1
|
Goyal A, Afzal M, Goyal K, Ganesan S, Kumari M, Sunitha S, Dash A, Saini S, Rana M, Gupta G, Ali H, Wong LS, Kumarasamy V, Subramaniyan V. MSC-derived extracellular vesicles: Precision miRNA delivery for overcoming cancer therapy resistance. Regen Ther 2025; 29:303-318. [PMID: 40237010 PMCID: PMC11999318 DOI: 10.1016/j.reth.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer remains a prominent worldwide health concern, presenting existing therapies with frequent difficulties, including major toxicity, limited effectiveness, and treatment resistance emergence. These issues highlight the necessity for novel and enhanced remedies. Exosomes, tiny extracellular vesicles that facilitate intercellular communication, have attracted interest for their potential medicinal applications. Carrying a variety of molecules, including microRNAs, small interfering RNAs, long non-coding RNAs, proteins, lipids, and DNA, these vesicles are positioned as promising cancer treatment options. Current studies have increasingly investigated the capacity of microRNAs as a strategic approach for combating malignancy. Mesenchymal stem cells (MSC) are recognized for their aptitude to augment blood vessel formation, safeguard against cellular death, and modulate immune responses. Consequently, researchers examine exosomes derived from MSCs as a safer, non-cellular choice over therapies employing MSCs, which risk undesirable differentiation. The focus is shifting towards employing miRNA-encapsulated exosomes sourced from MSCs to target and heal cancerous cells selectively. However, the exact functions of miRNAs within MSC-derived exosomes in the context of cancer are still not fully understood. Additional exploration is necessary to clarify the role of these miRNAs in malignancy progression and to pinpoint viable therapeutic targets. This review offers a comprehensive examination of exosomes derived from mesenchymal stem cells, focusing on the encapsulation of miRNAs, methods for enhancing cellular uptake and stability, and their potential applications in cancer treatment. It also addresses the difficulties linked to this methodology and considers future avenues, including insights from current clinical oncology research.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - S. Sunitha
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aniruddh Dash
- Department of Orthopaedics IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751030, India
| | - Suman Saini
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
2
|
Tandon R, Kumar S, Handa M, Srivastava N. Exosomes in glioma: mechanistic insights on biological, therapeutic, and diagnostic perspective. Ther Deliv 2025; 16:475-486. [PMID: 39957239 DOI: 10.1080/20415990.2025.2466410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 02/10/2025] [Indexed: 02/18/2025] Open
Abstract
Gliomas are prominent and frequent primary malignant brain tumors, with a generally poor prognosis. Current treatment involves radiation, surgery and chemotherapy. Exosomes are nanoscale extracellular vesicles released by cells that enable biological molecule movement and encourage intercellular communication in the tumor microenvironment. This contributes to glioma development, radiation resistance, and overcomes chemotherapy. Exosome functional and structural properties are essential for understanding cancer molecular mechanisms. They can also treat invasive tumors like glioblastomas and serve as diagnostic markers. Recent research depicted exosomes' prominent role in cancer cell maintenance, intercellular signaling, and microenvironment modification. Exosomes hold nucleic acids, proteins, lipids, mRNAs, lncRNAs, miRNAs, and immunological regulatory molecules depending on the origin of the cell. This paper reviews exosomes, their role in glioma etiology, and perspective diagnostic and therapeutic uses.
Collapse
Affiliation(s)
- Reetika Tandon
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| | - Samarth Kumar
- Formulation Research & Development-Non Orals, Sun Pharmaceuticals Industries Limited, Vadodara, India
| | - Mayank Handa
- Formulation Research & Development-Non Orals, Sun Pharmaceuticals Industries Limited, Vadodara, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, India
| |
Collapse
|
3
|
Ramezani A, Rahnama M, Mahmoudian F, Shirazi F, Ganji M, Bakhshi S, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of the Exosomes and Their Associated Biomolecules in the Glioblastoma Biology, Clinical Treatment, and Diagnosis. J Neuroimmune Pharmacol 2025; 20:48. [PMID: 40299204 DOI: 10.1007/s11481-025-10204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Glioblastoma is the most common and aggressive brain tumor with a low survival rate. Due to its heterogeneous composition, high invasiveness, and frequent recurrence after surgery, treatment success has been limited. In addition, due to the brain's unique immune status and the suppressor tumor microenvironment (TME), glioblastoma treatment has faced more challenges. Exosomes play a critical role in cancer metastasis by regulating cell-cell interactions that promote tumor growth, angiogenesis, metastasis, treatment resistance, and immunological regulation in the tumor microenvironment. This review explores the pivotal role of exosomes in the development of glioblastoma, with a focus on their potential as non-invasive biomarkers for prognosis, early detection and real-time monitoring of disease progression. Notably, exosome-based drug delivery methods hold promise for overcoming the blood-brain barrier (BBB) and developing targeted therapies for glioblastoma. Despite challenges in clinical translation, the potential for personalized exosome = -054321`therapies and the capacity to enhance therapeutic responses in glioblastoma, present intriguing opportunities for improving patient outcomes. It seems that getting a good and current grasp of the role of exosomes in the fight against glioblastoma would properly serve the scientific community to further their understanding of the related potentials of these biological moieties.
Collapse
Affiliation(s)
- Aghdas Ramezani
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Rahnama
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Shirazi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shohreh Bakhshi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
4
|
Balaraman AK, Arockia Babu M, Afzal M, Sanghvi G, M M R, Gupta S, Rana M, Ali H, Goyal K, Subramaniyan V, Wong LS, Kumarasamy V. Exosome-based miRNA delivery: Transforming cancer treatment with mesenchymal stem cells. Regen Ther 2025; 28:558-572. [PMID: 40034540 PMCID: PMC11872554 DOI: 10.1016/j.reth.2025.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/14/2025] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Recently, increasing interest has been in utilizing mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially exosomes, as nanocarriers for miRNA delivery in cancer treatment. Due to such characteristics, nanocarriers are specific: biocompatible, low immunogenicity, and capable of spontaneous tumor accumulation. MSC-EVs were loaded with therapeutic miRNAs and minimized their susceptibility to degradation by protecting the miRNA from accessibility to degrading enzymes and providing targeted delivery of the miRNAs to the tumor cells to modulate oncogenic pathways. In vitro and in vivo experiments suggest that MSC-EVs loaded with miRNAs may inhibit tumor growth, prevent metastasis, and increase the effectiveness of chemotherapy and radiotherapy. However, these improvements present difficulties such as isolation, scalability, and stability of delivered miRNA during storage. Furthermore, the issues related to off-target effects, as well as immunogenicity, can be a focus. The mechanisms of miRNA loading into MSC-EVs, as well as their targeting efficiency and therapeutic potential, can be outlined in this manuscript. For the final part of the manuscript, the current advances in MSC-EV engineering and potential strategies for clinical application have been described. The findings of MSC-EVs imply that they present MSC-EVs as a second-generation tool for precise oncology.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor, 63000, Malaysia
| | - M. Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP, 281406, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
| | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Vetriselvan Subramaniyan
- Division of Pharmacology, School of Medical and Life Sciences, Sunway University Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Vinoth Kumarasamy
- Department of Parasitology, Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Rana R, Devi SN, Bhardwaj AK, Yashavarddhan MH, Bohra D, Ganguly NK. Exosomes as nature's nano carriers: Promising drug delivery tools and targeted therapy for glioma. Biomed Pharmacother 2025; 182:117754. [PMID: 39731936 DOI: 10.1016/j.biopha.2024.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Exosomes, minute vesicles originating from diverse cell types, exhibit considerable potential as carriers for drug delivery in glioma therapy. These naturally occurring nanocarriers facilitate the transfer of proteins, RNAs, and lipids between cells, offering advantages such as biocompatibility, efficient cellular absorption, and the capability to traverse the blood-brain barrier (BBB). In the realm of cancer, particularly gliomas, exosomes play pivotal roles in modulating tumor growth, regulating immunity, and combating drug resistance. Moreover, exosomes serve as valuable biomarkers for diagnosing diseases and assessing prognosis. This review aims to elucidate the therapeutic and diagnostic promise of exosomes in glioma treatment, highlighting the innovative advances in exosome engineering that enable precise drug loading and targeting. By circumventing challenges associated with current glioma treatments, exosome-mediated drug delivery strategies can enhance the efficacy of chemotherapy drugs like temozolomide and overcome drug resistance mechanisms. This review underscores the multifaceted roles of exosomes in glioma pathogenesis and therapy, underscoring their potential as natural nanocarriers for targeted therapy and heralding a new era of hope for glioma treatment.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| | | | - Amit Kumar Bhardwaj
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - M H Yashavarddhan
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Deepika Bohra
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| |
Collapse
|
6
|
Huang L, Zhan J, Li Y, Huang K, Zhu X, Li J. The roles of extracellular vesicles in gliomas: Challenge or opportunity? Life Sci 2024; 358:123150. [PMID: 39471898 DOI: 10.1016/j.lfs.2024.123150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Gliomas are increasingly becoming a major disease affecting human health, and current treatments are not as effective as expected. Deeper insights into glioma heterogeneity and the search for new diagnostic and therapeutic strategies appear to be urgent. Gliomas adapt to their surroundings and form a supportive tumor microenvironment (TME). Glioma cells will communicate with the surrounding cells through extracellular vesicles (EVs) carrying bioactive substances such as nucleic acids, proteins and lipids which is related to the modification to various metabolic pathways and regulation of biological behaviors, and this regulation can be bidirectional, widely existing between cells in the TME, constituting a complex network of interactions. This complex regulation can affect glioma therapy, leading to different types of resistance. Because of the feasibility of EVs isolation in various body fluids, they have a promising usage in the diagnosis and monitoring of gliomas. At the same time, the nature of EVs to cross the blood-brain barrier (BBB) confers potential for their use as drug delivery systems. In this review, we will focus on the roles and functions of EVs derived from different cellular origins in the glioma microenvironment and the intercellular regulatory networks, and explore possible clinical applications in glioma diagnosis and precision therapy.
Collapse
Affiliation(s)
- Le Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Jianhao Zhan
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Yao Li
- The 1st affiiated hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, PR China
| | - Kai Huang
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China.
| | - Xingen Zhu
- Department of Neurosurgery, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China; JXHC Key Laboratory of Neurological Medicine, Jiangxi 330006, Nanchang, PR China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit, The 2nd Affiliated Hospital, Jiangxi Medical University, Nanchang University, Nanchang, PR China.
| |
Collapse
|
7
|
Zhang Y, Xie J, Zhang H, Li J, Mi X, Zhou X, Ding Z. Serum exosomal miRNA promote glioma progression by targeting SOS1 via abscopal effect of radiation. Arch Biochem Biophys 2024; 761:110138. [PMID: 39303929 DOI: 10.1016/j.abb.2024.110138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
INTRODUCTION Local exposure to ionizing radiation (IR) can induce changes in biological processes in distant tissues and organs. Exosomes are nanoscale vesicles that transport biomolecules, mediate communication between cells and tissues, and can affect the abscopal effects of radiotherapy. METHODS Mice were treated with 8.0 Gy doses of chest and abdomen IR, after which serum samples were taken 24 h after exposure. Their serum exosomes were then isolated via ultracentrifugation and the small RNA portions were extracted for sequencing and bioinformatic analysis. Exosomes were injected intravenously into the mice to assess their ability to cross the blood-brain barrier (BBB). Glioma cells and glioma stem cells (GSCs) were examined for malignant biological behaviors, stemness, and tumorigenic capacity after co-culturing with different groups of exosomes. RESULTS We found that serum exosomes crossed the BBB in mice after local IR exposure-which induced decreases in the expression of BBB tight-junction proteins and increased brain endothelial cell apoptosis. Exosomes from the exposed groups promoted malignant biological behaviors, stemness, and tumorigenic capacity in glioma cells and GSCs by upregulating the expression of SOS1. Phospho-MEK1/2 and Phospho-ERK1/2, of the MAPK signaling pathway, were found to be up-regulated in cells that were co-cultured with the exposing groups of the exosomes. Further analyses demonstrated that differentially expressed levels of miR-93-5p in mouse serum exosomes regulated the cellular expression of SOS1. CONCLUSION Following local IR exposure, serum exosomes cross the BBB to promote the progression of distant gliomas. Exosomal microRNAs play an important role in this process.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Xie
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Huimin Zhang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Jiacheng Li
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Xing Mi
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Xuyi Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Liu M, Chen X. Human Umbilical Cord-Derived Mesenchymal Stem Cells-Exosomes-Delivered miR-375 Targets HDAC4 to Promote Autophagy and Suppress T Cell Apoptosis in Sepsis-Associated Acute Kidney Injury. Appl Biochem Biotechnol 2024; 196:7954-7973. [PMID: 38668845 DOI: 10.1007/s12010-024-04963-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 12/14/2024]
Abstract
This study sought to elucidate the mechanism of human umbilical cord-derived mesenchymal stem cells (HUCMSCs)-exosomes (Exos) in sepsis-associated acute kidney injury (SAKI). Exos were isolated from HUCMSCs and co-cultured with CD4+ T cells exposed to lipopolysaccharide to detect the effects of HUCMSCs-Exos on CD4+ T cell apoptosis and autophagy. miR-375 expression in CD4+ T cells and HUCMSCs-Exos was examined. The relationship between miR-375 and HDAC4 was analyzed. A mouse model of SAKI was established and injected with HUCMSCs-Exos to verify the function of HUCMSCs-Exos in vivo. HUCMSCs-Exos inhibited lipopolysaccharide-induced apoptosis of CD4+ T cells and promoted autophagy. miR-375 expression was noted to be elevated in the HUCMSCs-Exos. Importantly, HUCMSCs-Exos could deliver miR-375 into CD4+ T cells where miR-375 targeted HDAC4 and negatively regulated its expression. By this mechanism, HUCMSCs-Exos decreased CD4+ T cell apoptosis and augmented autophagy. This finding was further confirmed in an in vivo SAKI model. Collectively, HUCMSCs-Exos can protect against SAKI via delivering miR-375 that promotes autophagy and arrests T cell apoptosis through HDAC4 downregulation. These findings suggest a promising therapeutic potential for HUCMSCs-Exos in the context of SAKI.
Collapse
Affiliation(s)
- Min Liu
- Department of Intensive Care, the First Hospital of Changsha, No. 311 Yingpan Road, Changsha, Hunan, 410005, People's Republic of China
| | - Xiyun Chen
- Department of Gynecology, the First Hospital of Changsha, No. 311 Yingpan Road, Changsha, Hunan, 410005, People's Republic of China.
| |
Collapse
|
9
|
Sokolov D, Gorshkova A, Tyshchuk E, Grebenkina P, Zementova M, Kogan I, Totolian A. Large Extracellular Vesicles Derived from Natural Killer Cells Affect the Functions of Monocytes. Int J Mol Sci 2024; 25:9478. [PMID: 39273424 PMCID: PMC11395174 DOI: 10.3390/ijms25179478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Communication between natural killer cells (NK cells) and monocytes/macrophages may play an important role in immunomodulation and regulation of inflammatory processes. The aim of this research was to investigate the impact of NK cell-derived large extracellular vesicles on monocyte function because this field is understudied. We studied how NK-cell derived large extracellular vesicles impact on THP-1 cells characteristics after coculturing: phenotype, functions were observed with flow cytometry. In this study, we demonstrated the ability of large extracellular vesicles produced by NK cells to integrate into the membranes of THP-1 cells and influence the viability, phenotype, and functional characteristics of the cells. The results obtained demonstrate the ability of large extracellular vesicles to act as an additional component in the immunomodulatory activity of NK cells in relation to monocytes.
Collapse
Affiliation(s)
- Dmitry Sokolov
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Alina Gorshkova
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
| | - Elizaveta Tyshchuk
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Polina Grebenkina
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Maria Zementova
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Igor Kogan
- Federal State Budgetary Scientific Institution "The Research Institute of Obstetrics, Gynecology and Reproductology Named after D.O. Ott", 199034 St. Petersburg, Russia
| | - Areg Totolian
- Saint-Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| |
Collapse
|
10
|
Hu S, Zhang C, Ma Q, Li M, Yu X, Zhang H, Lv S, Shi Y, He X. Unveiling the multifaceted roles of microRNAs in extracellular vesicles derived from mesenchymal stem cells: implications in tumor progression and therapeutic interventions. Front Pharmacol 2024; 15:1438177. [PMID: 39161894 PMCID: PMC11330784 DOI: 10.3389/fphar.2024.1438177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have the capacity to migrate to tumor sites in vivo and transmit paracrine signals by secreting extracellular vesicles (EVs) to regulate tumor biological behaviors. MSC-derived EVs (MSC-EVs) have similar tumor tropism and pro- or anti-tumorigenesis as their parental cells and exhibit superior properties in drug delivery. MSC-EVs can transfer microRNAs (miRNAs) to tumor cells, thereby manipulating multiple key cancer-related pathways, and further playing a vital role in the tumor growth, metastasis, drug resistance and other aspects. In addition, tumor cells can also influence the behaviors of MSCs in the tumor microenvironment (TME), orchestrating this regulatory process via miRNAs in EVs (EV-miRNAs). Clarifying the specific mechanism by which MSC-derived EV-miRNAs regulate tumor progression, as well as investigating the roles of EV-miRNAs in the TME will contribute to their applications in tumor pharmacotherapy. This article mainly reviews the multifaceted roles and mechanism of miRNAs in MSC-EVs affecting tumor progression, the crosstalk between MSCs and tumor cells caused by EV-miRNAs in the TME. Eventually, the clinical applications of miRNAs in MSC-EVs in tumor therapeutics are illustrated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Yingai Shi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xu He
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
11
|
Ordóñez-Rubiano EG, Rincón-Arias N, Espinosa S, Shelton WJ, Salazar AF, Cómbita A, Baldoncini M, Luzzi S, Payán-Gómez C, Gómez- Amarillo DF, Hakim F, Patiño-Gómez JG, Parra- Medina R. The potential of miRNA-based approaches in glioblastoma: An update in current advances and future perspectives. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100193. [PMID: 39055532 PMCID: PMC11268206 DOI: 10.1016/j.crphar.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant central nervous system tumor. The emerging field of epigenetics stands out as particularly promising. Notably, the discovery of micro RNAs (miRNAs) has paved the way for advancements in diagnosing, treating, and prognosticating patients with brain tumors. We aim to provide an overview of the emergence of miRNAs in GBM and their potential role in the multifaceted management of this disease. We discuss the current state of the art regarding miRNAs and GBM. We performed a narrative review using the MEDLINE/PUBMED database to retrieve peer-reviewed articles related to the use of miRNA approaches for the treatment of GBMs. MiRNAs are intrinsic non-coding RNA molecules that regulate gene expression mainly through post-transcriptional mechanisms. The deregulation of some of these molecules is related to the pathogenesis of GBM. The inclusion of molecular characterization for the diagnosis of brain tumors and the advent of less-invasive diagnostic methods such as liquid biopsies, highlights the potential of these molecules as biomarkers for guiding the management of brain tumors such as GBM. Importantly, there is a need for more studies to better examine the application of these novel molecules. The constantly changing characterization and approach to the diagnosis and management of brain tumors broaden the possibilities for the molecular inclusion of novel epigenetic molecules, such as miRNAs, for a better understanding of this disease.
Collapse
Affiliation(s)
- Edgar G. Ordóñez-Rubiano
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Nicolás Rincón-Arias
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
| | - Sebastian Espinosa
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
| | | | | | - Alba Cómbita
- School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia
- Department of Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Matías Baldoncini
- School of Medicine, Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, University of Buenos Aires, Buenos Aires, Argentina
- Department of Neurological Surgery, Hospital San Fernando, Buenos Aires, Argentina
| | - Sabino Luzzi
- Neurosurgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | | | - Fernando Hakim
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Javier G. Patiño-Gómez
- Department of Neurosurgery, Fundación Universitaria de Ciencias de La Salud, Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá D.C., Colombia
| | - Rafael Parra- Medina
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá, Colombia
- Research Institute, Fundación Universitaria de Ciencias de La Salud (FUCS), Hospital de San José – Sociedad de Cirugía de Bogotá, Bogotá, Colombia
| |
Collapse
|
12
|
Zhao Z, Ma Y, Liu Y, Chen Z, Zheng J. A cuproptosis-based prognostic model for predicting survival in low-grade glioma. Aging (Albany NY) 2024; 16:8697-8716. [PMID: 38738989 PMCID: PMC11164498 DOI: 10.18632/aging.205834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/18/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND It is unknown what variables contribute to the formation and multiplication of low-grade gliomas (LGG). An emerging process of cell death is called cuproptosis. Our research aims to increase therapeutic options and gain a better understanding of the role that cuproptosis-related genes play in the physical characteristics of low-grade gliomas. METHODS The TCGA database was utilized to find cuproptosis genes that may be used to develop LGG risk model. Cox analysis in three different formats: univariate, multivariate, and LASSO. The gene signature's independent predictive ability was assessed using ROC curves and Cox regression analysis based on overall survival. Use of CGGA data and nomogram model for external validation Immunohistochemistry, gene mutation, and functional enrichment analysis are also employed to clarify risk models' involvement. Next, we analyzed changes in the immunological microenvironment in the risk model and forecasted possible chemotherapeutic drugs to target each group. Finally, we validated the protein expression levels of cuproptosis-related genes using LGG and adjacent normal tissues in a small self-case-control study. RESULTS This study developed a glioma predictive model based on five cuproptosis-associated genes. Compared to the high-risk group, the low-risk group's OS was significantly longer. The ROC curves showed high genetic signature performance in both groups. The signature-based categorisation was also linked to clinical characteristics and molecular subgroups. The prognosis of individuals with grade 2 or 3 glioma is also influenced by our risk model. Immunological testing revealed that the high-risk group had more immune cells and immunological function. The risk model also predicted immunotherapy and chemotherapy medication results. Also, this study confirmed that the expression of cuproptosis-related genes by Western blot. CONCLUSION We developed a prediction model for LGG patients using genes associated with cuproptosis. With acceptable prediction performance, this risk model may effectively stratify the prognosis of glioma patients.
Collapse
Affiliation(s)
- Zongren Zhao
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Yuanhao Ma
- Department of Neurosurgery, Huzhou Central Hospital, Huzhou 313000, China
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, China
| | - Yu Liu
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, China
| | - Zhongjun Chen
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| | - Jinyu Zheng
- Department of Neurosurgery, Affiliated Huaian Hospital of Xuzhou Medical University, Huaian 223002, China
| |
Collapse
|
13
|
Rahmati S, Karimi H, Alizadeh M, Khazaei AH, Paiva-Santos AC, Rezakhani L, Sharifi E. Prospects of plant-derived exosome-like nanocarriers in oncology and tissue engineering. Hum Cell 2024; 37:121-138. [PMID: 37878214 DOI: 10.1007/s13577-023-00994-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Almost all cell types, either in vivo or in vitro, create extracellular vesicles (EVs). Among them are exosomes (EXOs), i.e., tiny nanovesicles containing a lipid bilayer, proteins, and RNAs that are actively involved in cellular communication, indicating that they may be exploited as both diagnostics and therapeutics for conditions like cancer. These nanoparticles can also be used as nanocarriers in many types of research to carry agents such as drugs. Plant-derived exosome-like nanoparticles (PENs) are currently under investigation as a substitute for EXOs formed from mammalian cells, allowing researchers to get beyond the technical constraints of mammalian vesicles. Because of their physiological, chemical, and biological properties, PENs have a lot of promise for use as nanocarriers in drug delivery systems that can deliver various dosages, especially when it comes to large-scale repeatability. The present study has looked at the origins and isolation techniques of PENs, their anticancer properties, their usage as nanocarriers in the treatment of different illnesses, and their antioxidant properties. These nanoparticles can aid in the achievement of therapeutic objectives, as they have benign, non-immunogenic side effects and can pass biological barriers. Time-consuming and perhaps damaging PEN separation techniques is used. For the current PEN separation techniques to be used in commercial and therapeutic settings, they must be altered. In this regard, the concurrent application of biological sciences can be beneficial for improving PEN separation techniques. PENs' innate metabolic properties provide them a great deal of promise for application in drug delivery systems. However, there could be a risk to both the loaded medications and the intrinsic bioactive components if these particles are heavily armed with drugs. Therefore, to prevent these side effects, more studies are needed to devise sophisticated drug-loading procedures and to learn more about the physiology of PENs.
Collapse
Affiliation(s)
- Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hafez Karimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Amir Hossein Khazaei
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran.
| |
Collapse
|
14
|
Yeo J. Food-Derived Extracellular Vesicles as Multi-Bioactive Complex and Their Versatile Health Effects. Antioxidants (Basel) 2023; 12:1862. [PMID: 37891941 PMCID: PMC10604675 DOI: 10.3390/antiox12101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound organelles that are generally released by eukaryotic cells and enclose various cellular metabolic information, such as RNA, meta-proteins, and versatile metabolites. The physiological properties and diverse functions of food-derived EVs have been extensively elucidated, along with a recent explosive upsurge in EV research. Therefore, a concise review of the health effects of food-derived EVs is necessary. This review summarizes the structural stability and uptake pathways of food-derived EVs to target cells and their health benefits, including antioxidant, anti-inflammatory, and anticarcinogenic effects, gut microbiome modulation, and intestinal barrier enhancement.
Collapse
Affiliation(s)
- JuDong Yeo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
15
|
Soni N, Nandi G, Chaudhary M, Bissa B. The role of ncRNA in the co-regulation of autophagy and exosome pathways during cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119523. [PMID: 37348764 DOI: 10.1016/j.bbamcr.2023.119523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Since its discovery a few decades ago, autophagy has been recognized as a crucial signaling pathway, linked to the recycling of cellular components in nutrient stress. Autophagy is a two-way sword, playing a dual role in tumorigenesis. In this catabolic process, dysfunctional organelles, biomolecules, and misfolded proteins are sequestered in the autophagosome and sent to the lysosome for degradation. Alongside, there are cellular messengers called exosomes, which are released from cells and are known to communicate and regulate metabolism in recipient cells. Multivesicular bodies (MVB) act as the intricate link between autophagy and exosome pathways. The continuous crosstalk between the two pathways is coordinated and regulated by multiple players among which ncRNA is the emerging candidates. The exosomes carry varied cargo of which non-coding RNA exerts an immediate regulatory effect on recipient cells. ncRNA is known to exhibit dual behavior in both promoting and inhibiting tumor growth. There is increasing evidence for the involvement of ncRNAs' in the regulation of different hallmarks of cancer. Different ncRNAs are involved in the co-regulation of autophagy and exosome pathways and therefore represent a superior therapeutic approach to target cancer chemoresistance. Here, we will discuss the ncRNA involved in regulating autophagy, and exosomes pathways and its relevance in cancer therapeutics.
Collapse
Affiliation(s)
- Naveen Soni
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Gargi Nandi
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Megha Chaudhary
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Bhawana Bissa
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
16
|
Kciuk M, Yahya EB, Mohamed MMI, Abdulsamad MA, Allaq AA, Gielecińska A, Kontek R. Insights into the Role of LncRNAs and miRNAs in Glioma Progression and Their Potential as Novel Therapeutic Targets. Cancers (Basel) 2023; 15:3298. [PMID: 37444408 DOI: 10.3390/cancers15133298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence supports that both long non-coding and micro RNAs (lncRNAs and miRNAs) are implicated in glioma tumorigenesis and progression. Poor outcome of gliomas has been linked to late-stage diagnosis and mostly ineffectiveness of conventional treatment due to low knowledge about the early stage of gliomas, which are not possible to observe with conventional diagnostic approaches. The past few years witnessed a revolutionary advance in biotechnology and neuroscience with the understanding of tumor-related molecules, including non-coding RNAs that are involved in the angiogenesis and progression of glioma cells and thus are used as prognostic biomarkers as well as novel therapeutic targets. The emerging research on lncRNAs and miRNAs highlights their crucial role in glioma progression, offering new insights into the disease. These non-coding RNAs hold significant potential as novel therapeutic targets, paving the way for innovative treatment approaches against glioma. This review encompasses a comprehensive discussion about the role of lncRNAs and miRNAs in gene regulation that is responsible for the promotion or the inhibition of glioma progression and collects the existing links between these key cancer-related molecules.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
| |
Collapse
|
17
|
Skouras P, Gargalionis AN, Piperi C. Exosomes as Novel Diagnostic Biomarkers and Therapeutic Tools in Gliomas. Int J Mol Sci 2023; 24:10162. [PMID: 37373314 DOI: 10.3390/ijms241210162] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Exosomes constitute small extracellular vesicles that contain lipids, proteins, nucleic acids, and glycoconjugates from the secreted cells and are capable of transmitting signals between cells and coordinating cellular communication. By this means, they are ultimately involved in physiology and disease, including development, homeostasis, and immune system regulation, as well as contributing to tumor progression and neurodegenerative diseases pathology. Recent studies have shown that gliomas secrete a panel of exosomes which have been associated with cell invasion and migration, tumor immune tolerance, potential for malignant transformation, neovascularization, and resistance to treatment. Exosomes have therefore emerged as intercellular communicators, which mediate the tumor-microenvironment interactions and exosome-regulated glioma cell stemness and angiogenesis. They may induce tumor proliferation and malignancy in normal cells by carrying pro-migratory modulators from cancer cells as well as many different molecular cancer modifiers, such as oncogenic transcripts, miRNAs, mutant oncoproteins, etc., which promote the communication of cancer cells with the surrounding stromal cells and provide valuable information on the molecular profile of the existing tumor. Moreover, engineered exosomes can provide an alternative system for drug delivery and enable efficient treatment. In the present review, we discuss the latest findings regarding the role of exosomes in glioma pathogenesis, their utility in non-invasive diagnosis, and potential applications to treatment.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Neurosurgery, 'Evangelismos' Hospital, Medical School, National and Kapodistrian University of Athens, 10676 Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Biopathology, 'Eginition' Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
18
|
Avgoulas DI, Tasioulis KS, Papi RM, Pantazaki AA. Therapeutic and Diagnostic Potential of Exosomes as Drug Delivery Systems in Brain Cancer. Pharmaceutics 2023; 15:pharmaceutics15051439. [PMID: 37242681 DOI: 10.3390/pharmaceutics15051439] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is designated as one of the principal causes of mortality universally. Among different types of cancer, brain cancer remains the most challenging one due to its aggressiveness, the ineffective permeation ability of drugs through the blood-brain barrier (BBB), and drug resistance. To overcome the aforementioned issues in fighting brain cancer, there is an imperative need for designing novel therapeutic approaches. Exosomes have been proposed as prospective "Trojan horse" nanocarriers of anticancer theranostics owing to their biocompatibility, increased stability, permeability, negligible immunogenicity, prolonged circulation time, and high loading capacity. This review provides a comprehensive discussion on the biological properties, physicochemical characteristics, isolation methods, biogenesis and internalization of exosomes, while it emphasizes their therapeutic and diagnostic potential as drug vehicle systems in brain cancer, highlighting recent advances in the research field. A comparison of the biological activity and therapeutic effectiveness of several exosome-encapsulated cargo including drugs and biomacromolecules underlines their great supremacy over the non-exosomal encapsulated cargo in the delivery, accumulation, and biological potency. Various studies on cell lines and animals give prominence to exosome-based nanoparticles (NPs) as a promising and alternative approach in the management of brain cancer.
Collapse
Affiliation(s)
- Dimitrios I Avgoulas
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos S Tasioulis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Rigini M Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia A Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
19
|
Feng Q, Zhang Y, Fang Y, Kong X, He Z, Ji J, Yang X, Zhai G. Research progress of exosomes as drug carriers in cancer and inflammation. J Drug Target 2023; 31:335-353. [PMID: 36543743 DOI: 10.1080/1061186x.2022.2162059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) could be produced by most cells and play an important role in disease development. As a subtype of EVs, exosomes exhibit suitable size, rich surface markers and diverse contents, making them more appealing as potential drug carriers. Compared with traditional synthetic nanoparticles, exosomes possess superior biocompatibility and much lower immunogenicity. This work reviewed the most up-to-date research progress of exosomes as carriers for nucleic acids, proteins and small molecule drugs for cancer and inflammation management. The drug loading strategies and potential cellular uptake behaviour of exosomes are highlighted, trying to provide reference for future exosome design and application.
Collapse
Affiliation(s)
- Qixiang Feng
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Yuelin Fang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xinru Kong
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Zhijing He
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
20
|
Cao Y, Xu P, Shen Y, Wu W, Chen M, Wang F, Zhu Y, Yan F, Gu W, Lin Y. Exosomes and cancer immunotherapy: A review of recent cancer research. Front Oncol 2023; 12:1118101. [PMID: 36727049 PMCID: PMC9885269 DOI: 10.3389/fonc.2022.1118101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/29/2022] [Indexed: 01/18/2023] Open
Abstract
As phospholipid extracellular vesicles (EVs) secreted by various cells, exosomes contain non-coding RNA (ncRNA), mRNA, DNA fragments, lipids, and proteins, which are essential for intercellular communication. Several types of cells can secrete exosomes that contribute to cancer initiation and progression. Cancer cells and the immune microenvironment interact and restrict each other. Tumor-derived exosomes (TDEs) have become essential players in this balance because they carry information from the original cancer cells and express complexes of MHC class I/II epitopes and costimulatory molecules. In the present study, we aimed to identify potential targets for exosome therapy by examining the specific expression and mechanism of exosomes derived from cancer cells. We introduced TDEs and explored their role in different tumor immune microenvironment (TIME), with a particular emphasis on gastrointestinal cancers, before briefly describing the therapeutic strategies of exosomes in cancer immune-related therapy.
Collapse
Affiliation(s)
- Yue Cao
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Peng Xu
- Department of Hematology, Soochow Hopes Hematology Hospital, Suzhou, Jiangsu, China
| | - Yangling Shen
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Wei Wu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Min Chen
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Fei Wang
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yuandong Zhu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Feng Yan
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Weiying Gu
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China,*Correspondence: Yan Lin, ; Weiying Gu,
| | - Yan Lin
- Department of Hematology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China,*Correspondence: Yan Lin, ; Weiying Gu,
| |
Collapse
|
21
|
Ghasempour E, Hesami S, Movahed E, keshel SH, Doroudian M. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy in the brain tumors. Stem Cell Res Ther 2022; 13:527. [PMID: 36536420 PMCID: PMC9764546 DOI: 10.1186/s13287-022-03212-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Brain tumors are one of the most mortal cancers, leading to many deaths among kids and adults. Surgery, chemotherapy, and radiotherapy are available options for brain tumor treatment. However, these methods are not able to eradicate cancer cells. The blood-brain barrier (BBB) is one of the most important barriers to treat brain tumors that prevents adequate drug delivery to brain tissue. The connection between different brain parts is heterogeneous and causes many challenges in treatment. Mesenchymal stem cells (MSCs) migrate to brain tumor cells and have anti-tumor effects by delivering cytotoxic compounds. They contain very high regenerative properties, as well as support the immune system. MSCs-based therapy involves cell replacement and releases various vesicles, including exosomes. Exosomes receive more attention due to their excellent stability, less immunogenicity and toxicity compare to cells. Exosomes derived from MSCs can develop a powerful therapeutic strategy for different diseases and be a hopeful candidate for cell-based and cell-free regenerative medicine. These nanoparticles contain nucleic acid, proteins, lipids, microRNAs, and other biologically active substances. Many studies show that each microRNA can prevent angiogenesis, migration, and metastasis in glioblastoma. These exosomes can-act as a suitable nanoparticle carrier for therapeutic applications of brain tumors by passing through the BBB. In this review, we discuss potential applications of MSC and their produced exosomes in the treatment of brain tumors.
Collapse
Affiliation(s)
- Elham Ghasempour
- grid.411600.2Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shilan Hesami
- grid.411600.2Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elaheh Movahed
- grid.238491.50000 0004 0367 6866Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeed Heidari keshel
- grid.411600.2Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Doroudian
- grid.412265.60000 0004 0406 5813Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
22
|
WANG YINGYING, ZHOU YING, WANG YU, YU LUSHAN, ZENG SU. Epigenetic Regulation of Drug Transporters in Cancer. DRUG METABOLISM HANDBOOK 2022:573-603. [DOI: 10.1002/9781119851042.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
23
|
Karami Fath M, Azami J, Masoudi A, Mosaddeghi Heris R, Rahmani E, Alavi F, Alagheband Bahrami A, Payandeh Z, Khalesi B, Dadkhah M, Pourzardosht N, Tarhriz V. Exosome-based strategies for diagnosis and therapy of glioma cancer. Cancer Cell Int 2022; 22:262. [PMID: 35989351 PMCID: PMC9394011 DOI: 10.1186/s12935-022-02642-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/26/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma belongs to the most aggressive type of cancer with a low survival rate that is characterized by the ability in forming a highly immunosuppressive tumor microenvironment. Intercellular communication are created via exosomes in the tumor microenvironment through the transport of various biomolecules. They are primarily involved in tumor growth, differentiation, metastasis, and chemotherapy or radiation resistance. Recently several studies have highlighted the critical role of tumor-derived exosomes against immune cells. According to the structural and functional properties, exosomes could be essential instruments to gain a better molecular mechanism for tumor understanding. Additionally, they are qualified as diagnostic/prognostic markers and therapeutic tools for specific targeting of invasive tumor cells such as glioblastomas. Due to the strong dependency of exosome features on the original cells and their developmental status, it is essential to review their critical modulating molecules, clinical relevance to glioma, and associated signaling pathways. This review is a non-clinical study, as the possible role of exosomes and exosomal microRNAs in glioma cancer are reported. In addition, their content to overcome cancer resistance and their potential as diagnostic biomarkers are analyzed.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jalil Azami
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Alireza Masoudi
- Department of Laboratory Sciences, Faculty of Alied Medical Sciences, Qom University of Medical Sciences, Qom, Iran
| | | | - Elnaz Rahmani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Alavi
- Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research, Tabriz, Iran
| | - Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Li D, Yao X, Yue J, Fang Y, Cao G, Midgley AC, Nishinari K, Yang Y. Advances in Bioactivity of MicroRNAs of Plant-Derived Exosome-Like Nanoparticles and Milk-Derived Extracellular Vesicles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6285-6299. [PMID: 35583385 DOI: 10.1021/acs.jafc.2c00631] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
MicroRNA (miRNA) is a class of small noncoding RNA involved in physiological and pathological processes via the regulation of gene expression. Naked miRNAs are unstable and liable to degradation by RNases. Exosome-like nanoparticles (ELNs) secreted by plants and extracellular vesicles (EVs) found in milk are abundant in miRNAs, which can be carried by ELNs and EVs to target cells to exert their bioactivities. In this review, we describe the current understanding of miRNAs in plant ELNs and milk EVs, summarize their important roles in regulation of inflammation, intestinal barrier, tumors, and infantile immunological functions, and also discuss the adverse effect of EV miRNAs on human health. Additionally, we prospect recent challenges centered around ELN and EV miRNAs for interventional applications and provide insights of grain-derived ELNs and miRNAs interventional use in human health. Overall, plant ELNs and milk EVs can transfer miRNAs to mitigate the pathological status of recipient cells by mediating the expression of target genes but may also exert some side effects. More studies are required to elucidate the in-depth understanding of potential interventional effects of ELN and EV miRNAs on human health.
Collapse
Affiliation(s)
- Dan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Jianxiong Yue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guifang Cao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Katsuyoshi Nishinari
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Yongli Yang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, P. R. China
| |
Collapse
|
25
|
Pancholi S, Tripathi A, Bhan A, Acharya MM, Pillai P. Emerging Concepts on the Role of Extracellular Vesicles and Its Cargo Contents in Glioblastoma-Microglial Crosstalk. Mol Neurobiol 2022; 59:2822-2837. [PMID: 35212938 PMCID: PMC10058057 DOI: 10.1007/s12035-022-02752-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme is the most common, highly aggressive malignant brain tumor which is marked by highest inter- and intra-tumoral heterogeneity. Despite, immunotherapy, and combination therapies developed; the clinical trials often result into large number of failures. Often cancer cells are known to communicate with surrounding cells in tumor microenvironment (TME). Extracellular vesicles (EVs) consisting of diverse cargo mediates this intercellular communication and is believed to modulate the immune function against GBM. Tumor-associated microglia (TAM), though being the resident innate immune cell of CNS, is known to attain pro-tumorigenic M2 phenotype, and this immunomodulation is aided by extracellular vesicle-mediated transfer of oncogenic, immunomodulatory molecules. Besides, oncogenic proteins, long non-coding RNAs (lncRNAs), are believed to carry oncogenic potential, and therefore, understanding the mechanism leading to microglial dysregulation mediated by GBM-derived extracellular vesicle (GDEV) lncRNAs becomes crucial. This review focuses on current understanding of role of GDEV and lncRNA in microglial dysfunction and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Sangati Pancholi
- Division of Neurobiology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Ashutosh Tripathi
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Centre at Houston (UT Health), Houston, TX, USA
| | - Arunoday Bhan
- Department of Surgery, City of Hope Medical Centre, Duarte, CA, USA
| | - Munjal M Acharya
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.
- Department of Radiation Oncology, University of California, Irvine, CA, USA.
| | - Prakash Pillai
- Division of Neurobiology, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
26
|
Peng J, Liang Q, Xu Z, Cai Y, Peng B, Li J, Zhang W, Kang F, Hong Q, Yan Y, Zhang M. Current Understanding of Exosomal MicroRNAs in Glioma Immune Regulation and Therapeutic Responses. Front Immunol 2022; 12:813747. [PMID: 35095909 PMCID: PMC8796999 DOI: 10.3389/fimmu.2021.813747] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Exosomes, the small extracellular vesicles, are released by multiple cell types, including tumor cells, and represent a novel avenue for intercellular communication via transferring diverse biomolecules. Recently, microRNAs (miRNAs) were demonstrated to be enclosed in exosomes and therefore was protected from degradation. Such exosomal miRNAs can be transmitted to recipient cells where they could regulate multiple cancer-associated biological processes. Accumulative evidence suggests that exosomal miRNAs serve essential roles in modifying the glioma immune microenvironment and potentially affecting the malignant behaviors and therapeutic responses. As exosomal miRNAs are detectable in almost all kinds of biofluids and correlated with clinicopathological characteristics of glioma, they might be served as promising biomarkers for gliomas. We reviewed the novel findings regarding the biological functions of exosomal miRNAs during glioma pathogenesis and immune regulation. Furthermore, we elaborated on their potential clinical applications as biomarkers in glioma diagnosis, prognosis and treatment response prediction. Finally, we summarized the accessible databases that can be employed for exosome-associated miRNAs identification and functional exploration of cancers, including glioma.
Collapse
Affiliation(s)
- Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Xiangya Changde Hospital, Changde, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianbo Li
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Wenqin Zhang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Fanhua Kang
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Qianhui Hong
- Department of Pathology, Xiangya Changde Hospital, Changde, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
27
|
Wang R, Wang X, Zhang Y, Zhao H, Cui J, Li J, Di L. Emerging prospects of extracellular vesicles for brain disease theranostics. J Control Release 2022; 341:844-868. [DOI: 10.1016/j.jconrel.2021.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
|
28
|
MicroRNAs Regulate Cell Cycle and Cell Death Pathways in Glioblastoma. Int J Mol Sci 2021; 22:ijms222413550. [PMID: 34948346 PMCID: PMC8705881 DOI: 10.3390/ijms222413550] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GBM), a grade IV brain tumor, is known for its heterogenicity and its resistance to the current treatment regimen. Over the last few decades, a significant amount of new molecular and genetic findings has been reported regarding factors contributing to GBM’s development into a lethal phenotype and its overall poor prognosis. MicroRNA (miRNAs) are small non-coding sequences of RNA that regulate and influence the expression of multiple genes. Many research findings have highlighted the importance of miRNAs in facilitating and controlling normal biological functions, including cell differentiation, proliferation, and apoptosis. Furthermore, miRNAs’ ability to initiate and promote cancer development, directly or indirectly, has been shown in many types of cancer. There is a clear association between alteration in miRNAs expression in GBM’s ability to escape apoptosis, proliferation, and resistance to treatment. Further, miRNAs regulate the already altered pathways in GBM, including P53, RB, and PI3K-AKT pathways. Furthermore, miRNAs also contribute to autophagy at multiple stages. In this review, we summarize the functions of miRNAs in GBM pathways linked to dysregulation of cell cycle control, apoptosis and resistance to treatment, and the possible use of miRNAs in clinical settings as treatment and prediction biomarkers.
Collapse
|
29
|
Liu L, Xiao C, Sun Q. MiRNA-375 inhibits retinoblastoma progression through targeting ERBB2 and inhibiting MAPK1/MAPK3 signalling pathway. Cutan Ocul Toxicol 2021; 41:1-10. [PMID: 34711123 DOI: 10.1080/15569527.2021.1994587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Increasing evidence has shown that the dysregulation of miRNAs is involved in the pathogenesis of retinoblastoma (RB). This present study was aimed to investigate the significance of miR-375 in RB progression, and the underlying mechanism. MATERIALS AND METHODS The miR-375 expression was detected by RT-PCR. CCK-8 assay and transwell assays were used to measure RB cell viability, migration, and invasion. The downstream gene of miR-375 was verified by luciferase reporter assay. Western blot was applied to detect the related proteins of MAPK1/MAPK3 signalling pathway. RESULTS MiR-375 was decreased significantly in RB tissues, and its down-regulation was associated with the poor prognosis of RB patients. Over-expression of miR-375 inhibited RB cell proliferation, migration, and invasion. More importantly, miR-375 modulated ERBB2 expression negatively, and ERBB2 was confirmed as the target of miR-375. Moreover, ERBB2 overturned the inhibitory effect of miR-375 mimic on the progression of RB. MiR-375 mimic suppressed RB progression via inhibiting the activation of MAPK1/MAPK3 signalling pathway. CONCLUSIONS MiR-375 inhibited RB progression through targeting ERBB2 and suppressing MAPK1/MAPK3 signalling pathway, which might be a new target for the clinical treatment strategy.
Collapse
Affiliation(s)
- Lei Liu
- Department of Fundus Disease, Aier Eye Hospital Chongqing Children's, Chongqing City, China
| | - Chunlin Xiao
- Department of Ocular Surface and Cornea, Chongqing Aier Eye Hospital, Chongqing City, China
| | - Qiuyun Sun
- Department of Oculoplasty & Lacrimal System, Chongqing Aier Eye Hospital, Chongqing City, China
| |
Collapse
|
30
|
Application of Mesenchymal Stem Cells in Targeted Delivery to the Brain: Potential and Challenges of the Extracellular Vesicle-Based Approach for Brain Tumor Treatment. Int J Mol Sci 2021; 22:ijms222011187. [PMID: 34681842 PMCID: PMC8538190 DOI: 10.3390/ijms222011187] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Treating brain tumors presents enormous challenges, and there are still poor prognoses in both adults and children. Application of novel targets and potential drugs is hindered by the function of the blood-brain barrier, which significantly restricts therapeutic access to the tumor. Mesenchymal stem cells (MSCs) can cross biological barriers, migrate to sites of injuries to exert many healing effects, and be engineered to incorporate different types of cargo, making them an ideal vehicle to transport anti-tumor agents to the central nervous system. Extracellular vesicles (EVs) produced by MSCs (MSC-EVs) have valuable innate properties from parent cells, and are being exploited as cell-free treatments for many neurological diseases. Compared to using MSCs, targeted delivery via MSC-EVs has a better pharmacokinetic profile, yet avoids many critical issues of cell-based systems. As the field of MSC therapeutic applications is quickly expanding, this article aims to give an overall picture for one direction of EV-based targeting of brain tumors, with updates on available techniques, outcomes of experimental models, and critical challenges of this concept.
Collapse
|
31
|
Wu X, Wang X, Wang J, Hao Y, Liu F, Wang X, Yang L, Lu Z. The Roles of Exosomes as Future Therapeutic Agents and Diagnostic Tools for Glioma. Front Oncol 2021; 11:733529. [PMID: 34722277 PMCID: PMC8548662 DOI: 10.3389/fonc.2021.733529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Glioma is a common type of tumor originating in the brain. Glioma develops in the gluey supporting cells (glial cells) that surround and support nerve cells. Exosomes are extracellular vesicles that contain microRNAs, messenger RNA, and proteins. Exosomes are the most prominent mediators of intercellular communication, regulating, instructing, and re-educating their surrounding milieu targeting different organs. As exosomes' diameter is in the nano range, the ability to cross the blood-brain barrier, a crucial obstacle in developing therapeutics against brain diseases, including glioma, makes the exosomes a potential candidate for delivering therapeutic agents for targeting malignant glioma. This review communicates the current knowledge of exosomes' significant roles that make them crucial future therapeutic agents and diagnostic tools for glioma.
Collapse
Affiliation(s)
- Xiaoben Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xingbang Wang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Jing Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fang Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Yang
- Department of Medical Engineering, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
32
|
Meng X, Yuan H, Li W, Xiong Z, Dong W, Xiao W, Zhang X. Solute carrier family 16 member 5 downregulation and its methylation might serve as a prognostic indicator of prostate cancer. IUBMB Life 2021; 73:1363-1377. [PMID: 34549875 DOI: 10.1002/iub.2560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/04/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa), characterized by high invasion, metastasis, and recurrence, is the most prevalent malignant tumor in men worldwide. A clear understanding of the underlying molecular mechanisms and their role during PCa tumorigenesis can help develop prognostic and targeted therapies. We analyzed datasets from public databases, including the Cancer Genome Atlas (TCGA) and Oncomine and Gene Expression Profiling Interactive Analysis for differential expression of solute carrier family 16 member 5 (SLC16A5). We further investigated its relationship with clinical stage, pathological grade, and prognosis of PCa. The promoter methylation level of SLC16A5 in PCa was also investigated by UALCAN. We also utilized datasets from UCSC Xena to explore the prognostic role of SLC16A5 methylation levels and CpG site. Correlations between SLC16A5 and immune infiltration were discovered through TIMER. We observed significantly lower levels of SLC16A5 mRNA in PCa relative to normal tissues across six datasets from Oncomine database (p < .001) and 498 cases from TCGA database (p < .0001). SLC16A5 is strongly negatively regulated by its DNA methylation, with a Spearman of -0.81 and Pearson of -0.80 (p < .001). The aberrant SLC16A5 expression resulted in a significant relationship with clinical stage, pathological grade, and lower SLC16A5 mRNA expression, and its hypermethylation was related to a poorer PCa prognosis. SLC16A5 acted as an important factor for PCa diagnosis, with an AUC of 0.9038 (95% CI: 0.8597-0.9479; p < .0001). Besides, the aberrant SLC16A5 expression revealed close correlations with multiple immune cells. Overall, these results indicate that decreased SLC16A5 expression might be a potential biomarker for determining prognosis and immune infiltration in PCa. The positive SLC16A5 modulation might be a promising therapeutic target for PCa.
Collapse
Affiliation(s)
- Xiangui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwei Yuan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiquan Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China.,Institute of Urology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Wei J, Gilboa E, Calin GA, Heimberger AB. Immune Modulatory Short Noncoding RNAs Targeting the Glioblastoma Microenvironment. Front Oncol 2021; 11:682129. [PMID: 34532286 PMCID: PMC8438301 DOI: 10.3389/fonc.2021.682129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastomas are heterogeneous and have a poor prognosis. Glioblastoma cells interact with their neighbors to form a tumor-permissive and immunosuppressive microenvironment. Short noncoding RNAs are relevant mediators of the dynamic crosstalk among cancer, stromal, and immune cells in establishing the glioblastoma microenvironment. In addition to the ease of combinatorial strategies that are capable of multimodal modulation for both reversing immune suppression and enhancing antitumor immunity, their small size provides an opportunity to overcome the limitations of blood-brain-barrier (BBB) permeability. To enhance glioblastoma delivery, these RNAs have been conjugated with various molecules or packed within delivery vehicles for enhanced tissue-specific delivery and increased payload. Here, we focus on the role of RNA therapeutics by appraising which types of nucleotides are most effective in immune modulation, lead therapeutic candidates, and clarify how to optimize delivery of the therapeutic RNAs and their conjugates specifically to the glioblastoma microenvironment.
Collapse
Affiliation(s)
- Jun Wei
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eli Gilboa
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
| | - George A Calin
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amy B Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
34
|
Simionescu N, Zonda R, Petrovici AR, Georgescu A. The Multifaceted Role of Extracellular Vesicles in Glioblastoma: microRNA Nanocarriers for Disease Progression and Gene Therapy. Pharmaceutics 2021; 13:988. [PMID: 34210109 PMCID: PMC8309075 DOI: 10.3390/pharmaceutics13070988] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma (GB) is the most aggressive form of brain cancer in adults, characterized by poor survival rates and lack of effective therapies. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression post-transcriptionally through specific pairing with target messenger RNAs (mRNAs). Extracellular vesicles (EVs), a heterogeneous group of cell-derived vesicles, transport miRNAs, mRNAs and intracellular proteins, and have been shown to promote horizontal malignancy into adjacent tissue, as well as resistance to conventional therapies. Furthermore, GB-derived EVs have distinct miRNA contents and are able to penetrate the blood-brain barrier. Numerous studies have attempted to identify EV-associated miRNA biomarkers in serum/plasma and cerebrospinal fluid, but their collective findings fail to identify reliable biomarkers that can be applied in clinical settings. However, EVs carrying specific miRNAs or miRNA inhibitors have great potential as therapeutic nanotools in GB, and several studies have investigated this possibility on in vitro and in vivo models. In this review, we discuss the role of EVs and their miRNA content in GB progression and resistance to therapy, with emphasis on their potential as diagnostic, prognostic and disease monitoring biomarkers and as nanocarriers for gene therapy.
Collapse
Affiliation(s)
- Natalia Simionescu
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
- “Prof. Dr. Nicolae Oblu” Emergency Clinical Hospital, 2 Ateneului Street, 700309 Iasi, Romania
| | - Radu Zonda
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
| | - Anca Roxana Petrovici
- Center of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (N.S.); (R.Z.); (A.R.P.)
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 8 B.P. Hasdeu Street, 050568 Bucharest, Romania
| |
Collapse
|
35
|
Xu X, Liu Y, Li Y, Chen H, Zhang Y, Liu J, Deng S, Zheng Y, Sun X, Wang J, Chen T, Huang M, Ke Y. Selective exosome exclusion of miR-375 by glioma cells promotes glioma progression by activating the CTGF-EGFR pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:16. [PMID: 33407703 PMCID: PMC7789663 DOI: 10.1186/s13046-020-01810-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Background Exosomes are membrane-bound extracellular vesicles of 40–150 nm in size, that are produced by many cell types, and play an important role in the maintenance of cellular homeostasis. Exosome secretion allows for the selective removal of harmful substances from cells. However, it remains unclear whether this process also takes place in glioma cells. Methods Herein, the role of the tumour-suppressor miR-375 was explored in human glioma cells. Immunoblotting and qRT-PCR experiments demonstrated a functional link between miR-375 and its target, connectivetissuegrowthfactor (CTGF), which led to the identification of the underlying molecular pathways. The exosomes secreted by glioma cells were extracted by ultracentrifugation and examined by transmission electron microscopy. Exosomal expression of miR-375 was then analysed by qRT-PCR; while the exosome secretion inhibitor, GW4869, was used to examine the biological significance of miR-375 release. Moreover, the dynamics of miR-375 release by glioma cells was investigated using fluorescently labelled exosomes. Finally, exosomal miR-375 release was examined in an orthotopic xenograft model in nude mice. Results MiR-375 expression was downregulated in gliomas. MiR-375 suppressed glioma proliferation, migration, and invasion by inhibiting the CTGF-epidermalgrowthfactorreceptor (EGFR) signalling pathway. MiR-375-containing exosomes were also identified in human peripheral blood samples from glioma patients, and their level correlated with disease progression status. Exosomal miR-375 secretion impacted the CTGF-EGFR pathway activity. Once secreted, exosomal miR-375 was not taken back up by glioma cells. Conclusions Exosomal miR-375 secretion allowed for sustained activation of the CTGF-EGFR oncogenic pathway, promoting the proliferation and invasion of glioma cells. These findings enhance our understanding of exosome biology and may inspire development of new glioma therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01810-9.
Collapse
Affiliation(s)
- Xiangdong Xu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yang Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yan Li
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Huajian Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuxuan Zhang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jie Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shaokang Deng
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yaofeng Zheng
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xinlin Sun
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jihui Wang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Taoliang Chen
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Min Huang
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
36
|
Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol Ther 2020; 29:13-31. [PMID: 33278566 DOI: 10.1016/j.ymthe.2020.11.030] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022] Open
Abstract
Plant exosome-like nanovesicles, being innately replete with bioactive lipids, proteins, RNA, and other pharmacologically active molecules, offer unique morphological and compositional characteristics as natural nanocarriers. Furthermore, their compelling physicochemical traits underpin their modulative role in physiological processes, all of which have fostered the concept that these nanovesicles may be highly proficient in the development of next-generation biotherapeutic and drug delivery nanoplatforms to meet the ever-stringent demands of current clinical challenges. This review systemically deals with various facets of plant exosome-like nanovesicles ranging from their origin and isolation to identification of morphological composition, biological functions, and cargo-loading mechanisms. Efforts are made to encompass their biotherapeutic roles by elucidating their immunological modulating, anti-tumor, regenerative, and anti-inflammatory roles. We also shed light on re-engineering these nanovesicles into robust, innocuous, and non-immunogenic nanovectors for drug delivery through multiple stringent biological hindrances to various targeted organs such as intestine and brain. Finally, recent advances centered around plant exosome-like nanovesicles along with new insights into transdermal, transmembrane and targeting mechanisms of these vesicles are also elucidated. We expect that the continuing development of plant exosome-like nanovesicle-based therapeutic and delivery nanoplatforms will promote their clinical applications.
Collapse
Affiliation(s)
- Haseeb Anwar Dad
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ao-Qing Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Lu-Qi Huang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
37
|
Shi J, Zhang Y, Yao B, Sun P, Hao Y, Piao H, Zhao X. Role of Exosomes in the Progression, Diagnosis, and Treatment of Gliomas. Med Sci Monit 2020; 26:e924023. [PMID: 33245712 PMCID: PMC7706139 DOI: 10.12659/msm.924023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most common primary malignant brain tumors associated with a low survival rate. Even after surgery, radiotherapy, and chemotherapy, gliomas still have a poor prognosis. Extracellular vesicles are a heterogeneous group of cell-derived membranous structures. Exosomes are a type of extracellular vesicles, their size ranges from 30 nm to 100 nm. Recent studies have proved that glioma cells could release numerous exosomes; therefore, exosomes have gained increasing attention in glioma-related research. Recent studies have confirmed the importance of extracellular vesicles, particularly exosomes, in the development of brain tumors, including gliomas. Exosomes mediate intercellular communication in the tumor microenvironment by transporting biomolecules (proteins, lipids, deoxyribonucleic acid, and ribonucleic acid); thereby playing a prominent role in tumor proliferation, differentiation, metastasis, and resistance to chemotherapy or radiation. Given their nanoscale size, exosomes can traverse the blood-brain barrier and promote tumor progression by modifying the tumor microenvironment. Based on their structural and functional characteristics, exosomes are demonstrating their value not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting glioma cells. Therefore, exosomes are a promising therapeutic target for the diagnosis, prognosis, and treatment of malignant gliomas. More research will be needed before exosomes can be used in clinical applications. Here, we describe the exosomes, their morphology, and their roles in the diagnosis and progression of gliomas. In addition, we discuss the potential of exosomes as a therapeutic target/drug delivery system for patients with gliomas.
Collapse
Affiliation(s)
- Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ye Zhang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Bing Yao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Peixin Sun
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yuanyuan Hao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xi Zhao
- Department of Anesthesia, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
38
|
Bajetto A, Thellung S, Dellacasagrande I, Pagano A, Barbieri F, Florio T. Cross talk between mesenchymal and glioblastoma stem cells: Communication beyond controversies. Stem Cells Transl Med 2020; 9:1310-1330. [PMID: 32543030 PMCID: PMC7581451 DOI: 10.1002/sctm.20-0161] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from bone marrow or other adult tissues (adipose tissue, dental pulp, amniotic fluid, and umbilical cord). In vitro, MSCs grow as adherent cells, display fibroblast-like morphology, and self-renew, undergoing specific mesodermal differentiation. High heterogeneity of MSCs from different origin, and differences in preparation techniques, make difficult to uniform their functional properties for therapeutic purposes. Immunomodulatory, migratory, and differentiation ability, fueled clinical MSC application in regenerative medicine, whereas beneficial effects are currently mainly ascribed to their secretome and extracellular vesicles. MSC translational potential in cancer therapy exploits putative anti-tumor activity and inherent tropism toward tumor sites to deliver cytotoxic drugs. However, controversial results emerged evaluating either the therapeutic potential or homing efficiency of MSCs, as both antitumor and protumor effects were reported. Glioblastoma (GBM) is the most malignant brain tumor and its development and aggressive nature is sustained by cancer stem cells (CSCs) and the identification of effective therapeutic is required. MSC dualistic action, tumor-promoting or tumor-targeting, is dependent on secreted factors and extracellular vesicles driving a complex cross talk between MSCs and GBM CSCs. Tumor-tropic ability of MSCs, besides providing an alternative therapeutic approach, could represent a tool to understand the biology of GBM CSCs and related paracrine mechanisms, underpinning MSC-GBM interactions. In this review, recent findings on the complex nature of MSCs will be highlighted, focusing on their elusive impact on GBM progression and aggressiveness by direct cell-cell interaction and via secretome, also facing the perspectives and challenges in treatment strategies.
Collapse
Affiliation(s)
- Adriana Bajetto
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
| | | | | | - Aldo Pagano
- Dipartimento di Medicina SperimentaleUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | | | - Tullio Florio
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| |
Collapse
|
39
|
Ding F, Liu J, Zhang X. microRNA-375 released from extracellular vesicles of bone marrow mesenchymal stem cells exerts anti-oncogenic effects against cervical cancer. Stem Cell Res Ther 2020; 11:455. [PMID: 33109266 PMCID: PMC7592378 DOI: 10.1186/s13287-020-01908-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cervical cancer is the most prevalent gynecological malignancies accompanied by high mortality, where finding a more effective therapeutic option for cervical cancer is necessary. The inhibitory role of microRNAs (miRNAs) derived from the extracellular vesicles (EVs) of the bone marrow mesenchymal stem cells (BMSCs) was analyzed in cervical cancer. METHODS Expression of miR-375 was examined by RT-qPCR in cervical cancer cell lines. The targeting relation between miR-375 and maternal embryonic leucine zipper kinase (MELK) was predicted by bioinformatics analysis and verified by dual-luciferase reporter gene assay. Isolated BMSCs were transfected with lentivirus-mediated vectors, followed by EV extraction. The morphology of EVs was then identified using a NanoSight particle size analyzer and transmission electron microscope (TEM). The biological properties of cervical cancer cells were evaluated using Transwell, EdU, and TUNEL assays, respectively. Xenograft tumors in nude mice were observed to assess cervical tumorigenesis in vivo. RESULTS Low expression of miR-375 and high expression of MELK were detected in cervical cancer samples. MELK was identified as the target gene of miR-375, which was negatively correlated with miR-375 levels. Overexpression of miR-375 suppressed proliferation, migration, and invasion of cervical cancer cells, but enhanced cell apoptosis by cooperating with downregulated MELK expression. miR-375 transferred from BMSC-derived EVs exerted the same effects on cell biological activities. Xenograft assays in vivo proved that miR-375 from BMSC-derived EVs inhibited tumor growth. CONCLUSION The present study highlighted the role of miR-375 from BMSC-derived EVs in suppressing the progression of cervical cancer, which may contribute to the discovery of novel potential biomarkers for cervical cancer therapy.
Collapse
Affiliation(s)
- Feng Ding
- Department of Education and Teaching, Linyi People’s Hospital, Linyi, 276000 People’s Republic of China
| | - Jinhua Liu
- Department of Gynecology and Obstetrics, Linyi People’s Hospital, Linyi, 276000 People’s Republic of China
| | - Xiaofei Zhang
- The 3rd Department of Gynecology, Linyi People’s Hospital, No. 27, East Section of Jiefang Road, Lanshan District, Linyi, 276000 Shandong Province People’s Republic of China
| |
Collapse
|
40
|
Ghaemmaghami AB, Mahjoubin-Tehran M, Movahedpour A, Morshedi K, Sheida A, Taghavi SP, Mirzaei H, Hamblin MR. Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis. Cell Commun Signal 2020; 18:120. [PMID: 32746854 PMCID: PMC7397575 DOI: 10.1186/s12964-020-00623-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are the most common and deadly type of central nervous system tumors. Despite some advances in treatment, the mean survival time remains only about 1.25 years. Even after surgery, radiotherapy and chemotherapy, gliomas still have a poor prognosis. Exosomes are the most common type of extracellular vesicles with a size range of 30 to 100 nm, and can act as carriers of proteins, RNAs, and other bioactive molecules. Exosomes play a key role in tumorigenesis and resistance to chemotherapy or radiation. Recent evidence has shown that exosomal microRNAs (miRNAs) can be detected in the extracellular microenvironment, and can also be transferred from cell to cell via exosome secretion and uptake. Therefore, many recent studies have focused on exosomal miRNAs as important cellular regulators in various physiological and pathological conditions. A variety of exosomal miRNAs have been implicated in the initiation and progression of gliomas, by activating and/or inhibiting different signaling pathways. Exosomal miRNAs could be used as therapeutic agents to modulate different biological processes in gliomas. Exosomal miRNAs derived from mesenchymal stem cells could also be used for glioma treatment. The present review summarizes the exosomal miRNAs that have been implicated in the pathogenesis, diagnosis and treatment of gliomas. Moreover, exosomal proteins could also be involved in glioma pathogenesis. Exosomal miRNAs and proteins could also serve as non-invasive biomarkers for prognosis and disease monitoring. Video Abstract.
Collapse
Affiliation(s)
- Amir B. Ghaemmaghami
- grid.17063.330000 0001 2157 2938Department of Psychology, Behaviour, Genetics and Neurobiology Program, University of Toronto, Toronto, Canada
| | - Maryam Mahjoubin-Tehran
- grid.411583.a0000 0001 2198 6209Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Movahedpour
- grid.412571.40000 0000 8819 4698Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Korosh Morshedi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sheida
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- grid.444768.d0000 0004 0612 1049Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- grid.38142.3c000000041936754XWellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA ,grid.412988.e0000 0001 0109 131XLaser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| |
Collapse
|
41
|
Proteomic profiling of MIN6 cell-derived exosomes. J Proteomics 2020; 224:103841. [PMID: 32461166 DOI: 10.1016/j.jprot.2020.103841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/11/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023]
Abstract
Exosomes have been widely used in research on the early clinical diagnosis, prognosis and treatment of various cancers due to their features of small size (30-120 nm), non-immunogenicity and ability to cross biological barriers. However, few studies have investigated exosomes involved in metabolic diseases. Early studies have found that adipose tissue can be a source of exosomes regulating metabolism, but the related functions of exosomes secreted by other tissues in the regulation of metabolic diseases have not been determined. In addition, islets were found to be able to secrete miRNA via exosomes, suggesting that islet exosomes may be among the sources of exosomes involved in the regulation of metabolic diseases and that the relevant protein profiles have not been characterized to date. Therefore, identifying the protein contents of pancreatic β cell-derived exosomes would benefit further research investigating the protein functions and mechanisms associated with diabetes-related metabolic diseases. SIGNIFICANCE: Exosomes are emerging tools for investigating metabolic diseases in recent years, but little research has been done. In our work, functional identification of MIN6 cell-derived exosomal proteins and comparative analysis of islet β cell exosomal protein data from different cell lines or from different species revealed that exosomes secreted by islet β cells may be involved in the regulation of glucose metabolism. These results may suggest that intercellular communication induced by exosome transfer among tissues may account for the major reason of diabetic metabolic disorder. In addition, these results may provide a theoretical basis for the study of the physiological and pathological functions of islet β cell exosomes for the future studies.
Collapse
|
42
|
Li Q, Huyan T, Cai S, Huang Q, Zhang M, Peng H, Zhang Y, Liu N, Zhang W. The role of exosomal miR-375-3p: A potential suppressor in bladder cancer via the Wnt/β-catenin pathway. FASEB J 2020; 34:12177-12196. [PMID: 32716585 DOI: 10.1096/fj.202000347r] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022]
Abstract
miR-375-3p is a significantly downregulated miRNA in bladder cancer (BC). However, its role in BC regulation is still unclear. In this study, we reported that miR-375-3p overexpression inhibited proliferation and migration and promoted apoptosis in BC cells. Frizzled-8 (FZD8) gene is identified as the direct miR-375-3p targeting gene. miR-375-3p blocks the Wnt/β-catenin pathway and downstream molecules Cyclin D1 and c-Myc by inhibiting the expression of FZD8 directly, it could increase caspase 1 and caspase 3 expression and promote T24 cell apoptosis as well. miR-375-3p also showed a significant inhibitory effect in vivo in bladder tumor-bearing nude mice, as demonstrated by the reduced tumor volume and Ki67 proliferation index in tumor tissue. Collectively, miR-375-3p is a suppressor of BC that inhibits proliferation and metastasis, and promotes apoptosis in BC cells as well as suppresses tumor growth in a T24 xenograft mouse model, which could be used as a potential therapeutic approach for BC in future.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ting Huyan
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, China
| | - Suna Cai
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Qiuping Huang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Mengzhao Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hourong Peng
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yujun Zhang
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ningjing Liu
- Key Laboratory for Space Bioscience and Space Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Wei Zhang
- Department of Anesthesiology, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou, China
| |
Collapse
|
43
|
Kim H, Lee S, Shin E, Seong KM, Jin YW, Youn H, Youn B. The Emerging Roles of Exosomes as EMT Regulators in Cancer. Cells 2020; 9:cells9040861. [PMID: 32252322 PMCID: PMC7226841 DOI: 10.3390/cells9040861] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial–mesenchymal transition (EMT) causes epithelial cells to lose their polarity and adhesion property, and endows them with migratory and invasive properties to enable them to become mesenchymal stem cells. EMT occurs throughout embryonic development, during wound healing, and in various pathological processes, including tumor progression. Considerable research in the last few decades has revealed that EMT is invariably related to tumor aggressiveness and metastasis. Apart from the interactions between numerous intracellular signaling pathways known to regulate EMT, extracellular modulators in the tumor microenvironment also influence tumor cells to undergo EMT, with extracellular vesicles (EVs) receiving increasing attention as EMT inducers. EVs comprise exosomes and microvesicles that carry proteins, nucleic acids, lipids, and other small molecules to stimulate EMT in cells. Among EVs, exosomes have been investigated in many studies, and their role has been found to be significant with respect to regulating intercellular communications. In this review, we summarize recent studies on exosomes and their cargoes that induce cancer-associated EMT. Furthermore, we describe the possible applications of exosomes as promising therapeutic strategies.
Collapse
Affiliation(s)
- Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.K.); (S.L.); (E.S.)
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.K.); (S.L.); (E.S.)
| | - Eunguk Shin
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.K.); (S.L.); (E.S.)
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (K.M.S.); (Y.W.J.)
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (K.M.S.); (Y.W.J.)
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea
- Correspondence: (H.Y.); (B.Y.); Tel.: +82-2-6935-2438 (H.Y.); +82-51-510-2264 (B.Y.); Fax: +82-2-3408-4334 (H.Y.); +82-51-581-2962 (B.Y.)
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.K.); (S.L.); (E.S.)
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: (H.Y.); (B.Y.); Tel.: +82-2-6935-2438 (H.Y.); +82-51-510-2264 (B.Y.); Fax: +82-2-3408-4334 (H.Y.); +82-51-581-2962 (B.Y.)
| |
Collapse
|
44
|
Cheng J, Meng J, Zhu L, Peng Y. Exosomal noncoding RNAs in Glioma: biological functions and potential clinical applications. Mol Cancer 2020; 19:66. [PMID: 32213181 PMCID: PMC7098115 DOI: 10.1186/s12943-020-01189-3] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Gliomas are complex and heterogeneous brain tumors with poor prognosis. Glioma cells can communicate with their surroundings to create a tumor-permissive microenvironment. Exosomes represent a new means of intercellular communication by delivering various bioactive molecules, including proteins, lipids and nucleic acids, and participate in tumor initiation and progression. Noncoding RNAs (ncRNAs) including microRNA, long-noncoding RNA, and circular RNA, account for a large portion of human transcriptome and play important roles in various pathophysiological processes, especially in cancers. In addition, ncRNAs can be selectively packaged, secreted and transferred between cells in exosomes and modulate numerous hallmarks of glioma, such as proliferation, invasion, angiogenesis, immune-escape, and treatment resistance. Hence, the strategies of specifically targeting exosomal ncRNAs could be attractive therapeutic options. Exosomes are able to cross the blood brain barrier (BBB), and are readily accessible in nearly all types of human biofluids, which make them the promising biomarkers for gliomas. Additionally, given the biocompatibility of exosomes, they can be engineered to deliver therapeutic factors, such as RNA, proteins and drugs, to target cells for therapeutic applications. Here, we reviewed current research on the roles of exosomal ncRNAs in glioma progression. We also discussed their potential clinical applications as novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Jian Cheng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jinli Meng
- Department of Radiology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital C.T.), Chengdu, China
| | - Lei Zhu
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
45
|
Yekula A, Yekula A, Muralidharan K, Kang K, Carter BS, Balaj L. Extracellular Vesicles in Glioblastoma Tumor Microenvironment. Front Immunol 2020; 10:3137. [PMID: 32038644 PMCID: PMC6990128 DOI: 10.3389/fimmu.2019.03137] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastomas (GBM) are highly aggressive primary brain tumors. Complex and dynamic tumor microenvironment (TME) plays a crucial role in the sustained growth, proliferation, and invasion of GBM. Several means of intercellular communication have been documented between glioma cells and the TME, including growth factors, cytokines, chemokines as well as extracellular vesicles (EVs). EVs carry functional genomic and proteomic cargo from their parental cells and deliver that information to surrounding and distant recipient cells to modulate their behavior. EVs are emerging as crucial mediators of establishment and maintenance of the tumor by modulating the TME into a tumor promoting system. Herein we review recent literature in the context of GBM TME and the means by which EVs modulate tumor proliferation, reprogram metabolic activity, induce angiogenesis, escape immune surveillance, acquire drug resistance and undergo invasion. Understanding the multifaceted roles of EVs in the niche of GBM TME will provide invaluable insights into understanding the biology of GBM and provide functional insights into the dynamic EV-mediated intercellular communication during gliomagenesis, creating new opportunities for GBM diagnostics and therapeutics.
Collapse
Affiliation(s)
- Anuroop Yekula
- Government General Hospital, Guntur Medical College, Guntur, India
| | - Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Koushik Muralidharan
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Keiko Kang
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- School of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|