1
|
Volkova O, Kravtsov V, Skorb EV, Smirnov E. Effective Immobilization of hnRNPA2B1 Protein in a PEI Layer on a QCM Gold Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8690-8702. [PMID: 40134223 DOI: 10.1021/acs.langmuir.4c05250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
RNA-binding proteins (RBPs) play a crucial role in RNA metabolism, influencing processes like transcription, splicing, transport, and stability, as well as cell proliferation and immune responses. Their links to diseases, such as cancer and neurological disorders, make them prime candidates for therapeutic targeting. Among these, heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is notable for its regulation of gene expression and involvement in telomere maintenance and DNA repair. Its activity in various cancers and neurodegenerative diseases positions it as a promising target for drug development. The quartz crystal microbalance (QCM) method offers an efficient alternative to traditional binding affinity assessments such as spectroscopy, allowing experiments with minimal reagents and without extensive modifications. A key to effective QCM analysis is immobilization of the target protein to prevent denaturation. This study outlines a strategy for immobilizing hnRNPA2B1 onto a gold electrode using a polyethylenimine (PEI) layer. Adsorption processes and stability were monitored via frequency shift (Δf/n) and dissipation change (ΔD/n) measurements. The results showed that hnRNPA2B1's adsorption on branched PEI resulted in weak binding interactions, while adsorption on a linear PEI layer led to a negative frequency shift of -21 Hz. Increasing the ionic strength to 0.1 mM significantly enhanced protein adsorption (Δf/n = -69 Hz). These findings emphasize the role of the PEI layer structure in optimizing protein immobilization, paving the way for further exploration of RBPs and their ligands.
Collapse
Affiliation(s)
- Olga Volkova
- Infochemistry Scientific Center, ITMO University, Saint Petersburg 191002, Russia
| | - Viacheslav Kravtsov
- Infochemistry Scientific Center, ITMO University, Saint Petersburg 191002, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Saint Petersburg 191002, Russia
| | - Evgeny Smirnov
- Infochemistry Scientific Center, ITMO University, Saint Petersburg 191002, Russia
| |
Collapse
|
2
|
Bhardwaj S, Sanjay, Yadav AK. Higher isoform of hnRNPA1 confer Temozolomide resistance in U87MG & LN229 glioma cells. J Neurooncol 2025; 171:47-63. [PMID: 39585598 DOI: 10.1007/s11060-024-04831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Gliblastoma is a malignant brain tumor; despite available treatment modalities, the tumor reoccurrence rate persist in the currently prescribed Temozolomide chemotherapy. Study aimed to study the inquisitive role of RNA binding splice factor protein hnRNPA1 in promoting glioma resistance against Temozolomide drug and therapeutic insights. METHODS In this study two non-expressing O6-methylguanine-DNA methyltransferase (MGMT) glioma cell lines U87MG & LN229. U87MG cells were grown in Temozolomide from 50μM upto 400μM & LN229 cells grown upto 200μM, till then both these cells acquired Temozolomide resistance. Both of these cells were grown & maintained continously in its highest dose of Temozolomide (TMZ). Splice factor protein SF2/ASF1 was functionally correlated with abundance of hnRNPA1 protein in Temozolomide (TMZ) resistant cells using its specific siRNA transfection approach, in detrmining SF2/ASF1 mediated hnRNPA1 splicing and Temozolomide resistant reversal. RESULTS U87MG TMZ resistance, results an increase in the expression of pre mRNA-splicing factor SF2/ASF1, Heterogeneous Ribonucleoprotein A1 (hnRNPA1) and O6-methylguanine-DNA methyltransferase (MGMT) protein. MGMT expression was not observed in LN229 TMZ resistant cells. Further, mRNA sequencing of hnRNPA1 confirmed the exclusive abundance of its higher isoform in TMZ- resistant cells along with increase in SF2/ASF1 expression. Knocking down of SF2/ASF1 using its specific siRNA reverted the higher isoform of hnRNPA1 isoform Var2 to its lower isoform hnRNPA1 Var1 in U87 TMZ resistant cells, reveals hnRNPA1 alternative higher isoform abundance is SF2/ASF1 splice factor dependent. Additionally, selective knock down of hnRNPA1 higher isoform Var2 in TMZ resistant U87MG & LN229 promotes apoptosis, was further specfically enhanced on Wortmannin (PI3Kinase inhibitor) treatment. CONCLUSION Targeting higher isoform Var2 of hnRNPA1 specifically induces chemosensitization in MGMT expressed Temozolomide resistant U87MG as well as in MGMT non-expressed LN229 TMZ resistant cells.
Collapse
Affiliation(s)
- Sachin Bhardwaj
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India
| | - Sanjay
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India
| | - Ajay Kumar Yadav
- Molecular Cancer Genetics and Signal Transduction Laboratory, Dr. B.R Ambedkar Center for Biomedical Research, University of Delhi, North Campus, Gate No. 1, Vishwavidyalaya Marg, Mall Road, 44, AH2, Delhi, 110007, India.
| |
Collapse
|
3
|
Yao L, Peng P, Ding T, Yi J, Liang J. m 6A-Induced lncRNA MEG3 Promotes Cerebral Ischemia-Reperfusion Injury Via Modulating Oxidative Stress and Mitochondrial Dysfunction by hnRNPA1/Sirt2 Axis. Mol Neurobiol 2024; 61:6893-6908. [PMID: 38358439 DOI: 10.1007/s12035-024-04005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Ischemic stroke remains one of the major causes of serious disability and death globally. LncRNA maternally expressed gene 3 (MEG3) is elevated in middle cerebral artery occlusion/reperfusion (MCAO/R) rats and oxygen-glucose deprivation/reperfusion (OGD/R)-treated neurocytes cells. The objective of this study is to investigate the mechanism underlying MEG3-regulated cerebral ischemia/reperfusion (I/R) injury. MCAO/R mouse model and OGD/R-treated HT-22 cell model were established. The cerebral I/R injury was monitored by TTC staining, neurological scoring, H&E and TUNEL assay. The levels of MEG3, hnRNPA1, Sirt2 and other key molecules were detected by qRT-PCR and western blot. Mitochondrial dysfunction was assessed by transmission Electron Microscopy (TEM), JC-1 and MitoTracker staining. Oxidative stress was monitored using commercial kits. Bioinformatics analysis, RIP, RNA pull-down assays and RNA FISH were employed to detect the interactions among MEG3, hnRNPA1 and Sirt2. The m6A modification of MEG3 was assessed by MeRIP-qPCR. MEG3 promoted MCAO/R-induced brain injury by modulating mitochondrial fragmentation and oxidative stress. It also facilitated OGD/R-induced apoptosis, mitochondrial dysfunction and oxidative stress in HT-22 cells. Mechanistically, direct associations between MEG3 and hnRNPA1, as well as between hnRNPA1 and Sirt2, were observed in HT-22 cells. MEG3 regulated Sirt2 expression in a hnRNPA1-dependent manner. Functional studies showed that MEG3/Sirt2 axis contributed to OGD/R-induced mitochondrial dysfunction and oxidative stress in HT-22 cells. Additionally, METTL3 was identified as the m6A transferase responsible for the m6A modification of MEG3. m6A-induced lncRNA MEG3 promoted cerebral I/R injury via modulating oxidative stress and mitochondrial dysfunction by hnRNPA1/Sirt2 axis.
Collapse
Affiliation(s)
- Ling Yao
- Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), No.818 Renmin Road, Changde, Hunan Province, 415000, P.R. China
| | - Pei Peng
- Department of Medicine Oncology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, Hunan Province, 415000, P.R. China
| | - Tao Ding
- Department of Neurology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), No.818 Renmin Road, Changde, Hunan Province, 415000, P.R. China
| | - Jing Yi
- Department of Neurology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), No.818 Renmin Road, Changde, Hunan Province, 415000, P.R. China
| | - Ji Liang
- Department of Neurology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), No.818 Renmin Road, Changde, Hunan Province, 415000, P.R. China.
| |
Collapse
|
4
|
Wan XH, Jin GB, Yang Q, Hu JL, Liu ZL, Rao J, Wen C, Li PL, Yang XM, Huang B, Wang XZ. Novel miR-490-3p/hnRNPA1-b/PKM2 axis mediates the Warburg effect and proliferation of colon cancer cells via the PI3K/AKT pathway. World J Gastrointest Oncol 2024; 16:2038-2059. [PMID: 38764836 PMCID: PMC11099460 DOI: 10.4251/wjgo.v16.i5.2038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Heterogeneous ribonucleoprotein A1 (hnRNPA1) has been reported to enhance the Warburg effect and promote colon cancer (CC) cell proliferation, but the role and mechanism of the miR-490-3p/hnRNPA1-b/PKM2 axis in CC have not yet been elucidated.
AIM To investigate the role and mechanism of a novel miR-490-3p/hnRNPA1-b/PKM2 axis in enhancing the Warburg effect and promoting CC cell proliferation through the PI3K/AKT pathway.
METHODS Paraffin-embedded pathological sections from 220 CC patients were collected and subjected to immunohistochemical analysis to determine the expression of hnRNPA1-b. The relationship between the expression values and the clinicopathological features of the patients was investigated. Differences in mRNA expression were analyzed using quantitative real-time polymerase chain reaction, while differences in protein expression were analyzed using western blot. Cell proliferation was evaluated using the cell counting kit-8 and 5-ethynyl-2’-deoxyuridine assays, and cell cycle and apoptosis were detected using flow cytometric assays. The targeted binding of miR-490-3p to hnRNPA1-b was validated using a dual luciferase reporter assay. The Warburg effect was evaluated by glucose uptake and lactic acid production assays.
RESULTS The expression of hnRNPA1-b was significantly increased in CC tissues and cells compared to normal controls (P < 0.05). Immunohistochemical results demonstrated significant variations in the expression of the hnRNPA1-b antigen in different stages of CC, including stage I, II-III, and IV. Furthermore, the clinicopathologic characterization revealed a significant correlation between hnRNPA1-b expression and clinical stage as well as T classification. HnRNPA1-b was found to enhance the Warburg effect through the PI3K/AKT pathway, thereby promoting proliferation of HCT116 and SW620 cells. However, the proliferation of HCT116 and SW620 cells was inhibited when miR-490-3p targeted and bound to hnRNPA1-b, effectively blocking the Warburg effect.
CONCLUSION These findings suggest that the novel miR-490-3p/hnRNPA1-b/PKM2 axis could provide a new strategy for the diagnosis and treatment of CC.
Collapse
Affiliation(s)
- Xiang-Hui Wan
- Jiangxi Medical College, Nanchang University, Nanchang 330029, Jiangxi Province, China
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
- Jiangxi Key Laboratory of Translational Research for Cancer, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Guo-Bing Jin
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Qun Yang
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Ji-Long Hu
- Department of Abdominal Surgery, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Zhi-Liang Liu
- Department of Pathology, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Jun Rao
- Science and Education Section, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Can Wen
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Peng-Ling Li
- Department of Clinical Laboratory, Jiangxi Cancer Hospital, Nanchang 330029, Jiangxi Province, China
| | - Xi-Mei Yang
- Department of Clinical Laboratory, Jiangxi Children’s Hospital, Nanchang 330006, Jiangxi Province, China
| | - Bo Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Zhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
- Jiangxi Province Key Laboratory of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
5
|
Wang Y, Zhang J, Li M, Jia M, Yang L, Wang T, Wang Y, Kang L, Li M, Kong L. Transcriptome and proteomic analysis of mpox virus F3L-expressing cells. Front Cell Infect Microbiol 2024; 14:1354410. [PMID: 38415010 PMCID: PMC10896956 DOI: 10.3389/fcimb.2024.1354410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Background Monkeypox or mpox virus (mpox) is a double-stranded DNA virus that poses a significant threat to global public health security. The F3 protein, encoded by mpox, is an apoenzyme believed to possess a double-stranded RNA-binding domain (dsRBD). However, limited research has been conducted on its function. In this study, we present data on the transcriptomics and proteomics of F3L-transfected HEK293T cells, aiming to enhance our comprehension of F3L. Methods The gene expression profiles of pCAGGS-HA-F3L transfected HEK293T cells were analyzed using RNA-seq. Proteomics was used to identify and study proteins that interact with F3L. Real-time PCR was used to detect mRNA levels of several differentially expressed genes (DEGs) in HEK293T cells (or Vero cells) after the expression of F3 protein. Results A total of 14,822 genes were obtained in cells by RNA-Seq and 1,672 DEGs were identified, including 1,156 up-regulated genes and 516 down-regulated genes. A total of 27 cellular proteins interacting with F3 proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and 19 cellular proteins with large differences in abundance ratios were considered to be candidate cellular proteins. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the DEGs were significantly enriched in immune-related pathways, including type I interferon signaling pathway, response to virus, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, etc. Moreover, some selected DEGs were further confirmed by real-time PCR and the results were consistent with the transcriptome data. Proteomics data show that cellular proteins interacting with F3 proteins are mainly related to RNA splicing and protein translation. Conclusions Our analysis of transcriptomic and proteomic data showed that (1) F3L up-regulates the transcript levels of key genes in the innate immune signaling pathway, such as RIGI, MDA5, IRF5, IRF7, IRF9, ISG15, IFNA14, and elicits a broad spectrum of antiviral immune responses in the host. F3L also increases the expression of the FOS and JNK genes while decreasing the expression of TNFR2, these factors may ultimately induce apoptosis. (2) F3 protein interacts with host proteins involved in RNA splicing and protein translation, such as SNRNP70, POLR2H, HNRNPA1, DDX17, etc. The findings of this study shed light on the function of the F3 protein.
Collapse
Affiliation(s)
- Yihao Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Junzhe Zhang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mingzhi Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Mengle Jia
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingdi Yang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Wang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lumei Kang
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Meifeng Li
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lingbao Kong
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Nanchang City Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|