1
|
Jaber S, Eldawra E, Rakotopare J, Simeonova I, Lejour V, Gabriel M, Cañeque T, Volochtchouk V, Licaj M, Fajac A, Rodriguez R, Morillon A, Bardot B, Toledo F. Oncogenic and teratogenic effects of Trp53Y217C, an inflammation-prone mouse model of the human hotspot mutant TP53Y220C. eLife 2025; 13:RP102434. [PMID: 40223808 PMCID: PMC11996178 DOI: 10.7554/elife.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Missense 'hotspot' mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.
Collapse
Affiliation(s)
- Sara Jaber
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Eliana Eldawra
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Iva Simeonova
- Chromatin Dynamics, Institut Curie, CNRS UMR3664, Sorbonne University, PSL UniversityParisFrance
| | - Vincent Lejour
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Marc Gabriel
- Non Coding RNA, Epigenetic and Genome Fluidity, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Tatiana Cañeque
- Chemical Biology, Institut Curie, CNRS UMR3666, INSERM U1143, PSL UniversityParisFrance
| | - Vitalina Volochtchouk
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Monika Licaj
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Anne Fajac
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Raphaël Rodriguez
- Chemical Biology, Institut Curie, CNRS UMR3666, INSERM U1143, PSL UniversityParisFrance
| | - Antonin Morillon
- Non Coding RNA, Epigenetic and Genome Fluidity, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
| | - Boris Bardot
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
- Signaling and Neural Crest Development, Institut Curie, CNRS UMR3347, INSERM U1021, Université Paris-Saclay, PSL UniversityOrsayFrance
| | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, CNRS UMR3244, Sorbonne University, PSL UniversityParisFrance
- Hematopoietic and Leukemic Development, Centre de Recherche Saint-Antoine, INSERM UMRS938, Sorbonne UniversityParisFrance
| |
Collapse
|
2
|
Dong Y, Sheng G, Chen W. TPX2 knockdown mediates p53 activation to induce autophagy and apoptosis for anti-colorectal cancer effects. J Recept Signal Transduct Res 2025:1-13. [PMID: 40116489 DOI: 10.1080/10799893.2025.2470180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/10/2025] [Accepted: 02/16/2025] [Indexed: 03/23/2025]
Abstract
Colorectal cancer (CRC) exhibits high morbidity and mortality worldwide. Targeting protein for Xenopus kinesin-like protein 2 (TPX2) impacts various cancers; however, mechanism of TPX2 in CRC remains unclear. Xenograft nude mouse models were constructed by subcutaneous injection of HCT116 cells with sh-NC, sh-TPX2, OE-NC, and OE-TPX2 transfection. Following the test of tumor growth, immunohistochemistry and TUNEL staining were done. In vitro, HCT116, RKO, and SW480 cells were divided into sh-NC, sh-TPX2, and sh-TPX2 + 3-methyladenine (3-MA, autophagy inhibitor) groups. Further, sh-p53 and rapamycin (RA, autophagy agonist) were added in HCT116 cells. EdU staining, flow cytometry, transparent electron microscopy, and Western blot were performed. Comparing with sh-NC group, sh-TPX2 inhibited tumor growth and Ki67 expression, and increased LC3-II expression and apoptosis, whereas OE-TPX2 group presented an opposite trend. In vitro, HCT116 and RKO cells in sh-TPX2 group enhanced apoptosis and LC3 II/LC3 I expression, and inhibited proliferation and P62 expression, which were reversed after further 3-MA intervention. The above results were not found in SW480 cells. Moreover, compared to sh-TPX2 group, sh-TPX2 + RA group enhanced apoptosis and autophagy, and suppressed the proliferation of HCT116 cells, which were reversed following further sh-p53 intervention. Therefore, sh-TPX2 mediated p53 activation to induce autophagy for anti-CRC effects, providing new ideas for CRC treatment.
Collapse
Affiliation(s)
- Yunfei Dong
- Department of Anorectal, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Guixian Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbin Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Thoenen E, Ranjan A, Parrales A, Nishikawa S, Dixon DA, Oka S, Iwakuma T. Suppression of stress granule formation is a vulnerability imposed by mutant p53. Nat Commun 2025; 16:2365. [PMID: 40064891 PMCID: PMC11894096 DOI: 10.1038/s41467-025-57539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Missense mutations in the TP53 (p53) gene have been linked to malignant progression. However, our in-silico analyses reveal that hepatocellular carcinoma (HCC) patients with mutant p53 (mutp53) have better overall survival compared to those with p53-null (p53null) HCC, unlike other cancer types. Given the historical use of sorafenib (SOR) monotherapy for advanced HCC, we hypothesize that mutp53 increases sensitivity to SOR, a multikinase inhibitor that induces endoplasmic reticulum (ER) stress. Here we show that mutp53 inhibits stress granule (SG) formation by binding to an ER stress sensor, PKR-like ER kinase (PERK), and a key SG component, GAP SH3 domain-binding protein 1 (G3BP1), contributing to increased sensitivity of SG-competent cells and xenografts to ER stress inducers including SOR. Our study identifies a unique vulnerability imposed by mutp53, suggesting mutp53 as a biomarker for ER stress-inducing agents and highlighting the importance of SG inhibition for cancer treatment.
Collapse
Affiliation(s)
- Elizabeth Thoenen
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Atul Ranjan
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Alejandro Parrales
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Shigeto Nishikawa
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Research Institute, Kansas City, MO, USA
| | - Dan A Dixon
- Department of Biochemistry and Molecular Biology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sugako Oka
- Faculty of Medical Science, Kyushu University, Fukuoka, Japan
| | - Tomoo Iwakuma
- Department of Pediatrics, Division of Hematology & Oncology, Children's Mercy Research Institute, Kansas City, MO, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
4
|
Ruzzo A, Graziano F, Palladino S, Fischer NW, Catalano V, Giordani P, Malkin D, Tamburrano T, Patriti A, Petrelli F, Sarti D, Chiari R. Clinical impact of TP53 functional mutations in patients with metastatic colorectal cancer treated with bevacizumab and chemotherapy. Oncologist 2025; 30:oyae277. [PMID: 39436921 PMCID: PMC11954512 DOI: 10.1093/oncolo/oyae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Clinical and experimental studies indicate that the tumor protein p53 (TP53) gene loss of function due to missense mutations (MMs) may confer sensitivity to anti-angiogenics. This effect seems to be linked to cross-talk mechanisms among TP53, vascular endothelial growth factor (VEGF), and VEGF receptors. We investigated whether specific TP53 MMs are associated with clinical outcomes of patients with metastatic colorectal cancer (mCRC) treated with first-line chemotherapy plus Bevacizumab. The study focused on KRAS-mutated, liver-only mCRC cases as a homogeneous subgroup that may represent a relevant setting for exploring this association. MATERIALS AND METHODS MMs were identified on primary tumors. MMs were classified by mutant-specific residual transcriptional activity scores (TP53RTAS) as transcriptionally inactive (TP53inactive = TP53RTAS 0%) or active (TP53active = TP53RTAS ≥ 1%) and used for stratifying patients in progression-free survival (PFS), response rate, and overall survival (OS) analyses. RESULTS The study population consisted of 62 patients. MMs were found in 39 cases (62%) with 16 having TP53inactive and 23 TP53active MMs. Patients with TP53inactive MMs showed better PFS in comparison with the remaining groups (wild-type and TP53active). This effect was retained in the multivariate model. A similar clinical impact was observed in the OS analysis. There was a significant difference in the overall response rate and rate of post-treatment resection of liver metastases between the TP53inactive and the wild-type or TP53active MMs cases. CONCLUSIONS Specific TP53 MMs may identify sub-groups of patients who benefit from Bevacizumab-based systemic therapy and these findings could lead to novel tailored treatment strategies in this setting.
Collapse
Affiliation(s)
- Annamaria Ruzzo
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy
| | | | - Silvia Palladino
- Department of Biomolecular Sciences, University of Urbino, 61029 Urbino, Italy
| | - Nicholas W Fischer
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
| | | | | | - David Malkin
- Genetics & Genome Biology Program, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, M5G 0A4, Canada
- Division of Hematology-Oncology, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
- Department of Pediatrics, The Hospital for Sick Children, Toronto, M5G 0A4, Canada
| | | | | | | | | | - Rita Chiari
- Medical Oncology Unit, AST1, 61121 Pesaro, Italy
| |
Collapse
|
5
|
Du X, Zheng J, Lu X, Zhang Y. A Truncated Mutation of TP53 Promotes Chemoresistance in Tongue Squamous Cell Carcinoma. Int J Mol Sci 2025; 26:2353. [PMID: 40076972 PMCID: PMC11900931 DOI: 10.3390/ijms26052353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Tongue squamous cell carcinoma (TSCC), a subtype of head and neck squamous cell carcinoma, is characterized by frequent chemoresistance. Genetic mutations commonly observed in TSCC play a critical role in malignant progression; thus, elucidating their functional significance is essential for developing effective treatment strategies. To more accurately investigate the relationship between mutations and chemoresistance, we established low-passage TSCC cells, CTSC-1, obtained from a chemoresistant patient, and CTSC-2, from a treatment-naïve patient. Sanger sequencing revealed a specific TP53 mutation (Q331*) in CTSC-1, leading to the loss of the tetramerization and C-terminal regulatory domains. Notably, CTSC-1 cells harboring TP53-Q331* and CTSC-2 cells with TP53 knockout that have been engineered to ectopically express TP53-Q331* exhibit enhanced chemoresistance and increased cancer stem cell-like properties. Mechanistically, TP53-Q331* upregulates the expression of inhibitor of DNA binding 2 (ID2), which is crucial for maintaining the stemness of TSCC cells. Subsequently, ID2 activates the expression of nucleotide excision repair (NER) pathway-related genes ERCC4 and ERCC8, thereby enhancing the chemoresistance in TSCC. In conclusion, our study demonstrates that the TP53-Q331* mutation enhances TSCC chemoresistance through an ID2-mediated NER pathway, providing a potential prognostic marker and therapeutic target for TSCC chemotherapy resistance.
Collapse
Affiliation(s)
| | | | | | - Yan Zhang
- MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.D.); (J.Z.); (X.L.)
| |
Collapse
|
6
|
Hwang J, Likasitwatanakul P, Deshmukh SK, Wu S, Kwon JJ, Toye E, Moline D, Evans MG, Elliott A, Passow R, Luo C, John E, Gandhi N, McKay RR, Heath EI, Nabhan C, Reizine N, Orme JJ, Domingo Domenech JM, Sartor O, Baca SC, Dehm SM, Antonarakis ES. Structurally Oriented Classification of FOXA1 Alterations Identifies Prostate Cancers with Opposing Clinical Outcomes and Distinct Molecular and Immunologic Subtypes. Clin Cancer Res 2025; 31:936-948. [PMID: 39745364 PMCID: PMC11873805 DOI: 10.1158/1078-0432.ccr-24-3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/06/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025]
Abstract
PURPOSE Around 10% to 15% of prostate cancers harbor recurrent aberrations in the Forkhead Box A1 gene, FOXA1, whereby the alteration type and the effect on the forkhead (FKH) domain affect protein function. We developed a FOXA1 classification system to inform clinical management. EXPERIMENTAL DESIGN A total of 5,014 prostate cancer samples were examined using whole-exome and -transcriptome sequencing from the Caris Life Sciences database. We denoted class 1 FOXA1 alterations as missense and in-frame insertions/deletions with subclasses oriented with respect to the FKH domain. These were in the first part of the FKH domain [class 1A: amino acids (AA) 168-246], within the Wing2 region of FKH (class 1B: AA 247-269), or outside FKH (class 1C: AA 1-167, 270+). Two hotspot missense mutations at R219 were denoted class 2. Class 3 included predicted truncating mutations with subclasses partitioned based on the FKH domain (class 3A: AA 1-269 and class 3B: AA 270+). Class 4 represented FOXA1 amplifications. Real-world overall survival and therapy outcomes were determined from insurance claims. RESULTS FOXA1 alterations did not influence survival when considered in aggregate but had distinct prognostic effects when stratified by class. In primary prostate samples, class 1A alterations were associated with overall improved survival (HR, 0.57; P = 0.03); a similar trend was seen in metastatic biopsies with class 1B (HR, 0.84; P = 0.09). Conversely, in primary specimens, class 1C exhibited worse survival upon second-generation androgen receptor signaling inhibitor treatment (HR, 1.93; P < 0.001). Class 2 mutations (R219C/S) were enriched in neuroendocrine prostate cancers and were associated with overall poor survival (HR, 2.05; P < 0.001) and worse outcomes to first-line androgen-deprivation therapies (HR, 2.5; P < 0.001). Class 3A alterations indicated improved survival (HR, 0.70; P = 0.01), whereas class 3B alterations portended poor outcomes (HR, 1.50; P < 0.001). Amplifications (class 4) indicated poor outcomes in metastatic samples (HR, 1.48; P = 0.02). Molecularly, different FOXA1 alteration classes harbored distinct mutational and immunologic features as well as unique transcriptional programs. Finally, relative to European Americans, African Americans had increased class 1C alterations, whereas Asian/Pacific Islander patients had increased class 1B alterations. CONCLUSIONS FOXA1 alterations should not be interpreted in aggregate, as different classes are associated with divergent molecular features and clinical outcomes. Our revised classification schema facilitates clinical decision-making for patients with prostate cancer and uncovers important racial differences.
Collapse
Affiliation(s)
- Justin Hwang
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Pornlada Likasitwatanakul
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Dana Farber Cancer Institute, Boston, Massachusetts
- Department of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Sharon Wu
- Department of Medical Affairs, CarisLifeSciences, Irving, Texas
| | - Jason J. Kwon
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Eamon Toye
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Moline
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Mark G. Evans
- Department of Medical Affairs, CarisLifeSciences, Irving, Texas
| | - Andrew Elliott
- Department of Medical Affairs, CarisLifeSciences, Irving, Texas
| | - Rachel Passow
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Christine Luo
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Emily John
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Nishant Gandhi
- Department of Medical Affairs, CarisLifeSciences, Irving, Texas
| | - Rana R. McKay
- University of California San Diego, San Diego, California
| | | | - Chadi Nabhan
- Department of Medical Affairs, CarisLifeSciences, Irving, Texas
| | | | | | | | | | | | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| | - Emmanuel S. Antonarakis
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, Minnesota
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, Minnesota
| |
Collapse
|
7
|
Kim HY, Shin S, Lee JM, Kim IS, Kim B, Kim HJ, Choi YJ, Bae B, Kim Y, Ji E, Kim H, Kim H, Lee JS, Chang YH, Kim HK, Lee JY, Yu S, Kim M, Cho YU, Jang S, Kim M. TP53 Mutation Status in Myelodysplastic Neoplasm and Acute Myeloid Leukemia: Impact of Reclassification Based on the 5th WHO and International Consensus Classification Criteria: A Korean Multicenter Study. Ann Lab Med 2025; 45:160-169. [PMID: 39497415 PMCID: PMC11788706 DOI: 10.3343/alm.2024.0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/05/2024] [Accepted: 10/24/2024] [Indexed: 01/24/2025] Open
Abstract
Background TP53 mutations are associated with poor prognosis in myelodysplastic neoplasm (MDS) and AML. The updated 5th WHO classification and International Consensus Classification (ICC) categorize TP53-mutated MDS and AML as unique entities. We conducted a multicenter study in Korea to investigate the characteristics of TP53-mutated MDS and AML, focusing on diagnostic aspects based on updated classifications. Methods This study included patients aged ≥ 18 yrs who were diagnosed as having MDS (N=1,244) or AML (N=2,115) at six institutions. The results of bone marrow examination, cytogenetic studies, and targeted next-generation sequencing, including TP53, were collected and analyzed. Results TP53 mutations were detected in 9.3% and 9.2% of patients with MDS and AML, respectively. Missense mutation was the most common, with hotspot codons R248/R273/G245/Y220/R175/C238 accounting for 25.4% of TP53 mutations. Ten percent of patients had multiple TP53 mutations, and 78.4% had a complex karyotype. The median variant allele frequency (VAF) of TP53 mutations was 41.5%, with a notable difference according to the presence of a complex karyotype. According to the 5th WHO classification and ICC, the multi-hit TP53 mutation criteria were met in 58.6% and 75% of MDS patients, respectively, and the primary determinants were a TP53 VAF >50% for the 5th WHO classification and the presence of a complex karyotype for the ICC. Conclusions Collectively, we elucidated the molecular genetic characteristics of patients with TP53-mutated MDS and AML, highlighting key factors in applying TP53 mutation-related criteria in updated classifications, which will aid in establishing diagnostic strategies.
Collapse
Affiliation(s)
- Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong-Mi Lee
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In-Suk Kim
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Boram Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yu Jeong Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Byunggyu Bae
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eunhui Ji
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Hyerin Kim
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Korea
| | - Hyerim Kim
- Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Korea
| | - Jee-Soo Lee
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Hwan Chang
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ja Young Lee
- Department of Laboratory Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Shinae Yu
- Department of Laboratory Medicine, Inje University Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Miyoung Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Uk Cho
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
8
|
Letai A, de The H. Conventional chemotherapy: millions of cures, unresolved therapeutic index. Nat Rev Cancer 2025; 25:209-218. [PMID: 39681637 DOI: 10.1038/s41568-024-00778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
In recent decades, millions of patients with cancer have been cured by chemotherapy alone. By 'cure', we mean that patients with cancers that would be fatal if left untreated receive a time-limited course of chemotherapy and their cancer disappears, never to return. In an era when hundreds of thousands of cancer genomes have been sequenced, a remarkable fact persists: in most patients who have been cured, we still do not fully understand the mechanisms underlying the therapeutic index by which the tumour cells are killed, but normal cells are somehow spared. In contrast, in more recent years, patients with cancer have benefited from targeted therapies that usually do not cure but whose mechanisms of therapeutic index are, at least superficially, understood. In this Perspective, we will explore the various and sometimes contradictory models that have attempted to explain why chemotherapy can cure some patients with cancer, and what gaps in our understanding of the therapeutic index of chemotherapy remain to be filled. We will summarize principles which have benefited curative conventional chemotherapy regimens in the past, principles which might be deployed in constructing combinations that include modern targeted therapies.
Collapse
Affiliation(s)
- Anthony Letai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Hugues de The
- College de France, CIRB, INSERM, CNRS, Université PSL Paris, Paris, France.
- Hematology Laboratory, St Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France.
- IRSL, INSERM, CNRS, Université Paris-Cité, Paris, France.
| |
Collapse
|
9
|
Rahmé R, Resnick-Silverman L, Anguiano V, Campbell MJ, Fenaux P, Manfredi JJ. Mutant p53 regulates a distinct gene set by a mode of genome occupancy that is shared with wild type. EMBO Rep 2025; 26:1315-1343. [PMID: 39875582 PMCID: PMC11893899 DOI: 10.1038/s44319-025-00375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/30/2025] Open
Abstract
To directly examine the interplay between mutant p53 or Mdm2 and wild type p53 in gene occupancy and expression, an integrated RNA-seq and ChIP-seq analysis was performed in vivo using isogenically matched mouse strains. Response to radiation was used as an endpoint to place findings in a biologically relevant context. Unexpectedly, mutant p53 and Mdm2 only inhibit a subset of wild type p53-mediated gene expression. In contrast to a dominant-negative or inhibitory role, the presence of either mutant p53 or Mdm2 actually enhances the occupancy of wild type p53 on many canonical targets. The C-terminal 19 amino acids of wild type p53 suppress the p53 response allowing for survival at sublethal doses of radiation. Further, the p53 mutant 172H is shown to occupy genes and regulate their expression via non-canonical means that are shared with wild type p53. This results in the heterozygous 172H/+ genotype having an expanded transcriptome compared to wild type p53 + /+.
Collapse
Affiliation(s)
- Ramy Rahmé
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Ecole Doctorale Hématologie-Oncogenèse-Biothérapies, Université de Paris, Paris, France
| | - Lois Resnick-Silverman
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vincent Anguiano
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Pierre Fenaux
- Institut de Recherche Saint Louis (IRSL), INSERM U1131, Université de Paris, Paris, France
- Service Hématologie Seniors, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - James J Manfredi
- Department of Oncological Sciences and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
10
|
Butera A, Amelio I. Deciphering the significance of p53 mutant proteins. Trends Cell Biol 2025; 35:258-268. [PMID: 38960851 DOI: 10.1016/j.tcb.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Mutations in the p53 gene compromise its role as guardian of genomic integrity, yielding predominantly missense p53 mutant proteins. The gain-of-function hypothesis has long suggested that these mutant proteins acquire new oncogenic properties; however, recent studies challenge this notion, indicating that targeting these mutants may not impact the fitness of cancer cells. Mounting evidence indicates that tumorigenesis involves a cooperative interplay between driver mutations and cellular state, influenced by developmental stage, external insults, and tissue damage. Consistently, the behavior and properties of p53 mutants are altered by the context. This article aims to provide a balanced summary of the evolving evidence regarding the contribution of p53 mutants in the biology of cancer while contemplating alternative frameworks to decipher the complexity of p53 mutants within their physiological contexts.
Collapse
Affiliation(s)
- Alessio Butera
- Chair of Systems Toxicology, University of Konstanz, Konstanz, Germany
| | - Ivano Amelio
- Chair of Systems Toxicology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
11
|
Ning D, Deng Y, Tian SZ. Chromatin structure and gene transcription of recombinant p53 adenovirus vector within host. Front Mol Biosci 2025; 12:1562357. [PMID: 40092712 PMCID: PMC11906465 DOI: 10.3389/fmolb.2025.1562357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction The recombinant human p53 adenovirus (Ad-p53) offers a promising approach for cancer therapy, yet its chromatin structure and effects on host chromatin organization and gene expression are not fully understood. Methods In this study, we employed in situ ChIA-PET to investigate the colorectal cancer cell line HCT116 with p53 knockout, comparing them to cells infected with the adenovirus-vector expressing p53. We examined alterations in chromatin interactions and gene expression following treatment with the anti-cancer drug 5-fluorouracil (5-FU). Results Our results indicate that Ad-p53 forms a specific chromatin architecture within the vector and mainly interacts with repressive or inactive regions of host chromatin, without significantly affecting the expression of associated genes. Additionally, Ad-p53 does not affect topologically associating domains (TADs) or A/B compartments in the host genome. Discussion These findings suggest that while Ad-p53 boosts p53 expression, enhancing drug sensitivity without substantially altering host HCT116 chromatin architecture.
Collapse
Affiliation(s)
- Duo Ning
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yuqing Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Simon Zhongyuan Tian
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Li X, Zhao H. Targeting secretory autophagy in solid cancers: mechanisms, immune regulation and clinical insights. Exp Hematol Oncol 2025; 14:12. [PMID: 39893499 PMCID: PMC11786567 DOI: 10.1186/s40164-025-00603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025] Open
Abstract
Secretory autophagy is a classical form of unconventional secretion that integrates autophagy with the secretory process, relying on highly conserved autophagy-related molecules and playing a critical role in tumor progression and treatment resistance. Traditional autophagy is responsible for degrading intracellular substances by fusing autophagosomes with lysosomes. However, secretory autophagy uses autophagy signaling to mediate the secretion of specific substances and regulate the tumor microenvironment (TME). Cytoplasmic substances are preferentially secreted rather than directed toward lysosomal degradation, involving various selective mechanisms. Moreover, substances released by secretory autophagy convey biological signals to the TME, inducing immune dysregulation and contributing to drug resistance. Therefore, elucidating the mechanisms underlying secretory autophagy is essential for improving clinical treatments. This review systematically summarizes current knowledge of secretory autophagy, from initiation to secretion, considering inter-tumor heterogeneity, explores its role across different tumor types. Furthermore, it proposes future research directions and highlights unresolved clinical challenges.
Collapse
Affiliation(s)
- Xinyu Li
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang City, 110032, Liaoning Province, China.
| |
Collapse
|
13
|
Liang Z, Liu W, Cao M, Cui J, Lan J, Ding Y, Zhang T, Yang Z. Epigenetic regulation-mediated disorders in dopamine transporter endocytosis: A novel mechanism for the pathogenesis of Parkinson's disease. Theranostics 2025; 15:2250-2278. [PMID: 39990232 PMCID: PMC11840736 DOI: 10.7150/thno.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/30/2024] [Indexed: 02/25/2025] Open
Abstract
Mechanisms such as DNA methylation, histone modifications, and non-coding RNA regulation may impact the endocytosis of dopamine transporter (DAT) by influencing processes like neuronal survival, thereby contributing to the initiation and progression of Parkinson's Disease (PD). Some small molecule inhibitors or natural bioactive compounds have the potential to modulate epigenetic processes, thereby reversing induced pluripotent stem cells (iPSCs) reprogramming and abnormal differentiation, offering potential therapeutic effects for PD. Although no specific DNA modification enzyme directly regulates DAT endocytosis, enzymes such as DNA methyltransferases (DNMTs) may indirectly influence DAT endocytosis by regulating the expression of genes associated with this process. DNA modifications impact DAT endocytosis by modulating key signaling pathways, including the (protein kinase C) PKC and D2 receptor (D2R) pathways. Key enzymes involved in RNA modifications that influence DAT endocytosis include m6A methyltransferases and other related enzymes. This regulation impacts the synthesis and function of proteins involved in DAT endocytosis, thereby indirectly affecting the process itself. RNA modifications regulate DAT endocytosis through various indirect pathways, as well as histone modifications. Key enzymes influence the expression of genes associated with DAT endocytosis by modulating the chromatin's accessibility and compaction state. These enzymes control the expression of proteins involved in regulating endocytosis, promoting endosome formation, and facilitating recycling processes. Through the modulation exerted by these enzymes, the speed of DAT endocytosis and recycling patterns are indirectly regulated, establishing a crucial epigenetic control point for the regulation of neurotransmitter transport. Based on this understanding, we anticipate that targeting these processes could lead to favorable therapeutic effects for early PD pathogenesis.
Collapse
Affiliation(s)
- Ziqi Liang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Mian Cao
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore; Department of Physiology, National University of Singapore, Singapore, 169857, Singapore
| | - Jiajun Cui
- Department of Biochemistry, College of Medicine, Yichun University, Yichun, Jiangxi 336000, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, 169857, Singapore; Department of Physiology, National University of Singapore, Singapore, 169857, Singapore
- Department of General Surgery, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| |
Collapse
|
14
|
Funk JS, Klimovich M, Drangenstein D, Pielhoop O, Hunold P, Borowek A, Noeparast M, Pavlakis E, Neumann M, Balourdas DI, Kochhan K, Merle N, Bullwinkel I, Wanzel M, Elmshäuser S, Teply-Szymanski J, Nist A, Procida T, Bartkuhn M, Humpert K, Mernberger M, Savai R, Soussi T, Joerger AC, Stiewe T. Deep CRISPR mutagenesis characterizes the functional diversity of TP53 mutations. Nat Genet 2025; 57:140-153. [PMID: 39774325 PMCID: PMC11735402 DOI: 10.1038/s41588-024-02039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
The mutational landscape of TP53, a tumor suppressor mutated in about half of all cancers, includes over 2,000 known missense mutations. To fully leverage TP53 mutation status for personalized medicine, a thorough understanding of the functional diversity of these mutations is essential. We conducted a deep mutational scan using saturation genome editing with CRISPR-mediated homology-directed repair to engineer 9,225 TP53 variants in cancer cells. This high-resolution approach, covering 94.5% of all cancer-associated TP53 missense mutations, precisely mapped the impact of individual mutations on tumor cell fitness, surpassing previous deep mutational scan studies in distinguishing benign from pathogenic variants. Our results revealed even subtle loss-of-function phenotypes and identified promising mutants for pharmacological reactivation. Moreover, we uncovered the roles of splicing alterations and nonsense-mediated messenger RNA decay in mutation-driven TP53 dysfunction. These findings underscore the power of saturation genome editing in advancing clinical TP53 variant interpretation for genetic counseling and personalized cancer therapy.
Collapse
Affiliation(s)
- Julianne S Funk
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Maria Klimovich
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Ole Pielhoop
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Pascal Hunold
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Anna Borowek
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Maxim Noeparast
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Michelle Neumann
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Katharina Kochhan
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Nastasja Merle
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Imke Bullwinkel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Michael Wanzel
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | | | - Julia Teply-Szymanski
- Institute of Pathology, Philipps-University, Marburg University Hospital, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps-University, Marburg, Germany
| | - Tara Procida
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Marek Bartkuhn
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig-University, Giessen, Germany
| | - Katharina Humpert
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
- Bioinformatics Core Facility, Philipps-University, Marburg, Germany
| | - Marco Mernberger
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany
| | - Rajkumar Savai
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Lung Microenvironmental Niche in Cancerogenesis, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thierry Soussi
- Centre de Recherche Saint-Antoine UMRS_938, INSERM, Sorbonne Université, Paris, France
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Frankfurt am Main, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University, Marburg, Germany.
- Genomics Core Facility, Philipps-University, Marburg, Germany.
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany.
- Bioinformatics Core Facility, Philipps-University, Marburg, Germany.
- Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
15
|
Janic A, Abad E, Amelio I. Decoding p53 tumor suppression: a crosstalk between genomic stability and epigenetic control? Cell Death Differ 2025; 32:1-8. [PMID: 38379088 PMCID: PMC11742645 DOI: 10.1038/s41418-024-01259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Genomic instability, a hallmark of cancer, is a direct consequence of the inactivation of the tumor suppressor protein p53. Genetically modified mouse models and human tumor samples have revealed that p53 loss results in extensive chromosomal abnormalities, from copy number alterations to structural rearrangements. In this perspective article we explore the multifaceted relationship between p53, genomic stability, and epigenetic control, highlighting its significance in cancer biology. p53 emerges as a critical regulator of DNA repair mechanisms, influencing key components of repair pathways and directly participating in DNA repair processes. p53 role in genomic integrity however extends beyond its canonical functions. p53 influences also epigenetic landscape, where it modulates DNA methylation and histone modifications. This epigenetic control impacts the expression of genes involved in tumor suppression and oncogenesis. Notably, p53 ability to ensure cellular response to DNA demethylation contributes to the maintenance of genomic stability by preventing unscheduled transcription of repetitive non-coding genomic regions. This latter indicates a causative relationship between the control of epigenetic stability and the maintenance of genomic integrity in p53-mediated tumor suppression. Understanding these mechanisms offers promising avenues for innovative therapeutic strategies targeting epigenetic dysregulation in cancer and emphasizes the need for further research to unravel the complexities of this relationship. Ultimately, these insights hold the potential to transform cancer treatment and prevention strategies.
Collapse
Affiliation(s)
- Ana Janic
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Etna Abad
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ivano Amelio
- Chair for Systems Toxicology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
16
|
Guo L, Chen W, Yue J, Gao M, Zhang J, Huang Y, Xiong H, Li X, Wang Y, Yuan Y, Chen L, Fei F, Xu R. Unlocking the potential of LHPP: Inhibiting glioma growth and cell cycle via the MDM2/p53 pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167509. [PMID: 39277057 DOI: 10.1016/j.bbadis.2024.167509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
The recurrence of glioma after treatment has remained an intractable problem for many years. Recently, numerous studies have explored the pivotal role of the mouse double minute 2 (MDM2)/p53 pathway in cancer treatment. Lysine phosphate phosphohistidine inorganic pyrophosphate phosphatase (LHPP), a newly discovered tumor suppressor, has been confirmed in numerous studies on tumors, but its role in glioma remains poorly understood. Expression matrices in The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases were analyzed using gene set enrichment analysis (GSEA), revealing significant alterations in the p53 pathway among glioma patients with high LHPP expression. The overexpression of LHPP in glioma cells resulted in a reduction in cell proliferation, migration, and invasive ability, as well as an increase in apoptosis and alterations to the cell cycle. The present study has identified a novel inhibitory mechanism of LHPP against glioma, both in vivo and in vitro. The results demonstrate that LHPP exerts anti-glioma effects via the MDM2/p53 pathway. These findings may offer a new perspective for the treatment of glioma in the clinic.
Collapse
Affiliation(s)
- Lili Guo
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjin Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jiong Yue
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Gao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jin Zhang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yukai Huang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinda Li
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yangyang Wang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Yuan
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Longyi Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Fan Fei
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
17
|
David BBL, Silva SSA, Dinoa V, Diniz T, Pereira E, Bustamante C, Garicochea B. New Germline TP53 Variant Detected After Radiotherapy-Induced Angiosarcoma of the Chest Wall in a Previously Treated Breast Cancer Patient: A Case Report and Review of Li-Fraumeni Syndrome and Radiotherapy-Induced Sarcoma. Case Rep Oncol Med 2024; 2024:6640468. [PMID: 39734593 PMCID: PMC11671632 DOI: 10.1155/crom/6640468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/07/2024] [Indexed: 12/31/2024] Open
Abstract
Li-Fraumeni syndrome (LFS) is one of the most common hereditary cancer predisposition syndromes in Brazil. The high frequency of the syndrome is due to a founding variant (R337H) in the country. LFS is characterized by a wide variety of malignant phenotypes. Despite the great epidemiological importance of the R337H variant, the frequency of other types of pathogenic variants is like other populations, with the majority of these being missense variants. There is strong evidence that radiotherapy is associated with secondary sarcomas, including angiosarcomas, and this finding is especially true for LFS patients. Angiosarcoma is not described as overrepresented in individuals with LFS, except in patients submitted to radiotherapy. Germline testing in all breast cancer patients under 65 will reveal many germline mutations in TP53 without a family history of cancers associated with the syndrome. We present a case of a previously undescribed pathogenic variant in TP53 (c788del, pAns263llefs∗82) in a patient with no family history of cancer, with a previous diagnosis of breast carcinoma treated with radiotherapy, who developed angiosarcoma after a few years leading to germline testing. The presence of angiosarcoma in a radiotherapy bed should raise suspicion for LFS. The recent recommendation of testing breast cancer patients under the age of 65, even without any family history, can be a source of discoveries of new mutations and assist in therapeutic decisions.
Collapse
Affiliation(s)
- Bruna Bianca Lopes David
- Medical Oncology Department, Oncoclinicas Group, Rio de Janeiro, Brazil
- Clinical Research Department, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | - Vanessa Dinoa
- Radiology Department/Surgical Orthopedics Department, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro, Brazil
| | - Tadeu Diniz
- Radiology Department/Surgical Orthopedics Department, Rio de Janeiro Federal University (UFRJ), Rio de Janeiro, Brazil
- Surgical Orthopedics Department, National Institute of Traumatology and Orthopedics (INTO), Rio de Janeiro, Brazil
| | - Emilio Pereira
- Pathology Department, Oncoclinicas Group, São Paulo, Brazil
| | | | | |
Collapse
|
18
|
Nakajima R, Zhou Y, Shirasawa M, Nishimura N, Zhao L, Fikriyanti M, Kamiya Y, Iwanaga R, Bradford AP, Shinmyozu K, Nishibuchi G, Nakayama JI, Kurayoshi K, Araki K, Ohtani K. DEAD/H Box 5 (DDX5) Augments E2F1-Induced Cell Death Independent of the Tumor Suppressor p53. Int J Mol Sci 2024; 25:13251. [PMID: 39769018 PMCID: PMC11675670 DOI: 10.3390/ijms252413251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
In almost all cancers, the p53 pathway is disabled and cancer cells survive. Hence, it is crucially important to induce cell death independent of p53 in the treatment of cancers. The transcription factor E2F1 is controlled by binding of the tumor suppressor pRB, and induces apoptosis by activating the ARF gene, an upstream activator of p53, when deregulated from pRB by loss of pRB function. Deregulated E2F1 can also induce apoptosis, independent of p53, via other targets such as TAp73 and BIM. We searched for novel E2F1-interacting proteins and identified the RNA helicase DEAD/H box 5 (DDX5), which also functions as a transcriptional coactivator. In contrast to the reported growth-promoting roles of DDX5, we show that DDX5 suppresses cell growth and survival by augmentation of deregulated E2F1 activity. Over-expression of DDX5 enhanced E2F1 induction of tumor suppressor gene expression and cell death. Conversely, shRNA-mediated knockdown of DDX5 compromised both. Moreover, DDX5 modulated E2F1-mediated cell death independent of p53, for which DDX5 also functions as a coactivator. Since p53 function is disabled in almost all cancers, these results underscore the roles of DDX5 in E2F1-mediated induction of cell death, independent of p53, and represent novel aspects for the treatment of p53-disabled cancer cells.
Collapse
Affiliation(s)
- Rinka Nakajima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Yaxuan Zhou
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Mashiro Shirasawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Naoyasu Nishimura
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Lin Zhao
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Mariana Fikriyanti
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Yuki Kamiya
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| | - Ritsuko Iwanaga
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Andrew P. Bradford
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045, USA; (R.I.); (A.P.B.)
| | - Kaori Shinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe 650-0047, Hyogo, Japan;
| | - Gohei Nishibuchi
- Laboratory of Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Kyoto, Japan;
| | - Jun-ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki 444-8585, Aichi, Japan;
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, SOKENDAI, Okazaki 444-8585, Aichi, Japan
| | - Kenta Kurayoshi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Ishikawa, Japan;
| | - Keigo Araki
- Department of Morphological Biology, Ohu University School of Dentistry, 31-1 Misumido Tomitamachi, Koriyama 963-8611, Fukushima, Japan;
| | - Kiyoshi Ohtani
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda 669-1330, Hyogo, Japan; (R.N.); (Y.Z.); (M.S.); (N.N.); (L.Z.); (M.F.); (Y.K.)
| |
Collapse
|
19
|
Valenti F, Ganci F, Sacconi A, Lo Sardo F, D'Andrea M, Sanguineti G, Di Agostino S. Polo-like kinase 2 targeting as novel strategy to sensitize mutant p53-expressing tumor cells to anticancer treatments. J Mol Med (Berl) 2024; 102:1485-1501. [PMID: 39480521 DOI: 10.1007/s00109-024-02499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/01/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Polo-like kinase 2 (Plk2) belongs to a family of serine/threonine kinases, and it is involved in tumorigenesis of diverse kind of tissues. We previously reported that Plk2 gene was a transcriptional target of the mutant p53/NF-Y oncogenic complex. Plk2 protein can bind to and phosphorylate mutant p53 triggering an oncogenic autoregulatory feedback loop involved in cancer cell proliferation and chemoresistance. In this study, we aimed to assess whether the specific inhibition of Plk2 kinase activity by the selective TC-S 7005 inhibitor could decrease cell proliferation and migration inhibiting mutant p53 phosphorylation, thus disarming its oncogenic potential. We found that the Plk2 inhibitor treatment sensitized the cells to the irradiation and chemotherapy drugs, thereby overcoming the mutant p53-dependent chemoresistance. Taken together, we provided results that Plk2 could be considered a tractable pharmacological target for cancers expressing mutant p53 proteins. The combined treatment with conventional chemotherapeutic drugs and Plk2 inhibitors may represent a new candidate intervention approach, which may be considered for improving tumor cell sensitivity to DNA damaging drugs. KEY MESSAGES : Missense mutations are present in the TP53 gene in about half of all human cancers and correlate with poor patient outcome. Mutant p53 proteins exert gain of function (GOF) activities in tumor cells such as increased proliferation, genomic instability and resistance to therapies. Polo-like kinase 2 (PLK2) binds and phosphorylates mutant p53 protein strengthening its GOF activities. Pharmacologically targeting PLK2 weakens mutant p53 proteins and sensitizes tumor cells to therapeutic treatments.
Collapse
Affiliation(s)
- Fabio Valenti
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Federica Ganci
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Andrea Sacconi
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Lo Sardo
- Translational Oncology Research Unit, Department of Diagnostic Research and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144, Rome, Italy
| | - Marco D'Andrea
- Laboratory of Medical Physics and Expert Systems, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giuseppe Sanguineti
- Department of Radiation Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Di Agostino
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
20
|
Ma Q, Liu Y, Zhao H, Guo Y, Sun W, Hu R. Variation characteristics and clinical significance of TP53 in patients with myeloid neoplasms. Hematology 2024; 29:2387878. [PMID: 39140716 DOI: 10.1080/16078454.2024.2387878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Objectives: MDS and AML characterized by TP53 variations have a poor prognosis in general. However, specifically, differences in prognosis have also been observed in patients with different TP53 variants and VAFs.Methods: Here, we retrospectively analyzed datasets of patients with MDS, MPN, and AML who underwent targeted DNA sequencing from February 2018 to December 2023, and patients with reportable TP53 variations were screened. Demographic data and clinical data were collected, and the relationship between TP53 alterations and patient prognosis (AML/MDS) was analyzed using the cBioPortal and Kaplan-Meier Plotter databases. The relationship between the VAFs of TP53 variations and prognoses was analyzed using data from the present study.Results: Sixty-two variants of TP53 were identified in 58 patients. We mainly identified single mutations (79.31%, 46/58), followed by double (17.24%, 10/58) and triple (3.45%, 2/58) mutations. The variations were mainly enriched in exon4-exon8 of TP53. Missense (72.58%, 45/62) mutations were the main type of variations, followed by splice-site (9.68%, 6/62), nonsense (9.68%, 6/62), frameshift (6.45%, 4/62), and indel (1.61%, 1/62) mutations. In this study, p.Arg175His and p.Arg273His were high-frequency TP53 mutations, and DNMT3A and TET2 were commonly co-mutated genes in the three types of myeloid neoplasms; However, we reported some new TP53 variants in MPN that have not been found in the public database. Moreover, MDS or AML characterized by altered TP53 had a shorter OS than patients in the unaltered group (P<0.01), low TP53 mRNA levels were associated with shorter OS in patients with AML (P<0.01). Data from our center further found higher VAF (≥10%) associated with shorter OS in patients with MDS (median 2.75 vs. 24 months) (P<0.01).Conclusion: TP53 mutations are mainly enriched in exon4-exon8, are missense and single mutations in myeloid neoplasms, and are associated with poor prognosis of MDS/AML, and higher VAF (≥10%) of TP53 mutations associated with a shorter OS in patients with MDS.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yan Liu
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hong Zhao
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yixian Guo
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Wanling Sun
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ronghua Hu
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
21
|
Caporali S, Butera A, Ruzza A, Zampieri C, Bantula' M, Scharsich S, Ückert AK, Celardo I, Kouzel IU, Leanza L, Gruber A, Montero J, D'Alessandro A, Brunner T, Leist M, Amelio I. Selective metabolic regulations by p53 mutant variants in pancreatic cancer. J Exp Clin Cancer Res 2024; 43:310. [PMID: 39587609 PMCID: PMC11590503 DOI: 10.1186/s13046-024-03232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Approximately half of all human cancers harbour mutations in the p53 gene, leading to the generation of neomorphic p53 mutant proteins. These mutants can exert gain-of-function (GOF) effects, potentially promoting tumour progression. However, the clinical significance of p53 GOF mutations, as well as the selectivity of individual variants, remains controversial and unclear. METHODS To elucidate the metabolic regulations and molecular underpinnings associated with the specific p53R270H and p53R172H mutant variants (the mouse equivalents of human p53R273H and p53R175H, respectively), we employed a comprehensive approach. This included integrating global metabolomic analysis with epigenomic and transcriptomic profiling in mouse pancreatic cancer cells. Additionally, we assessed metabolic parameters such as oxygen consumption rate and conducted analyses of proliferation and cell-cell competition to validate the biological impact of metabolic changes on pancreatic ductal adenocarcinoma (PDAC) phenotype. Our findings were further corroborated through analysis of clinical datasets from human cancer cohorts. RESULTS Our investigation revealed that the p53R270H variant, but not p53R172H, sustains mitochondrial function and energy production while also influencing cellular antioxidant capacity. Conversely, p53R172H, while not affecting mitochondrial metabolism, attenuates the activation of pro-tumorigenic metabolic pathways such as the urea cycle. Thus, the two variants selectively control different metabolic pathways in pancreatic cancer cells. Mechanistically, p53R270H induces alterations in the expression of genes associated with oxidative stress and reduction in mitochondrial respiration. In contrast, p53R172H specifically impacts the expression levels of enzymes involved in the urea metabolism. However, our analysis of cell proliferation and cell competition suggested that the expression of either p53R270H or p53R172H does not influence confer any selective advantage to this cellular model in vitro. Furthermore, assessment of mitochondrial priming indicated that the p53R270H-driven mitochondrial effect does not alter cytochrome c release or the apoptotic propensity of pancreatic cancer cells. CONCLUSIONS Our study elucidates the mutant-specific impact of p53R270H and p53R172H on metabolism of PDAC cancer cells, highlighting the need to shift from viewing p53 mutant variants as a homogeneous group of entities to a systematic assessment of each specific p53 mutant protein. Moreover, our finding underscores the importance of further exploring the significance of p53 mutant proteins using models that more accurately reflect tumor ecology.
Collapse
Affiliation(s)
- Sabrina Caporali
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alessio Butera
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alessia Ruzza
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Carlotta Zampieri
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, San Diego, CA, USA
| | - Marina Bantula'
- Department of Biomedical Sciences, Universitat de Barcelona, Casanova 143, Barcelona, 08036, Spain
| | - Sandra Scharsich
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anna-Katerina Ückert
- Chair for in Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Ivana Celardo
- Chair for in Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Ian U Kouzel
- Applied Bioinformatic Group, University of Konstanz, Constance, Germany
| | - Luigi Leanza
- Department of Biology, University of Padua, Padua, Italy
| | - Andreas Gruber
- Applied Bioinformatic Group, University of Konstanz, Constance, Germany
| | - Joan Montero
- Department of Biomedical Sciences, Universitat de Barcelona, Casanova 143, Barcelona, 08036, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | | | - Thomas Brunner
- Chair for in Biochemical Pharmacology, University of Konstanz, Constance, Germany
| | - Marcel Leist
- Chair for in Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Ivano Amelio
- Chair for Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
22
|
Sebastian RM, Patrick JE, Hui T, Amici DR, Giacomelli AO, Butty VL, Hahn WC, Mendillo ML, Lin YS, Shoulders MD. Dominant-negative TP53 mutations potentiated by the HSF1-regulated proteostasis network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621414. [PMID: 39554167 PMCID: PMC11565964 DOI: 10.1101/2024.11.01.621414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Protein mutational landscapes are sculpted by the impacts of the resulting amino acid substitutions on the protein's stability and folding or aggregation kinetics. These properties can, in turn, be modulated by the composition and activities of the cellular proteostasis network. Heat shock factor 1 (HSF1) is the master regulator of the cytosolic and nuclear proteostasis networks, dynamically tuning the expression of cytosolic and nuclear chaperones and quality control factors to meet demand. Chronic increases in HSF1 levels and activity are prominent hallmarks of cancer cells. One plausible explanation for this observation is that the consequent upregulation of proteostasis factors could biophysically facilitate the acquisition of oncogenic mutations. Here, we experimentally evaluate the impacts of chronic HSF1 activation on the mutational landscape accessible to the quintessential oncoprotein p53. Specifically, we apply quantitative deep mutational scanning of p53 to assess how HSF1 activation shapes the mutational pathways by which p53 can escape cytotoxic pressure conferred by the small molecule nutlin-3, which is a potent antagonist of the p53 negative regulator MDM2. We find that activation of HSF1 broadly increases the fitness of dominant-negative substitutions within p53. This effect of HSF1 activation was particularly notable for non-conservative, biophysically unfavorable amino acid substitutions within buried regions of the p53 DNA-binding domain. These results indicate that chronic HSF1 activation profoundly shapes the oncogenic mutational landscape, preferentially supporting the acquisition of cancer-associated substitutions that are biophysically destabilizing. Along with providing the first experimental and quantitative insights into how HSF1 influences oncoprotein mutational spectra, these findings also implicate HSF1 inhibition as a strategy to reduce the accessibility of mutations that drive chemotherapeutic resistance and metastasis.
Collapse
Affiliation(s)
- Rebecca M. Sebastian
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica E. Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tiffani Hui
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - David R. Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Vincent L. Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William C. Hahn
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marc L. Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, MA, USA
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
23
|
Qayoom H, Haq BU, Sofi S, Jan N, Jan A, Mir MA. Targeting mutant p53: a key player in breast cancer pathogenesis and beyond. Cell Commun Signal 2024; 22:484. [PMID: 39390510 PMCID: PMC11466041 DOI: 10.1186/s12964-024-01863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The p53 mutation is the most common genetic mutation associated with human neoplasia. TP53 missense mutations, which frequently arise early in breast cancer, are present in over thirty percent of breast tumors. In breast cancer, p53 mutations are linked to a more aggressive course of the disease and worse overall survival rates. TP53 mutations are mostly seen in triple-negative breast cancer, a very diverse kind of the disease. The majority of TP53 mutations originate in the replacement of individual amino acids within the p53 protein's core domain, giving rise to a variety of variations referred to as "mutant p53s." In addition to gaining carcinogenic qualities through gain-of-function pathways, these mutants lose the typical tumor-suppressive features of p53 to variable degrees. The gain-of-function impact of stabilized mutant p53 causes tumor-specific dependency and resistance to therapy. P53 is a prospective target for cancer therapy because of its tumor-suppressive qualities and the numerous alterations that it experiences in tumors. Phenotypic abnormalities in breast cancer, notably poorly differentiated basal-like tumors are frequently linked to high-grade tumors. By comparing data from cell and animal models with clinical outcomes in breast cancer, this study investigates the molecular mechanisms that convert gene alterations into the pathogenic consequences of mutant p53's tumorigenic activity. The study delves into current and novel treatment approaches aimed at targeting p53 mutations, taking into account the similarities and differences in p53 regulatory mechanisms between mutant and wild-type forms, as well.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Burhan Ul Haq
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Shazia Sofi
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Nusrat Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Asma Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India.
| |
Collapse
|
24
|
Nian Z, Dou Y, Shen Y, Liu J, Du X, Jiang Y, Zhou Y, Fu B, Sun R, Zheng X, Tian Z, Wei H. Interleukin-34-orchestrated tumor-associated macrophage reprogramming is required for tumor immune escape driven by p53 inactivation. Immunity 2024; 57:2344-2361.e7. [PMID: 39321806 DOI: 10.1016/j.immuni.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/29/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
As the most frequent genetic alteration in cancer, more than half of human cancers have p53 mutations that cause transcriptional inactivation. However, how p53 modulates the immune landscape to create a niche for immune escape remains elusive. We found that cancer stem cells (CSCs) established an interleukin-34 (IL-34)-orchestrated niche to promote tumorigenesis in p53-inactivated liver cancer. Mechanistically, we discovered that Il34 is a gene transcriptionally repressed by p53, and p53 loss resulted in IL-34 secretion by CSCs. IL-34 induced CD36-mediated elevations in fatty acid oxidative metabolism to drive M2-like polarization of foam-like tumor-associated macrophages (TAMs). These IL-34-orchestrated TAMs suppressed CD8+ T cell-mediated antitumor immunity to promote immune escape. Blockade of the IL-34-CD36 axis elicited antitumor immunity and synergized with anti-PD-1 immunotherapy, leading to a complete response. Our findings reveal the underlying mechanism of p53 modulation of the tumor immune microenvironment and provide a potential target for immunotherapy of cancer with p53 inactivation.
Collapse
Affiliation(s)
- Zhigang Nian
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yingchao Dou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yiqing Shen
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jintang Liu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xianghui Du
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yong Jiang
- Department of Anesthesiology, The first affiliated hospital of Anhui Medical University, Hefei, Anhui 230027, China
| | - Yonggang Zhou
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Binqing Fu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaohu Zheng
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Haiming Wei
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China; Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Institue of Immunology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
25
|
Wang N, Yuan Y, Jia Y, Han Y, Yu X, Fu Y, Li X. TFE3 and TP53 were novel diagnostic biomarkers related to mitochondrial autophagy in chronic rhinosinusitis with nasal polyps. Front Genet 2024; 15:1423778. [PMID: 39440241 PMCID: PMC11493635 DOI: 10.3389/fgene.2024.1423778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/28/2024] [Indexed: 10/25/2024] Open
Abstract
Background Chronic rhinosinusitis with nasal polyps (CRSwNP) belongs to a subtype of Chronic rhinosinusitis which is a heterogeneous inflammatory condition. It has been reported that mitophagy may provide a new therapeutic option for CRSwNP. Methods The GSE136825 (training dataset) and GSE179265 (validation dataset) were scoured from the Gene Expression Omnibus database. The candidate genes related to mitophagy were identified by differential expression analysis. Subsequently, the biomarkers were selected from the machine learning, Receiver Operating Characteristic curves, and expression level verification. A backpropagation (BP) neural network was generated to evaluate the diagnostic ability of biomarkers. In addition, the infiltration abundance of immune cells, potential drugs, and related ear-nose-throat (ENT) diseases were analyzed based on the biomarkers. Finally, qPCR analysis was performed to verify these biomarkers. Results A total of 8 candidate genes were identified by overlapping 3,400 differentially expressed genes (DEGs) and 72 mitophagy-related genes Subsequently, TFE3 and TP53 were identified as biomarkers of CRSwNP, and the area under the curves (AUC) of the BP neural network was 0.74, which indicated that the biomarkers had excellent abilities. TFE3 and TP53 were co-enriched in the cancer pathway, cell cycle, endocytosis, etc. What's more, Macrophage and Immature dendritic cells had significant correlations with biomarkers. The drugs (Doxorubicin, Tetrachlorodibenzodioxin, etc.) and the ear-nose-throat diseases (hearing loss, sensorineural, tinnitus, etc.) related to biomarkers were predicted. Ultimately, qPCR results showed that the expression levels of TFE3 and TP53 in polyp tissue of CRSwNP were increased. Conclusion Overall, TFE3 and TP53 could be used as biomarkers or potential therapeutic targets to diagnose and treat CRSwNP.
Collapse
Affiliation(s)
- Ning Wang
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Ying Yuan
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Yanjun Jia
- Department of Otolaryngology-Head and Neck Surgery, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yue Han
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Xuemin Yu
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Ying Fu
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, China
| | - Xiao Li
- Department of Otolaryngology-Head and Neck Surgery, Qilu Hospital of Shandong University, Qingdao, China
| |
Collapse
|
26
|
Bakhtiar H, Sharifi MN, Helzer KT, Shi Y, Bootsma ML, Shang TA, Chrostek MR, Berg TJ, Carson Callahan S, Carreno V, Blitzer GC, West MT, O'Regan RM, Wisinski KB, Sjöström M, Zhao SG. A phenocopy signature of TP53 loss predicts response to chemotherapy. NPJ Precis Oncol 2024; 8:220. [PMID: 39358429 PMCID: PMC11447220 DOI: 10.1038/s41698-024-00722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024] Open
Abstract
In preclinical studies, p53 loss of function impacts chemotherapy response, but this has not been consistently validated clinically. We trained a TP53-loss phenocopy gene expression signature from pan-cancer clinical samples in the TCGA. In vitro, the TP53-loss phenocopy signature predicted chemotherapy response across cancer types. In a clinical dataset of 3003 breast cancer samples treated with neoadjuvant chemotherapy, the TP53-loss phenocopy samples were 56% more likely to have a pathologic complete response (pCR), with a significant association between TP53-loss phenocopy and pCR in both ER positive and ER negative tumors. In an independent clinical validation in the I-SPY2 trial (N = 987), we confirmed the association with neoadjuvant chemotherapy pCR and found higher rates of chemoimmunotherapy response in TP53-loss phenocopy tumors compared to non-TP53-loss phenocopy tumors (64% vs. 28%). The TP53-loss phenocopy signature predicts chemotherapy response across cancer types in vitro, and in a proof-of-concept clinical validation is associated with neoadjuvant chemotherapy response across multiple clinical breast cancer cohorts.
Collapse
Affiliation(s)
- Hamza Bakhtiar
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Marina N Sharifi
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Kyle T Helzer
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Yue Shi
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Matthew L Bootsma
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Tianfu A Shang
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | | | - Tracy J Berg
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - S Carson Callahan
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Viridiana Carreno
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
| | - Grace C Blitzer
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Malinda T West
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
| | - Ruth M O'Regan
- Department of Medicine, University of Rochester, Rochester, NY, USA
| | - Kari B Wisinski
- Department of Medicine, Division of Hematology, Oncology, and Palliative Care, University of Wisconsin, Madison, WI, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA.
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
27
|
Martinkova L, Zatloukalova P, Kucerikova M, Friedlova N, Tylichova Z, Zavadil-Kokas F, Hupp TR, Coates PJ, Vojtesek B. Inverse correlation between TP53 gene status and PD-L1 protein levels in a melanoma cell model depends on an IRF1/SOX10 regulatory axis. Cell Mol Biol Lett 2024; 29:117. [PMID: 39237877 PMCID: PMC11378555 DOI: 10.1186/s11658-024-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND PD-L1 expression on cancer cells is an important mechanism of tumor immune escape, and immunotherapy targeting the PD-L1/PD1 interaction is a common treatment option for patients with melanoma. However, many patients do not respond to treatment and novel predictors of response are emerging. One suggested modifier of PD-L1 is the p53 pathway, although the relationship of p53 pathway function and activation is poorly understood. METHODS The study was performed on human melanoma cell lines with various p53 status. We investigated PD-L1 and proteins involved in IFNγ signaling by immunoblotting and mRNA expression, as well as membrane expression of PD-L1 by flow cytometry. We evaluated differences in the ability of NK cells to recognize and kill target tumor cells on the basis of p53 status. We also investigated the influence of proteasomal degradation and protein half-life, IFNγ signaling and p53 activation on biological outcomes, and performed bioinformatic analysis using available data for melanoma cell lines and melanoma patients. RESULTS We demonstrate that p53 status changes the level of membrane and total PD-L1 protein through IRF1 regulation and show that p53 loss influences the recently discovered SOX10/IRF1 regulatory axis. Bioinformatic analysis identified a dependency of SOX10 on p53 status in melanoma, and a co-regulation of immune signaling by both transcription factors. However, IRF1/PD-L1 regulation by p53 activation revealed complicated regulatory mechanisms that alter IRF1 mRNA but not protein levels. IFNγ activation revealed no dramatic differences based on TP53 status, although dual p53 activation and IFNγ treatment confirmed a complex regulatory loop between p53 and the IRF1/PD-L1 axis. CONCLUSIONS We show that p53 loss influences the level of PD-L1 through IRF1 and SOX10 in an isogenic melanoma cell model, and that p53 loss affects NK-cell cytotoxicity toward tumor cells. Moreover, activation of p53 by MDM2 inhibition has a complex effect on IRF1/PD-L1 activation. These findings indicate that evaluation of p53 status in patients with melanoma will be important for predicting the response to PD-L1 monotherapy and/or dual treatments where p53 pathways participate in the overall response.
Collapse
Affiliation(s)
- Lucia Martinkova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic.
| | | | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Nela Friedlova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Zuzana Tylichova
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
| | | | - Ted Robert Hupp
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, EH4 2XR, UK
| | | | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, 602 00, Brno, Czech Republic.
| |
Collapse
|
28
|
Tsoulos N, Agiannitopoulos K, Potska K, Katseli A, Ntogka C, Pepe G, Bouzarelou D, Papathanasiou A, Grigoriadis D, Tsaousis GN, Gogas H, Troupis T, Papazisis K, Natsiopoulos I, Venizelos V, Amarantidis K, Giassas S, Papadimitriou C, Fountzilas E, Stathoulopoulou M, Koumarianou A, Xepapadakis G, Blidaru A, Zob D, Voinea O, Özdoğan M, Ergören MÇ, Hegmane A, Papadopoulou E, Nasioulas G, Markopoulos C. The Clinical and Genetic Landscape of Hereditary Cancer: Experience from a Single Clinical Diagnostic Laboratory. Cancer Genomics Proteomics 2024; 21:448-463. [PMID: 39191493 PMCID: PMC11363926 DOI: 10.21873/cgp.20463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND/AIM The application of next-generation sequencing (NGS) technology in the genetic investigation of hereditary cancer is important for clinical surveillance, therapeutic approach, and reducing the risk of developing new malignancies. The aim of the study was to explore genetic predisposition in individuals referred for hereditary cancer. MATERIALS AND METHODS A total of 8,261 individuals were referred for multigene genetic testing, during the period 2020-2023, in the laboratory, and underwent multigene genetic testing using NGS. Among the examined individuals, 56.17% were diagnosed with breast cancer, 6.77% with ovarian cancer, 2.88% with colorectal cancer, 1.91% with prostate cancer, 6.43% were healthy with a significant family history of cancer, while 3.06% had a different type of cancer and 0.21% had not provided any information. Additionally, in 85 women with breast cancer we performed whole exome sequencing analysis. RESULTS 20% of the examined individuals carried a pathogenic variant. Specifically, 54.8% of the patients had a pathogenic variant in a clinically significant gene (BRCA1, BRCA2, PALB2, RAD51C, PMS2, CDKN2A, MLH1, MSH2, TP53, MSH6, APC, RAD51D, PTEN, RET, CDH1, MEN1, and VHL). Among the different types of pathogenic variants detected, a significant percentage (6.52%) represented copy number variation (CNV). With WES analysis, the following findings were detected: CTC1: c.880C>T, p.(Gln294*); MLH3: c.405del, p.(Asp136Metfs*2), PPM1D: c.1426_1430del, p.(Glu476Leufs*3), and SDHB: c.395A>G, p.(His132Arg). CONCLUSION Comprehensive multigene genetic testing is necessary for appropriate clinical management of pathogenic variants' carriers. Additionally, the information obtained is important for determining the risk of malignancy development in family members of the examined individuals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Helen Gogas
- First Department of Medicine, National and Kapodistrian University of Athens - School of Medicine, Athens, Greece
| | - Theodore Troupis
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | - Kyriakos Amarantidis
- Department of Medical Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Christos Papadimitriou
- Oncology Unit, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Fountzilas
- Department of Medical Oncology, St. Lukes's Clinic, Thessaloniki, Greece
| | | | - Anna Koumarianou
- Section of Medical Oncology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Daniela Zob
- Oncology Department, "Prof. Dr. Al. Trestioreanu" Bucharest Oncology Institute, Bucharest, Romania
| | - Oana Voinea
- Department of Pathology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mustafa Özdoğan
- Division of Medical Oncology, Memorial Antalya Hospital, Antalya, Turkey
| | - Mahmut Çerkez Ergören
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Alinta Hegmane
- Riga East University Hospital, Oncology Center of Latvia, Riga, Latvia
| | | | | | - Christos Markopoulos
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
29
|
Liu Z, Hou P, Fang J, Shao C, Shi Y, Melino G, Peschiaroli A. Hyaluronic acid metabolism and chemotherapy resistance: recent advances and therapeutic potential. Mol Oncol 2024; 18:2087-2106. [PMID: 37953485 PMCID: PMC11467803 DOI: 10.1002/1878-0261.13551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix, providing essential mechanical scaffolding for cells and, at the same time, mediating essential biochemical signals required for tissue homeostasis. Many solid tumors are characterized by dysregulated HA metabolism, resulting in increased HA levels in cancer tissues. HA interacts with several cell surface receptors, such as cluster of differentiation 44 and receptor for hyaluronan-mediated motility, thus co-regulating important signaling pathways in cancer development and progression. In this review, we describe the enzymes controlling HA metabolism and its intracellular effectors emphasizing their impact on cancer chemotherapy resistance. We will also explore the current and future prospects of HA-based therapy, highlighting the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Zhanhong Liu
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Pengbo Hou
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Jiankai Fang
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Changshun Shao
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Yufang Shi
- Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and ProtectionThe First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow UniversityChina
| | - Gerry Melino
- Department of Experimental MedicineUniversity of Rome Tor VergataRomeItaly
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), National Research Council (CNR)RomeItaly
| |
Collapse
|
30
|
Zhang H, Zhang G, Xiao M, Cui S, Jin C, Yang J, Wu S, Lu X. Two-polarized roles of transcription factor FOSB in lung cancer progression and prognosis: dependent on p53 status. J Exp Clin Cancer Res 2024; 43:237. [PMID: 39164746 PMCID: PMC11337850 DOI: 10.1186/s13046-024-03161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Activator protein-1 (AP-1) represents a transcription factor family that has garnered growing attention for its extensive involvement in tumor biology. However, the roles of the AP-1 family in the evolution of lung cancer remain poorly characterized. FBJ Murine Osteosarcoma Viral Oncogene Homolog B (FOSB), a classic AP-1 family member, was previously reported to play bewilderingly two-polarized roles in non-small cell lung cancer (NSCLC) as an enigmatic double-edged sword, for which the reasons and significance warrant further elucidation. METHODS AND RESULTS Based on the bioinformatics analysis of a large NSCLC cohort from the TCGA database, our current work found the well-known tumor suppressor gene TP53 served as a key code to decipher the two sides of FOSB - its expression indicated a positive prognosis in NSCLC patients harboring wild-type TP53 while a negative one in those harboring mutant TP53. By constructing a panel of syngeneically derived NSCLC cells expressing p53 in different statuses, the radically opposite prognostic effects of FOSB expression in NSCLC population were validated, with the TP53-R248Q mutation site emerging as particularly meaningful. Transcriptome sequencing showed that FOSB overexpression elicited diversifying transcriptomic landscapes across NSCLC cells with varying genetic backgrounds of TP53 and, combined with the validation by RT-qPCR, PREX1 (TP53-Null), IGFBP5 (TP53-WT), AKR1C3, and ALDH3A1 (TP53-R248Q) were respectively identified as p53-dependent transcriptional targets of FOSB. Subsequently, the heterogenous impacts of FOSB on the tumor biology in NSCLC cells via the above selective transcriptional targets were confirmed in vitro and in vivo. Mechanistic investigations revealed that wild-type or mutant p53 might guide FOSB to recognize and bind to distinct promoter sequences via protein-protein interactions to transcriptionally activate specific target genes, thereby creating disparate influences on the progression and prognosis in NSCLC. CONCLUSIONS FOSB expression holds promise as a novel prognostic biomarker for NSCLC in combination with a given genetic background of TP53, and the unique interactions between FOSB and p53 may serve as underlying intervention targets for NSCLC.
Collapse
Affiliation(s)
- Hongchao Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
- Center of Gallstone Disease, Shanghai East Hospital & Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Guopei Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Mingyang Xiao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Su Cui
- Department of Thoracic Surgery, Ward 2, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Cuihong Jin
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Shengwen Wu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China
| | - Xiaobo Lu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention, Ministry of Education (China Medical University), Shenyang, 110122, People's Republic of China.
- Department of Toxicology, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New District, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
31
|
Chomczyk M, Gazzola L, Dash S, Firmanty P, George BS, Mohanty V, Abbas HA, Baran N. Impact of p53-associated acute myeloid leukemia hallmarks on metabolism and the immune environment. Front Pharmacol 2024; 15:1409210. [PMID: 39161899 PMCID: PMC11330794 DOI: 10.3389/fphar.2024.1409210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 08/21/2024] Open
Abstract
Acute myeloid leukemia (AML), an aggressive malignancy of hematopoietic stem cells, is characterized by the blockade of cell differentiation, uncontrolled proliferation, and cell expansion that impairs healthy hematopoiesis and results in pancytopenia and susceptibility to infections. Several genetic and chromosomal aberrations play a role in AML and influence patient outcomes. TP53 is a key tumor suppressor gene involved in a variety of cell features, such as cell-cycle regulation, genome stability, proliferation, differentiation, stem-cell homeostasis, apoptosis, metabolism, senescence, and the repair of DNA damage in response to cellular stress. In AML, TP53 alterations occur in 5%-12% of de novo AML cases. These mutations form an important molecular subgroup, and patients with these mutations have the worst prognosis and shortest overall survival among patients with AML, even when treated with aggressive chemotherapy and allogeneic stem cell transplant. The frequency of TP53-mutations increases in relapsed and recurrent AML and is associated with chemoresistance. Progress in AML genetics and biology has brought the novel therapies, however, the clinical benefit of these agents for patients whose disease is driven by TP53 mutations remains largely unexplored. This review focuses on the molecular characteristics of TP53-mutated disease; the impact of TP53 on selected hallmarks of leukemia, particularly metabolic rewiring and immune evasion, the clinical importance of TP53 mutations; and the current progress in the development of preclinical and clinical therapeutic strategies to treat TP53-mutated disease.
Collapse
Affiliation(s)
- Monika Chomczyk
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Luca Gazzola
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Shubhankar Dash
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Firmanty
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Binsah S. George
- Department of Hematology-oncology, The University of Texas Health Sciences, Houston, TX, United States
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hussein A. Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Natalia Baran
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
32
|
Kurihara Y, Honda T, Takemoto A, Seto K, Endo S, Tanimoto K, Kirimura S, Kobayashi M, Baba S, Nakashima Y, Wakejima R, Sakakibara R, Ishibashi H, Inazawa J, Tanaka T, Miyazaki Y, Okubo K. Immunohistochemistry of p53 surrogates TP53 mutation as an accurate predictor for early-relapse of surgically resected stage I-III lung adenocarcinoma. JTCVS OPEN 2024; 20:183-193. [PMID: 39296452 PMCID: PMC11405991 DOI: 10.1016/j.xjon.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 09/21/2024]
Abstract
Introduction TP53 is a strong tumor suppressor gene; its deactivation contributes to carcinogenesis and influences clinical outcomes. However, the prognostic influence of p53 deactivation on early relapse in patients with surgically resected non-small cell lung cancer remains unclear. Materials and methods A cohort of 170 patients with primary stage I through III lung adenocarcinoma (LADC) and lung squamous cell carcinoma who underwent complete resection at Tokyo Medical and Dental University was screened for TP53 mutations using panel testing, and association studies between TP53 mutations and clinical data, including histology and postoperative recurrence, were performed. The association between TP53 mutations and postoperative recurrence was validated using data from 604 patients with MSK-IMPACT from The Cancer Genome Atlas. Additional immunohistochemistry for p53 was performed on some subsets of the Tokyo Medical and Dental University population. Results Mutations in TP53 were recurrently observed (35.9%; 61 out of 170) in the Tokyo Medical and Dental University cohort. In the histology-stratified analysis, patients with LADC histology showed TP53 mutations that were associated with poor relapse-free survival (log-rank test; P = .020), whereas patients with lung squamous cell carcinoma histology showed TP53 mutations that were not (P = .99). The poor prognosis of TP53 mutation-positive LADCs was validated in The Cancer Genome Atlas-LADC cohort (log-rank test; P = .0065). Additional immunohistochemistry for p53 in patients with LADC histology in the Tokyo Medical and Dental University cohort showed a significant correlation between TP53 mutations and abnormal IHC pattern of p53 (Cramer's correlation coefficient V = 0.67). Conclusions TP53 mutation is a potential marker for worse prognosis in surgically resected LADC; immunohistochemistry for p53 could be a surrogate method to identify patients with LADC with a worse prognosis.
Collapse
Affiliation(s)
- Yasuyuki Kurihara
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayuki Honda
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Takemoto
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Katsutoshi Seto
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Endo
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kousuke Tanimoto
- Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Susumu Kirimura
- Department of Pathology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masashi Kobayashi
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunichi Baba
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhiro Nakashima
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Wakejima
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rie Sakakibara
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hironori Ishibashi
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Johji Inazawa
- Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiro Tanaka
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenichi Okubo
- Department of Thoracic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
33
|
Hu C, Cao F, Jiang Y, Liu K, Li T, Gao Y, Li W, Han W. Molecular insights into chronic atrophic gastritis treatment: Coptis chinensis Franch studied via network pharmacology, molecular dynamics simulation and experimental analysis. Comput Biol Med 2024; 178:108804. [PMID: 38941899 DOI: 10.1016/j.compbiomed.2024.108804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Chronic atrophic gastritis (CAG), characterized by inflammation and erosion of the gastric lining, is a prevalent digestive disorder and considered a precursor to gastric cancer (GC). Coptis chinensis France (CCF) is renowned for its potent heat-clearing, detoxification, and anti-inflammatory properties. Zuojin Pill (ZJP), a classic Chinese medicine primarily composed of CCF, has demonstrated effectiveness in CAG treatment. This study aims to elucidate the potential mechanism of CCF treatment for CAG through a multifaceted approach encompassing network pharmacology, molecular docking, molecular dynamics simulation and experimental verification. The study identified three major active compounds of CCF and elucidated key pathways, such as TNF signaling, PI3K-Akt signaling and p53 signaling. Molecular docking revealed interactions between these active compounds and pivotal targets like PTGS2, TNF, MTOR, and TP53. Additionally, molecular dynamics simulation validated berberine as the primary active compound of CCF, which was further confirmed through experimental verification. This study not only identified berberine as the primary active compound of CCF but also provided valuable insights into the molecular mechanisms underlying CCF's efficacy in treating CAG. Furthermore, it offers a reference for refining therapeutic strategies for CAG management.
Collapse
Affiliation(s)
- Chengxiang Hu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Fuyan Cao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yongxin Jiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Kaifeng Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Tao Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Wannan Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education and Edmond H. Fischer Signal Transduction Laboratory, School of Life Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, China.
| |
Collapse
|
34
|
Stamatopoulos K, Pavlova S, Al‐Sawaf O, Chatzikonstantinou T, Karamanidou C, Gaidano G, Cymbalista F, Kater AP, Rawstron A, Scarfò L, Ghia P, Rosenquist R. Realizing precision medicine in chronic lymphocytic leukemia: Remaining challenges and potential opportunities. Hemasphere 2024; 8:e113. [PMID: 39035106 PMCID: PMC11260284 DOI: 10.1002/hem3.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/29/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024] Open
Abstract
Patients with chronic lymphocytic leukemia (CLL) exhibit diverse clinical outcomes. An expanding array of genetic tests is now employed to facilitate the identification of patients with high-risk disease and inform treatment decisions. These tests encompass molecular cytogenetic analysis, focusing on recurrent chromosomal alterations, particularly del(17p). Additionally, sequencing is utilized to identify TP53 mutations and to determine the somatic hypermutation status of the immunoglobulin heavy variable gene. Concurrently, a swift advancement of targeted treatment has led to the implementation of novel strategies for patients with CLL, including kinase and BCL2 inhibitors. This review explores both current and emerging diagnostic tests aimed at identifying high-risk patients who should benefit from targeted therapies. We outline existing treatment paradigms, emphasizing the importance of matching the right treatment to the right patient beyond genetic stratification, considering the crucial balance between safety and efficacy. We also take into consideration the practical and logistical issues when choosing a management strategy for each individual patient. Furthermore, we delve into the mechanisms underlying therapy resistance and stress the relevance of monitoring measurable residual disease to guide treatment decisions. Finally, we underscore the necessity of aggregating real-world data, adopting a global perspective, and ensuring patient engagement. Taken together, we argue that precision medicine is not the mere application of precision diagnostics and accessibility of precision therapies in CLL but encompasses various aspects of the patient journey (e.g., lifestyle exposures and comorbidities) and their preferences toward achieving true personalized medicine for patients with CLL.
Collapse
Affiliation(s)
- Kostas Stamatopoulos
- Centre for Research and Technology HellasInstitute of Applied BiosciencesThessalonikiGreece
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
| | - Sarka Pavlova
- Department of Internal Medicine, Hematology and Oncology, and Institute of Medical Genetics and GenomicsUniversity Hospital Brno and Medical Faculty, Masaryk UniversityBrnoCzech Republic
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Othman Al‐Sawaf
- Department I of Internal Medicine and German CLL Study Group, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)University of Cologne, Faculty of Medicine and University Hospital of CologneCologneGermany
- Francis Crick Institute LondonLondonUK
- Cancer Institute, University College LondonLondonUK
| | | | - Christina Karamanidou
- Centre for Research and Technology HellasInstitute of Applied BiosciencesThessalonikiGreece
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational MedicineUniversity of Eastern PiedmontNovaraItaly
| | | | - Arnon P. Kater
- Department of Hematology, Cancer Center AmsterdamAmsterdam University Medical Centers, University of AmsterdamAmsterdamThe Netherlands
| | - Andy Rawstron
- Haematological Malignancy Diagnostic ServiceLeeds Teaching Hospitals TrustLeedsUK
| | - Lydia Scarfò
- Medical SchoolUniversità Vita Salute San RaffaeleMilanoItaly
- Strategic Research Program on CLLIRCCS Ospedale San RaffaeleMilanoItaly
| | - Paolo Ghia
- Medical SchoolUniversità Vita Salute San RaffaeleMilanoItaly
- Strategic Research Program on CLLIRCCS Ospedale San RaffaeleMilanoItaly
| | - Richard Rosenquist
- Department of Molecular Medicine and SurgeryKarolinska InstitutetStockholmSweden
- Clinical GeneticsKarolinska University HospitalStockholmSweden
| |
Collapse
|
35
|
Joruiz SM, Von Muhlinen N, Horikawa I, Gilbert MR, Harris CC. Distinct functions of wild-type and R273H mutant Δ133p53α differentially regulate glioblastoma aggressiveness and therapy-induced senescence. Cell Death Dis 2024; 15:454. [PMID: 38937431 PMCID: PMC11211456 DOI: 10.1038/s41419-024-06769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Despite being mutated in 92% of TP53 mutant cancers, how mutations on p53 isoforms affect their activities remain largely unknown. Therefore, exploring the effect of mutations on p53 isoforms activities is a critical, albeit unexplored area in the p53 field. In this article, we report for the first time a mutant Δ133p53α-specific pathway which increases IL4I1 and IDO1 expression and activates AHR, a tumor-promoting mechanism. Accordingly, while WT Δ133p53α reduces apoptosis to promote DNA repair, mutant R273H also reduces apoptosis but fails to maintain genomic stability, increasing the risks of accumulation of mutations and tumor's deriving towards a more aggressive phenotype. Furthermore, using 2D and 3D spheroids culture, we show that WT Δ133p53α reduces cell proliferation, EMT, and invasion, while the mutant Δ133p53α R273H enhances all three processes, confirming its oncogenic potential and strongly suggesting a similar in vivo activity. Importantly, the effects on cell growth and invasion are independent of mutant full-length p53α, indicating that these activities are actively carried by mutant Δ133p53α R273H. Furthermore, both WT and mutant Δ133p53α reduce cellular senescence in a senescence inducer-dependent manner (temozolomide or radiation) because they regulate different senescence-associated target genes. Hence, WT Δ133p53α rescues temozolomide-induced but not radiation-induced senescence, while mutant Δ133p53α R273H rescues radiation-induced but not temozolomide-induced senescence. Lastly, we determined that IL4I1, IDO1, and AHR are significantly higher in GBMs compared to low-grade gliomas. Importantly, high expression of all three genes in LGG and IL4I1 in GBM is significantly associated with poorer patients' survival, confirming the clinical relevance of this pathway in glioblastomas. These data show that, compared to WT Δ133p53α, R273H mutation reorientates its activities toward carcinogenesis and activates the oncogenic IL4I1/IDO1/AHR pathway, a potential prognostic marker and therapeutic target in GBM by combining drugs specifically modulating Δ133p53α expression and IDO1/Il4I1/AHR inhibitors.
Collapse
Affiliation(s)
- Sebastien M Joruiz
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Natalia Von Muhlinen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
36
|
Feng Y, Qian R, Cui D, Luan J, Xu M, Wang L, Li R, Wu X, Chang C. Mutant TP53 promotes invasion of lung cancer cells by regulating desmoglein 3. J Cancer Res Clin Oncol 2024; 150:312. [PMID: 38900156 PMCID: PMC11189974 DOI: 10.1007/s00432-024-05778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024]
Abstract
PURPOSE Targeted therapies have markedly improved the prognosis of lung cancer patients; nevertheless, challenges persist, including limited beneficiary populations and the emergence of drug resistance. This study investigates the molecular mechanisms of mutant TP53 in lung cancer, aiming to contribute to novel strategies for targeted therapy. METHODS The TCGA database was employed to delineate the mutational landscape of TP53 in lung cancer patients. Differential gene expression between TP53-mutant and wild-type patients was analyzed, followed by functional enrichment. DSG3 protein expression in lung cancer patients was assessed using IHC, and its impact on prognosis was analyzed in the TCGA database. The influence of TP53 on the downstream gene DSG3 was investigated using qPCR, ChIP-qPCR, and luciferase reporter gene assays. Protein enrichment in the DSG3 promoter region was examined through IP-MS, and the regulatory role of the HIF1-α/TP53 complex on DSG3 was explored using Co-IP, luciferase assays, and ChIP-qPCR. Molecular interactions between TP53 (R273H) and HIF1-α were detected through immunoprecipitation and molecular docking. The effects and mechanisms of DSG3 on lung cancer phenotypes were assessed through WB, transwell, and wound healing assays. RESULTS TP53 mutations were present in 47.44% of patients, predominantly as missense mutations. DSG3 exhibited high expression in TP53-mutant lung cancer patients, and this elevated expression correlated with a poorer prognosis. TP53 interference led to a reduction in DSG3 mRNA expression, with TP53 mutant P53 enriching at the P2 site of the DSG3 promoter region, a recruitment facilitated by HIF1-α. The DBD region of TP53 (R273H) demonstrated interaction with HIF1-α. DSG3, activated through Ezrin phosphorylation, played a role in promoting invasion and metastasis. CONCLUSIONS Mutant TP53 facilitates lung cancer cell invasion by modulating desmoglein 3.
Collapse
Affiliation(s)
- Yu Feng
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Rulin Qian
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| | - Dong Cui
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China.
| | - Jiaqiang Luan
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| | - Mingxing Xu
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| | - Ling Wang
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Ruijie Li
- Department of Medical Oncology, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Xiao Wu
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| | - Chaoying Chang
- Department of Thoracic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, No. 1 Weiwu Road, Zhengzhou, 450000, People's Republic of China
| |
Collapse
|
37
|
Herold N. A guardian turned rogue: TP53 promoter translocations rewire stress responses to oncogenic effectors in osteosarcoma. Cancer Gene Ther 2024; 31:805-806. [PMID: 38409586 PMCID: PMC11192626 DOI: 10.1038/s41417-024-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Osteosarcoma is the most prevalent malignant bone tumour in children, adolescents and young adults. Despite a multitude of aberrations present in osteosarcoma genomes, no recurrent driver mutations have been identified to date. In addition, unlike for other sarcoma entities, no functional fusion proteins resulting from chromosomal rearrangements have been reported. Part of the genetic complexity of osteosarcoma might, however, be explained by the association of osteosarcoma with germline and somatic mutations of the major tumour suppressor TP53 that safeguards genomic integrity. By demonstrating that TP53 promoter translocations resulting in transcriptionally active fusion genes are a recurrent event in osteosarcoma, long-learnt paradigms are challenged by a recent publication by Saba, Difilippo et al. Osteosarcoma no longer appears to be a fusion-negative tumour, and by hardwiring cellular stress responses that transactivate the TP53 promoter to an oncogenic fusion partner, TP53 can be subverted and turned into an oncogene.
Collapse
Affiliation(s)
- Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.
- Department of Paediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
38
|
Yedla P, Bhamidipati P, Syed R, Amanchy R. Working title: Molecular involvement of p53-MDM2 interactome in gastrointestinal cancers. Cell Biochem Funct 2024; 42:e4075. [PMID: 38924101 DOI: 10.1002/cbf.4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The interaction between murine double minute 2 (MDM2) and p53, marked by transcriptional induction and feedback inhibition, orchestrates a functional loop dictating cellular fate. The functional loop comprising p53-MDM2 axis is made up of an interactome consisting of approximately 81 proteins, which are spatio-temporally regulated and involved in DNA repair mechanisms. Biochemical and genetic alterations of the interactome result in dysregulation of the p53-mdm2 axis that leads to gastrointestinal (GI) cancers. A large subset of interactome is well known and it consists of proteins that either stabilize p53 or MDM2 and proteins that target the p53-MDM2 complex for ubiquitin-mediated destruction. Upstream signaling events brought about by growth factors and chemical messengers invoke a wide variety of posttranslational modifications in p53-MDM2 axis. Biochemical changes in the transactivation domain of p53 impact the energy landscape, induce conformational switching, alter interaction potential and could change solubility of p53 to redefine its co-localization, translocation and activity. A diverse set of chemical compounds mimic physiological effectors and simulate biochemical modifications of the p53-MDM2 interactome. p53-MDM2 interactome plays a crucial role in DNA damage and repair process. Genetic aberrations in the interactome, have resulted in cancers of GI tract (pancreas, liver, colorectal, gastric, biliary, and esophageal). We present in this article a review of the overall changes in the p53-MDM2 interactors and the effectors that form an epicenter for the development of next-generation molecules for understanding and targeting GI cancers.
Collapse
Affiliation(s)
- Poornachandra Yedla
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Pharmacogenomics, Institute of Translational Research, Asian Healthcare Foundation, Hyderabad, Telangana, India
| | - Pranav Bhamidipati
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
- Department of Life Sciences, Imperial College London, London, UK
| | - Riyaz Syed
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| | - Ramars Amanchy
- Division of Applied Biology, CSIR-IICT (Indian Institute of Chemical Technology), Ministry of Science and Technology (GOI), Hyderabad, Telangana, India
| |
Collapse
|
39
|
Galant N, Krawczyk P, Monist M, Obara A, Gajek Ł, Grenda A, Nicoś M, Kalinka E, Milanowski J. Molecular Classification of Endometrial Cancer and Its Impact on Therapy Selection. Int J Mol Sci 2024; 25:5893. [PMID: 38892080 PMCID: PMC11172295 DOI: 10.3390/ijms25115893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Endometrial cancer (EC) accounts for 90% of uterine cancer cases. It is considered not only one of the most common gynecological malignancies but also one of the most frequent cancers among women overall. Nowadays, the differentiation of EC subtypes is based on immunohistochemistry and molecular techniques. It is considered that patients' prognosis and the implementation of the appropriate treatment depend on the cancer subtype. Patients with pathogenic variants in POLE have the most favorable outcome, while those with abnormal p53 protein have the poorest. Therefore, in patients with POLE mutation, the de-escalation of postoperative treatment may be considered, and patients with abnormal p53 protein should be subjected to intensive adjuvant therapy. Patients with a DNA mismatch repair (dMMR) deficiency are classified in the intermediate prognosis group as EC patients without a specific molecular profile. Immunotherapy has been recognized as an effective treatment method in patients with advanced or recurrent EC with a mismatch deficiency. Thus, different adjuvant therapy approaches, including targeted therapy and immunotherapy, are being proposed depending on the EC subtype, and international guidelines, such as those published by ESMO and ESGO/ESTRO/ESP, include recommendations for performing the molecular classification of all EC cases. The decision about adjuvant therapy selection has to be based not only on clinical data and histological type and stage of cancer, but, following international recommendations, has to include EC molecular subtyping. This review describes how molecular classification could support more optimal therapeutic management in endometrial cancer patients.
Collapse
Affiliation(s)
- Natalia Galant
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (N.G.); (P.K.); (M.N.); (J.M.)
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (N.G.); (P.K.); (M.N.); (J.M.)
| | - Marta Monist
- II Department of Gynecology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Adrian Obara
- Institute of Genetics and Immunology GENIM LCC, 20-609 Lublin, Poland; (A.O.); (Ł.G.)
| | - Łukasz Gajek
- Institute of Genetics and Immunology GENIM LCC, 20-609 Lublin, Poland; (A.O.); (Ł.G.)
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (N.G.); (P.K.); (M.N.); (J.M.)
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (N.G.); (P.K.); (M.N.); (J.M.)
| | - Ewa Kalinka
- Department of Oncology, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Łódź, Poland;
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-090 Lublin, Poland; (N.G.); (P.K.); (M.N.); (J.M.)
| |
Collapse
|
40
|
Di X, Wang D, Wu J, Zhu X, Wang Y, Yan J, Wen L, Jiang H, Wen D, Shu B, Zhang S. Characterization of a germline variant TNS1 c.2999-1G > C in a hereditary cancer syndrome family. Gene 2024; 908:148304. [PMID: 38387708 DOI: 10.1016/j.gene.2024.148304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Hereditary cancer syndromes result from the presence of inherited pathogenic variants within susceptibility genes. However, the susceptibility genes associated with hereditary cancer syndrome remain predominantly unidentified. Here, we reported a case of hereditary cancer syndrome observed in a Chinese family harboring a germline mutation in Tensin1 (TNS1). We described a 59-year-old female patient presented with Multiple myeloma and Thyroid carcinoma. The proband and her family members exhibited suspected tumor syndrome due to occurrences of other cancer cases. After oncogenetic counseling, whole-exome sequencing and Sanger sequencing were conducted and a primary driver mutation of TNS1 (NM_022648.7:c.2999-1G > C) was detected. Gene Expression Profiling Interactive Analysis revealed that TNS1 was expressed lower in different tumors when compared to normal, including Pancreatic adenocarcinoma, Breast invasive carcinoma, Thyroid carcinoma andColon adenocarcinoma cells. Despite the well-established role of TNS1 as a tumor suppressor in breast cancer and colorectal cancer, its potential utility as a marker gene for diagnosis and treatment of pancreatic cancer remains uncertain. Here, our data demonstrated that knockdown of TNS1 could promote cell proliferation and migration in Pancreatic adenocarcinoma (PDAC) cells. In addition, TNS1 regulated migration through EMT signaling pathway in PDAC cells. Our findings proposed that this variant was likely involved in cancer predisposition by disrupting the normal splicing process. In summary, we presented a genetic disease by linking an intronic mutation inTNS1. We aim to provide early detection of cancers by identifying germline variants in susceptibility genes.
Collapse
Affiliation(s)
- Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Ding Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jinzheng Wu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiaofang Zhu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yang Wang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jinhua Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Liang Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Bo Shu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China; Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
41
|
Cai L, Gao Y, DeBerardinis RJ, Acquaah-Mensah G, Aidinis V, Beane JE, Biswal S, Chen T, Concepcion-Crisol CP, Grüner BM, Jia D, Jones R, Kurie JM, Lee MG, Lindahl P, Lissanu Y, Lorz Lopez MC, Martinelli R, Mazur PK, Mazzilli SA, Mii S, Moll H, Moorehead R, Morrisey EE, Ng SR, Oser MG, Pandiri AR, Powell CA, Ramadori G, Santos Lafuente M, Snyder E, Sotillo R, Su KY, Taki T, Taparra K, Xia Y, van Veen E, Winslow MM, Xiao G, Rudin CM, Oliver TG, Xie Y, Minna JD. A Lung Cancer Mouse Model Database. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582577. [PMID: 38464291 PMCID: PMC10925271 DOI: 10.1101/2024.02.28.582577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Lung cancer, the leading cause of cancer mortality, exhibits diverse histological subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. Here we established the Lung Cancer Mouse Model Database (LCMMDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMMs), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors have produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCMMDB aligns 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in GEMMs. Accompanying this resource, we developed a web application that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCMMDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance.
Collapse
|
42
|
Ding H, Liu Y, Lu X, Liu A, Xu Q, Yuan Y. Pepsinogen C Interacts with IQGAP1 to Inhibit the Metastasis of Gastric Cancer Cells by Suppressing Rho-GTPase Pathway. Cancers (Basel) 2024; 16:1796. [PMID: 38791874 PMCID: PMC11120368 DOI: 10.3390/cancers16101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
AIM This study systematically explored the biological effects and mechanisms of PGC on gastric cancer (GC) cells in vitro and in vivo. METHOD The critical biological roles of PGC in GC were assessed via EdU staining, Hoechst staining, flow cytometry, mouse models, CCK-8, wound healing, transwell, and sphere-forming assays. The interaction study with IQ-domain GTPase-activating protein 1 (IQGAP1) was used by Liquid chromatography-mass spectrometry co-immunoprecipitation, immunofluorescence staining, CHX-chase assay, MG132 assay, and qRT-PCR. RESULTS PGC inhibited the proliferation, viability, epithelial-mesenchymal transition, migration, invasion, and stemness of GC cells and promoted GC cell differentiation. PGC suppressed subcutaneous tumor growth and peritoneal dissemination in vivo. The interaction study found PGC inhibits GC cell migration and invasion by downregulating IQGAP1 protein and IQGAP1-mediated Rho-GTPase signaling suppression. In addition, PGC disrupts the stability of the IQGAP1 protein, promoting its degradation and significantly shortening its half-life. Moreover, the expression levels of PGC and IQGAP1 in GC tissues were significantly negatively correlated. CONCLUSION PGC may act as a tumor suppressor in the development and metastasis of GC. PGC can downregulate its interacting protein IQGAP1 and inhibit the Rho-GTPase pathway, thereby participating in the inhibition of GC cell migration and invasion.
Collapse
Affiliation(s)
- Hanxi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (H.D.); (Y.L.); (X.L.); (A.L.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yingnan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (H.D.); (Y.L.); (X.L.); (A.L.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaodong Lu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (H.D.); (Y.L.); (X.L.); (A.L.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Aoran Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (H.D.); (Y.L.); (X.L.); (A.L.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (H.D.); (Y.L.); (X.L.); (A.L.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang 110001, China; (H.D.); (Y.L.); (X.L.); (A.L.)
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
43
|
Scimeca M, Bischof J, Bonfiglio R, Nale E, Iacovelli V, Carilli M, Vittori M, Agostini M, Rovella V, Servadei F, Giacobbi E, Candi E, Shi Y, Melino G, Mauriello A, Bove P. Molecular profiling of a bladder cancer with very high tumour mutational burden. Cell Death Discov 2024; 10:202. [PMID: 38688924 PMCID: PMC11061316 DOI: 10.1038/s41420-024-01883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 05/02/2024] Open
Abstract
The increasing incidence of urothelial bladder cancer is a notable global concern, as evidenced by the epidemiological data in terms of frequency, distribution, as well as mortality rates. Although numerous molecular alterations have been linked to the occurrence and progression of bladder cancer, currently there is a limited knowledge on the molecular signature able of accurately predicting clinical outcomes. In this report, we present a case of a pT3b high-grade infiltrating urothelial carcinoma with areas of squamous differentiation characterized by very high tumor mutational burden (TMB), with up-regulations of immune checkpoints. The high TMB, along with elevated expressions of PD-L1, PD-L2, and PD1, underscores the rationale for developing a personalized immunotherapy focused on the use of immune-checkpoint inhibitors. Additionally, molecular analysis revealed somatic mutations in several other cancer-related genes, including TP53, TP63 and NOTCH3. Mutations of TP53 and TP63 genes provide mechanistic insights on the molecular mechanisms underlying disease development and progression. Notably, the above-mentioned mutations and the elevated hypoxia score make the targeting of p53 and/or hypoxia related pathways a plausible personalized medicine option for this bladder cancer, particularly in combination with immunotherapy. Our data suggest a requirement for molecular profiling in bladder cancer to possibly select appropriate immune-checkpoint therapy.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Elisabetta Nale
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Valerio Iacovelli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Marco Carilli
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Matteo Vittori
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Valentina Rovella
- Department of System Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Pierluigi Bove
- Urology Unit San Carlo di Nancy Hospital, GVM Care, 00100, Rome, Italy.
| |
Collapse
|
44
|
Zhang X, Ma H, Gao Y, Liang Y, Du Y, Hao S, Ni T. The Tumor Microenvironment: Signal Transduction. Biomolecules 2024; 14:438. [PMID: 38672455 PMCID: PMC11048169 DOI: 10.3390/biom14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
In the challenging tumor microenvironment (TME), tumors coexist with diverse stromal cell types. During tumor progression and metastasis, a reciprocal interaction occurs between cancer cells and their environment. These interactions involve ongoing and evolving paracrine and proximal signaling. Intrinsic signal transduction in tumors drives processes such as malignant transformation, epithelial-mesenchymal transition, immune evasion, and tumor cell metastasis. In addition, cancer cells embedded in the tumor microenvironment undergo metabolic reprogramming. Their metabolites, serving as signaling molecules, engage in metabolic communication with diverse matrix components. These metabolites act as direct regulators of carcinogenic pathways, thereby activating signaling cascades that contribute to cancer progression. Hence, gaining insights into the intrinsic signal transduction of tumors and the signaling communication between tumor cells and various matrix components within the tumor microenvironment may reveal novel therapeutic targets. In this review, we initially examine the development of the tumor microenvironment. Subsequently, we delineate the oncogenic signaling pathways within tumor cells and elucidate the reciprocal communication between these pathways and the tumor microenvironment. Finally, we give an overview of the effect of signal transduction within the tumor microenvironment on tumor metabolism and tumor immunity.
Collapse
Affiliation(s)
- Xianhong Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Haijun Ma
- Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan 750021, China;
| | - Yue Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yabing Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Yitian Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Shuailin Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| | - Ting Ni
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (X.Z.); (Y.G.); (Y.L.); (Y.D.)
| |
Collapse
|
45
|
Charlab R, Leong R, Shord SS, Reaman GH. Pediatric Cancer Drug Development: Leveraging Insights in Cancer Biology and the Evolving Regulatory Landscape to Address Challenges and Guide Further Progress. Cold Spring Harb Perspect Med 2024; 14:a041656. [PMID: 38467448 PMCID: PMC10982696 DOI: 10.1101/cshperspect.a041656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The discovery and development of anticancer drugs for pediatric patients have historically languished when compared to both past and recent activity in drug development for adult patients, notably the dramatic spike of targeted and immune-oncology therapies. The reasons for this difference are multifactorial. Recent changes in the regulatory landscape surrounding pediatric cancer drug development and the understanding that some pediatric cancers are driven by genetic perturbations that also drive disparate adult cancers afford new opportunities. The unique cancer-initiating events and dependencies of many pediatric cancers, however, require additional pediatric-specific strategies. Research efforts to unravel the underlying biology of pediatric cancers, innovative clinical trial designs, model-informed drug development, extrapolation from adult data, addressing the unique considerations in pediatric patients, and use of pediatric appropriate formulations, should all be considered for efficient development and dosage optimization of anticancer drugs for pediatric patients.
Collapse
Affiliation(s)
- Rosane Charlab
- Office of Clinical Pharmacology, Office of Translational Sciences, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Ruby Leong
- Office of Clinical Pharmacology, Office of Translational Sciences, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Stacy S Shord
- Office of Clinical Pharmacology, Office of Translational Sciences, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, USA
| | - Gregory H Reaman
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
46
|
Hedayati M, Garousi B, Rezaei Z, Nazerian Y, Yassaghi Y, Tavasol A, Zanjanbar DB, Sharifpour S, Golestani A, Bolideei M, Maleki F. Identifying SCC Lesions Capable of Spontaneous Regression by Using Immunohistochemistry: A Systematic Review and Meta-Analysis. Dermatol Pract Concept 2024; 14:dpc.1402a47. [PMID: 38810039 PMCID: PMC11135932 DOI: 10.5826/dpc.1402a47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 05/31/2024] Open
Abstract
INTRODUCTION Keratoacanthoma (KA) and squamous cell carcinoma (SCC) are two cutaneous conditions with morphological resemblance, which can complicate the diagnosis in some cases. Using immunohistochemistry staining of biomarkers could be beneficial in resolving this obstacle. OBJECTIVES We investigated a variety of biomarkers assessed in different studies in order to find the most important and helpful biomarkers for differentiation between SCC and lesions capable of spontaneous regression. METHODS MEDLINE via PubMed and Google Scholar database were used to identify relevant literature up to 15 June 2022. The aim of our analyses was to determine the capability of biomarkers to distinguish between SCC and lesions capable of spontaneous regression using calculated individual and pooled odds ratios (OR) and 95% confidence intervals (CI) and I2 tests. RESULTS Six potential biomarkers were CD10 with pooled OR= 0.006 (95% CI: 0.001-0.057) and I2=0%; COX-2 with pooled OR=0.089 (95% CI: 0.029-0.269) and I2=17.1%; elastic fibers with pooled OR= 6.69 (95% CI: 2.928-15.281) and I2=0%; IMP-3 with pooled OR=0.145 (95% CI: 0.021-1.001) and I2=44.5%; P53 with pooled OR=0.371 (95% CI: 0.188-0.733) and I2=55.9%; AT1R with OR=0.026 (95% CI: 0.006-0.107). CONCLUSIONS We suggest the utilization of the following IHC biomarkers for discrimination between lesions with spontaneous regression such as KA and SCC: CD10, COX-2, and elastic fibers.
Collapse
Affiliation(s)
| | - Behzad Garousi
- Department of Pathology, Karolinska Institute, Stockholm, Sweden
| | | | - Yasaman Nazerian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Younes Yassaghi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dorsa Bahrami Zanjanbar
- Pharmaceutical Science Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Golestani
- Students Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansoor Bolideei
- The Center for Biomedical Research, Ministry of Education and Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Farajolah Maleki
- Non-Communicable Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
47
|
Nair R, Lannagan TRM, Jackstadt R, Andrusaite A, Cole J, Boyne C, Nibbs RJB, Sansom OJ, Milling S. Co-inhibition of TGF-β and PD-L1 pathways in a metastatic colorectal cancer mouse model triggers interferon responses, innate cells and T cells, alongside metabolic changes and tumor resistance. Oncoimmunology 2024; 13:2330194. [PMID: 38516270 PMCID: PMC10956632 DOI: 10.1080/2162402x.2024.2330194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer worldwide with a high mortality rate (20-30%), especially due to metastasis to adjacent organs. Clinical responses to chemotherapy, radiation, targeted and immunotherapies are limited to a subset of patients making metastatic CRC (mCRC) difficult to treat. To understand the therapeutic modulation of immune response in mCRC, we have used a genetically engineered mouse model (GEMM), "KPN", which resembles the human 'CMS4'-like subtype. We show here that transforming growth factor (TGF-β1), secreted by KPN organoids, increases cancer cell proliferation, and inhibits splenocyte activation in vitro. TGF-β1 also inhibits activation of naive but not pre-activated T cells, suggesting differential effects on specific immune cells. In vivo, the inhibition of TGF-β inflames the KPN tumors, causing infiltration of T cells, monocytes and monocytic intermediates, while reducing neutrophils and epithelial cells. Co-inhibition of TGF-β and PD-L1 signaling further enhances cytotoxic CD8+T cells and upregulates innate immune response and interferon gene signatures. However, simultaneous upregulation of cancer-related metabolic genes correlated with limited control of tumor burden and/or progression despite combination treatment. Our study illustrates the importance of using GEMMs to predict better immunotherapies for mCRC.
Collapse
Affiliation(s)
- Reshmi Nair
- School of infection and immunity, University of Glasgow, Glasgow, UK
| | | | | | - Anna Andrusaite
- School of infection and immunity, University of Glasgow, Glasgow, UK
| | - John Cole
- School of infection and immunity, University of Glasgow, Glasgow, UK
| | - Caitlin Boyne
- School of infection and immunity, University of Glasgow, Glasgow, UK
| | | | - Owen J. Sansom
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Simon Milling
- School of infection and immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
48
|
Feely C, Kaushal N, D’Avino PP, Martin J. Modifying platelets at their birth: anti-thrombotic therapy without haemorrhage. Front Pharmacol 2024; 15:1343896. [PMID: 38562457 PMCID: PMC10982340 DOI: 10.3389/fphar.2024.1343896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Cardiovascular disease is a leading cause of death. The current approach to the prevention of arterial thrombosis in cardiovascular disease is dependent on the use of therapies which inhibit the activation of platelets. Predictably these are associated with an increased risk of haemorrhage which causes significant morbidity. The thrombotic potential of an activated platelet is modifiable; being determined before thrombopoiesis. Increased megakaryocyte ploidy is associated with larger and more active platelets carrying an increased risk of thrombosis. The reduction in the ploidy of megakaryocytes is therefore a novel area of therapeutic interest for reducing thrombosis. We propose a new therapeutic approach for the prevention and treatment of thrombosis by targeting the reduction in ploidy of megakaryocytes. We examine the role of a receptor mediated event causing megakaryocytes to increase ploidy, the potential for targeting the molecular mechanisms underpinning megakaryocyte endomitosis and the existence of two separate regulatory pathways to maintain haemostasis by altering the thrombotic potential of platelets as targets for novel therapeutic approaches producing haemostatically competent platelets which are not prothrombotic.
Collapse
Affiliation(s)
- Conor Feely
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
| | - Nitika Kaushal
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
| | - Pier Paolo D’Avino
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Martin
- Centre for Clinical Pharmacology, Institute of Health Informatics, University College London, London, United Kingdom
- Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
49
|
Basha NJ, Mohan RM. Insight on Heterocycles as p53‐MDM2 Protein‐Protein Interaction Inhibitors: Molecular Mechanism for p53 Activation. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/20/2024] [Indexed: 01/03/2025]
Abstract
AbstractTranscription factor p53, also known as tumor suppressor protein. Encoded by the TP53 gene, the guardian of genome p53 regulates many gene pathways. Nevertheless, the molecular mechanisms of p53 functioning have been known for a few decades, and the exact role of p53 in cancer therapy is unclear. Also, comprehensive literature on heterocycles as p53‐MDM2 protein‐protein interaction inhibitors is limited. This review covers the molecular mechanism for the p53‐MDM2 interaction and its inhibition by the heterocyclic small molecules. We hope the present comprehensive study will help to develop heterocycles as anticancer drugs that induce apoptosis in tumor cells.
Collapse
Affiliation(s)
- N. Jeelan Basha
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru India- 560043
| | - R. M. Mohan
- Department of Chemistry Indian Academy Degree College-Autonomous Bengaluru India- 560043
| |
Collapse
|
50
|
Ibusuki R, Iwama E, Shimauchi A, Tsutsumi H, Yoneshima Y, Tanaka K, Okamoto I. TP53 gain-of-function mutations promote osimertinib resistance via TNF-α-NF-κB signaling in EGFR-mutated lung cancer. NPJ Precis Oncol 2024; 8:60. [PMID: 38431700 PMCID: PMC10908812 DOI: 10.1038/s41698-024-00557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
EGFR tyrosine kinase inhibitors (TKIs) are effective against EGFR-mutated lung cancer, but tumors eventually develop resistance to these drugs. Although TP53 gain-of-function (GOF) mutations promote carcinogenesis, their effect on EGFR-TKI efficacy has remained unclear. We here established EGFR-mutated lung cancer cell lines that express wild-type (WT) or various mutant p53 proteins with CRISPR-Cas9 technology and found that TP53-GOF mutations promote early development of resistance to the EGFR-TKI osimertinib associated with sustained activation of ERK and expression of c-Myc. Gene expression analysis revealed that osimertinib activates TNF-α-NF-κB signaling specifically in TP53-GOF mutant cells. In such cells, osimertinib promoted interaction of p53 with the NF-κB subunit p65, translocation of the resulting complex to the nucleus and its binding to the TNF promoter, and TNF-α production. Concurrent treatment of TP53-GOF mutant cells with the TNF-α inhibitor infliximab suppressed acquisition of osimertinib resistance as well as restored osimertinib sensitivity in resistant cells in association with attenuation of ERK activation and c-Myc expression. Our findings indicate that induction of TNF-α expression by osimertinib in TP53-GOF mutant cells contributes to the early development of osimertinib resistance, and that TNF-α inhibition may therefore be an effective strategy to overcome such resistance in EGFR-mutant lung cancer with TP53-GOF mutations.
Collapse
Affiliation(s)
- Ritsu Ibusuki
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Iwama
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Atsushi Shimauchi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirono Tsutsumi
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuto Yoneshima
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kentaro Tanaka
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|