1
|
Gao C, Luo R, Kwong CHT, Liu J, Tang M, Xie B, Duan T, Wang R. Cancer vaccine from intracellularly gelated tumor cells functionalized with CD47 blockage and damage-associated molecular pattern exposure. Cell Rep Med 2025; 6:102092. [PMID: 40345180 DOI: 10.1016/j.xcrm.2025.102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/04/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
The effectiveness of whole tumor cell vaccines prepared by traditional inactivation methodology is often hindered by insufficient immunogenicity. Here, we report development of a cancer vaccine through the intracellular gelation of tumor cells, combined with CD47 blockade and damage-associated molecular pattern (DAMP) exposure, for effective tumor prevention and treatment. Intracellular hydrogelation preserves the morphology and antigenicity of tumor cells. CD47 blockade and DAMP exposure synergistically enhance the "eat me" signals and inhibit the "don't eat me" signals on tumor cells, significantly improving their immunogenicity. In the context of tumor prevention and treatment of pre-existing tumors, this vaccine polarizes CD4+ T cells toward a TH1 phenotype, reduces regulatory T cells and T cell exhaustion, and elicits a robust tumor-antigen-specific T cell response. When combined with an immune checkpoint inhibitor, this vaccine demonstrates enhanced efficacy in eradicating established tumors. The successful application of this vaccine using ascites and subcutaneous tumor cells supports the feasibility of developing personalized whole tumor cell vaccines for diverse tumor types.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Ruifeng Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Jinwei Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Mian Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Beibei Xie
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China.
| | - Tianshun Duan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China.
| |
Collapse
|
2
|
Zhang C, Wang B, Wang T, Yan C, Yuan J, Li P, Ma B, Wang T, Xu B, Bai R, Tang X, Shi Y, Wu M, Lei T, Xu W, Li N, Guo Y. Role of COL5A1 in lung squamous cell Carcinoma: Prognostic Implications and therapeutic potential. Int Immunopharmacol 2025; 147:113977. [PMID: 39755111 DOI: 10.1016/j.intimp.2024.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/25/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is a significant health concern, characterized by a lack of specific therapies and limited treatment options for patients in advanced stages. This study aims to identify key molecules of prognostic importance in LUSC and provide an experimental foundation for their potential therapeutic applications. METHODS Immune-related transcriptome expression analysis was performed on LUSC samples using the NanoString digital gene analysis system to develop a prognostic transcriptomic signature. This was followed by validation within the LUSC cohort database, and the immune properties and cellular functions of the critical molecule were examined through molecular biology experiments. RESULTS Advanced nCounter analysis revealed significant differences in the numbers of T cells, cytotoxic cells, B cells, and CD45+ and CD8+ T cells between the OS1 (short-term survival) group and the OS2 (long-term survival) group. A comparison of the differences in tumor immune-related pathways between the two groups revealed that signaling pathways such as the PI3K-AKT, NF-kappaB signaling, Notch signaling, angiogenesis, matrix remodeling, and metastasis pathways were activated in the OS1 subgroup, and DNA damage repair and lymphatic chamber signaling pathways were activated in the OS2 subgroup. We analyzed and compared differentially expressed mRNAs with high expression levels in the OS1 and stage IV groups. Collagen type V alpha 1 (COL5A1) was found to be associated with the prognosis of LUSC. Phenotypic analysis revealed that COL5A1 knockdown inhibited the proliferation, migration, and invasion of SKMES1 cells. Locating COL5A1 was shown to be expressed in CAFs, T cells, and EPI cells through single-cell omics analysis. CONCLUSION COL5A1 plays a crucial role in tumor progression, indicating that COL5A1 inhibitors may represent a promising therapeutic strategy for the treatment of LUSC.
Collapse
Affiliation(s)
- Chengjuan Zhang
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China.
| | - Bo Wang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China.
| | - Tingjie Wang
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China.
| | - Chi Yan
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China.
| | - Jing Yuan
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Peng Li
- Department of Infectious Control, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia.
| | - Tao Wang
- The Kids Research Institute Australia, The University of Western Australia, Nedlands, WA, Australia.
| | - Benling Xu
- Department of Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Ruihua Bai
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Xiance Tang
- Department of Medical records, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
| | - Youwei Shi
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Minqing Wu
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Tianqi Lei
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Wenhao Xu
- Center of Bio-Repository, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Ning Li
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Molecular Pathology, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Zang W, Yang Y, Chen J, Mao Q, Xue W, Hu Y. The MIR181A2HG/miR-5680/VCAN-CD44 Axis Regulates Gastric Cancer Lymph Node Metastasis by Promoting M2 Macrophage Polarization. Cancer Med 2025; 14:e70600. [PMID: 39823128 PMCID: PMC11739459 DOI: 10.1002/cam4.70600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Lymphatic metastasis in gastric cancer (GC) profoundly influences its prognosis, but the precise mechanism remains elusive. In this study, we identified the long noncoding RNA MIR181A2HG as being upregulated in GC and associated with LNs metastasis and prognosis. METHODS The expression of MIR181A2HG in GC was identified through bioinformatics screening analysis and qRT-PCR validation. Both in vitro and in vivo functional studies revealed that MIR181A2HG facilitates lymphangiogenesis and lymphatic metastasis. Techniques such as immunofluorescence, immunohistochemistry, qRT-PCR, ELISA, CHIP, RNA-pulldown, luciferase reporter assay, and Co-IP were employed to investigate the mechanism of MIR181A2HG in LNs metastasis of GC. RESULTS MIR181A2HG overexpressed in GC signifies an unfavorable prognosis and drives M2 polarization of TAMs enhancing lymphangiogenesis. Mechanistically, MIR181A2HG/miR-5680 axis as a novel ceRNA regulatory axis to upregulate versican (VCAN). On one hand, VCAN interacts with CD44 receptors on the surface of TAMs through paracrine secretion, promoting M2 macrophage polarization and subsequently enhancing the secretion of VEGF-C, ultimately facilitating lymphangiogenesis. On the other hand, VCAN binds to CD44 receptors on the surface of GC cells through autocrine secretion, activating the Hippo pathway and upregulating SP1, thereby promoting the transcription of MIR181A2HG and establishing a feedback loop driving lymphatic metastasis. CONCLUSION This study highlights the pivotal role of MIR181A2HG in GC progression and LNs metastasis. MIR181A2HG-based targeted therapy would represent a novel strategy for GC.
Collapse
Affiliation(s)
- Weijie Zang
- Department of Gastrointestinal SurgeryAffiliated Hospital and Medical School of Nantong UniversityNantongChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Nantong Key Laboratory of Gastrointestinal OncologyNantongChina
| | - Yongpu Yang
- Department of General SurgeryThe First Affiliated Hospital, Army Medical UniversityChongqingChina
- Department of Graduate SchoolDalian Medical UniversityDalianChina
| | - Junjie Chen
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Nantong Key Laboratory of Gastrointestinal OncologyNantongChina
| | - Qinsheng Mao
- Department of Gastrointestinal SurgeryAffiliated Hospital and Medical School of Nantong UniversityNantongChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Nantong Key Laboratory of Gastrointestinal OncologyNantongChina
| | - Wanjiang Xue
- Department of Gastrointestinal SurgeryAffiliated Hospital and Medical School of Nantong UniversityNantongChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Nantong Key Laboratory of Gastrointestinal OncologyNantongChina
| | - Yilin Hu
- Department of Gastrointestinal SurgeryAffiliated Hospital and Medical School of Nantong UniversityNantongChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
- Nantong Key Laboratory of Gastrointestinal OncologyNantongChina
| |
Collapse
|
4
|
Marolt N, Pavlič R, Kreft T, Gjogorska M, Rižner TL. Targeting estrogen metabolism in high-grade serous ovarian cancer shows promise to overcome platinum resistance. Biomed Pharmacother 2024; 177:117069. [PMID: 38968802 DOI: 10.1016/j.biopha.2024.117069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
The high mortality rate due to chemoresistance in patients with high-grade ovarian cancer (HGSOC) emphasizes the urgent need to determine optimal treatment strategies for advanced and recurrent cases. Our study investigates the interplay between estrogens and chemoresistance in HGSOC and shows clear differences between platinum-sensitive and -resistant tumors. Through comprehensive transcriptome analyzes, we uncover differences in the expression of genes of estrogen biosynthesis, metabolism, transport and action underlying platinum resistance in different tissues of HGSOC subtypes and in six HGSOC cell lines. Furthermore, we identify genes involved in estrogen biosynthesis and metabolism as prognostic biomarkers for HGSOC. Additionally, our study elucidates different patterns of estrogen formation/metabolism and their effects on cell proliferation between six HGSOC cell lines with different platinum sensitivity. These results emphasize the dynamic interplay between estrogens and HGSOC chemoresistance. In particular, targeting the activity of steroid sulfatase (STS) proves to be a promising therapeutic approach with potential efficacy in limiting estrogen-driven cell proliferation. Our study reveals potential prognostic markers as well as identifies novel therapeutic targets that show promise for overcoming resistance and improving treatment outcomes in HGSOC.
Collapse
Affiliation(s)
- Nika Marolt
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Renata Pavlič
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Tinkara Kreft
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Marija Gjogorska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Tea Lanišnik Rižner
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia.
| |
Collapse
|
5
|
Nian Z, Wang D, Wang H, Liu W, Ma Z, Yan J, Cao Y, Li J, Zhao Q, Liu Z. Single-cell RNA-seq reveals the transcriptional program underlying tumor progression and metastasis in neuroblastoma. Front Med 2024; 18:690-707. [PMID: 39014137 DOI: 10.1007/s11684-024-1081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/18/2024] [Indexed: 07/18/2024]
Abstract
Neuroblastoma (NB) is one of the most common childhood malignancies. Sixty percent of patients present with widely disseminated clinical signs at diagnosis and exhibit poor outcomes. However, the molecular mechanisms triggering NB metastasis remain largely uncharacterized. In this study, we generated a transcriptomic atlas of 15 447 NB cells from eight NB samples, including paired samples of primary tumors and bone marrow metastases. We used time-resolved analysis to chart the evolutionary trajectory of NB cells from the primary tumor to the metastases in the same patient and identified a common 'starter' subpopulation that initiates tumor development and metastasis. The 'starter' population exhibited high expression levels of multiple cell cycle-related genes, indicating the important role of cell cycle upregulation in NB tumor progression. In addition, our evolutionary trajectory analysis demonstrated the involvement of partial epithelial-to-mesenchymal transition (p-EMT) along the metastatic route from the primary site to the bone marrow. Our study provides insights into the program driving NB metastasis and presents a signature of metastasis-initiating cells as an independent prognostic indicator and potential therapeutic target to inhibit the initiation of NB metastasis.
Collapse
Affiliation(s)
- Zhe Nian
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hao Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wenxu Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenyi Ma
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jie Yan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yanna Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jie Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Zhe Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Ivancevic A, Simpson DM, Joyner OM, Bagby SM, Nguyen LL, Bitler BG, Pitts TM, Chuong EB. Endogenous retroviruses mediate transcriptional rewiring in response to oncogenic signaling in colorectal cancer. SCIENCE ADVANCES 2024; 10:eado1218. [PMID: 39018396 PMCID: PMC466953 DOI: 10.1126/sciadv.ado1218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/13/2024] [Indexed: 07/19/2024]
Abstract
Cancer cells exhibit rewired transcriptional regulatory networks that promote tumor growth and survival. However, the mechanisms underlying the formation of these pathological networks remain poorly understood. Through a pan-cancer epigenomic analysis, we found that primate-specific endogenous retroviruses (ERVs) are a rich source of enhancers displaying cancer-specific activity. In colorectal cancer and other epithelial tumors, oncogenic MAPK/AP1 signaling drives the activation of enhancers derived from the primate-specific ERV family LTR10. Functional studies in colorectal cancer cells revealed that LTR10 elements regulate tumor-specific expression of multiple genes associated with tumorigenesis, such as ATG12 and XRCC4. Within the human population, individual LTR10 elements exhibit germline and somatic structural variation resulting from a highly mutable internal tandem repeat region, which affects AP1 binding activity. Our findings reveal that ERV-derived enhancers contribute to transcriptional dysregulation in response to oncogenic signaling and shape the evolution of cancer-specific regulatory networks.
Collapse
Affiliation(s)
- Atma Ivancevic
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - David M. Simpson
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Olivia M. Joyner
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lily L. Nguyen
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ben G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward B. Chuong
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
7
|
Li Y, Jiang B, Chen B, Zou Y, Wang Y, Liu Q, Song B, Yu B. Integrative analysis of bulk and single-cell RNA-seq reveals the molecular characterization of the immune microenvironment and oxidative stress signature in melanoma. Heliyon 2024; 10:e28244. [PMID: 38560689 PMCID: PMC10979206 DOI: 10.1016/j.heliyon.2024.e28244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Background The immune microenvironment and oxidative stress of melanoma show significant heterogeneity, which affects tumor growth, invasion and treatment response. Single-cell and bulk RNA-seq data were used to explore the heterogeneity of the immune microenvironment and oxidative stress of melanoma. Methods The R package Seurat facilitated the analysis of the single-cell dataset, while Harmony, another R package, was employed for batch effect correction. Cell types were classified using Uniform Manifold Approximation and Projection (UMAP). The Secreted Signaling algorithm from CellChatDB.human was applied to elucidate cell-to-cell communication patterns within the single-cell data. Consensus clustering analysis for the skin cutaneous melanoma (SKCM) samples was executed with the R package ConsensusClusterPlus. To quantify immune infiltrating cells, we utilized CIBERSORT, ESTIMATE, and TIMERxCell algorithms provided by the R package Immuno-Oncology Biological Research (IOBR). Single nucleotide variant (SNV) analysis was conducted using Maftools, an R package specifically designed for this purpose. Subsequently, the expression levels of PXDN and PAPSS2 genes were assessed in melanoma tissues compared to adjacent normal tissues. Furthermore, in vitro experiments were conducted to evaluate the proliferation and reactive oxygen species expression in melanoma cells following transfection with siRNA targeting PXDN and PAPSS2. Results Malignant tumor cell populations were reclassified based on a comprehensive single-cell dataset analysis, which yielded six distinct tumor subsets. The specific marker genes identified for these subgroups were then used to interrogate the Cancer Genome Atlas Skin Cutaneous Melanoma (TCGA-SKCM) cohort, derived from bulk RNA sequencing data, resulting in the delineation of two immune molecular subtypes. Notably, patients within the cluster2 (C2) subtype exhibited a significantly more favorable prognosis compared to those in the cluster1 (C1) subtype. An alignment of immune characteristics was observed between the C2 subtype and unique immune functional tumor cell subsets. Genes differentially expressed across these subtypes were subsequently leveraged to construct a predictive risk model. In vitro investigations further revealed elevated expression levels of PXDN and PAPSS2 in melanoma tissue samples. Functional assays indicated that modulation of PXDN and PAPSS2 expression could influence the production of reactive oxygen species (ROS) and the proliferative capacity of melanoma cells. Conclusion The constructed six-gene signature can be used as an immune response and an oxidative stress marker to guide the clinical diagnosis and treatment of melanoma.
Collapse
Affiliation(s)
- Yaling Li
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, Guangdong, China
- Department of Dermatology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Bin Jiang
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Bancheng Chen
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yanfen Zou
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yan Wang
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, Guangdong, China
| | - Qian Liu
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, Guangdong, China
| | - Bing Song
- Institute of Biomedical and Health Engineering, Shen Zhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, Guangdong, China
- Department of Dermatology, the First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Bo Yu
- Department of Dermatology, Institute of Dermatology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| |
Collapse
|
8
|
Sun K, Liao S, Yao X, Yao F. USP30 promotes the progression of breast cancer by stabilising Snail. Cancer Gene Ther 2024; 31:472-483. [PMID: 38146008 PMCID: PMC10940155 DOI: 10.1038/s41417-023-00718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
Breast cancer (BC) is the most prevalent tumour in women worldwide. USP30 is a deubiquitinase that has been previously reported to promote tumour progression and lipid synthesis in hepatocellular carcinoma. However, the role of USP30 in breast cancer remains unclear. Therefore, we investigated its biological action and corresponding mechanisms in vitro and in vivo. In our study, we found that USP30 was highly expressed in breast cancer samples and correlated with a poor patient prognosis. Knockdown of USP30 significantly suppressed the proliferation, invasion and migration abilities of BC cells in vitro and tumour growth in vivo, whereas overexpression of USP30 exhibited the opposite effect. Mechanistically, we verified that USP30 interacts with and stabilises Snail to promote its protein expression through deubiquitination by K48-linked polyubiquitin chains and then accelerates the EMT program. More importantly, USP30 reduced the chemosensitivity of BC cells to paclitaxel (PTX). Collectively, these data demonstrate that USP30 promotes the BC cell EMT program by stabilising Snail and attenuating chemosensitivity to PTX and may be a potential therapeutic target in BC.
Collapse
Affiliation(s)
- Kai Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Shichong Liao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Xinrui Yao
- School of Science, University of Sydney, Sydney, Australia
| | - Feng Yao
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China.
| |
Collapse
|
9
|
Yin S, Yu W, Zhou R, Zeng X, Jiang L, Wang Y, Guo D, Tong F, He L, Zhao J, Wang Y. Histone H3Y99sulf regulates hepatocellular carcinoma responding to hypoxia. J Biol Chem 2024; 300:105721. [PMID: 38311175 PMCID: PMC10910123 DOI: 10.1016/j.jbc.2024.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/17/2023] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
Histone H3 tyrosine-99 sulfation (H3Y99sulf) is a recently identified histone mark that can cross-talk with H4R3me2a to regulate gene transcription, but its role in cancer biology is less studied. Here, we report that H3Y99sulf is a cancer-associated histone mark that can mediate hepatocellular carcinoma (HCC) cells responding to hypoxia. Hypoxia-stimulated SNAIL pathway elevates the expression of PAPSS2, which serves as a source of adenosine 3'-phosphate 5'-phos-phosulfate for histone sulfation and results in upregulation of H3Y99sulf. The transcription factor TDRD3 is the downstream effector of H3Y99sulf-H4R3me2a axis in HCC. It reads and co-localizes with the H3Y99sulf-H4R3me2a dual mark in the promoter regions of HIF1A and PDK1 to regulate gene transcription. Depletion of SULT1B1 can effectively reduce the occurrence of H3Y99sulf-H4R3me2a-TDRD3 axis in gene promoter regions and lead to downregulation of targeted gene transcription. Hypoxia-inducible factor 1-alpha and PDK1 are master regulators for hypoxic responses and cancer metabolism. Disruption of the H3Y99sulf-H4R3me2a-TDRD3 axis can inhibit the expression and functions of hypoxia-inducible factor 1-alpha and PDK1, resulting in suppressed proliferation, tumor growth, and survival of HCC cells suffering hypoxia stress. The present study extends the regulatory and functional mechanisms of H3Y99sulf and improves our understanding of its role in cancer biology.
Collapse
Affiliation(s)
- Sibi Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weixing Yu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jining Medical University, Jining, China
| | - Runxin Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dingyuan Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuqiang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Leya He
- Department of Gastrointestinal Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Zhao
- Department of Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yugang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Fan J, Zhang Z, Chen H, Chen D, Yuan W, Li J, Zeng Y, Zhou S, Zhang S, Zhang G, Xiong J, Zhou L, Xu J, Liu W, Xu Y. Zinc finger protein 831 promotes apoptosis and enhances chemosensitivity in breast cancer by acting as a novel transcriptional repressor targeting the STAT3/Bcl2 signaling pathway. Genes Dis 2024; 11:430-448. [PMID: 37588209 PMCID: PMC10425751 DOI: 10.1016/j.gendis.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/30/2022] Open
Abstract
Emerging evidence suggested that zinc finger protein 831 (ZNF831) was associated with immune activity and stem cell regulation in breast cancer. Whereas, the roles and molecular mechanisms of ZNF831 in oncogenesis remain unclear. ZNF831 expression was significantly diminished in breast cancer which was associated with promoter CpG methylation but not mutation. Ectopic over-expression of ZNF831 suppressed breast cancer cell proliferation and colony formation and promoted apoptosis in vitro, while knockdown of ZNF831 resulted in an opposite phenotype. Anti-proliferation effect of ZNF831 was verified in vivo. Bioinformatic analysis of public databases and transcriptome sequencing both showed that ZNF831 could enhance apoptosis through transcriptional regulation of the JAK/STAT pathway. ChIP and luciferase report assays demonstrated that ZNF831 could directly bind to one specific region of STAT3 promoter and induce the transcriptional inhibition of STAT3. As a result, the attenuation of STAT3 led to a restraint of the transcription of Bcl2 and thus accelerated the apoptotic progression. Augmentation of STAT3 diminished the apoptosis-promoting effect of ZNF831 in breast cancer cell lines. Furthermore, ZNF831 could ameliorate the anti-proliferation effect of capecitabine and gemcitabine in breast cancer cell lines. Our findings demonstrate for the first time that ZNF831 is a novel transcriptional suppressor through inhibiting the expression of STAT3/Bcl2 and promoting the apoptosis process in breast cancer, suggesting ZNF831 as a novel biomarker and potential therapeutic target for breast cancer patients.
Collapse
Affiliation(s)
- Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Hongqiang Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dongjiao Chen
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Anesthesia and Intensive Care, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Wenbo Yuan
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Jingzhi Li
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yong Zeng
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shimeng Zhou
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shu Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Gang Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Jiashen Xiong
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Lu Zhou
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Jing Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| | - Wenbin Liu
- Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
- Department of Environmental Health, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yan Xu
- Department of Breast and Thyroid Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, China
| |
Collapse
|
11
|
Tan L, Solis-Sainz JC. Monochasma Savatieri Aqueous Extract inhibits Human Breast Cancer Cell Line Migration and Adhesion Without Generating Toxicity. Anticancer Agents Med Chem 2024; 24:982-989. [PMID: 38629374 DOI: 10.2174/0118715206287870240408031843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Monochasma savatieri, is a rare and endangered plant used to treat cancer in Chinese traditional medicine. OBJECTIVE To evaluate the anti-cancer activity of M. savatieri aqueous extract by determining its cytotoxicity, anti-migratory, and anti-adhesion effects on breast cancer cells. METHODS Cell viability, migration, adhesion, circularity, and cell cycle were evaluated by crystal violet (CV) staining, wound-healing, and transwell assays and flow cytometry in MCF7 and MDA-MB-231 cells. Caveolin-1, snail, vimentin and activated Erk and Akt expression were determined by western blot in MDA-MB-231 cells. Immunofluorescent assays confirmed caveolin-1 expression in MDA-MB-231 cells. RESULTS Survival and cell cycle of MCF7 and MDA-MB-231 cells were not modified by doses up to 500 μg/mL of the extract. The extract inhibited cell migration and adhesion of MDA-MB-231 cells. When cells were exposed to the extract, there was a slight decrease in protein expression of factors related to epithelial-to-mesenchymal transition (snail and vimentin) and a strong decrease in the expression of the oncogenic membrane protein caveolin- 1. Furthermore, the levels of phosphorylated Erk and Akt were also decreased. The content of acteoside, a phenylpropanoid glycoside with reported anti-cancer activity present in M. savatieri, was almost 5 times as much as isoacteoside. CONCLUSION M. savatieri possesses anti-cancer activity without exerting cytotoxicity on breast cancer cells. The extract exhibited anti-migratory and anti-adhesion effects on breast cancer cells by regulating Erk and Akt signaling pathways and the expression of caveolin-1. In addition, acteoside present in M. savatieri could be responsible for the observed effects.
Collapse
Affiliation(s)
- Lin Tan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, 571101, China
| | - Juan C Solis-Sainz
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou Hainan, 571101, China
- Department of Biomedical Research, School of Medicine, Autonomous University of Queretaro, Queretaro Qro, 76170, Mexico
| |
Collapse
|
12
|
Beaumont JEJ, Ju J, Barbeau LMO, Demers I, Savelkouls KG, Derks K, Bouwman FG, Wauben MHM, Zonneveld MI, Keulers TGH, Rouschop KMA. GABARAPL1 is essential in extracellular vesicle cargo loading and metastasis development. Radiother Oncol 2024; 190:109968. [PMID: 37898438 DOI: 10.1016/j.radonc.2023.109968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/04/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND AND PURPOSE Hypoxia is a common feature of tumours, associated with poor prognosis due to increased resistance to radio- and chemotherapy and enhanced metastasis development. Previously we demonstrated that GABARAPL1 is required for the secretion of extracellular vesicles (EV) with pro-angiogenic properties during hypoxia. Here, we explored the role of GABARAPL1+ EV in the metastatic cascade. MATERIALS AND METHODS GABARAPL1 deficient or control MDA-MB-231 cells were injected in murine mammary fat pads. Lungs were dissected and analysed for human cytokeratin 18. EV from control and GABARAPL1 deficient cells exposed to normoxia (21% O2) or hypoxia (O2 < 0.02%) were isolated and analysed by immunoblot, nanoparticle tracking analysis, high resolution flow cytometry, mass spectrometry and next-generation sequencing. Cellular migration and invasion were analysed using scratch assays and transwell-invasion assays, respectively. RESULTS The number of pulmonary metastases derived from GABARAPL1 deficient tumours decreased by 84%. GABARAPL1 deficient cells migrate slower but display a comparable invasive capacity. Both normoxic and hypoxic EV contain proteins and miRNAs associated with metastasis development and, in line, increase cancer cell invasiveness. Although GABARAPL1 deficiency alters EV content, it does not alter the EV-induced increase in cancer cell invasiveness. CONCLUSION GABARAPL1 is essential for metastasis development. This is unrelated to changes in migration and invasion and suggests that GABARAPL1 or GABARAPL1+ EV are essential in other processes related to the metastatic cascade.
Collapse
Affiliation(s)
- Joel E J Beaumont
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jinzhe Ju
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lydie M O Barbeau
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Imke Demers
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands; Department of Pathology, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kim G Savelkouls
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kasper Derks
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Freek G Bouwman
- Department of Human Biology, NUTRIM - School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marca H M Wauben
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marijke I Zonneveld
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tom G H Keulers
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kasper M A Rouschop
- Department of Radiotherapy, GROW - School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| |
Collapse
|
13
|
Qin E, Gu S, Guo Y, Wang L, Pu G. MiRNA-30a-5p/VCAN Arrests Tumor Metastasis via Modulating the Adhesion of Lung Adenocarcinoma Cells. Appl Biochem Biotechnol 2023; 195:7568-7582. [PMID: 37032373 DOI: 10.1007/s12010-023-04444-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/11/2023]
Abstract
Previous research indicated that the dysregulation of miRNA-30a-5p has a correlation with cell metastasis of lung adenocarcinoma (LUAD). But the study about the molecular regulatory mechanism of miRNA-30a-5p in LUAD cell metastasis is limited. Thus, we discussed the mechanism of miRNA-30a-5p and its biological function in LUAD cells. By utilizing bioinformatics analysis, how miRNA-30a-5p was expressed in LUAD tissue was determined and its downstream target genes were predicted. The signaling pathways where these target genes enriched were analyzed. Several in vitro experiments were applied for cell function detection: dual-luciferase assay for validating the targeting relationship between miRNA-30a-5p and its target gene; quantitative real-time polymerase chain reaction for testing the expression of miRNA-30a-5p and its target gene in LUAD cells; MTT, transwell, cell adhesion, flow cytometry and immunofluorescence assays for examining the capabilities of LUAD cells to proliferate, migrate, invade, adhere, apoptosis and epithelial-mesenchymal transition (EMT) effect; Western blot for determining the expression of adhesion-related proteins and EMT-related proteins. Down-regulated miRNA-30a-5p was discovered in LUAD cells, but on the contrary, VCAN was upregulated. MiRNA-30a-5p overexpression notably repressed the virulent progression of LUAD cells. Besides, dual-luciferase assay validated the targeting relationship between miRNA-30a-5p and VCAN. MiRNA-30a-5p, by negatively regulating VCAN, was capable of hindering LUAD cell proliferation, migration, invasion, adhesion, viability and EMT. It was illustrated that miRNA-30a-5p could downregulate VCAN to retard the malignant progression of LUAD cells, which provides novel insights into LUAD pathogenesis, suggesting that miRNA-30a-5p/VCAN axis can be a promising anti-cancer target for LUAD.
Collapse
Affiliation(s)
- E Qin
- Department of Respiratory Medicine, Yuecheng District, Shaoxing People's Hospital (Shaoxing Hospital), Zhejiang University School of Medicine, 568 Zhongxing North Road, Shaoxing City, 312000, Zhejiang Province, China
| | - Shuojia Gu
- Department of Respiratory Medicine, Yuecheng District, Shaoxing People's Hospital (Shaoxing Hospital), Zhejiang University School of Medicine, 568 Zhongxing North Road, Shaoxing City, 312000, Zhejiang Province, China
| | - Yimin Guo
- Department of Respiratory Medicine, Yuecheng District, Shaoxing People's Hospital (Shaoxing Hospital), Zhejiang University School of Medicine, 568 Zhongxing North Road, Shaoxing City, 312000, Zhejiang Province, China
| | - Liyan Wang
- Department of Integrated Traditional Chinese and Western Medicine & Geriatrics, Shaoxing People's Hospital (Shaoxing Hospital), Zhejiang University School of Medicine, Shaoxing City, 312000, Zhejiang Province, China
| | - Guimei Pu
- Department of Respiratory Medicine, Yuecheng District, Shaoxing People's Hospital (Shaoxing Hospital), Zhejiang University School of Medicine, 568 Zhongxing North Road, Shaoxing City, 312000, Zhejiang Province, China.
| |
Collapse
|
14
|
Xu P, Cai X, Guan X, Xie W. Sulfoconjugation of protein peptides and glycoproteins in physiology and diseases. Pharmacol Ther 2023; 251:108540. [PMID: 37777160 PMCID: PMC10842354 DOI: 10.1016/j.pharmthera.2023.108540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Protein sulfoconjugation, or sulfation, represents a critical post-translational modification (PTM) process that involves the attachment of sulfate groups to various positions of substrates within the protein peptides or glycoproteins. This process plays a dynamic and complex role in many physiological and pathological processes. Here, we summarize the importance of sulfation in the fields of oncology, virology, drug-induced liver injury (DILI), inflammatory bowel disease (IBD), and atherosclerosis. In oncology, sulfation is involved in tumor initiation, progression, and migration. In virology, sulfation influences viral entry, replication, and host immune response. In DILI, sulfation is associated with the incidence of DILI, where altered sulfation affects drug metabolism and toxicity. In IBD, dysregulation of sulfation compromises mucosal barrier and immune response. In atherosclerosis, sulfation influences the development of atherosclerosis by modulating the accumulation of lipoprotein, and the inflammation, proliferation, and migration of smooth muscle cells. The current review underscores the importance of further research to unravel the underlying mechanisms and therapeutic potential of targeting sulfoconjugation in various diseases. A better understanding of sulfation could facilitate the emergence of innovative diagnostic or therapeutic strategies.
Collapse
Affiliation(s)
- Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China
| | - Xinran Cai
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
15
|
Luo Y, Zhu Q, Xiang S, Wang Q, Li J, Chen X, Yan W, Feng J, Zu X. Downregulated circPOKE promotes breast cancer metastasis through activation of the USP10-Snail axis. Oncogene 2023; 42:3236-3251. [PMID: 37717099 DOI: 10.1038/s41388-023-02823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer-related death among females. Metastasis accounts for the majority of BC related deaths. One feasible strategy to solve this challenging problem is to disrupt the capabilities required for tumor metastasis. Herein, we verified a novel metastasis suppressive circRNA, circPOKE in BC. circPOKE was downregulated in primary and metastatic BC tissues and overexpression of circPOKE inhibited the metastatic potential but not the proliferative ability of BC cells in vitro and in vivo. Mechanistically, circPOKE competitively binds to USP10, and reduces its binding to Snail, a key transcriptional regulator of EMT, thereby inhibiting Snail stability via the protein-ubiquitination degradation pathway. In addition, we found that circPOKE could be secreted into the extracellular space via exosomes and that exosome-carried circPOKE significantly inhibited the invasive capabilities of BC cells in vitro and in vivo. Furthermore, the levels of circPOKE, USP10 and Snail are clinically relevant in BC, suggesting that circPOKE may be used as a potential therapeutic target for patients with BC metastasis.
Collapse
Affiliation(s)
- Yan Luo
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Qingyun Zhu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Shasha Xiang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Qi Wang
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jun Li
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Xiguang Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Wen Yan
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Jianbo Feng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
16
|
Li P, Zhang D, Liao C, Lin G, Wang Q, Du X. Construction and validation of a metabolism-related prognostic model for thyroid cancer. Am J Otolaryngol 2023; 44:103943. [PMID: 37331127 DOI: 10.1016/j.amjoto.2023.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/03/2023] [Indexed: 06/20/2023]
Abstract
Metabolic reprogramming is a common pathological process of cancer. Expression of metabolism-related genes differs in thyroid cancer (TC) patients with different prognoses. This work committed to constructing a prognostic model for TC through identifying metabolism-related signatures. Expression profiles of mRNAs and clinical data of TC, were acquired from The Cancer Genome Atlas. Differential analysis was performed on mRNA expression profiles. The obtained differentially expressed genes (DEGs) were overlapped with metabolism-related genes from MSigDB database to acquire metabolism-related DEGs. Cox regression and Least Absolute Shrinkage and Selection Operator analyses were performed to ascertain feature genes and to build a prognostic model for TC. The model was evaluated comprehensively through survival curve, time-dependent receiver operating characteristic (ROC) curve, gene set enrichment analysis (GSEA), and Cox regression analyses combining varying clinical information. 7 key genes related to metabolism, including AWAT2, GGT6, ENTPD1, PAPSS2, CYP26A, ACY3 and PLA2G10, were identified, based on which a prognostic model was constructed. The survival analysis indicated that high-risk group presented shorter survival time than low-risk group. ROC curve results exhibited that AUC values of 3-year and 5-year survival of TC patients were both >0.70. Besides, GSEA on high/low-risk groups revealed that DEGs were mainly gathered in biological functions and signaling pathways linked with keratan sulfate catabolism and triglyceride catabolism. Combined with clinical information, Cox regression analyses unveiled that the 7-gene prognostic model can be an independent predictor. In conclusion, this model can effectively predict prognoses of TC patients, and also offer guidance for clinical treatment of TC.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Thyroid and Breast Surgery, Longyan First Hospital Affiliated to Fujian Medical University, China
| | - Dejie Zhang
- Department of Thyroid and Breast Surgery, Longyan First Hospital Affiliated to Fujian Medical University, China
| | - Chuntao Liao
- Department of Thyroid and Breast Surgery, Longyan First Hospital Affiliated to Fujian Medical University, China
| | - Guoliang Lin
- Department of Thyroid and Breast Surgery, Longyan First Hospital Affiliated to Fujian Medical University, China
| | - Qicai Wang
- Department of Thyroid and Breast Surgery, Longyan First Hospital Affiliated to Fujian Medical University, China
| | - Xinjie Du
- Department of Thyroid and Breast Surgery, Longyan First Hospital Affiliated to Fujian Medical University, China.
| |
Collapse
|
17
|
Ping Q, Wang C, Cheng X, Zhong Y, Yan R, Yang M, Shi Y, Li X, Li X, Huang W, Wang L, Bi X, Hu L, Yang Y, Wang Y, Gong R, Tan J, Li R, Li H, Li J, Wang W, Li R. TGF-β1 dominates stromal fibroblast-mediated EMT via the FAP/VCAN axis in bladder cancer cells. J Transl Med 2023; 21:475. [PMID: 37461061 PMCID: PMC10351189 DOI: 10.1186/s12967-023-04303-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/24/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Bladder cancer is one of the most common malignant tumors of the urinary system and is associated with a poor prognosis once invasion and distant metastases occur. Epithelial-mesenchymal transition (EMT) drives metastasis and invasion in bladder cancer. Transforming growth factor β1 (TGF-β1) and stromal fibroblasts, especially cancer-associated fibroblasts (CAFs), are positive regulators of EMT in bladder cancer. However, it remains unclear how TGF-β1 mediates crosstalk between bladder cancer cells and CAFs and how it induces stromal fibroblast-mediated EMT in bladder cancer. We aimed to investigate the mechanism of TGF-β1 regulation of stromal fibroblast-mediated EMT in bladder cancer cells. METHODS Primary CAFs with high expression of fibroblast activation protein (FAP) were isolated from bladder cancer tissue samples. Subsequently, different conditioned media were used to stimulate the bladder cancer cell line T24 in a co-culture system. Gene set enrichment analysis, a human cytokine antibody array, and cytological assays were performed to investigate the mechanism of TGF-β1 regulation of stromal fibroblast-mediated EMT in bladder cancer cells. RESULTS Among the TGF-β family, TGF-β1 was the most highly expressed factor in bladder cancer tissue and primary stromal fibroblast supernatant. In the tumor microenvironment, TGF-β1 was mainly derived from stromal fibroblasts, especially CAFs. In stimulated bladder cells, stromal fibroblast-derived TGF-β1 promoted bladder cancer cell migration, invasion, and EMT. Furthermore, TGF-β1 promoted the activation of stromal fibroblasts, inducing CAF-like features, by upregulating FAP in primary normal fibroblasts and a normal fibroblast cell line. Stromal fibroblast-mediated EMT was induced in bladder cancer cells by TGF-β1/FAP. Versican (VCAN), a downstream molecule of FAP, plays an essential role in TGF-β1/FAP axis-induced EMT in bladder cancer cells. VCAN may also function through the PI3K/AKT1 signaling pathway. CONCLUSIONS TGF-β1 is a critical mediator of crosstalk between stromal fibroblasts and bladder cancer cells. We revealed a new mechanism whereby TGF-β1 dominated stromal fibroblast-mediated EMT of bladder cancer cells via the FAP/VCAN axis and identified potential biomarkers (FAP, VCAN, N-cadherin, and Vimentin) of bladder cancer. These results enhance our understanding of bladder cancer invasion and metastasis and provide potential strategies for diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Qinrong Ping
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, 650051, China
| | - Chunhui Wang
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, 650051, China
| | - Xin Cheng
- Kunming Medical University, Kunming, 650051, China
| | - Yiming Zhong
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Ruping Yan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Meng Yang
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Yunqiang Shi
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Xiangmeng Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - Xiao Li
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, 650051, China
| | - Wenwen Huang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, 650051, China
- Department of Pathology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Liqiong Wang
- Department of Pathology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Xiaofang Bi
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Libing Hu
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Yang Yang
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Yingbao Wang
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Rui Gong
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Jun Tan
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Rui Li
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Hui Li
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Jian Li
- Department of Urology, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China
| | - Wenju Wang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, 650051, China.
| | - Ruhong Li
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Provincial, Kunming, 650051, China.
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650051, China.
| |
Collapse
|
18
|
Zhang L, Song W, Li T, Mu Y, Zhang P, Hu J, Lin H, Zhang J, Gao H, Zhang L. Redox switching mechanism of the adenosine 5'-phosphosulfate kinase domain (APSK2) of human PAPS synthase 2. Structure 2023; 31:826-835.e3. [PMID: 37207644 DOI: 10.1016/j.str.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023]
Abstract
Adenosine 5'-phosphosulfate kinase (APSK) catalyzes the rate-limiting biosynthetic step of the universal sulfuryl donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS). In higher eukaryotes, the APSK and ATP sulfurylase (ATPS) domains are fused in a single chain. Humans have two bifunctional PAPS synthetase isoforms: PAPSS1 with the APSK1 domain and PAPSS2 containing the APSK2 domain. APSK2 displays a distinct higher activity for PAPSS2-mediated PAPS biosynthesis during tumorigenesis. How APSK2 achieves excess PAPS production has remained unclear. APSK1 and APSK2 lack the conventional redox-regulatory element present in plant PAPSS homologs. Here we elucidate the dynamic substrate recognition mechanism of APSK2. We discover that APSK1 contains a species-specific Cys-Cys redox-regulatory element that APSK2 lacks. The absence of this element in APSK2 enhances its enzymatic activity for excess PAPS production and promotes cancer development. Our results help to understand the roles of human PAPSSs during cell development and may facilitate PAPSS2-specific drug discovery.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenyan Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Li
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yajuan Mu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Pan Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyan Hu
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Houwen Lin
- Research Centre for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jian Zhang
- Medicinal Bioinformatics Center, Shanghai JiaoTong University School of Medicine, Shanghai China
| | - Hai Gao
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
19
|
Zou X, Ma L, Zhang Y, Zhang Q, Xu C, Zhang D, Chu Y, Zhang J, Li M, Zhang H, Wang J, Peng C, Wei G, Wu Y, Hou Z, Jia H. GATA zinc finger protein p66β promotes breast cancer cell migration by acting as a co-activator of Snail. Cell Death Dis 2023; 14:382. [PMID: 37380643 DOI: 10.1038/s41419-023-05887-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
The transcriptional repressor Snail induces EMT during embryonic development and tumor metastasis. Growing evidence indicates that Snail functions as a trans-activator to induce gene expression; however, the underlying mechanism remains elusive. Here, we report that Snail cooperates with GATA zinc finger protein p66β to transactivate genes in breast cancer cells. Biologically, depletion of p66β reduces cell migration and lung metastasis in BALB/c mice. Mechanistically, Snail interacts with p66β and cooperatively induces gene transcription. Notably, a group of genes induced by Snail harbor conserved G-rich cis-elements (5'-GGGAGG-3', designated as G-box) in their proximal promoter regions. Snail directly binds to G-box via its zinc fingers and transactivates the G-box-containing promoters. p66β enhances Snail binding affinity to G-box, whereas depletion of p66β results in a decreased binding affinity of Snail to the endogenous promoters and concomitantly reduces the transcription of Snail-induced genes. Taken together, these data demonstrated that p66β is critical for Snail-mediated cell migration by acting as a co-activator of Snail to induce genes containing G-box elements in the promoters.
Collapse
Affiliation(s)
- Xiuqun Zou
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Ma
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute of Computational Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Yihong Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qun Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chu Xu
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dan Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yimin Chu
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mengying Li
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamin Wang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chicheng Peng
- Naruiboen Biomedical Technology Corporation Limited, Linyi, Shandong, China
| | - Gang Wei
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute of Computational Biology, Shanghai Institute for Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingjie Wu
- Shandong Provincial Hospital, Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai, China.
- Linyi University-Shanghai Jiaotong University Joint Institute of Translational Medicine, Linyi, Shandong, China.
| | - Hao Jia
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Shen K, Ke S, Chen B, Zhang T, Wang H, Lv J, Gao W. Identification and validation of biomarkers for epithelial-mesenchymal transition-related cells to estimate the prognosis and immune microenvironment in primary gastric cancer by the integrated analysis of single-cell and bulk RNA sequencing data. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:13798-13823. [PMID: 37679111 DOI: 10.3934/mbe.2023614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) is associated with gastric cancer (GC) progression and immune microenvironment. To better understand the heterogeneity underlying EMT, we integrated single-cell RNA-sequencing (scRNA-seq) data and bulk sequencing data from GC patients to evaluate the prognostic utility of biomarkers for EMT-related cells (ERCs), namely, cancer-associated fibroblasts (CAFs) and epithelial cells (ECs). METHODS scRNA-seq data from primary GC tumor samples were obtained from the Gene Expression Omnibus (GEO) database to identify ERC marker genes. Bulk GC datasets from the Cancer Genome Atlas (TCGA) and GEO were used as training and validation sets, respectively. Differentially expressed markers were identified from the TCGA database. Univariate Cox, least-absolute shrinkage, and selection operator regression analyses were performed to identify EMT-related cell-prognostic genes (ERCPGs). Kaplan-Meier, Cox regression, and receiver-operating characteristic (ROC) curve analyses were adopted to evaluate the prognostic utility of the ERCPG signature. An ERCPG-based nomogram was constructed by integrating independent prognostic factors. Finally, we evaluated the correlations between the ERCPG signature and immune-cell infiltration and verified the expression of ERCPG prognostic signature genes by in vitro cellular assays. RESULTS The ERCPG signature was comprised of seven genes (COL4A1, F2R, MMP11, CAV1, VCAN, FKBP10, and APOD). Patients were divided into high- and low-risk groups based on the ERCPG risk scores. Patients in the high-risk group showed a poor prognosis. ROC and calibration curves suggested that the ERCPG signature and nomogram had a good prognostic utility. An immune cell-infiltration analysis suggested that the abnormal expression of ERCPGs induced the formation of an unfavorable tumor immune microenvironment. In vitro cellular assays showed that ERCPGs were more abundantly expressed in GC cell lines compared to normal gastric tissue cell lines. CONCLUSIONS We constructed and validated an ERCPG signature using scRNA-seq and bulk sequencing data from ERCs of GC patients. Our findings support the estimation of patient prognosis and tumor treatment in future clinical practice.
Collapse
Affiliation(s)
- Kaiyu Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuaiyi Ke
- Department of Internal Medicine, XianJu People's Hospital, XianJu 317399, China
| | - Binyu Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Tiantian Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongtai Wang
- Department of General Surgery, XianJu People' Hospital, XianJu 317399, China
| | - Jianhui Lv
- Department of General Surgery, XianJu People' Hospital, XianJu 317399, China
| | - Wencang Gao
- Department of Oncology, Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
21
|
Zhang D, Zhang Y, Zou X, Li M, Zhang H, Du Y, Wang J, Peng C, Dong C, Hou Z. CHST2-mediated sulfation of MECA79 antigens is critical for breast cancer cell migration and metastasis. Cell Death Dis 2023; 14:288. [PMID: 37095090 PMCID: PMC10126008 DOI: 10.1038/s41419-023-05797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Snail is a denoted transcriptional repressor that plays key roles in epithelial-mesenchymal transition (EMT) and metastasis. Lately, a plethora of genes can be induced by stable expression of Snail in multiple cell lines. However, the biological roles of these upregulated genes are largely elusive. Here, we report identification of a gene encoding the key GlcNAc sulfation enzyme CHST2 is induced by Snail in multiple breast cancer cells. Biologically, CHST2 depletion results in inhibition of breast cancer cell migration and metastasis, while overexpression of CHST2 promotes cell migration and lung metastasis in nude mice. In addition, the expression level of MECA79 antigen is elevated and blocking the cell surface MECA79 antigen with specific antibodies can override cell migration mediated by CHST2 upregulation. Moreover, the sulfation inhibitor sodium chlorate effectively inhibits the cell migration induced by CHST2. Collectively, these data provide novel insights into the biology of Snail/CHST2/MECA79 axis in breast cancer progression and metastasis as well as potential therapeutic strategy for the diagnosis and treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Dan Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yihong Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiuqun Zou
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mengying Li
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui Zhang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaning Du
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamin Wang
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chicheng Peng
- Shandong NARUI Biotechnology Co., LTD, Shandong, China
| | - Chunyan Dong
- Breast Cancer Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Jiang Y, Yang J, Liang R, Zan X, Fan R, Shan B, Liu H, Li L, Wang Y, Wu M, Qi X, Chen H, Ren Q, Liu Z, Wang Y, Zhang J, Zhou P, Li Q, Tian M, Yang J, Wang C, Li X, Jiang S, Zhou L, Zhang G, Chen Y, Xu J. Single-cell RNA sequencing highlights intratumor heterogeneity and intercellular network featured in adamantinomatous craniopharyngioma. SCIENCE ADVANCES 2023; 9:eadc8933. [PMID: 37043580 PMCID: PMC10096597 DOI: 10.1126/sciadv.adc8933] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Despite improvements in microscopically neurosurgical techniques made in recent years, the prognosis of adamantinomatous craniopharyngioma (ACP) is still unsatisfactory. Little is known about cellular atlas and biological features of ACP. Here, we carried out integrative analysis of 44,038 single-cell transcriptome profiles to characterize the landscape of intratumoral heterogeneity and tumor microenvironment (TME) in ACP. Four major neoplastic cell states with distinctive expression signatures were defined, which further revealed the histopathological features and elucidated unknown cellular atlas of ACP. Pseudotime analyses suggested potential evolutionary trajectories between specific neoplastic cell states. Notably, a distinct oligodendrocyte lineage was identified in ACP, which was associated with immunological infiltration and neural damage. In addition, we described a tumor-centric regulatory network based on intercellular communication in TME. Together, our findings represent a unique resource for deciphering tumor heterogeneity of ACP, which will improve clinical diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinlong Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruichao Liang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Zan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Baoyin Shan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250000, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Qi
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongxu Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingqing Ren
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuelong Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peizhi Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Tian
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinhao Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chaoyang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xueying Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, 999077, Hong Kong
| | - Yaohui Chen
- Department of Thoracic Surgery/Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
23
|
Chen J, Xu W, Song K, Da LT, Zhang X, Lin M, Hong X, Zhang S, Guo F. Legumain inhibitor prevents breast cancer bone metastasis by attenuating osteoclast differentiation and function. Bone 2023; 169:116680. [PMID: 36702335 DOI: 10.1016/j.bone.2023.116680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Breast cancer is the main lethal disease among females, and metastasis to lung and bone poses a serious threat to patients' life. Therefore, identification of novel molecular mediators that can potentially be exploited as therapeutic targets for treating osteolytic bone metastases is needed. A murine model of breast cancer bone metastasis was developed by injection of 4 T1.2 cells into the left ventricle and hence directly into the arterial system leading to bone. AEP (Asparagine endopeptidase) inhibitor combined with epirubicin or epirubicin alone was administered by intraperitoneal injection into animal model. The presence of bone metastatic and osteolytic lesions in bone were assessed by bioluminescent imaging and X-rays analysis. The expression of EMT (Epithelial-Mesenchymal Transition) relevant genes were examined by Western blotting. Cell migration and invasion were investigated with a transwell assay. Compound BIC-113, small molecule inhibitors of AEP, inhibited AEP enzymatic activity in breast cancer cell lines, and affected invasion and migration of cancer cells, but had no effect on cell growth. In animal model of breast cancer bone metastasis, compound BIC-113 combined with epirubicin inhibited breast cancer bone metastasis and attenuated breast cancer osteolytic lesions in bone by inhibiting osteoclast differentiation and EMT. These results indicate that compound BIC-113 combined with epirubicin has the potential to be used in breast cancer therapy by preventing bone metastasis via improving E-cadherin expression and inhibition of osteoclast formation.
Collapse
Affiliation(s)
- Junsong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenke Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Mengyao Lin
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaowu Hong
- Department of Immunology, School of basic medical sciences, Fudan University, No.138, Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Chazhong Road, Fuzhou 350000, China.
| | - Fang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
24
|
Li K, Huo Q, Li BY, Yokota H. Three unconventional maxims in the natural selection of cancer cells: Generation of induced tumor-suppressing cells (iTSCs). Int J Biol Sci 2023; 19:1403-1412. [PMID: 37056934 PMCID: PMC10086743 DOI: 10.7150/ijbs.79155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Induced tumor-suppressing cells (iTSCs) can be generated from cancer and non-cancer cells. Here, three paradoxical maxims for the action of iTSCs are reviewed: the secretion of tumor-suppressing proteins, their role as a "double-edged" sword, and the elimination of lesser-fit cancer cells. "Super-fit" cancer cells secrete an array of proteins, most of which contribute to enhancing their growth and removing "lesser-fit" cancer cells. These maxims explain the potential dilemma with therapeutic agents since the inhibitory agents tend to promote the synthesis of tumor-promoting proteins. The maxims suggest the possibility of a novel treatment option using cancer-guided evolutionary-fit iTSCs.
Collapse
Affiliation(s)
- Kexin Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Qingji Huo
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
25
|
Du Q, Zhou R, Wang H, Li Q, Yan Q, Dang W, Guo J. A metabolism-related gene signature for predicting the prognosis in thyroid carcinoma. Front Genet 2023; 13:972950. [PMID: 36685893 PMCID: PMC9846547 DOI: 10.3389/fgene.2022.972950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/23/2022] [Indexed: 01/06/2023] Open
Abstract
Metabolic reprogramming is one of the cancer hallmarks, important for the survival of malignant cells. We investigated the prognostic value of genes associated with metabolism in thyroid carcinoma (THCA). A prognostic risk model of metabolism-related genes (MRGs) was built and tested based on datasets in The Cancer Genome Atlas (TCGA), with univariate Cox regression analysis, LASSO, and multivariate Cox regression analysis. We used Kaplan-Meier (KM) curves, time-dependent receiver operating characteristic curves (ROC), a nomogram, concordance index (C-index) and restricted mean survival (RMS) to assess the performance of the risk model, indicating the splendid predictive performance. We established a three-gene risk model related to metabolism, consisting of PAPSS2, ITPKA, and CYP1A1. The correlation analysis in patients with different risk statuses involved immune infiltration, mutation and therapeutic reaction. We also performed pan-cancer analyses of model genes to predict the mutational value in various cancers. Our metabolism-related risk model had a powerful predictive capability in the prognosis of THCA. This research will provide the fundamental data for further development of prognostic markers and individualized therapy in THCA.
Collapse
Affiliation(s)
- Qiujing Du
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Ruhao Zhou
- Department of Orthopedics, Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Heng Wang
- Department of Vascular Surgery, Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Qian Li
- Basic Medical College, Shanxi Medical University, Jinzhong, China
| | - Qi Yan
- Department of Endocrinology, Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Wenjiao Dang
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Jianjin Guo
- Department of General Medicine, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China,*Correspondence: Jianjin Guo,
| |
Collapse
|
26
|
Hua SH, Viera M, Yip GW, Bay BH. Theranostic Applications of Glycosaminoglycans in Metastatic Renal Cell Carcinoma. Cancers (Basel) 2022; 15:cancers15010266. [PMID: 36612261 PMCID: PMC9818616 DOI: 10.3390/cancers15010266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Renal cell carcinoma (RCC) makes up the majority of kidney cancers, with a poor prognosis for metastatic RCC (mRCC). Challenges faced in the management of mRCC, include a lack of reliable prognostic markers and biomarkers for precise monitoring of disease treatment, together with the potential risk of toxicity associated with more recent therapeutic options. Glycosaminoglycans (GAGs) are a class of carbohydrates that can be categorized into four main subclasses, viz., chondroitin sulfate, hyaluronic acid, heparan sulfate and keratan sulfate. GAGs are known to be closely associated with cancer progression and modulation of metastasis by modification of the tumor microenvironment. Alterations of expression, composition and spatiotemporal distribution of GAGs in the extracellular matrix (ECM), dysregulate ECM functions and drive cancer invasion. In this review, we focus on the clinical utility of GAGs as biomarkers for mRCC (which is important for risk stratification and strategizing effective treatment protocols), as well as potential therapeutic targets that could benefit patients afflicted with advanced RCC. Besides GAG-targeted therapies that holds promise in mRCC, other potential strategies include utilizing GAGs as drug carriers and their mimetics to counter cancer progression, and enhance immunotherapy through binding and transducing signals for immune mediators.
Collapse
|
27
|
The Binomial "Inflammation-Epigenetics" in Breast Cancer Progression and Bone Metastasis: IL-1β Actions Are Influenced by TET Inhibitor in MCF-7 Cell Line. Int J Mol Sci 2022; 23:ijms232315422. [PMID: 36499741 PMCID: PMC9741332 DOI: 10.3390/ijms232315422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The existence of a tight relationship between inflammation and epigenetics that in primary breast tumor cells can lead to tumor progression and the formation of bone metastases was investigated. It was highlighted how the induction of tumor progression and bone metastasis by Interleukin-1 beta, in a non-metastatic breast cancer cell line, MCF-7, was dependent on the de-methylating actions of ten-eleven translocation proteins (TETs). In fact, the inhibition of their activity by the Bobcat339 molecule, an inhibitor of TET enzymes, determined on the one hand, the modulation of the epithelial-mesenchymal transition process, and on the other hand, the reduction in the expression of markers of bone metastasis, indicating that the epigenetic action of TETs is a prerequisite for IL-1β-dependent tumor progression and bone metastasis formation.
Collapse
|
28
|
The Regulatory Network of Gastric Cancer Pathogenesis and Its Potential Therapeutic Active Ingredients of Traditional Chinese Medicine Based on Bioinformatics, Molecular Docking, and Molecular Dynamics Simulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5005498. [DOI: 10.1155/2022/5005498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
Objective. This study aims to investigate the functional gene network in gastric carcinogenesis by using bioinformatics; besides, the diagnostic utility of key genes and potential active ingredients of traditional Chinese medicine (TCM) for treatment in gastric cancer have been explored. Methods. The Cancer Genome Atlas and Gene Expression Omnibus databases have been applied to analyze the differentially expressed genes (DEGs) between gastric cancer and normal gastric tissues. Then, the DEGs underwent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses using the Metascape database. The STRING database and the Cytoscape software were utilized for the protein-protein interaction network of DEGs and hub genes screening. Furthermore, survival and expression analyses of hub genes were conducted using Gene Expression Profiling Interactive Analysis and Human Protein Atlas databases. By using the Comparative Toxicogenomics Database, the hub genes interconnected with active ingredients of TCM were analyzed to provide potential information for the treatment of gastric cancer. After the molecular docking of the active ingredients of TCM to specific hub gene receptor proteins, the molecular dynamics simulation GROMACS was applied to validate the conformation of the strongest binding ability in the molecular docking. Results. A total of 291 significant DEGs were found, from which 12 hub genes were screened out. Among these hub genes, the expressions of five hub genes including COL1A1, COL5A2, MMP12, SERPINE1, and VCAN were significantly correlated with the overall survival. Furthermore, four potential therapeutic active ingredients of TCM were acquired, including quercetin, resveratrol, emodin, and schizandrin B. In addition, the molecular docking results exhibited that the active ingredients of TCM formed stable binding with the hub gene targets. SERPINE1 (3UT3)-Emodin and COL1A1 (7DV6)-Quercetin were subjected to molecular dynamics simulations as conformations of continuing research significance, and both were found to be stably bound as a result of the interaction of van der Waals potentials, electrostatic, and hydrogen bonding. Conclusion. Our findings may provide novel insights and references for the screening of biomarkers, the prognostic evaluation, and the identification of potential active ingredients of TCM for gastric cancer treatment.
Collapse
|
29
|
Sirithammajak S, Manochantr S, Tantrawatpan C, Tantikanlayaporn D, Kheolamai P. Human Mesenchymal Stem Cells Derived from the Placenta and Chorion Suppress the Proliferation while Enhancing the Migration of Human Breast Cancer Cells. Stem Cells Int 2022; 2022:4020845. [PMID: 36406002 PMCID: PMC9674426 DOI: 10.1155/2022/4020845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed malignancy among women, resulting from abnormal proliferation of mammary epithelial cells. The highly vascularized nature of breast tissue leads to a high incidence of breast cancer metastases, resulting in a poor survival rate. Previous studies suggest that human mesenchymal stem cells (hMSCs) play essential roles in the growth, metastasis, and drug responses of many cancers, including breast cancer. However, hMSCs from different sources may release different combinations of cytokines that affect breast cancer differently. METHODS In this study, we have isolated hMSCs from the placenta (PL-hMSCs) and the chorion (CH-hMSCs) and determined how these hMSCs affect the proliferation, migration, invasion, and gene expression of two human breast cancer cells, MCF-7 and MDA-MB-231, as well as the possible mechanisms underlying those effects. RESULTS The results showed that the soluble factors derived from PL-hMSCs and CH-hMSCs inhibited the proliferation of MCF-7 and MDA-MB-231 cells but increased the migration of MDA-MB-231 cells. The study of gene expression showed that PL-hMSCs and CH-hMSCs downregulated the expression levels of the protooncogene CyclinD1 while upregulating the expression levels of tumor suppressor genes, P16 and P21 in MCF-7 and MDA-MB-231 cells. Furthermore, hMSCs from both sources also increased the expression levels of MYC, SNAI1, and TWIST, which promote the epithelial-mesenchymal transition and migration of breast cancer cells in both cell lines. The functional study suggests that the suppressive effect of CH-hMSCs and PL-hMSCs on MCF-7 and MDA-MB231 cell proliferation was mediated, at least in part, through IFN-γ. CONCLUSIONS Our study suggests that CH-hMSCs and PL-hMSCs inhibited breast cancer cell proliferation by negatively regulating CYCLIND1 expression and upregulating the expression of the P16 and P21 genes. In contrast, hMSCs from both sources enhanced breast cancer cell migration, possibly by increasing the expression of MYC, SNAI1, and TWIST genes in those cells.
Collapse
Affiliation(s)
- Sarawut Sirithammajak
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Sirikul Manochantr
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Chairat Tantrawatpan
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Duangrat Tantikanlayaporn
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
30
|
Karagiorgou Z, Fountas PN, Manou D, Knutsen E, Theocharis AD. Proteoglycans Determine the Dynamic Landscape of EMT and Cancer Cell Stemness. Cancers (Basel) 2022; 14:5328. [PMID: 36358747 PMCID: PMC9653992 DOI: 10.3390/cancers14215328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 03/15/2024] Open
Abstract
Proteoglycans (PGs) are pivotal components of extracellular matrices, involved in a variety of processes such as migration, invasion, morphogenesis, differentiation, drug resistance, and epithelial-to-mesenchymal transition (EMT). Cellular plasticity is a crucial intermediate phenotypic state acquired by cancer cells, which can modulate EMT and the generation of cancer stem cells (CSCs). PGs affect cell plasticity, stemness, and EMT, altering the cellular shape and functions. PGs control these functions, either by direct activation of signaling cascades, acting as co-receptors, or through regulation of the availability of biological compounds such as growth factors and cytokines. Differential expression of microRNAs is also associated with the expression of PGs and their interplay is implicated in the fine tuning of cancer cell phenotype and potential. This review summarizes the involvement of PGs in the regulation of EMT and stemness of cancer cells and highlights the molecular mechanisms.
Collapse
Affiliation(s)
- Zoi Karagiorgou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Panagiotis N. Fountas
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9010 Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
31
|
Li Y, Lu Y, Du K, Yin Y, Hu T, Fu Q, Zhang Y, Wen D, Wu X, Xia X. RNA-sequencing analysis reveals the long noncoding RNA profile in the mouse myopic retina. Front Genet 2022; 13:1014031. [PMID: 36313450 PMCID: PMC9606684 DOI: 10.3389/fgene.2022.1014031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2023] Open
Abstract
Aim: Myopia is a prevalent public health problem. The long noncoding RNA (lncRNA) mechanisms for dysregulated retinal signaling in the myopic eye have remained elusive. The aim of this study was to analyze the expression profiles and possible pathogenic roles of lncRNAs in mouse form-deprived myopia (FDM) retinas. Methods: A mouse FDM model was induced and retinas from the FDM right eyes and the contralateral eyes were collected for RNA sequencing. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and lncRNA-mRNA coexpression network analyses were conducted to explore the biological functions of the differentially expressed lncRNAs. In addition, the levels of differentially expressed lncRNAs in the myopic retinas were validated by quantitative real-time PCR (qRT-PCR). Fluorescence in situ hybridization (FISH) was used to detect the localization of lncRNAs in mouse retinas. Results: FDM eyes exhibited reduced refraction and increased ocular axial length compared to control fellow eyes. RNA sequencing revealed that there were 655 differentially expressed lncRNAs between the FDM and control retinas. Functional enrichment analysis indicated that the differentially expressed RNAs were mostly enriched in cellular processes, cytokine-cytokine receptor interactions, retinol metabolism, and rhythmic processes. Differentially expressed lncRNAs were validated by qRT-PCR. Additionally, RNA FISH showed that XR_384718.4 (Gm35369) localized in the ganglion cell (GCL) and inner nuclear layers (INL). Conclusion: This study identified the differential expression profiles of lncRNAs in myopic mouse retinas. Our results provide scientific evidence for investigations of myopia and the development of putative interventions in the future.
Collapse
Affiliation(s)
- Yuanjun Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ying Lu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kaixuan Du
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yewei Yin
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tu Hu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuman Fu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yanni Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Wen
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoying Wu
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Chen L, Liao X, Jiang X, Yan J, Liang J, Hongwei L. Identification of Metastasis-Associated Genes in Cutaneous Squamous Cell Carcinoma Based on Bioinformatics Analysis and Experimental Validation. Adv Ther 2022; 39:4594-4612. [PMID: 35947350 DOI: 10.1007/s12325-022-02276-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/19/2022] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Cutaneous squamous cell carcinoma (cSCC) is a global malignant tumor with a high degree of malignancy. Once metastasis occurs, it will lead to poor prognosis and even death. This study attempts to find out the central genes closely related to cSCC metastasis, so as to clarify the molecular regulatory mechanism of cSCC metastasis and open up new ideas for clinical treatment. METHODS Firstly, cSCC data set GSE98767 was used to establish a tumor metastasis model via clustering analysis. The key module and hub genes associated with cSCC metastasis were analyzed by weighted gene co-expression analysis (WGCNA). Next, the prognostic functions of hub genes were identified by functional and pathway enrichment analysis, pan-cancer analysis, and receiver operating characteristic-area under the curve (ROC-AUC) validation. Finally, the key genes were verified by clinical sample detection and biological in vitro test. RESULTS A total of 19 hub genes related to cSCC metastasis were identified. They were highly expressed in cSCC metastatic tissues and were mainly enriched in cellular material and energy metabolism pathways. Overall survival (OS) and disease-free survival (DFS) results from pan-cancer analysis showed that eight and six highly expressed genes, respectively, with PAPSS2 and SCG5 had highly reliable ROC-AUC validation values and were poor prognostic factors. Clinical and biological tests also confirmed the upregulation of PAPSS2 and SCG5 in cSCC. Deletion of PAPSS2 and SCG5 resulted in decreased viability, migration, and invasion of A-431 cells. CONCLUSION PAPSS2 and SCG5 may be important factors for cSCC metastasis, and they are involved in the regulation of cSCC cell viability, migration, and invasion.
Collapse
Affiliation(s)
- Lang Chen
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Department of Burns and Plastic, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Xuan Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Xiao Jiang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Jianxin Yan
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Jiaji Liang
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China.,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China
| | - Liu Hongwei
- Department of Plastic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, People's Republic of China. .,Key Laboratory of Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, 510630, People's Republic of China.
| |
Collapse
|
33
|
Yao Q, Hou W, Chen J, Bai Y, Long M, Huang X, Zhao C, Zhou L, Niu D. Comparative proteomic and clinicopathological analysis of breast adenoid cystic carcinoma and basal-like triple-negative breast cancer. Front Med (Lausanne) 2022; 9:943887. [PMID: 35966872 PMCID: PMC9366086 DOI: 10.3389/fmed.2022.943887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/24/2022] [Indexed: 11/15/2022] Open
Abstract
Background Adenoid cystic carcinoma (ACC) is a rare type of triple-negative breast cancer that has an indolent clinical behavior. Given the substantial overlapping morphological, immunohistochemical, and molecular features with other basal-like triple-negative breast cancer (BL-TNBC), accurate diagnosis of ACC is crucial for effective clinical treatment. The integrative analysis of the proteome and clinicopathological characteristics may help to distinguish these two neoplasms and provide a deep understanding on biological behaviors and potential target therapy of ACC. Methods We applied mass spectrometry-based quantitative proteomics to analyze the protein expression in paired tumor and adjacent normal breast tissue of five ACC and five BL-TNBC. Bioinformatic analyses and the clinicopathological characteristics, including histological features, immunohistochemistry, and FISH results, were also collected to get comprehensive information. Results A total of 307 differentially expressed proteins (DEPs) were identified between ACC and BL-TNBC. Clustering analysis of DEPs clearly separated ACC from BL-TNBC. GSEA found downregulation of the immune response of ACC compared with BL-TNBC, which is consistent with the negative PD-L1 expression of ACC. Vesicle-mediated transport was also inhibited, while ECM organization was enriched in ACC. The top upregulated proteins in DEPs were ITGB4, VCAN, and DPT. Moreover, in comparison with normal breast tissue, ACC showed elevated ribosome biogenesis and RNA splicing activity. Conclusion This study provides evidence that ACC presents a substantially different proteomic profile compared with BL-TNBC and promotes our understanding on the molecular mechanisms and biological processes of ACC, which might be useful for differential diagnosis and anticancer strategy.
Collapse
Affiliation(s)
- Qian Yao
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Wei Hou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Junbing Chen
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanhua Bai
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Mengping Long
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaozheng Huang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Chen Zhao
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lixin Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dongfeng Niu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Dongfeng Niu
| |
Collapse
|
34
|
Sun D, Gai Z, Wu J, Chen Q. Prognostic Impact of the Angiogenic Gene POSTN and Its Related Genes on Lung Adenocarcinoma. Front Oncol 2022; 12:699824. [PMID: 35832544 PMCID: PMC9271775 DOI: 10.3389/fonc.2022.699824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Background The function of angiogenesis-related genes (ARGs) in lung adenocarcinoma (LUAD) remains poorly documented. This study was designed to reveal ARGs in LUAD and related networks. Methods We worked with sequencing data and clinical information pertaining to LUAD from public databases. ARGs were retrieved from the HALLMARK_ANGIOGENESIS gene set. Differential analysis and Kaplan–Meier (K–M) analysis were performed to authenticate the ARGs associated with LUAD. Weighted gene correlation network analysis was performed on the mining hub genes linked to the abovementioned genes, and functional enrichment analysis was done. Subsequently, Cox regression analyses were used to construct the prognostic gene. POSTN and microvessel density were detected using immunohistochemistry. Results POSTN, an ARG that was highly expressed in patients with LUAD and was closely associated with their weak overall survival was identified. Differentially expressed genes associated with POSTN were mainly enriched in entries related to the tubulointerstitial system, immune response, and epithelial cells. A positive correlation was demonstrated between POSTN expression and tumor microvessel density in LUAD. Subsequently, a prognostic gene signature was constructed and revealed that 4 genes may predict the survival of LUAD patients. Furthermore, the ESTIMATE and CIBERSORT analyses suggested that our risk scoring system may be implicated in altering the immune microenvironment of patients with LUAD. Finally, a ceRNA network was constructed based on the prognostic genes, and the regulatory networks were examined. Conclusion POSTN, a novel prognostic gene signature associated with ARGs, was constructed for the prognosis of patients with LUAD. This signature may alter the immune microenvironment by modulating the activation of the tubulointerstitial system, epithelial cells, and immune cells, ultimately affecting patient survival.
Collapse
Affiliation(s)
- Dongfeng Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Emergency Medicine, Shandong Lung Cancer Institute, Shandong Institute of Respiratory Diseases, Jinan, China
- *Correspondence: Dongfeng Sun, ;Qingfa Chen,
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jie Wu
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingfa Chen
- Institute of Tissue Engineering and Regenerative Medicine, Liaocheng People’s Hospital, Liaocheng, China
- *Correspondence: Dongfeng Sun, ;Qingfa Chen,
| |
Collapse
|
35
|
Pally D, Goutham S, Bhat R. Extracellular matrix as a driver for intratumoral heterogeneity. Phys Biol 2022; 19. [PMID: 35545075 DOI: 10.1088/1478-3975/ac6eb0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
The architecture of an organ is built through interactions between its native cells and its connective tissue consisting of stromal cells and the extracellular matrix (ECM). Upon transformation through tumorigenesis, such interactions are disrupted and replaced by a new set of intercommunications between malignantly transformed parenchyma, an altered stromal cell population, and a remodeled ECM. In this perspective, we propose that the intratumoral heterogeneity of cancer cell phenotypes is an emergent property of such reciprocal intercommunications, both biochemical and mechanical-physical, which engender and amplify the diversity of cell behavioral traits. An attempt to assimilate such findings within a framework of phenotypic plasticity furthers our understanding of cancer progression.
Collapse
Affiliation(s)
- Dharma Pally
- Molecular Reproduction Development and Genetics, Indian Institute of Science, GA 07, Bangalore, Karnataka, 560012, INDIA
| | - Shyamili Goutham
- Molecular Reproduction Development and Genetics, Indian Institute of Science, GA 07, Bangalore, Karnataka, 560012, INDIA
| | - Ramray Bhat
- Molecular Reproduction Development and Genetics, Indian Institute of Science, GA 07, Bangalore, Karnataka, 560012, INDIA
| |
Collapse
|
36
|
Ni N, Fang X, Mullens DA, Cai JJ, Ivanov I, Bartholin L, Li Q. Transcriptomic Profiling of Gene Expression Associated with Granulosa Cell Tumor Development in a Mouse Model. Cancers (Basel) 2022; 14:2184. [PMID: 35565312 PMCID: PMC9105549 DOI: 10.3390/cancers14092184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/05/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian granulosa cell tumors (GCTs) are rare sex cord-stromal tumors, accounting for ~5% ovarian tumors. The etiology of GCTs remains poorly defined. Genetically engineered mouse models are potentially valuable for understanding the pathogenesis of GCTs. Mice harboring constitutively active TGFβ signaling (TGFBR1-CA) develop ovarian GCTs that phenocopy several hormonal and molecular characteristics of human GCTs. To determine molecular alterations in the ovary upon TGFβ signaling activation, we performed transcriptomic profiling of gene expression associated with GCT development using ovaries from 1-month-old TGFBR1-CA mice and age-matched controls. RNA-sequencing and bioinformatics analysis coupled with the validation of select target genes revealed dysregulations of multiple cellular events and signaling molecules/pathways. The differentially expressed genes are enriched not only for known GCT-related pathways and tumorigenic events but also for signaling events potentially mediated by neuroactive ligand-receptor interaction, relaxin signaling, insulin signaling, and complements in TGFBR1-CA ovaries. Additionally, a comparative analysis of our data in mice with genes dysregulated in human GCTs or granulosa cells overexpressing a mutant FOXL2, the genetic hallmark of adult GCTs, identified some common genes altered in both conditions. In summary, this study has revealed the molecular signature of ovarian GCTs in a mouse model that harbors the constitutive activation of TGFBR1. The findings may be further exploited to understand the pathogenesis of a class of poorly defined ovarian tumors.
Collapse
Affiliation(s)
- Nan Ni
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Xin Fang
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Destiny A. Mullens
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (D.A.M.); (I.I.)
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| | - Ivan Ivanov
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA; (D.A.M.); (I.I.)
| | - Laurent Bartholin
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Lyon 1, F-69000 Lyon, France;
- Centre Léon Bérard, F-69008 Lyon, France
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (N.N.); (X.F.); (J.J.C.)
| |
Collapse
|
37
|
Tellez-Gabriel M, Tekpli X, Reine TM, Hegge B, Nielsen SR, Chen M, Moi L, Normann LS, Busund LTR, Calin GA, Mælandsmo GM, Perander M, Theocharis AD, Kolset SO, Knutsen E. Serglycin Is Involved in TGF-β Induced Epithelial-Mesenchymal Transition and Is Highly Expressed by Immune Cells in Breast Cancer Tissue. Front Oncol 2022; 12:868868. [PMID: 35494005 PMCID: PMC9047906 DOI: 10.3389/fonc.2022.868868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Serglycin is a proteoglycan highly expressed by immune cells, in which its functions are linked to storage, secretion, transport, and protection of chemokines, proteases, histamine, growth factors, and other bioactive molecules. In recent years, it has been demonstrated that serglycin is also expressed by several other cell types, such as endothelial cells, muscle cells, and multiple types of cancer cells. Here, we show that serglycin expression is upregulated in transforming growth factor beta (TGF-β) induced epithelial-mesenchymal transition (EMT). Functional studies provide evidence that serglycin plays an important role in the regulation of the transition between the epithelial and mesenchymal phenotypes, and it is a significant EMT marker gene. We further find that serglycin is more expressed by breast cancer cell lines with a mesenchymal phenotype as well as the basal-like subtype of breast cancers. By examining immune staining and single cell sequencing data of breast cancer tissue, we show that serglycin is highly expressed by infiltrating immune cells in breast tumor tissue.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trine M. Reine
- Department of Interphase Genetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Beate Hegge
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Stephanie R. Nielsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Line Moi
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Lisa Svartdal Normann
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway
| | - Lill-Tove R. Busund
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gunhild M. Mælandsmo
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maria Perander
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | | | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
- *Correspondence: Erik Knutsen,
| |
Collapse
|
38
|
Wang K, Cai M, Sun S, Cheng W, Zhai D, Ni Z, Yu C. Therapeutic Prospects of Polysaccharides for Ovarian Cancer. Front Nutr 2022; 9:879111. [PMID: 35464007 PMCID: PMC9021481 DOI: 10.3389/fnut.2022.879111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Ovarian cancer (OC) is ranked as the leading cause of death among cancers of the female reproductive tract. First-line platinum treatment faces the severe challenges associated with the patient relapse and poor prognosis. Thus, it is imperative to develop natural antitumor drugs for OC with high efficacy. Natural polysaccharides have significant biological activities and antitumor effects. Our work has demonstrated that polysaccharides play key roles by inhibiting the cell proliferation and growth, regulating the tumor cell cycle, inducing apoptosis, suppressing the tumor cell migration and invasion, improving the immunomodulatory activities, and enhancing the efficacy of chemotherapy (cisplatin) in OC, which provide powerful evidence for the application of polysaccharides as novel anticancer agents, supplementary remedies, and adjunct therapeutic agents alone or in combination with cisplatin for preventing and treating the OC.
Collapse
|
39
|
Maijaroen S, Klaynongsruang S, Roytrakul S, Konkchaiyaphum M, Taemaitree L, Jangpromma N. An Integrated Proteomics and Bioinformatics Analysis of the Anticancer Properties of RT2 Antimicrobial Peptide on Human Colon Cancer (Caco-2) Cells. Molecules 2022; 27:molecules27041426. [PMID: 35209215 PMCID: PMC8880037 DOI: 10.3390/molecules27041426] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/05/2022] Open
Abstract
New selective, efficacious chemotherapy agents are in demand as traditional drugs display side effects and face growing resistance upon continued administration. To this end, bioactive molecules such as peptides are attracting interest. RT2 is a cationic peptide that was used as an antimicrobial but is being repurposed for targeting cancer. In this work, we investigate the mechanism by which this peptide targets Caco-2 human colon cancer cells, one of the most prevalent and metastatic cancers. Combining label-free proteomics with bioinformatics data, our data explore over 1000 proteins to identify 133 proteins that are downregulated and 79 proteins that are upregulated upon treatment with RT2. These changes occur in a dose-dependent manner and suggest the former group are related to anticancer cell proliferation; the latter group is closely related to apoptosis levels. The mRNA levels of several genes (FGF8, PAPSS2, CDK12, LDHA, PRKCSH, CSE1L, STARD13, TLE3, and OGDHL) were quantified using RT-qPCR and were found to be in agreement with proteomic results. Collectively, the global change in Caco-2 cell protein abundance suggests that RT2 triggers multiple mechanisms, including cell proliferation reduction, apoptosis activation, and alteration of cancerous cell metabolism.
Collapse
Affiliation(s)
- Surachai Maijaroen
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani 12120, Thailand;
| | - Monruedee Konkchaiyaphum
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (S.M.); (S.K.); (M.K.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lapatrada Taemaitree
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence:
| |
Collapse
|
40
|
Liu Y, Wang X, Zhu Y, Cao Y, Wang L, Li F, Zhang Y, Li Y, Zhang Z, Luo J, Deng X, Peng C, Wei G, Chen H, Shen B. The CTCF/LncRNA-PACERR complex recruits E1A binding protein p300 to induce pro-tumour macrophages in pancreatic ductal adenocarcinoma via directly regulating PTGS2 expression. Clin Transl Med 2022; 12:e654. [PMID: 35184402 PMCID: PMC8858628 DOI: 10.1002/ctm2.654] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tumour-associated macrophages (TAMs) play an important role in promoting the progression of pancreatic ductal adenocarcinoma (PDAC). Here, we aimed to study the epigenetic mechanisms in regulating pro-tumour M2-polarised TAMs in the PDAC tumour microenvironment. METHODS This study was conducted based on ex vivo TAMs isolated from PDAC tissues and in vitro THP1-derived TAM model. RNA-sequencing (RNA-seq), assay for transposase-accessible chromatin with sequencing and chromatin immunoprecipitation sequencing were performed to investigate gene expression, chromatin accessibility, transcription factor binding sites and histone modifications. Gene knockdown in THP1-derived TAMs was performed with lentivirus, and the impact of THP1-derived TAMs on invasion and metastasis ability of PDAC cells were investigated with in vitro and in vivo functional assays. RNA-chromatin interaction was analysed by chromatin isolation through RNA purification with sequencing. RNA-protein interaction was studied by RNA immunoprecipitation and RNA pull-down. RESULTS Our data showed that the transcription factor CTCF (CCCTC-binding factor) was highly expressed in TAMs and predicted to be significantly enriched in hyper-accessible chromatin regions when compared to monocytes. High infiltration of CTCF+ TAMs was significantly associated with poor prognosis in PDAC patients. Knockdown of CTCF in THP1-derived TAMs led to the down-regulation of specific markers for M2-polarised TAMs, including CD206 and CD163. When THP1-derived TAMs with CTCF knockdown, they showed a decreased ability of invasion and metastasis. Further integrative analysis of multi-omics data revealed that prostaglandin-endoperoxide synthase 2 (PTGS2) and PTGS2 antisense NF-κB1 complex-mediated expression regulator RNA (PACERR) were critical downstream targets of CTCF and positively correlated with each other, which are closely situated on a chromosome. Knockdown of PACERR exhibited a similar phenotype as observed in CTCF knockdown THP1-derived TAMs. Moreover, PACERR could directly bind to CTCF and recruit histone acetyltransferase E1A binding protein p300 to the promoter regions of PACERR and PTGS2, thereby enhancing histone acetylation and gene transcription, promoting the M2 polarization of TAMs in PDAC. CONCLUSIONS Our study demonstrated a novel epigenetic regulation mechanism of promoting pro-tumour M2-polarised TAMs in the PDAC tumour microenvironment.
Collapse
Affiliation(s)
- Yihao Liu
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Xuelong Wang
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Youwei Zhu
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yizhi Cao
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Liwen Wang
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Fanlu Li
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Yu Zhang
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Ying Li
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Zhiqiang Zhang
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Jiaxin Luo
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Xiaxing Deng
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Chenghong Peng
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Gang Wei
- CAS Key Laboratory of Computational BiologyShanghai Institute of Nutrition and Health, University of Chinese Academy of SciencesChinese Academy of SciencesShanghaiChina
| | - Hao Chen
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| | - Baiyong Shen
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
- Institute of Translational MedicineShanghai Jiaotong UniversityShanghaiChina
| |
Collapse
|
41
|
Zhang P, Zhang L, Hou Z, Lin H, Gao H, Zhang L. Structural basis for the substrate recognition mechanism of ATP-sulfurylase domain of human PAPS synthase 2. Biochem Biophys Res Commun 2022; 586:1-7. [PMID: 34818583 DOI: 10.1016/j.bbrc.2021.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022]
Abstract
Sulfation is an essential modification on biomolecules in living cells, and 3'-Phosphoadenosine-5'-phosphosulfate (PAPS) is its unique and universal sulfate donor. Human PAPS synthases (PAPSS1 and 2) are the only enzymes that catalyze PAPS production from inorganic sulfate. Unexpectedly, PAPSS1 and PAPSS2 do not functional complement with each other, and abnormal function of PAPSS2 but not PAPSS1 leads to numerous human diseases including bone development diseases, hormone disorder and cancers. Here, we reported the crystal structures of ATP-sulfurylase domain of human PAPSS2 (ATPS2) and ATPS2 in complex with is product 5'-phosphosulfate (APS). We demonstrated that ATPS2 recognizes the substrates by using family conserved residues located on the HXXH and PP motifs, and achieves substrate binding and releasing by employing a non-conserved phenylalanine (Phe550) through a never observed flipping mechanism. Our discovery provides additional information to better understand the biological function of PAPSS2 especially in tumorigenesis, and may facilitate the drug discovery against this enzyme.
Collapse
Affiliation(s)
- Pan Zhang
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhaoyuan Hou
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Houwen Lin
- Research Centre for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hai Gao
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Liang Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
42
|
CMAHP promotes metastasis by reducing ubiquitination of Snail and inducing angiogenesis via GM-CSF overexpression in gastric cancer. Oncogene 2022; 41:159-172. [PMID: 34716430 DOI: 10.1038/s41388-021-02087-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/18/2022]
Abstract
Pseudogenes are generally considered "junk" DNA or "genomic fossils" generated during the evolution process that lack biological activity. However, accumulating reports indicate that pseudogenes have biological functions critical for cancer development. Experiments from the current study showed marked overexpression of the cytidine monophospho-N-acetylneuraminic acid hydroxylase pseudogene (CMAHP) in gastric cancer, which was associated with poor overall survival. However, the mechanisms underlying the activity of CMAHP in tumor development are largely unknown. Gene Set Enrichment Analysis (GSEA) revealed that CMAHP-correlated genes are significantly involved in epithelial-mesenchymal transition (EMT) and angiogenesis. Functional studies further confirmed that CMAHP mediates metastasis and angiogenesis in vitro and in vivo. Furthermore, CMAHP promoted cancer cell migration, invasion, and metastasis through Snail overexpression, which decreased ubiquitination mediated by NF-κB signaling. Angiogenesis is known to be induced by granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation. CMAHP increased GM-CSF transactivation via promoting direct binding of c-Jun to the -1981/-1975 region of the GM-CSF promoter. Notably, CMAHP interacts with Histone H1.4 promoting histone acetylation to enhance c-Jun and RelA (p65) expression. Our collective findings provide novel evidence that CMAHP contributes to tumor progression and modulates metastasis and angiogenesis in gastric cancer.
Collapse
|
43
|
Zhang Q, Zhang Y, Zhang J, Zhang D, Li M, Yan H, Zhang H, Song L, Wang J, Hou Z, Yang Y, Zou X. p66α Suppresses Breast Cancer Cell Growth and Migration by Acting as Co-Activator of p53. Cells 2021; 10:3593. [PMID: 34944103 PMCID: PMC8700327 DOI: 10.3390/cells10123593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/03/2021] [Accepted: 12/16/2021] [Indexed: 01/31/2023] Open
Abstract
p66α is a GATA zinc finger domain-containing transcription factor that has been shown to be essential for gene silencing by participating in the NuRD complex. Several studies have suggested that p66α is a risk gene for a wide spectrum of diseases such as diabetes, schizophrenia, and breast cancer; however, its biological role has not been defined. Here, we report that p66α functions as a tumor suppressor to inhibit breast cancer cell growth and migration, evidenced by the fact that the depletion of p66α results in accelerated tumor growth and migration of breast cancer cells. Mechanistically, immunoprecipitation assays identify p66α as a p53-interacting protein that binds the DNA-binding domain of p53 molecule predominantly via its CR2 domain. Depletion of p66α in multiple breast cells results in decreased expression of p53 target genes, while over-expression of p66α results in increased expression of these target genes. Moreover, p66α promotes the transactivity of p53 by enhancing p53 binding at target promoters. Together, these findings demonstrate that p66α is a tumor suppressor by functioning as a co-activator of p53.
Collapse
Affiliation(s)
- Qun Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yihong Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Jie Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Dan Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Mengying Li
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Han Yan
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Hui Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Liwei Song
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai 200025, China;
- Naruiboen Biomedical Technology Corporation Limited, Linyi 277700, China
| | - Jiamin Wang
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhaoyuan Hou
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yunhai Yang
- Shanghai Pulmonary Tumor Medical Center, Shanghai Chest Hospital, Shanghai 200025, China;
| | - Xiuqun Zou
- Hongqiao International Institute of Medicine, Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Q.Z.); (Y.Z.); (J.Z.); (D.Z.); (M.L.); (H.Y.); (H.Z.); (J.W.); (Z.H.)
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry & Molecular Cellular Biology, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
44
|
Cao D, Xu N, Chen Y, Zhang H, Li Y, Yuan Z. Construction of a Pearson- and MIC-Based Co-expression Network to Identify Potential Cancer Genes. Interdiscip Sci 2021; 14:245-257. [PMID: 34694561 DOI: 10.1007/s12539-021-00485-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/26/2022]
Abstract
The weighted gene co-expression network analysis (WGCNA) method constructs co-expressed gene modules based on the linear similarity between paired gene expressions. Linear correlations are the main form of similarity between genes, however, nonlinear correlations still existed and had always been ignored. We proposed a modified network analysis method, WGCNA-P + M, which combines Pearson's correlation coefficient and the maximum information coefficient (MIC) as the similarity measures to assess the linear and nonlinear correlations between genes, respectively. Taking two real datasets, GSE44861 and liver hepatocellular carcinoma (TCGA-LIHC), as examples, we compared the gene modules constructed by WGCNA-P + M and WGCNA from four perspectives: the "Usefulness" score, GO enrichment analysis on genes in the gray module, prediction performance of the top hub gene, survival analysis and literature reports on different hub genes. The results showed that the modules obtained by WGCNA-P + M are more biological meaningful, the hub genes obtained from WGCNA-P + M have more potential cancer genes.
Collapse
Affiliation(s)
- Dan Cao
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Science, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Na Xu
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yuan Chen
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Hongyan Zhang
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yuting Li
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Zheming Yuan
- Hunan Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
45
|
Lewoniewska S, Oscilowska I, Huynh TYL, Prokop I, Baszanowska W, Bielawska K, Palka J. Troglitazone-Induced PRODH/POX-Dependent Apoptosis Occurs in the Absence of Estradiol or ERβ in ER-Negative Breast Cancer Cells. J Clin Med 2021; 10:jcm10204641. [PMID: 34682765 PMCID: PMC8538344 DOI: 10.3390/jcm10204641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary PRODH/POX (proline dehydrogenase/proline oxidase) is a mitochondrial enzyme that catalyzes proline degradation generating reactive oxygen species (ROS). Estrogens limit proline availability for PRODH/POX by stimulating collagen biosynthesis. It has been considered that estrogens determine efficiency of troglitazone (TGZ)-induced PRODH/POX-dependent apoptosis in breast cancer cells. The studies were performed in wild-type and PRODH/POX-silenced estrogen-dependent MCF-7 cells and estrogen-independent MDA-MB-231 cells. DNA and collagen biosynthesis were determined by radiometric method, ROS production was measured by fluorescence assay, protein expression was determined by Western blot and proline concentration by LC/MS analysis. We found that: i/TGZ-induced apoptosis in MDA-MB-231 occurs only in the absence of estradiol or ERβ, ii/the process is mediated by PRODH/POX, iii/and is facilitated by proline availability for PRODH/POX by TGZ-dependent inhibition of collagen biosynthesis (proline utilizing process). The data suggest that combined TGZ and anti-estrogen treatment could be considered in experimental therapy of ER negative breast cancers. Abstract The impact of estradiol on troglitazone (TGZ)-induced proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied in wild-type and PRODH/POX-silenced estrogen receptor (ER) dependent MCF-7 cells and ER-independent MDA-MB-231 cells. DNA and collagen biosynthesis were determined by radiometric method, prolidase activity evaluated by colorimetric method, ROS production was measured by fluorescence assay. Protein expression was determined by Western blot and proline concentration by LC/MS analysis. PRODH/POX degrades proline yielding reactive oxygen species (ROS). Estrogens stimulate collagen biosynthesis utilizing free proline and limiting its availability for PRODH/POX-dependent apoptosis. TGZ cytotoxicity was highly pronounced in wild-type MDA-MB-231 cells cultured in medium without estradiol or in the cells cultured in medium with estradiol but deprived of ERβ (by ICI-dependent degradation), while in PRODH/POX-silenced cells the process was not affected. The TGZ cytotoxicity was accompanied by increase in PRODH/POX expression, ROS production, expression of cleaved caspase-3, caspase-9 and PARP, inhibition of collagen biosynthesis, prolidase activity and decrease in intracellular proline concentration. The phenomena were not observed in PRODH/POX-silenced cells. The data suggest that TGZ-induced apoptosis in MDA-MB-231 cells cultured in medium without estradiol or deprived of ERβ is mediated by PRODH/POX and the process is facilitated by proline availability for PRODH/POX by TGZ-dependent inhibition of collagen biosynthesis. It suggests that combined TGZ and antiestrogen treatment could be considered in experimental therapy of estrogen receptor negative breast cancers.
Collapse
Affiliation(s)
- Sylwia Lewoniewska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Ilona Oscilowska
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Thi Yen Ly Huynh
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Izabela Prokop
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Weronika Baszanowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Katarzyna Bielawska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
- Correspondence: ; Tel.: +48-85-748-5706
| |
Collapse
|
46
|
Yang L, Zhou YN, Zeng MM, Zhou N, Wang BS, Li B, Zhu XL, Guan QL, Chai C. Circular RNA Circ-0002570 Accelerates Cancer Progression by Regulating VCAN via MiR-587 in Gastric Cancer. Front Oncol 2021; 11:733745. [PMID: 34692507 PMCID: PMC8526966 DOI: 10.3389/fonc.2021.733745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/07/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are closely associated with the occurrences and progress of gastric cancer (GC). We aimed to delve into the function and pathological mechanism of Circular RNA-0002570 (circ-0002570) in GC progression. METHODS CircRNAs differentially expressed in GC were screened using bioinformatics technology. The expression of circ-0002570 was detected in GC specimens and cells via qRT-PCR, and the prognostic values of circ-0002570 were determined. The functional roles of circ-0002570 on proliferation, migration, and invasion in GC cells were explored in vitro and in vivo. Interaction of circ-0002570, miR-587, and VCAN was confirmed by dual-luciferase reporter assays, Western blotting, and rescue experiments. RESULTS Circ-0002570 expression was distinctly increased in GC tissues compared to adjacent normal specimens, and GC patients with higher circ-0002570 expressions displayed a short survival. Functionally, knockdown of circ-0002570 resulted in the inhibition of cell proliferation, migration, and invasion, and suppressed tumor growth in vivo. Mechanistically, miR-587 was sponged by circ-0002570. VCAN expression in NSCLC was directly inhibited by miR-587. Overexpression of circ-0002570 prevented VCAN from miR-587-mediated degradation and thus facilitated GC progression. CONCLUSION The circ-0002570-miR-587-VCAN regulatory pathway promoted the progression of GC. Our findings provided potential new targets for the diagnosis and therapy of GC.
Collapse
Affiliation(s)
- Lei Yang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong-ning Zhou
- Department of Gastroenterology, The First hospital of Lanzhou University, Lanzhou, China
| | - Miao-miao Zeng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Nan Zhou
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Bin-sheng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Bo Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiao-liang Zhu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Quan-lin Guan
- Department of Surgical Oncology, The First hospital of Lanzhou University, Lanzhou, China
| | - Chen Chai
- Department of General Surgery, The People’s Hospital of Suzhou New District (SND), Suzhou, China
| |
Collapse
|
47
|
Singh D, Deshmukh RK, Das A. SNAI1-mediated transcriptional regulation of epithelial-to-mesenchymal transition genes in breast cancer stem cells. Cell Signal 2021; 87:110151. [PMID: 34537302 DOI: 10.1016/j.cellsig.2021.110151] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) tumors are composed of a heterogeneous population containing both cancer cells and cancer stem cells (CSCs). These CSCs are generated through an epithelial-to-mesenchymal transition (EMT), thus making it pertinent to identify the unique EMT-molecular targets that regulate this phenomenon. METHODS AND RESULTS In the present study, we performed in silico analysis of microarray data from luminal, Her2+, and TNBC cell lines and identified 15 relatively unexplored EMT-related differentially expressed genes (DEGs) along with the markedly high expression of EMT-transcription factor (EMT-TF), SNAI1. Interestingly, stable overexpression of SNAI1 in MCF-7 induced the expression of DEGs along with increased migration, invasion, and in vitro tumorigenesis that was comparable to TNBCs. Next, stable SNAI1 overexpression led to increased expression of DEGs that was reverted with SNAI1 silencing in both breast cancer cells and CSCs sorted from various TNBC cell lines. Higher fold enrichment of SNAI1 on E-boxes in the promoter regions suggested a positive regulation of ALCAM, MMP2, MMP13, MMP14, VCAN, ANKRD1, KRT16, CTGF, TGFRIIβ, PROCR negative regulation of CDH1, DSP and DSC3B by SNAI1 leading to EMT. Furthermore, SNAI1-mediated increased migration, invasion, and tumorigenesis in these sorted cells led to the activation of signaling mediators, ERK1/2, STAT3, Src, and FAK. Finally, the SNAI1-mediated activation of breast CSC phenotypes was perturbed by inhibition of downstream target, MMPs using Ilomastat. CONCLUSION Thus, the molecular investigation for the gene regulatory framework in the present study identified MMPs, a downstream effector in the SNAI1-mediated EMT regulation.
Collapse
Affiliation(s)
- Digvijay Singh
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Rohit K Deshmukh
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad 500 007, TS, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
48
|
Xu J, Zhao Y, Sun H, Xiao Q, Ye P. Identification of Versican as an Independent Prognostic Factor in Uveal Melanoma. Int J Gen Med 2021; 14:4639-4651. [PMID: 34434056 PMCID: PMC8380807 DOI: 10.2147/ijgm.s325846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/04/2021] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE To assess the role of versican (VCAN) in uveal melanoma (UVM) from its expression, prognostic value and biological function. METHODS The general profile of VCAN mRNA and protein expression levels were obtained using bioinformatic approaches. Then, UALCAN database was adopted to examine the association of VCAN mRNA expression and clinical factors in UVM. The prognostic value of VCAN was assessed by UALCAN, GEPIA and TISIDB databases. Besides, Cox regression analysis was performed to predict the independent prognostic factors for UVM. Further, functional enrichment analysis was conducted to reveal the biological functions of VCAN involved in UVM through DAVID, Cytoscape and GSEA analyses. RESULTS VCAN showed a relative low expression level in normal eye but was highly expressed in UVM cell lines. Tumor histology and stage in UVM were significantly related to VCAN mRNA expression (all P <0.05). Besides, high VCAN mRNA expression led to unfavorable prognosis of UVM patients, especially in female patients and those aged <60 years (all P <0.05). Cox regression analysis indicated that VCAN mRNA expression was an independent prognostic factor for overall survival in UVM. Enrichment analysis suggested that VCAN was mainly involved in cytokine-cytokine receptor interaction, chemokine signaling pathway and T cell receptor signaling pathway (all P <0.05). Meanwhile, hyaluronic acid was revealed to be a potential drug for the UVM treatment. CONCLUSION VCAN served as an independent prognostic factor for UVM. Further analysis found that VCAN was positively correlated with metastasis-related pathway, which might imply the metastasis risk of UVM. Our study initially revealed the vital role of VCAN in the process of UVM and provided a therapeutic target for UVM treatment.
Collapse
Affiliation(s)
- Jia Xu
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People’s Republic of China
| | - Yinu Zhao
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People’s Republic of China
| | - Hongjing Sun
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People’s Republic of China
| | - Qing Xiao
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People’s Republic of China
| | - Panpan Ye
- Eye Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People’s Republic of China
| |
Collapse
|
49
|
Feng Z, Qu J, Liu X, Liang J, Li Y, Jiang J, Zhang H, Tian H. Integrated bioinformatics analysis of differentially expressed genes and immune cell infiltration characteristics in Esophageal Squamous cell carcinoma. Sci Rep 2021; 11:16696. [PMID: 34404882 PMCID: PMC8371051 DOI: 10.1038/s41598-021-96274-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a life-threatening thoracic tumor with a poor prognosis. The role of molecular alterations and the immune microenvironment in ESCC development has not been fully elucidated. The present study aimed to elucidate key candidate genes and immune cell infiltration characteristics in ESCC by integrated bioinformatics analysis. Nine gene expression datasets from the Gene Expression Omnibus (GEO) database were analysed to identify robust differentially expressed genes (DEGs) using the robust rank aggregation (RRA) algorithm. Functional enrichment analyses showed that the 152 robust DEGs are involved in multiple processes in the tumor microenvironment (TME). Immune cell infiltration analysis based on the 9 normalized GEO microarray datasets was conducted with the CIBERSORT algorithm. The changes in macrophages between ESCC and normal tissues were particularly obvious. In ESCC tissues, M0 and M1 macrophages were increased dramatically, while M2 macrophages were decreased. A robust DEG-based protein–protein interaction (PPI) network was used for hub gene selection with the CytoHubba plugin in Cytoscape. Nine hub genes (CDA, CXCL1, IGFBP3, MMP3, MMP11, PLAU, SERPINE1, SPP1 and VCAN) had high diagnostic efficiency for ESCC according to receiver operating characteristic (ROC) curve analysis. The expression of all hub genes except MMP3 and PLAU was significantly related to macrophage infiltration. Univariate and multivariate regression analyses showed that a 7-gene signature constructed from the robust DEGs was useful for predicting ESCC prognosis. Our results might facilitate the exploration of potential targeted TME therapies and prognostic evaluation in ESCC.
Collapse
Affiliation(s)
- Zitong Feng
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Laboratory of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jingge Qu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Laboratory of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jinghui Liang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Laboratory of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yongmeng Li
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Laboratory of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jin Jiang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Laboratory of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Huiying Zhang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Hui Tian
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
50
|
Satpathy S, Krug K, Jean Beltran PM, Savage SR, Petralia F, Kumar-Sinha C, Dou Y, Reva B, Kane MH, Avanessian SC, Vasaikar SV, Krek A, Lei JT, Jaehnig EJ, Omelchenko T, Geffen Y, Bergstrom EJ, Stathias V, Christianson KE, Heiman DI, Cieslik MP, Cao S, Song X, Ji J, Liu W, Li K, Wen B, Li Y, Gümüş ZH, Selvan ME, Soundararajan R, Visal TH, Raso MG, Parra ER, Babur Ö, Vats P, Anand S, Schraink T, Cornwell M, Rodrigues FM, Zhu H, Mo CK, Zhang Y, da Veiga Leprevost F, Huang C, Chinnaiyan AM, Wyczalkowski MA, Omenn GS, Newton CJ, Schurer S, Ruggles KV, Fenyö D, Jewell SD, Thiagarajan M, Mesri M, Rodriguez H, Mani SA, Udeshi ND, Getz G, Suh J, Li QK, Hostetter G, Paik PK, Dhanasekaran SM, Govindan R, Ding L, Robles AI, Clauser KR, Nesvizhskii AI, Wang P, Carr SA, Zhang B, Mani DR, Gillette MA. A proteogenomic portrait of lung squamous cell carcinoma. Cell 2021; 184:4348-4371.e40. [PMID: 34358469 PMCID: PMC8475722 DOI: 10.1016/j.cell.2021.07.016] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/26/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.
Collapse
Affiliation(s)
- Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Pierre M Jean Beltran
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Yongchao Dou
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan T Lei
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric J Jaehnig
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Erik J Bergstrom
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Vasileios Stathias
- Sylvester Comprehensive Cancer Center and Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Karen E Christianson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Song Cao
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yize Li
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Myvizhi Esai Selvan
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tanvi H Visal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maria G Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Özgün Babur
- Computer Science Department, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Tobias Schraink
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | | | - Houxiang Zhu
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Chia-Kuei Mo
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Chen Huang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Stephan Schurer
- Sylvester Comprehensive Cancer Center and Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Namrata D Udeshi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - James Suh
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA
| | | | - Paul K Paik
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Ramaswamy Govindan
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Li Ding
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02115, USA.
| |
Collapse
|