | - David L. Pauls
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John Piacentini
- Department of Psychiatry and Biobehavioral Sciences, Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA, USA
| | | | - Danielle Posthuma
- Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatric, Section Complex Trait Genetics, VU Medical Center Amsterdam, Amsterdam, The Netherlands
| | - Josep Antoni Ramos-Quiroga
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Group of Psychiatry, Mental Health and Addictions, Psychiatric Genetics Unit, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Steven A. Rasmussen
- Department of Psychiatry & Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| | - Margaret A. Richter
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - David R. Rosenberg
- Department of Psychiatry and Behavioral Neurosciences, Child and Adolescent Psychiatry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephan Ruhrmann
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jack F. Samuels
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sven Sandin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Paul Sandor
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Division of Neuropsychiatry, Baylor College of Medicine, Houston, TX, USA
| | - Dan J. Stein
- Dept of Psychiatry & Neuroscience Institute, SAMRC Unit on Risk & Reslience in Mental Disorders, University of Cape Town, Cape Town, Western Cape, South Africa
| | - S. Evelyn Stewart
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
- British Columbia Mental Health and Substance Use Services Research Institute (BCMHSUS), Vancouver, BC, Canada
| | - Eric A. Storch
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Barbara E. Stranger
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Copenhagen University Hospital, Mental Health Services (RHP), Copenhagen, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole A. Andreassen
- Institute of Clinical Medicine, NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Center for Precision Psychiatry, Oslo University Hospital, Oslo, , Norway
| | - Anders D. Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus University, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
- Neuroscience Center Zurich, University of Zurich and the ETH Zuric, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Kristian Hveem
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research, Innovation and Education, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Bjarne K. Hansen
- Bergen Center for Brain Plasticity (BCBP), Psychiatry, Haukeland University Hospital, Bergen, Norway
- Centre for Crisis Psychology, Psychology, University of Bergen, Bergen, Norway
| | - Christian P. Rück
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
| | - Nicholas G. Martin
- Department of Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lili Milani
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ole Mors
- Psychosis Reasearch Unit, Aarhus University Hospital - Psychiatry, 8200 Aarhus N, Denmark
| | - Ted Reichborn-Kjennerud
- Department of Mental Disorders, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marta Ribasés
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
- Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, Spain
- Department of Mental Health, Hospital Universitari Vall d’Hebron , Barcelona, Spain
| | - Gerd Kvale
- Bergen Center for Brain Plasticity, Psychiatry, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Psychology, Faculty of Psychology, University of Bergen, Bergen, Vestland
| | - David Mataix-Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
| | - Katharina Domschke
- Department of Psychiatry, University of Freiburg - Medical Faculty, Freiburg, Germany
- German Center for Mental Health (DZPG), Partner Site Berlin, Berlin, Germany
| | - Edna Grünblatt
- Neuroscience Center Zurich, University of Zurich and the ETH Zuric, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Schweiz
| | - Michael Wagner
- Departments of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - John-Anker Zwart
- HUNT Center for Molecular and Clinical Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research and Innovation, Clinical Neuroscience, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gerome Breen
- Social, Genetic, and Developmental Psychiatric Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Gerald Nestadt
- Department of Psychiatry and Behavioral Science, Johns Hopkins University, Baltimore, MD, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Paul D. Arnold
- Department of Psychiatry, The Mathison Centre for Mental Health Research & Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Dorothy E. Grice
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James A. Knowles
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Helga Ask
- PsychGen Center for Genetic Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Karin J. Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lea K. Davis
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dirk J. Smit
- Department of Psychiatry, Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - James J. Crowley
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Services, Region Stockholm , Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremiah M. Scharf
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Murray B. Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry and School of Public Health, University of California San Diego, La Jolla, CA, USA
| | - Joel Gelernter
- Department of Psychiatry, Human Genetics (Psychiatry), Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| | - Carol A. Mathews
- Psychiatry and Genetics Institute, Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, FL, USA
| | - Eske M. Derks
- Department of Mental Health and Neuroscience, QIMR Berghofer, Brisbane, Australia
| | - Manuel Mattheisen
- Department of Psychiatric Phenomics and Genomics (IPPG), Ludwig-Maximilians University Munich, Munich, Germany
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Community Health and Epidemiology and Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
17
|
Suarez-Jimenez B, Lazarov A, Zhu X, Zilcha-Mano S, Kim Y, Marino CE, Rjabtsenkov P, Bavdekar SY, Pine DS, Bar-Haim Y, Larson CL, Huggins AA, Terri deRoon-Cassini, Tomas C, Fitzgerald J, Kennis M, Varkevisser T, Geuze E, Quidé Y, El Hage W, Wang X, O’Leary EN, Cotton AS, Xie H, Shih C, Disner SG, Davenport ND, Sponheim SR, Koch SB, Frijling JL, Nawijn L, van Zuiden M, Olff M, Veltman DJ, Gordon EM, May G, Nelson SM, Jia-Richards M, Neria Y, Morey RA. Intrusive Traumatic Re-Experiencing Domain: Functional Connectivity Feature Classification by the ENIGMA PTSD Consortium. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:299-307. [PMID: 38298781 PMCID: PMC10829610 DOI: 10.1016/j.bpsgos.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 02/02/2024] Open
Abstract
Background Intrusive traumatic re-experiencing domain (ITRED) was recently introduced as a novel perspective on posttraumatic psychopathology, proposing to focus research of posttraumatic stress disorder (PTSD) on the unique symptoms of intrusive and involuntary re-experiencing of the trauma, namely, intrusive memories, nightmares, and flashbacks. The aim of the present study was to explore ITRED from a neural network connectivity perspective. Methods Data were collected from 9 sites taking part in the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) PTSD Consortium (n= 584) and included itemized PTSD symptom scores and resting-state functional connectivity (rsFC) data. We assessed the utility of rsFC in classifying PTSD, ITRED-only (no PTSD diagnosis), and trauma-exposed (TE)-only (no PTSD or ITRED) groups using a machine learning approach, examining well-known networks implicated in PTSD. A random forest classification model was built on a training set using cross-validation, and the averaged cross-validation model performance for classification was evaluated using the area under the curve. The model was tested using a fully independent portion of the data (test dataset), and the test area under the curve was evaluated. Results rsFC signatures differentiated TE-only participants from PTSD and ITRED-only participants at about 60% accuracy. Conversely, rsFC signatures did not differentiate PTSD from ITRED-only individuals (45% accuracy). Common features differentiating TE-only participants from PTSD and ITRED-only participants mainly involved default mode network-related pathways. Some unique features, such as connectivity within the frontoparietal network, differentiated TE-only participants from one group (PTSD or ITRED-only) but to a lesser extent from the other group. Conclusions Neural network connectivity supports ITRED as a novel neurobiologically based approach to classifying posttrauma psychopathology.
Collapse
Affiliation(s)
- Benjamin Suarez-Jimenez
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Amit Lazarov
- Department of Clinical Psychology, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York
| | - Xi Zhu
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York
| | - Sigal Zilcha-Mano
- Department of Psychology, University of Haifa, Mount Carmel, Haifa, Israel
| | - Yoojean Kim
- Department of Psychiatry, New York State Psychiatric Institute, New York, New York
| | - Claire E. Marino
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Pavel Rjabtsenkov
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Shreya Y. Bavdekar
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Daniel S. Pine
- Section on Developmental Affective Neuroscience, National Institute of Mental Health, Bethesda, Maryland
| | - Yair Bar-Haim
- Department of Clinical Psychology, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | - Mitzy Kennis
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Tim Varkevisser
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Elbert Geuze
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Yann Quidé
- School of Psychology, University of New South Wales Sydney, Sydney, New South Wales, Australia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Wissam El Hage
- Unité Mixte de Recherche 1253, Institut National de la Santé et de la Recherche Médicale, Université de Tours, Tours, France
- Centre d'investigation Clinique 1415, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Xin Wang
- University of Toledo, Toledo, Ohio
| | | | | | - Hong Xie
- University of Toledo, Toledo, Ohio
| | | | - Seth G. Disner
- Minneapolis VA Health Care System, Minneapolis, Minnesota
| | | | | | - Saskia B.J. Koch
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Jessie L. Frijling
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Laura Nawijn
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Miranda Olff
- Department of Psychiatry, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- ARQ National Psychotrauma Centre, Diemen, the Netherlands
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Evan M. Gordon
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Geoffery May
- VISN 17 Center of Excellence for Research on Returning War Veterans, U.S. Department of Veterans Affairs, Waco, Texas
| | - Steven M. Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | | | - Yuval Neria
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York
| | | |
Collapse
|
18
|
Diniz JB, Bazán PR, Pereira CADB, Saraiva EF, Ramos PRC, de Oliveira AR, Reimer AE, Hoexter MQ, Miguel EC, Shavitt RG, Batistuzzo MC. Brain activation during fear extinction recall in unmedicated patients with obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2023; 336:111733. [PMID: 37913655 DOI: 10.1016/j.pscychresns.2023.111733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/03/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Specific brain activation patterns during fear conditioning and the recall of previously extinguished fear responses have been associated with obsessive-compulsive disorder (OCD). However, further replication studies are necessary. We measured skin-conductance response and blood oxygenation level-dependent responses in unmedicated adult patients with OCD (n = 27) and healthy participants (n = 22) submitted to a two-day fear-conditioning experiment comprising fear conditioning, extinction (day 1) and extinction recall (day 2). During conditioning, groups differed regarding the skin conductance reactivity to the aversive stimulus (shock) and regarding the activation of the right opercular cortex, insular cortex, putamen, and lingual gyrus in response to conditioned stimuli. During extinction recall, patients with OCD had higher responses to stimuli and smaller differences between responses to conditioned and neutral stimuli. For the entire sample, the higher the response delta between conditioned and neutral stimuli, the greater the dACC activation for the same contrast during early extinction recall. While activation of the dACC predicted the average difference between responses to stimuli for the entire sample, groups did not differ regarding the activation of the dACC during extinction recall. Larger unmedicated samples might be necessary to replicate the previous findings reported in patients with OCD.
Collapse
Affiliation(s)
- Juliana Belo Diniz
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil.
| | - Paulo Rodrigo Bazán
- Radiology Institute, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 75, 05403-010, São Paulo, SP, Brazil; Hospital Israelita Albert Einstein, Av. Albert Einstein, 627, 05652-900 São Paulo, SP, Brazil
| | | | - Erlandson Ferreira Saraiva
- Institute of Applied Mathematics, Universidade Federal do Mato grosso do Sul, Cidade Universitária, Caixa Postal 549, 79070-900, Campo Grande, MS, Brazil
| | - Paula Roberta Camargo Ramos
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Amanda Ribeiro de Oliveira
- Department of Psychology, Federal University of São Carlos, Rod. Washington Luis, km 235, Caixa Postal: 676, 13565-905, São Carlos, SP, Brazil; Institute of Neuroscience and Behavior (INeC), Av. do Café, 2450, 14050-220, Ribeirão Preto, SP, Brazil
| | - Adriano Edgar Reimer
- Department of Psychology, Federal University of São Carlos, Rod. Washington Luis, km 235, Caixa Postal: 676, 13565-905, São Carlos, SP, Brazil; Institute of Neuroscience and Behavior (INeC), Av. do Café, 2450, 14050-220, Ribeirão Preto, SP, Brazil
| | - Marcelo Queiroz Hoexter
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Euripedes Constantino Miguel
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Roseli Gedanke Shavitt
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil
| | - Marcelo Camargo Batistuzzo
- Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 785, 05403-010, São Paulo, SP, Brazil; Department of Methods and Techniques in Psychology, Pontifical Catholic University, Rua Monte Alegre, 984, 05014-901, São Paulo, SP, Brazil
| |
Collapse
|
19
|
Zhu X, Kim Y, Ravid O, He X, Suarez-Jimenez B, Zilcha-Mano S, Lazarov A, Lee S, Abdallah CG, Angstadt M, Averill CL, Baird CL, Baugh LA, Blackford JU, Bomyea J, Bruce SE, Bryant RA, Cao Z, Choi K, Cisler J, Cotton AS, Daniels JK, Davenport ND, Davidson RJ, DeBellis MD, Dennis EL, Densmore M, deRoon-Cassini T, Disner SG, Hage WE, Etkin A, Fani N, Fercho KA, Fitzgerald J, Forster GL, Frijling JL, Geuze E, Gonenc A, Gordon EM, Gruber S, Grupe DW, Guenette JP, Haswell CC, Herringa RJ, Herzog J, Hofmann DB, Hosseini B, Hudson AR, Huggins AA, Ipser JC, Jahanshad N, Jia-Richards M, Jovanovic T, Kaufman ML, Kennis M, King A, Kinzel P, Koch SBJ, Koerte IK, Koopowitz SM, Korgaonkar MS, Krystal JH, Lanius R, Larson CL, Lebois LAM, Li G, Liberzon I, Lu GM, Luo Y, Magnotta VA, Manthey A, Maron-Katz A, May G, McLaughlin K, Mueller SC, Nawijn L, Nelson SM, Neufeld RWJ, Nitschke JB, O'Leary EM, Olatunji BO, Olff M, Peverill M, Phan KL, Qi R, Quidé Y, Rektor I, Ressler K, Riha P, Ross M, Rosso IM, Salminen LE, Sambrook K, Schmahl C, Shenton ME, Sheridan M, Shih C, Sicorello M, Sierk A, Simmons AN, et alZhu X, Kim Y, Ravid O, He X, Suarez-Jimenez B, Zilcha-Mano S, Lazarov A, Lee S, Abdallah CG, Angstadt M, Averill CL, Baird CL, Baugh LA, Blackford JU, Bomyea J, Bruce SE, Bryant RA, Cao Z, Choi K, Cisler J, Cotton AS, Daniels JK, Davenport ND, Davidson RJ, DeBellis MD, Dennis EL, Densmore M, deRoon-Cassini T, Disner SG, Hage WE, Etkin A, Fani N, Fercho KA, Fitzgerald J, Forster GL, Frijling JL, Geuze E, Gonenc A, Gordon EM, Gruber S, Grupe DW, Guenette JP, Haswell CC, Herringa RJ, Herzog J, Hofmann DB, Hosseini B, Hudson AR, Huggins AA, Ipser JC, Jahanshad N, Jia-Richards M, Jovanovic T, Kaufman ML, Kennis M, King A, Kinzel P, Koch SBJ, Koerte IK, Koopowitz SM, Korgaonkar MS, Krystal JH, Lanius R, Larson CL, Lebois LAM, Li G, Liberzon I, Lu GM, Luo Y, Magnotta VA, Manthey A, Maron-Katz A, May G, McLaughlin K, Mueller SC, Nawijn L, Nelson SM, Neufeld RWJ, Nitschke JB, O'Leary EM, Olatunji BO, Olff M, Peverill M, Phan KL, Qi R, Quidé Y, Rektor I, Ressler K, Riha P, Ross M, Rosso IM, Salminen LE, Sambrook K, Schmahl C, Shenton ME, Sheridan M, Shih C, Sicorello M, Sierk A, Simmons AN, Simons RM, Simons JS, Sponheim SR, Stein MB, Stein DJ, Stevens JS, Straube T, Sun D, Théberge J, Thompson PM, Thomopoulos SI, van der Wee NJA, van der Werff SJA, van Erp TGM, van Rooij SJH, van Zuiden M, Varkevisser T, Veltman DJ, Vermeiren RRJM, Walter H, Wang L, Wang X, Weis C, Winternitz S, Xie H, Zhu Y, Wall M, Neria Y, Morey RA. Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium. Neuroimage 2023; 283:120412. [PMID: 37858907 PMCID: PMC10842116 DOI: 10.1016/j.neuroimage.2023.120412] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/10/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. METHODS We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. RESULTS We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. CONCLUSION These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.
Collapse
Affiliation(s)
- Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Yoojean Kim
- New York State Psychiatric Institute, New York, NY, USA
| | - Orren Ravid
- New York State Psychiatric Institute, New York, NY, USA
| | - Xiaofu He
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | | | | | | | - Seonjoo Lee
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Chadi G Abdallah
- Baylor College of Medicine, Houston, TX, USA; Yale University School of Medicine, New Haven, CT, USA
| | | | - Christopher L Averill
- Baylor College of Medicine, Houston, TX, USA; Yale University School of Medicine, New Haven, CT, USA
| | | | - Lee A Baugh
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | | | | - Steven E Bruce
- Center for Trauma Recovery, Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Zhihong Cao
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Kyle Choi
- University of California San Diego, La Jolla, CA, USA
| | - Josh Cisler
- Department of Psychiatry, University of Texas at Austin, Austin, TX, USA
| | | | | | | | | | | | - Emily L Dennis
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Maria Densmore
- Departments of Psychology and Psychiatry, Neuroscience Program, Western University, London, ON, Canada; Department of Psychology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | | | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Wissam El Hage
- UMR 1253, CIC 1415, University of Tours, CHRU de Tours, INSERM, France
| | | | - Negar Fani
- Emory University Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Kelene A Fercho
- Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA
| | | | - Gina L Forster
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jessie L Frijling
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elbert Geuze
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Atilla Gonenc
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, MA, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Staci Gruber
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, MA, USA
| | | | - Jeffrey P Guenette
- Division of Neuroradiology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Ryan J Herringa
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | | | | | - Milissa L Kaufman
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Mitzy Kennis
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | | | - Philipp Kinzel
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Saskia B J Koch
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Inga K Koerte
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Ruth Lanius
- Department of Neuroscience, Western University, London, ON, Canada
| | | | - Lauren A M Lebois
- McLean Hospital, Belmont, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gen Li
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Israel Liberzon
- Psychiatry and Behavioral Science, Texas A&M University Health Science Center, College Station, TX, USA
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yifeng Luo
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | | | - Antje Manthey
- Charité Universitätsmedizin Berlin Campus Charite Mitte: Charite Universitatsmedizin Berlin, Berlin, Germany
| | | | - Geoffery May
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
| | | | | | - Laura Nawijn
- Department of Psychiatry, Amsterdam University Medical Centers, VU University Medical Center, VU University, Amsterdam, The Netherlands
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Richard W J Neufeld
- Departments of Psychology and Psychiatry, Neuroscience Program, Western University, London, ON, Canada; Department of Psychology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | | | | | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Miranda Olff
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - K Luan Phan
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yann Quidé
- School of Psychology, University of New South Wales, Sydney, NSW, Australia; Neuroscience Research Australia, Randwick, NSW, Australia
| | | | - Kerry Ressler
- McLean Hospital, Belmont, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Marisa Ross
- Northwestern Neighborhood and Networks Initiative, Northwestern University Institute for Policy Research, Evanston, IL, USA
| | - Isabelle M Rosso
- McLean Hospital, Belmont, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Lauren E Salminen
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | | | | | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Anika Sierk
- Charité Universitätsmedizin Berlin Campus Charite Mitte: Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Alan N Simmons
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
| | | | | | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA; University of Minnesota, Minneapolis, MN, USA
| | | | - Dan J Stein
- University of Cape Town, Cape Town, South Africa
| | - Jennifer S Stevens
- Emory University Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | | | | | - Jean Théberge
- Departments of Psychology and Psychiatry, Neuroscience Program, Western University, London, ON, Canada; Department of Psychology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | | | | | | | - Sanne J H van Rooij
- Emory University Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tim Varkevisser
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam University Medical Centers, VU University Medical Center, VU University, Amsterdam, The Netherlands
| | | | - Henrik Walter
- Charité Universitätsmedizin Berlin Campus Charite Mitte: Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Li Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- University of Toledo, Toledo, OH, USA
| | - Carissa Weis
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sherry Winternitz
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Hong Xie
- University of Toledo, Toledo, OH, USA
| | - Ye Zhu
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Melanie Wall
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
20
|
Sarker R, Qusar MMAS, Islam SMA, Bhuiyan MA, Islam MR. Association of granulocyte macrophage colony-stimulating factor and interleukin-17 levels with obsessive-compulsive disorder: a case-control study findings. Sci Rep 2023; 13:18976. [PMID: 37923827 PMCID: PMC10624891 DOI: 10.1038/s41598-023-46401-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a mental condition that affects many people and is characterized by recurring obsessions and compulsions. It significantly impacts individuals' ability to function ordinarily daily, affecting people of all ages. This study aimed to investigate whether or not the cytokines granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-17 (IL-17) are involved in the pathophysiology of OCD. A case-control study with 50 OCD patients and 38 healthy volunteers served as the controls for this investigation. The levels of GM-CSF and IL-17 in the serum of both groups were measured with enzyme-linked immunosorbent assay (ELISA) kits. In addition, the sociodemographic characteristics of the population under study were studied. Based on the findings of this study, OCD patients had significantly elevated levels of IL-17 than the controls, it appears that there may be a function for IL-17 in the pathophysiology of OCD. It was also discovered that the severity of OCD and IL-17 levels had a significant positive correlation. On the other hand, when comparing the levels of GM-CSF, there was no significant difference between the patients and the controls. This study provides evidence supporting the involvement of cytokine IL-17 in the pathophysiology of OCD. This study suggests IL-17 as a diagnostic biomarker for OCD and adds to our knowledge of the function that the immune system plays in this condition.
Collapse
Affiliation(s)
- Rapty Sarker
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - M M A Shalahuddin Qusar
- Department of Psychiatry, Bangabandhu Sheikh Mujib Medical University, Shahabagh, Dhaka, 1000, Bangladesh
| | | | - Mohiuddin Ahmed Bhuiyan
- Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205, Bangladesh
| | - Md Rabiul Islam
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.
| |
Collapse
|
21
|
Zhang X, Zhou J, Chen Y, Guo L, Yang Z, Robbins TW, Fan Q. Pathological Networking of Gray Matter Dendritic Density With Classic Brain Morphometries in OCD. JAMA Netw Open 2023; 6:e2343208. [PMID: 37955895 PMCID: PMC10644219 DOI: 10.1001/jamanetworkopen.2023.43208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/04/2023] [Indexed: 11/14/2023] Open
Abstract
Importance The pathogenesis of obsessive-compulsive disorder (OCD) may involve altered dendritic morphology, but in vivo imaging of neurite morphology in OCD remains limited. Such changes must be interpreted functionally within the context of the multimodal neuroimaging approach to OCD. Objective To examine whether dendritic morphology is altered in patients with OCD compared with healthy controls (HCs) and whether such alterations are associated with other brain structural metrics in pathological networks. Design, Setting, and Participants This case-control study used cross-sectional data, including multimodal brain images and clinical symptom assessments, from 108 patients with OCD and 108 HCs from 2014 to 2017. Patients with OCD were recruited from Shanghai Mental Health Center, Shanghai, China, and HCs were recruited via advertisements. The OCD group comprised unmedicated adults with a Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) (DSM-IV) diagnosis of OCD, while the HCs were adults without any DSM-IV diagnosis, matched for age, sex, and education level. Data were analyzed from September 2019 to April 2023. Exposure DSM-IV diagnosis of OCD. Main Outcomes and Measures Multimodal brain imaging was used to compare neurite microstructure and classic morphometries between patients with OCD and HCs. The whole brain was searched to identify regions exhibiting altered morphology in patients with OCD and explore the interplay between the brain metrics representing these alterations. Brain-symptom correlations were analyzed, and the performance of different brain metric configurations were evaluated in distinguishing patients with OCD from HCs. Results Among 108 HCs (median [IQR] age, 26 [23-31] years; 50 [46%] female) and 108 patients with OCD (median [IQR] age, 26 [24-31] years; 46 [43%] female), patients with OCD exhibited deficient neurite density in the right lateral occipitoparietal regions (peak t = 3.821; P ≤ .04). Classic morphometries also revealed widely-distributed alterations in the brain (peak t = 4.852; maximum P = .04), including the prefrontal, medial parietal, cingulate, and fusiform cortices. These brain metrics were interconnected into a pathological brain network associated with OCD symptoms (global strength: HCs, 0.253; patients with OCD, 0.941; P = .046; structural difference, 0.572; P < .001). Additionally, the neurite density index exhibited high discriminatory power in distinguishing patients with OCD from HCs (accuracy, ≤76.85%), and the entire pathological brain network also exhibited excellent discriminative classification properties (accuracy, ≤82.87%). Conclusions and Relevance The findings of this case-control study underscore the utility of in vivo imaging of gray matter dendritic density in future OCD research and the development of neuroimaging-based biomarkers. They also endorse the concept of connectopathy, providing a potential framework for interpreting the associations among various OCD symptom-related morphological anomalies.
Collapse
Affiliation(s)
- Xiaochen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiajia Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Now with Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lei Guo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Now with Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Bruin WB, Abe Y, Alonso P, Anticevic A, Backhausen LL, Balachander S, Bargallo N, Batistuzzo MC, Benedetti F, Bertolin Triquell S, Brem S, Calesella F, Couto B, Denys DAJP, Echevarria MAN, Eng GK, Ferreira S, Feusner JD, Grazioplene RG, Gruner P, Guo JY, Hagen K, Hansen B, Hirano Y, Hoexter MQ, Jahanshad N, Jaspers-Fayer F, Kasprzak S, Kim M, Koch K, Bin Kwak Y, Kwon JS, Lazaro L, Li CSR, Lochner C, Marsh R, Martínez-Zalacaín I, Menchon JM, Moreira PS, Morgado P, Nakagawa A, Nakao T, Narayanaswamy JC, Nurmi EL, Zorrilla JCP, Piacentini J, Picó-Pérez M, Piras F, Piras F, Pittenger C, Reddy JYC, Rodriguez-Manrique D, Sakai Y, Shimizu E, Shivakumar V, Simpson BH, Soriano-Mas C, Sousa N, Spalletta G, Stern ER, Evelyn Stewart S, Szeszko PR, Tang J, Thomopoulos SI, Thorsen AL, Yoshida T, Tomiyama H, Vai B, Veer IM, Venkatasubramanian G, Vetter NC, Vriend C, Walitza S, Waller L, Wang Z, Watanabe A, Wolff N, Yun JY, Zhao Q, van Leeuwen WA, van Marle HJF, van de Mortel LA, van der Straten A, van der Werf YD, Thompson PM, Stein DJ, van den Heuvel OA, van Wingen GA. The functional connectome in obsessive-compulsive disorder: resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium. Mol Psychiatry 2023; 28:4307-4319. [PMID: 37131072 PMCID: PMC10827654 DOI: 10.1038/s41380-023-02077-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Current knowledge about functional connectivity in obsessive-compulsive disorder (OCD) is based on small-scale studies, limiting the generalizability of results. Moreover, the majority of studies have focused only on predefined regions or functional networks rather than connectivity throughout the entire brain. Here, we investigated differences in resting-state functional connectivity between OCD patients and healthy controls (HC) using mega-analysis of data from 1024 OCD patients and 1028 HC from 28 independent samples of the ENIGMA-OCD consortium. We assessed group differences in whole-brain functional connectivity at both the regional and network level, and investigated whether functional connectivity could serve as biomarker to identify patient status at the individual level using machine learning analysis. The mega-analyses revealed widespread abnormalities in functional connectivity in OCD, with global hypo-connectivity (Cohen's d: -0.27 to -0.13) and few hyper-connections, mainly with the thalamus (Cohen's d: 0.19 to 0.22). Most hypo-connections were located within the sensorimotor network and no fronto-striatal abnormalities were found. Overall, classification performances were poor, with area-under-the-receiver-operating-characteristic curve (AUC) scores ranging between 0.567 and 0.673, with better classification for medicated (AUC = 0.702) than unmedicated (AUC = 0.608) patients versus healthy controls. These findings provide partial support for existing pathophysiological models of OCD and highlight the important role of the sensorimotor network in OCD. However, resting-state connectivity does not so far provide an accurate biomarker for identifying patients at the individual level.
Collapse
Grants
- R01 AG058854 NIA NIH HHS
- R01 MH126213 NIMH NIH HHS
- R21 MH101441 NIMH NIH HHS
- R01 MH121520 NIMH NIH HHS
- R21 MH093889 NIMH NIH HHS
- R01 MH116147 NIMH NIH HHS
- R01 MH111794 NIMH NIH HHS
- R01 MH085900 NIMH NIH HHS
- P41 EB015922 NIBIB NIH HHS
- IA/CPHE/18/1/503956 DBT-Wellcome Trust India Alliance
- UL1 TR001863 NCATS NIH HHS
- R01 MH081864 NIMH NIH HHS
- R01 MH104648 NIMH NIH HHS
- U54 EB020403 NIBIB NIH HHS
- R01 MH117601 NIMH NIH HHS
- R01 MH116038 NIMH NIH HHS
- R01 MH126981 NIMH NIH HHS
- R01 NS107513 NINDS NIH HHS
- RF1 MH123163 NIMH NIH HHS
- R33 MH107589 NIMH NIH HHS
- K24 MH121571 NIMH NIH HHS
- R01 MH121246 NIMH NIH HHS
- Wellcome Trust
- K23 MH115206 NIMH NIH HHS
- R01 AG059874 NIA NIH HHS
- Funding from Japan Society for the Promotion of Science (KAKENHI Grant No. 18K15523)
- Carlos III Health Institute PI18/00856
- NIMH: 5R01MH116038
- Sara Bertolin was supported by Instituto de Salud Carlos III through the grant CM21/00278 (Co-funded by European Social Fund. ESF investing in your future).
- Hartmann Müller Foundation (no. 1460, principal investigator: S.Brem)
- NIHM: R01MH085900, R01MH121520
- NIH: K23 MH115206 & IOCDF Annual Research Award
- AMED Brain/MINDS Beyond program Grant No. JP22dm0307002, JSPS KAKENHI Grants No. 22H01090, 21K03084, 19K03309, 16K04344
- NIH: R01MH117601, R01AG059874, P41EB015922, R01MH126213, R01MH121246
- Michael Smith Health Research BC
- the Deutsche Forschungsgemeinschaf (KO 3744/11-1)
- This work was supported by the Medical Research Council of South Africa (SAMRC), and the National Research Foundation of South Africa (Christine Lochner), and we acknowledge the contribution of our research assistants.
- NIMH: R21MH093889, R21MH101441 and R01MH104648
- IM-Z was supported by a PFIS grant (FI17/00294) from the Carlos III Health Institute
- This work was supported by National funds, through the Foundation for Science and Technology (project UIDB/50026/2020 and UIDP/50026/2020); by the Norte Portugal Regional Operational Programme (NORTE 2020) under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF) (projects NORTE-01-0145-FEDER-000013 and NORTE-01-0145-FEDER-000023), and by the FLAD Science Award Mental Health 2021.
- JSPS KAKENHI (C)21K07547, 22K07598 and 22K15766
- Government of India grants from Department of Science and Technology (DST INSPIRE faculty grant -IFA12-LSBM-26) & Department of Biotechnology (BT/06/IYBA/2012)
- NIMH: R01MH081864
- MPP was supported by the Spanish Ministry of Universities, with funds from the European Union - NextGenerationEU (MAZ/2021/11).
- Italian Ministry of Health, Ricerca Corrente 2022, 2023
- NIMH: K24MH121571
- Government of India grants to: Prof. Reddy [(SR/S0/HS/0016/2011) & (BT/PR13334/Med/30/259/2009)], Dr. Janardhanan Narayanaswamy (DST INSPIRE faculty grant -IFA12-LSBM-26) & (BT/06/IYBA/2012) and the Wellcome-DBT India Alliance grant to Dr. Ganesan Venkatasubramanian (500236/Z/11/Z)
- the Japan Agency for Medical Research and Development: JP22dm0307008
- DBT-Wellcome Trust India Alliance Early Career Fellowship grant (IA/CPHE/18/1/503956)
- NIMH: R21MH093889 and R01MH104648
- Grant #PI19/01171 from the Carlos III Health Institute, and 2017SGR 1247 from AGAUR-Generalitat de Catalunya.
- Italian Ministry of Health grant RC19-20-21-22/A
- Grants R01MH126981, R01MH111794, and R33MH107589 from the National Institute of Mental Health/National Institute of Health awarded to ERS.
- National Natural Science Foundation of China (Nos. 81871057, 82171495), and Key Technologies Research and Development Program of China (Nos.2022YFE0103700)
- Helse Vest Health Authority (Grant ID 911754 and 911880)
- JSPS KAKENHI (C) JP21K07547, 22K07598 and 22K15766.
- Ganesan Venkatasubramanian acknowledges the support of Department of Biotechnology (DBT) - Wellcome Trust India Alliance CRC grant (IA/CRC/19/1/610005) & senior fellowship grant (500236/Z/11/Z)
- Supported by an grant from Amsterdam Neuroscience CIA-2019-03-A
- Swiss National Science Foundation (no. 320030_130237, principal investigator: S.Walitza)
- The National Natural Science Foundation of China (82071518)
- Else Kröner Fresenius Stiftung (2017_A101)
- ENIGMA World Aging Center, NIA Award No. R01AG058854; ENIGMA Parkinson's Initiative: A Global Initiative for Parkinson's Disease, NINDS award RO1NS107513
- the Obsessive-Compulsive Foundation to Dan J. Stein
- Dutch Organization for Scientific Research (NWO/ZonMW) VENI grant (916-86-038) and Brain & Behavior Research Foundation (NARSAD grant), Netherlands Brain Foundation (2010(1)-50)
- Netherlands Organization for Scientific Research (NWO/ZonMW Vidi Grant No. 165.610.002, 016.156.318, and 917.15.318 G.A. van Wingen)
Collapse
Affiliation(s)
- Willem B Bruin
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Yoshinari Abe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Pino Alonso
- Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain
- Department of Clinical Science, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- IDIBELL, Bellvitge University Hospital, Barcelona, Spain
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
| | - Alan Anticevic
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Lea L Backhausen
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Srinivas Balachander
- Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Nuria Bargallo
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
- Radiology Service, Diagnosis Image Center, Hospital Clinic de Barcelona, Barcelona, Spain
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marcelo C Batistuzzo
- Department of Psychiatry, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
- Department of Methods and Techniques in Psychology, Pontifical Catholic University, Sao Paulo, Brazil
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Sara Bertolin Triquell
- Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Federico Calesella
- Vita-Salute San Raffaele University, Milano, Italy
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Beatriz Couto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Damiaan A J P Denys
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marco A N Echevarria
- Department of Psychiatry, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Goi Khia Eng
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Jamie D Feusner
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- General Adult Psychiatry & Health Systems, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | | | - Patricia Gruner
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Joyce Y Guo
- University of California, San Diego, CA, USA
| | - Kristen Hagen
- Molde Hospital, Møre og Romsdal Hospital Trust, Molde, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Department of Mental Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjarne Hansen
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Center for Crisis Psychology, University of Bergen, Bergen, Norway
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Marcelo Q Hoexter
- Department of Psychiatry, University of Sao Paulo School of Medicine, Sao Paulo, Brazil
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fern Jaspers-Fayer
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Selina Kasprzak
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kathrin Koch
- Department of Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Yoo Bin Kwak
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Luisa Lazaro
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic of Barcelona, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Rachel Marsh
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Ignacio Martínez-Zalacaín
- Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Jose M Menchon
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Pedro S Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Psychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Akiko Nakagawa
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Tomohiro Nakao
- Graduate School of Medical Sciences, Kyushu University, Fukuoka-shi, Japan
| | - Janardhanan C Narayanaswamy
- National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
- GVAMHS, Goulburn Valley Health, Shepparton, VIC, Australia
| | - Erika L Nurmi
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jose C Pariente Zorrilla
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - John Piacentini
- Division of Child and Adolescent Psychiatry, UCLA Semel Institute for Neuroscience, Los Angeles, CA, USA
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castelló de la Plana, Spain
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Janardhan Y C Reddy
- Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Daniela Rodriguez-Manrique
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center (TUM-NIC) of Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-Universität, Munich, Germany
| | - Yuki Sakai
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Eiji Shimizu
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Fukui, Japan
- Department of Cognitive Behavioral Physiology Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Blair H Simpson
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Carles Soriano-Mas
- CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Insitute-IDIBELL, Bellvitge University Hospital, Barcelona, Spain
- Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona-UB, Barcelona, Spain
| | - Nuno Sousa
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center-Braga, Braga, Portugal
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Emily R Stern
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - S Evelyn Stewart
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Philip R Szeszko
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anders L Thorsen
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
- Center for Crisis Psychology, University of Bergen, Bergen, Norway
| | - Tokiko Yoshida
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Hirofumi Tomiyama
- Graduate School of Medical Sciences, Kyushu University, Fukuoka-shi, Japan
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Ilya M Veer
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health And Neurosciences (NIMHANS), Bangalore, India
| | - Nora C Vetter
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Psychology, Faculty of Natural Sciences, MSB Medical School Berlin, Berlin, Germany
| | - Chris Vriend
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging program, Amsterdam, The Netherlands
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Lea Waller
- Department of Psychiatry and Neurosciences CCM, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao, China
| | - Anri Watanabe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nicole Wolff
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Je-Yeon Yun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Qing Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao, China
| | - Wieke A van Leeuwen
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Hein J F van Marle
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood Anxiety Psychosis Stress Sleep, Amsterdam, The Netherlands
| | - Laurens A van de Mortel
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Anouk van der Straten
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging program, Amsterdam, The Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dan J Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Odile A van den Heuvel
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Psychiatry, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam UMC, location Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Compulsivity, Impulsivity & Attention program, Amsterdam, The Netherlands
| | - Guido A van Wingen
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Tomiyama H, Murayama K, Nemoto K, Tomita M, Hasuzawa S, Mizobe T, Kato K, Matsuo A, Ohno A, Kan M, Togao O, Hiwatashi A, Ishigami K, Nakao T. Posterior cingulate cortex spontaneous activity associated with motor response inhibition in patients with obsessive-compulsive disorder: A resting-state fMRI study. Psychiatry Res Neuroimaging 2023; 334:111669. [PMID: 37393805 DOI: 10.1016/j.pscychresns.2023.111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023]
Abstract
Recent evidence suggests that broad brain regions, not limited to the fronto-striato-thalamo-cortical circuit, play an important role in motor response inhibition. However, it is still unclear which specific key brain region is responsible for impaired motor response inhibition observed in obsessive-compulsive disorder (OCD). We calculated the fractional amplitude of low-frequency fluctuations (fALFF) and measured response inhibition ability using the stop-signal task in 41 medication-free patients with OCD and 49 healthy control (HC) participants. We explored the brain region that shows different association between the fALFF and the ability of motor response inhibition. Significant differences in fALFF associated with the ability of motor response inhibition were identified in dorsal posterior cingulate cortex (PCC). There was a positive correlation between increased fALFF in the dorsal PCC and impaired motor response inhibition in OCD. In the HC group, there was a negative correlation between the two variables. Our results suggest that the magnitude of resting-state blood oxygen level-dependent oscillation of the dorsal PCC is a key brain region for the underlying mechanisms of impaired motor response inhibition in OCD. Future studies should examine whether this characteristic of dorsal PCC affects other large-scale networks responsible for motor response inhibition of OCD.
Collapse
Affiliation(s)
- Hirofumi Tomiyama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Keitaro Murayama
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Japan
| | | | - Suguru Hasuzawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Taro Mizobe
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kenta Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Akira Matsuo
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Aikana Ohno
- Graduate School of Human-Environment Studies, Kyushu University, Japan
| | - Minji Kan
- Graduate School of Human-Environment Studies, Kyushu University, Japan
| | - Osamu Togao
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Akio Hiwatashi
- Department of Radiology, Graduate School of Medical Sciences, Nagoya City University, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Japan.
| |
Collapse
|
24
|
Mina S, Dhiman R, Singal P, Gangopadhyay S, Verma P, Kathuria S. A study of serum brain-derived neurotrophic factor level in individuals with obsessive compulsive disorder and their first-degree relatives as compared to the healthy population. Indian J Psychiatry 2023; 65:922-927. [PMID: 37841544 PMCID: PMC10569320 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_290_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/28/2023] [Accepted: 08/09/2023] [Indexed: 10/17/2023] Open
Abstract
Background The nosological tradition in psychiatry defines diagnostic criteria for disorders based on expert consensus than objective biological markers reflecting underlying neurobiological correlates. Endophenotypes have been researched as heritable biological markers that can be quantified and defined to represent intermediate measures of a psychiatric illness. In obsessive-compulsive disorder (OCD), various putative biomarkers such as neuropsychological, neurophysiological, neuroradiological, brain-derived neurotrophic factor (BDNF), etc., have been explored. Aim The study aimed to compare levels of serum BDNF in individuals with OCD and their unaffected first-degree relatives (FDR) with healthy controls (HC). Methods This cross-sectional study compared serum BDNF levels in medication-free/naive individuals with OCD (n = 30) to their FDR (n = 30) and age-sex matched HC (n = 30). Intergroup comparison was done using analysis of variance (ANOVA) and post-hoc Tukey's test. Correlation analysis was conducted to find the relationship of sociodemographic and clinical correlates to serum BDNF as well as dimensional subtypes of OCD. Results No significant difference in BDNF levels was observed between OCD and HC (P = 0.13) but a significantly higher level was found in the FDR group compared to age-sex matched HC (P = 0.02). Conclusion BDNF levels may have a complex interplay influencing the genetic inheritance and clinical manifestations of OCD. Further research is required before considering it a viable biomarker.
Collapse
Affiliation(s)
- Shaily Mina
- Department of Psychiatry, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Rupam Dhiman
- Department of Psychiatry, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Prakamya Singal
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Sukanya Gangopadhyay
- Department of Biochemistry, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Pankaj Verma
- Department of Psychiatry, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Shivani Kathuria
- Department of Psychiatry, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
25
|
Lv Q, Zeljic K, Zhao S, Zhang J, Zhang J, Wang Z. Dissecting Psychiatric Heterogeneity and Comorbidity with Core Region-Based Machine Learning. Neurosci Bull 2023; 39:1309-1326. [PMID: 37093448 PMCID: PMC10387015 DOI: 10.1007/s12264-023-01057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 04/25/2023] Open
Abstract
Machine learning approaches are increasingly being applied to neuroimaging data from patients with psychiatric disorders to extract brain-based features for diagnosis and prognosis. The goal of this review is to discuss recent practices for evaluating machine learning applications to obsessive-compulsive and related disorders and to advance a novel strategy of building machine learning models based on a set of core brain regions for better performance, interpretability, and generalizability. Specifically, we argue that a core set of co-altered brain regions (namely 'core regions') comprising areas central to the underlying psychopathology enables the efficient construction of a predictive model to identify distinct symptom dimensions/clusters in individual patients. Hypothesis-driven and data-driven approaches are further introduced showing how core regions are identified from the entire brain. We demonstrate a broadly applicable roadmap for leveraging this core set-based strategy to accelerate the pursuit of neuroimaging-based markers for diagnosis and prognosis in a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Qian Lv
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Kristina Zeljic
- School of Health and Psychological Sciences, City, University of London, London, EC1V 0HB, UK
| | - Shaoling Zhao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jiangtao Zhang
- Tongde Hospital of Zhejiang Province (Zhejiang Mental Health Center), Zhejiang Office of Mental Health, Hangzhou, 310012, China
| | - Jianmin Zhang
- Tongde Hospital of Zhejiang Province (Zhejiang Mental Health Center), Zhejiang Office of Mental Health, Hangzhou, 310012, China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
- School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
26
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
27
|
Gallo S, El-Gazzar A, Zhutovsky P, Thomas RM, Javaheripour N, Li M, Bartova L, Bathula D, Dannlowski U, Davey C, Frodl T, Gotlib I, Grimm S, Grotegerd D, Hahn T, Hamilton PJ, Harrison BJ, Jansen A, Kircher T, Meyer B, Nenadić I, Olbrich S, Paul E, Pezawas L, Sacchet MD, Sämann P, Wagner G, Walter H, Walter M, van Wingen G. Functional connectivity signatures of major depressive disorder: machine learning analysis of two multicenter neuroimaging studies. Mol Psychiatry 2023; 28:3013-3022. [PMID: 36792654 PMCID: PMC10615764 DOI: 10.1038/s41380-023-01977-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 02/17/2023]
Abstract
The promise of machine learning has fueled the hope for developing diagnostic tools for psychiatry. Initial studies showed high accuracy for the identification of major depressive disorder (MDD) with resting-state connectivity, but progress has been hampered by the absence of large datasets. Here we used regular machine learning and advanced deep learning algorithms to differentiate patients with MDD from healthy controls and identify neurophysiological signatures of depression in two of the largest resting-state datasets for MDD. We obtained resting-state functional magnetic resonance imaging data from the REST-meta-MDD (N = 2338) and PsyMRI (N = 1039) consortia. Classification of functional connectivity matrices was done using support vector machines (SVM) and graph convolutional neural networks (GCN), and performance was evaluated using 5-fold cross-validation. Features were visualized using GCN-Explainer, an ablation study and univariate t-testing. The results showed a mean classification accuracy of 61% for MDD versus controls. Mean accuracy for classifying (non-)medicated subgroups was 62%. Sex classification accuracy was substantially better across datasets (73-81%). Visualization of the results showed that classifications were driven by stronger thalamic connections in both datasets, while nearly all other connections were weaker with small univariate effect sizes. These results suggest that whole brain resting-state connectivity is a reliable though poor biomarker for MDD, presumably due to disease heterogeneity as further supported by the higher accuracy for sex classification using the same methods. Deep learning revealed thalamic hyperconnectivity as a prominent neurophysiological signature of depression in both multicenter studies, which may guide the development of biomarkers in future studies.
Collapse
Affiliation(s)
- Selene Gallo
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Ahmed El-Gazzar
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Paul Zhutovsky
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Rajat M Thomas
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nooshin Javaheripour
- Department Of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Meng Li
- Department Of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Lucie Bartova
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Christopher Davey
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German center for mental health, CIRC, Magdeburg, Germany
| | - Ian Gotlib
- Department of Psychology, Stanford University, Stanford, CA, 94305, USA
| | - Simone Grimm
- Department of Psychiatry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Paul J Hamilton
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ben J Harrison
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Jansen
- Department Of Psychiatry, University of Marburg, Marburg, Germany
| | - Tilo Kircher
- Department Of Psychiatry, University of Marburg, Marburg, Germany
| | - Bernhard Meyer
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Igor Nenadić
- Department Of Psychiatry, University of Marburg, Marburg, Germany
| | - Sebastian Olbrich
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Zurich, Zurich, Switzerland
| | - Elisabeth Paul
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lukas Pezawas
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | | - Gerd Wagner
- Department Of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Henrik Walter
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Psychiatry and Psychotherapy, Charitéplatz 1, D-10117, Berlin, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German center for mental health, CIRC, Magdeburg, Germany
| | - Guido van Wingen
- Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Mataix-Cols D, Fernández de la Cruz L, De Schipper E, Kuja-Halkola R, Bulik CM, Crowley JJ, Neufeld J, Rück C, Tammimies K, Lichtenstein P, Bölte S, Beucke JC. In search of environmental risk factors for obsessive-compulsive disorder: study protocol for the OCDTWIN project. BMC Psychiatry 2023; 23:442. [PMID: 37328750 PMCID: PMC10273515 DOI: 10.1186/s12888-023-04897-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND The causes of obsessive-compulsive disorder (OCD) remain unknown. Gene-searching efforts are well underway, but the identification of environmental risk factors is at least as important and should be a priority because some of them may be amenable to prevention or early intervention strategies. Genetically informative studies, particularly those employing the discordant monozygotic (MZ) twin design, are ideally suited to study environmental risk factors. This protocol paper describes the study rationale, aims, and methods of OCDTWIN, an open cohort of MZ twin pairs who are discordant for the diagnosis of OCD. METHODS OCDTWIN has two broad aims. In Aim 1, we are recruiting MZ twin pairs from across Sweden, conducting thorough clinical assessments, and building a biobank of biological specimens, including blood, saliva, urine, stool, hair, nails, and multimodal brain imaging. A wealth of early life exposures (e.g., perinatal variables, health-related information, psychosocial stressors) are available through linkage with the nationwide registers and the Swedish Twin Registry. Blood spots stored in the Swedish phenylketonuria (PKU) biobank will be available to extract DNA, proteins, and metabolites, providing an invaluable source of biomaterial taken at birth. In Aim 2, we will perform within-pair comparisons of discordant MZ twins, which will allow us to isolate unique environmental risk factors that are in the causal pathway to OCD, while strictly controlling for genetic and early shared environmental influences. To date (May 2023), 43 pairs of twins (21 discordant for OCD) have been recruited. DISCUSSION OCDTWIN hopes to generate unique insights into environmental risk factors that are in the causal pathway to OCD, some of which have the potential of being actionable targets.
Collapse
Affiliation(s)
- David Mataix-Cols
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Lorena Fernández de la Cruz
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Elles De Schipper
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Ralf Kuja-Halkola
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Cynthia M Bulik
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James J Crowley
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Christian Rück
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Kristiina Tammimies
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, Solna, Sweden
| | - Paul Lichtenstein
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Sven Bölte
- Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Center of Neurodevelopmental Disorders at Karolinska Institutet (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Jan C Beucke
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
29
|
Mataix-Cols D, de la Cruz LF, de Schipper E, Kuja-Halkola R, Bulik CM, Crowley JJ, Neufeld J, Rück C, Tammimies K, Lichtenstein P, Bölte S, Beucke JC. In search of environmental risk factors for obsessive-compulsive disorder: Study protocol for the OCDTWIN project. RESEARCH SQUARE 2023:rs.3.rs-2897566. [PMID: 37215041 PMCID: PMC10197758 DOI: 10.21203/rs.3.rs-2897566/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background The causes of obsessive-compulsive disorder (OCD) remain unknown. Gene-searching efforts are well underway, but the identification of environmental risk factors is at least as important and should be a priority because some of them may be amenable to prevention or early intervention strategies. Genetically informative studies, particularly those employing the discordant monozygotic (MZ) twin design, are ideally suited to study environmental risk factors. This protocol paper describes the study rationale, aims, and methods of OCDTWIN, an open cohort of MZ twin pairs who are discordant for the diagnosis of OCD. Methods OCDTWIN has two broad aims. In Aim 1, we are recruiting MZ twin pairs from across Sweden, conducting thorough clinical assessments, and building a biobank of biological specimens, including blood, saliva, urine, stool, hair, nails, and multimodal brain imaging. A wealth of early life exposures (e.g., perinatal variables, health-related information, psychosocial stressors) are available through linkage with the nationwide registers and the Swedish Twin Registry. Blood spots stored in the Swedish phenylketonuria (PKU) biobank will be available to extract DNA, proteins, and metabolites, providing an invaluable source of biomaterial taken at birth. In Aim 2, we will perform within-pair comparisons of discordant MZ twins, which will allow us to isolate unique environmental risk factors that are in the causal pathway to OCD, while strictly controlling for genetic and early shared environmental influences. To date (May 2023), 43 pairs of twins (21 discordant for OCD) have been recruited. Discussion OCDTWIN hopes to generate unique insights into environmental risk factors that are in the causal pathway to OCD, some of which have the potential of being actionable targets.
Collapse
|
30
|
Han S, Xu Y, Fang K, Guo HR, Wei Y, Liu L, Wen B, Liu H, Zhang Y, Cheng J. Mapping the neuroanatomical heterogeneity of OCD using a framework integrating normative model and non-negative matrix factorization. Cereb Cortex 2023:7153879. [PMID: 37150510 DOI: 10.1093/cercor/bhad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a spectrum disorder with high interindividual heterogeneity. We propose a comprehensible framework integrating normative model and non-negative matrix factorization (NMF) to quantitatively estimate the neuroanatomical heterogeneity of OCD from a dimensional perspective. T1-weighted magnetic resonance images of 98 first-episode untreated patients with OCD and matched healthy controls (HCs, n = 130) were acquired. We derived individualized differences in gray matter morphometry using normative model and parsed them into latent disease factors using NMF. Four robust disease factors were identified. Each patient expressed multiple factors and exhibited a unique factor composition. Factor compositions of patients were significantly correlated with severity of symptom, age of onset, illness duration, and exhibited sex differences, capturing sources of clinical heterogeneity. In addition, the group-level morphological differences obtained with two-sample t test could be quantitatively derived from the identified disease factors, reconciling the group-level and subject-level findings in neuroimaging studies. Finally, we uncovered two distinct subtypes with opposite morphological differences compared with HCs from factor compositions. Our findings suggest that morphological differences of individuals with OCD are the unique combination of distinct neuroanatomical patterns. The proposed framework quantitatively estimating neuroanatomical heterogeneity paves the way for precision medicine in OCD.
Collapse
Affiliation(s)
- Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Yinhuan Xu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Keke Fang
- Department of Pharmacy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University
| | - Hui-Rong Guo
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Liang Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Baohong Wen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Hao Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province
- Henan Engineering Research Center of Brain Function Development and Application
| |
Collapse
|
31
|
Chen Z, Liu X, Yang Q, Wang YJ, Miao K, Gong Z, Yu Y, Leonov A, Liu C, Feng Z, Chuan-Peng H. Evaluation of Risk of Bias in Neuroimaging-Based Artificial Intelligence Models for Psychiatric Diagnosis: A Systematic Review. JAMA Netw Open 2023; 6:e231671. [PMID: 36877519 PMCID: PMC9989906 DOI: 10.1001/jamanetworkopen.2023.1671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
IMPORTANCE Neuroimaging-based artificial intelligence (AI) diagnostic models have proliferated in psychiatry. However, their clinical applicability and reporting quality (ie, feasibility) for clinical practice have not been systematically evaluated. OBJECTIVE To systematically assess the risk of bias (ROB) and reporting quality of neuroimaging-based AI models for psychiatric diagnosis. EVIDENCE REVIEW PubMed was searched for peer-reviewed, full-length articles published between January 1, 1990, and March 16, 2022. Studies aimed at developing or validating neuroimaging-based AI models for clinical diagnosis of psychiatric disorders were included. Reference lists were further searched for suitable original studies. Data extraction followed the CHARMS (Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies) and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. A closed-loop cross-sequential design was used for quality control. The PROBAST (Prediction Model Risk of Bias Assessment Tool) and modified CLEAR (Checklist for Evaluation of Image-Based Artificial Intelligence Reports) benchmarks were used to systematically evaluate ROB and reporting quality. FINDINGS A total of 517 studies presenting 555 AI models were included and evaluated. Of these models, 461 (83.1%; 95% CI, 80.0%-86.2%) were rated as having a high overall ROB based on the PROBAST. The ROB was particular high in the analysis domain, including inadequate sample size (398 of 555 models [71.7%; 95% CI, 68.0%-75.6%]), poor model performance examination (with 100% of models lacking calibration examination), and lack of handling data complexity (550 of 555 models [99.1%; 95% CI, 98.3%-99.9%]). None of the AI models was perceived to be applicable to clinical practices. Overall reporting completeness (ie, number of reported items/number of total items) for the AI models was 61.2% (95% CI, 60.6%-61.8%), and the completeness was poorest for the technical assessment domain with 39.9% (95% CI, 38.8%-41.1%). CONCLUSIONS AND RELEVANCE This systematic review found that the clinical applicability and feasibility of neuroimaging-based AI models for psychiatric diagnosis were challenged by a high ROB and poor reporting quality. Particularly in the analysis domain, ROB in AI diagnostic models should be addressed before clinical application.
Collapse
Affiliation(s)
- Zhiyi Chen
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Xuerong Liu
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Kuan Miao
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Zheng Gong
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Yang Yu
- School of Psychology, Third Military Medical University, Chongqing, China
| | - Artemiy Leonov
- Department of Psychology, Clark University, Worcester, Massachusetts
| | - Chunlei Liu
- School of Psychology, Qufu Normal University, Qufu, China
| | - Zhengzhi Feng
- School of Psychology, Third Military Medical University, Chongqing, China
- Experimental Research Center for Medical and Psychological Science, Third Military Medical University, Chongqing, China
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
32
|
Tan V, Dockstader C, Moxon-Emre I, Mendlowitz S, Schacter R, Colasanto M, Voineskos AN, Akingbade A, Nishat E, Mabbott DJ, Arnold PD, Ameis SH. Preliminary Observations of Resting-State Magnetoencephalography in Nonmedicated Children with Obsessive-Compulsive Disorder. J Child Adolesc Psychopharmacol 2022; 32:522-532. [PMID: 36548364 PMCID: PMC9917323 DOI: 10.1089/cap.2022.0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Cortico-striato-thalamo-cortical (CSTC) network alterations are hypothesized to contribute to symptoms of obsessive-compulsive disorder (OCD). To date, very few studies have examined whether CSTC network alterations are present in children with OCD, who are medication naive. Medication-naive pediatric imaging samples may be optimal to study neural correlates of illness and identify brain-based markers, given the proximity to illness onset. Methods: Magnetoencephalography (MEG) data were analyzed at rest, in 18 medication-naive children with OCD (M = 12.1 years ±2.0 standard deviation [SD]; 10 M/8 F) and 13 typically developing children (M = 12.3 years ±2.2 SD; 6 M/7 F). Whole-brain MEG-derived resting-state functional connectivity (rs-fc), for alpha- and gamma-band frequencies were compared between OCD and typically developing (control) groups. Results: Increased MEG-derived rs-fc across alpha- and gamma-band frequencies was found in the OCD group compared to the control group. Increased MEG-derived rs-fc at alpha-band frequencies was evident across a number of regions within the CSTC circuitry and beyond, including the cerebellum and limbic regions. Increased MEG-derived rs-fc at gamma-band frequencies was restricted to the frontal and temporal cortices. Conclusions: This MEG study provides preliminary evidence of altered alpha and gamma networks, at rest, in medication-naive children with OCD. These results support prior findings pointing to the relevance of CSTC circuitry in pediatric OCD and further support accumulating evidence of altered connectivity between regions that extend beyond this network, including the cerebellum and limbic regions. Given the substantial portion of children and youth whose OCD symptoms do not respond to conventional treatments, our findings have implications for future treatment innovation research aiming to target and track whether brain patterns associated with having OCD may change with treatment and/or predict treatment response.
Collapse
Affiliation(s)
- Vinh Tan
- Human Biology Program, Faculty of Arts and Science, University of Toronto, Toronto, Canada
- Kimel Family Translational Imaging Genetics Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Colleen Dockstader
- Human Biology Program, Faculty of Arts and Science, University of Toronto, Toronto, Canada
| | - Iska Moxon-Emre
- Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
| | - Sandra Mendlowitz
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Reva Schacter
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Canada
| | - Marlena Colasanto
- Department of Applied Psychology and Human Development, Ontario Institute for Studies in Education, University of Toronto, Toronto, Canada
| | - Aristotle N. Voineskos
- Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Aquila Akingbade
- Human Biology Program, Faculty of Arts and Science, University of Toronto, Toronto, Canada
| | - Eman Nishat
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Canada
- Department of Physiology, Temetry Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Donald J. Mabbott
- Department of Physiology, Temetry Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Paul D. Arnold
- Department of Psychiatry, Cumming School of Medicine, The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Stephanie H. Ameis
- Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
33
|
Ivanov I, Boedhoe PSW, Abe Y, Alonso P, Ameis SH, Arnold PD, Balachander S, Baker JT, Banaj N, Bargalló N, Batistuzzo MC, Benedetti F, Beucke JC, Bollettini I, Brem S, Brennan BP, Buitelaar J, Calvo R, Cheng Y, Cho KIK, Dallaspezia S, Denys D, Diniz JB, Ely BA, Feusner JD, Ferreira S, Fitzgerald KD, Fontaine M, Gruner P, Hanna GL, Hirano Y, Hoexter MQ, Huyser C, Ikari K, James A, Jaspers-Fayer F, Jiang H, Kathmann N, Kaufmann C, Kim M, Koch K, Kwon JS, Lázaro L, Liu Y, Lochner C, Marsh R, Martínez-Zalacaín I, Mataix-Cols D, Menchón JM, Minuzzi L, Morer A, Morgado P, Nakagawa A, Nakamae T, Nakao T, Narayanaswamy JC, Nurmi EL, Oh S, Perriello C, Piacentini JC, Picó-Pérez M, Piras F, Piras F, Reddy YCJ, Manrique DR, Sakai Y, Shimizu E, Simpson HB, Soreni N, Soriano-Mas C, Spalletta G, Stern ER, Stevens MC, Stewart SE, Szeszko PR, Tolin DF, van Rooij D, Veltman DJ, van der Werf YD, van Wingen GA, Venkatasubramanian G, Walitza S, Wang Z, Watanabe A, Wolters LH, Xu X, Yun JY, Zarei M, Zhang F, Zhao Q, Jahanshad N, Thomopoulos SI, Thompson PM, Stein DJ, van den Heuvel OA, O'Neill J. Associations of medication with subcortical morphology across the lifespan in OCD: Results from the international ENIGMA Consortium. J Affect Disord 2022; 318:204-216. [PMID: 36041582 DOI: 10.1016/j.jad.2022.08.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Widely used psychotropic medications for obsessive-compulsive disorder (OCD) may change the volumes of subcortical brain structures, and differently in children vs. adults. We measured subcortical volumes cross-sectionally in patients finely stratified for age taking various common classes of OCD drugs. METHODS The ENIGMA-OCD consortium sample (1081 medicated/1159 unmedicated OCD patients and 2057 healthy controls aged 6-65) was divided into six successive 6-10-year age-groups. Individual structural MRIs were parcellated automatically using FreeSurfer into 8 regions-of-interest (ROIs). ROI volumes were compared between unmedicated and medicated patients and controls, and between patients taking serotonin reuptake inhibitors (SRIs), tricyclics (TCs), antipsychotics (APs), or benzodiazepines (BZs) and unmedicated patients. RESULTS Compared to unmedicated patients, volumes of accumbens, caudate, and/or putamen were lower in children aged 6-13 and adults aged 50-65 with OCD taking SRIs (Cohen's d = -0.24 to -0.74). Volumes of putamen, pallidum (d = 0.18-0.40), and ventricles (d = 0.31-0.66) were greater in patients aged 20-29 receiving APs. Hippocampal volumes were smaller in patients aged 20 and older taking TCs and/or BZs (d = -0.27 to -1.31). CONCLUSIONS Results suggest that TCs and BZs could potentially aggravate hippocampal atrophy of normal aging in older adults with OCD, whereas SRIs may reduce striatal volumes in young children and older adults. Similar to patients with psychotic disorders, OCD patients aged 20-29 may experience subcortical nuclear and ventricular hypertrophy in relation to APs. Although cross-sectional, present results suggest that commonly prescribed agents exert macroscopic effects on subcortical nuclei of unknown relation to therapeutic response.
Collapse
Affiliation(s)
- Iliyan Ivanov
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Premika S W Boedhoe
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Yoshinari Abe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Pino Alonso
- Department of Clinical Sciences, Bellvitge Biomedical Research Institute-IDIBELL, CIBERSAM, Bellvitge University Hospital, Barcelona, Spain
| | - Stephanie H Ameis
- The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Srinivas Balachander
- Obsessive-Compulsive Disorder (OCD) Clinic, Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Justin T Baker
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nuria Bargalló
- Magnetic Resonance Image Core Facility, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Image Diagnostic Center, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Marcelo C Batistuzzo
- Departamento e Instituto de Psiquiatria do Hospital das Clinicas, IPQ HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil; Department of Methods and Techniques in Psychology, Pontifical Catholic University of Sao Paulo, SP, Brazil
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milano, Italy; Departments of Psychiatry and Medical Genetics, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Jan C Beucke
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Irene Bollettini
- Departments of Psychiatry and Medical Genetics, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Brian P Brennan
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, USA
| | - Jan Buitelaar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Rosa Calvo
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clínic of Barcelona (CIBERSAM), Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kang Ik K Cho
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Brain and Cognitive Sciences, Seoul University College of Natural Science, Seoul, Republic of Korea
| | - Sara Dallaspezia
- Departments of Psychiatry and Medical Genetics, IRCCS Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Damiaan Denys
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Juliana B Diniz
- Departamento e Instituto de Psiquiatria do Hospital das Clinicas, IPQ HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil
| | - Benjamin A Ely
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, NY, USA
| | - Jamie D Feusner
- Division of Neurosciences & Clinical Translation, Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Staglin IMHRO Center for Cognitive Neuroscience, Jane & Terry Semel institute For Neurosciences, University of California, Los Angeles, CA, USA
| | - Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, ICVS/3B's PT Government Associate Laboratory, Clinical Academic Center, Braga, Portugal
| | - Kate D Fitzgerald
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Martine Fontaine
- Columbia University Irving Medical Center, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Patricia Gruner
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Gregory L Hanna
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Yoshiyuki Hirano
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Marcelo Q Hoexter
- Departamento e Instituto de Psiquiatria do Hospital das Clinicas, IPQ HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, Brazil
| | - Chaim Huyser
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Levvel Academic Center for Child and Adolescent Psychiatry, Amsterdam, the Netherlands
| | - Keisuke Ikari
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Anthony James
- Department of Psychiatry, Oxford University, Oxford, UK
| | - Fern Jaspers-Fayer
- Britsh Columbia Children's Hospital, BC Mental Health and Substance Use Services Research, University of British Columbia, Vancouver, BC, Canada
| | - Hongyan Jiang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Kaufmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Minah Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kathrin Koch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Brain and Cognitive Sciences, Seoul University College of Natural Science, Seoul, Republic of Korea; Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| | - Luisa Lázaro
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clínic of Barcelona (CIBERSAM), Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Yanni Liu
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Christine Lochner
- SAMRC Unit on Anxiety & Stress Disorders, Department of Psychiatry, Stellenbosch University, South Africa
| | - Rachel Marsh
- Columbia University Irving Medical Center, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Ignacio Martínez-Zalacaín
- Department of Clinical Sciences, Bellvitge Biomedical Research Institute-IDIBELL, CIBERSAM, Bellvitge University Hospital, Barcelona, Spain
| | - David Mataix-Cols
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - José M Menchón
- Department of Clinical Sciences, Bellvitge Biomedical Research Institute-IDIBELL, CIBERSAM, Bellvitge University Hospital, Barcelona, Spain
| | - Luciano Minuzzi
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, St. Joseph's Health Care, Hamilton, Ontario, Canada
| | - Astrid Morer
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clínic of Barcelona (CIBERSAM), Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, ICVS/3B's PT Government Associate Laboratory, Clinical Academic Center, Braga, Portugal
| | - Akiko Nakagawa
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - Takashi Nakamae
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Janardhanan C Narayanaswamy
- Obsessive-Compulsive Disorder (OCD) Clinic, Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Erika L Nurmi
- Division of Child and Adolescent Psychiatry, Jane & Terry Semel Institute For Neurosciences, University of California, Los Angeles, CA, USA; Staglin IMHRO Center for Cognitive Neuroscience, Jane & Terry Semel institute For Neurosciences, University of California, Los Angeles, CA, USA
| | - Sanghoon Oh
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Gyeonggi-do, Republic of Korea
| | - Chris Perriello
- University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - John C Piacentini
- Division of Child and Adolescent Psychiatry, Jane & Terry Semel Institute For Neurosciences, University of California, Los Angeles, CA, USA; Staglin IMHRO Center for Cognitive Neuroscience, Jane & Terry Semel institute For Neurosciences, University of California, Los Angeles, CA, USA
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, ICVS/3B's PT Government Associate Laboratory, Clinical Academic Center, Braga, Portugal
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Y C Janardhan Reddy
- Obsessive-Compulsive Disorder (OCD) Clinic, Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Daniela Rodriguez Manrique
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Yuki Sakai
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; ATR Brain Information Communication Research Laboratiry Group, Kyoto, Japan
| | - Eiji Shimizu
- Research Center for Child Mental Development, Chiba University, Chiba, Japan
| | - H Blair Simpson
- Columbia University Irving Medical Center, Columbia University, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Noam Soreni
- Pediatric OCD Consultation Service, Anxiety Treatment and Research Center, Offord Center of Child Studies, Hamilton, Ontario, Canada
| | - Carles Soriano-Mas
- Department of Clinical Sciences, Bellvitge Biomedical Research Institute-IDIBELL, CIBERSAM, Bellvitge University Hospital, Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona- UB, Barcelona,Spain
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Science, Baylor College of Medicine, Houston, TX, USA
| | - Emily R Stern
- Department of Psychiatry, New York University Langone School of Medicine, New York, NY, USA
| | - Michael C Stevens
- Institute of Living/Hartford Hospital, Hartford, CT, USA; Yale University School of Medicine, New Haven, CT, USA
| | - S Evelyn Stewart
- Britsh Columbia Children's Hospital, BC Mental Health and Substance Use Services Research, University of British Columbia, Vancouver, BC, Canada
| | - Philip R Szeszko
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David F Tolin
- Institute of Living/Hartford Hospital, Hartford, CT, USA; Yale University School of Medicine, New Haven, CT, USA
| | - Daan van Rooij
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Dick J Veltman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Guido A van Wingen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Ganesan Venkatasubramanian
- Obsessive-Compulsive Disorder (OCD) Clinic, Department of Psychiatry, National Institute of Mental Health & Neurosciences, Bangalore, India
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Zhen Wang
- Shanghai Mental Health Center Shanghai Jiao Tong University School of Medicine, China
| | - Anri Watanabe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Lidewij H Wolters
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Je-Yeon Yun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Fengrui Zhang
- Magnetic Resonance Image Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qing Zhao
- Shanghai Mental Health Center Shanghai Jiao Tong University School of Medicine, China
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, South Africa
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Joseph O'Neill
- Division of Child and Adolescent Psychiatry, Jane & Terry Semel Institute For Neurosciences, University of California, Los Angeles, CA, USA; Staglin IMHRO Center for Cognitive Neuroscience, Jane & Terry Semel institute For Neurosciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Luo L, You W, DelBello MP, Gong Q, Li F. Recent advances in psychoradiology. Phys Med Biol 2022; 67:23TR01. [PMID: 36279868 DOI: 10.1088/1361-6560/ac9d1e] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022]
Abstract
Psychiatry, as a field, lacks objective markers for diagnosis, progression, treatment planning, and prognosis, in part due to difficulties studying the brainin vivo, and diagnoses are based on self-reported symptoms and observation of patient behavior and cognition. Rapid advances in brain imaging techniques allow clinical investigators to noninvasively quantify brain features at the structural, functional, and molecular levels. Psychoradiology is an emerging discipline at the intersection of psychiatry and radiology. Psychoradiology applies medical imaging technologies to psychiatry and promises not only to improve insight into structural and functional brain abnormalities in patients with psychiatric disorders but also to have potential clinical utility. We searched for representative studies related to recent advances in psychoradiology through May 1, 2022, and conducted a selective review of 165 references, including 75 research articles. We summarize the novel dynamic imaging processing methods to model brain networks and present imaging genetics studies that reveal the relationship between various neuroimaging endophenotypes and genetic markers in psychiatric disorders. Furthermore, we survey recent advances in psychoradiology, with a focus on future psychiatric diagnostic approaches with dimensional analysis and a shift from group-level to individualized analysis. Finally, we examine the application of machine learning in psychoradiology studies and the potential of a novel option for brain stimulation treatment based on psychoradiological findings in precision medicine. Here, we provide a summary of recent advances in psychoradiology research, and we hope this review will help guide the practice of psychoradiology in the scientific and clinical fields.
Collapse
Affiliation(s)
- Lekai Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Wanfang You
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, United States of America
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, People's Republic of China
| | - Fei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati 45219, OH, United States of America
| |
Collapse
|
35
|
Cao L, Li H, Liu J, Jiang J, Li B, Li X, Zhang S, Gao Y, Liang K, Hu X, Bao W, Qiu H, Lu L, Zhang L, Hu X, Gong Q, Huang X. Disorganized functional architecture of amygdala subregional networks in obsessive-compulsive disorder. Commun Biol 2022; 5:1184. [PMCID: PMC9636402 DOI: 10.1038/s42003-022-04115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractA precise understanding of amygdala-centered subtle networks may help refine neurocircuitry models of obsessive-compulsive disorder (OCD). We applied connectivity-based parcellation methodology to segment the amygdala based on resting-state fMRI data of 92 medication-free OCD patients without comorbidity and 90 matched healthy controls (HC). The amygdala was parcellated into two subregions corresponding to basolateral amygdala (BLA) and centromedial amygdala (CMA). Amygdala subregional functional connectivity (FC) maps were generated and group differences were evaluated with diagnosis-by-subregion flexible factorial ANOVA. We found significant diagnosis × subregion FC interactions in insula, supplementary motor area (SMA), midcingulate cortex (MCC), superior temporal gyrus (STG) and postcentral gyrus (PCG). In HC, the BLA demonstrated stronger connectivity with above regions compared to CMA, whereas in OCD, the connectivity pattern reversed to stronger CMA connectivity comparing to BLA. Relative to HC, OCD patients exhibited hypoconnectivity between left BLA and left insula, and hyperconnectivity between right CMA and SMA, MCC, insula, STG, and PCG. Moreover, OCD patients showed reduced volume of left BLA and right CMA compared to HC. Our findings characterized disorganized functional architecture of amygdala subregional networks in accordance with structural defects, providing direct evidence regarding the specific role of amygdala subregions in the neurocircuitry models of OCD.
Collapse
|
36
|
Fouche JP, Groenewold NA, Sevenoaks T, Heany S, Lochner C, Alonso P, Batistuzzo MC, Cardoner N, Ching CRK, de Wit SJ, Gutman B, Hoexter MQ, Jahanshad N, Kim M, Kwon JS, Mataix-Cols D, Menchon JM, Miguel EC, Nakamae T, Phillips ML, Pujol J, Sakai Y, Yun JY, Soriano-Mas C, Thompson PM, Yamada K, Veltman DJ, van den Heuvel OA, Stein DJ. Shape analysis of subcortical structures in obsessive-compulsive disorder and the relationship with comorbid anxiety, depression, and medication use: A meta-analysis by the OCD Brain Imaging Consortium. Brain Behav 2022; 12:e2755. [PMID: 36106505 PMCID: PMC9575597 DOI: 10.1002/brb3.2755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Neuroimaging studies of obsessive-compulsive disorder (OCD) patients have highlighted the important role of deep gray matter structures. Less work has however focused on subcortical shape in OCD patients. METHODS Here we pooled brain MRI scans from 412 OCD patients and 368 controls to perform a meta-analysis utilizing the ENIGMA-Shape protocol. In addition, we investigated modulating effects of medication status, comorbid anxiety or depression, and disease duration on subcortical shape. RESULTS There was no significant difference in shape thickness or surface area between OCD patients and healthy controls. For the subgroup analyses, OCD patients with comorbid depression or anxiety had lower thickness of the hippocampus and caudate nucleus and higher thickness of the putamen and pallidum compared to controls. OCD patients with comorbid depression had lower shape surface area in the thalamus, caudate nucleus, putamen, hippocampus, and nucleus accumbens and higher shape surface area in the pallidum. OCD patients with comorbid anxiety had lower shape surface area in the putamen and the left caudate nucleus and higher shape surface area in the pallidum and the right caudate nucleus. Further, OCD patients on medication had lower shape thickness of the putamen, thalamus, and hippocampus and higher thickness of the pallidum and caudate nucleus, as well as lower shape surface area in the hippocampus and amygdala and higher surface area in the putamen, pallidum, and caudate nucleus compared to controls. There were no significant differences between OCD patients without co-morbid anxiety and/or depression and healthy controls on shape measures. In addition, there were also no significant differences between OCD patients not using medication and healthy controls. CONCLUSIONS The findings here are partly consistent with prior work on brain volumes in OCD, insofar as they emphasize that alterations in subcortical brain morphology are associated with comorbidity and medication status. Further work is needed to understand the biological processes contributing to subcortical shape.
Collapse
Affiliation(s)
- Jean-Paul Fouche
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nynke A Groenewold
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Tatum Sevenoaks
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sarah Heany
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Christine Lochner
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Pino Alonso
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Marcelo C Batistuzzo
- Department & Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil.,Department of Methods and Techniques in Psychology, Pontifical Catholic University, Sao Paulo, SP, Brazil
| | - Narcis Cardoner
- Carlos III Health Institute, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Sant Pau Mental Health Group, Institut d'Investigacio Biomedica Sant Pau (IBB-Sant Pau), Hospital de la Sant Creu i Sant Pau, Barcelona, Spain.,Department of Psychiatry and Forensic Medicine, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Christopher R K Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Stella J de Wit
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Boris Gutman
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Marcelo Q Hoexter
- Department & Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, SNU MRC, Seoul, Republic of Korea.,Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - David Mataix-Cols
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jose M Menchon
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Euripedes C Miguel
- Department & Institute of Psychiatry, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Takashi Nakamae
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Jesus Pujol
- MRI Research Unit, Radiology Department, Hospital del Mar, Barcelona, Spain
| | - Yuki Sakai
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea.,Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, IDIBELL, Barcelona, Spain.,Carlos III Health Institute, Centro de Investigacion Biomedica en Red de Salud Mental (CIBERSAM), Madrid, Spain.,Department of Social Psychology and Quantitative Psychology, Universitat de Barcelona-UB, Barcelona, Spain
| | - Paul M Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Kei Yamada
- Department of Radiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Anatomy & Neurosciences, Amsterdam UMC, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa.,SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
37
|
Yu J, Xie M, Song S, Zhou P, Yuan F, Ouyang M, Wang C, Liu N, Zhang N. Functional Connectivity within the Frontal–Striatal Network Differentiates Checkers from Washers of Obsessive-Compulsive Disorder. Brain Sci 2022; 12:brainsci12080998. [PMID: 36009061 PMCID: PMC9406102 DOI: 10.3390/brainsci12080998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Obsessive-compulsive disorder (OCD) is a psychiatric disorder with high clinical heterogeneity manifested by the presence of obsessions and/or compulsions. The classification of the symptom dimensional subtypes is helpful for further exploration of the pathophysiological mechanisms underlying the clinical heterogeneity of OCD. Washing and checking symptoms are the two major symptom subtypes in OCD, but the neural mechanisms of the different types of symptoms are not yet clearly understood. The purpose of this study was to compare regional and network functional alterations between washing and checking OCD based on resting-state functional magnetic resonance imaging (rs-fMRI). Methods: In total, 90 subjects were included, including 15 patients in the washing group, 30 patients in the checking group, and 45 healthy controls (HCs). Regional homogeneity (ReHo) was used to compare the differences in regional spontaneous neural activity among the three groups, and local indicators were analyzed by receiver operating characteristic (ROC) curves as imaging markers for the prediction of the clinical subtypes of OCD. Furthermore, differently activated local brain areas, as regions of interest (ROIs), were used to explore differences in altered brain functioning between washing and checking OCD symptoms based on a functional connectivity (FC) analysis. Results: Extensive abnormalities in spontaneous brain activity involving frontal, temporal, and occipital regions were observed in the patients compared to the HCs. The differences in local brain functioning between checking and washing OCD were mainly concentrated in the bilateral middle frontal gyrus, right supramarginal gyrus, right angular gyrus, and right inferior occipital gyrus. The ROC curve analysis revealed that the hyperactivation right middle frontal gyrus had a better discriminatory value for checking and washing OCD. Furthermore, the seed-based FC analysis revealed higher FC between the left medial superior frontal gyrus and right caudate nucleus compared to that in the healthy controls. Conclusions: These findings suggest that extensive local differences exist in intrinsic spontaneous activity among the checking group, washing group, and HCs. The neural basis of checking OCD may be related to dysfunction in the frontal–striatal network, which distinguishes OCD from washing OCD.
Collapse
Affiliation(s)
- Jianping Yu
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; (J.Y.); (M.X.); (S.S.); (M.O.); (C.W.); (N.Z.)
| | - Minyao Xie
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; (J.Y.); (M.X.); (S.S.); (M.O.); (C.W.); (N.Z.)
| | - Shasha Song
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; (J.Y.); (M.X.); (S.S.); (M.O.); (C.W.); (N.Z.)
| | - Ping Zhou
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China;
| | - Fangzheng Yuan
- School of Psychology, Nanjing Normal University, 122 Ninghai Road, Nanjing 210024, China;
| | - Mengyuan Ouyang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; (J.Y.); (M.X.); (S.S.); (M.O.); (C.W.); (N.Z.)
| | - Chun Wang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; (J.Y.); (M.X.); (S.S.); (M.O.); (C.W.); (N.Z.)
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China;
- Correspondence:
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China; (J.Y.); (M.X.); (S.S.); (M.O.); (C.W.); (N.Z.)
| |
Collapse
|
38
|
Chen J, Tian C, Zhang Q, Xiang H, Wang R, Hu X, Zeng X. Changes in Volume of Subregions Within Basal Ganglia in Obsessive-Compulsive Disorder: A Study With Atlas-Based and VBM Methods. Front Neurosci 2022; 16:890616. [PMID: 35794954 PMCID: PMC9251343 DOI: 10.3389/fnins.2022.890616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The role of basal ganglia in the pathogenesis of obsessive-compulsive disorder (OCD) remains unclear. The studies on volume changes of basal ganglia in OCD commonly use the VBM method; however, the Atlas-based method used in such research has not been reported. Atlas-based method has a lower false positive rate compared with VBM method, thus having advantages partly. OBJECTIVES The current study aimed to detect the volume changes of subregions within basal ganglia in OCD using Atlas-based method to further delineate the precise neural circuitry of OCD. What is more, we explored the influence of software used in Atlas-based method on the volumetric analysis of basal ganglia and compared the results of Atlas-based method and regularly used VBM method. METHODS We analyzed the brain structure images of 37 patients with OCD and 41 healthy controls (HCs) using the VBM method, Atlas-based method based on SPM software, or Freesurfer software to find the areas with significant volumetric variation between the two groups, and calculated the effects size of these areas. RESULTS VBM analysis revealed a significantly increased volume of bilateral lenticular nucleus in patients compared to HCs. In contrast, Atlas-based method based on Freesurfer revealed significantly increased volume of left globus pallidus in patients, and the largest effect size of volumetric variation was revealed by Freesurfer analysis. CONCLUSIONS This study showed that the volume of bilateral lenticular nucleus significantly increased in patients compared to HCs, especially left globus pallidus, which was in accordance with the previous findings. In addition, Freesurfer is better than SPM and a good choice for Atlas-based volumetric analysis of basal ganglia.
Collapse
Affiliation(s)
- Jiaxiang Chen
- School of Medicine, Guizhou University, Guiyang, China
| | - Chong Tian
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qun Zhang
- Department of Psychology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Hui Xiang
- Department of Psychology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Rongpin Wang
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xianchun Zeng
- School of Medicine, Guizhou University, Guiyang, China
- Department of Medical Imaging, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
39
|
Wang Z, Fontaine M, Cyr M, Rynn MA, Simpson HB, Marsh R, Pagliaccio D. Subcortical shape in pediatric and adult obsessive-compulsive disorder. Depress Anxiety 2022; 39:504-514. [PMID: 35485920 PMCID: PMC9813975 DOI: 10.1002/da.23261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/22/2022] [Accepted: 04/16/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) implicates alterations in cortico-striato-thalamo-cortical and fronto-limbic circuits. Building on prior structural findings, this is the largest study to date examining subcortical surface morphometry in OCD. METHODS Structural magnetic resonance imaging data were collected from 200 participants across development (5-55 years): 28 youth and 75 adults with OCD and 27 psychiatrically healthy youth and 70 adults. General linear models were used to assess group differences and group-by-age interactions on subcortical shape (FSL FIRST). RESULTS Compared to healthy participants, those with OCD exhibited surface expansions on the right nucleus accumbens and inward left amygdala deformations, which were associated with greater OCD symptom severity ([Children's] Yale-Brown Obsessive-Compulsive Scale). Group-by-age interactions indicated that accumbens group differences were driven by younger participants and that right pallidum shape was associated inversely with age in healthy participants, but not in participants with OCD. No differences in the shape of other subcortical regions or in volumes (FreeSurfer) were detected in supplementary analyses. CONCLUSIONS This study is the largest to date examining subcortical shape in OCD and the first to do so across the developmental spectrum. NAcc and amygdala shape deformation builds on extant neuroimaging findings and suggests subtle, subregional alterations beyond volumetric findings. Results shed light on morphometric alterations in OCD, informing current pathophysiological models.
Collapse
Affiliation(s)
- Zhishun Wang
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Martine Fontaine
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Marilyn Cyr
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Moira A. Rynn
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Helen Blair Simpson
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - Rachel Marsh
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| | - David Pagliaccio
- The Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA,New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
40
|
Han S, Xu Y, Guo H, Fang K, Wei Y, Liu L, Cheng J, Zhang Y, Cheng J. Two distinct subtypes of obsessive compulsive disorder revealed by heterogeneity through discriminative analysis. Hum Brain Mapp 2022; 43:3037-3046. [PMID: 35384125 PMCID: PMC9188970 DOI: 10.1002/hbm.25833] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/31/2023] Open
Abstract
Neurobiological heterogeneity in obsessive compulsive disorder (OCD) is understudied leading to conflicting neuroimaging findings. Therefore, we investigated objective neuroanatomical subtypes of OCD by adopting a newly proposed method based on gray matter volumes (GMVs). GMVs were derived from T1‐weighted anatomical images of patients with OCD (n = 100) and matched healthy controls (HCs; n = 106). We first inquired whether patients with OCD presented higher interindividual variability HCs in terms of GMVs. Then, we identified distinct subtypes of OCD by adopting heterogeneity through discriminative analysis (HYDRA), where regional GMVs were treated as features. Patients with OCD presented higher interindividual variability than HCs, suggesting a high structural heterogeneity of OCD. HYDRA identified two distinct robust subtypes of OCD presenting opposite neuroanatomical aberrances compared with HCs, while sharing indistinguishable clinical and demographic features. Specifically, Subtype 1 exhibited widespread increased GMVs in cortical and subcortical regions, including the orbitofrontal gyrus, right anterior insula, bilateral hippocampus, and bilateral parahippocampus and cerebellum. Subtype 2 demonstrated overall decreased GMVs in regions such as the orbitofrontal gyrus, right anterior insula, and precuneus. When mixed together, none of patients presented significant differences compared with HCs. In addition, the total intracranial volume of Subtype 2 was significantly correlated with the total score of the Yale–Brown Obsessive Compulsive Scale while that of Subtype 1 was not. These results identified two distinct neuroanatomical subtypes, providing a possible explanation for conflicting neuroimaging findings, and proposed a potential objective taxonomy contributing to precise clinical diagnosis and treatment in OCD.
Collapse
|
41
|
Distinct alterations of amygdala subregional functional connectivity in early- and late-onset obsessive-compulsive disorder. J Affect Disord 2022; 298:421-430. [PMID: 34748823 DOI: 10.1016/j.jad.2021.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Age of onset may be an important feature associated with distinct subtypes of obsessive-compulsive disorder (OCD). The amygdala joined neurocircuitry models of OCD for its role in mediating fear and regulating anxiety. The present study aims to identify the underlying pathophysiological specifics in OCD with different onset times by assessing amygdala subregional functional connectivity (FC) alterations in early-onset OCD (EO-OCD) and late-onset OCD (LO-OCD). METHODS Resting-state functional magnetic resonance imaging data were acquired from 88 medication-free OCD patients (including 30 EO-OCD and 58 LO-OCD) and age- and sex-matched healthy controls (HC) for each patient group. Onset-by-diagnosis interactions were examined and comparisons between each OCD group and the corresponding HC group were performed regarding the FC of amygdala subregions including the basolateral amygdala (BLA), centromedial amygdala (CMA), superficial amygdala (SFA) and amygdalostriatal transition area (Astr). RESULTS Significant onset-by-diagnosis interactions were found in FC between bilateral SFA, right CMA, left Astr and the cerebellum. EO-OCD patients showed abnormally increased BLA/SFA-cerebellum, BLA-precuneus and BLA/SFA-fusiform connectivity in addition to decreased BLA/SFA-orbitofrontal cortex connectivity. In contrast, LO-OCD patients exhibited increased CMA/Astr-precentral/postcentral gyrus and CMA-cuneus connectivity as well as decreased CMA/Astr-cerebellum and BLA-striatum connectivity. LIMITATIONS The exclusion of comorbidity may reduce the generalizability of our results. CONCLUSIONS These findings emphasized the different patterns of amygdala subregional connectivity alterations associated with EO-OCD and LO-OCD patients. These results provide unique insights into constructing evidence-based distinct OCD subtypes based on brain intrinsic connectivity and point to the need of specified management for EO-OCD and LO-OCD in clinical setting.
Collapse
|
42
|
Luo Q, Liu W, Jin L, Chang C, Peng Z. Classification of Obsessive-Compulsive Disorder Using Distance Correlation on Resting-State Functional MRI Images. Front Neuroinform 2021; 15:676491. [PMID: 34744676 PMCID: PMC8564498 DOI: 10.3389/fninf.2021.676491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Both the Pearson correlation and partial correlation methods have been widely used in the resting-state functional MRI (rs-fMRI) studies. However, they can only measure linear relationship, although partial correlation excludes some indirect effects. Recent distance correlation can discover both the linear and non-linear dependencies. Our goal was to use the multivariate pattern analysis to compare the ability of such three correlation methods to distinguish between the patients with obsessive-compulsive disorder (OCD) and healthy control subjects (HCSs), so as to find optimal correlation method. The main process includes four steps. First, the regions of interest are defined by automated anatomical labeling (AAL). Second, functional connectivity (FC) matrices are constructed by the three correlation methods. Third, the best discriminative features are selected by support vector machine recursive feature elimination (SVM-RFE) with a stratified N-fold cross-validation strategy. Finally, these discriminative features are used to train a classifier. We had a total of 128 subjects out of which 61 subjects had OCD and 67 subjects were normal. All the three correlation methods with SVM have achieved good results, among which distance correlation is the best [accuracy = 93.01%, specificity = 89.71%, sensitivity = 95.08%, and area under the receiver-operating characteristic curve (AUC) = 0.94], followed by Pearson correlation and partial correlation is the last. The most discriminative regions of the brain for distance correlation are right dorsolateral superior frontal gyrus, orbital part of left superior frontal gyrus, orbital part of right middle frontal gyrus, right anterior cingulate and paracingulate gyri, left the supplementary motor area, and right precuneus, which are the promising biomarkers of OCD.
Collapse
Affiliation(s)
- Qian Luo
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, China
| | - Weixiang Liu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, China
| | - Lili Jin
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Chunqi Chang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China.,National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Shenzhen University, Shenzhen, China.,Peng Cheng Laboratory, Shenzhen, China
| | - Ziwen Peng
- Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China.,Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
43
|
Szejko N, Dunalska A, Lombroso A, McGuire JF, Piacentini J. Genomics of Obsessive-Compulsive Disorder-Toward Personalized Medicine in the Era of Big Data. Front Pediatr 2021; 9:685660. [PMID: 34746045 PMCID: PMC8564378 DOI: 10.3389/fped.2021.685660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/20/2021] [Indexed: 01/11/2023] Open
Abstract
Pathogenesis of obsessive-compulsive disorder (OCD) mainly involves dysregulation of serotonergic neurotransmission, but a number of other factors are involved. Genetic underprints of OCD fall under the category of "common disease common variant hypothesis," that suggests that if a disease that is heritable is common in the population (a prevalence >1-5%), then the genetic contributors-specific variations in the genetic code-will also be common in the population. Therefore, the genetic contribution in OCD is believed to come from multiple genes simultaneously and it is considered a polygenic disorder. Genomics offers a number of advanced tools to determine causal relationship between the exposure and the outcome of interest. Particularly, methods such as polygenic risk score (PRS) or Mendelian Randomization (MR) enable investigation of new pathways involved in OCD pathogenesis. This premise is also facilitated by the existence of publicly available databases that include vast study samples. Examples include population-based studies such as UK Biobank, China Kadoorie Biobank, Qatar Biobank, All of US Program sponsored by National Institute of Health or Generations launched by Yale University, as well as disease-specific databases, that include patients with OCD and co-existing pathologies, with the following examples: Psychiatric Genomics Consortium (PGC), ENIGMA OCD, The International OCD Foundation Genetics Collaborative (IOCDF-GC) or OCD Collaborative Genetic Association Study. The aim of this review is to present a comprehensive overview of the available Big Data resources for the study of OCD pathogenesis in the context of genomics and demonstrate that OCD should be considered a disorder which requires the approaches offered by personalized medicine.
Collapse
Affiliation(s)
- Natalia Szejko
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
- Department of Bioethics, Medical University of Warsaw, Warsaw, Poland
| | - Anna Dunalska
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Adam Lombroso
- Child Study Center, Yale School of Medicine, New Haven, CT, United States
| | - Joseph F. McGuire
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MS, United States
- Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - John Piacentini
- Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
44
|
The Behavior of Patients with Obsessive-Compulsive Disorder in Dental Clinics. Int J Dent 2021; 2021:5561690. [PMID: 34512758 PMCID: PMC8424235 DOI: 10.1155/2021/5561690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
Objectives This review documents published obsessive-compulsive disorder (OCD) cases with dental and oral conditions with potential impact on the dental procedure. The research question was, what are the psychiatric and behavioral features of people with OCD that might affect dental sessions? Methods This review followed the PRISMA guidelines (PROSPERO registration No. CRD42020212371). Six databases (PubMed, Scopus, Web of Science, LILACS, Cochrane Library, and PsycINFO) were screened for published clinical studies that report dental patients with obsessions or compulsions behaviors as identified by National Institute of Mental Health (NIMH). Inclusion of the studies was performed according to the eligibility criteria. The quality evaluation was carried out using the Joanna Briggs Institute's (JBI) Critical Appraisal Checklist. The results were qualitatively assessed for synthesis. Results After elimination of duplication, 530 articles were screened, and 35 articles were evaluated for eligibility. 17 studies met the inclusion criteria (8 case reports, 5 cross-sectional studies, 1 longitudinal cohort study, and 3 case-control studies) and were included in the review. All case reports demonstrated symptoms of obsessions or compulsions such as fear of germs and contamination, aggressive thoughts, having things symmetric in perfect order, excessive cleaning or handwashing, repeatedly checking things, and compulsive counting. OCD-related behavior was assessed in the included clinical investigations using standardized protocols such as Florida Obsessive-Compulsive Inventory, Symptom Checklist-90-Revised, 4-item Corah Dental Anxiety Scale, Diagnostic and Statistical Manual of Mental Disorders, and the Crown Crisp Experimental Index. Quality assessment of the 17 included articles revealed 14 articles with low risk of bias and 3 articles with moderate risk of bias. Conclusion The reported OCD symptoms may implement psychological difficulties during dental procedures without affecting the outcome. Although there was no contraindication for planning or performing dental treatments for a patient with OCD, dental-related procedures and protocols might be modified for successful dental appointments.
Collapse
|
45
|
Morein-Zamir S, Anholt G. Stopping a Response When You Really Care about the Action: Considerations from a Clinical Perspective. Brain Sci 2021; 11:brainsci11080979. [PMID: 34439598 PMCID: PMC8393705 DOI: 10.3390/brainsci11080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Response inhibition, whether reactive or proactive, is mostly investigated in a narrow cognitive framework. We argue that it be viewed within a broader frame than the action being inhibited, i.e., in the context of emotion and motivation of the individual at large. This is particularly important in the clinical domain, where the motivational strength of an action can be driven by threat avoidance or reward seeking. The cognitive response inhibition literature has focused on stopping reactively with responses in anticipation of clearly delineated external signals, or proactively in limited contexts, largely independent of clinical phenomena. Moreover, the focus has often been on stopping efficiency and its correlates rather than on inhibition failures. Currently, the cognitive and clinical perspectives are incommensurable. A broader context may explain the apparent paradox where individuals with disorders characterised by maladaptive action control have difficulty inhibiting their actions only in specific circumstances. Using Obsessive Compulsive Disorder as a case study, clinical theorising has focused largely on compulsions as failures of inhibition in relation to specific internal or external triggers. We propose that the concept of action tendencies may constitute a useful common denominator bridging research into motor, emotional, motivational, and contextual aspects of action control failure. The success of action control may depend on the interaction between the strength of action tendencies, the ability to withhold urges, and contextual factors.
Collapse
Affiliation(s)
- Sharon Morein-Zamir
- School of Psychology and Sport Science, Anglia Ruskin University, East Road, Cambridge CB1 1PT, UK
- Correspondence:
| | - Gideon Anholt
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| |
Collapse
|
46
|
Shephard E, Batistuzzo MC, Hoexter MQ, Stern ER, Zuccolo PF, Ogawa CY, Silva RM, Brunoni AR, Costa DL, Doretto V, Saraiva L, Cappi C, Shavitt RG, Simpson HB, van den Heuvel OA, Miguel EC. Neurocircuit models of obsessive-compulsive disorder: limitations and future directions for research. REVISTA BRASILEIRA DE PSIQUIATRIA 2021; 44:187-200. [PMID: 35617698 PMCID: PMC9041967 DOI: 10.1590/1516-4446-2020-1709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Elizabeth Shephard
- Universidade de São Paulo (USP), Brazil; Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King’s College London, UK
| | - Marcelo C. Batistuzzo
- Universidade de São Paulo (USP), Brazil; Pontifícia Universidade Católica de São Paulo, Brazil
| | | | - Emily R. Stern
- The New York University School of Medicine, USA; Orangeburg, USA
| | | | | | | | | | | | | | | | - Carolina Cappi
- Universidade de São Paulo (USP), Brazil; Icahn School of Medicine at Mount Sinai, USA
| | | | - H. Blair Simpson
- New York State Psychiatric Institute, Columbia University Irving Medical Center (CUIMC), USA; CUIMC, USA
| | - Odile A. van den Heuvel
- Vrije Universiteit Amsterdam, The Netherlands; Vrije Universiteit Amsterdam, The Netherlands
| | | |
Collapse
|
47
|
Malcolm A, Phillipou A. Current directions in biomarkers and endophenotypes for anorexia nervosa: A scoping review. J Psychiatr Res 2021; 137:303-310. [PMID: 33735721 DOI: 10.1016/j.jpsychires.2021.02.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 12/30/2022]
Abstract
There are currently no validated biomarkers for anorexia nervosa (AN), though recent literature suggests an increased research interest in this area. Biomarkers are objective, measurable indicators of illness that can be used to assist with diagnosis, risk assessment, and tracking of illness state. Related to biomarkers are endophenotypes, which are quantifiable phenomena that are distinct from symptoms and which link genes to manifest illness. In this scoping review, we sought to provide a summary of recent research conducted in the pursuit of biomarkers and endophenotypes for AN. The findings indicate that a number of possible biomarkers which can assess the presence or severity of AN independently of weight status, including psychophysical (e.g., eye-tracking) and biological (e.g., immune, endocrine, metabolomic, neurobiological) markers, are currently under investigation. However, this research is still in early phases and lacking in replication studies. Endophenotype research has largely been confined to the study of several neurocognitive features, with mixed evidence to support their classification as possible endophenotypes for the disorder. The study of biomarkers and endophenotypes in AN involves significant challenges due to confounding factors of illness-related sequalae, such as starvation. Future research in these areas must prioritise direct evaluation of the sensitivity, specificity and test-retest reliability of proposed biomarkers and enhanced control of confounding physical consequences of AN in the study of biomarkers and endophenotypes.
Collapse
Affiliation(s)
- Amy Malcolm
- Centre for Mental Health, Faculty of Health, Arts & Design, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Andrea Phillipou
- Centre for Mental Health, Faculty of Health, Arts & Design, Swinburne University of Technology, Hawthorn, VIC, Australia; Department of Mental Health, St Vincent's Hospital, Melbourne, Australia; Department of Psychiatry, The University of Melbourne, Melbourne, Australia; Department of Mental Health, Austin Health, Melbourne, Australia
| |
Collapse
|
48
|
Maziero MP, Seitz-Holland J, Cho KIK, Goldenberg JE, Tanamatis TW, Diniz JB, Cappi C, Alice de Mathis M, Otaduy MCG, da Graça Morais Martin M, de Melo Felipe da Silva R, Shavitt RG, Batistuzzo MC, Lopes AC, Miguel EC, Pasternak O, Hoexter MQ. Cellular and Extracellular White Matter Abnormalities in Obsessive-Compulsive Disorder: A Diffusion Magnetic Resonance Imaging Study. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:983-991. [PMID: 33862255 DOI: 10.1016/j.bpsc.2021.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND While previous studies have implicated white matter (WM) as a core pathology of obsessive-compulsive disorder (OCD), the underlying neurobiological processes remain elusive. This study used free-water (FW) imaging derived from diffusion magnetic resonance imaging to identify cellular and extracellular WM abnormalities in patients with OCD compared with control subjects. Next, we investigated the association between diffusion measures and clinical variables in patients. METHODS We collected diffusion-weighted magnetic resonance imaging and clinical data from 83 patients with OCD (56 women/27 men, age 37.7 ± 10.6 years) and 52 control subjects (27 women/25 men, age 32.8 ± 11.5 years). Fractional anisotropy (FA), FA of cellular tissue, and extracellular FW maps were extracted and compared between patients and control subjects using tract-based spatial statistics and voxelwise comparison in FSL Randomise. Next, we correlated these WM measures with clinical variables (age of onset and symptom severity) and compared them between patients with and without comorbidities and patients with and without psychiatric medication. RESULTS Patients with OCD demonstrated lower FA (43.4% of the WM skeleton), lower FA of cellular tissue (31% of the WM skeleton), and higher FW (22.5% of the WM skeleton) compared with control subjects. We did not observe significant correlations between diffusion measures and clinical variables. Comorbidities and medication status did not influence diffusion measures. CONCLUSIONS Our findings of widespread FA, FA of cellular tissue, and FW abnormalities suggest that OCD is associated with microstructural cellular and extracellular abnormalities beyond the corticostriatothalamocortical circuits. Future multimodal longitudinal studies are needed to understand better the influence of essential clinical variables across the illness trajectory.
Collapse
Affiliation(s)
- Maria Paula Maziero
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Faculty of Medicine, City University of São Paulo, São Paulo, Brazil.
| | - Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kang Ik K Cho
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joshua E Goldenberg
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Taís W Tanamatis
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Juliana B Diniz
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Carolina Cappi
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Alice de Mathis
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maria C G Otaduy
- Laboratório de Investigações Médicas 44, Instituto de Radiologia, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maria da Graça Morais Martin
- Laboratório de Investigações Médicas 44, Instituto de Radiologia, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Renata de Melo Felipe da Silva
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roseli G Shavitt
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo C Batistuzzo
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Department of Methods and Techniques in Psychology, Humanities and Health Sciences School, Pontifical Catholic University of São Paulo, São Paulo, Brazil
| | - Antonio C Lopes
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eurípedes C Miguel
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marcelo Q Hoexter
- Laboratório de Investigações Médicas 23, Instituto de Psiquiatria, Hospital das Clinicas Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
49
|
Deep brain stimulation response in obsessive-compulsive disorder is associated with preoperative nucleus accumbens volume. NEUROIMAGE-CLINICAL 2021; 30:102640. [PMID: 33799272 PMCID: PMC8044711 DOI: 10.1016/j.nicl.2021.102640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
Preoperative MRI was associated with 12-months DBS treatment outcome in OCD patients. Larger nucleus accumbens volume was associated with larger clinical improvement. Machine learning analysis was not successful in predicting clinical improvement.
Background Deep brain stimulation (DBS) is a new treatment option for patients with therapy-resistant obsessive–compulsive disorder (OCD). Approximately 60% of patients benefit from DBS, which might be improved if a biomarker could identify patients who are likely to respond. Therefore, we evaluated the use of preoperative structural magnetic resonance imaging (MRI) in predicting treatment outcome for OCD patients on the group- and individual-level. Methods In this retrospective study, we analyzed preoperative MRI data of a large cohort of patients who received DBS for OCD (n = 57). We used voxel-based morphometry to investigate whether grey matter (GM) or white matter (WM) volume surrounding the DBS electrode (nucleus accumbens (NAc), anterior thalamic radiation), and whole-brain GM/WM volume were associated with OCD severity and response status at 12-month follow-up. In addition, we performed machine learning analyses to predict treatment outcome at an individual-level and evaluated its performance using cross-validation. Results Larger preoperative left NAc volume was associated with lower OCD severity at 12-month follow-up (pFWE < 0.05). None of the individual-level regression/classification analyses exceeded chance-level performance. Conclusions These results provide evidence that patients with larger NAc volumes show a better response to DBS, indicating that DBS success is partly determined by individual differences in brain anatomy. However, the results also indicate that structural MRI data alone does not provide sufficient information to guide clinical decision making at an individual level yet.
Collapse
|
50
|
Abstract
Obsessive-compulsive disorder (OCD) is a common, chronic, and oftentimes disabling disorder. The only established first-line treatments for OCD are exposure and response prevention, and serotonin reuptake inhibitor medications (SRIs). However, a subset of patients fails to respond to either modality, and few experience complete remission. Beyond SRI monotherapy, antipsychotic augmentation is the only medication approach for OCD with substantial empirical support. Our incomplete understanding of the neurobiology of OCD has hampered efforts to develop new treatments or enhance extant interventions. This review focuses on several promising areas of research that may help elucidate the pathophysiology of OCD and advance treatment. Multiple studies support a significant genetic contribution to OCD, but pinpointing the specific genetic determinants requires additional investigation. The preferential efficacy of SRIs in OCD has neither led to discovery of serotonergic abnormalities in OCD nor to development of new serotonergic medications for OCD. Several lines of preclinical and clinical evidence suggest dysfunction of the glutamatergic system in OCD, prompting testing of several promising glutamate modulating agents. Functional imaging studies in OCD show consistent evidence for increased activity in brain regions that form a cortico-striato-thalamo-cortical (CSTC) loop. Neuromodulation treatments with either noninvasive devices (e.g., transcranial magnetic stimulation) or invasive procedures (e.g., deep brain stimulation) provide further support for the CSTC model of OCD. A common substrate for various interventions (whether drug, behavioral, or device) may be modulation (at different nodes or connections) of the CSTC circuit that mediates the symptoms of OCD.
Collapse
Affiliation(s)
- Wayne K. Goodman
- Menninger Department of Psychiatry and Behavioral Sciences (all authors) and Department of Neurosurgery (Sheth), Baylor College of Medicine, Houston
| | - Eric A. Storch
- Menninger Department of Psychiatry and Behavioral Sciences (all authors) and Department of Neurosurgery (Sheth), Baylor College of Medicine, Houston
| | - Sameer A. Sheth
- Menninger Department of Psychiatry and Behavioral Sciences (all authors) and Department of Neurosurgery (Sheth), Baylor College of Medicine, Houston
| |
Collapse
|