1
|
Santos de Macedo BG, Albuquerque de Melo M, Pereira-Martins DA, Machado-Neto JA, Traina F. The NLRP3 inflammasome and its role in acute myeloid leukemia onset and development. Biochim Biophys Acta Rev Cancer 2025; 1880:189371. [PMID: 40499842 DOI: 10.1016/j.bbcan.2025.189371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/05/2025] [Accepted: 06/08/2025] [Indexed: 06/19/2025]
Abstract
The tumor microenvironment plays an important role in cancer onset and progression. Its significance has been increasingly addressed in myeloid neoplasms. Such a shift marks a departure from the usual tumor-centered approach to a more comprehensive and integrated understanding of the interplay between myeloid tumors and their surroundings. On this note, we aimed to summarize, in this review, an up-to-date take on how a pro-inflammatory milieu influences clonal selection of genetically altered hematopoietic stem cells towards myeloid malignancies at the expense of their healthy counterpart; the role of NLRP3 inflammasome, a major component of the innate immunity and source of interleukin-1β, over acute myeloid leukemia development and performance; and, alongside post-translational modifications, how autophagy represents a major NLRP3 inflammasome regulator.
Collapse
Affiliation(s)
- Brunno Gilberto Santos de Macedo
- Department of Medical Images, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Manuela Albuquerque de Melo
- Department of Medical Images, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Fabiola Traina
- Department of Medical Images, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
McMillan S, Kim SJ, Yulico H, Li R, Allison M, Bascombe D, Lin X, Grodzicki BK. Common cancers among the aging population: What NPs need to know. Nurse Pract 2025; 50:39-47. [PMID: 40420349 DOI: 10.1097/01.npr.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
ABSTRACT The incidence rates for cancer increase from fewer than 25 cases per 100,000 people among those younger than age 20 years to about 350 per 100,000 among those ages 45 to 49 years and to more than 1,000 per 100,000 among those age 60 years and older. This article explores current screening guidelines for the most common cancers in the US among older adults - breast, lung and bronchus, colorectal, and prostate, with a focus on older adults. Other oncologic-focused special considerations for older adults are also addressed.
Collapse
|
3
|
Ma L, Mao JH, Barcellos-Hoff MH. Systemic inflammation in response to radiation drives the genesis of an immunosuppressed tumor microenvironment. Neoplasia 2025; 64:101164. [PMID: 40184664 PMCID: PMC11999686 DOI: 10.1016/j.neo.2025.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The composition of the tumor immune microenvironment has become a major determinant of response to therapy, particularly immunotherapy. Clinically, a tumor microenvironment lacking lymphocytes, so-called "cold" tumors, are considered poor candidates for immune checkpoint inhibition. In this review, we describe the diversity of the tumor immune microenvironment in breast cancer and how radiation exposure alters carcinogenesis. We review the development and use of a radiation-genetic mammary chimera model to clarify the mechanism by which radiation acts. Using the chimera model, we demonstrate that systemic inflammation elicited by a low dose of radiation is key to the construction of an immunosuppressive tumor microenvironment, resulting in aggressive, rapidly growing tumors lacking lymphocytes. Our experimental studies inform the non-mutagenic mechanisms by which radiation affects cancer and provide insight into the genesis of cold tumors.
Collapse
Affiliation(s)
- Lin Ma
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94143 USA.
| |
Collapse
|
4
|
Zhang N, Tian X, Sun D, Tse G, Xie B, Zhao Z, Liu T. Clonal hematopoiesis, cardiovascular disease and cancer treatment-induced cardiotoxicity. Semin Cancer Biol 2025; 111:89-114. [PMID: 40023267 DOI: 10.1016/j.semcancer.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 01/05/2025] [Accepted: 02/06/2025] [Indexed: 03/04/2025]
Abstract
Clonal hematopoiesis (CH) arises when a substantial proportion of mature blood cells is derived from a single hematopoietic stem cell lineage. It is considered to be a premalignant state that predisposes individuals to an increased risk of cancers. Recently, emerging evidence has demonstrated a strong association between CH and both the incidence and mortality of cardiovascular diseases (CVD), with the relative risks being comparable to those attributed to traditional cardiovascular risk factors. In addition, CH has been suggested to play a role in CVD and anti-cancer treatment-related cardiotoxicity amongst cancer survivors. Moreover, certain forms of chemotherapy and radiation therapy have been shown to promote the clonal expansion of specific CH-related mutations. Consequently, CH may play a substantial role in the realm of cardio-oncology. In this review, we discuss the association between CH with cancer and CVD, with a special focus on anti-cancer treatment-related cardiotoxicity, discuss possible future research avenues and propose a systematic approach for clinical practice.
Collapse
Affiliation(s)
- Nan Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xu Tian
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Dongkun Sun
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Zhiqiang Zhao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
5
|
dos Reis FD, Saidani Y, Martín-Rubio P, Sanz-Pamplona R, Stojanovic A, Correia MP. CAR-NK cells: harnessing the power of natural killers for advanced cancer therapy. Front Immunol 2025; 16:1603757. [PMID: 40519903 PMCID: PMC12162902 DOI: 10.3389/fimmu.2025.1603757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/01/2025] [Indexed: 06/18/2025] Open
Abstract
Generation of Chimeric Antigen Receptors (CARs) presented a significant advance in the field of immunotherapy, allowing the targeting of cell-surface expressed molecules in an MHC-independent manner. Arming NK cells with CARs merges their innate natural cytotoxicity with the refined precision of targeted antigen recognition. The success of these therapies hinges on selecting the right tumor-specific targets to ensure effective activation and avoid self-reactivity. Optimization of CAR design and targeting is based on NK cell intrinsic properties (CAR modules and sources of NK cells), as well as on NK-tumor cell interactions (multi-antigen, multi-step, multi-switch). Additionally, the dynamics of tumor infiltration and adaptation to the tumor microenvironment play a critical role in CAR-NK cell efficacy. Combining CAR-NK cell therapies with chemotherapy, radiotherapy, checkpoint inhibitors, and emerging approaches like epigenetic modulators and oncolytic viruses, may address some of these challenges. The development of CAR-NK cell strategies for metastatic disease is especially promising, though the complexities of metastasis require refined targeted designs. As immunomics and multi-omics continue to evolve, the potential for designing more effective CAR-NK cell therapies expands. As results from preclinical and clinical trials unfold, a multidisciplinary approach integrating all those aspects will be key to unlock the full potential of CAR-NK cell-based adoptive transfers.
Collapse
Affiliation(s)
- Filipa D. dos Reis
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP), CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Doctoral Program in Biomedical Sciences, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Yanis Saidani
- Aix Marseille Univ, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille (CRCM), Marseille, France
| | - Paula Martín-Rubio
- Cancer Heterogeneity and Immunomics (CHI), University Hospital Lozano Blesa, Aragon Health Research Institute (IISA), Zaragoza, Spain
| | - Rebeca Sanz-Pamplona
- Cancer Heterogeneity and Immunomics (CHI), University Hospital Lozano Blesa, Aragon Health Research Institute (IISA), Zaragoza, Spain
- Aragonese Foundation for Research and Development (ARAID), Zaragoza, Spain
- CIBERESP, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Stojanovic
- Department of Immunobiochemistry, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP), CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, ICBAS - School of Medicine & Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Semprini JT, Pabón-Rodríguez FM, Santiago-Rodríguez EJ, Almodóvar-Rivera IA. Quantifying the burden of cancer in Puerto Rico's oldest residents. Cancer Epidemiol 2025; 97:102838. [PMID: 40408793 DOI: 10.1016/j.canep.2025.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Puerto Rico, a United States (U.S.) territory with 99 % of its inhabitants identifying as Hispanic/Latino, has one of the most rapid aging populations in the world. We quantified the incidence and mortality of cancer among 85 + year-old residents of Puerto Rico, and compared these rates with Hispanic/Latino populations in the U.S. METHODS We accessed cancer incidence and mortality rates (2005-2021) from the United States Cancer Statistics and North American Association of Centralized Cancer Registries datafiles. Cancers were restricted to males and females of age 85 + . In addition to analyzing Puerto Rico data, we also analyzed incidence and mortality rates in nine U.S. states with large Hispanic/Latino populations. We calculated annual percentage changes (APCs), Mortality-Incidence Ratios (MIRs), and Standardized Incidence and Mortality Ratios (SIRs, SMRs) for all cancers and specific sites. RESULTS In 2021, Puerto Rico's population aged 85 + was 108,041. Since 2001, cancer incidence and mortality rates for both males and females aged 85 + in Puerto Rico declined. Puerto Rico's decline in male cancer incidence (APC = -3.1 %) and mortality (APC = -3.3 %) exceeded the respective decline in incidence (APC = -0.08 %) and mortality (APC = -0.9 %) in Hispanic/Latino male populations in the U.S. However, in 2021, the MIR in 85 + females in Puerto Rico (0.73) and males (0.94) were higher than most comparable state MIRs. While stable in most other U.S. Hispanic/Latino populations, between 2005 and 2021 in Puerto Rico, the proportion of staged cancers diagnosed at advanced stages increased 12 %. CONCLUSIONS While significant progress has been made in reducing cancer incidence and mortality among Puerto Rico's oldest residents, challenges persist. Policies improving healthcare access could help reduce the burden of cancer incidence and mortality among Puerto Rico's aging population. Data revealing disaggregated ethnicity and nationality beyond Hispanic/Latino could further inform targeted efforts to advance cancer equity across the U.S.
Collapse
Affiliation(s)
- Jason T Semprini
- Des Moines University College of Health Sciences, Department of Public Health, United States.
| | - Félix M Pabón-Rodríguez
- Indiana University School of Medicine, Department of Biostatistics and Health Data Science, United States
| | - Eduardo J Santiago-Rodríguez
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, United States; Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, United States
| | | |
Collapse
|
7
|
Steffensen LB, Kavan S, Jensen PS, Pedersen MK, Bøttger SM, Larsen MJ, Dembic M, Bergman O, Matic L, Hedin U, Andersen LVB, Lindholt JS, Houlind KC, Riber LP, Thomassen M, Rasmussen LM. Mutational landscape of atherosclerotic plaques reveals large clonal cell populations. JCI Insight 2025; 10:e188281. [PMID: 40198128 DOI: 10.1172/jci.insight.188281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/04/2025] [Indexed: 04/10/2025] Open
Abstract
The notion of clonal cell populations in human atherosclerosis has been suggested but not demonstrated. Somatic mutations are used to define cellular clones in tumors. Here, we characterized the mutational landscape of human carotid plaques through whole-exome sequencing to explore the presence of clonal cell populations. Somatic mutations were identified in 12 of 13 investigated plaques, while no mutations were detected in 11 non-atherosclerotic arteries. Mutated clones often constituted over 10% of the sample cell population, with genes related to the contractile apparatus enriched for mutations. In carriers of clonal hematopoiesis of indeterminate potential (CHIP), hematopoietic clones had infiltrated the plaque tissue and constituted substantial fractions of the plaque cell population alongside locally expanded clones. Our findings establish somatic mutations as a common feature of human atherosclerosis and demonstrate the existence of mutated clones expanding locally, as well as CHIP clones invading from the circulation. While our data do not support plaque monoclonality, we observed a pattern suggesting the coexistence of multiple mutated clones of considerable size spanning different regions of plaques. Mutated clones are likely to be relevant to disease development, and somatic mutations will serve as a convenient tool to uncover novel pathological processes of atherosclerosis in future studies.
Collapse
Affiliation(s)
- Lasse Bach Steffensen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Centre for Individualized Medicine in Arterial Diseases (CIMA)
| | - Stephanie Kavan
- Centre for Individualized Medicine in Arterial Diseases (CIMA)
- Department of Clinical Biochemistry and Pharmacology, and
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Pia Søndergaard Jensen
- Centre for Individualized Medicine in Arterial Diseases (CIMA)
- Department of Clinical Biochemistry and Pharmacology, and
| | - Matilde Kvist Pedersen
- Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Centre for Individualized Medicine in Arterial Diseases (CIMA)
| | - Steffen Møller Bøttger
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research
| | - Martin Jakob Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research
- Department of Clinical Research, and
| | - Maja Dembic
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research
- Department of Clinical Research, and
- Department of Mathematics and Computer Science (IMADA), University of Southern Denmark, Odense, Denmark
| | - Otto Bergman
- Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Lars van Brakel Andersen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research
| | - Jes Sanddal Lindholt
- Centre for Individualized Medicine in Arterial Diseases (CIMA)
- Department of Cardiothoracic Surgery, Odense University Hospital, Odense, Denmark
| | | | - Lars Peter Riber
- Department of Cardiothoracic Surgery, Odense University Hospital, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
- Clinical Genome Center, Department of Clinical Research
| | - Lars Melholt Rasmussen
- Centre for Individualized Medicine in Arterial Diseases (CIMA)
- Department of Clinical Biochemistry and Pharmacology, and
| |
Collapse
|
8
|
Chen X, Sun Y, Zhang L, Jiang B. [Research Status and Progress of Third-generation EGFR-TKIs
in Elderly Patients with Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2025; 28:334-342. [PMID: 40506487 DOI: 10.3779/j.issn.1009-3419.2025.101.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/19/2025]
Abstract
For patients with advanced non-small cell lung cancer (NSCLC) harboring sensitive epidermal growth factor receptor (EGFR) mutations, guidelines prioritize the use of third-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs), which offer higher objective response rate (ORR), longer progression-free survival (PFS), and better quality of life. However, due to the low proportion of elderly patients enrolled in clinical trials, the existing evidence is insufficient to fully guide clinical practice. This review examines the efficacy and safety differences of third-generation EGFR-TKIs as monotherapy or in combination in the elderly NSCLC by integrating subgroup analyses or pre-specified research objectives from prospective and retrospective studies. The results show that third-generation EGFR-TKIs have comparable efficacy in elderly patients to younger populations and are well-tolerated. Although combination therapies may extend survival time, the associated increased toxicity necessitates careful risk-benefit assessment.
.
Collapse
Affiliation(s)
- Xue Chen
- Kunming Medical University, Kunming 650500, China
- Department of Geriatric Oncology, the Third Affiliated Hospital of
Kunming Medical University, Kunming 650118, China
| | - Yijia Sun
- Kunming Medical University, Kunming 650500, China
- Department of Geriatric Oncology, the Third Affiliated Hospital of
Kunming Medical University, Kunming 650118, China
| | - Lihong Zhang
- Kunming Medical University, Kunming 650500, China
- Department of Geriatric Oncology, the Third Affiliated Hospital of
Kunming Medical University, Kunming 650118, China
| | - Bo Jiang
- Department of Geriatric Oncology, the Third Affiliated Hospital of
Kunming Medical University, Kunming 650118, China
| |
Collapse
|
9
|
Bhattacharya R, Avdieiev SS, Bukkuri A, Whelan CJ, Gatenby RA, Tsai KY, Brown JS. The Hallmarks of Cancer as Eco-Evolutionary Processes. Cancer Discov 2025; 15:685-701. [PMID: 40170539 DOI: 10.1158/2159-8290.cd-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/19/2024] [Accepted: 01/28/2025] [Indexed: 04/03/2025]
Abstract
SIGNIFICANCE Viewing the hallmarks as a sequence of adaptations captures the "why" behind the "how" of the molecular changes driving cancer. This eco-evolutionary view distils the complexity of cancer progression into logical steps, providing a framework for understanding all existing and emerging hallmarks of cancer and developing therapeutic interventions.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Cancer Biology, University of South Florida, Tampa, Florida
| | - Stanislav S Avdieiev
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Anuraag Bukkuri
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher J Whelan
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| | - Robert A Gatenby
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Tumor Microenvironment & Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Joel S Brown
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Mete M, Ojha A, Dhar P, Das D. Deciphering Ferroptosis: From Molecular Pathways to Machine Learning-Guided Therapeutic Innovation. Mol Biotechnol 2025; 67:1290-1309. [PMID: 38613722 DOI: 10.1007/s12033-024-01139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/11/2024] [Indexed: 04/15/2024]
Abstract
Ferroptosis is a unique form of cell death reliant on iron and lipid peroxidation. It disrupts redox balance, causing cell death by damaging the plasma membrane, with inducers acting through enzymatic pathways or transport systems. In cancer treatment, suppressing ferroptosis or circumventing it holds significant promise. Beyond cancer, ferroptosis affects aging, organs, metabolism, and nervous system. Understanding ferroptosis mechanisms holds promise for uncovering novel therapeutic strategies across a spectrum of diseases. However, detection and regulation of this regulated cell death are still mired with challenges. The dearth of cell, tissue, or organ-specific biomarkers muted the pharmacological use of ferroptosis. This review covers recent studies on ferroptosis, detailing its properties, key genes, metabolic pathways, and regulatory networks, emphasizing the interaction between cellular signaling and ferroptotic cell death. It also summarizes recent findings on ferroptosis inducers, inhibitors, and regulators, highlighting their potential therapeutic applications across diseases. The review addresses challenges in utilizing ferroptosis therapeutically and explores the use of machine learning to uncover complex patterns in ferroptosis-related data, aiding in the discovery of biomarkers, predictive models, and therapeutic targets. Finally, it discusses emerging research areas and the importance of continued investigation to harness the full therapeutic potential of targeting ferroptosis.
Collapse
Affiliation(s)
- Megha Mete
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India
| | - Amiya Ojha
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India
| | - Priyanka Dhar
- CSIR-Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Deeplina Das
- Department of Bioengineering, National Institute of Technology Agartala, Agartala, Tripura, 799046, India.
| |
Collapse
|
11
|
Vostatek R, Trappl M, Englisch C, Hohensinner P, Preusser M, Pabinger I, Ay C. Mitochondrial DNA copy number and its association with venous thromboembolism in patients with cancer. Thromb Res 2025; 248:109285. [PMID: 39965275 DOI: 10.1016/j.thromres.2025.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Venous thromboembolism (VTE) is a common and serious complication among cancer patients. Mitochondrial DNA (mtDNA) copy number is known to influence various cellular pathways involved in cancer development. While an association between reduced mtDNA and VTE risk in non-cancer patients was previously reported, its relationship with VTE in cancer patients remains unclear. Therefore, we aimed to investigate the association between mtDNA copy number and VTE risk in a nested-case control study of 48 patients from the Vienna Cancer and Thrombosis Study (CATS), a prospective observational cohort study. The mtDNA copy number was measured in equally distributed age, sex, cancer type, and stage matched patients with and without VTE using a qPCR-based method. Of the 48 patients, 24 were diagnosed with VTE (median age [IQR] 62 [57-60] years, 54.2 % female) and 24 had no VTE event (median age [IQR] 63 [58-71] years, 54.2 % female). We found that patients who developed VTE had lower mtDNA copy numbers compared to those without VTE (216.73 [167.99-401.39] vs 301.47 [210.66-526.84]). Multivariable analysis adjusting for chronological age, D-dimer, sex, cancer stage and BMI revealed that each 10-unit increase in mtDNA copy number decreased the odds of VTE occurrence by 5.9 % (p = 0.021). Patients with distant metastatic cancer (M1) had lower mtDNA copy numbers than those without distant metastasis at study inclusion (220.34 [172.67-323.70] vs 328.48 [213.89-556.68; p = 0.052). Overall, our findings suggest a potential link between reduced mtDNA copy number and increased VTE risk in cancer patients.
Collapse
Affiliation(s)
- Rafaela Vostatek
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marina Trappl
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cornelia Englisch
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Vienna, Austria
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ingrid Pabinger
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cihan Ay
- Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
12
|
Jia Y, Yan L, Fan C, Sun H, Zhou X, Shi Z. Progress of immune senescence in multiple myeloma treatment resistance. Discov Oncol 2025; 16:402. [PMID: 40138127 PMCID: PMC11947401 DOI: 10.1007/s12672-025-02136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Multiple myeloma has become the second most common hematologic malignancy threatening human health with the increasing incidence in the population, and the emergence of drug resistance in its treatment has become a problem that needs to be solved urgently. Recent studies have shown that the immune system is closely related to the development of multiple myeloma, and immune senescence plays an extremely critical role in MM treatment resistance. In this paper, we review the connection between immune senescence and the development of MM and its possible role in the drug resistance of MM treatment, to provide new research ideas for the in-depth study of the mechanism of immune senescence and the search for new immunotherapeutic targets to overcome the phenomenon of drug resistance in the immunotherapy of MM patients.
Collapse
Affiliation(s)
- Yanan Jia
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Lixiang Yan
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Chenyang Fan
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Hui Sun
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xinli Zhou
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Zhexin Shi
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| |
Collapse
|
13
|
Zarrella S, Miranda MR, Covelli V, Restivo I, Novi S, Pepe G, Tesoriere L, Rodriquez M, Bertamino A, Campiglia P, Tecce MF, Vestuto V. Endoplasmic Reticulum Stress and Its Role in Metabolic Reprogramming of Cancer. Metabolites 2025; 15:221. [PMID: 40278350 PMCID: PMC12029571 DOI: 10.3390/metabo15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Endoplasmic reticulum (ER) stress occurs when ER homeostasis is disrupted, leading to the accumulation of misfolded or unfolded proteins. This condition activates the unfolded protein response (UPR), which aims to restore balance or trigger cell death if homeostasis cannot be achieved. In cancer, ER stress plays a key role due to the heightened metabolic demands of tumor cells. This review explores how metabolomics can provide insights into ER stress-related metabolic alterations and their implications for cancer therapy. Methods: A comprehensive literature review was conducted to analyze recent findings on ER stress, metabolomics, and cancer metabolism. Studies examining metabolic profiling of cancer cells under ER stress conditions were selected, with a focus on identifying potential biomarkers and therapeutic targets. Results: Metabolomic studies highlight significant shifts in lipid metabolism, protein synthesis, and oxidative stress management in response to ER stress. These metabolic alterations are crucial for tumor adaptation and survival. Additionally, targeting ER stress-related metabolic pathways has shown potential in preclinical models, suggesting new therapeutic strategies. Conclusions: Understanding the metabolic impact of ER stress in cancer provides valuable opportunities for drug development. Metabolomics-based approaches may help identify novel biomarkers and therapeutic targets, enhancing the effectiveness of antitumor therapies.
Collapse
Affiliation(s)
- Salvatore Zarrella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Manuela Rodriquez
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| |
Collapse
|
14
|
Basu R, Boguszewski CL, Kopchick JJ. Growth Hormone Action as a Target in Cancer: Significance, Mechanisms, and Possible Therapies. Endocr Rev 2025; 46:224-280. [PMID: 39657053 DOI: 10.1210/endrev/bnae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/29/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Growth hormone (GH) is a pituitary-derived endocrine hormone required for normal postnatal growth and development. Hypo- or hypersecretion of endocrine GH results in 2 pathologic conditions, namely GH deficiency (GHD) and acromegaly. Additionally, GH is also produced in nonpituitary and tumoral tissues, where it acts rather as a cellular growth factor with an autocrine/paracrine mode of action. An increasingly persuasive and large body of evidence over the last 70 years concurs that GH action is implicit in escalating several cancer-associated events, locally and systemically. This pleiotropy of GH's effects is puzzling, but the association with cancer risk automatically raises a concern for patients with acromegaly and for individuals treated with GH. By careful assessment of the available knowledge on the fundamental concepts of cancer, suggestions from epidemiological and clinical studies, and the evidence from specific reports, in this review we aimed to help clarify the distinction of endocrine vs autocrine/paracrine GH in promoting cancer and to reconcile the discrepancies between experimental and clinical data. Along this discourse, we critically weigh the targetability of GH action in cancer-first by detailing the molecular mechanisms which posit GH as a critical node in tumor circuitry; and second, by enumerating the currently available therapeutic options targeting GH action. On the basis of our discussion, we infer that a targeted intervention on GH action in the appropriate patient population can benefit a sizable subset of current cancer prognoses.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
| | - Cesar L Boguszewski
- SEMPR, Endocrine Division, Department of Internal Medicine, Federal University of Parana, Curitiba 80060-900, Brazil
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Diabetes Institute, Ohio University Heritage College of Osteopathic Medicine (OU-HCOM), Athens, OH 45701, USA
- Molecular and Cellular Biology Program, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
15
|
Meguro S, Nakanishi M. Cellular senescence in the cancer microenvironment. J Biochem 2025; 177:171-176. [PMID: 39760850 DOI: 10.1093/jb/mvaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/25/2024] [Accepted: 12/07/2024] [Indexed: 01/07/2025] Open
Abstract
In this ageing society, the number of patients suffering from age-related diseases, including cancer, is increasing. Cellular senescence is a cell fate that involves permanent cell cycle arrest. Accumulated senescent cells in tissues over time present senescence-associated secretory phenotype (SASP) and make the inflammatory context, disturbing the tumour microenvironment. In particular, the effect of senescent cancer-associated fibroblasts on cancer progression has recently come under the spotlight. Although scientific evidence on the impact of cellular senescence on cancer is emerging, the association between cellular senescence and cancer is heterogeneous and the comprehensive mechanism is still not revealed. Recently, a therapy targeting senescent cells, senotherapeutics, has been reported to be effective against cancer in preclinical research and even clinical trials. With further research, the development of senotherapeutics as a novel cancer therapy is expected.
Collapse
Affiliation(s)
- Satoru Meguro
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639, Tokyo, Japan
- Department of Urology, Fukushima Medical University School of Medicine, Fukushima, 960-1247, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639, Tokyo, Japan
| |
Collapse
|
16
|
Trastus LA, d'Adda di Fagagna F. The complex interplay between aging and cancer. NATURE AGING 2025; 5:350-365. [PMID: 40038418 DOI: 10.1038/s43587-025-00827-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025]
Abstract
Cancer is an age-related disease, but the interplay between cancer and aging is complex and their shared molecular drivers are deeply intertwined. This Review provides an overview of how different biological pathways affect cancer and aging, leveraging evidence mainly derived from animal studies. We discuss how genome maintenance and accumulation of DNA mutations affect tumorigenesis and tissue homeostasis during aging. We describe how age-related telomere dysfunction and cellular senescence intricately modulate tumor development through mechanisms involving genomic instability and inflammation. We examine how an aged immune system and chronic inflammation shape tumor immunosurveillance, fueling DNA damage and cellular senescence. Finally, as animal models are important to untangling the relative contributions of these aging-modulated pathways to cancer progression and to test interventions, we discuss some of the limitations of physiological and accelerated aging models, aiming to improve experimental designs and enhance translation.
Collapse
Affiliation(s)
| | - Fabrizio d'Adda di Fagagna
- IFOM ETS-the AIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy.
| |
Collapse
|
17
|
Savy T, Flanders L, Karpanasamy T, Sun M, Gerlinger M. Cancer evolution: from Darwin to the Extended Evolutionary Synthesis. Trends Cancer 2025; 11:204-215. [PMID: 39880745 DOI: 10.1016/j.trecan.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025]
Abstract
The fundamental evolutionary nature of cancer has been recognized for decades. Increasingly powerful genetic and single cell sequencing technologies, as well as preclinical models, continue to unravel the evolution of premalignant cells, and progression to metastatic stages and to drug-resistant end-stage disease. Here, we summarize recent advances and distil evolutionary principles and their relevance for the clinic. We reveal how cancer cell and microenvironmental plasticity are intertwined with Darwinian evolution and demonstrate the need for a conceptual framework that integrates these processes. This warrants the adoption of the recently developed Extended Evolutionary Synthesis (EES).
Collapse
Affiliation(s)
- Thomas Savy
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lucy Flanders
- Barts Cancer Institute, Queen Mary University of London, London, UK; St Bartholomew's Hospital, London, London, UK
| | | | - Min Sun
- St Bartholomew's Hospital, London, London, UK
| | - Marco Gerlinger
- Barts Cancer Institute, Queen Mary University of London, London, UK; St Bartholomew's Hospital, London, London, UK.
| |
Collapse
|
18
|
Nussinov R, Yavuz BR, Jang H. Molecular principles underlying aggressive cancers. Signal Transduct Target Ther 2025; 10:42. [PMID: 39956859 PMCID: PMC11830828 DOI: 10.1038/s41392-025-02129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/02/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Aggressive tumors pose ultra-challenges to drug resistance. Anti-cancer treatments are often unsuccessful, and single-cell technologies to rein drug resistance mechanisms are still fruitless. The National Cancer Institute defines aggressive cancers at the tissue level, describing them as those that spread rapidly, despite severe treatment. At the molecular, foundational level, the quantitative biophysics discipline defines aggressive cancers as harboring a large number of (overexpressed, or mutated) crucial signaling proteins in major proliferation pathways populating their active conformations, primed for their signal transduction roles. This comprehensive review explores highly aggressive cancers on the foundational and cell signaling levels, focusing on the differences between highly aggressive cancers and the more treatable ones. It showcases aggressive tumors as harboring massive, cancer-promoting, catalysis-primed oncogenic proteins, especially through certain overexpression scenarios, as predisposed aggressive tumor candidates. Our examples narrate strong activation of ERK1/2, and other oncogenic proteins, through malfunctioning chromatin and crosslinked signaling, and how they activate multiple proliferation pathways. They show the increased cancer heterogeneity, plasticity, and drug resistance. Our review formulates the principles underlying cancer aggressiveness on the molecular level, discusses scenarios, and describes drug regimen (single drugs and drug combinations) for PDAC, NSCLC, CRC, HCC, breast and prostate cancers, glioblastoma, neuroblastoma, and leukemia as examples. All show overexpression scenarios of master transcription factors, transcription factors with gene fusions, copy number alterations, dysregulation of the epigenetic codes and epithelial-to-mesenchymal transitions in aggressive tumors, as well as high mutation loads of vital upstream signaling regulators, such as EGFR, c-MET, and K-Ras, befitting these principles.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD, 21702, USA
| |
Collapse
|
19
|
Zhu M, Zhu X, Han Y, Ma Z, Ji C, Wang T, Yan C, Song C, Yu C, Sun D, Jiang Y, Chen J, Yang L, Chen Y, Du H, Walters R, Millwood IY, Dai J, Ma H, Zhang Z, Chen Z, Hu Z, Lv J, Jin G, Li L, Shen H, on behalf of the China Kadoorie Biobank Collaborative Group. Polygenic risk scores for pan-cancer risk prediction in the Chinese population: A population-based cohort study based on the China Kadoorie Biobank. PLoS Med 2025; 22:e1004534. [PMID: 40019942 PMCID: PMC11870365 DOI: 10.1371/journal.pmed.1004534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/13/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Polygenic risk scores (PRSs) have been extensively developed for cancer risk prediction in European populations, but their effectiveness in the Chinese population remains uncertain. METHODS AND FINDINGS We constructed 80 PRSs for the 13 most common cancers using seven schemes and evaluated these PRSs in 100,219 participants from the China Kadoorie Biobank (CKB). The optimal PRSs with the highest discriminatory ability were used to define genetic risk, and their site-specific and cross-cancer associations were assessed. We modeled 10-year absolute risk trajectories for each cancer across risk strata defined by PRSs and modifiable risk scores and quantified the explained relative risk (ERR) of PRSs with modifiable risk factors for different cancers. More than 60% (50/80) of the PRSs demonstrated significant associations with the corresponding cancer outcomes. Optimal PRSs for nine common cancers were identified, with each standard deviation increase significantly associated with corresponding cancer risk (hazard ratios (HRs) ranging from 1.20 to 1.76). Compared with participants at low genetic risk and reduced modifiable risk scores, those with high genetic risk and elevated modifiable risk scores had the highest risk of incident cancer, with HRs ranging from 1.97 (95% confidence interval (CI): 1.11-3.48 for cervical cancer, P = 0.020) to 8.26 (95% CI: 1.92-35.46 for prostate cancer, P = 0.005). We observed nine significant cross-cancer associations for PRSs and found the integration of PRSs significantly increased the prediction accuracy for most cancers. The PRSs contributed 2.6%-20.3%, while modifiable risk factors explained 2.3%-16.7% of the ERR in the Chinese population. CONCLUSIONS The integration of existing evidence has facilitated the development of PRSs associated with nine common cancer risks in the Chinese population, potentially improving clinical risk assessment.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xia Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yuting Han
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhimin Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Ji
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tianpei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caiwang Yan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ci Song
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Canqing Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Jiaping Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Ling Yang
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Yiping Chen
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Huaidong Du
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robin Walters
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Iona Y Millwood
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Genomic Science and Precision Medicine Institute, Gusu School, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Genomic Science and Precision Medicine Institute, Gusu School, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Zhibin Hu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | - Jun Lv
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Guangfu Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
- Department of Chronic Non-Communicable Disease Control, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Liming Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Hongbing Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine and China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
20
|
Boccardi V, Marano L. The telomere connection between aging and cancer: The burden of replication stress and dysfunction. Mech Ageing Dev 2025; 223:112026. [PMID: 39805504 DOI: 10.1016/j.mad.2025.112026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/19/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Aging is a complex process that affects individuals at the molecular, cellular, tissue, and systemic levels, arising from the cumulative effects of damage and reduced repair mechanisms. This process leads to the onset of age-related diseases, including cancer, which exhibits increased incidence with age. Telomeres, the protective caps at chromosome ends, play a crucial role in genome stability and are closely connected with aging and age-related disorders. Both excessively short and long telomere lengths may contribute to cancer development when their balance is disrupted. Fragile telomeres, characterized by abnormalities and replication stress, may provide novel insights into the connection between aging and cancer. The accumulation of fragile telomeres, possibly due to intense replicative stress, may represent a key factor. Given the dynamic nature of telomeres, large longitudinal studies are essential for understanding their role in aging and cancer susceptibility, which is crucial for developing effective strategies to promote healthy aging and mitigate cancer risk.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Piazzale Gambuli 1, Perugia 06132, Italy.
| | - Luigi Marano
- Department of Medicine, Academy of Applied Medical and Social Sciences-AMiSNS: Akademia Medycznych I Spolecznych Nauk Stosowanych, 2 Lotnicza Street, Elbląg 82-300, Poland; Department of General Surgery and Surgical Oncology, "Saint Wojciech" Hospital, "Nicolaus Copernicus" Health Center, Jana Pawła II 50, Gdańsk 80-462, Poland
| |
Collapse
|
21
|
Maleki A, Mirza Ali Mohammadi MM, Gholizadeh S, Dalvandi B, Rahimi M, Tarokhian A. Machine learning-assisted cancer diagnosis in patients with paraneoplastic autoantibodies. Discov Oncol 2025; 16:87. [PMID: 39862278 PMCID: PMC11762019 DOI: 10.1007/s12672-025-01836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
PURPOSE Paraneoplastic syndromes (PNS) are a group of rare disorders triggered by an immune response to malignancy, characterized by diverse neurological, muscular, and systemic symptoms. This study aims to leverage machine learning to develop a predictive model for cancer diagnosis in patients with paraneoplastic autoantibodies. METHODS Demographic data included age and sex, and presenting symptoms were recorded. Laboratory data comprised serum or cerebrospinal fluid (CSF) paraneoplastic autoantibody panels. The study included participants who tested positive for at least one autoantibody. Naive Bayes model was used to predict cancer presence. Model performance was evaluated using sensitivity, specificity, likelihood ratios, predictive values, AUC-ROC, Brier score, and overall accuracy. Feature importance was assessed using SHapley Additive exPlanations (SHAP) values. A graphical user interface (GUI)-based application was developed to facilitate model use. RESULTS The study included 116 participants, with an average age of 57.1 years and a higher proportion of females (53.4%). The most common presenting symptom was ''Motor'' (40.5%), followed by ''Cognitive'' (17.2%) and ''Bulbar'' (15.5%) symptoms. Cancer was present in 23 participants (19.8%). The Naive Bayes model demonstrated high performance with a sensitivity of 85.71% and specificity of 100.00%. The AUC-ROC was 0.9795, indicating excellent diagnostic capability. Age and the presence or absence of specific autoantibodies were significant predictors of cancer. CONCLUSION Machine learning models, such as the Naive Bayes classifier developed in this study, can accurately stratify cancer risk in patients with positive paraneoplastic autoantibodies.
Collapse
Affiliation(s)
- Alireza Maleki
- College of Management, University of Tehran, Tehran, Iran
| | | | | | - Behnaz Dalvandi
- Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Rahimi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aidin Tarokhian
- School of Medicine, Hamadan University of Medical Sciences, Pajoohesh Blvd, Hamadan, Iran.
| |
Collapse
|
22
|
Zhao R, Yuan H, Chen S, Xu K, Zhang T, Liu Z, Jiang Y, Suo C, Chen X. Impact of accelerated biological aging and genetic variation on esophageal adenocarcinoma: Joint and interaction effect in a prospective cohort. Int J Cancer 2025; 156:299-309. [PMID: 39233364 DOI: 10.1002/ijc.35161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
Accelerated biological aging may be associated with increased risk of esophageal adenocarcinoma (EAC). However, its relationship with genetic variation, and its effect on improving risk population stratification, remains unknown. We performed an exposome association study to determine potential associated factors associated with EAC. To quantify biological age and its difference from chronological age, we calculated the BioAge10 and Biological Age Acceleration (BioAgeAccel) based on chronological age and nine biomarkers. Multivariable Cox regression models for 362,310 participants from the UK Biobank with a median follow-up of 13.70 years were performed. We established a weighted polygenic risk score (wPRS) associated with EAC, to assess joint and interaction effects with BioAgeAccel. Four indicators were used to evaluate their interaction effects, and we fitted curves to evaluate the risk stratification ability of BioAgeAccel. Compared with biologically younger participants, those older had higher risk of EAC, with adjusted HR of 1.79 (95%CI: 1.52-2.10). Compared with low wPRS and biologically younger group, the high wPRS and biologically older group had a 4.30-fold increase in HR (95% CI: 2.78-6.66), at meanwhile, 1.15-fold relative excess risk was detected (95% CI: 0.30-2.75), and 22% of the overall EAC risk was attributable to the interactive effects (95% CI: 12%-31%). The 10-year absolute incidence risk indicates that biologically older individuals should begin screening procedures 4.18 years in advance, while youngers can postpone screening by 4.96 years, compared with general population. BioAgeAccel interacted positively with genetic variation and increased risk of EAC, it could serve as a novel indicator for predicting incidence.
Collapse
Affiliation(s)
- Renjia Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and School of Life Science, Fudan University, Shanghai, China
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and School of Life Science, Fudan University, Shanghai, China
| | - Shuaizhou Chen
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Kelin Xu
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and School of Life Science, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and School of Life Science, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chen Suo
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and School of Life Science, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Yiwu Research Institute of Fudan University, Yiwu, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Cañeque T, Rodriguez R. Ageing of stem cells reduces their capacity to form tumours. Nature 2025; 637:36-37. [PMID: 39633118 DOI: 10.1038/d41586-024-03721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
|
24
|
Nahm ES, McQuaige M, Steacy K, Zhu S, Seong H. The Impact of a Digital Cancer Survivorship Patient Engagement Toolkit on Older Cancer Survivors' Health Outcomes. Comput Inform Nurs 2025; 43:e01199. [PMID: 39365650 DOI: 10.1097/cin.0000000000001199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Cancer predominantly affects older adults. An estimated 62% of the 15.5 million American cancer survivors are 65 years or older. Provision of supportive care is critical to this group; however, limited resources are available to them. As older survivors increasingly adopt technology, digital health programs have significant potential to provide them with longitudinal supportive care. Previously, we developed/tested a digital Cancer Survivorship Patient Engagement Toolkit for older adults, Cancer Survivorship Patient Engagement Toolkit Silver. The study examined the preliminary impact of the Cancer Survivorship Patient Engagement Toolkit Silver on older survivors' health outcomes. This was a 2-arm randomized controlled trial with two observations (baseline, 8 weeks) on a sample of 60 older cancer survivors (mean age, 70.1 ± 3.8 years). Outcomes included health-related quality of life, self-efficacy for coping with cancer, symptom burden, health behaviors, and patient-provider communication. Data were analyzed using descriptive statistics, linear mixed models, and content analysis. At 8 weeks, the Cancer Survivorship Patient Engagement Toolkit Silver group showed more improved physical health-related quality of life ( P < .001, effect size = 0.64) and symptom burden ( P = .053, effect size = -0.41) than the control group. Self-efficacy (effect size = 0.56), mental health-related quality of life (effect size = 0.26), and communication (effect size = 0.40) showed clinically meaningful effect sizes of improvement. Most participants reported benefits on health management (mean, 19.41 ± 2.6 [3-21]). Further research is needed with larger and more diverse older cancer populations.
Collapse
Affiliation(s)
- Eun-Shim Nahm
- Author Affiliations: University of Maryland School of Nursing (Drs Nahm and Zhu) and University of Maryland Medical Center (Mss McQuaige and Steacy), Baltimore; and College of Nursing, Keimyung University, Daegu, Republic of Korea (Dr Seong)
| | | | | | | | | |
Collapse
|
25
|
Xiao J, Cao Y, Li X, Xu L, Wang Z, Huang Z, Mu X, Qu Y, Xu Y. Elucidation of Factors Affecting the Age-Dependent Cancer Occurrence Rates. Int J Mol Sci 2024; 26:275. [PMID: 39796131 PMCID: PMC11720044 DOI: 10.3390/ijms26010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Cancer occurrence rates exhibit diverse age-related patterns, and understanding them may shed new and important light on the drivers of cancer evolution. This study systematically analyzes the age-dependent occurrence rates of 23 carcinoma types, focusing on their age-dependent distribution patterns, the determinants of peak occurrence ages, and the significant difference between the two genders. According to the SEER reports, these cancer types have two types of age-dependent occurrence rate (ADOR) distributions, with most having a unimodal distribution and a few having a bimodal distribution. Our modeling analyses have revealed that (1) the first type can be naturally and simply explained using two age-dependent parameters: the total number of stem cell divisions in an organ from birth to the current age and the availability levels of bloodborne growth factors specifically needed by the cancer (sub)type, and (2) for the second type, the first peak is due to viral infection, while the second peak can be explained as in (1) for each cancer type. Further analyses indicate that (i) the iron level in an organ makes the difference between the male and female cancer occurrence rates, and (ii) the levels of sex hormones are the key determinants in the onset age of multiple cancer types. This analysis deepens our understanding of the dynamics of cancer evolution shared by diverse cancer types and provides new insights that are useful for cancer prevention and therapeutic strategies, thereby addressing critical gaps in the current paradigm of oncological research.
Collapse
Affiliation(s)
- Jun Xiao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Yangkun Cao
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
- School of Artificial Intelligence, Jilin University, Changchun 130012, China
| | - Xuan Li
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Long Xu
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Zhihang Wang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Zhenyu Huang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Xuechen Mu
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
- School of Mathematics, Jilin University, Changchun 130012, China
| | - Yinwei Qu
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (J.X.); (X.L.); (Z.W.); (Z.H.)
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| | - Ying Xu
- Systems Biology Laboratory for Metabolic Reprogramming, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.C.); (L.X.); (X.M.)
| |
Collapse
|
26
|
Oelschläger L, Künstner A, Frey F, Leitner T, Leypoldt L, Reimer N, Gebauer N, Bastian L, Weisel K, Sailer VW, Röcken C, Klapper W, Konukiewitz B, Murga Penas EM, Forster M, Schub N, Ahmed HMM, Kirfel J, von Bubnoff NCC, Busch H, Khandanpour C. Whole-Exome Sequencing, Mutational Signature Analysis, and Outcome in Multiple Myeloma-A Pilot Study. Int J Mol Sci 2024; 25:13418. [PMID: 39769182 PMCID: PMC11680055 DOI: 10.3390/ijms252413418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The complex and heterogeneous genomic landscape of multiple myeloma (MM) and many of its clinical and prognostic implications remains to be understood. In other cancers, such as breast cancer, using whole-exome sequencing (WES) and molecular signatures in clinical practice has revolutionized classification, prognostic prediction, and patient management. However, such integration is still in its early stages in MM. In this study, we analyzed WES data from 35 MM patients to identify potential mutational signatures and driver mutations correlated with clinical and cytogenetic characteristics. Our findings confirm the complex mutational spectrum and its impact on previously described ontogenetic and epigenetic pathways. They show TYW1 as a possible new potential driver gene and find no significant associations of mutational signatures with clinical findings. Further studies are needed to strengthen the role of mutational signatures in the clinical context of patients with MM to improve patient management.
Collapse
Affiliation(s)
- Lorenz Oelschläger
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein (UKSH), University Cancer Center Schleswig-Holstein (UCCSH), Campus Lübeck, 23538 Lübeck, Germany
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23538 Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany
| | - Friederike Frey
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein (UKSH), University Cancer Center Schleswig-Holstein (UCCSH), Campus Lübeck, 23538 Lübeck, Germany
| | - Theo Leitner
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein (UKSH), University Cancer Center Schleswig-Holstein (UCCSH), Campus Lübeck, 23538 Lübeck, Germany
| | - Lisa Leypoldt
- Department of Hematology, Oncology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, 20521 Hamburg, Germany
| | - Niklas Reimer
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23538 Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein (UKSH), University Cancer Center Schleswig-Holstein (UCCSH), Campus Lübeck, 23538 Lübeck, Germany
| | - Lorenz Bastian
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany
- Division for Stem Cell Transplantation and Immunotherapy, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Katja Weisel
- Department of Hematology, Oncology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, 20521 Hamburg, Germany
| | - Verena-Wilbeth Sailer
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany
- Department of Pathology, University of Lübeck, 23538 Lübeck, Germany
| | - Christoph Röcken
- Department of Pathology, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany
| | - Wolfram Klapper
- Department of Pathology, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany
| | - Björn Konukiewitz
- Department of Pathology, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany
| | - Eva Maria Murga Penas
- Institute of Human Genetics, University Hospital Schleswig-Holstein (UKSH)/Christian-Albrechts University Kiel (CAU), 24105 Kiel, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts University, 24105 Kiel, Germany
| | - Natalie Schub
- Division for Stem Cell Transplantation and Immunotherapy, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Helal M. M. Ahmed
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein (UKSH), University Cancer Center Schleswig-Holstein (UCCSH), Campus Lübeck, 23538 Lübeck, Germany
| | - Jutta Kirfel
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany
- Department of Pathology, University of Lübeck, 23538 Lübeck, Germany
| | - Nikolas Christian Cornelius von Bubnoff
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein (UKSH), University Cancer Center Schleswig-Holstein (UCCSH), Campus Lübeck, 23538 Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23538 Lübeck, Germany
- University Cancer Center Schleswig-Holstein, University Hospital of Schleswig-Holstein, 23538 Lübeck, Germany
| | - Cyrus Khandanpour
- Department of Hematology and Oncology, University Medical Center Schleswig-Holstein (UKSH), University Cancer Center Schleswig-Holstein (UCCSH), Campus Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
27
|
Ronan G, Yang J, Zorlutuna P. Small Extracellular Vesicles Isolated from Cardiac Tissue Matrix or Plasma Display Distinct Aging-Related Changes in Cargo Contributing to Chronic Cardiovascular Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627231. [PMID: 39713371 PMCID: PMC11661072 DOI: 10.1101/2024.12.06.627231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Aging is a major risk factor for cardiovascular disease, the leading cause of death worldwide, and numerous other diseases, but the mechanisms of these aging-related effects remain elusive. Chronic changes in the microenvironment and paracrine signaling behaviors have been implicated, but remain understudied. Here, for the first time, we directly compare extracellular vesicles obtained from young and aged patients to identify therapeutic or disease-associated agents, and directly compare vesicles isolated from heart tissue matrix (TEVs) or plasma (PEVs). While young EVs showed notable overlap of miRNA cargo, aged EVs differed substantially, indicating differential age-related changes between TEVs and PEVs. TEVs overall were uniquely enriched in miRNAs which directly or indirectly demonstrate cardioprotective effects, with 45 potential therapeutic agents implicated in our analysis. Both populations also showed increased predisposition to disease with aging, though through different mechanisms. PEVs were largely correlated with chronic systemic inflammation, while TEVs were more related to cardiac homeostasis and local inflammation. From this, 17 protein targets unique to TEVs were implicated as aging-related changes which likely contribute to the development of cardiovascular disease.
Collapse
Affiliation(s)
- George Ronan
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jun Yang
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| |
Collapse
|
28
|
Valdés A, Ruiz-Saavedra S, Salazar N, Cifuentes A, Suárez A, Díaz Y, del Rey CG, González S, de los Reyes-Gavilán CG. Faecal Metabolome Profiles in Individuals Diagnosed with Hyperplastic Polyps and Conventional Adenomas. Int J Mol Sci 2024; 25:13324. [PMID: 39769089 PMCID: PMC11676107 DOI: 10.3390/ijms252413324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Colorectal cancer (CRC) development is a gradual process in which progressive histological alterations of the intestinal mucosa damage occur over years. This process can be influenced by modifiable external factors such as lifestyle and diet. Most CRC cases (>80%) originate from conventional adenomas through the adenomatous pathway and usually harbour dysplastic cells, whereas the serrated pathway is less frequent (<20% cases) and comprises hyperplastic polyps and other polyps containing dysplastic cells. The aim of the present work was to shed light on alterations of the faecal metabolome associated with hyperplastic polyps and conventional adenomas. Metabolites were analysed by Reversed-Phase High-Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (RP/HPLC-Q/TOF-MS/MS) and Hydrophilic Interaction Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (HILIC-Q/TOF-MS/MS) and the results were integrated. Comparisons were performed between controls without mucosal lesions and the polyps' group, hyperplastic polyps versus conventional adenomas, and hyperplastic polyps or conventional adenomas versus controls. Alterations of metabolites in specific biochemical modules differentiated hyperplastic polyps and conventional adenomas. The metabolome of the hyperplastic polyps was characterized by an enrichment in glycerophospholipids and an altered metabolism of the degradation pathways of xanthines/purines and pyrimidines, whereas the enrichment in some phenolic compounds and disaccharides, all of them from exogenous origin, was the main differential faecal signature of conventional adenomas. Further research could help to elucidate the contribution of diet and the intestinal microbiota to these metabolomics alterations.
Collapse
Affiliation(s)
- Alberto Valdés
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (A.V.); (A.C.)
| | - Sergio Ruiz-Saavedra
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33011 Oviedo, Spain; (S.R.-S.); (N.S.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33011 Oviedo, Spain; (S.R.-S.); (N.S.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Alejandro Cifuentes
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (A.V.); (A.C.)
| | - Adolfo Suárez
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
- Digestive Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | - Ylenia Díaz
- Digestive Service, Carmen and Severo Ochoa Hospital, 33819 Cangas del Narcea, Spain;
| | - Carmen González del Rey
- Department of Anatomical Pathology, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain;
| | - Sonia González
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33011 Oviedo, Spain; (S.R.-S.); (N.S.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| |
Collapse
|
29
|
Kersting J, Lazareva O, Louadi Z, Baumbach J, Blumenthal DB, List M. DysRegNet: Patient-specific and confounder-aware dysregulated network inference towards precision therapeutics. Br J Pharmacol 2024. [PMID: 39631757 DOI: 10.1111/bph.17395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/09/2024] [Accepted: 10/05/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND AND PURPOSE Gene regulation is frequently altered in diseases in unique and patient-specific ways. Hence, personalised strategies have been proposed to infer patient-specific gene-regulatory networks. However, existing methods do not scale well because they often require recomputing the entire network per sample. Moreover, they do not account for clinically important confounding factors such as age, sex or treatment history. Finally, a user-friendly implementation for the analysis and interpretation of such networks is missing. EXPERIMENTAL APPROACH We present DysRegNet, a method for inferring patient-specific regulatory alterations (dysregulations) from bulk gene expression profiles. We compared DysRegNet to the well-known SSN method, considering patient clustering, promoter methylation, mutations and cancer-stage data. KEY RESULTS We demonstrate that both SSN and DysRegNet produce interpretable and biologically meaningful networks across various cancer types. In contrast to SSN, DysRegNet can scale to arbitrary sample numbers and highlights the importance of confounders in network inference, revealing an age-specific bias in gene regulation in breast cancer. DysRegNet is available as a Python package (https://github.com/biomedbigdata/DysRegNet_package), and analysis results for 11 TCGA cancer types are available through an interactive web interface (https://exbio.wzw.tum.de/dysregnet). CONCLUSION AND IMPLICATIONS DysRegNet introduces a novel bioinformatics tool enabling confounder-aware and patient-specific network analysis to unravel regulatory alteration in complex diseases.
Collapse
Affiliation(s)
- Johannes Kersting
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Olga Lazareva
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Junior Clinical Cooperation Unit Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zakaria Louadi
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - David B Blumenthal
- Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus List
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Munich Data Science Institute, Technical University of Munich, Garching, Germany
| |
Collapse
|
30
|
Welsh C, Welham C, Anderson J, Green MA, Quinn C, Lai J, Vernon S, Paley L. Can we empirically derive a geographic definition of 'coastal' for use in cancer data reporting? An ecological modelling study using England's national cancer registry. BMJ PUBLIC HEALTH 2024; 2:e001067. [PMID: 40018564 PMCID: PMC11816705 DOI: 10.1136/bmjph-2024-001067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 10/29/2024] [Indexed: 03/01/2025]
Abstract
Background Reducing avoidable systematic differences in population health requires first understanding which populations are currently disadvantaged. Although the health of coastal communities in England has been of concern for some years, an operationalised definition of 'coastal' is lacking. This study aims to use national cancer statistics to define and validate a small area-level definition of 'coastal' that could be used to better report cancer-related health inequalities in England. Methods Information on the geography and demography of English populations at the Lower Super Output Area (LSOA) level were used to define a suite of candidate coastal variables that considered foreshore proximity, resident population location, rurality and deprivation. Adjusted linear models of LSOA-level statistics of cancer incidence, prevalence and mortality in England (2016 to 2020) were used to identify candidate coastal variable(s) that explained the greatest proportion of variation in cancer outcomes after adjustment. Results The candidate 'G_25_5' (LSOA's designated as 'coastal' if 25% or more of postcodes were within 5 km of the coastline) was selected as the candidate that explained the most residual variation in cancer incidence and prevalence after adjustment. This variable would assign 7377 2011 LSOAs as coastal, whose populations summed to 12.3 million people (22% of England's population, in 2016). This candidate variable was not significantly associated with cancer mortality. Conclusions The coastal variable that we identify can explain some of the 'coastal excess' in poor cancer outcomes. We propose that this variable is now embedded into health inequalities reporting and adopted as the working definition of 'coastal' implicated in NHS England's 'Core20PLUS5' approach for use in cancer data reporting.
Collapse
Affiliation(s)
| | | | | | - Mark Alan Green
- Geography & Planning, University of Liverpool, Liverpool, UK
| | | | | | | | | |
Collapse
|
31
|
Yan P, Jimenez ER, Li Z, Bui T, Seehawer M, Nishida J, Foidart P, Stevens LE, Xie Y, Gomez MM, Park SY, Long HW, Polyak K. Midkine as a driver of age-related changes and increase in mammary tumorigenesis. Cancer Cell 2024; 42:1936-1954.e9. [PMID: 39366375 PMCID: PMC11560576 DOI: 10.1016/j.ccell.2024.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 10/06/2024]
Abstract
Aging is a pivotal risk factor for cancer, yet the underlying mechanisms remain poorly defined. Here, we explore age-related changes in the rat mammary gland by single-cell multiomics. Our findings include increased epithelial proliferation, loss of luminal identity, and decreased naive B and T cells with age. We discover a luminal progenitor population unique to old rats with profiles reflecting precancerous changes and identify midkine (Mdk) as a gene upregulated with age and a regulator of age-related luminal progenitors. Midkine treatment of young rats mimics age-related changes via activating PI3K-AKT-SREBF1 pathway and promotes nitroso-N-methylurea-induced mammary tumorigenesis. Midkine levels increase with age in human blood and mammary epithelium, and higher MDK in normal breast tissue is associated with higher breast cancer risk in younger women. Our findings reveal a link between aging and susceptibility to tumor initiation and identify midkine as a mediator of age-dependent increase in breast tumorigenesis.
Collapse
Affiliation(s)
- Pengze Yan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Ernesto Rojas Jimenez
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Triet Bui
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jun Nishida
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pierre Foidart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Laura E Stevens
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Yingtian Xie
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Miguel Munoz Gomez
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - So Yeon Park
- Department of Pathology, Seoul National University, Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Seoul National University, Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea; Harvard Stem Cell Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
32
|
Carleton N, Lee S, Li R, Zou J, Brown DD, Hooda J, Chang A, Kumar R, Klei LR, Rigatti LH, Newsome J, John Mary DJS, Atkinson JM, West RE, Nolin TD, Oberly PJ, Huang Z, Poirier D, Diego EJ, Lucas PC, Tseng G, Lotze MT, McAuliffe PF, Zervantonakis IK, Oesterreich S, Lee AV. Systemic and local chronic inflammation and hormone disposition promote a tumor-permissive environment for breast cancer in older women. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.616978. [PMID: 39484485 PMCID: PMC11526964 DOI: 10.1101/2024.10.18.616978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Estrogen receptor positive (ER+) breast cancer is the most common subtype of breast cancer and is an age-related disease. The peak incidence of diagnosis occurs around age 70, even though these post-menopausal patients have low circulating levels of estradiol (E2). Despite the hormone sensitivity of age-related tumors, we have a limited understanding of the interplay between systemic and local hormones, chronic inflammation, and immune changes that contribute to the growth and development of these tumors. Here, we show that aged F344 rats treated with the dimethylbenz(a)anthracene / medroxyprogestrone acetate (DMBA/MPA) carcinogen develop more tumors at faster rates than their younger counterparts, suggesting that the aged environment promotes tumor initiation and impacts growth. Single-nuclei RNA-seq (snRNA-seq) of the tumors showed broad local immune dysfunction that was associated with circulating chronic inflammation. Across a broad cohort of specimens from patients with ER+ breast cancer and age-matched donors of normal breast tissue, we observe that even with an estrone (E1)-predominant estrogen disposition in the systemic circulation, tumors in older patients increase HSD17B7 expression to convert E1 to E2 in the tumor microenvironment (TME) and have local E2 levels similar to pre-menopausal patients. Concurrently, trackable increases in several chemokines, defined most notably by CCL2, promote a chronically inflamed but immune dysfunctional TME. This unique milieu in the aged TME, characterized by high local E2 and chemokine-enriched chronic inflammation, promotes both accumulation of tumor-associated macrophages (TAMs), which serve as signaling hubs, as well as polarization of TAMs towards a CD206+/PD-L1+, immunosuppressive phenotype. Pharmacologic targeting of estrogen signaling (either by HSD17B7 inhibition or with fulvestrant) and chemokine inflammation both decrease local E2 and prevent macrophage polarization. Overall, these findings suggest that chronic inflammation and hormonal disposition are critical contributors to the age-related nature of ER+ breast cancer development and growth and offer potential therapeutic insight to treat these patients. Translational Summary We uncover the unique underpinnings establishing how the systemic host environment contributes to the aged breast tumor microenvironment, characterized by high local estradiol and chronic inflammation with immune dysregulation, and show that targeting avenues of estrogen conversion and chronic inflammation work to restore anti-tumor immunity.
Collapse
|
33
|
Nurkolis F, Utami TW, Alatas AI, Wicaksono D, Kurniawan R, Ratmandhika SR, Sukarno KT, Pahu YGP, Kim B, Tallei TE, Tjandrawinata RR, Alhasyimi AA, Surya R, Helen H, Halim P, Muhar AM, Syahputra RA. Can salivary and skin microbiome become a biodetector for aging-associated diseases? Current insights and future perspectives. FRONTIERS IN AGING 2024; 5:1462569. [PMID: 39484071 PMCID: PMC11524912 DOI: 10.3389/fragi.2024.1462569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 11/03/2024]
Abstract
Growth and aging are fundamental elements of human development. Aging is defined by a decrease in physiological activities and higher illness vulnerability. Affected by lifestyle, environmental, and hereditary elements, aging results in disorders including cardiovascular, musculoskeletal, and neurological diseases, which accounted for 16.1 million worldwide deaths in 2019. Stress-induced cellular senescence, caused by DNA damage, can reduce tissue regeneration and repair, promoting aging. The root cause of many age-related disorders is inflammation, encouraged by the senescence-associated secretory phenotype (SASP). Aging's metabolic changes and declining immune systems raise illness risk via promoting microbiome diversity. Stable, individual-specific skin and oral microbiomes are essential for both health and disease since dysbiosis is linked with periodontitis and eczema. Present from birth to death, the human microbiome, under the influence of diet and lifestyle, interacts symbiotically with the body. Poor dental health has been linked to Alzheimer's and Parkinson's diseases since oral microorganisms and systemic diseases have important interactions. Emphasizing the importance of microbiome health across the lifetime, this study reviews the understanding of the microbiome's role in aging-related diseases that can direct novel diagnosis and treatment approaches.
Collapse
Affiliation(s)
- Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, Indonesia
| | - Trianna Wahyu Utami
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Aiman Idrus Alatas
- Program of Clinical Microbiology Residency, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Danar Wicaksono
- Alumnus Department of Dermatology and Venereology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Rudy Kurniawan
- Graduate School of Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | | | | | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
| | | | - Ananto Ali Alhasyimi
- Department of Orthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Reggie Surya
- Department of Food Technology, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia
| | - Helen Helen
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Adi Muradi Muhar
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
34
|
Miranda R, Smets T, Pivodic L, Chambaere K, Pesut B, Duggleby W, Onwuteaka-Philipsen BD, Gomes B, May P, Szczerbińska K, Davies AN, Ferraris D, Pasman HR, Furlan de Brito M, Barańska I, Gangeri L, Van den Block L. Adapting, implementing and evaluating a navigation intervention for older people with cancer and their family caregivers in six countries in Europe: the Horizon Europe-funded EU NAVIGATE project. Palliat Care Soc Pract 2024; 18:26323524241288873. [PMID: 39435050 PMCID: PMC11492236 DOI: 10.1177/26323524241288873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Background Navigation interventions could support, educate and empower older people with cancer and/or their family caregivers by addressing barriers and ensuring timely access to needed services and resources throughout the continuum of supportive, palliative and end-of-life care. Objectives European Union (EU) NAVIGATE is an interdisciplinary and cross-country Horizon Europe-funded project (2022-2027) aiming to evaluate the effectiveness, cost-effectiveness and implementation of a navigation intervention for older people with cancer and their family caregivers in Europe. EU NAVIGATE aims to advance the evidence on cancer patient navigation in Europe. Design Adaptation, implementation and evaluation of a navigation intervention with an international pragmatic randomized controlled trial (RCT) and embedded mixed-method process evaluation at its core. A logic model guides dissemination and impact-generating strategies. EU NAVIGATE involves six experienced EU academic partners; one EU national cancer league with their affiliated academic partner; three EU dissemination partners; and a Canadian partner. Methods We adapted the Canadian Navigation: Connecting, Advocating, Resourcing, and Engaging (Nav-CARE©) volunteer programme to healthcare contexts in Belgium, Ireland, Italy, the Netherlands, Poland and Portugal following the new ADAPT guidance. Nav-CARE was developed over the past 15 years and supports people with declining health and their families to improve their quality of life and well-being, foster empowerment and facilitate timely and equitable access to healthcare and social services. In EU NAVIGATE, the navigation intervention is being provided by trained and mentored social workers in Poland and by trained and mentored volunteers in the other five countries. Via a pragmatic RCT with process evaluation, we implement and evaluate the navigation intervention to study its impact on older people with cancer and their family caregivers. We also aim to understand its cost-effectiveness, how to optimally implement it in different countries, and its differential effects in patient subgroups. We will also map existing cancer navigation interventions in Europe, the United States and Canada to position EU NAVIGATE within the field of navigation interventions worldwide. Conclusion EU NAVIGATE aims to deliver high-quality evidence on a navigation intervention for older people with cancer in Europe and to develop practice and policy recommendations for sustainable implementation of navigation interventions in Europe and beyond.
Collapse
Affiliation(s)
- Rose Miranda
- End-of-Life Care Research Group, Vrije Universiteit Brussel & Universiteit Gent, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Tinne Smets
- End-of-Life Care Research Group, Vrije Universiteit Brussel & Universiteit Gent, Brussels, Belgium
- Department of Family Medicine and Chronic Care, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lara Pivodic
- End-of-Life Care Research Group, Vrije Universiteit Brussel & Universiteit Gent, Brussels, Belgium
- Department of Family Medicine and Chronic Care, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kenneth Chambaere
- End-of-Life Care Research Group, Vrije Universiteit Brussel & Universiteit Gent, Brussels, Belgium
- Department of Public Health and Primary Care & End-of-Life Care Research Group, Universiteit Gent, Ghent, Belgium
| | - Barbara Pesut
- School of Nursing, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Wendy Duggleby
- Faculty of Nursing, University of Alberta, Edmonton, AB, Canada
| | - Bregje D. Onwuteaka-Philipsen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Public and Occupational Health, Expertise Center for Palliative Care Amsterdam UMC, Amsterdam, the Netherlands
| | - Barbara Gomes
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, King’s College London, London, UK
| | - Peter May
- Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, King’s College London, London, UK
- Trinity College Dublin, Dublin, Ireland
| | - Katarzyna Szczerbińska
- Laboratory for Research on Aging Society, Chair of Epidemiology and Preventive Medicine, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | | | | | - H. Roeline Pasman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Public and Occupational Health, Expertise Center for Palliative Care Amsterdam UMC, Amsterdam, the Netherlands
| | - Maja Furlan de Brito
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Cicely Saunders Institute of Palliative Care, Policy and Rehabilitation, King’s College London, London, UK
| | - Ilona Barańska
- Laboratory for Research on Aging Society, Chair of Epidemiology and Preventive Medicine, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Laura Gangeri
- Clinical Psychology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lieve Van den Block
- End-of-Life Care Research Group, Vrije Universiteit Brussel & Universiteit Gent, Brussels, Belgium
- Department of Family Medicine and Chronic Care, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
35
|
Nzitakera A, Uwamariya D, Kato H, Surwumwe JB, Mbonigaba A, Ndoricyimpaye EL, Uwamungu S, Manirakiza F, Ndayisaba MC, Ntakirutimana G, Seminega B, Dusabejambo V, Rutaganda E, Kamali P, Ngabonziza F, Ishikawa R, Watanabe H, Rugwizangoga B, Baba S, Yamada H, Yoshimura K, Sakai Y, Sugimura H, Shinmura K. TP53 mutation status and consensus molecular subtypes of colorectal cancer in patients from Rwanda. BMC Cancer 2024; 24:1266. [PMID: 39394554 PMCID: PMC11468329 DOI: 10.1186/s12885-024-13009-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Mutations in the TP53 tumor suppressor gene are well-established drivers of colorectal cancer (CRC) development. However, data on the prevalence of TP53 variants and their association with consensus molecular subtype (CMS) classification in patients with CRC from Rwanda are currently lacking. This study addressed this knowledge gap by investigating TP53 mutation status concerning CMS classification in a CRC cohort from Rwanda. METHODS Formalin-fixed paraffin-embedded (FFPE) tissue blocks were obtained from 51 patients with CRC at the University Teaching Hospital of Kigali, Rwanda. Exons 4 to 11 and their flanking intron-exon boundaries in the TP53 gene were sequenced using Sanger sequencing to identify potential variants. The recently established immunohistochemistry-based classifier was employed to determine the CMS of each tumor. RESULTS Sequencing analysis of cancerous tissue DNA revealed TP53 pathogenic variants in 23 of 51 (45.1%) patients from Rwanda. These variants were predominantly missense types (18/23, 78.3%). The most frequent were c.455dup (p.P153Afs*28), c.524G > A (p.R175H), and c.733G > A (p.G245S), each identified in three tumors. Trinucleotide sequence context analysis of the 23 mutations (20 of which were single-base substitutions) revealed a predominance of the [C > N] pattern among single-base substitutions (SBSs) (18/20; 90.0%), with C[C > T]G being the most frequent mutation (5/18, 27.8%). Furthermore, pyrimidine bases (C and T) were preferentially found at the 5' flanking position of the mutated cytosine (13/18; 72.2%). Analysis of CMS subtypes revealed the following distribution: CMS1 (microsatellite instability-immune) (6/51, 11.8%), CMS2 (canonical) (28/51, 54.9%), CMS3 (metabolic) (9/51, 17.6%), and CMS4 (mesenchymal) (8/51, 15.7%). Interestingly, the majority of TP53 variants were in the CMS2 subgroup (14/23; 60.1%). CONCLUSION Our findings indicate a high frequency of TP53 variants in CRC patients from Rwanda. Importantly, these variants are enriched in the CMS2 subtype. This study, representing the second investigation into molecular alterations in patients with CRC from Rwanda and the first to explore TP53 mutations and CMS classification, provides valuable insights into the molecular landscape of CRC in this understudied population.
Collapse
Affiliation(s)
- Augustin Nzitakera
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Delphine Uwamariya
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Jean Bosco Surwumwe
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
| | - André Mbonigaba
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Ella Larissa Ndoricyimpaye
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Université Catholique de Louvain, Médecine Expérimentale, Brussels, 1348, Belgium
| | - Schifra Uwamungu
- Department of Biomedical Laboratory Sciences, School of Health Sciences, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE-40530, Sweden
| | - Felix Manirakiza
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Marie Claire Ndayisaba
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Gervais Ntakirutimana
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
| | - Benoit Seminega
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Vincent Dusabejambo
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Eric Rutaganda
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Placide Kamali
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - François Ngabonziza
- Department of Internal Medicine, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- College of Medicine and Health Sciences, School of Medicine and Pharmacy, University of Rwanda, Kigali, Rwanda
| | - Rei Ishikawa
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hirofumi Watanabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Belson Rugwizangoga
- Department of Pathology, University Teaching Hospital of Kigali, P.O. Box 655, Kigali, Rwanda
- Department of Pathology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, P.O. Box 3286, Kigali, Rwanda
- Tumor Immunology Laboratory, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, SE- 40530, Sweden
| | - Satoshi Baba
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Medicine, 1- 20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Haruhiko Sugimura
- Sasaki Institute Sasaki Foundation, 2-2 Kanda Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan.
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
36
|
Sulyman AO, Yusuf TNA, Aribisala JO, Ibrahim KS, Ajani EO, Ajiboye AT, Sabiu S, Singh K. Quercetin as a Modulator of PTPN22 Phosphomonoesterase Activity: A Biochemical and Computational Evaluation. Curr Issues Mol Biol 2024; 46:11156-11175. [PMID: 39451542 PMCID: PMC11506171 DOI: 10.3390/cimb46100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Cancer, a group of diseases characterized by uncontrollable cell proliferation and metastasis, remains a global health challenge. This study investigates quercetin, a natural compound found in many fruits and vegetables, for its potential to inhibit the phosphomonoesterase activity of protein tyrosine phosphatase nonreceptor type 22 (PTPN22), a key immune response regulator implicated in cancer and autoimmune diseases. We started by screening seven (7) natural compounds against the activities of PTPN22 in vitro. The initial screening identified quercetin with the highest percentage inhibition (81%) among the screened compounds when compared with ursolic acid that has 84%. After the identification of quercetin, we proceeded by investigating the effect of increasing concentrations of the compound on the activity of PTPN22. In vitro studies showed that quercetin inhibited PTPN22 with an IC50 of 29.59 μM, outperforming the reference standard ursolic acid, which had an IC50 of 37.19 μM. Kinetic studies indicated a non-competitive inhibition by quercetin with a Ki of 550 μM. In silico analysis supported these findings, showing quercetin's better binding affinity (ΔGbind -24.56 kcal/mol) compared to ursolic acid, attributed to its higher reactivity and electron interaction capabilities at PTPN22's binding pocket. Both quercetin and ursolic acid improved the structural stability of PTPN22 during simulations. These results suggest quercetin's potential as an anticancer agent, meriting further research. However, in vivo studies and clinical trials are necessary to fully assess its efficacy and safety, and to better understand its mechanisms of action.
Collapse
Affiliation(s)
- Abdulhakeem Olarewaju Sulyman
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Ilorin 241102, Nigeria
- Department of Nature Conservation, Faculty of Applied Sciences, Mangosuthu University of Technology, Durban 4031, South Africa
| | - Tafa Ndagi Akanbi Yusuf
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Ilorin 241102, Nigeria
| | - Jamiu Olaseni Aribisala
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 1334, South Africa
| | - Kamaldeen Sanni Ibrahim
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Ilorin 241102, Nigeria
| | - Emmanuel Oladipo Ajani
- Department of Biochemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Ilorin 241102, Nigeria
| | - Abdulfatai Temitope Ajiboye
- Department of Chemistry and Industrial Chemistry, Faculty of Pure and Applied Sciences, Kwara State University, Malete, Ilorin 241102, Nigeria
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 1334, South Africa
| | - Karishma Singh
- Department of Nature Conservation, Faculty of Applied Sciences, Mangosuthu University of Technology, Durban 4031, South Africa
| |
Collapse
|
37
|
Lobo N, Duan Z, Sood A, Tan WS, Grajales V, Contieri R, Lindskrog SV, Dyrskjøt L, Zhao H, Giordano SH, Williams SB, Bree KK, Kamat AM. Association of Age with Non-muscle-invasive Bladder Cancer: Unearthing a Biological Basis for Epidemiological Disparities? Eur Urol Oncol 2024; 7:1069-1079. [PMID: 38302322 DOI: 10.1016/j.euo.2024.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/04/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Age disparity in patients with non-muscle-invasive bladder cancer (NMIBC) exists. Whether this is due to differences in adequate cancer care or tumour biology is unclear. OBJECTIVE To investigate age disparities in NMIBC using the Surveillance, Epidemiology, and End Results (SEER)-Medicare and UROMOL datasets. DESIGN, SETTING, AND PARTICIPANTS The SEER-Medicare data were used to identify patients with clinical stage Ta, Tis, and T1 NMIBC between 2005 and 2017 (n = 32 225). Using the UROMOL cohort (n = 834), age disparities across transcriptomic, genomic, and spatial proteomic domains were assessed. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS For the SEER-Medicare data, multivariable competing-risk regression was used to examine the association between age and recurrence, progression, and bladder cancer-specific mortality (BCSM). For the UROMOL cohort, multivariable general linear model and multinomial logistic regression were performed to evaluate the association between age and tumour biology. RESULTS AND LIMITATIONS An analysis of the SEER-Medicare cohort revealed 5-yr recurrence rates of 55.2%, 57.4%, and 58.9%; 5-yr progression rates of 25.6%, 29.2%, and 36.9%; and 5-yr BCSM rates of 3.9%, 5.8%, and 11.8% in patients aged 66-70, 71-80, and ≥81 yr, respectively. After multivariable adjustment, age ≥81 yr was associated with a higher risk of recurrence (hazard ratio [HR] 1.07, 95% confidence interval [CI] 1.03-1.12; p = 0.001), progression (HR 1.32, p < 0.001), and BCSM (HR 2.58, p < 0.001). UROMOL2021 transcriptomic class 2a was most frequently observed in patients with advanced age (34.0% in ≥76 yr vs 21.6% in ≤65 yr; p = 0.004), a finding confirmed on multivariable analysis (risk ratio [RR] 3.86, p = 0.002). UROMOL2021 genomic class 3 was observed more frequently in patients aged ≥76 yr (4.9% vs 24.2%; p = 0.001). Limitations include the definitions used for recurrence and progression, which may lead to under- or overestimation of true rates. CONCLUSIONS Among SEER-Medicare patients with NMIBC, advanced age is associated with inferior oncological outcomes. These results reflect age-related molecular biological differences observed across transcriptomic and genomic domains, providing further evidence that innate tumour biology contributes to observed disparities in NMIBC outcomes. PATIENT SUMMARY Older patients with non-muscle-invasive bladder cancer have worse oncological outcomes than younger patients. Some of this age disparity may be due to differences in tumour biology.
Collapse
Affiliation(s)
- Niyati Lobo
- Department of Urology, Royal Free London NHS Trust, London, UK; Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhigang Duan
- Department of Health Services Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akshay Sood
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Shen Tan
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valentina Grajales
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roberto Contieri
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sia V Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hui Zhao
- Department of Health Services Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharon H Giordano
- Department of Health Services Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen B Williams
- Department of Urology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelly K Bree
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashish M Kamat
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
38
|
Ren P, Zhang J, Vijg J. Somatic mutations in aging and disease. GeroScience 2024; 46:5171-5189. [PMID: 38488948 PMCID: PMC11336144 DOI: 10.1007/s11357-024-01113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Time always leaves its mark, and our genome is no exception. Mutations in the genome of somatic cells were first hypothesized to be the cause of aging in the 1950s, shortly after the molecular structure of DNA had been described. Somatic mutation theories of aging are based on the fact that mutations in DNA as the ultimate template for all cellular functions are irreversible. However, it took until the 1990s to develop the methods to test if DNA mutations accumulate with age in different organs and tissues and estimate the severity of the problem. By now, numerous studies have documented the accumulation of somatic mutations with age in normal cells and tissues of mice, humans, and other animals, showing clock-like mutational signatures that provide information on the underlying causes of the mutations. In this review, we will first briefly discuss the recent advances in next-generation sequencing that now allow quantitative analysis of somatic mutations. Second, we will provide evidence that the mutation rate differs between cell types, with a focus on differences between germline and somatic mutation rate. Third, we will discuss somatic mutational signatures as measures of aging, environmental exposure, and activities of DNA repair processes. Fourth, we will explain the concept of clonally amplified somatic mutations, with a focus on clonal hematopoiesis. Fifth, we will briefly discuss somatic mutations in the transcriptome and in our other genome, i.e., the genome of mitochondria. We will end with a brief discussion of a possible causal contribution of somatic mutations to the aging process.
Collapse
Affiliation(s)
- Peijun Ren
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jie Zhang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jan Vijg
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
39
|
Kim M, Kang D, Kim HS, Lee JM, Park S, Kwag D, Lee C, Hong Y, Na D, Koh Y, Sun CH, An H, Kim YJ, Kim Y. Influence of the Bone Marrow Microenvironment on Hematopoietic Stem Cell Behavior Post-Allogeneic Transplantation: Development of Clonal Hematopoiesis and Telomere Dynamics. Int J Mol Sci 2024; 25:10258. [PMID: 39408588 PMCID: PMC11477089 DOI: 10.3390/ijms251910258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential cure for myelodysplastic neoplasms (MDSs) and other hematologic malignancies. This study investigates post-transplantation genetic evolution and telomere dynamics in hematopoietic cells, with a focus on clonal hematopoiesis (CH). We conducted a longitudinal analysis of 21 MDS patients who underwent allo-HSCT between September 2009 and February 2015. Genetic profiles of hematopoietic cells from both recipients and donors were compared at equivalent pre- and post-transplantation time points. Targeted sequencing identified CH-associated mutations, and real-time quantitative PCR measured telomere length. Furthermore, we compared CH incidence between recipients and age-matched controls from the GENIE cohort from routine health checkups. Post-allo-HSCT, 38% of recipients developed somatic mutations not detected before transplantation, indicating de novo CH originating from donor cells. Compared to age-matched healthy controls, recipients showed a significantly higher incidence of CH, suggesting increased susceptibility to genetic changes post-transplant. Telomere length analysis also revealed accelerated shortening in transplanted cells, highlighting the heightened stress and proliferation demands in the new microenvironment. Our findings reveal a notable incidence of donor-derived CH in allo-HSCT recipients, alongside significant telomere attrition. This suggests the potential influence of the marrow microenvironment on genetic and molecular changes in hematopoietic cells.
Collapse
Affiliation(s)
- Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dain Kang
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
| | - Hoon Seok Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong-Mi Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Silvia Park
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.P.); (D.K.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Daehun Kwag
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.P.); (D.K.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chaeyeon Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yuna Hong
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Duyeon Na
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea;
- NOBO Medicine, Inc., Seoul 04799, Republic of Korea; (C.H.S.); (H.A.)
| | - Choong Hyun Sun
- NOBO Medicine, Inc., Seoul 04799, Republic of Korea; (C.H.S.); (H.A.)
| | - Hongyul An
- NOBO Medicine, Inc., Seoul 04799, Republic of Korea; (C.H.S.); (H.A.)
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.P.); (D.K.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yonggoo Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
40
|
Samson SC, Rojas A, Zitnay RG, Carney KR, Hettinga W, Schaelling MC, Sicard D, Zhang W, Gilbert-Ross M, Dy GK, Cavnar MJ, Furqan M, Browning RF, Naqash AR, Schneider BP, Tarhini A, Tschumperlin DJ, Venosa A, Marcus AI, Emerson LL, Spike BT, Knudsen BS, Mendoza MC. Tenascin-C in the early lung cancer tumor microenvironment promotes progression through integrin αvβ1 and FAK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613509. [PMID: 39345541 PMCID: PMC11429853 DOI: 10.1101/2024.09.17.613509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Pre-cancerous lung lesions are commonly initiated by activating mutations in the RAS pathway, but do not transition to lung adenocarcinomas (LUAD) without additional oncogenic signals. Here, we show that expression of the extracellular matrix protein Tenascin-C (TNC) is increased in and promotes the earliest stages of LUAD development in oncogenic KRAS-driven lung cancer mouse models and in human LUAD. TNC is initially expressed by fibroblasts and its expression extends to tumor cells as the tumor becomes invasive. Genetic deletion of TNC in the mouse models reduces early tumor burden and high-grade pathology and diminishes tumor cell proliferation, invasion, and focal adhesion kinase (FAK) activity. TNC stimulates cultured LUAD tumor cell proliferation and migration through engagement of αv-containing integrins and subsequent FAK activation. Intringuingly, lung injury causes sustained TNC accumulation in mouse lungs, suggesting injury can induce additional TNC signaling for early tumor cell transition to invasive LUAD. Biospecimens from patients with stage I/II LUAD show TNC in regions of FAK activation and an association of TNC with tumor recurrence after primary tumor resection. These results suggest that exogenous insults that elevate TNC in the lung parenchyma interact with tumor-initiating mutations to drive early LUAD progression and local recurrence.
Collapse
Affiliation(s)
- Shiela C Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Anthony Rojas
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Rebecca G Zitnay
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Keith R Carney
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Wakeiyo Hettinga
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Mary C Schaelling
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| | - Wei Zhang
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Grace K Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203
| | - Michael J Cavnar
- Department of Surgery, University of Kentucky, Lexington, KY 40508
| | - Muhammad Furqan
- Department of Internal Medicine, University of Iowa Health Care, Iowa City, IA 52246
| | - Robert F Browning
- Department of Medicine, Walter Reed National Military Medical Center, Bethesda, MD 20889
| | - Abdul R Naqash
- Division of Medical Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Bryan P Schneider
- Department of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ahmad Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL 33612
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Long Island University, College of Veterinary Medicine, Brookville, NY 11548
| | - Lyska L Emerson
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Benjamin T Spike
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Beatrice S Knudsen
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
41
|
Yoel A, Adjumain S, Liang Y, Daniel P, Firestein R, Tsui V. Emerging and Biological Concepts in Pediatric High-Grade Gliomas. Cells 2024; 13:1492. [PMID: 39273062 PMCID: PMC11394548 DOI: 10.3390/cells13171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary central nervous system tumors are the most frequent solid tumors in children, accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Compared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant, Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas. In recent years, we have seen promising advancements in treatment strategies for pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches, which are currently undergoing clinical trials. These therapies are underscored by the integration of molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
Collapse
Affiliation(s)
- Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; (A.Y.); (S.A.); (Y.L.); (P.D.); (R.F.)
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
42
|
Argentieri MA, Xiao S, Bennett D, Winchester L, Nevado-Holgado AJ, Ghose U, Albukhari A, Yao P, Mazidi M, Lv J, Millwood I, Fry H, Rodosthenous RS, Partanen J, Zheng Z, Kurki M, Daly MJ, Palotie A, Adams CJ, Li L, Clarke R, Amin N, Chen Z, van Duijn CM. Proteomic aging clock predicts mortality and risk of common age-related diseases in diverse populations. Nat Med 2024; 30:2450-2460. [PMID: 39117878 PMCID: PMC11405266 DOI: 10.1038/s41591-024-03164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Circulating plasma proteins play key roles in human health and can potentially be used to measure biological age, allowing risk prediction for age-related diseases, multimorbidity and mortality. Here we developed a proteomic age clock in the UK Biobank (n = 45,441) using a proteomic platform comprising 2,897 plasma proteins and explored its utility to predict major disease morbidity and mortality in diverse populations. We identified 204 proteins that accurately predict chronological age (Pearson r = 0.94) and found that proteomic aging was associated with the incidence of 18 major chronic diseases (including diseases of the heart, liver, kidney and lung, diabetes, neurodegeneration and cancer), as well as with multimorbidity and all-cause mortality risk. Proteomic aging was also associated with age-related measures of biological, physical and cognitive function, including telomere length, frailty index and reaction time. Proteins contributing most substantially to the proteomic age clock are involved in numerous biological functions, including extracellular matrix interactions, immune response and inflammation, hormone regulation and reproduction, neuronal structure and function and development and differentiation. In a validation study involving biobanks in China (n = 3,977) and Finland (n = 1,990), the proteomic age clock showed similar age prediction accuracy (Pearson r = 0.92 and r = 0.94, respectively) compared to its performance in the UK Biobank. Our results demonstrate that proteomic aging involves proteins spanning multiple functional categories and can be used to predict age-related functional status, multimorbidity and mortality risk across geographically and genetically diverse populations.
Collapse
Affiliation(s)
- M Austin Argentieri
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA.
| | - Sihao Xiao
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
| | - Derrick Bennett
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Laura Winchester
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Alejo J Nevado-Holgado
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Upamanyu Ghose
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ashwag Albukhari
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pang Yao
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Mohsen Mazidi
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Iona Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Hannah Fry
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Jukka Partanen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Zhili Zheng
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Mitja Kurki
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Cassandra J Adams
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Robert Clarke
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Najaf Amin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Cornelia M van Duijn
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- King Abdulaziz University and the University of Oxford Centre for Artificial Intelligence in Precision Medicine (KO-CAIPM), Jeddah, Saudi Arabia.
| |
Collapse
|
43
|
Compton ZT, Ågren JA, Marusyk A, Nedelcu AM. The Elephant and the Spandrel. Evol Med Public Health 2024; 13:92-100. [PMID: 40276264 PMCID: PMC12018762 DOI: 10.1093/emph/eoae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Indexed: 04/26/2025] Open
Abstract
Comparative oncology has made great strides in identifying patterns of cancer prevalence and risk across the tree of life. Such studies have often centered on elucidating the evolution of mechanisms that prevent the development and progression of cancer, especially in large animals such as elephants. Conclusions from this approach, however, may have been exaggerated, given that the deep evolutionary origins of multicellularity suggest that the preeminent functions of the identified mechanisms may be unrelated to cancer. Instead, cancer suppression may have emerged as an evolutionary byproduct, or "spandrel". We propose a novel evolutionary perspective that highlights the importance of somatic maintenance as the underlying axis of natural selection. We argue that by shifting the focus of study from cancer suppression to somatic maintenance, we can gain a deeper understanding of the evolutionary pressures that shaped the mechanisms responsible for the observed variation in cancer prevalence across species.
Collapse
Affiliation(s)
- Zachary T Compton
- University of Arizona Cancer Center, Tucson, AZ, USA
- University of Arizona College of Medicine, Tucson, AZ, USA
| | - J Arvid Ågren
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden
| | - Andriy Marusyk
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, Canada
| |
Collapse
|
44
|
Vella R, Pizzocaro E, Bannone E, Gualtieri P, Frank G, Giardino A, Frigerio I, Pastorelli D, Gruttadauria S, Mazzali G, di Renzo L, Butturini G. Nutritional Intervention for the Elderly during Chemotherapy: A Systematic Review. Cancers (Basel) 2024; 16:2809. [PMID: 39199582 PMCID: PMC11352472 DOI: 10.3390/cancers16162809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
This study aims to review existing literature on the effect of oral nutritional supplements (ONSs) during chemotherapy in older cancer patients. Electronic databases were searched for relevant studies up to March 2024. The risk of bias in the included studies was evaluated using the Cochrane tool. Eligible studies included randomized, prospective, and retrospective studies evaluating the effect of ONSs in elderly (median age > 65 years) cancer patients during chemotherapy. Data regarding chemotherapy adherence, toxicity, overall survival, and nutritional status were extracted. A total of ten studies, involving 1123 patients, were included. A meta-analysis of the results was not conducted due to the scarcity and heterogeneity of results. Some ONSs were associated with reduced incidence of chemotherapy side-effects, particularly oral mucositis, and improved nutritional status. There was limited or no evidence regarding the impact of ONSs on chemotherapy adherence or overall survival. Various types of ONS were investigated, including multimodal intervention with tailored nutritional counseling, whey protein supplements, amino acids supplements (including immune nutrition supplements), and fish oil omega-3-enriched supplements. ONSs showed promise in reducing chemotherapy side-effects and improving nutritional status in older cancer patients, but further studies are needed to explore their efficacy on chemotherapy adherence and overall survival. Future research should consider both chronological age and frailty criteria, account for dietary habits, and use specific nutritional assessment like Bioelectrical Impedance Analysis.
Collapse
Affiliation(s)
- Roberta Vella
- Department of Hepato-Pancreato-Biliary Unit, Pederzoli Hospital, 37019 Peschiera del Garda, Italy
- Department of Precision Medicine in the Medical, Surgical and Critical Care Area, University of Palermo, 90127 Palermo, Italy
| | - Erica Pizzocaro
- Department of Hepato-Pancreato-Biliary Unit, Pederzoli Hospital, 37019 Peschiera del Garda, Italy
- PhD School of Applied Medical-Surgical Sciences, University of Tor Vergata, 00133 Rome, Italy
| | - Elisa Bannone
- Department of Hepato-Pancreato-Biliary Unit, Pederzoli Hospital, 37019 Peschiera del Garda, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giulia Frank
- PhD School of Applied Medical-Surgical Sciences, University of Tor Vergata, 00133 Rome, Italy
| | - Alessandro Giardino
- Department of Hepato-Pancreato-Biliary Unit, Pederzoli Hospital, 37019 Peschiera del Garda, Italy
| | - Isabella Frigerio
- Department of Hepato-Pancreato-Biliary Unit, Pederzoli Hospital, 37019 Peschiera del Garda, Italy
- Collegium Medicum, University of Social Sciences, 90-113 Łodz, Poland
| | - Davide Pastorelli
- Department of Oncology Unit, Pederzoli Hospital, 37018 Peschiera del Garda, Italy
| | - Salvatore Gruttadauria
- Department for the Treatment and the Study of Abdominal Diseases and Abdominal Transplantation, IRCCS-ISMETT, University of Pittsburgh Medical Center Italy, 90127 Palermo, Italy
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy
| | - Gloria Mazzali
- Department of Medicine, Geriatrics Division, University of Verona, 37134 Verona, Italy
| | - Laura di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Giovanni Butturini
- Department of Hepato-Pancreato-Biliary Unit, Pederzoli Hospital, 37019 Peschiera del Garda, Italy
| |
Collapse
|
45
|
Morais CLM, Lima KMG, Dickinson AW, Saba T, Bongers T, Singh MN, Martin FL, Bury D. Non-invasive diagnostic test for lung cancer using biospectroscopy and variable selection techniques in saliva samples. Analyst 2024. [PMID: 39105622 DOI: 10.1039/d4an00726c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Lung cancer is one of the most commonly occurring malignant tumours worldwide. Although some reference methods such as X-ray, computed tomography or bronchoscope are widely used for clinical diagnosis of lung cancer, there is still a need to develop new methods for early detection of lung cancer. Especially needed are approaches that might be non-invasive and fast with high analytical precision and statistically reliable. Herein, we developed a swab "dip" test in saliva whereby swabs were analysed using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy harnessed to principal component analysis-quadratic discriminant analysis (QDA) and variable selection techniques employing successive projections algorithm (SPA) and genetic algorithm (GA) for feature selection/extraction combined with QDA. A total of 1944 saliva samples (56 designated as lung-cancer positive and 1888 designed as controls) were obtained in a lung cancer-screening programme being undertaken in North-West England. GA-QDA models achieved, for the test set, sensitivity and specificity values of 100.0% and 99.1%, respectively. Three wavenumbers (1422 cm-1, 1546 cm-1 and 1578 cm-1) were identified using the GA-QDA model to distinguish between lung cancer and controls, including ring C-C stretching, CN adenine, Amide II [δ(NH), ν(CN)] and νs(COO-) (polysaccharides, pectin). These findings highlight the potential of using biospectroscopy associated with multivariate classification algorithms to discriminate between benign saliva samples and those with underlying lung cancer.
Collapse
Affiliation(s)
- Camilo L M Morais
- Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil
- Center for Education, Science and Technology of the Inhamuns Region, State University of Ceará, Tauá 63660-000, Brazil
| | - Kássio M G Lima
- Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal 59072-970, Brazil
| | - Andrew W Dickinson
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
| | - Tarek Saba
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
| | - Thomas Bongers
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
| | - Maneesh N Singh
- Biocel UK Ltd, Hull HU10 6TS, UK
- Chesterfield Royal Hospital, Chesterfield Road, Calow, Chesterfield S44 5BL, UK
| | - Francis L Martin
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
- Biocel UK Ltd, Hull HU10 6TS, UK
| | - Danielle Bury
- Department of Cellular Pathology, Blackpool Teaching Hospitals NHS Foundation Trust, Whinney Heys Road, Blackpool FY3 8NR, UK.
| |
Collapse
|
46
|
Tuo Z, Zhang Y, Li D, Wang Y, Wu R, Wang J, Yu Q, Ye L, Shao F, Wusiman D, Yang Y, Yoo KH, Ke M, Okoli UA, Cho WC, Heavey S, Wei W, Feng D. Relationship between clonal evolution and drug resistance in bladder cancer: A genomic research review. Pharmacol Res 2024; 206:107302. [PMID: 39004242 DOI: 10.1016/j.phrs.2024.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Bladder cancer stands as a prevalent global malignancy, exhibiting notable sex-based variations in both incidence and prognosis. Despite substantial strides in therapeutic approaches, the formidable challenge of drug resistance persists. The genomic landscape of bladder cancer, characterized by intricate clonal heterogeneity, emerges as a pivotal determinant in fostering this resistance. Clonal evolution, encapsulating the dynamic transformations within subpopulations of tumor cells over time, is implicated in the emergence of drug-resistant traits. Within this review, we illuminate contemporary insights into the role of clonal evolution in bladder cancer, elucidating its influence as a driver in tumor initiation, disease progression, and the formidable obstacle of therapy resistance.
Collapse
Affiliation(s)
- Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ying Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yetong Wang
- The Fourth Corps of Students of the Basic Medical College, Army Medical University, Chongqing 400038, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province 315211, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Chongqing, Wanzhou 404000, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea
| | - Mang Ke
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK; Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK.
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China; Division of Surgery & Interventional Science, University College London, London W1W 7TS, UK.
| |
Collapse
|
47
|
Imanbayev N, Iztleuov Y, Koishybaev A, Kereyeva N, Tulyaeva A, Zholmukhamedova D, Zharylgapov A. Evolution of Colorectal Cancer Trends and Treatment Outcomes: A Comprehensive Retrospective Analysis (2019-2023) in West Kazakhstan. Asian Pac J Cancer Prev 2024; 25:2773-2785. [PMID: 39205575 DOI: 10.31557/apjcp.2024.25.8.2773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE To determine the demographic and clinical characteristics of individuals diagnosed with colorectal cancer. METHODS A retrospective study was conducted on 650 patients diagnosed with colorectal cancer in West Kazakhstan from 2019 to 2023. Statistical analysis was performed to explore the relationships between various factors and outcomes, using significance tests and regression techniques. RESULTS The study included 650 colorectal cancer patients, with 59.7% males and 40.3% females. Age distribution showed 63.1% between 24-65 years and 36.9% over 65, with no gender-based age differences. Nationality significantly influenced patient composition (63.8% Kazakh, 36.2% Russian, P=0.03). KRAS mutations (76.0% negative) and tumor morphology (40% adenocarcinoma, P=0.02) displayed varied associations. Univariate logistic regression revealed links between demographic/clinical factors and cancer outcomes. Multivariate analysis emphasized age, stage of cancer, expansion, involvement of lymphatic and metastasis in cancer progression. Nomogram predictive modeling incorporated gender, tumor form, stage, and infiltration. Evaluation in a validation cohort showed good differentiation (AUC=0.6293) and calibration. The findings provide insights into colorectal cancer demographics, progression, treatment, and mortality, aiding personalized interventions. CONCLUSION this study reveals critical insights into demographics, treatment, and prognosis. Emphasizing the complexity of CRC, the study highlights age, gender, and tumor characteristics' impact on progression and mortality. A developed nomogram model offers clinicians a practical tool for personalized treatment decisions, enhancing prognosis discussions with patients.
Collapse
Affiliation(s)
- Nauryzbay Imanbayev
- Department of oncology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Yerbolat Iztleuov
- Department of Radiologists of the NJSC ZKMU named after M. Ospanov, MC NCJSC Marat Ospanov Western-Kazakhstan Medical University, Kazakhstan
| | - Arip Koishybaev
- Department of Oncology of the NJSC ZKMU named after M. Ospanov MC NCJSC Marat Ospanov Western-Kazakhstan Medical University, Kazakhstan
| | - Nurgul Kereyeva
- Department of Oncology, MC NCJSC Marat Ospanov Western-Kazakhstan Medical University, Kazakhstan
| | - Anar Tulyaeva
- Department of oncology, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Dinara Zholmukhamedova
- Department of Oncology, MC NCJSC Marat Ospanov Western-Kazakhstan Medical University, Kazakhstan
| | - Azamat Zharylgapov
- Department of Oncology, MC NCJSC Marat Ospanov Western-Kazakhstan Medical University, Kazakhstan
| |
Collapse
|
48
|
Kamaraju S, McKoy J, Williams GR, Gilmore N, Minami C, Bylow K, Rajalingam H, Cortina CS, Beckert A, Stolley M, Bullock D, Kurzrock R, Jatoi A. An Annual Symposium on Disparities in Milwaukee, WI, with a 2023 Focus on Older Adults with Cancer. Curr Oncol Rep 2024; 26:855-864. [PMID: 38801612 PMCID: PMC11300154 DOI: 10.1007/s11912-024-01525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/29/2024]
Abstract
PURPOSE OF REVIEW Cancer-related inequities are prevalent in Wisconsin, with lower survival rates for breast, colorectal, and lung cancer patients from marginalized communities. This manuscript describes the ongoing efforts at the Medical College of Wisconsin and potential pathways of community engagement to promote education and awareness in reducing inequities in cancer care. RECENT FINDINGS While some cancer inequities are related to aggressive disease biology, health-related social risks may be addressed through community-academic partnerships via an open dialogue between the community members and academic faculty. To develop potential pathways of community-academic partnerships, an annual Cancer Disparities Symposium concept evolved as a pragmatic and sustainable model in an interactive learning environment. In this manuscript, we describe the programmatic development and execution of the annual Cancer Disparities Symposium, followed by highlights from this year's meeting focused on geriatric oncology as discussed by the speakers.
Collapse
Affiliation(s)
- Sailaja Kamaraju
- Department of Medicine, Medical College of Wisconsin, 8800 W. Doyne Avenue, Milwaukee, WI, 53226, USA.
| | - June McKoy
- Division of Hematology-Oncology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | | | | | - Christina Minami
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Bylow
- Department of Medicine, Medical College of Wisconsin, 8800 W. Doyne Avenue, Milwaukee, WI, 53226, USA
| | | | - Chandler S Cortina
- Department of Medicine, Medical College of Wisconsin, 8800 W. Doyne Avenue, Milwaukee, WI, 53226, USA
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Angela Beckert
- Department of Medicine, Medical College of Wisconsin, 8800 W. Doyne Avenue, Milwaukee, WI, 53226, USA
| | - Melinda Stolley
- Department of Medicine, Medical College of Wisconsin, 8800 W. Doyne Avenue, Milwaukee, WI, 53226, USA
| | - Dan Bullock
- Department of Medicine, Medical College of Wisconsin, 8800 W. Doyne Avenue, Milwaukee, WI, 53226, USA
- Hematology, Oncology and Transplantation, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Razelle Kurzrock
- Department of Medicine, Medical College of Wisconsin, 8800 W. Doyne Avenue, Milwaukee, WI, 53226, USA
| | - Aminah Jatoi
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
49
|
Heid J, Cutler R, Sun S, Lee M, Maslov AY, Dong X, Sidoli S, Vijg J. Negative selection allows human primary fibroblasts to tolerate high somatic mutation loads induced by N-ethyl-N-nitrosourea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588286. [PMID: 38617356 PMCID: PMC11014556 DOI: 10.1101/2024.04.07.588286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Single-cell sequencing has shown that thousands of mutations accumulate with age in most human tissues. While there is ample evidence that some mutations can clonally amplify and lead to disease, the total burden of mutations a cell tolerates without functional decline remains unknown. Here we addressed this question by exposing human primary fibroblasts to multiple, low doses of N-ethyl-N-nitrosourea (ENU) and analyzed somatic mutation burden using single-cell whole genome sequencing. The results indicate that individual cells can sustain ∼60,000 single-nucleotide variants (SNVs) with only a slight adverse effect on growth rate. We provide evidence that such high levels of mutations are only tolerated through negative selection against variants in gene coding regions, and in sequences associated with genetic pathways for maintaining basic cellular function and growth. Since most tissues in adults are non-dividing, these results suggest that somatic mutations in the absence of negative selection may have functionally adverse effects.
Collapse
|
50
|
Pabla P, Jones E, Piasecki M, Phillips B. Skeletal muscle dysfunction with advancing age. Clin Sci (Lond) 2024; 138:863-882. [PMID: 38994723 PMCID: PMC11250095 DOI: 10.1042/cs20231197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
As a result of advances in medical treatments and associated policy over the last century, life expectancy has risen substantially and continues to increase globally. However, the disconnect between lifespan and 'health span' (the length of time spent in a healthy, disease-free state) has also increased, with skeletal muscle being a substantial contributor to this. Biological ageing is accompanied by declines in both skeletal muscle mass and function, termed sarcopenia. The mechanisms underpinning sarcopenia are multifactorial and are known to include marked alterations in muscle protein turnover and adaptations to the neural input to muscle. However, to date, the relative contribution of each factor remains largely unexplored. Specifically, muscle protein synthetic responses to key anabolic stimuli are blunted with advancing age, whilst alterations to neural components, spanning from the motor cortex and motoneuron excitability to the neuromuscular junction, may explain the greater magnitude of function losses when compared with mass. The consequences of these losses can be devastating for individuals, their support networks, and healthcare services; with clear detrimental impacts on both clinical (e.g., mortality, frailty, and post-treatment complications) and societal (e.g., independence maintenance) outcomes. Whether declines in muscle quantity and quality are an inevitable component of ageing remains to be completely understood. Nevertheless, strategies to mitigate these declines are of vital importance to improve the health span of older adults. This review aims to provide an overview of the declines in skeletal muscle mass and function with advancing age, describes the wide-ranging implications of these declines, and finally suggests strategies to mitigate them, including the merits of emerging pharmaceutical agents.
Collapse
Affiliation(s)
- Pardeep Pabla
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Eleanor J. Jones
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| |
Collapse
|