1
|
Zeng D, Ren W, Zhao B, Li Y, Jiao J, Mo T. Glycyrrhiza pallidiflora Polysaccharide Ameliorates DSS-Induced Colitis by Protecting Intestinal Barrier Integrity. Cell Biochem Biophys 2025:10.1007/s12013-025-01765-8. [PMID: 40346348 DOI: 10.1007/s12013-025-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
Ulcerative colitis (UC) is an idiopathic inflammatory bowel disease. Glycyrrhiza pallidiflora polysaccharide (GPP) is an important constituent of a species of Glycyrrhiza pallidiflora, but its therapeutic mechanism in UC mice is not clear. A dextran sulphate sodium salt (DSS)-induced mouse model of UC was established, and GPP was extracted by ultrasound-assisted extraction, optimised to a GPP content of 25.66% by one-factor optimisation. The effects of different doses (100, 200, 300 mg/kg) of GPP on UC were investigated. The results showed that GPP could delay the trend of weight loss, reduce the DAI score and decrease colon damage in mice, and GPP had a better ameliorative effect on enteritis, which provided a theoretical basis for studying the effect of natural products on UC.
Collapse
Affiliation(s)
- Dandan Zeng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Weijie Ren
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Bo Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuanyuan Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jinlong Jiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Lu H, Zhang G, Wang K, Liu K, Gao Y, Chen J, Li Y, Yan J. The Role of Lactiplantibacillus plantarum CGMCC9513 in Alleviating Colitis by Synergistic Enhancement of the Intestinal Barrier Through Modulating Gut Microbiota and Activating the Aryl Hydrocarbon Receptor. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10551-0. [PMID: 40301232 DOI: 10.1007/s12602-025-10551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/01/2025]
Abstract
Ulcerative colitis (UC) has become a global health issue. This study evaluated whether administering Lactiplantibacillus plantarum CGMCC9513 to dextran sulfate sodium (DSS)-induced colitis mice could alleviate colitis by modulating gut microbiota imbalance and activating the aryl hydrocarbon receptor (AhR) to enhance intestinal barrier function. The anti-inflammatory effect and AhR activation ability of L. plantarum CGMCC9513 were evaluated with lipopolysaccharide (LPS)-induced cell inflammation model; 25 male BALB/c mice were divided into blank group (CNG), model group (DSS), L. plantarum CGMCC9513-treated group (LPDT), and L. plantarum CGMCC9513 control group (LP). The mice were pre-administered L. plantarum CGMCC9513 for 14 days and continued to receive it during DSS induction. Symptoms during induction, goblet cell count, expression of MUC2 and Occludin proteins, and changes in gut microbiota were observed. Subsequently, the expression of cytokines interleukin-10 (IL-10), tumor necrosis factor (TNF-α), interleukin-1β (IL-1β) and AhR activation status was determined. The study found that L. plantarum CGMCC9513 could alleviate cell inflammation induced by LPS and activate AhR in vitro. For colitis mice, it could reduce colonic mucosal damage and enhance intestinal barrier function. Regarding gut microbiota changes, L. plantarum CGMCC9513 mainly downregulated Bacteroides, Blautia, Escherichia-Shigella, and Lachnospiraceae_ NK4A136_group and upregulated Firmicutes, Lactobacillus. It reduces the risk of bacterial translocation and increases beneficial gut bacteria. L. plantarum CGMCC9513 reduced the expression of pro-inflammatory cytokines TNF-α and IL-1β while increasing the expression of anti-inflammatory cytokine IL-10. Meanwhile, increased expression of AhR and Cytochrome P450 1A1 (CYP1A1) proteins indicated AhR activation by L. plantarum CGMCC9513. In conclusion, L. plantarum CGMCC9513 can synergistically enhance intestinal barrier alleviation in colitis mice by modulating gut microbiota imbalance and activating AhR.
Collapse
Affiliation(s)
- Hongyu Lu
- Medical School of Guangxi University, Nanning, 530004, China
| | - Guoqing Zhang
- Medical School of Guangxi University, Nanning, 530004, China
| | - Kaidi Wang
- Medical School of Guangxi University, Nanning, 530004, China
| | - Kefei Liu
- Tianjin Shengji Group., Co., Ltd, Huayuan Industrial Zone, No. 2, Hai Tai Development 2 Road, Tianjin, 300384, China
| | - Yingrui Gao
- Tianjin Shengji Group., Co., Ltd, Huayuan Industrial Zone, No. 2, Hai Tai Development 2 Road, Tianjin, 300384, China
| | - Jinyan Chen
- Tianjin Shengji Group., Co., Ltd, Huayuan Industrial Zone, No. 2, Hai Tai Development 2 Road, Tianjin, 300384, China
| | - Yixiang Li
- Medical School of Guangxi University, Nanning, 530004, China.
| | - Jianhua Yan
- Medical School of Guangxi University, Nanning, 530004, China.
| |
Collapse
|
3
|
Zhang Y, Zou F, Liang L, Liu J, Li H, Liang S, Xu S, Guo Y, Lai J, Hu J, Tan B, Cao H. Suoquan Wan mitigates bladder overactivity via modulation of neuroimmune homeostasis in perimenopausal rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156450. [PMID: 39922151 DOI: 10.1016/j.phymed.2025.156450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/03/2025] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Overactive bladder (OAB) is a common disorder in perimenopausal women, involving detrusor regulation by bladder neuro-immune interactions. While Suoquan Wan (SQW) has shown efficacy in alleviating OAB symptoms, its underlying mechanisms remain unclear. PURPOSE The aim of this study was to investigate the therapeutic effects of SQW on perimenopausal overactive bladder (OAB) and elucidate its underlying mechanisms in restoring bladder neuro-immune homeostasis. METHODS Initially, vaginal smears were performed to identify perimenopausal rats. The effects of SQW on the structure and function of the perimenopausal bladder were assessed using urodynamic studies, organ bath assays, and histological analyses, including hematoxylin and eosin (HE) and Masson staining. Subsequently, single-nucleus RNA sequencing (snRNA-seq) was conducted to investigate the mechanisms by which SQW modulates neuron-macrophage interactions. To validate the sequencing data, PCR and immunofluorescence (IF) assays were utilized to evaluate neural homeostasis. Further analyses involved IF, flow cytometry, and fluorescence bead assays to determine the function and proportion of bladder macrophages. The co-localization of neurons and macrophages was visualized using IF. Finally, transwell co-culture experiments were carried out to explore the regulatory effects of SQW on bladder neuro-immune homeostasis. RESULTS SQW significantly attenuates the frequency of non-micturition contractions and reduces residual urine volume, alleviates detrusor hyperactivity in OAB rats in response to external stimuli such as EFS, CCh, and KCl, and markedly improves urinary efficiency in perimenopausal OAB rats. SnRNA-seq data indicate that SQW modulates bladder neuro-immune homeostasis in these rats. Furthermore, SQW obviously decreases the proportion of ChAT-positive nerve fibers while enhancing the abundance of nNOS and MAP-positive nerve fibers in the bladder. SQW also reduces the proportion of CD45+ CD11b/C+MHCⅡ+ macrophages in the bladder muscle layer. Transwell co-culture assays reveal that the effects of SQW on MAP-2 and ChAT are mediated through the neuron-macrophage interaction mechanism. CONCLUSIONS SQW alleviated perimenopausal OAB by specifically modulating the neuron-macrophage interaction and enhancing bladder neuro-immune homeostasis.
Collapse
Affiliation(s)
- Yao Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Feng Zou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Lang Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Jiaye Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Hongliang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Shaochan Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Siyuan Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Yixin Guo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Junming Lai
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Jingyi Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| | - Bo Tan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Hongying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
4
|
Li Y, Ai S, Li Y, Ye W, Li R, Xu X, Liu Q. The role of natural products targeting macrophage polarization in sepsis-induced lung injury. Chin Med 2025; 20:19. [PMID: 39910395 PMCID: PMC11800549 DOI: 10.1186/s13020-025-01067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Sepsis-induced acute lung injury (SALI) is characterized by a dysregulated inflammatory and immune response. As a key component of the innate immune system, macrophages play a vital role in SALI, in which a macrophage phenotype imbalance caused by an increase in M1 macrophages or a decrease in M2 macrophages is common. Despite significant advances in SALI research, effective drug therapies are still lacking. Therefore, the development of new treatments for SALI is urgently needed. An increasing number of studies suggest that natural products (NPs) can alleviate SALI by modulating macrophage polarization through various targets and pathways. This review examines the regulatory mechanisms of macrophage polarization and their involvement in the progression of SALI. It highlights how NPs mitigate macrophage imbalances to alleviate SALI, focusing on key signaling pathways such as PI3K/AKT, TLR4/NF-κB, JAK/STAT, IRF, HIF, NRF2, HMGB1, TREM2, PKM2, and exosome-mediated signaling. NPs influencing macrophage polarization are classified into five groups: terpenoids, polyphenols, alkaloids, flavonoids, and others. This work provides valuable insights into the therapeutic potential of NPs in targeting macrophage polarization to treat SALI.
Collapse
Affiliation(s)
- Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Sinan Ai
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wangyu Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Rui Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
5
|
Sun K, Chen M, Kong X, Hou W, Xu Z, Liu L. Cardiac-specific Suv39h1 knockout ameliorates high-fat diet induced diabetic cardiomyopathy via regulating Hmox1 transcription. Life Sci 2025; 360:123258. [PMID: 39580141 DOI: 10.1016/j.lfs.2024.123258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/04/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
AIM Diabetic Cardiomyopathy (DCM), a common complication of Type 2 Diabetic Mellitus (T2DM), has been emerging as one of the leading causes of mortality in T2DM patients. During the past decade, although, clinical studies concerning DCM are increasing at an exponential rate, mechanisms underlying this disease still can't be clearly defined. Here, we aim to recognize the function of Suv39h1 in DCM and to explore underlying mechanisms during this disease, providing new insights into DCM and novel guide for clinical therapy development. MATERIALS AND METHODS We employed cardiac specific Suv39h1 knockout mice to reveal the role of Suv39h1 in high-fat diet induced DCM and using human cardiomyocyte line AC16 cells treated with Suv39h1 siRNA or inhibitor Chaetocin to further explore the mechanism during lipotoxicity condition. KEY FINDINGS Cardiac Suv39h1 knockout ameliorated manifestations of DCM, including cardiac function indexes, cardiomyocyte hypertrophy, interstitial fibrosis, along with improved metabolic disorder in mice. Further, interfering human AC16 cardiomyocytes with siSuv39h1 down-regulated lipotoxicity induced cardiac hypertrophy, inflammation, and fibrosis markers. Subsequent mRNA-seq using siSuv39h1 and SCR AC16 cells discovered a well-recognized cytoprotective, anti-oxidant, and anti-inflammation factor-Hmox1, prominently upregulated in Suv39h1 ablation cells versus SCR under lipotoxicity condition. ChIP assay revealed that Suv39h1 could bind to Hmox1 promoter and reversed by Chaetocin or small interfering RNA. SIGNIFICANCE These results suggested that the protective effects in DCM rendered by Suv39h1 ablation may work through activating Hmox1 transcription and protein function, providing new insights into pathogenesis of DCM and novel epigenetic target for clinical DCM therapies.
Collapse
Affiliation(s)
- Ke Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China
| | - Maohui Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China
| | - Xiangyu Kong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China
| | - Weiyuan Hou
- Department of Cardiac Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Huai'an 223001, China
| | - Zhiwei Xu
- Department of Cardiac Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Nanjing Medical University, Huai'an 223001, China.
| | - Li Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd, Nanjing 210023, China.
| |
Collapse
|
6
|
Elgohary R, Omara EA, Salama A. Cannabis sativa alleviates experimentally acetic acid- induced ulcerative colitis in rats: targeting CB1/SIRT/MAPK signaling pathways. Immunopharmacol Immunotoxicol 2024:1-11. [PMID: 39721800 DOI: 10.1080/08923973.2024.2445733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a frequent inflammatory bowel disease (IBD) that causes long-lasting inflammation in the innermost lining of the rectum and colon. OBJECTIVE The aim of this study was to evaluate the therapeutic effect of Cannabis sativa (C. sativa) on the amelioration of acetic acid-induced colitis in rats. MATERIALS AND METHODS Group 1: normal control group was intrarectally administered saline solution (0.9%); group 2: acetic acid (AA) group was given AA intra-rectally (2 mL of 4% (v/v) in 0.9% NaCl) once.; group 3&4: This group represented the ulcerative colitis-induced rats that were injected with acetic acid intra-rectally, then s.c. injection with C. sativa (20 and 40 mg/kg daily for 8 days). RESULTS Colonic architectural abnormality significantly improved after pretreatment with C. sativa. Additionally, it significantly reduced the MDA level and prevented the depletion of GSH content. Moreover, C. sativa administration showed suppressive activities on pro-inflammatory cytokines, including NF-κB, MAPK, ERK, PI3K, AKT, HIF-1α, and TLR4. Moreover, it significantly upregulated the level of SIRT and CB1 in the colon tissue. CONCLUSION This study provided a novel impact for CB1 receptor activation produced by C. sativa against AA-induced UC in rats through inhibiting the TLR-4 MAPK/ERK, PI3K, and NFκB signaling pathways.
Collapse
Affiliation(s)
- Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, Medical Research and Clinical Studies Institute, National Research Center, Cairo, Egypt
| | - Enayat A Omara
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Center, Cairo, Egypt
| | - Abeer Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Center, Cairo, Egypt
| |
Collapse
|
7
|
Huang FC. Therapeutic Potential of Nutritional Aryl Hydrocarbon Receptor Ligands in Gut-Related Inflammation and Diseases. Biomedicines 2024; 12:2912. [PMID: 39767818 PMCID: PMC11673835 DOI: 10.3390/biomedicines12122912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
A solid scientific foundation is required to build the concept of personalized nutrition developed to promote health and a vision of disease prevention. Growing evidence indicates that nutrition can modulate the immune system through metabolites, which are either generated via microbiota metabolism or host digestion. The aryl hydrocarbon receptor (AhR) plays a crucial role in regulating immune responses, particularly in the gut, and has emerged as a key modulator of gut-mediated inflammation and related diseases. AhR is a ligand-activated transcription factor that responds to environmental, dietary, and microbial-derived signals, influencing immune balance and maintaining intestinal homeostasis. Nutritional AhR ligands play a significant role in modulating intestinal immunity and the function of mucosal immune cells, thereby exerting clinical effects on colitis and innate immunity. Additionally, they have the capacity to orchestrate autophagy, phagocytic cell function, and intestinal epithelial tight junctions. Therapeutic strategies aimed at enhancing AhR activity, restoring gut integrity, and optimizing immune responses hold promise as avenues for future research and potential treatments for critically ill patients.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| |
Collapse
|
8
|
Ji J, Xiong C, Yang H, Jiang Z, Zhang Y, Wang X, Yu T, Li Q, Zhu S, Zhou Y. The aryl hydrocarbon receptor: A crucial mediator in ocular disease pathogenesis and therapeutic target. Exp Eye Res 2024; 249:110144. [PMID: 39486499 DOI: 10.1016/j.exer.2024.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The aryl hydrocarbon receptor (AHR) is a pivotal nuclear receptor involved in mediating cellular responses to a wide range of environmental pollutants and endogenous ligands. AHR plays a central role in regulating essential physiological processes, including xenobiotic metabolism, immune response modulation, cell cycle control, tumorigenesis, and developmental events. Recent studies have identified AHR as a critical mediator and a potential therapeutic target in the pathogenesis of ocular diseases. This review provides a thorough analysis of the various functions of AHR signalling in the ocular environment, with a specific emphasis on its effects on the retina, retinal pigment epithelium (RPE), choroid, and cornea. We provide a detailed discussion on the molecular mechanisms through which AHR integrates environmental and endogenous signals, influencing the development and progression of age-related macular degeneration (AMD), retinitis pigmentosa, uveitis, and other major ocular disorders. Furthermore, we evaluate the therapeutic potential of modulating AHR activity through novel ligands and agonists as a strategy for treating eye diseases. Understanding the molecular mechanisms of AHR in ocular tissues may facilitate the development of AHR-targeted therapies, which is crucial for addressing the pressing clinical demand for novel treatment strategies in ocular diseases.
Collapse
Affiliation(s)
- Juanjuan Ji
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chanyu Xiong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huining Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tianshu Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiong Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shikai Zhu
- Organ Transplant Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Genome Sequencing Center, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
9
|
Wang Y, Zhao X, Wang J, Zhu X. Norisoboldine Reduces Arthritis Severity by Attenuating Inflammation, Oxidative Stress, and Extracellular Matrix Degradation in a Rat Model of Rheumatoid Arthritis. J Inflamm Res 2024; 17:8839-8852. [PMID: 39564548 PMCID: PMC11575444 DOI: 10.2147/jir.s476824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic autoimmune disorder marked by persistent joint inflammation, pain, and tissue degradation. This study evaluates the therapeutic potential of Norisoboldine (NOR), an isoquinoline alkaloid from Lindera aggregata, in a rat model of RA. Methods Rats were divided into five groups: normal control (G1), RA model (G2), NOR-treated groups at 15 mg/kg (G3) and 30 mg/kg (G4), and methotrexate-treated group (G5). NOR's anti-arthritic effects were assessed by measuring clinical arthritis scores and inflammatory markers (RF, CRP, TNF-α, IL-6, IL-10). Oxidative stress markers (MDA, SOD, catalase, GPx) and pathways (NF-κB/IKKβ and Nrf2/Keap1) were also evaluated. Histopathology assessed synovial inflammation and tissue degradation. Results NOR treatment significantly reduced arthritis severity, as evidenced by decreased clinical arthritis scores and inflammatory markers in RA rats. NOR also exhibited strong antioxidant effects, demonstrated by decreased MDA levels and enhanced SOD, catalase, and GPx activities. NOR further downregulated matrix metalloproteinases (Mmp-2, Mmp-3), aggrecanases (Adamts-4, Adamts-5), and PCNA expression. Histopathology confirmed marked reductions in synovial inflammation and tissue damage in NOR-treated groups. Discussion These findings suggest that NOR's anti-inflammatory and antioxidant properties contribute to reducing both inflammation and the overall severity of RA. NOR's multifaceted actions support its potential as a novel therapeutic agent for RA. Conclusion NOR demonstrates protective effects in RA rats by reducing inflammation, oxidative stress, and extracellular matrix degradation, offering promise as a therapeutic option to manage RA pathology comprehensively.
Collapse
Affiliation(s)
- Ying Wang
- Department of Endocrine Nephrology, The First Affiliated Hospital of Xingtai Medical College (Xingtai First Hospital), Xingtai, Hebei Province, 054001, People's Republic of China
| | - Xiangzhuo Zhao
- Department of Rheumatic Immunology, Xingtai People's Hospital, Xingtai, Hebei Province, 054000, People's Republic of China
| | - Jingxu Wang
- Department of Rheumatic Immunology, Xingtai People's Hospital, Xingtai, Hebei Province, 054000, People's Republic of China
| | - Xiaoli Zhu
- Department of Critical Care Medicine, Xingtai People's Hospital, Xingtai, Hebei Province, 054000, People's Republic of China
| |
Collapse
|
10
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Bahman F, Choudhry K, Al-Rashed F, Al-Mulla F, Sindhu S, Ahmad R. Aryl hydrocarbon receptor: current perspectives on key signaling partners and immunoregulatory role in inflammatory diseases. Front Immunol 2024; 15:1421346. [PMID: 39211042 PMCID: PMC11358079 DOI: 10.3389/fimmu.2024.1421346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a versatile environmental sensor and transcription factor found throughout the body, responding to a wide range of small molecules originating from the environment, our diets, host microbiomes, and internal metabolic processes. Increasing evidence highlights AhR's role as a critical regulator of numerous biological functions, such as cellular differentiation, immune response, metabolism, and even tumor formation. Typically located in the cytoplasm, AhR moves to the nucleus upon activation by an agonist where it partners with either the aryl hydrocarbon receptor nuclear translocator (ARNT) or hypoxia-inducible factor 1β (HIF-1β). This complex then interacts with xenobiotic response elements (XREs) to control the expression of key genes. AhR is notably present in various crucial immune cells, and recent research underscores its significant impact on both innate and adaptive immunity. This review delves into the latest insights on AhR's structure, activating ligands, and its multifaceted roles. We explore the sophisticated molecular pathways through which AhR influences immune and lymphoid cells, emphasizing its emerging importance in managing inflammatory diseases. Furthermore, we discuss the exciting potential of developing targeted therapies that modulate AhR activity, opening new avenues for medical intervention in immune-related conditions.
Collapse
Affiliation(s)
- Fatemah Bahman
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Khubaib Choudhry
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
12
|
Haque PS, Kapur N, Barrett TA, Theiss AL. Mitochondrial function and gastrointestinal diseases. Nat Rev Gastroenterol Hepatol 2024; 21:537-555. [PMID: 38740978 PMCID: PMC12036329 DOI: 10.1038/s41575-024-00931-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
Mitochondria are dynamic organelles that function in cellular energy metabolism, intracellular and extracellular signalling, cellular fate and stress responses. Mitochondria of the intestinal epithelium, the cellular interface between self and enteric microbiota, have emerged as crucial in intestinal health. Mitochondrial dysfunction occurs in gastrointestinal diseases, including inflammatory bowel diseases and colorectal cancer. In this Review, we provide an overview of the current understanding of intestinal epithelial cell mitochondrial metabolism, function and signalling to affect tissue homeostasis, including gut microbiota composition. We also discuss mitochondrial-targeted therapeutics for inflammatory bowel diseases and colorectal cancer and the evolving concept of mitochondrial impairment as a consequence versus initiator of the disease.
Collapse
Affiliation(s)
- Parsa S Haque
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Neeraj Kapur
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Terrence A Barrett
- Department of Medicine, Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY, USA
- Lexington Veterans Affairs Medical Center Kentucky, Lexington, KY, USA
| | - Arianne L Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA.
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, USA.
| |
Collapse
|
13
|
Wu L, Lin S, Hu Y, Jing S, Sun B, Chen X, Jia J, Zeng C, Pei F. Potential mechanism of Luoshi Neiyi prescription in endometriosis based on serum pharmacochemistry and network pharmacology. Front Pharmacol 2024; 15:1395160. [PMID: 39135784 PMCID: PMC11317381 DOI: 10.3389/fphar.2024.1395160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Endometriosis (EMs) is characterized by ectopic growth of active endometrial tissue outside the uterus. The Luoshi Neiyi prescription (LSNYP) has been extensively used for treating EMs in China. However, data on the active chemical components of LSNYP are insufficient, and its pharmacological mechanism in EMs treatment remains unclear. This study aimed to explore the potential mechanism of LSNYP for EMs through network pharmacology based on the components absorbed into the blood. Methods Ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry was used to analyze blood components, and a series of network pharmacology strategies were utilized to predict targets of these components and EMs. Protein-protein interaction (PPI) network analysis, component-target-disease network construction, gene ontology (GO) functional enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed. Additionally, molecular docking, molecular dynamics simulations, and in vitro and in vivo experiments were conducted to validate the HIF1A/EZH2/ANTXR2 pathway associated with hypoxic pathology in EMs. Results Thirty-four absorbed components suitable for network pharmacology analysis were identified, and core targets, such as interleukin 6, EGFR, HIF1A, and EZH2, were founded. Enrichment results indicated that treatment of EMs with LSNYP may involve the regulation of hypoxia and inflammatory-related signaling pathways and response to oxidative stress and transcription factor activity. Experimental results demonstrated that LSNYP could decrease the expression of HIF1A, ANTXR2, YAP1, CD44, and β-catenin, and increased EZH2 expression in ectopic endometrial stromal cells and endometriotic tissues. Molecular docking and molecular dynamics simulations manifested that there was stable combinatorial activity between core components and key targets of the HIF1A/EZH2/ANTXR2 pathway. Conclusion LSNYP may exert pharmacological effects on EMs via the HIF1A/EZH2/ANTXR2 pathway; hence, it is a natural herb-related therapy for EMs.
Collapse
Affiliation(s)
- Lizheng Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuhong Lin
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongjun Hu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shangwen Jing
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bowen Sun
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaoxin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinjin Jia
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Cheng Zeng
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fangli Pei
- Department of Gynecology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Kim S, Seo SU, Kweon MN. Gut microbiota-derived metabolites tune host homeostasis fate. Semin Immunopathol 2024; 46:2. [PMID: 38990345 PMCID: PMC11239740 DOI: 10.1007/s00281-024-01012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/15/2024] [Indexed: 07/12/2024]
Abstract
The gut microbiota, housing trillions of microorganisms within the gastrointestinal tract, has emerged as a critical regulator of host health and homeostasis. Through complex metabolic interactions, these microorganisms produce a diverse range of metabolites that substantially impact various physiological processes within the host. This review aims to delve into the intricate relationships of gut microbiota-derived metabolites and their influence on the host homeostasis. We will explore how these metabolites affect crucial aspects of host physiology, including metabolism, mucosal integrity, and communication among gut tissues. Moreover, we will spotlight the potential therapeutic applications of targeting these metabolites to restore and sustain host equilibrium. Understanding the intricate interplay between gut microbiota and their metabolites is crucial for developing innovative strategies to promote wellbeing and improve outcomes of chronic diseases.
Collapse
Affiliation(s)
- Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine / Asan Medical Center, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Li S, Yan W, Sun K, Miao J, Liu Z, Xu J, Wang X, Li B, Zhang Q. Norisoboldine, a Natural Alkaloid from Lindera aggregata (Sims) Kosterm, Promotes Osteogenic Differentiation via S6K1 Signaling Pathway and Prevents Bone Loss in OVX Mice. Mol Nutr Food Res 2024; 68:e2400193. [PMID: 38813717 DOI: 10.1002/mnfr.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Indexed: 05/31/2024]
Abstract
SCOPE Norisoboldine (NOR) is a major isoquinoline alkaloid component in the traditional Chinese herbal plant Lindera aggregata (Sims) Kosterm, with previously reported anti-osteoclast differentiation and antiarthritis properties. However, the roles of NOR on osteoblasts, bone marrow mesenchymal stem cells (BMSCs), and osteoporosis in vivo have never been well established. METHODS AND RESULTS This study investigates the ability of NOR to improve bone formation in vitro and in vivo. Osteoblasts and BMSCs are used to study the effect of NOR on osteogenic and adipogenic differentiation. It finds that NOR promotes osteogenic differentiation of osteoblasts and BMSCs, while inhibiting adipogenic differentiation of BMSCs by reducing the relative expression of peroxisome proliferator-activated receptor γ (Ppar-γ) and adiponectin, C1Q and collagen domain containing (Adipoq). Mechanistic studies show that NOR increases osteoblast differentiation through the mechanistic target of rapamycin kinase (mTOR)/ribosomal protein S6 kinase; polypeptide 1 (S6K1) pathway, and treatment with an mTOR inhibitor rapamycin blocked the NOR-induced increase in mineral accumulation. Finally, the study evaluates the therapeutic potential of NOR in a mouse model of ovariectomy (OVX)-induced bone loss. NOR prevents bone loss in both trabecular and cortical bone by increasing osteoblast number and phospho-S6K1 (p-S6K1) expression in osteoblasts. CONCLUSION NOR effects in enhancing osteoblast-induced bone formation via S6K1 pathway, suggesting the potential of NOR in osteoporosis treatment by increasing bone formation.
Collapse
Affiliation(s)
- Shiming Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Wenliang Yan
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Kainong Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jingyuan Miao
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Zichao Liu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Jiayang Xu
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Xiaoyu Wang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
| | - Qian Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
16
|
Jin X, Sun X, Ma X, Qin Z, Gao X, Kang X, Li H, Sun H. SIRT1 maintains bone homeostasis by regulating osteoblast glycolysis through GOT1. Cell Mol Life Sci 2024; 81:204. [PMID: 38700532 PMCID: PMC11072260 DOI: 10.1007/s00018-023-05043-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 11/07/2023] [Indexed: 05/24/2024]
Abstract
The silent information regulator T1 (SIRT1) is linked to longevity and is a crucial mediator of osteoblast function. We investigated the direct role of Sirt1 during bone modeling and remodeling stages in vivo using Tamoxifen-inducible osteoblast-specific Sirt1 conditional knockout (cKO) mice. cKO mice exhibited lower trabecular and cortical bone mass in the distal femur. These phenotypes were coupled with lower bone formation and bone resorption. Metabolomics analysis revealed that the metabolites involved in glycolysis were significantly decreased in cKO mice. Further analysis of the quantitative acetylome revealed 11 proteins with upregulated acetylation levels in both the femur and calvaria of cKO mice. Cross-analysis identified four proteins with the same upregulated lysine acetylation site in both the femur and calvaria of cKO mice. A combined analysis of the metabolome and acetylome, as well as immunoprecipitation, gene knockout, and site-mutation experiments, revealed that Sirt1 deletion inhibited glycolysis by directly binding to and increasing the acetylation level of Glutamine oxaloacetic transaminase 1 (GOT1). In conclusion, our study suggested that Sirt1 played a crucial role in regulating osteoblast metabolism to maintain bone homeostasis through its deacetylase activity on GOT1. These findings provided a novel insight into the potential targeting of osteoblast metabolism for the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Xulei Sun
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiao Ma
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zixuan Qin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xin Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Huixia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hongzhi Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
17
|
Chen J, Zhang M, Aniagu S, Jiang Y, Chen T. PM 2.5 induces cardiac defects via AHR-SIRT1-PGC-1α mediated mitochondrial damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104393. [PMID: 38367920 DOI: 10.1016/j.etap.2024.104393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
Recent evidence indicates that PM2.5 poses a risk for congenital heart diseases, but the mechanisms remain unclear. We hypothesized that AHR activated by PM2.5 might cause mitochondrial damage via PGC-1α dysregulation, leading to heart defects. We initially discovered that the PGC-1α activator ZLN005 counteracted cardiac defects in zebrafish larvae exposed to EOM (extractable organic matter) from PM2.5. Moreover, ZLN005 attenuated EOM-induced PGC-1α downregulation, mitochondrial dysfunction/biogenesis, and apoptosis. EOM exposure not only decreased PGC-1α expression levels, but suppressed its activity via deacetylation, and SIRT1 activity is required during both processes. We then found that SIRT1 expression levels and NAD+/NADH ratio were reduced in an AHR-dependent way. We also demonstrated that AHR directly suppressed the transcription of SIRT1 while promoted the transcription of TiPARP which consumed NAD+. In conclusion, our study suggests that PM2.5 induces mitochondrial damage and heart defects via AHR/SIRT1/PGC-1α signal pathway.
Collapse
Affiliation(s)
- Jin Chen
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Mingxuan Zhang
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin TX, USA
| | - Yan Jiang
- Suzhou medical college, Soochow University, Suzhou, China.
| | - Tao Chen
- Suzhou medical college, Soochow University, Suzhou, China; MOE Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China.
| |
Collapse
|
18
|
Wang Z, Zhang Y, Liao Z, Huang M, Shui X. The potential of aryl hydrocarbon receptor as receptors for metabolic changes in tumors. Front Oncol 2024; 14:1328606. [PMID: 38434684 PMCID: PMC10904539 DOI: 10.3389/fonc.2024.1328606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Cancer cells can alter their metabolism to meet energy and molecular requirements due to unfavorable environments with oxygen and nutritional deficiencies. Therefore, metabolic reprogramming is common in a tumor microenvironment (TME). Aryl hydrocarbon receptor (AhR) is a ligand-activated nuclear transcription factor, which can be activated by many exogenous and endogenous ligands. Multiple AhR ligands can be produced by both TME and tumor cells. By attaching to various ligands, AhR regulates cancer metabolic reprogramming by dysregulating various metabolic pathways, including glycolysis, lipid metabolism, and nucleotide metabolism. These regulated pathways greatly contribute to cancer cell growth, metastasis, and evading cancer therapies; however, the underlying mechanisms remain unclear. Herein, we review the relationship between TME and metabolism and describe the important role of AhR in cancer regulation. We also focus on recent findings to discuss the idea that AhR acts as a receptor for metabolic changes in tumors, which may provide new perspectives on the direction of AhR research in tumor metabolic reprogramming and future therapeutic interventions.
Collapse
Affiliation(s)
- Zhiying Wang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yuanqi Zhang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhihong Liao
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Mingzhang Huang
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
19
|
Zou H, Zhang M, Chen J, Aniagu S, Jiang Y, Chen T. AHR-mediated DNA damage contributes to BaP-induced cardiac malformations in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167636. [PMID: 37806592 DOI: 10.1016/j.scitotenv.2023.167636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Benzo[a]pyrene (BaP) is a representative polycyclic aromatic hydrocarbon widely present in the environment. We previously reported that the aryl hydrocarbon receptor (AHR) mediates BaP-induced apoptosis and cardiac malformations in zebrafish embryos, but the underlying molecular mechanisms were unclear. Since BaP is a mutagenetic compound, we hypothesize that BaP induces apoptosis and heart defects via AHR-mediated DNA damage. In this study, zebrafish embryos were exposed to BaP at a concentration of 0.1 μM from 2 to 72 h post fertilization, either with or without inhibitors/agonists. AHR activity and levels of reactive oxygen species (ROS) were examined under a fluorescence microscope. mRNA expression levels were quantified by qPCR. DNA damage and apoptosis were detected by immunofluorescence. Our findings revealed that BaP exposure significantly increased BPDE-DNA adducts, mitochondrial damage, apoptosis and heart defects in zebrafish embryos. These effects were counteracted by inhibiting AHR/cyp1a1 using pharmaceutical inhibitors or genetic knockdown. Furthermore, we observed that spironolactone, an antagonist of nucleotide excision repair (NER), significantly enhanced BaP-induced BPDE-DNA adducts, mitochondrial damage, apoptosis and heart malformation rates. Conversely, SRT1720, a SIRT1 agonist, reduced the adverse effects of BaP. Supplementation with spironolactone also enhanced γ-H2AX signals in the heart of zebrafish embryos exposed to BaP. Additional experiments demonstrated that BaP suppressed the expression of SIRT1. We further established that AHR, when activated by BaP, directly inhibited SIRT1 transcription, leading to downregulation of XPC and XPA, which are essential NER genes involved in the recognition and verification steps of the NER process. Taken together, our results indicate that AHR mediates BaP-induced DNA damage in the heart of zebrafish embryos by inducing BPDE-DNA adduct formation via the AHR/Cyp1a1 signalling pathway, as well as suppressing NER via AHR-mediated inhibition of SIRT1.
Collapse
Affiliation(s)
- Hongmei Zou
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Mingxuan Zhang
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Jin Chen
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China.
| | - Tao Chen
- Suzhou Medical College, Soochow University, Suzhou, China; Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou, China.
| |
Collapse
|
20
|
Wang T, Chen B, Luo M, Xie L, Lu M, Lu X, Zhang S, Wei L, Zhou X, Yao B, Wang H, Xu D. Microbiota-indole 3-propionic acid-brain axis mediates abnormal synaptic pruning of hippocampal microglia and susceptibility to ASD in IUGR offspring. MICROBIOME 2023; 11:245. [PMID: 37932832 PMCID: PMC10629055 DOI: 10.1186/s40168-023-01656-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 08/23/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Autism spectrum disorder (ASD) has been associated with intrauterine growth restriction (IUGR), but the underlying mechanisms are unclear. RESULTS We found that the IUGR rat model induced by prenatal caffeine exposure (PCE) showed ASD-like symptoms, accompanied by altered gut microbiota and reduced production of indole 3-propionic acid (IPA), a microbiota-specific metabolite and a ligand of aryl hydrocarbon receptor (AHR). IUGR children also had a reduced serum IPA level consistent with the animal model. We demonstrated that the dysregulated IPA/AHR/NF-κB signaling caused by disturbed gut microbiota mediated the hippocampal microglia hyperactivation and neuronal synapse over-pruning in the PCE-induced IUGR rats. Moreover, postnatal IPA supplementation restored the ASD-like symptoms and the underlying hippocampal lesions in the IUGR rats. CONCLUSIONS This study suggests that the microbiota-IPA-brain axis regulates ASD susceptibility in PCE-induced IUGR offspring, and supplementation of microbiota-derived IPA might be a promising interventional strategy for ASD with a fetal origin. Video Abstract.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Beidi Chen
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, 100191, China
| | - Mingcui Luo
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lulu Xie
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengxi Lu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Shuai Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liyi Wei
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Dan Xu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
21
|
Run L, Tian Z, Xu L, Du J, Li N, Wang Q, Sun H. Knockdown of IL4I1 Improved High Glucose-evoked Insulin Resistance in HepG2 Cells by Alleviating Inflammation and Lipotoxicity Through AHR Activation. Appl Biochem Biotechnol 2023; 195:6694-6707. [PMID: 36913096 DOI: 10.1007/s12010-023-04399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Insulin resistance (IR) is one of the leading causes of Type 2 diabetes mellitus (T2DM). Inflammation, as a result of the disordered immune response, plays important roles in IR and T2DM. Interleukin-4-induced gene 1 (IL4I1) has been shown to regulate immune response and be involved in inflammation progress. However, there was little known about its roles in T2DM. Here, high glucose (HG)-treated HepG2 cells were used for T2DM investigation in vitro. Our results indicated that the expression of IL4I1 was up-regulated in peripheral blood samples of T2DM-patients and HG-induced HepG2 cells. The silencing of IL4I1 alleviated the HG-evoked IR through elevating the expressions of p-IRS1, p-AKT and GLUT4, and enhancing glucose consumption. Furthermore, IL4I1 knockdown inhibited inflammatory response by reducing the levels of inflammatory mediators, and suppressed the accumulation of lipid metabolites triglyceride (TG) and palmitate (PA) in HG-induced cells. Notably, IL4I1 expression was positively correlated with aryl hydrocarbon receptor (AHR) in peripheral blood samples of T2DM-patients. The silencing of IL4I1 inhibited the AHR signaling by reducing the HG-induced expressions of AHR and CYP1A1. Subsequent experiments confirmed that 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an agonist of AHR, reversed the suppressive effects of IL4I1 knockdown on HG-caused inflammation, lipid metabolism and IR in cells. In conclusion, we found that the silencing of IL4I1 attenuated inflammation, lipid metabolism and IR in HG-induced cells via inhibiting AHR signaling, suggesting that IL4I1 might be a potential therapy target for T2DM.
Collapse
Affiliation(s)
- Lin Run
- Department of Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China, NO. 76, Yanta West Road, Yanta District
- Department of Endocrinology, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Zhufang Tian
- Department of Endocrinology, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Lin Xu
- Department of Endocrinology, The Affiliated Guangren Hospital, Xi'an Jiaotong University College of Medicine, 710004, Xi'an, Shaanxi, China
| | - Junhui Du
- Department of Medicine Interdisciplinary Research, Xi'an Ninth Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710054, Xi'an, Shaanxi, China
| | - Nan Li
- Clinical Laboratory, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Qi Wang
- Department of Nuclear Medicine, Xi'an Central Hospital Affiliated to Medical College of Xi'an Jiaotong University, 710003, Xi'an, Shaanxi, China
| | - Hongzhi Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, China, NO. 76, Yanta West Road, Yanta District.
| |
Collapse
|
22
|
Liu S, Yan W, Lv Q, Yang L, Miao Y, Hu Y, Wei Z. 3, 3'-diindolylmethane, a natural aryl hydrocarbon receptor agonist, alleviates ulcerative colitis by enhancing "glycolysis-lactate-STAT3″ and TIP60 signals-mediated Treg differentiation. Mol Immunol 2023; 163:147-162. [PMID: 37793204 DOI: 10.1016/j.molimm.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Aryl hydrocarbon receptor (AhR) plays an important role in the occurrence and development of ulcerative colitis (UC). In this study, the effect and mechanism of 3, 3'-diindolylmethane (DIM), the classical AhR agonist, on UC was investigated from the angle of recovering the balance of Th17/Treg. METHODS The in vivo colitis model was established in mice by using dextran sulfate sodium, and CD4+ T cells were used to simulate the in vitro differentiation of Treg and Th17 cells. The proportions and related factors of Th17 and Treg cells were measured using flow cytometry, Q-PCR and western blotting. The glycolysis was evaluated by examining the glucose uptake, glucose consumption and lactate production using kits or immunofluorescence. The activation of AhR was detected by western blotting and the XRE-luciferase reporter gene. The co-immunoprecipitation, transfection or other methods were selected to investigate and identify the signaling molecular pathway. RESULTS DIM significantly attenuated symptoms of colitis mice by rebuilding the balance of Th17/Treg in anoxic colons. In hypoxia, a more potent promotion of Treg differentiation was showed by DIM relative to normoxia, and siFoxp3 prevented DIM-suppressed Th17 differentiation. DIM repressed the excessive glycolysis in hypoxia evidenced by down-regulated glucose uptake, lactate production, Glut1 and HK2 levels. Interestingly, IL-10, the function-related factor of Treg cells, showed the feedback effect of DIM-suppressed glycolysis. Besides, 2-deoxy-D-glucose, HK2 plasmid and IL-10 antibody prevented increase of DIM on the expression of Foxp3 at the transcriptional level and subsequent Treg differentiation through the lactate-STAT3 pathway, and reasons for the direct improvement of DIM on Foxp3 protein was attributed to promoting the formation of HIF-1α/TIP60 complexes as well as subsequent acetylation and protein stability. Finally, AhR dependence and mechanisms for DIM-improved Treg differentiation in vitro and in vivo were well confirmed by using plasmids or inhibitors. CONCLUSIONS DIM enhances activation of AhR and subsequent "glycolysis-lactate-STAT3″ and TIP60 signals-mediated Treg differentiation.
Collapse
Affiliation(s)
- Shukun Liu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Wenxin Yan
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Qi Lv
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Ling Yang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yumeng Miao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Yuxiao Hu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
23
|
Hou JJ, Ma AH, Qin YH. Activation of the aryl hydrocarbon receptor in inflammatory bowel disease: insights from gut microbiota. Front Cell Infect Microbiol 2023; 13:1279172. [PMID: 37942478 PMCID: PMC10628454 DOI: 10.3389/fcimb.2023.1279172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease that affects more than 3.5 million people, with rising prevalence. It deeply affects patients' daily life, increasing the burden on patients, families, and society. Presently, the etiology of IBD remains incompletely clarified, while emerging evidence has demonstrated that altered gut microbiota and decreased aryl hydrocarbon receptor (AHR) activity are closely associated with IBD. Furthermore, microbial metabolites are capable of AHR activation as AHR ligands, while the AHR, in turn, affects the microbiota through various pathways. In light of the complex connection among gut microbiota, the AHR, and IBD, it is urgent to review the latest research progress in this field. In this review, we describe the role of gut microbiota and AHR activation in IBD and discussed the crosstalk between gut microbiota and the AHR in the context of IBD. Taken as a whole, we propose new therapeutic strategies targeting the AHR-microbiota axis for IBD, even for other related diseases caused by AHR-microbiota dysbiosis.
Collapse
Affiliation(s)
| | | | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
24
|
Liu C, Wang R, Jiao X, Zhang J, Zhang C, Wang Z. Oxysophocarpine suppresses TRAF6 level to ameliorate oxidative stress and inflammatory factors secretion in mice with dextran sulphate sodium (DSS) induced-ulcerative colitis. Microb Pathog 2023; 182:106244. [PMID: 37423495 DOI: 10.1016/j.micpath.2023.106244] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE Ulcerative colitis is an inflammation-related disease with a high recurrence risk. Oxysophocarpine (OSC) is a traditional Chinese medicine isolated from legumes and exerts vital functions on many human diseases. However, the OSC's role in ulcerative colitis has not been fully elucidated. This research aimed to investigate the OSC's impact on ulcerative colitis and its mechanisms. METHODS A mouse model of ulcerative colitis was induced by dextran sulphate sodium (DSS). The effect of OSC on ulcerative colitis was examined using Disease Activity Index detection, hematoxylin-eosin (HE) staining, and enzyme-linked immunosorbent assay (ELISA). Meanwhile, the mechanism of OSC in ulcerative colitis was assessed by immunohistochemistry assay, Western blot, HE staining, and ELISA. RESULTS For the OSC's function in ulcerative colitis, OSC increased the mice weight, decreased Disease Activity Index scores, and alleviated colitis cell infiltration and epithelial cell destruction in DSS-induced ulcerative colitis. Also, OSC mitigated oxidative stress (decreased PGE2, MPO levels, and increased SOD levels) and inflammation (decreased IL-6, TNF-α and IL-1β levels) in DSS-induced ulcerative colitis. For the OSC's mechanism in ulcerative colitis, OSC inhibited the level of tumor necrosis factor receptor-associated Factor 6 (TRAF6) and the phosphorylation of nuclear factor-κB (NF-κB). TRAF6 overexpression abolished the effect of OSC on DSS-induced colon injury and its associated oxidative stress and inflammatory properties in ulcerative colitis. CONCLUSION OSC decreased the TRAF6 level to reduce oxidative stress and inflammatory factors secretion in mice with DSS induced-ulcerative colitis.
Collapse
Affiliation(s)
- Chao Liu
- Department of Proctology, Beijing Shijitan Hospital Affiliated to Capital Medical University, China
| | - Rui Wang
- Department of Proctology, Dongzhimen Hospital, Beijing University of Chinese Medicine, China
| | - Xia Jiao
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University, China
| | - Junfeng Zhang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University, China
| | - Changbo Zhang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University, China
| | - Zhenbiao Wang
- Department of Traditional Chinese Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University, China.
| |
Collapse
|
25
|
Nakamura K, Yamasaki M, Ohashi H, Saito S, Ashikawa K, Sato K, Nishioka K, Suzuki Y, Tsurukawa Y, Kanno K, Mosu N, Murakami H, Nagane M, Okada M, Watashi K, Kamisuki S. Identification of Methylsulochrin as a Partial Agonist for Aryl Hydrocarbon Receptors and Its Antiviral and Anti-inflammatory Activities. Chem Pharm Bull (Tokyo) 2023; 71:650-654. [PMID: 37245988 DOI: 10.1248/cpb.c23-00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Although aryl hydrocarbon receptors (AhRs) are related to the metabolic pathway of xenobiotics, recent studies have revealed that this receptor is also associated with the life cycle of viruses and inflammatory reactions. For example, flutamide, used to treat prostate cancer, inhibits hepatitis C virus proliferation by acting as an AhR antagonist, and methylated-pelargonidin, an AhR agonist, suppresses pro-inflammatory cytokine production. To discover a novel class of AhR ligands, we screened 1000 compounds derived from fungal metabolites using a reporter assay and identified methylsulochrin as a partial agonist of the aryl hydrocarbon receptor. Methylsulochrin was found to inhibit the production of hepatitis C virus (HCV) in Huh-7.5.1 cells. Methylsulochrin also suppressed the production of interleukin-6 in RAW264.7 cells. Furthermore, a preliminary structure-activity relationship study using sulochrin derivatives was performed. Our findings suggest the use of methylsulochrin derivatives as anti-HCV compounds with anti-inflammatory activity.
Collapse
Affiliation(s)
| | - Masako Yamasaki
- Department of Applied Biological Science, Tokyo University of Science
- Department of Virology II, National Institute of Infectious Diseases
| | - Hirofumi Ohashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases
| | - Shiki Saito
- School of Veterinary Medicine, Azabu University
| | | | - Kanna Sato
- School of Veterinary Medicine, Azabu University
| | - Kazane Nishioka
- Department of Applied Biological Science, Tokyo University of Science
- Department of Virology II, National Institute of Infectious Diseases
| | - Yuka Suzuki
- School of Veterinary Medicine, Azabu University
| | | | | | - Nozomi Mosu
- School of Veterinary Medicine, Azabu University
| | - Hironobu Murakami
- School of Veterinary Medicine, Azabu University
- Center for Human and Animal Symbiosis Science, Azabu University
| | - Masaki Nagane
- School of Veterinary Medicine, Azabu University
- Center for Human and Animal Symbiosis Science, Azabu University
| | - Maiko Okada
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Koichi Watashi
- Department of Applied Biological Science, Tokyo University of Science
- Department of Virology II, National Institute of Infectious Diseases
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases
| | - Shinji Kamisuki
- School of Veterinary Medicine, Azabu University
- Center for Human and Animal Symbiosis Science, Azabu University
| |
Collapse
|
26
|
Chang JH, Chuang HC, Fan CK, Hou TY, Chang YC, Lee YL. Norisoboldine exerts antiallergic effects on IgE/ovalbumin-induced allergic asthma and attenuates FcεRI-mediated mast cell activation. Int Immunopharmacol 2023; 121:110473. [PMID: 37331292 DOI: 10.1016/j.intimp.2023.110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023]
Abstract
Allergic asthma is an inflammatory lung disorder, and mast cells play crucial roles in the development of this allergic disease. Norisoboldine (NOR), the major isoquinoline alkaloid present in Radix Linderae, has received considerable attention because it has anti-inflammatory effects. Herein, the aim of this study was to explore the antiallergic effects of NOR on allergic asthma in mice and mast cell activation. In a murine model of ovalbumin (OVA)-induced allergic asthma, oral administration at 5 mg/kg body weight (BW) of NOR produced strong reductions in serum OVA-specific immunoglobulin E (IgE) levels, airway hyperresponsiveness, and bronchoalveolar lavage fluid (BALF) eosinophilia, while an increase in CD4+Foxp3+ T cells of the spleen was detected. Histological studies demonstrated that NOR treatment significantly ameliorated the progression of airway inflammation including the recruitment of inflammatory cells and mucus production by decreasing levels of histamine, prostaglandin D2 (PGD2), interleukin (IL)-4, IL-5, IL-6, and IL-13 in BALF. Furthermore, our results revealed that NOR (3 ∼ 30 μM) dose-dependently reduced expression of the high-affinity receptor for IgE (FcεRI) and the production of PGD2 and inflammatory cytokines (IL-4, IL-6, IL-13, and TNF-α), and also decreased degranulation of bone marrow-derived mast cells (BMMCs) activated by IgE/OVA. In addition, a similar suppressive effect on BMMC activation was observed by inhibition of the FcεRI-mediated c-Jun N-terminal kinase (JNK) signaling pathway using SP600125, a selective JNK inhibitor. Collectively, these results suggest that NOR may have therapeutic potential for allergic asthma at least in part through regulating the degranulation and the release of mediators by mast cells.
Collapse
Affiliation(s)
- Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chia-Kwung Fan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Yun Hou
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Cheng Chang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
27
|
Xing X, Liang Y, Li Y, Zhao Y, Zhang Y, Li Z, Li Z, Wu Z. Fisetin Delays Postovulatory Oocyte Aging by Regulating Oxidative Stress and Mitochondrial Function through Sirt1 Pathway. Molecules 2023; 28:5533. [PMID: 37513404 PMCID: PMC10384696 DOI: 10.3390/molecules28145533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The quality of oocytes determines the development potential of an embryo and is dependent on their timely fertilization after ovulation. Postovulatory oocyte aging is an inevitable factor during some assisted reproduction technology procedures, which results in poor fertilization rates and impairs embryo development. We found that fisetin, a bioactive flavonol contained in fruits and vegetables, delayed postovulatory oocyte aging in mice. Fisetin improved the development of aged oocytes after fertilization and inhibited the Sirt1 reduction in aged oocytes. Fisetin increased the GSH level and Sod2 transcription level to inhibit ROS accumulation in aged oocytes. Meanwhile, fisetin attenuated aging-induced spindle abnormalities, mitochondrial dysfunction, and apoptosis. At the molecular level, fisetin decreased aging-induced aberrant expression of H3K9me3. In addition, fisetin increased the expression levels of the mitochondrial transcription factor Tfam and the mitochondrial genes Co2 and Atp8 by upregulating Sirt1 in aged oocytes. Finally, inhibition of Sirt1 reversed the anti-aging effects of fisetin. Taken together, fisetin delayed postovulatory oocyte aging by upregulating Sirt1.
Collapse
Affiliation(s)
- Xupeng Xing
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yalin Liang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yanan Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yaolu Zhao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Yuxing Zhang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of GuangDong Local Livestock and Poultry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
28
|
Tao Z, Jin Z, Wu J, Cai G, Yu X. Sirtuin family in autoimmune diseases. Front Immunol 2023; 14:1186231. [PMID: 37483618 PMCID: PMC10357840 DOI: 10.3389/fimmu.2023.1186231] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, epigenetic modifications have been widely researched. As humans age, environmental and genetic factors may drive inflammation and immune responses by influencing the epigenome, which can lead to abnormal autoimmune responses in the body. Currently, an increasing number of studies have emphasized the important role of epigenetic modification in the progression of autoimmune diseases. Sirtuins (SIRTs) are class III nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases and SIRT-mediated deacetylation is an important epigenetic alteration. The SIRT family comprises seven protein members (namely, SIRT1-7). While the catalytic core domain contains amino acid residues that have remained stable throughout the entire evolutionary process, the N- and C-terminal regions are structurally divergent and contribute to differences in subcellular localization, enzymatic activity and substrate specificity. SIRT1 and SIRT2 are localized in the nucleus and cytoplasm. SIRT3, SIRT4, and SIRT5 are mitochondrial, and SIRT6 and SIRT7 are predominantly found in the nucleus. SIRTs are key regulators of various physiological processes such as cellular differentiation, apoptosis, metabolism, ageing, immune response, oxidative stress, and mitochondrial function. We discuss the association between SIRTs and common autoimmune diseases to facilitate the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Zhengjie Tao
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| | - Zihan Jin
- Clinical Lab, Changzhou Second People’s Hospital Affiliated to Nanjing Medical University, Changzhou, China
| | - Jiabiao Wu
- Department of Immunology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Gaojun Cai
- Cardiology, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
| | - Xiaolong Yu
- Science and Education Section, Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, China
- Department of Ultrasonics, The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
29
|
Chen C, Yan W, Tao M, Fu Y. NAD + Metabolism and Immune Regulation: New Approaches to Inflammatory Bowel Disease Therapies. Antioxidants (Basel) 2023; 12:1230. [PMID: 37371959 DOI: 10.3390/antiox12061230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a multifactorial systemic inflammatory immune response. Nicotinamide adenine dinucleotide (NAD+) is a co-enzyme involved in cell signaling and energy metabolism. Calcium homeostasis, gene transcription, DNA repair, and cell communication involve NAD+ and its degradation products. There is a growing recognition of the intricate relationship between inflammatory diseases and NAD+ metabolism. In the case of IBD, the maintenance of intestinal homeostasis relies on a delicate balance between NAD+ biosynthesis and consumption. Consequently, therapeutics designed to target the NAD+ pathway are promising for the management of IBD. This review discusses the metabolic and immunoregulatory processes of NAD+ in IBD to examine the molecular biology and pathophysiology of the immune regulation of IBD and to provide evidence and theoretical support for the clinical use of NAD+ in IBD.
Collapse
Affiliation(s)
- Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meihui Tao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
30
|
Huang W, Rui K, Wang X, Peng N, Zhou W, Shi X, Lu L, Hu D, Tian J. The aryl hydrocarbon receptor in immune regulation and autoimmune pathogenesis. J Autoimmun 2023; 138:103049. [PMID: 37229809 DOI: 10.1016/j.jaut.2023.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023]
Abstract
As a ligand-activated transcription factor, the aryl hydrocarbon receptor (AhR) is activated by structurally diverse ligands derived from the environment, diet, microorganisms, and metabolic activity. Recent studies have demonstrated that AhR plays a key role in modulating both innate and adaptive immune responses. Moreover, AhR regulates innate immune and lymphoid cell differentiation and function, which is involved in autoimmune pathogenesis. In this review, we discuss recent advances in understanding the mechanism of activation of AhR and its mediated functional regulation in various innate immune and lymphoid cell populations, as well as the immune-regulatory effect of AhR in the development of autoimmune diseases. In addition, we highlight the identification of AhR agonists and antagonists that may serve as potential therapeutic targets for the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- Wei Huang
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Xiaomeng Wang
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Na Peng
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China
| | - Wenhao Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital and School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, China
| | - Dajun Hu
- Department of Rheumatology and Nephrology, The Second People's Hospital, China Three Gorges University, Yichang, China.
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
31
|
Chen Y, Wang Y, Fu Y, Yin Y, Xu K. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation. Cell Biosci 2023; 13:85. [PMID: 37179416 PMCID: PMC10182712 DOI: 10.1186/s13578-023-01046-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a classical exogenous synthetic ligand of AHR that has significant immunotoxic effects. Activation of AHR has beneficial effects on intestinal immune responses, but inactivation or overactivation of AHR can lead to intestinal immune dysregulation and even intestinal diseases. Sustained potent activation of AHR by TCDD results in impairment of the intestinal epithelial barrier. However, currently, AHR research has been more focused on elucidating physiologic AHR function than on dioxin toxicity. The appropriate level of AHR activation plays a role in maintaining gut health and protecting against intestinal inflammation. Therefore, AHR offers a crucial target to modulate intestinal immunity and inflammation. Herein, we summarize our current understanding of the relationship between AHR and intestinal immunity, the ways in which AHR affects intestinal immunity and inflammation, the effects of AHR activity on intestinal immunity and inflammation, and the effect of dietary habits on intestinal health through AHR. Finally, we discuss the therapeutic role of AHR in maintaining gut homeostasis and relieving inflammation.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yadong Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yawei Fu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Kang Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
32
|
Lin L, Liu Y, Chen L, Dai Y, Xia Y. Discovery of Norisoboldine Analogue III 11 as a Novel and Potent Aryl Hydrocarbon Receptor Agonist for the Treatment of Ulcerative Colitis. J Med Chem 2023; 66:6869-6888. [PMID: 37154394 DOI: 10.1021/acs.jmedchem.3c00287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a transcript factor, belonging to the basic helix-loop-helix-Per-ARNT-SIM family, is closely associated with health and diseases. Targeting AhR is an emerging therapeutic strategy for various diseases. Norisoboldine (NOR), which is the main alkaloid of Linderae Radix, has been known to activate AhR. Unfortunately, the oral bioavailability (F) of NOR is only 2.49%. To improve the chemical efficacy and bioavailability, we designed and synthesized NOR analogues. Using various in vitro assays, 2-methoxy-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline-9-ol (III11) was discovered as a potent AhR agonist. Compound III11 enhanced the expression of AhR downstream target genes, triggered AhR nuclear translocation, and promoted differentiation of regulatory T cells. More importantly, III11 exhibited good bioavailability (F = 87.40%) and remarkable therapeutic effects in a mouse model of ulcerative colitis at a dosage of 10 mg/kg. These findings may serve as a reference for the design of novel AhR agonists against immune and inflammatory diseases.
Collapse
Affiliation(s)
- Li Lin
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yongmin Liu
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Li Chen
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
33
|
Pinto CJG, Ávila-Gálvez MÁ, Lian Y, Moura-Alves P, Nunes Dos Santos C. Targeting the aryl hydrocarbon receptor by gut phenolic metabolites: A strategy towards gut inflammation. Redox Biol 2023; 61:102622. [PMID: 36812782 PMCID: PMC9958510 DOI: 10.1016/j.redox.2023.102622] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The Aryl Hydrocarbon Receptor (AHR) is a ligand-dependent transcription factor able to control complex transcriptional processes in several cell types, which has been correlated with various diseases, including inflammatory bowel diseases (IBD). Numerous studies have described different compounds as ligands of this receptor, like xenobiotics, natural compounds, and several host-derived metabolites. Dietary (poly)phenols have been studied regarding their pleiotropic activities (e.g., neuroprotective and anti-inflammatory), but their AHR modulatory capabilities have also been considered. However, dietary (poly)phenols are submitted to extensive metabolism in the gut (e.g., gut microbiota). Thus, the resulting gut phenolic metabolites could be key players modulating AHR since they are the ones that reach the cells and may exert effects on the AHR throughout the gut and other organs. This review aims at a comprehensive search for the most abundant gut phenolic metabolites detected and quantified in humans to understand how many have been described as AHR modulators and what could be their impact on inflammatory gut processes. Even though several phenolic compounds have been studied regarding their anti-inflammatory capacities, only 1 gut phenolic metabolite, described as AHR modulator, has been evaluated on intestinal inflammatory models. Searching for AHR ligands could be a novel strategy against IBD.
Collapse
Affiliation(s)
- Catarina J G Pinto
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - María Ángeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom.
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.
| |
Collapse
|
34
|
Fang Y, Zhang Q, Lv C, Guo Y, He Y, Guo P, Wei Z, Xia Y, Dai Y. Mitochondrial fusion induced by transforming growth factor-β1 serves as a switch that governs the metabolic reprogramming during differentiation of regulatory T cells. Redox Biol 2023; 62:102709. [PMID: 37116255 PMCID: PMC10165137 DOI: 10.1016/j.redox.2023.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023] Open
Abstract
Although metabolic reprogramming during the differentiation of regulatory T cells (Treg cells) has been extensively studied, the molecular switch to alter energy metabolism remains undefined. The present study explores the critical role of mitochondrial dynamics in the reprogramming and consequent generation of Treg cells. The results showed that during Treg cell differentiation, mitochondrial fusion but not fission led to elevation of oxygen consumption rate values, facilitation of metabolic reprogramming, and increase of number of Treg cells and expression of Foxp3 in vitro and in vivo. Mechanistically, mitochondrial fusion favored fatty acid oxidation but restricted glycolysis in Treg cells through down-regulating the expression of HIF-1α. Transforming growth factor-β1 (TGF-β1) played a crucial role in the induction of mitochondrial fusion, which activated Smad2/3, promoted the expression of PGC-1α and therefore facilitated the expression of mitochondrial fusion proteins. In conclusion, during Treg cell differentiation, TGF-β1 promotes PGC-1α-mediated mitochondrial fusion, which drives metabolic reprogramming from glycolysis to fatty acid oxidation via suppressing HIF-1α expression, and therefore favors the generation of Treg cells. The signals and proteins involved in mitochondrial fusion are potential therapeutic targets for Treg cell-related diseases.
Collapse
Affiliation(s)
- Yulai Fang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Qin Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Changjun Lv
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Yilei Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Yue He
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Pengxiang Guo
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China
| | - Yufeng Xia
- Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China.
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 639 Long Mian Avenue, Nanjing, 211198, China.
| |
Collapse
|
35
|
Chen J, Pan M, Wang J, Zhang M, Feng M, Chai X, Zhang Q, Sun Y. Hydroxysafflor yellow A protects against colitis in mice by suppressing pyroptosis via inhibiting HK1/NLRP3/GSDMD and modulating gut microbiota. Toxicol Appl Pharmacol 2023; 467:116494. [PMID: 37001609 DOI: 10.1016/j.taap.2023.116494] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/14/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
Hydroxysafflor yellow A (HSYA), a chalcone glycoside, is a component of Carthamus tinctorius L. and exerts anti-inflammatory and antioxidative effects. However, the therapeutic effect and the underlying mechanism of HSYA on ulcerative colitis is unclear. This study aimed to investigate the unexplored protective effects and underlying mechanisms of HSYA on UC. In vitro analyses showed that HSYA reduced the secretion of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6 and inhibited nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3)/gasdermin D (GSDMD)-mediated pyroptosis in lipopolysaccharide/ adenosine-5'-triphosphate (LPS/ATP)-stimulated macrophages. Gas chromatography-mass spectrometry (GC-MS) profiling of intracellular metabolites showed that HSYA reduced the increased levels of glucose, glucose 6-phosphate, and lactic acid, and inhibited the increased hexokinase 1 (HK1) expression caused by LPS/ATP stimulation. HK1 shRNA transfection further confirmed that HSYA inhibited the NLRP3/GSDMD-mediated pyroptosis via HK1 downregulation. In vivo analyses showed that HSYA drastically attenuated UC symptoms by relieving body weight loss, a decline in colon length, and inflammatory infiltration in colonic tissues induced by dextran sulfate sodium (DSS). HSYA also reduced the secretion of pro-inflammatory cytokines including IL-1β, IL-6, TNF-α, and IL-18. Moreover, HSYA inhibited HK1/NLRP3/GSDMD-mediated pyroptosis in DSS-induced colitis mice. Finally, 16S rRNA sequencing analyses of gut microbiota revealed that HSYA reversed gut microbiota dysbiosis by reducing the abundance of Proteobacteria and increasing that of Bacteroidetes. This study demonstrated that HSYA not only exerted anti-inflammatory effects by inhibiting HK1/NLRP3/GSDMD and suppressing pyroptosis but also regulated gut microbiota in mice with DSS-induced colitis. Our findings provide new experimental evidence that HSYA might be a potential candidate for treating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mengyue Pan
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jingjie Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mengling Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Mingmei Feng
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaoming Chai
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China; College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
36
|
Nan Q, Ye Y, Tao Y, Jiang X, Miao Y, Jia J, Miao J. Alterations in metabolome and microbiome signatures provide clues to the role of antimicrobial peptide KT2 in ulcerative colitis. Front Microbiol 2023; 14:1027658. [PMID: 36846795 PMCID: PMC9947474 DOI: 10.3389/fmicb.2023.1027658] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Ulcerative colitis (UC) is an inflammatory disease of the intestinal tract with unknown etiology. Both genetic and environmental factors are involved in the occurrence and development of UC. Understanding changes in the microbiome and metabolome of the intestinal tract is crucial for the clinical management and treatment of UC. Methods Here, we performed metabolomic and metagenomic profiling of fecal samples from healthy control mice (HC group), DSS (Dextran Sulfate Sodium Salt) -induced UC mice (DSS group), and KT2-treated UC mice (KT2 group). Results and Discussion In total, 51 metabolites were identified after UC induction, enriched in phenylalanine metabolism, while 27 metabolites were identified after KT2 treatment, enriched in histidine metabolism and bile acid biosynthesis. Fecal microbiome analysis revealed significant differences in nine bacterial species associated with the course of UC, including Bacteroides, Odoribacter, and Burkholderiales, which were correlated with aggravated UC, and Anaerotruncus, Lachnospiraceae, which were correlated with alleviated UC. We also identified a disease-associated network connecting the above bacterial species with UC-associated metabolites, including palmitoyl sphingomyelin, deoxycholic acid, biliverdin, and palmitoleic acid. In conclusion, our results indicated that Anaerotruncus, Lachnospiraceae, and Mucispirillum were protective species against DSS-induced UC in mice. The fecal microbiomes and metabolomes differed significantly among the UC mice and KT2-treated and healthy-control mice, providing potential evidence for the discovery of biomarkers of UC.
Collapse
Affiliation(s)
- Qiong Nan
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Ye
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Tao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xinyi Jiang
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yinglei Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yinglei Miao,
| | - Jie Jia
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China,Jie Jia,
| | - Jiarong Miao
- Department of Gastroenterology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,Yunnan Province Clinical Research Center for Digestive Diseases, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China,*Correspondence: Jiarong Miao,
| |
Collapse
|
37
|
Lv Y, Zou Y, Zhang X, Liu B, Peng X, Chu C. A review on the chemical constituents and pharmacological efficacies of Lindera aggregata (Sims) Kosterm. Front Nutr 2023; 9:1071276. [PMID: 36726818 PMCID: PMC9884700 DOI: 10.3389/fnut.2022.1071276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Lindera aggregata (Sims) Kosterm. (L. aggregata), which belongs to the genus Lindera in the family Lauraceae, is widely distributed in Asia and the temperate, tropical regions of North America. Its roots and leaves have been used for thousands of years as traditional Chinese medicine and/or functional food. To further explore its underlying nutritional value, this review provided a comprehensive insight into chemical constituents and pharmacological effects on L. aggregata. The phytochemical investigation of different parts of L. aggregata led to the identification of up to 349 components belonging to sesquiterpenoids, alkaloids, flavonoids, essential oils, and other compounds. Among them, sesquiterpenoids, flavonoids, and alkaloids are assessed as representative active ingredients of L. aggregata. A wide variety of pharmacological effects of L. aggregata, such as anti-hyperlipidemic, anti-tumor, anti-inflammatory, analgesic, and anti-oxidant, have been proved in vitro and in vivo. In summary, this review aims to provide a scientific basis and reference for further research and utilization of L. aggregata and lay the foundation for developing functional foods with potential active ingredients for the prevention and management of related diseases.
Collapse
Affiliation(s)
- Yangbin Lv
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yanfang Zou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xindan Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bingrui Liu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xin Peng
- Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China,*Correspondence: Xin Peng,
| | - Chu Chu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China,Chu Chu,
| |
Collapse
|
38
|
Dexmedetomidine alleviates acute lung injury by promoting Tregs differentiation via activation of AMPK/SIRT1 pathway. Inflammopharmacology 2023; 31:423-438. [PMID: 36534240 PMCID: PMC9762669 DOI: 10.1007/s10787-022-01117-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To explore the anti-inflammatory effect and the potential mechanism of dexmedetomidine in ARDS/ALI. MATERIALS AND METHODS C57BL/6 mice and EL-4 cells were used in this research. The ALI model was established by CLP. The level of inflammatory cytokines in the lung and blood, the severity of lung injury, the expression of Foxp3, and the proportion of Tregs were detected before and after dexmedetomidine treatment. The expression of the AMPK/SIRT1 after dexmedetomidine treatment was detected in vivo and in vitro. After blocking the AMPK/SIRT1 pathway or depleting Tregs in vivo, the level of the inflammatory response, tissue injury, and Tregs differentiation were detected again to clarify the effect of dexmedetomidine. RESULTS Dexmedetomidine significantly reduced systemic inflammation and lung injury in CLP mice. Dexmedetomidine enhanced the Foxp3 expression in the lungs and the frequency of Tregs in the spleen. Dexmedetomidine up-regulated the protein expression of p-AMPK and SIRT1 in lungs and EL-4 cells and facilitated the differentiation of naïve CD4+ T cells into Tregs in vitro. Meanwhile, DEX also increased the expression of Helios in Treg cells. CONCLUSIONS DEX could improve ARDS/ALI by facilitating the differentiation of Tregs from naïve CD4+ T cells via activating the AMPK/SIRT1 pathway.
Collapse
|
39
|
An overview of aryl hydrocarbon receptor ligands in the Last two decades (2002–2022): A medicinal chemistry perspective. Eur J Med Chem 2022; 244:114845. [DOI: 10.1016/j.ejmech.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
|
40
|
Chen S, Ma B, Li X, Zhang K, Wei Y, Du B, Liu X, Wei R, Li X, Nian H. MYC-mediated silencing of miR-181a-5p promotes pathogenic Th17 responses by modulating AKT3-FOXO3 signaling. iScience 2022; 25:105176. [PMID: 36248732 PMCID: PMC9557906 DOI: 10.1016/j.isci.2022.105176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/18/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Pathogenic Th17 cells drive autoimmune pathology, but the molecular mechanisms underlying Th17 pathogenicity remain poorly understood. Here, we have shown that miR-181a-5p was significantly decreased in pathogenic Th17 cells, and it negatively regulated pathogenic Th17 cell responses in vitro and in vivo. Th17 cells overexpressing miR-181a-5p exhibited impaired ability to induce pathogenesis in an adoptive transfer model of experimental autoimmune uveitis (EAU). Mechanistically, miR-181a-5p directly targeted AKT3, diminishing AKT3-mediated phosphorylation of FOXO3, and thereby activating FOXO3, a transcriptional repressor of pathogenic Th17 cell program. Supporting this, decreasing miR-181a-5p and up-regulated AKT3 expression were found in uveitis patients. Furthermore, intravitreal administration of miR-181a-5p mimics in mice effectively attenuated clinical and pathological signs of established EAU. Collectively, our results reveal a previously unappreciated T cell-intrinsic role of miR-181a-5p in restraining autoimmunity and may provide a potential therapeutic target for uveitis treatment.
Collapse
Affiliation(s)
- Sisi Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Xue Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Kailang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xun Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
41
|
Vuerich M, Wang N, Graham JJ, Gao L, Zhang W, Kalbasi A, Zhang L, Csizmadia E, Hristopoulos J, Ma Y, Kokkotou E, Cheifetz AS, Robson SC, Longhi MS. Blockade of PGK1 and ALDOA enhances bilirubin control of Th17 cells in Crohn's disease. Commun Biol 2022; 5:994. [PMID: 36131123 PMCID: PMC9492699 DOI: 10.1038/s42003-022-03913-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Unconjugated bilirubin (UCB) confers Th17-cells immunosuppressive features by activating aryl-hydrocarbon-receptor, a modulator of toxin and adaptive immune responses. In Crohn's disease, Th17-cells fail to acquire regulatory properties in response to UCB, remaining at an inflammatory/pathogenic state. Here we show that UCB modulates Th17-cell metabolism by limiting glycolysis and through downregulation of glycolysis-related genes, namely phosphoglycerate-kinase-1 (PGK1) and aldolase-A (ALDOA). Th17-cells of Crohn's disease patients display heightened PGK1 and ALDOA and defective response to UCB. Silencing of PGK1 or ALDOA restores Th17-cell response to UCB, as reflected by increase in immunoregulatory markers like FOXP3, IL-10 and CD39. In vivo, PGK1 and ALDOA silencing enhances UCB salutary effects in trinitro-benzene-sulfonic-acid-induced colitis in NOD/scid/gamma humanized mice where control over disease activity and enhanced immunoregulatory phenotypes are achieved. PGK1 and/or ALDOA blockade might have therapeutic effects in Crohn's disease by favoring acquisition of regulatory properties by Th17-cells along with control over their pathogenic potential.
Collapse
Affiliation(s)
- Marta Vuerich
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Na Wang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Jonathon J Graham
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Li Gao
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Wei Zhang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Ahmadreza Kalbasi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lina Zhang
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Eva Csizmadia
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jason Hristopoulos
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yun Ma
- Institute of Liver Studies, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, King's College Hospital, London, UK
| | - Efi Kokkotou
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Adam S Cheifetz
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria Serena Longhi
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Liu T, Yang L, Mao H, Ma F, Wang Y, Li S, Li P, Zhan Y. Sirtuins as novel pharmacological targets in podocyte injury and related glomerular diseases. Biomed Pharmacother 2022; 155:113620. [PMID: 36122519 DOI: 10.1016/j.biopha.2022.113620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Podocyte injury is a major cause of proteinuria in kidney diseases, and persistent loss of podocytes leads to rapid irreversible progression of kidney disease. Sirtuins, a class of nicotinamide adenine dinucleotide-dependent deacetylases, can promote DNA repair, modify transcription factors, and regulate the cell cycle. Additionally, sirtuins play a critical role in renoprotection, particularly against podocyte injury. They also have pleiotropic protective effects on podocyte injury-related glomerular diseases, such as improving the immune inflammatory status and oxidative stress levels, maintaining mitochondrial homeostasis, enhancing autophagy, and regulating lipid metabolism. Sirtuins deficiency causes podocyte injury in different glomerular diseases. Studies using podocyte sirtuin-specific knockout and transgenic models corroborate this conclusion. Of note, sirtuin activators have protective effects in different podocyte injury-related glomerular diseases, including diabetic kidney disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, and lupus nephritis. These findings suggest that sirtuins are promising therapeutic targets for preventing podocyte injury. This review provides an overview of recent advances in the role of sirtuins in kidney diseases, especially their role in podocyte injury, and summarizes the possible rationale for sirtuins as targets for pharmacological intervention in podocyte injury-related glomerular diseases.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shen Li
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
43
|
Gut Microbiota Regulation of AHR Signaling in Liver Disease. Biomolecules 2022; 12:biom12091244. [PMID: 36139083 PMCID: PMC9496174 DOI: 10.3390/biom12091244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Liver health plays a vital role in human health and disease. Emerging evidence has shown the importance of the aryl hydrocarbon receptor (AHR) in liver diseases such as alcoholic liver disease, fatty liver disease, and liver failure. As a ligand-activated transcription factor, AHR can be activated by endogenous ligands of microbial metabolites such as tryptophan (Trp), kynurenine (Kyn) or indole derivatives locally or distantly. However, the therapeutic effects of the gut microbiota-regulated AHR pathway remain to be clarified. In this review, we summarize recent progress and examine the role of AHR signaling as a target for gut microbiota intervention in liver diseases. The focus on AHR signaling will identify a promising target in the gut microbiota for better understanding and therapeutic opportunities in liver diseases.
Collapse
|
44
|
Wu J, Pang T, Lin Z, Zhao M, Jin H. The key player in the pathogenesis of environmental influence of systemic lupus erythematosus: Aryl hydrocarbon receptor. Front Immunol 2022; 13:965941. [PMID: 36110860 PMCID: PMC9468923 DOI: 10.3389/fimmu.2022.965941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
The aryl hydrocarbon receptor was previously known as an environmental receptor that modulates the cellular response to external environmental changes. In essence, the aryl hydrocarbon receptor is a cytoplasmic receptor and transcription factor that is activated by binding to the corresponding ligands, and they transmit relevant information by binding to DNA, thereby activating the transcription of various genes. Therefore, we can understand the development of certain diseases and discover new therapeutic targets by studying the regulation and function of AhR. Several autoimmune diseases, including systemic lupus erythematosus (SLE), have been connected to AhR in previous studies. SLE is a classic autoimmune disease characterized by multi-organ damage and disruption of immune tolerance. We discuss here the homeostatic regulation of AhR and its ligands among various types of immune cells, pathophysiological roles, in addition to the roles of various related cytokines and signaling pathways in the occurrence and development of SLE.
Collapse
|
45
|
Liu T, Mu S, Yang L, Mao H, Ma F, Wang Y, Zhan Y. Comprehensive bibliometric analysis of sirtuins: Focus on sirt1 and kidney disease. Front Pharmacol 2022; 13:966786. [PMID: 36052119 PMCID: PMC9424666 DOI: 10.3389/fphar.2022.966786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Sirtuins, as regulators of metabolism and energy, have been found to play an important role in health and disease. Sirt1, the most widely studied member of the sirtuin family, can ameliorate oxidative stress, immune inflammation, autophagy, and mitochondrial homeostasis by deacetylating regulatory histone and nonhistone proteins. Notably, sirt1 has gradually gained attention in kidney disease research. Therefore, an evaluation of the overall distribution of publications concerning sirt1 based on bibliometric analysis methods to understand the thematic evolution and emerging research trends is necessary to discover topics with potential implications for kidney disease research. We conducted a bibliometric analysis of publications derived from the Web of Science Core Collection and found that publications concerning sirt1 have grown dramatically over the past 2 decades, especially in the past 5 years. Among these, the proportion of publications regarding kidney diseases have increased annually. China and the United States are major contributors to the study of sirt1, and Japanese researchers have made important contributions to the study of sirt1 in kidney disease. Obesity, and Alzheimer’s disease are hotspots diseases for the study of sirt1, while diabetic nephropathy is regarded as a research hotspot in the study of sirt1 in kidney disease. NAD+, oxidative stress, and p53 are the focus of the sirt1 research field. Autophagy and NLRP3 inflammasome are emerging research trends have gradually attracted the interest of scholars in sirt1, as well as in kidney disease. Notably, we also identified several potential research topics that may link sirt1 and kidney disease, which require further study, including immune function, metabolic reprogramming, and fecal microbiota.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shujuan Mu
- South District of Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yongli Zhan,
| |
Collapse
|
46
|
Guo M, Ji X, Liu J. Hypoxia and Alpha-Synuclein: Inextricable Link Underlying the Pathologic Progression of Parkinson's Disease. Front Aging Neurosci 2022; 14:919343. [PMID: 35959288 PMCID: PMC9360429 DOI: 10.3389/fnagi.2022.919343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease, with typical motor symptoms as the main clinical manifestations. At present, there are about 10 million patients with PD in the world, and its comorbidities and complications are numerous and incurable. Therefore, it is particularly important to explore the pathogenesis of PD and find possible therapeutic targets. Because the etiology of PD is complex, involving genes, environment, and aging, finding common factors is the key to identifying intervention targets. Hypoxia is ubiquitous in the natural environment and disease states, and it is considered to be closely related to the etiology of PD. Despite research showing that hypoxia increases the expression and aggregation of alpha-synuclein (α-syn), the most important pathogenic protein, there is still a lack of systematic studies on the role of hypoxia in α-syn pathology and PD pathogenesis. Considering that hypoxia is inextricably linked with various causes of PD, hypoxia may be a co-participant in many aspects of the PD pathologic process. In this review, we describe the risk factors for PD, and we discuss the possible role of hypoxia in inducing PD pathology by these risk factors. Furthermore, we attribute the pathological changes caused by PD etiology to oxygen uptake disorder and oxygen utilization disorder, thus emphasizing the possibility of hypoxia as a critical link in initiating or promoting α-syn pathology and PD pathogenesis. Our study provides novel insight for exploring the pathogenesis and therapeutic targets of PD.
Collapse
Affiliation(s)
- Mengyuan Guo
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- *Correspondence: Jia Liu
| |
Collapse
|
47
|
Lu Y, Ma S, Ding W, Sun P, Zhou Q, Duan Y, Sartorius K. Resident Immune Cells of the Liver in the Tumor Microenvironment. Front Oncol 2022; 12:931995. [PMID: 35965506 PMCID: PMC9365660 DOI: 10.3389/fonc.2022.931995] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
The liver is a central immunomodulator that ensures a homeostatic balance between protection and immunotolerance. A hallmark of hepatocellular carcinoma (HCC) is the deregulation of this tightly controlled immunological network. Immune response in the liver involves a complex interplay between resident innate, innate, and adaptive immune cells. The immune response in the liver is modulated by its continuous exposure to toxic molecules and microorganisms that requires a degree of immune tolerance to protect normal tissue from damage. In HCC pathogenesis, immune cells must balance a dual role that includes the elimination of malignant cells, as well as the repair of damaged liver tissue to maintain homeostasis. Immune response in the innate and adaptive immune systems extends to the cross-talk and interaction involving immune-regulating non-hematopoietic cells, myeloid immune cells, and lymphoid immune cells. In this review, we discuss the different immune responses of resident immune cells in the tumor microenvironment. Current FDA-approved targeted therapies, including immunotherapy options, have produced modest results to date for the treatment of advanced HCC. Although immunotherapy therapy to date has demonstrated its potential efficacy, immune cell pathways need to be better understood. In this review article, we summarize the roles of specific resident immune cell subsets and their cross-talk subversion in HCC pathogenesis, with a view to identifying potential new biomarkers and therapy options.
Collapse
Affiliation(s)
- Yunjie Lu
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Shiying Ma
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Pengcheng Sun
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Qi Zhou
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Yunfei Duan
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Kurt Sartorius
- Hepatitis Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- University of Kwazulu-Natal Gastrointestinal Cancer Research Unit (UKZN/GICRC), Durban, South Africa
| |
Collapse
|
48
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
49
|
Gu D, Nan Q, Miao Y, Yang H, Li M, Ye Y, Miao J. KT2 alleviates ulcerative colitis by reducing Th17 cell differentiation through the miR-302c-5p/STAT3 axis. Eur J Cell Biol 2022; 101:151223. [PMID: 35405463 DOI: 10.1016/j.ejcb.2022.151223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The abnormal differentiation of Th17 cells aggravates ulcerative colitis (UC). Antimicrobial peptides (AMPs) exert pivotal protection functions against UC. KT2 is a cationic AMP that mediates colon cancer development. However, KT2's function in UC remains unclear. METHODS The UC mouse model was induced by administering 2.5% dextran sulfate sodium, and the mice were given an enema of KT2. KT2's function in UC and Th17 cell differentiation in vivo was evaluated through various molecular experiments. The KT2's function in Th17 cell differentiation in vitro was evaluated by the proportion of CD4+ IL-17+ T cells, IL-17 levels, and RORγt expression levels. Meanwhile, the mechanism was assessed through quantitative real-time PCR, various loss-of-function assays, and dual-luciferase reporter gene assay. RESULTS KT2 restrained Th17 cell differentiation in both in vivo and in vitro UC models and slowed the UC process. KT2 elevated miR-302c-5p expression, as well as restrained Th17 cell differentiation by increasing miR-302c-5p. Meanwhile, miR-302c-5p interacted with the signal transducer and activator of transcription 3 (STAT3) and negatively regulated its expression. Furthermore, our data revealed that KT2 restrained the activation of STAT3 by elevating miR-302c-5p, thereby inhibiting Th17 cell differentiation. CONCLUSION KT2 alleviates UC by repressing Th17 cell differentiation through the miR-302c-5p/STAT3 axis.
Collapse
Affiliation(s)
- Dandan Gu
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Qiong Nan
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Yinglei Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Maojuan Li
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Yan Ye
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China
| | - Jiarong Miao
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Province Clinical Research Center for Digestive Diseases, Kunming, Yunnan 650032, China.
| |
Collapse
|
50
|
Yang L, Zheng Y, Miao YM, Yan WX, Geng YZ, Dai Y, Wei ZF. Bergenin, a PPARγ agonist, inhibits Th17 differentiation and subsequent neutrophilic asthma by preventing GLS1-dependent glutaminolysis. Acta Pharmacol Sin 2022; 43:963-976. [PMID: 34267342 PMCID: PMC8975945 DOI: 10.1038/s41401-021-00717-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Bergenin is a natural PPARγ agonist that can prevent neutrophil aggregation, and often be used in clinics for treating respiratory diseases. Recent data show that Th17 cells are important for neutrophil aggregation and asthma through secreting IL-17A. In this study, we investigated the effects of bergenin on Th17 differentiation in vitro and subsequent neutrophilic asthma in mice. Naïve T cells isolated from mouse mesenteric lymph nodes were treated with IL-23, TGF-β, and IL-6 to induce Th17 differentiation. We showed that in naïve T cells under Th17-polarizing condition, the addition of bergenin (3, 10, 30 μM) concentration-dependently decreased the percentage of CD4+ IL-17A+ T cells and mRNA expression of specific transcription factor RORγt, and function-related factors IL-17A/F, IL-21, and IL-22, but did not affect the cell vitality and apoptosis. Furthermore, bergenin treatment prevented GLS1-dependent glutaminolysis in the progress of Th17 differentiation, slightly affected the levels of SLC1A5, SLC38A1, GLUD1, GOT1, and GPT2. Glutamine deprivation, the addition of glutamate (1 mM), α-ketoglutarate (1 mM), or GLS1 plasmid all significantly attenuated the above-mentioned actions of bergenin. Besides, we demonstrated that bergenin (3, 10, and 30 μM) concentration-dependently activated PPARγ in naïve T cells, whereas PPARγ antagonist GW9662 and siPPARγ abolished bergenin-caused inhibition on glutaminolysis and Th17 differentiation. Furthermore, we revealed that bergenin inhibited glutaminolysis by regulating the level of CDK1, phosphorylation and degradation of Cdh1, and APC/C-Cdh1-mediated ubiquitin-proteasomal degradation of GLS1 after activating PPARγ. We demonstrated a correlation existing among bergenin-affected GLS1-dependent glutaminolysis, PPARγ, "CDK1-APC/C-Cdh1" signaling, and Th17 differentiation. Finally, the therapeutic effect and mechanisms for bergenin-inhibited Th17 responses and neutrophilic asthma were confirmed in a mouse model of neutrophilic asthma by administration of GW9662 or GLS1 overexpression plasmid in vivo. In conclusion, bergenin repressed Th17 differentiation and then alleviated neutrophilic asthma in mice by inhibiting GLS1-dependent glutaminolysis via regulating the "CDK1-APC/C-Cdh1" signaling after activating PPARγ.
Collapse
Affiliation(s)
- Ling Yang
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yun Zheng
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yu-meng Miao
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Wen-xin Yan
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yan-zhi Geng
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yue Dai
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Zhi-feng Wei
- grid.254147.10000 0000 9776 7793Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|