1
|
Knight SR, Abbasova L, Zeighami Y, Hansen JY, Martins D, Zelaya F, Dipasquale O, Liu T, Shin D, Bossong M, Azis M, Antoniades M, Howes OD, Bonoldi I, Egerton A, Allen P, O'Daly O, McGuire P, Modinos G. Transcriptional and Neurochemical Signatures of Cerebral Blood Flow Alterations in Individuals With Schizophrenia or at Clinical High Risk for Psychosis. Biol Psychiatry 2025; 98:144-155. [PMID: 39923816 DOI: 10.1016/j.biopsych.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND The brain integrates multiple scales of description, from the level of cells and molecules to large-scale networks and behavior. Understanding relationships across these scales may be fundamental to advancing understanding of brain function in health and disease. Recent neuroimaging research has shown that functional brain alterations that are associated with schizophrenia spectrum disorders (SSDs) are already present in young adults at clinical high risk for psychosis (CHR-P), but the cellular and molecular determinants of these alterations remain unclear. METHODS Here, we used regional cerebral blood flow (rCBF) data from 425 individuals (122 with an SSD compared with 116 healthy control participants [HCs] and 129 individuals at CHR-P compared with 58 HCs) and applied a novel pipeline to integrate brainwide rCBF case-control maps with publicly available transcriptomic data (17,205 gene maps) and neurotransmitter atlases (19 maps) from 1074 healthy volunteers. RESULTS We identified significant correlations between astrocyte, oligodendrocyte, oligodendrocyte precursor cell, and vascular leptomeningeal cell gene modules for both SSD and CHR-P rCBF phenotypes. Additionally, endothelial cell genes were correlated in SSD, and microglia in CHR-P. Receptor distribution significantly predicted case-control rCBF differences, with dominance analysis highlighting dopamine (D1, D2, dopamine transporter), acetylcholine (VAChT, M1), gamma-aminobutyric acid A (GABAA), and glutamate (NMDA) receptors as key predictors for SSD (R2adjusted = 0.58, false discovery rate [FDR]-corrected p < .05) and CHR-P (R2adjusted = 0.6, pFDR < .05) rCBF phenotypes. These associations were primarily localized in subcortical regions and implicate cell types involved in stress response and inflammation, alongside specific neuroreceptor systems, in shared and distinct rCBF phenotypes in psychosis. CONCLUSIONS Our findings underscore the value of integrating multiscale data as a promising hypothesis-generating approach toward decoding biological pathways involved in neuroimaging-based psychosis phenotypes, potentially guiding novel interventions.
Collapse
Affiliation(s)
- Samuel R Knight
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Leyla Abbasova
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Yashar Zeighami
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Olea Medical, La Ciotat, France
| | - Thomas Liu
- Centre for Functional MRI, University of California San Diego, San Diego, California
| | - David Shin
- Global MR Applications and Workflow, GE Healthcare, Menlo Park, California
| | - Matthijs Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Psychiatry, Brain Center Rudoph Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matilda Azis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mathilde Antoniades
- Center for AI and Data Science for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Philip McGuire
- Department of Psychiatry, Oxford University, Oxford, United Kingdom
| | - Gemma Modinos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
2
|
King VL, Hellemann G, Lahti AC, Defenderfer M, Glausier JR, Zhang H, Kraguljac NV. Cortical myelin mapping in antipsychotic medication-naïve, first-episode psychosis patients. Neuropsychopharmacology 2025:10.1038/s41386-025-02137-9. [PMID: 40410588 DOI: 10.1038/s41386-025-02137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/29/2025] [Accepted: 05/15/2025] [Indexed: 05/25/2025]
Abstract
While white matter myelin primarily functions to accelerate conduction velocity and has been extensively studied in schizophrenia-spectrum disorders (SSD), less is known about the role of gray matter myelin in SSD. Cortical myelination occurs mostly on the proximal axons of parvalbumin positive (PV+) interneurons, where it assists in trophic support and experience-dependent plasticity. Given the role of PV+ interneuron dysfunction in SSD, it is critical to advance our understanding of cortical myelin pathology in this context. Here, we quantified myelin maps using the T1w/T2w ratio in a large group of antipsychotic medication-naïve, first-episode psychosis patients. We compared myelin content between patients (N = 91) and controls (N = 107) using a MANCOVA and calculated zero-order correlations with the discriminant function for each region, then used a machine learning approach to identify the most parsimonious constellation of cortical regions driving group differences using a stepwise algorithm. Group membership was significantly associated with T1w/T2w ratio (Wilks Lambda = 0.09, p < 0.01), where patients had higher myelin values compared to healthy controls. We identified a subset of 16 regions, primarily located in association cortices, that were sufficient to explain group differences. Here, we report an increase in the cortical T1w/T2w ratio in association cortices in first-episode psychosis. We suggest that faulty myelin compaction during this critical developmental period could contribute to PV+ interneuron pathology and cortical microcircuit disruptions resulting in the clinical phenotype. With additional empirical support from future studies, novel treatment strategies targeting cortical myelin could have potential to mitigate circuit dysfunction in the illness.
Collapse
Affiliation(s)
- Victoria L King
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Gerhard Hellemann
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew Defenderfer
- Research Computing, Information Technology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jill R Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hui Zhang
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Nina V Kraguljac
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Verkhratsky A, Li B, Niu J, Lin SS, Su Y, Jin WN, Li Y, Jiang S, Yi C, Shi FD, Tang Y. Neuroglial Advances: New Roles for Established Players. J Neurochem 2025; 169:e70080. [PMID: 40371609 DOI: 10.1111/jnc.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Neuroglial cells perform numerous physiological functions and contribute to the pathogenesis of all diseases of the nervous system. Neuroglial neuroprotection defines the resilience of the nervous tissue to exo- and endogenous pathological challenges, while neuroglial defence determines the progression and outcome of neurological disorders. IN this paper, we overview previously unknown but recently discovered roles of various types of neuroglial cells in diverse physiological and pathological processes. First, we describe the role of ependymal glia in the regulation of cerebrospinal fluid flow from the spinal cord to peripheral tissues through the spinal nerves. This newly discovered pathway provides a highway for the CNS-body volume transmission. Next, we present the mechanism by which astrocytes control migration and differentiation of oligodendrocyte precursor cells (OPCs). In pre- and early postnatal CNS, OPCs migrate using vasculature (which is yet free from glia limitans perivascularis) as a pathfinder. Newly forming astrocytic perivascular endfeet signal (through semaphorin-plexin cascade) to OPCs that detach from the vessels and start to differentiate into myelinating oligodendrocytes. We continue the astrocyte theme by demonstrating the neuroprotective role of APOE-laden astrocytic extracellular vesicles in neuromyelitis optica. Next, we explore the link between astrocytic morphology and stress-induced depression. We discuss the critical role of astrocytic ezrin, the cytosolic linker defining terminal astrocyte arborisation and resilience to stress: overexpression of ezrin in prefrontal cortical astrocytes makes mice resistant to stress, whereas ezrin knockdown increases animals vulnerability to stress. Subsequently, we highlight the pathophysiological role of oligodendroglial lineage in schizophrenia by describing novel hypertrophied OPCs in the post-mortem patient's tissue and in a mouse model with OPCs overexpressing alternative splice variant DISC1-Δ3. These DISC1-Δ3-OPCs demonstrated overactivated Wnt/β-catenin signalling pathway and were sufficient to trigger pathological behaviours. Finally, we deliberate on the pathological role of astrocytic and microglial connexin 43 hemichannels in Alzheimer's disease and present a new formula of Cx43 hemichannel inhibitor with increased blood-brain barrier penetration and brain retention.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Department of Neurosciences, University of the Basque Country, Leioa, Bizkaia, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Celica, BIOMEDICAL, Technology Park 24, Ljubljana, Slovenia
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Si-Si Lin
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei-Na Jin
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifan Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Shihe Jiang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
| | - Fu-Dong Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Clarence T, Bendl J, Cao X, Wang X, Zheng S, Hoffman GE, Kozlenkov A, Hong A, Iskhakova M, Jaiswal MK, Murphy S, Yu A, Haroutunian V, Dracheva S, Akbarian S, Fullard JF, Yuan GC, Lee D, Roussos P. Multiomic single-cell profiling identifies critical regulators of postnatal brain. Nat Genet 2025; 57:591-603. [PMID: 39962241 DOI: 10.1038/s41588-025-02083-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 01/08/2025] [Indexed: 03/15/2025]
Abstract
Human brain development spans from embryogenesis to adulthood, with dynamic gene expression controlled by cell-type-specific cis-regulatory element activity and three-dimensional genome organization. To advance our understanding of postnatal brain development, we simultaneously profiled gene expression and chromatin accessibility in 101,924 single nuclei from four brain regions across ten donors, covering five key postnatal stages from infancy to late adulthood. Using this dataset and chromosome conformation capture data, we constructed enhancer-based gene regulatory networks to identify cell-type-specific regulators of brain development and interpret genome-wide association study loci for ten main brain disorders. Our analysis connected 2,318 cell-specific loci to 1,149 unique genes, representing 41% of loci linked to the investigated traits, and highlighted 55 genes influencing several disease phenotypes. Pseudotime analysis revealed distinct stages of postnatal oligodendrogenesis and their regulatory programs. These findings provide a comprehensive dataset of cell-type-specific gene regulation at critical timepoints in postnatal brain development.
Collapse
Affiliation(s)
- Tereza Clarence
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuan Cao
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xinyi Wang
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shiwei Zheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexey Kozlenkov
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aram Hong
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marina Iskhakova
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manoj K Jaiswal
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Sarah Murphy
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Yu
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Stella Dracheva
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, USA.
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
5
|
Bernstein HG, Nussbaumer M, Vasilevska V, Dobrowolny H, Nickl-Jockschat T, Guest PC, Steiner J. Glial cell deficits are a key feature of schizophrenia: implications for neuronal circuit maintenance and histological differentiation from classical neurodegeneration. Mol Psychiatry 2025; 30:1102-1116. [PMID: 39639174 PMCID: PMC11835740 DOI: 10.1038/s41380-024-02861-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Dysfunctional glial cells play a pre-eminent role in schizophrenia pathophysiology. Post-mortem studies have provided evidence for significantly decreased glial cell numbers in different brain regions of individuals with schizophrenia. Reduced glial cell numbers are most pronounced in oligodendroglia, but reduced astrocyte cell densities have also been reported. This review highlights that oligo- and astroglial deficits are a key histopathological feature in schizophrenia, distinct from typical changes seen in neurodegenerative disorders. Significant deficits of oligodendrocytes in schizophrenia may arise in two ways: (i) demise of mature functionally compromised oligodendrocytes; and (ii) lack of mature oligodendrocytes due to failed maturation of progenitor cells. We also analyse in detail the controversy regarding deficits of astrocytes. Regardless of their origin, glial cell deficits have several pathophysiological consequences. Among these, myelination deficits due to a reduced number of oligodendrocytes may be the most important factor, resulting in the disconnectivity between neurons and different brain regions observed in schizophrenia. When glial cells die, it appears to be through degeneration, a process which is basically reversible. Thus, therapeutic interventions that (i) help rescue glial cells (ii) or improve their maturation might be a viable option. Since antipsychotic treatment alone does not seem to prevent glial cell loss or maturation deficits, there is intense search for new therapeutic options. Current proposals range from the application of antidepressants and other chemical agents as well as physical exercise to engrafting healthy glial cells into brains of schizophrenia patients.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Madeleine Nussbaumer
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Veronika Vasilevska
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Radiotherapy, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa, IA, USA
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany
| | - Paul C Guest
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Laboratory of Translational Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany.
| |
Collapse
|
6
|
Wang X, Fu J, Wang H, Liu C, Zhang Y, Song C, Wang C. Glia dysfunction in schizophrenia: evidence of possible therapeutic effects of nervonic acid in a preclinical model. Psychopharmacology (Berl) 2024; 241:2271-2287. [PMID: 39433690 DOI: 10.1007/s00213-024-06632-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 06/03/2024] [Indexed: 10/23/2024]
Abstract
RATIONALE Neuroinflammation may inhibit oligodendrocyte and astrocyte differentiation, which causes demyelination and synaptic degeneration. The myelin component nervonic acid (NA) may improve demyelinating and neurodegenerative diseases. OBJECTIVES This study firstly explored relationships between glial cell dysfunction and demyelination or synaptic degeneration in schizophrenia patients, and secondly determined nervonic acid therapeutic effects in a preclinical schizophrenia model of mice. METHODS Plasma samples were collected from 18 male healthy controls and 18 male schizophrenic patients (diagnosed by DSM-V) at aged 18-55. Mouse brain samples were collected from a maternal immune activation (MIA) model of schizophrenia via injecting 5 mg/kg polyinosinic-polycytidylic acid. Male mouse offspring (age 2.5 months, n = 12) were treated by clozapine (15 mg/kg/day) or fed 0.5% NA for 6 weeks. Cytokine and dopamine (DA) concentrations, and glial phenotypes and myelin markers were measured in both human plasma and mouse brain samples. RESULTS In patient plasma, increased proinflammatory cytokines were associated with reactive microglia (Iba-1) up-regulation, while decreased anti-inflammatory cytokines were related to microglia (CD206) downregulation. Decreased astrocyte marker (p11) concentrations were accompanied by reduced concentrations of oligodendrocyte and synaptic markers. However, NA and DA contents were increased. Compared with control mice, SZ-like behaviors appeared in MIA male mice. Changes in microglia and astrocytes markers, and cytokine concentrations in the frontal cortex were consistent with those observed in patients' plasma. Hippocampal oligodendrocyte and synaptic marker expression were also decreased. DA content and DA/metabolite (DAPOC) were increased in MIA mouse brains. Most of these changes were normalized by both clozapine and NA. Even though some NA effects were more pronounced than clozapine, only clozapine restored cytokine function. CONCLUSION The data suggest a possible therapeutic route for schizophrenia patients.
Collapse
Affiliation(s)
- Xiaona Wang
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical College, Xinxiang, 453002, Henan, China
| | - Jiacheng Fu
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical College, Xinxiang, 453002, Henan, China
| | - Huiying Wang
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical College, Xinxiang, 453002, Henan, China
| | - Cong Liu
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China
| | - Yongping Zhang
- Research Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China
| | - Cai Song
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical College, Xinxiang, 453002, Henan, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, Guangdong, China.
| | - Changhong Wang
- The Second Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical College, Xinxiang, 453002, Henan, China.
| |
Collapse
|
7
|
Li C, Zhuo C, Ma X, Li R, Chen X, Li Y, Zhang Q, Yang L, Wang L. Exploring the molecular targets of fingolimod and siponimod for treating the impaired cognition of schizophrenia using network pharmacology and molecular docking. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:80. [PMID: 39349481 PMCID: PMC11442674 DOI: 10.1038/s41537-024-00504-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024]
Abstract
The treatment of cognitive impairment in schizophrenia is an unaddressed need due to the absence of novel treatments. Recent studies demonstrated that fingolimod and siponimod have neuroprotective effects in several neuropsychiatric disorders; however, their pharmacological mechanisms are unclear. The objective of this study was to identify potential molecular mechanisms of fingolimod and siponimod for improving cognition of schizophrenia through network pharmacology and molecular docking. The putative target genes of ingredients, schizophrenia, and impaired cognition were obtained from online databases, including SwissTargetPrediction, PharmMapper, GeneCards, CTD, DisGeNET, and OMIM. A protein-protein interaction network was constructed to identify core targets. The DAVID database was used for GO and KEGG pathway enrichment analyses. An ingredient-target-pathway-disease network was constructed using Cytoscape. Finally, the interactions between ingredients and core targets were assessed with molecular docking. The analysis revealed 260 targets shared by fingolimod and siponimod, 257 unique targets for fingolimod, and 88 unique targets for siponimod. Two signaling pathways were involved in fingolimod-mediated improvements in the cognition of schizophrenia, including the PI3K-Akt and MAPK signaling pathways. The core targets that regulated these two pathways included IL1B, AKT1, TNF, IL6, INS, BCL2, and BDNF. The MAPK signaling pathway was involved in siponimod-mediated improvement in the cognition of schizophrenia. The MAPK pathway was regulated by three core targets, namely TNF, AKT1, and CASP3. Docking scores ranged from -5.0 to -10.4 kcal/mol. Our analysis revealed that fingolimod regulates the PI3K-Akt and MAPK signaling pathways via the core targets IL1B, AKT1, TNF, IL6, INS, BCL2, and BDNF, and siponimod regulates the MAPK signaling pathways via the core targets AKT1, TNF, and CASP3 to improve the cognition of schizophrenia. Our results provide potential targets and a theoretical basis for the design of new drugs to treat the impaired cognition of schizophrenia.
Collapse
Affiliation(s)
- Chao Li
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Chuanjun Zhuo
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China.
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China.
| | - Xiaoyan Ma
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Ranli Li
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Ximing Chen
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Yachen Li
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Qiuyu Zhang
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Lei Yang
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| | - Lina Wang
- Computational Biology Center (CBC), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
- Laboratory of Psychiatric-Neuroimaging-Genetic and Co-morbidity (PGNP_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, Nankai University Affiliated Tianjin Anding Hospital, Tianjin, China
| |
Collapse
|
8
|
Khelfaoui H, Ibaceta-Gonzalez C, Angulo MC. Functional myelin in cognition and neurodevelopmental disorders. Cell Mol Life Sci 2024; 81:181. [PMID: 38615095 PMCID: PMC11016012 DOI: 10.1007/s00018-024-05222-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/15/2024]
Abstract
In vertebrates, oligodendrocytes (OLs) are glial cells of the central nervous system (CNS) responsible for the formation of the myelin sheath that surrounds the axons of neurons. The myelin sheath plays a crucial role in the transmission of neuronal information by promoting the rapid saltatory conduction of action potentials and providing neurons with structural and metabolic support. Saltatory conduction, first described in the peripheral nervous system (PNS), is now generally recognized as a universal evolutionary innovation to respond quickly to the environment: myelin helps us think and act fast. Nevertheless, the role of myelin in the central nervous system, especially in the brain, may not be primarily focused on accelerating conduction speed but rather on ensuring precision. Its principal function could be to coordinate various neuronal networks, promoting their synchronization through oscillations (or rhythms) relevant for specific information processing tasks. Interestingly, myelin has been directly involved in different types of cognitive processes relying on brain oscillations, and myelin plasticity is currently considered to be part of the fundamental mechanisms for memory formation and maintenance. However, despite ample evidence showing the involvement of myelin in cognition and neurodevelopmental disorders characterized by cognitive impairments, the link between myelin, brain oscillations, cognition and disease is not yet fully understood. In this review, we aim to highlight what is known and what remains to be explored to understand the role of myelin in high order brain processes.
Collapse
Affiliation(s)
- Hasni Khelfaoui
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Cristobal Ibaceta-Gonzalez
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France.
- GHU-PARIS Psychiatrie Et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
9
|
Usui N. Possible roles of deep cortical neurons and oligodendrocytes in the neural basis of human sociality. Anat Sci Int 2024; 99:34-47. [PMID: 38010534 PMCID: PMC10771383 DOI: 10.1007/s12565-023-00747-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Sociality is an instinctive property of organisms that live in relation to others and is a complex characteristic of higher order brain functions. However, the evolution of the human brain to acquire higher order brain functions, such as sociality, and the neural basis for executing these functions and their control mechanisms are largely unknown. Several studies have attempted to evaluate how human sociality was acquired during the course of evolution and the mechanisms controlling sociality from a neurodevelopment viewpoint. This review discusses these findings in the context of human brain evolution and the pathophysiology of autism spectrum disorder (ASD). Comparative genomic studies of postmortem primate brains have demonstrated human-specific regulatory mechanisms underlying higher order brain functions, providing evidence for the contribution of oligodendrocytes to human brain function. Functional analyses of the causative genes of ASD in animal models have demonstrated that the neural basis of social behavior is associated with layer 6 (L6) of the neocortex and oligodendrocytes. These findings demonstrate that both neurons and oligodendrocytes contribute to the neural basis and molecular mechanisms underlying human brain evolution and social functioning. This review provides novel insights into sociability and the corresponding neural bases of brain disorders and evolution.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- Omics Center, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan.
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan.
| |
Collapse
|
10
|
Kipp M. Astrocytes: Lessons Learned from the Cuprizone Model. Int J Mol Sci 2023; 24:16420. [PMID: 38003609 PMCID: PMC10671869 DOI: 10.3390/ijms242216420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
A diverse array of neurological and psychiatric disorders, including multiple sclerosis, Alzheimer's disease, and schizophrenia, exhibit distinct myelin abnormalities at both the molecular and histological levels. These aberrations are closely linked to dysfunction of oligodendrocytes and alterations in myelin structure, which may be pivotal factors contributing to the disconnection of brain regions and the resulting characteristic clinical impairments observed in these conditions. Astrocytes, which significantly outnumber neurons in the central nervous system by a five-to-one ratio, play indispensable roles in the development, maintenance, and overall well-being of neurons and oligodendrocytes. Consequently, they emerge as potential key players in the onset and progression of a myriad of neurological and psychiatric disorders. Furthermore, targeting astrocytes represents a promising avenue for therapeutic intervention in such disorders. To gain deeper insights into the functions of astrocytes in the context of myelin-related disorders, it is imperative to employ appropriate in vivo models that faithfully recapitulate specific aspects of complex human diseases in a reliable and reproducible manner. One such model is the cuprizone model, wherein metabolic dysfunction in oligodendrocytes initiates an early response involving microglia and astrocyte activation, culminating in multifocal demyelination. Remarkably, following the cessation of cuprizone intoxication, a spontaneous process of endogenous remyelination occurs. In this review article, we provide a historical overview of studies investigating the responses and putative functions of astrocytes in the cuprizone model. Following that, we list previously published works that illuminate various aspects of the biology and function of astrocytes in this multiple sclerosis model. Some of the studies are discussed in more detail in the context of astrocyte biology and pathology. Our objective is twofold: to provide an invaluable overview of this burgeoning field, and, more importantly, to inspire fellow researchers to embark on experimental investigations to elucidate the multifaceted functions of this pivotal glial cell subpopulation.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
11
|
Abraham M, Peterburs J, Mundorf A. Oligodendrocytes matter: a review of animal studies on early adversity. J Neural Transm (Vienna) 2023; 130:1177-1185. [PMID: 37138023 PMCID: PMC10460720 DOI: 10.1007/s00702-023-02643-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Exposure to adversities in early life appears to affect the development of white matter, especially oligodendrocytes. Furthermore, altered myelination is present in regions subjected to maturation during the developmental time when early adversities are experienced. In this review, studies applying two well-established animal models of early life adversity, namely maternal separation and maternal immune activation, focusing on oligodendrocyte alterations and resulting implications for psychiatric disorders are discussed. Studies revealed that myelination is reduced as a result of altered oligodendrocyte expression. Furthermore, early adversity is associated with increased cell death, a simpler morphology, and inhibited oligodendrocyte maturation. However, these effects seem to be region- specific as some brain regions show increased expression while others show decreased expression of oligodendroglia-related genes, and they occur especially in regions of ongoing development. Some studies furthermore suggest that early adversity leads to premature differentiation of oligodendrocytes. Importantly, especially early exposure results in stronger oligodendrocyte-related impairments. However, resulting alterations are not restricted to exposure during the early pre- and postnatal days as social isolation after weaning leads to fewer internodes and branches and shorter processes of oligodendrocytes in adulthood. Eventually, the found alterations may lead to dysfunction and long-lasting alterations in structural brain development associated with psychiatric disorders. To date, only few preclinical studies have focused on the effects of early adversity on oligodendrocytes. More studies including several developmental stages are needed to further disentangle the role of oligodendrocytes in the development of psychiatric disorders.
Collapse
Affiliation(s)
- Mate Abraham
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Jutta Peterburs
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany.
| |
Collapse
|
12
|
Martín-Hernández D, Muñoz-López M, Tendilla-Beltrán H, Caso JR, García-Bueno B, Menchén L, Leza JC. Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm? Int J Mol Sci 2023; 24:12634. [PMID: 37628815 PMCID: PMC10454107 DOI: 10.3390/ijms241612634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Over the past few decades, extensive research has shed light on immune alterations and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received approval for treating multiple sclerosis, an autoimmune disease of the central nervous system (CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although the precise mechanisms of action are still under investigation, the effectiveness of S1P-based drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This comprehensive review aims to delve into the molecular mechanisms through which S1P modulates the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus on psychiatric diseases, with the primary objective of uncovering the potential of innovative therapies based on S1P signaling.
Collapse
Affiliation(s)
- David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Marina Muñoz-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 72570 Puebla, Mexico;
| | - Javier R. Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Departamento de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (CIBEREHD, ISCIII), 28029 Madrid, Spain
| | - Juan C. Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| |
Collapse
|
13
|
Faulkner ME, Laporte JP, Gong Z, Akhonda MABS, Triebswetter C, Kiely M, Palchamy E, Spencer RG, Bouhrara M. Lower Myelin Content Is Associated With Lower Gait Speed in Cognitively Unimpaired Adults. J Gerontol A Biol Sci Med Sci 2023; 78:1339-1347. [PMID: 36879434 PMCID: PMC10395567 DOI: 10.1093/gerona/glad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 03/08/2023] Open
Abstract
Mounting evidence indicates that abnormal gait speed predicts the progression of neurodegenerative diseases, including Alzheimer's disease. Understanding the relationship between white matter integrity, especially myelination, and motor function is crucial to the diagnosis and treatment of neurodegenerative diseases. We recruited 118 cognitively unimpaired adults across an extended age range of 22-94 years to examine associations between rapid or usual gait speeds and cerebral myelin content. Using our advanced multicomponent magnetic resonance relaxometry method, we measured myelin water fraction (MWF), a direct measure of myelin content, as well as longitudinal and transverse relaxation rates (R1 and R2), sensitive but nonspecific magnetic resonance imaging measures of myelin content. After adjusting for covariates and excluding 22 data sets due to cognitive impairments or artifacts, our results indicate that participants with higher rapid gait speed exhibited higher MWF, R1, and R2 values, that is, higher myelin content. These associations were statistically significant within several white matter brain regions, particularly the frontal and parietal lobes, splenium, anterior corona radiata, and superior fronto-occipital and longitudinal fasciculus. In contrast, we did not find any significant associations between usual gait speed and MWF, R1, or R2, which suggests that rapid gait speed may be a more sensitive marker of demyelination than usual gait speed. These findings advance our understanding on the implication of myelination in gait impairment among cognitively unimpaired adults, providing further evidence of the interconnection between white matter integrity and motor function.
Collapse
Affiliation(s)
- Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mohammad A B S Akhonda
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Curtis Triebswetter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Matthew Kiely
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Elango Palchamy
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Asraf K, Zaidan H, Natoor B, Gaisler-Salomon I. Synergistic, long-term effects of glutamate dehydrogenase 1 deficiency and mild stress on cognitive function and mPFC gene and miRNA expression. Transl Psychiatry 2023; 13:248. [PMID: 37419882 DOI: 10.1038/s41398-023-02534-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Glutamate abnormalities in the medial prefrontal cortex (mPFC) are associated with cognitive deficits. We previously showed that homozygous deletion of CNS glutamate dehydrogenase 1 (Glud1), a metabolic enzyme critical for glutamate metabolism, leads to schizophrenia-like behavioral abnormalities and increased mPFC glutamate; mice heterozygous for CNS Glud1 deletion (C-Glud1+/- mice) showed no cognitive or molecular abnormalities. Here, we examined the protracted behavioral and molecular effects of mild injection stress on C-Glud1+/- mice. We found spatial and reversal learning deficits, as well as large-scale mPFC transcriptional changes in pathways associated with glutamate and GABA signaling, in stress-exposed C-Glud1+/- mice, but not in their stress-naïve or C-Glud1+/+ littermates. These effects were observed several weeks following stress exposure, and the expression levels of specific glutamatergic and GABAergic genes differentiated between high and low reversal learning performance. An increase in miR203-5p expression immediately following stress may provide a translational regulatory mechanism to account for the delayed effect of stress exposure on cognitive function. Our findings show that chronic glutamate abnormalities interact with acute stress to induce cognitive deficits, and resonate with gene x environment theories of schizophrenia. Stress-exposed C-Glud1+/- mice may model a schizophrenia high-risk population, which is uniquely sensitive to stress-related 'trigger' events.
Collapse
Affiliation(s)
- Kfir Asraf
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Hiba Zaidan
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Baylasan Natoor
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Inna Gaisler-Salomon
- School of Psychological Sciences, Department of Psychology, University of Haifa, Haifa, 3498838, Israel.
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
15
|
Orso R, Creutzberg KC, Lumertz FS, Kestering-Ferreira E, Stocchero BA, Perrone MK, Begni V, Grassi-Oliveira R, Riva MA, Viola TW. A systematic review and multilevel meta-analysis of the prenatal and early life stress effects on rodent microglia, astrocyte, and oligodendrocyte density and morphology. Neurosci Biobehav Rev 2023; 150:105202. [PMID: 37116770 DOI: 10.1016/j.neubiorev.2023.105202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Exposure to stress during early development may lead to altered neurobiological functions, thus increasing the risk for psychiatric illnesses later in life. One potential mechanism associated with those outcomes is the disruption of glial density and morphology, despite results from rodent studies have been conflicting. To address that we performed a systematic review and meta-analysis of rodent studies that investigated the effects of prenatal stress (PNS) and early life stress (ELS) on microglia, astrocyte, and oligodendrocyte density and morphology within the offspring. Our meta-analysis demonstrates that animals exposed to PNS or ELS showed significant increase in microglia density, as well as decreased oligodendrocyte density. Moreover, ELS exposure induced an increase in microglia soma size. However, we were unable to identify significant effects on astrocytes. Meta-regression indicated that experimental stress protocol, sex, age, and type of tissue analyzed are important covariates that impact those results. Importantly, PNS microglia showed higher estimates in young animals, while the ELS effects were stronger in adult animals. This set of data reinforces that alterations in glial cells could play a role in stress-induced dysfunctions throughout development.
Collapse
Affiliation(s)
- Rodrigo Orso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Kerstin Camile Creutzberg
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Francisco Sindermann Lumertz
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul, Avenida Ipiranga 6681, Building 12A, 90619-900 Porto Alegre, Brazil
| | - Erika Kestering-Ferreira
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul, Avenida Ipiranga 6681, Building 12A, 90619-900 Porto Alegre, Brazil
| | - Bruna Alvim Stocchero
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul, Avenida Ipiranga 6681, Building 12A, 90619-900 Porto Alegre, Brazil; Psychology Program, Federal University of Health Sciences of Porto Alegre, Rua Sarmento Leite 245, 90050-170 Porto Alegre, Brazil
| | - Mariana Kude Perrone
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul, Avenida Ipiranga 6681, Building 12A, 90619-900 Porto Alegre, Brazil
| | - Veronica Begni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Rodrigo Grassi-Oliveira
- Translational Neuropsychiatry Unit, Aarhus University, Entrance A, Palle Juul-Jenses Blvd. 11, 6th floor, 8200 Aarhus, Denmark
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy.
| | - Thiago Wendt Viola
- School of Medicine, Developmental Cognitive Neuroscience Lab, Pontifical Catholic University of Rio Grande do Sul, Avenida Ipiranga 6681, Building 12A, 90619-900 Porto Alegre, Brazil.
| |
Collapse
|
16
|
Messina A, Concerto C, Rodolico A, Petralia A, Caraci F, Signorelli MS. Is It Time for a Paradigm Shift in the Treatment of Schizophrenia? The Use of Inflammation-Reducing and Neuroprotective Drugs-A Review. Brain Sci 2023; 13:957. [PMID: 37371435 DOI: 10.3390/brainsci13060957] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Comprehending the pathogenesis of schizophrenia represents a challenge for global mental health. To date, although it is evident that alterations in dopaminergic, serotonergic, and glutamatergic neurotransmission underlie the clinical expressiveness of the disease, neuronal disconnections represent only an epiphenomenon. In recent years, several clinical studies have converged on the hypothesis of microglia hyperactivation and a consequent neuroinflammatory state as a pathogenic substrate of schizophrenia. Prenatal, perinatal, and postnatal factors can cause microglia to switch from M2 anti-inflammatory to M1 pro-inflammatory states. A continuous mild neuroinflammatory state progressively leads to neuronal loss, a reduction in dendritic spines, and myelin degeneration. The augmentation of drugs that reduce neuroinflammation to antipsychotics could be an effective therapeutic modality in managing schizophrenia. This review will consider studies in which drugs with anti-inflammatory and neuroprotective properties have been used in addition to antipsychotic treatment in patients with schizophrenia.
Collapse
Affiliation(s)
- Antonino Messina
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| | - Carmen Concerto
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| | - Alessandro Rodolico
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| | - Antonino Petralia
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy
- Unit of Translational Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, 94018 Troina, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Institute of Psychiatry, University of Catania, 95123 Catania, Italy
| |
Collapse
|
17
|
Kai J, Mackinley M, Khan AR, Palaniyappan L. Aberrant frontal lobe "U"-shaped association fibers in first-episode schizophrenia: A 7-Tesla Diffusion Imaging Study. Neuroimage Clin 2023; 38:103367. [PMID: 36913907 PMCID: PMC10011060 DOI: 10.1016/j.nicl.2023.103367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Schizophrenia is believed to be a developmental disorder with one hypothesis suggesting that symptoms arise due to abnormal interactions (or disconnectivity) between different brain regions. While some major deep white matter pathways have been extensively studied (e.g. arcuate fasciculus), studies of short-ranged, "U"-shaped tracts have been limited in patients with schizophrenia, in part due to the sheer abundance of tracts present and due to the spatial variations across individuals that defy probabilistic characterization in the absence of reliable templates. In this study, we use diffusion magnetic resonance imaging (dMRI) to investigate frontal lobe superficial white matter that are present in the majority of study participants, comparing healthy controls and minimally treated patients with first-episode schizophrenia (<3 median days of lifetime treatment). Through group comparisons, 3 out of 63 frontal lobe "U"-shaped tracts were found to demonstrate localized aberrations affecting the microstructural tissue properties (via diffusion tensor metrics) in this early stage of disease. No associations were found in patients between aberrant segments of affected tracts and clinical or cognitive variables. Aberrations in the frontal lobe "U"-shaped tracts in early untreated stages of psychosis occur irrespective of symptom burden, and are distributed across critical functional networks associated with executive function and salience processing. While we limited the investigation to the frontal lobe, a framework has been developed to study such connections in other brain regions, enabling further extensive investigations jointly with the major deep white matter pathways.
Collapse
Affiliation(s)
- Jason Kai
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Michael Mackinley
- Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada
| | - Ali R Khan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Lena Palaniyappan
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada; Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|