1
|
Tong X, Shen T, Li S, Wu L. Design, synthesis, and biological evaluation of novel CDK4/6 and BRD4 dual inhibitors for treatment of KRAS-mutant NSCLC. Eur J Med Chem 2025; 292:117685. [PMID: 40311163 DOI: 10.1016/j.ejmech.2025.117685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
CDK4/6 is the candidate therapeutic target for KRAS-mutant NSCLC. However, its frequent primary and acquired resistance limits its potential clinical application. Recently it had been shown that BRD4 up-regulation induced conferred resistance of KRAS-mutant NSCLC cells to CDK4/6 inhibitor, and BRD4 inhibitor synergized with CDK4/6 inhibitor induced senescence in KRAS-mutant NSCLC tumors and cells, meanwhile, the combined therapy extended survival of the KRAS-mutant NSCLC mouse model. Thus, a series of CDK4/6 and BRD4 dual inhibitors were prepared to target KRAS-mutant NSCLC. Among these compounds, PJ2 exhibited potent antiproliferative effects against KRAS-mutant NSCLC cells NCI-H358 (IC50 = 0.34 ± 0.01 μM) and A549 (IC50 = 0.31 ± 0.04 μM), and had excellent inhibitory effects on CDK4, CDK6, BRD4(BD1) and BRD4(BD2), and IC50 values were 168.75 ± 46.32 nM, 292.45 ± 11.67 nM, 23.17 ± 3.61 nM and 3.12 ± 0.15 nM, respectively. Mechanism research indicated that PJ2 induced cell cycle arrest, senescence and apoptosis through ROS-mediated DNA damage. Furthermore, PJ2 could effectively suppress the migration and invasion of NCI-H358 cells. These results proved that developing potent CDK4/6 and BRD4 dual inhibitors was a promising strategy for the KRAS-mutant NSCLC therapy.
Collapse
Affiliation(s)
- Xiaojie Tong
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Tong Shen
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Song Li
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Liqiang Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Schlemmer AJ, Gorkiewicz G, Uggowitzer MM, Salamon S, Jost P, Talakic E. 18F-FDG PET/CT in NUT Carcinoma of the Thorax. Clin Nucl Med 2025:00003072-990000000-01690. [PMID: 40302130 DOI: 10.1097/rlu.0000000000005872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/18/2025] [Indexed: 05/01/2025]
Abstract
NUT carcinoma (NUTc) is a rare, aggressive cancer characterized by rearrangement of the NUTM1 gene on chromosome 15q14. We present the case of a 32-year-old man with a persisting cough, reduced general condition, and B symptoms for 2 months. CT imaging revealed a highly suspicious mass in the right lung, infiltrating hilar structures, and the mediastinum. Staging with 18F-FDG PET/CT demonstrated pathologic 18F-FDG uptake within the tumor. Histology, immunohistochemistry, and molecular analysis confirmed NUTc of the lung. Metabolic imaging modalities may play a key role in staging, restaging, and assessing treatment response in patients with NUTc.
Collapse
Affiliation(s)
| | - Gregor Gorkiewicz
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz
| | - Martin Michael Uggowitzer
- Division of General Radiology, Department of Radiology, Medical University of Graz
- Division of Radiology and Nuclear Medicine, State Hospital Hochsteiermark, Leoben
| | - Spela Salamon
- Division of Radiology and Nuclear Medicine, State Hospital Hochsteiermark, Leoben
| | - Philipp Jost
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Emina Talakic
- Division of General Radiology, Department of Radiology, Medical University of Graz
| |
Collapse
|
3
|
Chu YH, Katabi N, Sukhadia P, Mullaney KA, Zaidinski M, Cracchiolo JR, Xu B, Ghossein RA, Ho AL, DiNapoli SE, Ladanyi M, Dogan S. Targeted RNA sequencing in diagnostically challenging head and neck carcinomas identifies novel MON2::STAT6, NFATC2::NUTM2B, POC5::RAF1, and NSD3::NCOA2 gene fusions. Histopathology 2025; 86:728-741. [PMID: 39628352 DOI: 10.1111/his.15380] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/13/2024] [Accepted: 11/16/2024] [Indexed: 03/14/2025]
Abstract
AIMS Although molecular tests developed for a growing list of oncogenic alterations have significantly aided in the classification of head and neck carcinomas, tumours in which prototypical histologic and immunophenotypic features are lacking or only partially developed continue to pose diagnostic challenges. Searching for known diagnostic and therapeutic targets by clinical next-generation sequencing (NGS) assays can often lead to new discoveries. METHODS AND RESULTS We present our institutional experience in applying targeted RNA NGS in 36 head and neck carcinomas that were morphologically difficult to classify between 2016 and 2023. The patients ranged in age from 5 to 83 years (median, 64), with the majority of tumors occurring in the major salivary glands and the sinonasal tract. Overall, seven (19%) cases showed unusual gene rearrangements, including five novel alterations: MON2::STAT6 in a hard palate adenocarcinoma with mucinous features, POC5::RAF1 in apocrine intraductal carcinoma of the lacrimal gland, EWSR1::CDADC1 fusion in a basaloid carcinoma of the submandibular gland, NFATC2::NUTM2B in myoepithelial carcinoma, and NSD3::NCOA2 fusion in a peculiar high-grade carcinoma with a peritheliomatous growth pattern, and focal myogenic differentiation. Potential therapeutic actionability was identified in three cases (RAF1 and FGFR2 fusions). CONCLUSION These findings broaden the current spectrum of gene rearrangements in head and neck carcinomas and support the utility of clinical NGS in identifying unusual, actionable alterations in diagnostically challenging cases.
Collapse
Affiliation(s)
- Ying-Hsia Chu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nora Katabi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Purvil Sukhadia
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Kerry A Mullaney
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michael Zaidinski
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jeniffer R Cracchiolo
- Department of Surgery, Head and Neck Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Bin Xu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ronald A Ghossein
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alan L Ho
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sara E DiNapoli
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Snjezana Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
4
|
Luo J, Bishop JA, DuBois SG, Hanna GJ, Sholl LM, Stelow EB, Thompson LDR, Shapiro GI, French CA. Hiding in plain sight: NUT carcinoma is an unrecognized subtype of squamous cell carcinoma of the lungs and head and neck. Nat Rev Clin Oncol 2025; 22:292-306. [PMID: 39900969 PMCID: PMC12077380 DOI: 10.1038/s41571-025-00986-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 02/05/2025]
Abstract
In the past two decades, treatment for non-small-cell lung cancers (NSCLCs) and head and neck squamous cell carcinoma (HNSCC) has advanced considerably, owing largely to the characterization of distinct oncological subtypes, the development of targeted therapies for each subtype and the advent of immunotherapy. Data emerging over the past two decades suggest that NUT carcinoma, a highly aggressive malignancy driven by a NUT fusion oncoprotein and arising in the lungs, head and neck, and rarely in other sites, is a squamous cell carcinoma (SCC) based on transcriptional, histopathological, cell-of-origin and molecular characteristics. NUT carcinoma has an estimated incidence of 1,400 cases per year in the United States, surpassing that of some rare NSCLC and HNSCC subtypes. However, NUT carcinoma is currently not recognized as an SCC of the lungs or head and neck. The orphan classification of NUT carcinoma as a distinct entity leads to a lack of awareness of this malignancy among oncologists and surgeons, despite early diagnosis being crucial for this cancer type with a median survival of only ~6.5 months. Consequently, NUT carcinoma is underdiagnosed and often misdiagnosed, resulting in limited research and progress in developing effective treatments in one of the most aggressive forms of lung and head and neck cancer. With a growing number of targeted agents that can potentially be used to treat NUT carcinoma, improved recognition through reclassification and inclusion of NUT carcinoma as a squamous NSCLC or an HNSCC when arising in these locations will accelerate the development of effective therapies for this disease. Thus, in the Perspective, we propose such a reclassification of NUT carcinoma as an SCC and discuss the supporting evidence.
Collapse
Affiliation(s)
- Jia Luo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Justin A Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Glenn J Hanna
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward B Stelow
- Department of Pathology, University of Virginia Medical Center, Charlottesville, VA, USA
| | | | - Geoffrey I Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Marbach D, Brouer-Visser J, Brennan L, Wilson S, Davydov II, Staedler N, Duarte J, Martinez Quetglas I, Nüesch E, Cañamero M, Chesné E, Au-Yeung G, Hamilton E, Lheureux S, Richardson DL, Spanggaard I, Gomes B, Franjkovic I, DeMario M, Kornacker M, Lechner K. Immune modulation in solid tumors: a phase 1b study of RO6870810 (BET inhibitor) and atezolizumab (PD-L1 inhibitor). BMC Cancer 2025; 25:500. [PMID: 40102759 PMCID: PMC11916277 DOI: 10.1186/s12885-025-13851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
PURPOSE Bromodomain and extra-terminal domain (BET) inhibitors (BETi) have demonstrated epigenetic modulation capabilities, specifically in transcriptional repression of oncogenic pathways. Preclinical assays suggest that BETi potentially attenuates the PD1/PD-L1 immune checkpoint axis, supporting its combination with immunomodulatory agents. PATIENTS AND METHODS A Phase 1b clinical trial was conducted to elucidate the pharmacokinetic and pharmacodynamic profiles of the BET inhibitor RO6870810 as monotherapy and in combination with the PD-L1 antagonist atezolizumab in patients with advanced ovarian carcinomas and triple-negative breast cancer (TNBC). Endpoints included maximum tolerated dosages, adverse event profiling, pharmacokinetic evaluations, and antitumor activity. Pharmacodynamic and immunomodulatory effects were assessed in tumor tissue (by immunohistochemistry and RNA-seq) and in peripheral blood (by flow cytometry and cytokine analysis). RESULTS The study was terminated prematurely due to a pronounced incidence of immune-related adverse effects in patients receiving combination of RO6870810 and atezolizumab. Antitumor activity was limited to 2 patients (5.6%) showing partial response. Although target engagement was confirmed by established BETi pharmacodynamic markers in both blood and tumor samples, BETi failed to markedly decrease tumor PD-L1 expression and had a suppressive effect on antitumor immunity. Immune effector activation in tumor tissue was solely observed with the atezolizumab combination, aligning with this checkpoint inhibitor's recognized biological effects. CONCLUSIONS The combination of BET inhibitor RO6870810 with the checkpoint inhibitor atezolizumab presents an unfavorable risk-benefit profile for ovarian cancer and TNBC (triple-negative breast cancer) patients due to the increased risk of augmented or exaggerated immune reactions, without evidence for synergistic antitumor effects. TRIAL REGISTRATION ClinicalTrials.gov ID NCT03292172; Registration Date: 2017-09-25.
Collapse
Affiliation(s)
- Daniel Marbach
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Jurriaan Brouer-Visser
- Roche Pharma Research and Early Development, Roche Innovation Center New York, F. Hoffmann-La Roche Ltd, New York, NY, USA
| | - Laura Brennan
- Roche Pharma Research and Early Development, Roche Innovation Center New York, F. Hoffmann-La Roche Ltd, New York, NY, USA
| | - Sabine Wilson
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Iakov I Davydov
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Nicolas Staedler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - José Duarte
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Iris Martinez Quetglas
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eveline Nüesch
- Product Development, Data Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marta Cañamero
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, F. Hoffmann-La Roche Ltd, Penzberg, Germany
| | - Evelyne Chesné
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George Au-Yeung
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Debra L Richardson
- Division of Gynecologic Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Iben Spanggaard
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bruno Gomes
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Izolda Franjkovic
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, F. Hoffmann-La Roche Ltd, Penzberg, Germany
| | - Mark DeMario
- Roche Pharma Research and Early Development, Roche Innovation Center New York, F. Hoffmann-La Roche Ltd, New York, NY, USA
| | - Martin Kornacker
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Katharina Lechner
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, F. Hoffmann-La Roche Ltd, Penzberg, Germany
| |
Collapse
|
6
|
Jensen JL, Peterson SK, Yu S, Kinjo T, Price BA, Sambade M, Vesko S, DeBetta JD, Geyer JK, Nickel KP, Kimple RJ, Kotecha RS, Davis IJ, Wang JR, French CA, Kuhlman B, Rubinsteyn A, Weiss J, Vincent BG. PRAME Epitopes are T-Cell Immunovulnerabilities in BRD4::NUTM1 Initiated NUT Carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.07.642090. [PMID: 40161761 PMCID: PMC11952323 DOI: 10.1101/2025.03.07.642090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
NUT carcinoma ("NC") is a rare but highly lethal solid tumor without an effective standard of care. NC is caused by bromodomain-containing NUTM1 fusion genes, most commonly BRD4::NUTM1 . BRD4::NUTM1 recruits p300 to acetylate H3K27 forming "megadomains" with the overexpression of encapsulated oncogenes, most notably MYC . Akin to MYC , we hypothesized that transcriptional dysregulation caused by BRD4::NUTM1 would lead to the generation of cancer specific antigens that could be therapeutically actionable. Integrating genomics, immunopeptidomics, and computational biology approaches, we identified PRAME as the predominantly transcribed and HLA Class I-presented cancer/testis antigen in NC. Further, we show that a PRAME epitope-specific T-cell receptor ("TCR") x CD3 activator bispecific molecule modeled after brenetafusp has potent T-cell mediated activity against PRAME+ NC. Our results show that PRAME is often highly expressed in NC due to BRD4::NUTM1, and that BRD4::NUTM1 induced PRAME antigens are promising TCR targets for forthcoming clinical trials in NC. Statement of Significance NC is one of the most aggressive solid tumors to afflict humans and is refractory to chemotherapy, T-cell checkpoint blockade, and targeted therapies. We show PRAME epitopes are promising targets for TCR-based therapeutics like brenetafusp in NC, adding to growing momentum for addressing challenging fusion malignancies with TCR therapeutics.
Collapse
|
7
|
Flaadt T, Lemelle L, Abele M, Virgone C, Ben-Ami T, Kachanov D, Pourtsidis A, Ferrari A, Bisogno G, Bien E, Dos Reis Farinha NJ, Godzinski J, Reguerre Y, Roganovic J, Kloker LD, Lauer UM, Schneider DT, Brecht IB, Orbach D. NUT carcinoma in children and adolescents: An analysis of the European Cooperative Study Group on pediatric rare tumors (EXPeRT). Lung Cancer 2025; 201:108449. [PMID: 39999637 DOI: 10.1016/j.lungcan.2025.108449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND AND AIMS NUT carcinoma (NC) is a sporadic, highly aggressive tumor that primarily affects children, adolescents, and young adults and is characterized by the presence of somatic NUTM1 rearrangements. This analysis by the European Cooperative Study Group for Pediatric Rare Tumors (EXPeRT) aims to fill the knowledge gap regarding the clinical characteristics of children with NC. METHODS A retrospective case series of NC-patients aged 0-18 years treated between 2011 and 2023 was conducted using the EXPeRT database. Relevant clinical characteristics, including treatment and outcome were recorded. RESULTS Twenty-seven patients with a median age of 13 years (range 7-18) were analyzed. Thirteen patients were initially misdiagnosed. Sixteen patients had thoracic and 11 extra-thoracic tumors, including three in the nasal/sinus region and two in the submandibular glands. Despite intense multimodal treatment, median event-free and overall survivals were 1.5 and 6.5 months, respectively. CONCLUSIONS Early diagnosis of NC by examination of the NUTM1 rearrangement in undifferentiated or poorly differentiated carcinomas is crucial in order to initiate specific and intensive therapy as quickly as possible. Similar to adult patients, only a minority of pediatric patients achieved prolonged survival. Therefore, the development of novel therapeutic strategies in future joint clinical trials is essential.
Collapse
Affiliation(s)
- Tim Flaadt
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Germany.
| | - Lauriane Lemelle
- SIREDO Oncology Center (Care, Innovation, and Research for Children and AYA with Cancer), PSL Research University, Institut Curie, Paris, Fran
| | - Michael Abele
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Germany
| | - Calogero Virgone
- Pediatric Surgery Division, University of Padua, University Hospital of Padua, Padua, Italy; Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Tal Ben-Ami
- Pediatric Hematology Unit, Kaplan Medical Center, Rehovot, Israel
| | - Denis Kachanov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Apostolos Pourtsidis
- Pediatric and Adolescent Oncology Clinic, Children's Hospital MITERA, Athens, Greece
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Gianni Bisogno
- Department of Women's and Children's Health, University of Padua and Pediatric Hematology Oncology Division, University Hospital of Padua, Padua, Italy
| | - Ewa Bien
- Department of Pediatrics, Hematology and Oncology, Medical University, Gdansk, Poland
| | | | - Jan Godzinski
- Dept. of Paed. Surgery, Marciniak Hospital, Wroclaw, Poland; Dept. of Paediatric Traumatology and Emergency Medicine, Wroclaw Medical University, Poland
| | - Yves Reguerre
- CHU de Saint Denis, Service d'oncologie et d'hématologie pédiatrique, 97400 Saint-Denis, Reunion, France
| | - Jelena Roganovic
- Department of Hematology and Oncology, Children's Hospital Zagreb, Zagreb, Croatia; Faculty of Biotechnology and Drug Development, University of Rijeka, Rijeka, Croatia
| | - Linus D Kloker
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University of Tuebingen, Tuebingen, Germany. German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tuebingen, Tuebingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University of Tuebingen, Tuebingen, Germany. German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tuebingen, Tuebingen, Germany
| | - Dominik T Schneider
- Clinic of Pediatrics, Dortmund Municipal Hospital, University Witten/Herdecke, Germany
| | - Ines B Brecht
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Germany
| | - Daniel Orbach
- SIREDO Oncology Center (Care, Innovation, and Research for Children and AYA with Cancer), PSL Research University, Institut Curie, Paris, Fran
| |
Collapse
|
8
|
Tang L, Peng S, Zhuang X, He Y, Song Y, Nie H, Zheng C, Pan Z, Lam AK, He M, Shi X, Li B, Xu WW. Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention. MEDCOMM – ONCOLOGY 2025; 4. [DOI: 10.1002/mog2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025]
Abstract
ABSTRACTMetastasis remains a leading cause of cancer‐related deaths, defined by a complex, multi‐step process in which tumor cells spread and form secondary growths in distant tissues. Despite substantial progress in understanding metastasis, the molecular mechanisms driving this process and the development of effective therapies remain incompletely understood. Elucidating the molecular pathways governing metastasis is essential for the discovery of innovative therapeutic targets. The rapid advancements in sequencing technologies and the expansion of biological databases have significantly deepened our understanding of the molecular drivers of metastasis and associated drug resistance. This review focuses on the molecular drivers of metastasis, particularly the roles of genetic mutations, epigenetic changes, and post‐translational modifications in metastasis progression. We also examine how the tumor microenvironment influences metastatic behavior and explore emerging therapeutic strategies, including targeted therapies and immunotherapies. Finally, we discuss future research directions, stressing the importance of novel treatment approaches and personalized strategies to overcome metastasis and improve patient outcomes. By integrating contemporary insights into the molecular basis of metastasis and therapeutic innovation, this review provides a comprehensive framework to guide future research and clinical advancements in metastatic cancer.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Shao‐Cong Peng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xiao‐Wan Zhuang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Yan He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Yu‐Xiang Song
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Hao Nie
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Can‐Can Zheng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Zhen‐Yu Pan
- Department of Radiation Oncology, The Affiliated Huizhou Hospital Guangzhou Medical University Huizhou China
| | - Alfred King‐Yin Lam
- Cancer Molecular Pathology and Griffith Medical School Griffith University Gold Coast Queensland Australia
| | - Ming‐Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Xing‐Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wen Wen Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| |
Collapse
|
9
|
Ye Z, Li X, Xie F, Sun J, Yang D, Deng C, Yin M. A single-cell sequencing-based analysis of a 13-year-old with maxillary sinus NUT carcinoma. Oral Oncol 2025; 162:107185. [PMID: 39862476 DOI: 10.1016/j.oraloncology.2025.107185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
NUT carcinoma is a rare and highly aggressive malignancy, predominantly affecting adolescents and young adults. This tumor demonstrates rapid progression, resistance to conventional anti-cancer treatments, and an extremely poor prognosis. Currently, research on NUT carcinoma is limited, and effective treatment options remain scarce. In this study, we performed single-cell RNA sequencing (scRNA-seq) on tumor tissue from a 13-year-old patient with maxillary sinus NUT carcinoma. The analysis revealed significant heterogeneity among epithelial cells within the tumor microenvironment (TME). Immune cell infiltration was notably low, suggesting that the tumor represents a "cold" immune microenvironment. Subclustering of epithelial cells identified distinct subpopulations characterized by high proliferation, metabolic activity, TGF-Beta-driven invasiveness, and MYC-driven growth and protein secretion. These findings provide critical insights into the tumor's biology, growth mechanisms, and potential therapeutic vulnerabilities. This study highlights the importance of scRNA-seq in understanding the complexity of NUT carcinoma and underscores the need for personalized treatment approaches, including the potential application of BET inhibitors.
Collapse
Affiliation(s)
- Zhuomiao Ye
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou District, Chongqing 404100, China; Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Wanzhou District, Chongqing 404100, China; School of Medicine Chongqing University, Chongqing University, Shapingba District, Chongqing 400030, China
| | - Xin Li
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou District, Chongqing 404100, China; Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Wanzhou District, Chongqing 404100, China; School of Medicine Chongqing University, Chongqing University, Shapingba District, Chongqing 400030, China
| | - Fei Xie
- Breast Center, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China
| | - Jie Sun
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou District, Chongqing 404100, China; Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Wanzhou District, Chongqing 404100, China
| | - Dan Yang
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou District, Chongqing 404100, China; Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Wanzhou District, Chongqing 404100, China
| | - Chao Deng
- Breast Center, Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China.
| | - Mingzhu Yin
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC) and Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou District, Chongqing 404100, China; Chongqing Technical Innovation Center for Quality Evaluation and Identification of Authentic Medicinal Herbs, Wanzhou District, Chongqing 404100, China; School of Medicine Chongqing University, Chongqing University, Shapingba District, Chongqing 400030, China.
| |
Collapse
|
10
|
Zhou MM, Cole PA. Targeting lysine acetylation readers and writers. Nat Rev Drug Discov 2025; 24:112-133. [PMID: 39572658 PMCID: PMC11798720 DOI: 10.1038/s41573-024-01080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 02/06/2025]
Abstract
Lysine acetylation is a major post-translational modification in histones and other proteins that is catalysed by the 'writer' lysine acetyltransferases (KATs) and mediates interactions with bromodomains (BrDs) and other 'reader' proteins. KATs and BrDs play key roles in regulating gene expression, cell growth, chromatin structure, and epigenetics and are often dysregulated in disease states, including cancer. There have been accelerating efforts to identify potent and selective small molecules that can target individual KATs and BrDs with the goal of developing new therapeutics, and some of these agents are in clinical trials. Here, we summarize the different families of KATs and BrDs, discuss their functions and structures, and highlight key advances in the design and development of chemical agents that show promise in blocking the action of these chromatin proteins for disease treatment.
Collapse
Affiliation(s)
- Ming-Ming Zhou
- Departments of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Davies AJ. The high-grade B-cell lymphomas: double hit and more. Blood 2024; 144:2583-2592. [PMID: 39427343 DOI: 10.1182/blood.2023020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 10/22/2024] Open
Abstract
ABSTRACT Both the 2022 World Health Organization Classification of Hematolymphoid Tumors, 5th Edition and the International Consensus Classification of lymphoma have refined the way we now approach high-grade B-cell lymphoma (HGBL) with MYC and BCL2 and/or BCL6 rearrangements moving the previous generation of classification a step forward. The unifying biology of MYC/BCL2 tumors has become clearer and their inferior prognosis confirmed compared with those with morphologic similar phenotypes but lacking the classifcation defining cytogenetic abnormalities. Fluorescent in situ hybridization testing has now become largely population based, and we have learned much from this. We can readily define molecular categories and apply these widely to clinical practice. Uncertainty has, however, been shed on the place of MYC/BCL6 translocations in defining a common disease group of double hit lymphoma due to biological heterogeneity. We have enhanced our knowledge of outcomes and the role of therapy intensification to overcome chemotherapy resistance in HGBL. For those patients failed by initial induction chemotherapy, immunotherapy approaches, including chimeric antigen receptor T-cell therapies, are improving outcomes. Novel inhibitors, targeting dysregulated oncogenic proteins, are being explored at pace. The rare, but difficult, diagnostic classification HGBL (not otherwise specified) remains a diagnosis of exclusion with limited data on an optimal clinical approach. The days of talking loosely of double- and triple-hit lymphoma are numbered as biology and outcomes may not be shared. This review synergizes the current data on biology, prognosis, and therapies in HGBL.
Collapse
Affiliation(s)
- Andrew J Davies
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
12
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
13
|
Zou D, Feng S, Hu B, Guo M, Lv Y, Ma R, Du Y, Feng J. Bromodomain proteins as potential therapeutic targets for B-cell non-Hodgkin lymphoma. Cell Biosci 2024; 14:143. [PMID: 39580422 PMCID: PMC11585172 DOI: 10.1186/s13578-024-01326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND B-cell non-Hodgkin lymphoma (B-NHL) is the most common type of lymphoma and is significantly heterogeneous among various subtypes. Despite of considerable advancements in treatment strategies for B-NHL, the prognosis of relapsed/refractory patients remains poor. MAIN TEXT It has been indicated that epigenetic dysregulation is critically associated with the pathogenesis of most hematological malignancies, resulting in the clinical targeting of epigenetic modifications. Bromodomain (BRD) proteins are essential epigenetic regulators which contain eight subfamilies, including BRD and extra-terminal domain (BET) family, histone acetyltransferases (HATs) and HAT-related proteins, transcriptional coactivators, transcriptional mediators, methyltransferases, helicases, ATP-dependent chromatin-remodeling complexes, and nuclear-scaffolding proteins. Most pre-clinical and clinical studies on B-NHL have focused predominantly on the BET family and the use of BET inhibitors as mono-treatment or co-treatment with other anti-tumor drugs. Furthermore, preclinical models of B-NHL have revealed that BET degraders are more active than BET inhibitors. Moreover, with the development of BET inhibitors and degraders, non-BET BRD protein inhibitors have also been designed and have shown antitumor activities in B-NHL preclinical models. This review summarized the mechanism of BRD proteins and the recent progress of BRD protein-related drugs in B-NHL. This study aimed to collect the most recent evidences and summarize possibility on whether BRD proteins can serve as therapeutic targets for B-NHL. CONCLUSION In summary, BRD proteins are critical epigenetic regulatory factors and may be potential therapeutic targets for B-NHL.
Collapse
Affiliation(s)
- Dan Zou
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Sitong Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Bowen Hu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Mengya Guo
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Du
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
14
|
Landsburg DJ, Morrissette JJ, Nasta SD, Barta SK, Schuster SJ, Chong EA, Svoboda J, Barlev A, Bagg A, Priore SF. Genomic Features of Newly Diagnosed Large B-cell Lymphoma with or without Subsequent Disease Progression. CANCER RESEARCH COMMUNICATIONS 2024; 4:2947-2954. [PMID: 39392347 PMCID: PMC11558615 DOI: 10.1158/2767-9764.crc-24-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/21/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
SIGNIFICANCE Genomic features of LBCL that can be detected by clinical laboratory assays may predict for resistance to first-line immunochemotherapy, as well as support the exploration of genomic features as biomarkers of response to therapies which could be offered to patients who experience disease progression.
Collapse
Affiliation(s)
- Daniel J. Landsburg
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer J.D. Morrissette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunita D. Nasta
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stefan K. Barta
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen J. Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elise A. Chong
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jakub Svoboda
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ashley Barlev
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Salvatore F. Priore
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Bollmann LM, Lange F, Hamacher A, Biermann L, Schäker-Hübner L, Hansen FK, Kassack MU. Triple Combination of Entinostat, a Bromodomain Inhibitor, and Cisplatin Is a Promising Treatment Option for Bladder Cancer. Cancers (Basel) 2024; 16:3374. [PMID: 39409994 PMCID: PMC11476342 DOI: 10.3390/cancers16193374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES Cisplatin is part of the first-line treatment of advanced urothelial carcinoma. Cisplatin resistance is a major problem but may be overcome by combination treatments such as targeting epigenetic aberrances. Here, we investigated the effect of the class I HDACi entinostat and bromodomain inhibitors (BETis) on the potency of cisplatin in two pairs of sensitive and cisplatin-resistant bladder cancer cell lines. Cisplatin-resistant J82cisR and T24 LTT were 3.8- and 24-fold more resistant to cisplatin compared to the native cell lines J82 and T24. In addition, a hybrid compound (compound 20) comprising structural features of an HDACi and a BETi was investigated. RESULTS We found complete (J82cisR) or partial (T24 LTT) reversal of chemoresistance upon combination of entinostat, JQ1, and cisplatin. The same was found for the BETis JQ35 and OTX015, both in clinical trials, and for compound 20. The combinations were highly synergistic (Chou Talalay analysis) and increased caspase-mediated apoptosis accompanied by enhanced expression of p21, Bim, and FOXO1. Notably, the combinations were at least 4-fold less toxic in non-cancer cell lines HBLAK and HEK293. CONCLUSIONS The triple combination of entinostat, a BETi, and cisplatin is highly synergistic, reverses cisplatin resistance, and may thus serve as a novel therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Lukas M. Bollmann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Friedrich Lange
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Alexandra Hamacher
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Lukas Biermann
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| | - Linda Schäker-Hübner
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (F.K.H.)
| | - Matthias U. Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, 40225 Duesseldorf, Germany; (L.M.B.)
| |
Collapse
|
16
|
Kroening G, Luo J, Evans MG, Adeyelu T, Ou SHI, Arter ZL, Wise-Draper TM, Sukari A, Azmi AS, Braxton DR, Elliott A, Bryant DA, Oberley MJ, Kim C, Shapiro GI, French CA, Nagasaka M. Multiomic Characterization and Molecular Profiling of Nuclear Protein in Testis Carcinoma. JCO Precis Oncol 2024; 8:e2400334. [PMID: 39447095 PMCID: PMC11520346 DOI: 10.1200/po.24.00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/14/2024] [Accepted: 08/06/2024] [Indexed: 10/26/2024] Open
Abstract
PURPOSE Nuclear protein in testis carcinoma (NC) is an underdiagnosed and aggressive squamous/poorly differentiated cancer characterized by rearrangement of the gene NUTM1 on chromosome 15q14. Co-occurring alternations have not been fully characterized. METHODS We analyzed the genomic and immune landscape of 54 cases of NC that underwent DNA- and RNA-based NGS sequencing (Caris). RESULTS While NC is driven by NUTM1 fusion oncoproteins, co-occurring DNA mutations in epigenetic or cell cycle pathways were observed in 26% of cases. There was no significant difference between the fusion partner of NUTM1 and co-occurring gene mutations. RNA sequencing analysis showed increased MYC pathway activity in NC compared with head and neck squamous cell carcinoma (HNSCC) and lung squamous cell carcinoma (LUSC), which is consistent with the known pathophysiology of NC. Characterization of the NC tumor microenvironment using RNA sequencing revealed significantly lower immune cell infiltration compared with HNSCC and LUSC. NC was 10× higher in patients with HNSCC and LUSC younger than 50 years than in those older than 70 years. CONCLUSION To our knowledge, this is the first series of NC profiled broadly at the DNA and RNA level. We observed fewer intratumoral immune cells by RNA sequencing, which may be associated with anecdotal data of lack of immunotherapy benefit in NC. High MYC pathway activity in NC supports ongoing trials targeting MYC suppression. The incidence of NC among patients younger than 50 years with LUSC/HNSCC supports testing for NC in these patients. The prognosis of NCs remains dismal, and future studies should focus on improving the response to immunotherapy and targeting MYC.
Collapse
Affiliation(s)
- Gianna Kroening
- University of California Irvine School of Medicine, Orange, CA
| | - Jia Luo
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | | | | | | | | | | | | | | | | | | | | | - Chul Kim
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Geoffrey I. Shapiro
- Dana-Farber Cancer Institute, Boston, MA
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | | | - Misako Nagasaka
- University of California Irvine School of Medicine, Orange, CA
| |
Collapse
|
17
|
Zhao Y, Zhang J, Liao W, Li J, Zhang S. NUT carcinoma of the head and neck: A case report and literature review. PRECISION RADIATION ONCOLOGY 2024; 8:138-144. [PMID: 40336973 PMCID: PMC11935197 DOI: 10.1002/pro6.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 05/09/2025] Open
Abstract
Nuclear protein in testis (NUT) carcinoma is a rare and highly aggressive cancer, characterized by rearrangements involving the NUT gene located on chromosome 15q14. In this report, we present the case of a 52-year-old female diagnosed with primary parotid NUT carcinoma. Despite undergoing surgery, adjuvant chemotherapy, and incomplete regional radiotherapy, the patient succumbed to the disease after an overall survival duration of 7 months. We retrospectively discuss patient clinical and pathological features, as well as therapeutic approaches of NUT carcinoma of the head and neck.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer Hospital &InstituteSichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Jun Zhang
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer Hospital &InstituteSichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Wenjun Liao
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer Hospital &InstituteSichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Jiayu Li
- Department of PathologySichuan Clinical Research Center for CancerSichuan Cancer Hospital & InstituteSichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Shichuan Zhang
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer Hospital &InstituteSichuan Cancer CenterAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
18
|
Viswanathan K, Hahn E, Dogan S, Weinreb I, Dickson BC, MacMillan C, Katabi N, Magliocca K, Ghossein R, Xu B. The histological spectrum and immunoprofile of head and neck NUT carcinoma: A multicentre series of 30 cases. Histopathology 2024; 85:317-326. [PMID: 38708903 PMCID: PMC11246813 DOI: 10.1111/his.15204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND AND AIM Head and neck nuclear protein of testis carcinoma (HN-NUT) is a rare form of carcinoma diagnosed by NUT immunohistochemistry positivity and/or NUTM1 translocation. Although the prototype of HN-NUT is a primitive undifferentiated round cell tumour (URC) with immunopositivity for squamous markers, it is our observation that it may assume variant histology or immunoprofile. METHODS We conducted a detailed clinicopathological review of a large retrospective cohort of 30 HN-NUT, aiming to expand its histological and immunohistochemical spectrum. RESULTS The median age of patients with HN-NUT was 39 years (range = 17-86). It affected the sinonasal tract (43%), major salivary glands (20%), thyroid (13%), oral cavity (7%), larynx (7%), neck (7%) and nasopharynx (3%). Although most cases of HN-NUT (63%) contained a component of primitive URC tumour, 53% showed other histological features and 37% lacked a URC component altogether. Variant histological features included basaloid (33%), differentiated squamous/squamoid (37%), clear cell changes (13%), glandular differentiation (7%) and papillary architecture (10%), which could co-exist. While most HN-NUT were positive for keratins, p63 and p40, occasional cases (5-9%) were entirely negative. Immunopositivity for neuroendocrine markers and thyroid transcription factor-1 was observed in 33 and 36% of cases, respectively. The outcome of HN-NUT was dismal, with a 3-year disease specific survival of 38%. CONCLUSIONS HN-NUT can affect individuals across a wide age range and arise from various head and neck sites. It exhibits a diverse spectrum of histological features and may be positive for neuroendocrine markers, potentially leading to underdiagnosis. A low threshold to perform NUT-specific tests is necessary to accurately diagnose HN-NUT.
Collapse
Affiliation(s)
- Kartik Viswanathan
- Department of Pathology, Emory University Hospital Midtown, Atlanta, GA, USA
| | - Elan Hahn
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON, Canada
| | - Snjezana Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ilan Weinreb
- Department of Pathology, University Health Network, Toronto, ON, Canada
| | - Brendan C. Dickson
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON, Canada
| | - Christina MacMillan
- Department of Pathology and Laboratory Medicine, Sinai Health System, Toronto, ON, Canada
| | - Nora Katabi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelly Magliocca
- Department of Pathology, Emory University Hospital Midtown, Atlanta, GA, USA
| | - Ronald Ghossein
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bin Xu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
19
|
DU J, ZHANG X. [Research Progress on Pathogenesis and Treatment of NUT Carcinoma]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2024; 27:466-470. [PMID: 39026498 PMCID: PMC11258642 DOI: 10.3779/j.issn.1009-3419.2024.101.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 07/20/2024]
Abstract
NUT carcinoma (nuclear protein in testis carcinoma) is a rare and highly invasive malignant tumor, which is most common in midline organs and lungs. The characteristic genetic change of NUT carcinoma is the rearrangement of NUT middle carcinoma family member 1 (NUTM1) gene. In this article, we will review the pathogenic mechanism of its most common fusion form, bromodomaincontaining protein 4 (BRD4)-NUTM1 fusion gene, and the progress in the research and development of targeting drugs.
.
Collapse
|
20
|
Yongprayoon V, Wattanakul N, Khomate W, Apithanangsiri N, Kasitipradit T, Nantajit D, Tavassoli M. Targeting BRD4: Potential therapeutic strategy for head and neck squamous cell carcinoma (Review). Oncol Rep 2024; 51:74. [PMID: 38606512 DOI: 10.3892/or.2024.8733] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
As a member of BET (bromodomain and extra-terminal) protein family, BRD4 (bromodomain‑containing protein 4) is a chromatin‑associated protein that interacts with acetylated histones and actively recruits regulatory proteins, leading to the modulation of gene expression and chromatin remodeling. The cellular and epigenetic functions of BRD4 implicate normal development, fibrosis and inflammation. BRD4 has been suggested as a potential therapeutic target as it is often overexpressed and plays a critical role in regulating gene expression programs that drive tumor cell proliferation, survival, migration and drug resistance. To address the roles of BRD4 in cancer, several drugs that specifically target BRD4 have been developed. Inhibition of BRD4 has shown promising results in preclinical models, with several BRD4 inhibitors undergoing clinical trials for the treatment of various cancers. Head and neck squamous cell carcinoma (HNSCC), a heterogeneous group of cancers, remains a health challenge with a high incidence rate and poor prognosis. Conventional therapies for HNSCC often cause adverse effects to the patients. Targeting BRD4, therefore, represents a promising strategy to sensitize HNSCC to chemo‑ and radiotherapy allowing de‑intensification of the current therapeutic regime and subsequent reduced side effects. However, further studies are required to fully understand the underlying mechanisms of action of BRD4 in HNSCC in order to determine the optimal dosing and administration of BRD4‑targeted drugs for the treatment of patients with HNSCC.
Collapse
Affiliation(s)
- Voraporn Yongprayoon
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Napasporn Wattanakul
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Winnada Khomate
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Nathakrit Apithanangsiri
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Tarathip Kasitipradit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Danupon Nantajit
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Mahvash Tavassoli
- Centre for Host Microbiome Interactions, King's College London, London SE1 1UL, UK
| |
Collapse
|
21
|
Gold S, Shilatifard A. Therapeutic targeting of BET bromodomain and other epigenetic acetylrecognition domain-containing factors. Curr Opin Genet Dev 2024; 86:102181. [PMID: 38564841 DOI: 10.1016/j.gde.2024.102181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Development of cancer therapies targeting chromatin modifiers and transcriptional regulatory factors is rapidly expanding to include new targets and novel targeting strategies. At the same time, basic molecular research continues to refine our understanding of the epigenetic mechanisms regulating transcription, gene expression, and oncogenesis. This mini-review focuses on cancer therapies targeting the chromatin-associated factors that recognize histone lysine acetylation. Recently reported safety and efficacy are discussed for inhibitors targeting the bromodomains of bromodomain and extraterminal domain (BET) family proteins. In light of recent results indicating that the transcriptional regulator BRD4-PTEFb can function independently of BRD4's bromodomains, the clinical trial performance of these BET inhibitors is placed in a broader context of existing and potential strategies for targeting BRD4-PTEFb. Recently developed therapies targeting bromodomain-containing factors within the SWI/SNF (BAF) family of chromatin remodeling complexes are discussed, as is the potential for targeting the bromodomain-containing transcription factor TAF1 and the YEATS acetylrecognition domain-containing factor GAS41. Recent findings regarding the selectivity and combinatorial specificity of acetylrecognition are highlighted. In conclusion, the potential for further development is discussed with a focus on proximity-based therapies targeting this class of epigenetic factors.
Collapse
Affiliation(s)
- Sarah Gold
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA. https://twitter.com/@rwx_life
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
22
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
23
|
Luo J, Sanchez M, Lee E, Hertzler H, Luong N, Mazzola E, Finstein B, Tamen R, Brisbane G, Nguyen T, Paik PK, Chaft JE, Cheng ML, Khalil H, Piha-Paul SA, Sholl LM, Nishino M, Jänne PA, DuBois SG, Hanna GJ, Shapiro GI, French CA. Initial Chemotherapy for Locally Advanced and Metastatic NUT Carcinoma. J Thorac Oncol 2024; 19:829-838. [PMID: 38154515 PMCID: PMC11081848 DOI: 10.1016/j.jtho.2023.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION NUT carcinoma (NC) is an underdiagnosed and aggressive poorly differentiated or squamous cell cancer. A subset of NC is sensitive to chemotherapy, but the optimal regimen is unknown. Experts have recommended platinum- and ifosfamide-based therapy based on case reports. METHODS Patients with pathologically confirmed NC with known survival outcomes after chemotherapy and consented to participate in a worldwide registry were studied. Results were summarized using descriptive methods. RESULTS The study included 118 patients with NC. Median age was 34 (range: 1-82) years, 39% were women, and 61% harbored a BRD4::NUTM1 fusion. Patients received platinum (74%) or ifosfamide (26%, including regimens with both, 13%). Of 62 patients with nonmetastatic disease, 40% had a thoracic primary. Compared with platinum-based chemotherapy, patients who received ifosfamide-based chemotherapy had nominally higher progression-free survival (12 mo: 59% [95% CI: 32-87] versus 37% [95% CI: 22-52], hazard ratio = 0.68 [0.32, 1.42], p = 0.3) but not overall survival (OS). Among the 56 patients with metastatic disease, 80% had a thoracic primary. Ifosfamide had an objective response rate (ORR) of 75% (six of eight) and platinum had an ORR of 31% (11 of 36). Nevertheless, there was no difference in progression-free survival or OS. The 3-year OS of the entire cohort was 19% (95% CI: 10%-28%). Of the 11 patients alive greater than 3 years, all presented with nonmetastatic and operable or resectable disease. CONCLUSION There is a numerically higher ORR for ifosfamide-based therapy compared with platinum-based therapy, with limited durability. OS at 3 years is only 19%, and development of effective therapies is an urgent unmet need for this patient population.
Collapse
Affiliation(s)
- Jia Luo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Michelle Sanchez
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Elinton Lee
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hans Hertzler
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nhi Luong
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Emanuele Mazzola
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bryanna Finstein
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rubii Tamen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gifty Brisbane
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Tom Nguyen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paul K Paik
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jamie E Chaft
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael L Cheng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hassan Khalil
- Department of Thoracic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts; Department of Imaging, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Steven G DuBois
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Glenn J Hanna
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Center for Head and Neck Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Geoffrey I Shapiro
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; Center for Cancer Therapeutic Innovation, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Christopher A French
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
24
|
Arai S, Tomioka R, Ueda Y, Shimizu A, Okamoto I, Tsukahara K. Maxillary Sinus NUT Carcinoma: A Case Report. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:370-378. [PMID: 38707725 PMCID: PMC11062161 DOI: 10.21873/cdp.10334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/19/2024] [Indexed: 05/07/2024]
Abstract
Background/Aim Nuclear protein in testis (NUT) carcinoma is extremely rare, occurs in the midline of the body, progresses rapidly and is refractory to treatment; most patients die within a year. Here, we describe a case of maxillary sinus NUT carcinoma presenting with epistaxis and nasal obstruction that was treated as a standard head and neck carcinoma. Case Report The patient was a 41-year-old male with a left buccal swelling; the diagnosis was made of primary NUT carcinoma of the left maxillary sinus and bone metastasis in the cervical spine. After induction chemotherapy with docetaxel plus cisplatin and 5-fluorouracil, the tumor decreased in size, and the patient was further treated with cisplatin and radiation therapy. One month after that, the tumor remained small, however, lung metastasis was observed. Therefore, nivolumab was administered. Cetuximab and paclitaxel were administered after the lung metastasis worsened, but the patient developed progressive disease and died 11 months after diagnosis. Conclusion Effective treatments for NUT carcinoma have not yet been established. However, early testing to establish the diagnosis may provide useful insights to guide clinical decisions to improve patient outcomes.
Collapse
Affiliation(s)
- Sayaka Arai
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Ryota Tomioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Yuri Ueda
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Akira Shimizu
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Isaku Okamoto
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| | - Kiyoaki Tsukahara
- Department of Otorhinolaryngology, Head and Neck Surgery, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
25
|
Stein EM, Fathi AT, Harb WA, Colak G, Fusco A, Mangan JK. Results from phase 1 of the MANIFEST clinical trial to evaluate the safety and tolerability of pelabresib in patients with myeloid malignancies. Leuk Lymphoma 2024; 65:503-510. [PMID: 38259250 DOI: 10.1080/10428194.2023.2300710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Pelabresib (CPI-0610), a BET protein inhibitor, is in clinical development for hematologic malignancies, given its ability to target NF-κB gene expression. The MANIFEST phase 1 study assessed pelabresib in patients with acute leukemia, high-risk myelodysplastic (MDS) syndrome, or MDS/myeloproliferative neoplasms (MDS/MPNs) (NCT02158858). Forty-four patients received pelabresib orally once daily (QD) at various doses (24-400 mg capsule or 225-275 mg tablet) on cycles of 14 d on and 7 d off. The most frequent drug-related adverse events were nausea, decreased appetite, and fatigue. The maximum tolerated dose (MTD) was 225 mg tablet QD. One patient with chronic myelomonocytic leukemia (CMML) showed partial remission. In total, 25.8% of acute myeloid leukemia (AML) patients and 38.5% of high-risk MDS patients had stable disease. One AML patient and one CMML patient showed peripheral hematologic response. The favorable safety profile supports the ongoing pivotal study of pelabresib in patients with myelofibrosis using the recommended phase 2 dose of 125 mg tablet QD.CLINICAL TRIAL REGISTRATION: NCT02158858.
Collapse
Affiliation(s)
- Eytan M Stein
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amir T Fathi
- Leukemia Program, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wael A Harb
- Horizon Oncology and Research Center, Lafayette, IN, USA
| | - Gozde Colak
- Constellation Pharmaceuticals, Inc., a MorphoSys Company, Boston, MA, USA
| | - Andrea Fusco
- Constellation Pharmaceuticals, Inc., a MorphoSys Company, Boston, MA, USA
| | - James K Mangan
- Department of Medicine, Division of Blood and Marrow Transplantation, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Guo Y, Li X, Xie Y, Wang Y. What influences the activity of Degrader-Antibody conjugates (DACs). Eur J Med Chem 2024; 268:116216. [PMID: 38387330 DOI: 10.1016/j.ejmech.2024.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
The targeted protein degradation (TPD) technology employing proteolysis-targeting chimeras (PROTACs) has been widely applied in drug chemistry and chemical biology for the treatment of cancer and other diseases. PROTACs have demonstrated significant advantages in targeting undruggable targets and overcoming drug resistance. However, despite the efficient degradation of targeted proteins achieved by PROTACs, they still face challenges related to selectivity between normal and cancer cells, as well as issues with poor membrane permeability due to their substantial molecular weight. Additionally, the noteworthy toxicity resulting from off-target effects also needs to be addressed. To solve these issues, Degrader-Antibody Conjugates (DACs) have been developed, leveraging the targeting and internalization capabilities of antibodies. In this review, we elucidates the characteristics and distinctions between DACs, and traditional Antibody-drug conjugates (ADCs). Meanwhile, we emphasizes the significance of DACs in facilitating the delivery of PROTACs and delves into the impact of various components on DAC activity. These components include antibody targets, drug-antibody ratio (DAR), linker types, PROTACs targets, PROTACs connections, and E3 ligase ligands. The review also explores the suitability of different targets (antibody targets or PROTACs targets) for DACs, providing insights to guide the design of PROTACs better suited for antibody conjugation.
Collapse
Affiliation(s)
- Yaolin Guo
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Xie
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
27
|
Flaadt T, Wild H, Abele M, Frühwald M, Dirksen U, Classen CF, Seitz C, Redlich A, Lauer UM, Kloker L, Kratz C, Schneider DT, Brecht IB. NUT carcinoma in pediatric patients: Characteristics, therapeutic regimens, and outcomes of 11 cases registered with the German Registry for Rare Pediatric Tumors (STEP). Pediatr Blood Cancer 2024; 71:e30821. [PMID: 38148490 DOI: 10.1002/pbc.30821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND AND AIMS Nuclear protein of the testis (NUT) carcinoma (NC) is a rare and highly aggressive tumor defined by the presence of a somatic NUTM1 rearrangement, occurring mainly in adolescents and young adults. We analyzed the clinical and biological features of German pediatric patients (≤18 years) with NC. METHODS This study describes the characteristics and outcome of 11 children with NC registered in the German Registry for Rare Pediatric Tumors (STEP). RESULTS Eleven patients with a median age of 13.2 years (range 6.6-17.8) were analyzed. Malignant misdiagnoses were made in three patients. Thoracic/mediastinal tumors were found to be the primary in six patients, head/neck in four cases; one patient had multifocal tumor with an unknown primary. All patients presented with regional lymph node involvement, eight patients (72.7%) with distant metastases. Seven patients underwent surgery, eight radiotherapy with curative intent; polychemotherapy was administered in all patients. Novel treatment strategies including immunotherapy, targeted therapies, and virotherapy were applied in three patients. Median event-free survival and overall survival were 1.5 and 6.5 months, respectively. CONCLUSIONS Every undifferentiated or poorly differentiated carcinoma should undergo testing for the specific rearrangement of NUTM1, in order to initiate an intense therapeutic regimen as early as possible. As in adults, only few pediatric patients with NC achieve prolonged survival. Thus, novel therapeutic strategies should be included and tested in clinical trials.
Collapse
Affiliation(s)
- Tim Flaadt
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tubingen, Germany
| | - Hannah Wild
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tubingen, Germany
| | - Michael Abele
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tubingen, Germany
| | - Michael Frühwald
- Swabian Children's Cancer Center, Children's Hospital, Klinikum Augsburg, Augsburg, Germany
| | - Uta Dirksen
- Pediatrics III, West German Cancer Centre Essen, German Cancer Consortium (DKTK) site Essen, National Center for Tumordiseases (NCT) site Essen, University Hospital Essen, Essen, Germany
| | - Carl F Classen
- Pediatric Haematology/Oncology/Immunology, Department of Pediatrics, University Hospital Rostock, Rostock, Germany
| | - Christian Seitz
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tubingen, Germany
| | - Antje Redlich
- Pediatric Oncology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tuebingen, Tuebingen, Germany
| | - Linus Kloker
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tuebingen, Tuebingen, Germany
| | - Christian Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | | | - Ines B Brecht
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tubingen, Germany
| |
Collapse
|
28
|
Wang F, Fu K, Wang Y, Pan C, Wang X, Liu Z, Yang C, Zheng Y, Li X, Lu Y, To KKW, Xia C, Zhang J, Shi Z, Hu Z, Huang M, Fu L. Small-molecule agents for cancer immunotherapy. Acta Pharm Sin B 2024; 14:905-952. [PMID: 38486980 PMCID: PMC10935485 DOI: 10.1016/j.apsb.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zeyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaopeng Li
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
29
|
Cadesky A, Schulman-Rosenbaum R, Carter A, Paul E, Jaggi S. A Rare Case of NUT Carcinoma of the Thyroid. JCEM CASE REPORTS 2024; 2:luae037. [PMID: 38524390 PMCID: PMC10958768 DOI: 10.1210/jcemcr/luae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Indexed: 03/26/2024]
Abstract
NUT carcinoma is an aggressive, poorly differentiated squamous cell carcinoma, defined by rearrangement of the NUTM1 (Nuclear Protein in Testis) gene. Diagnosis is challenging due to histologic similarities with other poorly differentiated tumors requiring advanced diagnostic techniques. There is no established treatment, and prognosis remains extremely poor. A 27-year-old woman without known medical history presented with a rapidly enlarging neck mass and compressive symptoms. Chemotherapy for presumed squamous cell carcinoma with a component of anaplastic thyroid cancer based on pathology was initiated. Next-generation sequencing revealed thyroid NUT carcinoma with high PD-L1 expression, prompting PD-1 targeted therapy. The patient expired shortly afterwards from progressive disease. NUT carcinoma of thyroid origin is an extremely rare disease. This case brings awareness to the disease, highlights the importance of advanced diagnostic techniques and complexities in managing patients with NUT carcinoma.
Collapse
Affiliation(s)
- Adam Cadesky
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, Northwell, New Hyde Park, NY 11042-1069, USA
| | - Rifka Schulman-Rosenbaum
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, Northwell, New Hyde Park, NY 11042-1069, USA
| | - Amanda Carter
- Division of Endocrinology, Diabetes & Metabolism, NYU Langone Health, Manhasset, NY 11030, USA
| | - Elizabeth Paul
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, Northwell, New Hyde Park, NY 11042-1069, USA
| | - Shuchie Jaggi
- Department of Medicine, Division of Endocrinology, Metabolism & Diabetes, Northwell, New Hyde Park, NY 11042-1069, USA
| |
Collapse
|
30
|
Kloker LD, Sidiras M, Flaadt T, Brecht IB, Deinzer CKW, Groß T, Benzler K, Zender L, Lauer UM. Clinical management of NUT carcinoma (NC) in Germany: Analysis of survival, therapy response, tumor markers and tumor genome sequencing in 35 adult patients. Lung Cancer 2024; 189:107496. [PMID: 38301600 DOI: 10.1016/j.lungcan.2024.107496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
NUT carcinomas (NC) are very rare and highly aggressive tumors, molecularly defined by an aberrant gene fusion involving the NUTM1 gene. NCs preferentially arise intrathoracically or in the head and neck region, having a highly adverse prognosis with almost no long-term survivors. Here, we report on a cohort of 35 adult NC patients who were evaluated at University Hospital Tuebingen in an eight year time span, i.e. between 2016 and 2023. Primary objectives were overall survival (OS) and influence of primary tumor locations, fusion gene types and staging on OS. Secondary objectives were patient baseline characteristics, risk factors, tumor markers, treatment decisions and responses to therapy comparing thoracic vs non-thoracic origins. Further, data from tumor genome sequencing were analyzed. In this monocentric German cohort, 54 % of patients had thoracic tumors and 65 % harbored a BRD4-NUTM1 fusion gene. Median OS was 7.5 months, being significantly dependent on primary tumor location and nodal status. Initial misdiagnosis was a problem in 31 % of the cases. Surgery was the first treatment in most patients (46 %) and 80 % were treated with polychemotherapies, showing longer progression free survival (PFS) with ifosfamide-based than with platinum-based regimens. Patients treated with an immune checkpoint inhibitor (ICI) in addition to first-line chemotherapy tended to have longer OS. Initial LDH levels could be identified as a prognostic measure for survival prognosis. Sequencing data highlight aberrant NUTM1 fusion genes as unique tumor driver genes. This is the largest adult European cohort of this orphan tumor disease, showing epidemiologic and molecular features as well as relevant clinical data. Awareness to prevent misdiagnosis, fast contact to a specialized nation-wide center and referral to clinical studies are essential as long-term survival is rarely achieved with any of the current therapeutic regimes.
Collapse
Affiliation(s)
- Linus D Kloker
- Department of Medical Oncology and Pneumology, Medical University Hospital, Tuebingen, Germany.
| | - Mirjana Sidiras
- Department of Medical Oncology and Pneumology, Medical University Hospital, Tuebingen, Germany
| | - Tim Flaadt
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital, Tuebingen, Germany
| | - Ines B Brecht
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital, Tuebingen, Germany
| | - Christoph K W Deinzer
- Department of Medical Oncology and Pneumology, Medical University Hospital, Tuebingen, Germany
| | - Thorben Groß
- Department of Medical Oncology and Pneumology, Medical University Hospital, Tuebingen, Germany
| | - Katrin Benzler
- Department of Medical Oncology and Pneumology, Medical University Hospital, Tuebingen, Germany
| | - Lars Zender
- Department of Medical Oncology and Pneumology, Medical University Hospital, Tuebingen, Germany; DFG Cluster of Excellence 2180 'Image-guided and Functional Instructed Tumor Therapy', University of Tuebingen, Tuebingen, Germany; National Center for Tumor Diseases (NCT), NCT Tuebingen, a partnership between DKFZ and the University Hospital Tuebingen, Germany
| | - Ulrich M Lauer
- Department of Medical Oncology and Pneumology, Medical University Hospital, Tuebingen, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Tuebingen, Germany; National Center for Tumor Diseases (NCT), NCT Tuebingen, a partnership between DKFZ and the University Hospital Tuebingen, Germany
| |
Collapse
|
31
|
Herbison H, Davis S, Nickless D, Haydon A, Ameratunga M. Sustained Clinical Response to Immunotherapy Followed by BET Inhibitor in a Patient with Unresectable Sinonasal NUT Carcinoma. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:67-72. [PMID: 38327754 PMCID: PMC10846633 DOI: 10.36401/jipo-23-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 02/09/2024]
Abstract
NUT carcinomas (NCs) are a group of rare tumors that can occur anywhere in the body and are defined by the fusion of the nuclear protein in testis (NUTM1) resulting in increased transcription of proto-oncogenes. NCs have a poor prognosis that varies according to the site of origin with an urgent need to develop new treatment strategies. Case reports on immunotherapy in pulmonary NC have been published, and bromodomain and extraterminal (BET) inhibitors have shown activity in NC in phase I/II trials. We present the case of a 27-year-old woman with an unresectable sinonasal NC who had a sustained clinical response to both immunotherapy and BET inhibitor therapy. This is the first reported case of immunotherapy in sinonasal NC, and it highlights the different responses to a range of treatments including BET inhibitor therapy. This case supports the theory that NCs arising from different primary sites have differing prognoses.
Collapse
Affiliation(s)
- Harriet Herbison
- Department of Medical Oncology, Monash Health, Clayton, Victoria, Australia
| | - Sidney Davis
- Department of Radiation Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - David Nickless
- Department of Anatomical Pathology, Cabrini Pathology, Melbourne, Victoria, Australia
| | - Andrew Haydon
- Department of Medical Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Malaka Ameratunga
- Department of Medical Oncology, The Alfred Hospital, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Yoshida A. NUT carcinoma and thoracic SMARCA4-deficient undifferentiated tumour: facts and controversies. Histopathology 2024; 84:86-101. [PMID: 37873676 DOI: 10.1111/his.15063] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/09/2023] [Accepted: 09/24/2023] [Indexed: 10/25/2023]
Abstract
NUT carcinoma and thoracic SMARCA4-deficient undifferentiated tumour are unique entities in the 5th edition of the World Health Organisation (WHO) Classification of Thoracic Tumours, whose definitions include molecular genetic abnormalities. These aggressive tumours require rapid work-ups on biopsies, but a broad list of differential diagnoses poses challenges for practising pathologists. This review provides an update on their key clinicopathological and molecular characteristics, as well as controversies regarding tumour classification and diagnostic strategy. Phenotypical assessment plays a substantial role in diagnosis because recurrent and predictable clinicopathological findings exist, including robust immunohistochemical phenotypes. Accurate diagnosis is crucial for appropriate management and a clearer understanding of the disease.
Collapse
Affiliation(s)
- Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
- Rare Cancer Center, National Cancer Center, Tokyo, Japan
| |
Collapse
|
33
|
Ratan Y, Rajput A, Pareek A, Jain V, Pareek A, Gupta MM, Kamal MA. Green Synthetic Strategies and Pharmaceutical Applications of Thiazine and its Derivatives: An Updated Review. Curr Pharm Biotechnol 2024; 25:1142-1166. [PMID: 37694776 DOI: 10.2174/1389201025666230908141543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/02/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
Thiazines are a sizable class of organic heterocycles that are notable for their skeletal versatility and relative chemical simplicity, making them among the most flexible sources of biologically active compounds. The term "green synthesis" refers to implementing energy-efficient procedures for the nature-friendly production of materials and chemicals using green solvents, catalysts, and suitable reaction conditions. Considering the importance of green chemistry and the outstanding therapeutic profile of thiazines, the present work was designed to review the recent advances in green chemistry-based synthetic strategies of thiazine and its derivatives. The green synthetic approaches, including microwave-assisted, ultrasound-assisted, and various other synthetic methods for thiazine and its derivatives, were discussed and generalized. In addition, applications of thiazine and its derivatives in pharmaceutical sciences were explained with examples of marketed drugs.The discussed sustainable synthetic methods for thiazines and their derivatives could be useful in developing other medicinally important lead molecules. They could also aid in developing new synthetic schemes and apparatuses that may simplify chemical manufacturing processes and enable novel reactions with minimal by-products while questing for optimal, green solvents. This review can help anyone interested in this fascinating class of heterocycles to make decisions about selecting targets and tasks for future research.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, MLSU, Udaipur-313001, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali-304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago, WI
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence in Healthcare, Institutes for Systems Genetics and West China School of Nursing, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7Peterlee place, Hebersham, NSW 2770, Novel Global Community Educational Foundation, Australia
| |
Collapse
|
34
|
Durall RT, Huang J, Wojenski L, Huang Y, Gokhale PC, Leeper BA, Nash JO, Ballester PL, Davidson S, Shlien A, Sotirakis E, Bertaux F, Dubus V, Luo J, Wu CJ, Keskin DB, Eagen KP, Shapiro GI, French CA. The BRD4-NUT Fusion Alone Drives Malignant Transformation of NUT Carcinoma. Cancer Res 2023; 83:3846-3860. [PMID: 37819236 PMCID: PMC10690098 DOI: 10.1158/0008-5472.can-23-2545] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
NUT carcinoma (NC) is an aggressive squamous carcinoma defined by the BRD4-NUT fusion oncoprotein. Routinely effective systemic treatments are unavailable for most NC patients. The lack of an adequate animal model precludes identifying and leveraging cell-extrinsic factors therapeutically in NC. Here, we created a genetically engineered mouse model (GEMM) of NC that forms a Brd4::NUTM1 fusion gene upon tamoxifen induction of Sox2-driven Cre. The model displayed complete disease penetrance, with tumors arising from the squamous epithelium weeks after induction and all mice succumbing to the disease shortly thereafter. Closely resembling human NC (hNC), GEMM tumors (mNC) were poorly differentiated squamous carcinomas with high expression of MYC that metastasized to solid organs and regional lymph nodes. Two GEMM-derived cell lines were developed whose transcriptomic and epigenetic landscapes harbored key features of primary GEMM tumors. Importantly, GEMM tumor and cell line transcriptomes co-classified with those of human NC. BRD4-NUT also blocked differentiation and maintained the growth of mNC as in hNC. Mechanistically, GEMM primary tumors and cell lines formed large histone H3K27ac-enriched domains, termed megadomains, that were invariably associated with the expression of key NC-defining proto-oncogenes, Myc and Trp63. Small-molecule BET bromodomain inhibition (BETi) of mNC induced differentiation and growth arrest and prolonged survival of NC GEMMs, as it does in hNC models. Overall, tumor formation in the NC GEMM is definitive evidence that BRD4-NUT alone can potently drive the malignant transformation of squamous progenitor cells into NC. SIGNIFICANCE The development of an immunocompetent model of NUT carcinoma that closely mimics the human disease provides a valuable global resource for mechanistic and preclinical studies to improve treatment of this incurable disease.
Collapse
Affiliation(s)
- R. Taylor Durall
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Julianna Huang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Yeying Huang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Prafulla C. Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Brittaney A. Leeper
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Joshua O. Nash
- Program in Genetics and Genome Biology, The Hospital for Sick Children (SickKids), University of Toronto, Toronto, Ontario, Canada
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Pedro L. Ballester
- Program in Genetics and Genome Biology, The Hospital for Sick Children (SickKids), University of Toronto, Toronto, Ontario, Canada
| | - Scott Davidson
- Program in Genetics and Genome Biology, The Hospital for Sick Children (SickKids), University of Toronto, Toronto, Ontario, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children (SickKids), University of Toronto, Toronto, Ontario, Canada
- Laboratory of Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Jia Luo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Derin B. Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kyle P. Eagen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christopher A. French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Huang Y, Durall RT, Luong NM, Hertzler HJ, Huang J, Gokhale PC, Leeper BA, Persky NS, Root DE, Anekal PV, Montero Llopis PD, David CN, Kutok JL, Raimondi A, Saluja K, Luo J, Zahnow CA, Adane B, Stegmaier K, Hawkins CE, Ponne C, Le Q, Shapiro GI, Lemieux ME, Eagen KP, French CA. EZH2 Cooperates with BRD4-NUT to Drive NUT Carcinoma Growth by Silencing Key Tumor Suppressor Genes. Cancer Res 2023; 83:3956-3973. [PMID: 37747726 PMCID: PMC10843040 DOI: 10.1158/0008-5472.can-23-1475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
NUT carcinoma is an aggressive carcinoma driven by the BRD4-NUT fusion oncoprotein, which activates chromatin to promote expression of progrowth genes. BET bromodomain inhibitors (BETi) are a promising treatment for NUT carcinoma that can impede BRD4-NUT's ability to activate genes, but the efficacy of BETi as monotherapy is limited. Here, we demonstrated that enhancer of zeste homolog 2 (EZH2), which silences genes through establishment of repressive chromatin, is a dependency in NUT carcinoma. Inhibition of EZH2 with the clinical compound tazemetostat potently blocked growth of NUT carcinoma cells. Epigenetic and transcriptomic analysis revealed that tazemetostat reversed the EZH2-specific H3K27me3 silencing mark and restored expression of multiple tumor suppressor genes while having no effect on key oncogenic BRD4-NUT-regulated genes. Indeed, H3K27me3 and H3K27ac domains were found to be mutually exclusive in NUT carcinoma cells. CDKN2A was identified as the only gene among all tazemetostat-derepressed genes to confer resistance to tazemetostat in a CRISPR-Cas9 screen. Combined inhibition of EZH2 and BET synergized to downregulate cell proliferation genes, resulting in more pronounced growth arrest and differentiation than either inhibitor alone. In preclinical models, combined tazemetostat and BETi synergistically blocked tumor growth and prolonged survival of NUT carcinoma-xenografted mice, with complete remission without relapse in one cohort. Identification of EZH2 as a dependency in NUT carcinoma substantiates the reliance of NUT carcinoma tumor cells on epigenetic dysregulation of functionally opposite, yet highly complementary, chromatin regulatory pathways to maintain NUT carcinoma growth. SIGNIFICANCE Repression of tumor suppressor genes, including CDKN2A, by EZH2 provides a mechanistic rationale for combining EZH2 and BET inhibitors for the clinical treatment of NUT carcinoma. See related commentary by Kazansky and Kentsis, p. 3827.
Collapse
Affiliation(s)
- Yeying Huang
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - R. Taylor Durall
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nhi M. Luong
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hans J. Hertzler
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Julianna Huang
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Prafulla C. Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brittaney A. Leeper
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - David E. Root
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Praju V. Anekal
- MicRoN, Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Karan Saluja
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, TX, USA
| | - Jia Luo
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cynthia A. Zahnow
- Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Biniam Adane
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - Catherine E. Hawkins
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Christopher Ponne
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Quan Le
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Kyle P. Eagen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. French
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
37
|
Alečković M, Li Z, Zhou N, Qiu X, Lulseged B, Foidart P, Huang XY, Garza K, Shu S, Kesten N, Li R, Lim K, Garrido-Castro AC, Guerriero JL, Qi J, Long HW, Polyak K. Combination Therapies to Improve the Efficacy of Immunotherapy in Triple-negative Breast Cancer. Mol Cancer Ther 2023; 22:1304-1318. [PMID: 37676980 PMCID: PMC10618734 DOI: 10.1158/1535-7163.mct-23-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Immune checkpoint inhibition combined with chemotherapy is currently approved as first-line treatment for patients with advanced PD-L1-positive triple-negative breast cancer (TNBC). However, a significant proportion of metastatic TNBC is PD-L1-negative and, in this population, chemotherapy alone largely remains the standard-of-care and novel therapeutic strategies are needed to improve clinical outcomes. Here, we describe a triple combination of anti-PD-L1 immune checkpoint blockade, epigenetic modulation thorough bromodomain and extra-terminal (BET) bromodomain inhibition (BBDI), and chemotherapy with paclitaxel that effectively inhibits both primary and metastatic tumor growth in two different syngeneic murine models of TNBC. Detailed cellular and molecular profiling of tumors from single and combination treatment arms revealed increased T- and B-cell infiltration and macrophage reprogramming from MHCIIlow to a MHCIIhigh phenotype in mice treated with triple combination. Triple combination also had a major impact on gene expression and chromatin profiles shifting cells to a more immunogenic and senescent state. Our results provide strong preclinical evidence to justify clinical testing of BBDI, paclitaxel, and immune checkpoint blockade combination.
Collapse
Affiliation(s)
- Maša Alečković
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Ningxuan Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard University, Cambridge, Massachusetts
| | - Xintao Qiu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard University, Cambridge, Massachusetts
| | - Bethlehem Lulseged
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Pierre Foidart
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Xiao-Yun Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kodie Garza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Shaokun Shu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Nikolas Kesten
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard University, Cambridge, Massachusetts
| | - Rong Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard University, Cambridge, Massachusetts
| | - Klothilda Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard University, Cambridge, Massachusetts
| | - Ana C. Garrido-Castro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jennifer L. Guerriero
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Surgery, Division of Breast Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Henry W. Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard University, Cambridge, Massachusetts
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Ma T, Chen Y, Yi ZG, Li YH, Bai J, Li LJ, Zhang LS. BET in hematologic tumors: Immunity, pathogenesis, clinical trials and drug combinations. Genes Dis 2023; 10:2306-2319. [PMID: 37554207 PMCID: PMC10404881 DOI: 10.1016/j.gendis.2022.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/14/2022] [Accepted: 03/02/2022] [Indexed: 12/24/2022] Open
Abstract
The bromodomain and extra-terminal (BET) proteins act as "readers" for lysine acetylation and facilitate the recruitment of transcriptional elongation complexes. BET protein is associated with transcriptional elongation of genes such as c-MYC and BCL-2, and is involved in the regulation of cell cycle and apoptosis. Meanwhile, BET inhibitors (BETi) have regulatory effects on immune checkpoints, immune cells, and cytokine expression. The role of BET proteins and BETi in a variety of tumors has been studied. This paper reviews the recent research progress of BET and BETi in hematologic tumors (mainly leukemia, lymphoma and multiple myeloma) from cellular level studies, animal studies, clinical trials, drug combination, etc. BETi has a promising future in hematologic tumors, and future research directions may focus on the combination with other drugs to improve the efficacy.
Collapse
Affiliation(s)
- Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhi-Gang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Yan-Hong Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Jun Bai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Li-Juan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| | - Lian-Sheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, China
| |
Collapse
|
39
|
Wangsiricharoen S, Wakely PE, Prieto VG, Yu W. Sarcoma with MGA::NUTM1 fusion: a report of three cases and literature review. Histopathology 2023; 83:712-721. [PMID: 37442637 DOI: 10.1111/his.15004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023]
Abstract
AIMS NUTM1-rearranged sarcoma is an emerging entity that differs from NUT carcinoma at the molecular level, with most of the former tumours harbouring fusions involving genes in the MYC-associated factor X dimerization (MAD) transcription family (MXD1, MXD4, MXI1 [or MXD2], and MGA). MGA::NUTM1 is one of the most recently described novel gene fusions associated with NUTM1-rearranged sarcoma. Herein we describe the clinicopathologic features of three sarcomas with an MGA::NUTM1 fusion. METHODS AND RESULTS The three study patients were male, with an age range of 10-28 years. The tumour sites were deep soft tissue of the thigh, the chest wall, and the pelvis. All three tumours were aggressive, with multiple recurrences and metastases. Histologically, the tumours were composed of monotonous spindle, round, or epithelioid cells in variably hyalinized stroma and prominent aggregates of amianthoid fibre-like collagen or collagen rosettes. Mitotic activity was relatively low (5-12 mitotic figures per 10 hhpf). All tumours tested expressed NUT, with one tumour having S100 protein expression and two tumours having CD99 and CD56 expression. The genetic breakpoints were MGA exon 21, MGA exon 22, and NUTM1 exon 3. CONCLUSION MGA::NUTM1 sarcoma often exhibits hyalinized stroma with amianthoid fibre-like collagen or collagen rosettes in the presence of monotonous round, epithelioid, or spindle cell morphology. NUT immunohistochemistry and molecular testing can help confirm the diagnosis.
Collapse
Affiliation(s)
| | - Paul E Wakely
- Department of Pathology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Victor G Prieto
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendong Yu
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
40
|
Hamilton EP, Wang JS, Oza AM, Patel MR, Ulahannan SV, Bauer T, Karlix JL, Zeron-Medina J, Fabbri G, Marco-Casanova P, Moorthy G, Hattersley MM, Littlewood GM, Mitchell P, Saeh J, Pouliot GP, Moore KN. First-in-human Study of AZD5153, A Small-molecule Inhibitor of Bromodomain Protein 4, in Patients with Relapsed/Refractory Malignant Solid Tumors and Lymphoma. Mol Cancer Ther 2023; 22:1154-1165. [PMID: 37486983 PMCID: PMC10544002 DOI: 10.1158/1535-7163.mct-23-0065] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
AZD5153, a reversible, bivalent inhibitor of the bromodomain and extraterminal family protein BRD4, has preclinical activity in multiple tumors. This first-in-human, phase I study investigated AZD5153 alone or with olaparib in patients with relapsed/refractory solid tumors or lymphoma. Adults with relapsed tumors intolerant of, or refractory to, prior therapies received escalating doses of oral AZD5153 once daily or twice daily continuously (21-day cycles), or AZD5153 once daily/twice daily continuously or intermittently plus olaparib 300 mg twice daily, until disease progression or unacceptable toxicity. Between June 30, 2017 and April 19, 2021, 34 patients received monotherapy and 15 received combination therapy. Dose-limiting toxicities were thrombocytopenia/platelet count decreased (n = 4/n = 2) and diarrhea (n = 1). The recommended phase II doses (RP2D) were AZD5153 30 mg once daily or 15 mg twice daily (monotherapy) and 10 mg once daily (intermittent schedule) with olaparib. With AZD5153 monotherapy, common treatment-emergent adverse events (TEAE) included fatigue (38.2%), thrombocytopenia, and diarrhea (each 32.4%); common grade ≥ 3 TEAEs were thrombocytopenia (14.7%) and anemia (8.8%). With the combination, common TEAEs included nausea (66.7%) and fatigue (53.3%); the most common grade ≥ 3 TEAE was thrombocytopenia (26.7%). AZD5153 had dose-dependent pharmacokinetics, with minimal accumulation, and demonstrated dose-dependent modulation of peripheral biomarkers, including upregulation of HEXIM1. One patient with metastatic pancreatic cancer receiving combination treatment had a partial response lasting 4.2 months. These results show AZD5153 was tolerable as monotherapy and in combination at the RP2Ds; common toxicities were fatigue, hematologic AEs, and gastrointestinal AEs. Strong evidence of peripheral target engagement was observed.
Collapse
Affiliation(s)
- Erika P. Hamilton
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Judy S. Wang
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| | - Amit M. Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre/University Health Network/Sinai Health Systems, Toronto, Ontario, Canada
| | - Manish R. Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, Florida
| | - Susanna V. Ulahannan
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Todd Bauer
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | | | | | | | | | - Ganesh Moorthy
- Clinical Pharmacology and Quantitative Pharmacology, R&D, AstraZeneca, Boston, Massachusetts
| | | | | | | | - Jamal Saeh
- Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | | | - Kathleen N. Moore
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
41
|
Huang Y, Durall RT, Luong NM, Hertzler HJ, Huang J, Gokhale PC, Leeper BA, Persky NS, Root DE, Anekal PV, Montero Llopis PD, David CN, Kutok JL, Raimondi A, Saluja K, Luo J, Zahnow CA, Adane B, Stegmaier K, Hawkins CE, Ponne C, Le Q, Shapiro GI, Lemieux ME, Eagen KP, French CA. EZH2 synergizes with BRD4-NUT to drive NUT carcinoma growth through silencing of key tumor suppressor genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553204. [PMID: 37645799 PMCID: PMC10461970 DOI: 10.1101/2023.08.15.553204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
NUT carcinoma (NC) is an aggressive carcinoma driven by the BRD4-NUT fusion oncoprotein, which activates chromatin to promote expression of pro-growth genes. BET bromodomain inhibitors (BETi) impede BRD4-NUT's ability to activate genes and are thus a promising treatment but limited as monotherapy. The role of gene repression in NC is unknown. Here, we demonstrate that EZH2, which silences genes through establishment of repressive chromatin, is a dependency in NC. Inhibition of EZH2 with the clinical compound tazemetostat (taz) potently blocked growth of NC cells. Epigenetic and transcriptomic analysis revealed that taz reversed the EZH2-specific H3K27me3 silencing mark, and restored expression of multiple tumor suppressor genes while having no effect on key oncogenic BRD4- NUT-regulated genes. CDKN2A was identified as the only gene amongst all taz-derepressed genes to confer resistance to taz in a CRISPR-Cas9 screen. Combined EZH2 inhibition and BET inhibition synergized to downregulate cell proliferation genes resulting in more pronounced growth arrest and differentiation than either inhibitor alone. In pre-clinical models, combined taz and BETi synergistically blocked growth and prolonged survival of NC-xenografted mice, with all mice cured in one cohort. STATEMENT OF SIGNIFICANCE Identification of EZH2 as a dependency in NC substantiates the reliance of NC tumor cells on epigenetic dysregulation of functionally opposite, yet highly complementary chromatin regulatory pathways to maintain NC growth. In particular, repression of CDKN2A expression by EZH2 provides a mechanistic rationale for combining EZH2i with BETi for the clinical treatment of NC.
Collapse
Affiliation(s)
- Yeying Huang
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - R. Taylor Durall
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nhi M. Luong
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hans J. Hertzler
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Julianna Huang
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Prafulla C. Gokhale
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Brittaney A. Leeper
- Experimental Therapeutics Core and Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - David E. Root
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Praju V. Anekal
- MicRoN, Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Karan Saluja
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, TX, USA
| | - Jia Luo
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cynthia A. Zahnow
- Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Biniam Adane
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - Catherine E. Hawkins
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Christopher Ponne
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Quan Le
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Kyle P. Eagen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Christopher A. French
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
42
|
Guo W, Wang X, Lu B, Yu J, Xu M, Huang R, Cheng M, Yang M, Zhao W, Zou C. Super-enhancer-driven MLX mediates redox balance maintenance via SLC7A11 in osteosarcoma. Cell Death Dis 2023; 14:439. [PMID: 37460542 DOI: 10.1038/s41419-023-05966-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Osteosarcoma (OS) is a common type of bone tumor for which there has been limited therapeutic progress over the past three decades. The prevalence of transcriptional addiction in cancer cells emphasizes the biological significance and clinical relevance of super-enhancers. In this study, we found that Max-like protein X (MLX), a member of the Myc-MLX network, is driven by super-enhancers. Upregulation of MLX predicts a poor prognosis in osteosarcoma. Knockdown of MLX impairs growth and metastasis of osteosarcoma in vivo and in vitro. Transcriptomic sequencing has revealed that MLX is involved in various metabolic pathways (e.g., lipid metabolism) and can induce metabolic reprogramming. Furthermore, knockdown of MLX results in disturbed transport and storage of ferrous iron, leading to an increase in the level of cellular ferrous iron and subsequent induction of ferroptosis. Mechanistically, MLX regulates the glutamate/cystine antiporter SLC7A11 to promote extracellular cysteine uptake required for the biosynthesis of the essential antioxidant GSH, thereby detoxifying reactive oxygen species (ROS) and maintaining the redox balance of osteosarcoma cells. Importantly, sulfasalazine, an FDA-approved anti-inflammatory drug, can inhibit SLC7A11, disrupt redox balance, and induce massive ferroptosis, leading to impaired tumor growth in vivo. Taken together, this study reveals a novel mechanism in which super-enhancer-driven MLX positively regulates SLC7A11 to meet the alleviated demand for cystine and maintain the redox balance, highlighting the feasibility and clinical promise of targeting SLC7A11 in osteosarcoma.
Collapse
Affiliation(s)
- Weitang Guo
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bing Lu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jiaming Yu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Mingxian Xu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Renxuan Huang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Mingzhe Cheng
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Meiling Yang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Changye Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
43
|
Wang C, Yuan X, Xue J. Targeted therapy for rare lung cancers: Status, challenges, and prospects. Mol Ther 2023; 31:1960-1978. [PMID: 37179456 PMCID: PMC10362419 DOI: 10.1016/j.ymthe.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
Lung cancer causes the most cancer-related deaths worldwide. In recent years, molecular and immunohistochemical techniques have rapidly developed, further inaugurating an era of personalized medicine for lung cancer. The rare subset of lung cancers accounts for approximately 10%, each displaying distinct clinical characteristics. Treatments for rare lung cancers are mainly based on evidence from common counterparts, which may lead to unsolid clinical benefits considering intertumoral heterogeneity. The increasing knowledge of molecular profiling of rare lung cancers has made targeting genetic alterations and immune checkpoints a powerful strategy. Additionally, cellular therapy has emerged as a promising way to target tumor cells. In this review, we first discuss the current status of targeted therapy and preclinical models for rare lung cancers, as well as provide mutational profiles by integrating the results of existing cohorts. Finally, we point out the challenges and future directions for developing targeted agents for rare lung cancer.
Collapse
Affiliation(s)
- Chunsen Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang Yuan
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, the National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
44
|
Pulik Ł, Łęgosz P, Motyl G. Matrix metalloproteinases in rheumatoid arthritis and osteoarthritis: a state of the art review. Reumatologia 2023; 61:191-201. [PMID: 37522140 PMCID: PMC10373173 DOI: 10.5114/reum/168503] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Although the pathological mechanisms involved in osteoarthritis (OA) and rheumatoid arthritis (RA) are different, the onset and progression of both diseases are associated with several analogous clinical manifestations, inflammation, and immune mechanisms. In both diseases, cartilage destruction is mediated by matrix metalloproteinases (MMPs) synthesized by chondrocytes and synovium fibroblasts. This review aims to summarize recent articles regarding the role of MMPs in OA and RA, as well as the possible methods of targeting MMPs to alleviate the degradation processes taking part in OA and RA. The novel experimental MMP-targeted treatments in OA and RA are MMP inhibitors eg. 3-B2, taraxasterol, and naringin, while other treatments aim to silence miRNAs, lncRNAs, or transcription factors. Additionally, other recent MMP-related developments include gene polymorphism of MMPs, which have been linked to OA susceptibility, and the MMP-generated neoepitope of CRP, which could serve as a biomarker of OA progression.
Collapse
Affiliation(s)
- Łukasz Pulik
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Poland
| | - Gabriela Motyl
- Scientific Association of Reconstructive and Oncological Orthopedics of the Department of Orthopedics and Traumatology, Medical University of Warsaw, Poland
| |
Collapse
|
45
|
Cheng ML, Huang Y, Luong N, LoPiccolo J, Nishino M, Sholl LM, Chirieac LR, Santucci AD, Rabin MS, Jänne PA, Coker S, Diamond JR, Hilton J, Shapiro GI, French CA. Exceptional Response to Bromodomain and Extraterminal Domain Inhibitor Therapy With BMS-986158 in BRD4-NUTM1 NUT Carcinoma Harboring a BRD4 Splice Site Mutation. JCO Precis Oncol 2023; 7:e2200633. [PMID: 37384867 PMCID: PMC10581614 DOI: 10.1200/po.22.00633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 07/01/2023] Open
Affiliation(s)
- Michael L. Cheng
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yeying Huang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nhi Luong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jaclyn LoPiccolo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Imaging, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Lucian R. Chirieac
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alison D. Santucci
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Boston Medical Center, Boston, MA
| | - Michael S. Rabin
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Pasi A. Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | | | | | - John Hilton
- Division of Medical Oncology, Ottawa Hospital, Ottawa, ON
| | - Geoffrey I. Shapiro
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Christopher A. French
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
46
|
To KKW, Xing E, Larue RC, Li PK. BET Bromodomain Inhibitors: Novel Design Strategies and Therapeutic Applications. Molecules 2023; 28:molecules28073043. [PMID: 37049806 PMCID: PMC10096006 DOI: 10.3390/molecules28073043] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The mammalian bromodomain and extra-terminal domain (BET) family of proteins consists of four conserved members (Brd2, Brd3, Brd4, and Brdt) that regulate numerous cancer-related and immunity-associated genes. They are epigenetic readers of histone acetylation with broad specificity. BET proteins are linked to cancer progression due to their interaction with numerous cellular proteins including chromatin-modifying factors, transcription factors, and histone modification enzymes. The spectacular growth in the clinical development of small-molecule BET inhibitors underscores the interest and importance of this protein family as an anticancer target. Current approaches targeting BET proteins for cancer therapy rely on acetylation mimics to block the bromodomains from binding chromatin. However, bromodomain-targeted agents are suffering from dose-limiting toxicities because of their effects on other bromodomain-containing proteins. In this review, we provided an updated summary about the evolution of small-molecule BET inhibitors. The design of bivalent BET inhibitors, kinase and BET dual inhibitors, BET protein proteolysis-targeting chimeras (PROTACs), and Brd4-selective inhibitors are discussed. The novel strategy of targeting the unique C-terminal extra-terminal (ET) domain of BET proteins and its therapeutic significance will also be highlighted. Apart from single agent treatment alone, BET inhibitors have also been combined with other chemotherapeutic modalities for cancer treatment demonstrating favorable clinical outcomes. The investigation of specific biomarkers for predicting the efficacy and resistance of BET inhibitors is needed to fully realize their therapeutic potential in the clinical setting.
Collapse
|
47
|
Boi D, Rubini E, Breccia S, Guarguaglini G, Paiardini A. When Just One Phosphate Is One Too Many: The Multifaceted Interplay between Myc and Kinases. Int J Mol Sci 2023; 24:4746. [PMID: 36902175 PMCID: PMC10003727 DOI: 10.3390/ijms24054746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Myc transcription factors are key regulators of many cellular processes, with Myc target genes crucially implicated in the management of cell proliferation and stem pluripotency, energy metabolism, protein synthesis, angiogenesis, DNA damage response, and apoptosis. Given the wide involvement of Myc in cellular dynamics, it is not surprising that its overexpression is frequently associated with cancer. Noteworthy, in cancer cells where high Myc levels are maintained, the overexpression of Myc-associated kinases is often observed and required to foster tumour cells' proliferation. A mutual interplay exists between Myc and kinases: the latter, which are Myc transcriptional targets, phosphorylate Myc, allowing its transcriptional activity, highlighting a clear regulatory loop. At the protein level, Myc activity and turnover is also tightly regulated by kinases, with a finely tuned balance between translation and rapid protein degradation. In this perspective, we focus on the cross-regulation of Myc and its associated protein kinases underlying similar and redundant mechanisms of regulation at different levels, from transcriptional to post-translational events. Furthermore, a review of the indirect effects of known kinase inhibitors on Myc provides an opportunity to identify alternative and combined therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Breccia
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
48
|
Guo J, Zheng Q, Peng Y. BET proteins: Biological functions and therapeutic interventions. Pharmacol Ther 2023; 243:108354. [PMID: 36739915 DOI: 10.1016/j.pharmthera.2023.108354] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Bromodomain and extra-terminal (BET) family member proteins (BRD2, BRD3, BRD4 and BRDT) play a pivotal role in interpreting the epigenetic information of histone Kac modification, thus controlling gene expression, remodeling chromatin structures and avoid replicative stress-induced DNA damages. Abnormal activation of BET proteins is tightly correlated to various human diseases, including cancer. Therefore, BET bromodomain inhibitors (BBIs) were considered as promising therapeutics to treat BET-related diseases, raising >70 clinical trials in the past decades. Despite preliminary effects achieved, drug resistance and adverse events represent two major challenges for current BBIs development. In this review, we will introduce the biological functions of BET proteins in both physiological and pathological conditions; and summarize the progress in current BBI drug development. Moreover, we will also discuss the major challenges in the front of BET inhibitor development and provide rational strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingquan Zheng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
49
|
Ding M, Shao Y, Sun D, Meng S, Zang Y, Zhou Y, Li J, Lu W, Zhu S. Design, synthesis, and biological evaluation of BRD4 degraders. Bioorg Med Chem 2023; 78:117134. [PMID: 36563515 DOI: 10.1016/j.bmc.2022.117134] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Epigenetic proteins are one of the important targets in the current research fields of cancer therapy. A family of bromodomain-containing (BRD) and extra terminal domain (BET) proteins act as epigenetic readers to regulate the expression of key oncogenes and anti-apoptotic proteins. Recently, although BET degraders based on PROTAC technology have achieved significant antitumor effects, the lack of selectivity for BET protein degradation has not been fully addressed. Herein, a series of small molecule BRD4 PROTACs were designed and synthesized. Most of the degraders were effective in inhibiting MM.1S and MV-4-11 cell lines, especially in MV-4-11. Among them, degrader 8b could induce the degradation of BRD4 and exhibited a time- and concentration-dependent depletion manner and there was a significant depletion of BRD4, laying a foundation for effectively treating leukemia and multiple myeloma. Moreover, 8b could also effectively prevent the activation of MRC5 cells by inducing the degradation of BRD4 protein, which preliminarily proves that the BRD4 degrader based on the PROTAC concept has great potential for the treatment of pulmonary fibrosis. Taken together, these findings laid a foundation for BRD4 degraders as an effective strategy for treating related diseases.
Collapse
Affiliation(s)
- Mengyuan Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China
| | - Yingying Shao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Danwen Sun
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Suorina Meng
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, PR China; Lingang Laboratory, Shanghai 201203, PR China
| | - Yi Zang
- University of Chinese Academy of Sciences, NO.19A Yuquan Road, Beijing 100049, PR China; Lingang Laboratory, Shanghai 201203, PR China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, PR China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan Tsuihang New District, Guangdong 528400, PR China.
| | - Wei Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| | - Shulei Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
50
|
Kumar A, Emdad L, Fisher PB, Das SK. Targeting epigenetic regulation for cancer therapy using small molecule inhibitors. Adv Cancer Res 2023; 158:73-161. [PMID: 36990539 DOI: 10.1016/bs.acr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer cells display pervasive changes in DNA methylation, disrupted patterns of histone posttranslational modification, chromatin composition or organization and regulatory element activities that alter normal programs of gene expression. It is becoming increasingly clear that disturbances in the epigenome are hallmarks of cancer, which are targetable and represent attractive starting points for drug creation. Remarkable progress has been made in the past decades in discovering and developing epigenetic-based small molecule inhibitors. Recently, epigenetic-targeted agents in hematologic malignancies and solid tumors have been identified and these agents are either in current clinical trials or approved for treatment. However, epigenetic drug applications face many challenges, including low selectivity, poor bioavailability, instability and acquired drug resistance. New multidisciplinary approaches are being designed to overcome these limitations, e.g., applications of machine learning, drug repurposing, high throughput virtual screening technologies, to identify selective compounds with improved stability and better bioavailability. We provide an overview of the key proteins that mediate epigenetic regulation that encompass histone and DNA modifications and discuss effector proteins that affect the organization of chromatin structure and function as well as presently available inhibitors as potential drugs. Current anticancer small-molecule inhibitors targeting epigenetic modified enzymes that have been approved by therapeutic regulatory authorities across the world are highlighted. Many of these are in different stages of clinical evaluation. We also assess emerging strategies for combinatorial approaches of epigenetic drugs with immunotherapy, standard chemotherapy or other classes of agents and advances in the design of novel epigenetic therapies.
Collapse
|