1
|
Yu Z, Swift KA, Hedges MA, Theiss AL, Andres SF. Microscopic messengers: Extracellular vesicles shaping gastrointestinal health and disease. Physiol Rep 2025; 13:e70292. [PMID: 40165585 PMCID: PMC11959161 DOI: 10.14814/phy2.70292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
The field of extracellular vesicles (EVs) is advancing rapidly, and this review aims to synthesize the latest research connected to EVs and the gastrointestinal tract. We will address new and emerging roles for EVs derived from internal sources such as the pancreas and immune system and how these miniature messengers alter organismal health or the inflammatory response within the GI tract. We will examine what is known about external EVs from dietary and bacterial sources and the immense anti-inflammatory, immune-modulatory, and proliferative potential within these nano-sized information carriers. EV interactions with the intestinal and colonic epithelium and associated immune cells at homeostatic and disease states, such as necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD) will also be covered. We will discuss how EVs are being leveraged as therapeutics or for drug delivery and conclude with a series of unanswered questions in the field.
Collapse
Affiliation(s)
- Zhantao Yu
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation ProgramUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Kevin A. Swift
- Department of Pediatrics, Pediatric GI Division, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Madeline A. Hedges
- Department of Neonatology, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Arianne L. Theiss
- Division of Gastroenterology and Hepatology, Department of Medicine and the Mucosal Inflammation ProgramUniversity of Colorado School of MedicineAuroraColoradoUSA
- Rocky Mountain Regional Veterans Affairs Medical CenterAuroraColoradoUSA
| | - Sarah F. Andres
- Department of Pediatrics, Pediatric GI Division, School of MedicineOregon Health and Science UniversityPortlandOregonUSA
| |
Collapse
|
2
|
Ponsuksili S, Hadlich F, Li S, Trakooljul N, Reyer H, Oster M, Abitew YA, Sommerfeld V, Rodehutscord M, Wimmers K. DNA methylation dynamics in the small intestine of egg-selected laying hens along egg production stages. Physiol Genomics 2025; 57:125-139. [PMID: 39869094 DOI: 10.1152/physiolgenomics.00063.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/28/2024] [Accepted: 01/07/2025] [Indexed: 01/28/2025] Open
Abstract
Decades of artificial selection have markedly enhanced egg production efficiency, yet the epigenetic underpinnings, notably DNA methylation dynamics in the gut, remain largely unexplored. Here, we investigate how breeds and developmental stages influence DNA methylation profiles in laying hens, and their potential relationship to laying performance and gut health. We compared two highly selected laying hen strains, Lohmann Brown-Classic (LB) and Lohmann Selected Leghorn-Classic (LSL), which exhibited similar egg production but divergent physiological, metabolic, and immunological characteristics. Our sampling encompassed key developmental stages: the pullet stage (10 and 16 wk old), peak production (24 and 30 wk old), and later stage (60 wk old) (n = 99; 10 per group), allowing us to elucidate the temporal dynamics of epigenetic regulation. Our findings highlight a crucial window of epigenetic modulation during the prelaying period, characterized by stage-specific methylation alterations and the involvement of predicted transcription factor motifs within methylated regions. This observation was consistent with the expression patterns of DNA methyltransferases (DNMTs), including DNMT1, DNMT3A, and DNMT3B. In addition, a higher methylation level was observed in specific loci or regions in the LSL compared with the LB strain. Notably, we uncover strain-specific differences in methylation levels, particularly pronounced in genomic regions associated with intestinal integrity, inflammation, and energy homeostasis. Our research contributes to the multidisciplinary framework of epigenetics and egg-laying performance, offering valuable implications for poultry production and welfare.NEW & NOTEWORTHY Our study reveals key methylation changes in the jejunum mucosa of laying hens across developmental stages and between strains, with implications for gut health, immune function, and egg production. These findings highlight a crucial role of epigenetic regulation in optimizing performance.
Collapse
Affiliation(s)
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Shuaichen Li
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Klaus Wimmers
- Research Institute for Farm Animal Biology, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
3
|
Tsukamoto M, Akutsu H. Comparative gastrointestinal organoid models across species: A Zoobiquity approach for precision medicine. Regen Ther 2025; 28:314-320. [PMID: 39885871 PMCID: PMC11779682 DOI: 10.1016/j.reth.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Gastrointestinal (GI) health underpins systemic well-being, yet the complexity of gut physiology poses significant challenges to understanding disease mechanisms and developing effective, personalized therapies. Traditional models often fail to capture the intricate interplay between epithelial, mesenchymal, immune, and neuronal cells that govern gut homeostasis and disease. Over the past five years, advances in organoid technology have created physiologically relevant, three-dimensional GI models that replicate native tissue architecture and function. These models have revolutionized the study of autoimmune disorders, homeostatic dysfunction, and pathogen infections, such as norovirus and Salmonella, which affect millions of humans and animals globally. In this review, we explore how organoids, derived from intestinal and pluripotent stem cells, are transforming our understanding of GI development, disease etiology, and therapeutic innovation. Through the "Zoobiquity" paradigm and "One Health" framework, we highlight the integration of companion animal organoids, which provide invaluable insights into shared disease mechanisms and preclinical therapeutic development. Despite their promise, challenges remain in achieving organoid maturation, expanding immune and neuronal integration, and bridging the gap between organoid responses and in vivo outcomes. By refining these cutting-edge platforms, we can advance human and veterinary medicine alike, fostering a holistic approach to health and disease.
Collapse
Affiliation(s)
- Masaya Tsukamoto
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
4
|
Ding Z, Guo T, Tang Q, Hong Y, Lv Z, Lu L, Zhuang W. DEmiRNA-mRNA regulatory network reveals miR-122-5p as a regulatory factor of arginine metabolism in necrotizing enterocolitis. Front Genet 2025; 15:1480431. [PMID: 39911307 PMCID: PMC11794208 DOI: 10.3389/fgene.2024.1480431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/19/2024] [Indexed: 02/07/2025] Open
Abstract
Objective Necrotizing enterocolitis (NEC) is a gastrointestinal emergency with relatively high morbidity and mortality in neonates. The role of microRNAs (miRNAs) in NEC is not yet entirely clear. This study aimed to explore the mechanism of miR-122-5p in NEC. Methods Differentially expressed (DE) miRNAs were sequenced in control and NEC mice. The DEmiRNA-mRNA regulatory network was constructed and the bioinformatics analysis was performed to identify the target mRNAs and potential roles of the DEmiRNAs. The miR-122-5p activation was explored in vitro in the human intestinal epithelial cell (FHs74Int) and rat intestinal epithelial cell (IEC-6). In vivo, mice were transinfected with miR-122-5p inhibitor before the NEC occurred. Mass spectrometry was used to qualify the concentrations of amino acids, and the viability of intestinal stem cell (ISC) was accessed to verify the biological function. Results Preliminarily, 15 miRNAs were found to be differentially expressed between NEC group and control group. Subsequent bioinformatics analysis revealed that miR-122-5p significantly contributes to the arginine metabolism in NEC through the DEmiRNA-mRNA regulatory network, with PRODH2 and ALDH18A1 being identified as its target genes. In vitro, miR-122-5p mimic inhibited the expression of PRODH2 and ALDH18A1 in the FHs74Int cells and IEC-6 cells. In vivo, inhibition of miR-122-5p led to increased expression of PRODH2 and ALDH18A1, along with elevated arginine levels. Following transfection with a miR-122-5p inhibiting adenovirus, the survival rate of NEC mice improved, and intestinal injury was alleviated. Conclusion MiR-122-5p inhibition could impact arginine metabolism by targeting PRODH2 and ALDH18A1, thereby mitigating intestinal injury in NEC.
Collapse
Affiliation(s)
- Zhili Ding
- Department of General Surgery, Affiliated Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Ting Guo
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Tang
- Department of General Surgery, Affiliated Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Yaqiang Hong
- Department of General Surgery, Affiliated Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Lu
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjun Zhuang
- Department of General Surgery, Affiliated Changzhou Children’s Hospital of Nantong University, Changzhou, Jiangsu, China
| |
Collapse
|
5
|
Biouss G, Lee C, Li B, Adeli K, Pierro A. Glucagon-like peptides agonists promote maturation of intestinal organoids derived from neonates with necrotizing enterocolitis. Pediatr Surg Int 2025; 41:69. [PMID: 39828765 DOI: 10.1007/s00383-024-05957-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE Necrotizing enterocolitis (NEC) majorly affects premature infants, causing not only necrosis and inflammation but also feeding intolerance and gastrointestinal dysmotility, hinting at gut hormone secretion impairment. Particularly critical is the gestation period before 26 weeks where intestinal hormonal activity is partially developed, rendering preterm neonates highly susceptible to NEC. Emerging evidence suggests a role of gut hormones, especially glucagon-like peptides (GLP) in ileum development. Herein, the aim of this study was to determine the effect of modulating GLP signaling during normal intestinal development and during intestinal injury. METHODS We employed a human intestinal organoid (HIO) model derived from ileum tissue. After ethical approval, we obtained ileal biopsies from infants with NEC in uninjured (distant from site of NEC injury) and injured intestine (site of injury). After collection, crypt isolation was performed, and HIOs were cultured for 2-3 days before glucagon peptide agonists added daily in culture media. Organoids were harvested and analyzed for morphological measures of maturation including organoid size and budding. RESULTS Within the same patient, injured HIOs had a decreased budding compared to uninjured HIOs. Treatment with GLP agonists improved morphology and promoted maturation compared to the untreated organoid in both uninjured and injured HIOs. CONCLUSION Patient-derived organoids provide a suitable ex vivo model to study NEC pathogenesis. Increasing GLP signaling in HIOs enhanced maturation of organoids derived from uninjured and injured neonatal human intestine. Further studies are underway to assess in vivo, the efficacy of GLP agonist administration in NEC. This study opens the way to future development of precision medicine in the treatment of NEC.
Collapse
Affiliation(s)
- George Biouss
- Department of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carol Lee
- Department of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bo Li
- Department of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Khosrow Adeli
- Clinical Biochemistry, The Hospital for Sick Children, Toronto, ON, Canada
- Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Agostino Pierro
- Department of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.
- Translational Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
6
|
Adegboye C, Emeonye C, Wu YS, Kwon J, Oliveira LFS, Raveeniraraj S, O’Connell AE. Necrotizing enterocolitis causes increased ileal goblet cell loss in Wnt2b KO mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631715. [PMID: 39829885 PMCID: PMC11741354 DOI: 10.1101/2025.01.07.631715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
WNT2B is Wnt ligand which is able to support intestinal stem cells (ISC) in culture and support the intestinal epithelium in vivo. We have previously shown that WNT2B is critical for resistance to colitis, but not small intestinal injury, in the adult mouse. WNT2B is thought to coordinate with WNT3 in supporting ISC, and we have also shown that WNT3 expression is low in the early postnatal ileum in mice. Here, we hypothesized that WNT2B may be more critical in the small intestine during early development, and we challenged Wnt2b KO mice and controls with experimental necrotizing enterocolitis (NEC) on postnatal days 5-8. Wnt2b KO mice had similar ileum histology and injury scores to control mice. Molecular analyses showed that Wnt2b KO mice have differences in Lgr5 and Tlr4 expression compared to wild type controls in untreated conditions, but under experimental NEC expression of epithelial markers and inflammatory genes associated with NEC were similar to wild type. Periodic acid Schiff positive cells were lower in the villi of Wnt2b KO mice during NEC, however expression of goblet cell markers was not different compared to wild type mice. We also used an organoid-based NEC model to highlight the epithelium in isolation and also found no impact of WNT2B KO in the setting of NEC. These data further affirm that WNT2B is critical for inflammation responses in the mouse colon, but does not appear to play a major role in the small intestine, no matter the developmental period.
Collapse
Affiliation(s)
- Comfort Adegboye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | - Chidera Emeonye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | - Yu-Syuan Wu
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | - Jaedeok Kwon
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
| | | | | | - Amy E. O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA
- The Manton Center for Orphan Disease Research at Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Ganji N, Kalish B, Offringa M, Li B, Anderson J, Baruchel S, Blakely M, De Coppi P, Eaton S, Gauda E, Hall N, Heath A, Livingston MH, McNair C, Mitchell R, Patel K, Pechlivanoglou P, Pleasants-Terashita H, Pryor E, Radisic M, Shah PS, Thébaud B, Wang K, Zani A, Pierro A. Translating regenerative medicine therapies in neonatal necrotizing enterocolitis. Pediatr Res 2024; 96:1609-1615. [PMID: 38806665 PMCID: PMC11772243 DOI: 10.1038/s41390-024-03236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Affiliation(s)
- Niloofar Ganji
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Translational Medicine, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Brian Kalish
- Program in Neuroscience and Mental Health, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Martin Offringa
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Bo Li
- Translational Medicine, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - James Anderson
- Departments of Bioethics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sylvain Baruchel
- Translational Medicine, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Martin Blakely
- Department of Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Simon Eaton
- Stem Cells and Regenerative Medicine, Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Estelle Gauda
- Division of Neonatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Nigel Hall
- University Surgery Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anna Heath
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Statistical Science, University College London, London, UK
| | | | - Carol McNair
- Neonatal Intensive Care Unit, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | | | - Ketan Patel
- Micregen Ltd, Thames Valley Science Park, Reading, UK
| | - Petros Pechlivanoglou
- Child Health Evaluative Sciences, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Hazel Pleasants-Terashita
- Neonatal Intensive Care Unit, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Erin Pryor
- NEC Society, 140 B St. Ste 5 #128, Davis, CA, USA
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Prakesh S Shah
- Department of Pediatrics, Mount Sinai Hospital, Toronto, ON, Canada
| | - Bernard Thébaud
- Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kasper Wang
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Agostino Pierro
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Translational Medicine, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Liu G, Fang Y, Zhang Y, Zhu M. Dihydroquercetin improves the proliferation of porcine intestinal epithelial cells via the Wnt/β-catenin pathway. Biochem Biophys Res Commun 2024; 734:150460. [PMID: 39083968 DOI: 10.1016/j.bbrc.2024.150460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Dihydroquercetin (DHQ), also known as Taxifolin (TA), is a flavanonol with various biological activities, such as anticancer, anti-inflammatory, and antioxidative properties. It has been found to effectively increase the viability of porcine intestinal epithelial cells (IPEC-J2). However, the precise mechanism by which DHQ increases the proliferation of IPEC-J2 cells is not entirely understood. This study aimed to explore the potential pathways through which DHQ encourages the proliferation of IPEC-J2 cells. The findings indicated that DHQ significantly improved the protein expression of tight junction proteins (ZO-1, Occludin, and Claudin1) and a molecular biomarker of proliferation (PCNA) in IPEC-J2 cells. Furthermore, DHQ was found to increase the Wnt/β-catenin pathway-associated β-catenin, c-Myc, and cyclin D1 mRNA expression, and promote the protein expression of β-catenin and TCF4. To confirm the involvement of the Wnt/β-catenin signaling pathway in the DHQ-promoted proliferation of IPEC-J2 cells, the inhibitor LF3, which targets β-catenin/TCF4 interaction, was used. It was found that LF3 inhibited the protein expressions upregulated by DHQ and blocked the promotion of cell proliferation. These results indicate that DHQ positively regulates IPEC-J2 cell proliferation through the Wnt/β-catenin pathway, providing constructive insights into the role of DHQ in regulating intestine development.
Collapse
Affiliation(s)
- Guowei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Yongxia Fang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Yiyu Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China
| | - Min Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, 550025, China; Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
9
|
Kim M, Park Y, Kim YS, Ko S. Cellular Plasticity in Gut and Liver Regeneration. Gut Liver 2024; 18:949-960. [PMID: 39081200 PMCID: PMC11565004 DOI: 10.5009/gnl240005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 11/16/2024] Open
Abstract
The intestine and liver share a unique regenerative property that sets them apart from other mammalian visceral organs. The intestinal epithelium exhibits rapid renewal, making it one of the fastest renewing tissues in humans. Under physiological conditions, intestinal stem cells within each intestinal crypt continuously differentiate into the different types of intestinal epithelial cells to maintain intestinal homeostasis. However, when exposed to tissue damage or stressful conditions such as inflammation, intestinal epithelial cells in the gastrointestinal tract exhibit plasticity, allowing fully differentiated cells to regain their stem cell properties. Likewise, hepatic epithelial cells possess a remarkable regenerative capacity to restore lost liver mass through proliferation-mediated liver regeneration. When the proliferation-mediated regenerative capacity is impaired, hepatocytes and biliary epithelial cells (BECs) can undergo plasticity-mediated regeneration and replenish each other. The transition of mammalian liver progenitor cells to hepatocytes/BECs can be observed under tightly controlled experimental conditions such as severe hepatocyte injury accompanied by the loss of regenerative capacity. In this review, we will discuss the mechanism by which cellular plasticity contributes to the regeneration process and the potential therapeutic implications of understanding and harnessing cellular plasticity in the gut and liver.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoojeong Park
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - You Sun Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Sun X, Xu L, Ma S, Du J, Gu H, Wang J. CSF1 is expressed by the intestinal epithelial cells to regulate Mφ macrophages and maintain epithelial homeostasis and is downregulated in neonates with necrotizing enterocolitis. BMC Pediatr 2024; 24:608. [PMID: 39342173 PMCID: PMC11437640 DOI: 10.1186/s12887-024-05047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/02/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Colony stimulating factor 1 (CSF1) is generally expressed by immune cells in response to pro-inflammatory stimuli. The CSF1 receptor (CSFR) is activated by CSF1, and plays a key role in macrophage homeostasis. Furthermore, the CSF1R+ macrophages maintain homeostasis in the intestinal epithelium. The aim of this study was to explore the functions of CSF1-expressing and CSF1R+ macrophages in necrotizing enterocolitis (NEC), which commonly affects the ileum of neonates. METHODS In-situ CSF1 expression in the intestines of neonates with NEC or intestinal atresia (n = 4 each) was detected by immunofluorescence staining. The CSF1 levels in the intestinal crypt-derived organoid cultures were measured by ELISA. Peripheral blood monocyte-derived Mφ macrophages were co-cultured with the organoids and stimulated with lipopolysaccharide (LPS) to mimic the inflamed state of the ileum in NEC patients. RESULTS CSF1 was expressed in the intestinal epithelial cells of the fetal and neonatal samples, but suppressed in the NEC samples. Furthermore, CSF1 expression was downregulated in the intestinal crypt-derived organoids by LPS. CSF1R+ macrophages were detected near the intestinal crypts in the non-inflamed intestines but were absent in tissues obtained from pediatric NEC patients. Peripheral blood monocyte-derived macrophages promoted intestinal organoid proliferation in vitro following CSF1 stimulation. Finally, low concentrations of LPS slightly enhanced the proliferation of organoids co-cultured with the macrophages, whereas higher doses had a significant inhibitory effect. CONCLUSIONS Intestinal epithelial cells express CSF1 to regulate the resident macrophages, maintain epithelial homeostasis, and resist infection. The abundant CSF1R+ macrophages in the fetal intestine may overexpress TNF-α upon activation of the TLR4/NF-κB pathway, resulting in epithelial damage and NEC induction.
Collapse
Affiliation(s)
- Xu Sun
- The Affiliated Hospital of Guiyang Medical University, Guiyang, 550004, China.
| | - Lingqi Xu
- Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Shurong Ma
- Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Jun Du
- The Affiliated Hospital of Guiyang Medical University, Guiyang, 550004, China
| | - Huajian Gu
- The Affiliated Hospital of Guiyang Medical University, Guiyang, 550004, China
| | - Jian Wang
- Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
11
|
Paul S, Adetunji J, Hong T. Widespread biochemical reaction networks enable Turing patterns without imposed feedback. Nat Commun 2024; 15:8380. [PMID: 39333132 PMCID: PMC11436923 DOI: 10.1038/s41467-024-52591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
Understanding self-organized pattern formation is fundamental to biology. In 1952, Alan Turing proposed a pattern-enabling mechanism in reaction-diffusion systems containing chemical species later conceptualized as activators and inhibitors that are involved in feedback loops. However, identifying pattern-enabling regulatory systems with the concept of feedback loops has been a long-standing challenge. To date, very few pattern-enabling circuits have been discovered experimentally. This is in stark contrast to ubiquitous periodic patterns and symmetry in biology. In this work, we systematically study Turing patterns in 23 elementary biochemical networks without assigning any activator or inhibitor. These mass action models describe post-synthesis interactions applicable to most proteins and RNAs in multicellular organisms. Strikingly, we find ten simple reaction networks capable of generating Turing patterns. While these network models are consistent with Turing's theory mathematically, there is no apparent connection between them and commonly used activator-feedback intuition. Instead, we identify a unifying network motif that enables Turing patterns via regulated degradation pathways with flexible diffusion rate constants of individual molecules. Our work reveals widespread biochemical systems for pattern formation, and it provides an alternative approach to tackle the challenge of identifying pattern-enabling biological systems.
Collapse
Affiliation(s)
- Shibashis Paul
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37916, USA
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Joy Adetunji
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37916, USA
| | - Tian Hong
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| |
Collapse
|
12
|
Liu Y, Wang D, Luan Y, Tao B, Li Q, Feng Q, Zhou H, Mu J, Yu J. The application of organoids in colorectal diseases. Front Pharmacol 2024; 15:1412489. [PMID: 38983913 PMCID: PMC11231380 DOI: 10.3389/fphar.2024.1412489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yanhong Luan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jianfeng Mu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Eintracht J, Owen N, Harding P, Moosajee M. Disruption of common ocular developmental pathways in patient-derived optic vesicle models of microphthalmia. Stem Cell Reports 2024; 19:839-858. [PMID: 38821055 PMCID: PMC11390689 DOI: 10.1016/j.stemcr.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/02/2024] Open
Abstract
Genetic perturbations influencing early eye development can result in microphthalmia, anophthalmia, and coloboma (MAC). Over 100 genes are associated with MAC, but little is known about common disease mechanisms. In this study, we generated induced pluripotent stem cell (iPSC)-derived optic vesicles (OVs) from two unrelated microphthalmia patients and healthy controls. At day 20, 35, and 50, microphthalmia patient OV diameters were significantly smaller, recapitulating the "small eye" phenotype. RNA sequencing (RNA-seq) analysis revealed upregulation of apoptosis-initiating and extracellular matrix (ECM) genes at day 20 and 35. Western blot and immunohistochemistry revealed increased expression of lumican, nidogen, and collagen type IV, suggesting ECM overproduction. Increased apoptosis was observed in microphthalmia OVs with reduced phospho-histone 3 (pH3+) cells confirming decreased cell proliferation at day 35. Pharmacological inhibition of caspase-8 activity with Z-IETD-FMK decreased apoptosis in one patient model, highlighting a potential therapeutic approach. These data reveal shared pathophysiological mechanisms contributing to a microphthalmia phenotype.
Collapse
Affiliation(s)
| | | | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; Moorfields Eye Hospital NHS Foundation Trust, London EC1V 9EL, UK; Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
14
|
Verma M, Garg M, Khan AS, Yadav P, Rahman SS, Ali A, Kamthan M. Cadmium modulates intestinal Wnt/β-catenin signaling ensuing intestinal barrier disruption and systemic inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116337. [PMID: 38640798 DOI: 10.1016/j.ecoenv.2024.116337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
The intricate architecture of the intestinal epithelium, crucial for nutrient absorption, is constantly threatened by environmental factors. The epithelium undergoes rapid turnover, which is essential for maintaining homeostasis, under the control of intestinal stem cells (ISCs). The central regulator, Wnt/β-catenin signaling plays a key role in intestinal integrity and turnover. Despite its significance, the impact of environmental factors on this pathway has been largely overlooked. This study, for the first time, investigates the influence of Cd on the intestinal Wnt signaling pathway using a mouse model. In this study, male BALB/c mice were administered an environmentally relevant Cd dose (0.98 mg/kg) through oral gavage to investigate the intestinal disruption and Wnt signaling pathway. Various studies, including histopathology, immunohistochemistry, RT-PCR, western blotting, ELISA, intestinal permeability assay, and flow cytometry, were conducted to study Cd-induced changes in the intestine. The canonical Wnt signaling pathway experienced significant downregulation as a result of sub-chronic Cd exposure, which caused extensive damage throughout the small intestine. Increased intestinal permeability and a skewed immune response were also observed. To confirm that Wnt signaling downregulation is the key driver of Cd-induced gastrointestinal toxicity, mice were co-exposed to LiCl (a recognized Wnt activator) and Cd. The results clearly showed that the harmful effects of Cd could be reversed, which is strong evidence that Cd mostly damages the intestine through the Wnt/β-catenin signalling axis. In conclusion, this research advances the current understanding of the role of Wnt/β catenin signaling in gastrointestinal toxicity caused by diverse environmental pollutants.
Collapse
Affiliation(s)
- Muskan Verma
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India
| | - Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India
| | - Pawan Yadav
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India
| | - Saman Saim Rahman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India
| | - Asghar Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
15
|
Fang YX, Lu EQ, Cheng YJ, Xu E, Zhu M, Chen X. Glutamine Promotes Porcine Intestinal Epithelial Cell Proliferation through the Wnt/β-Catenin Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7155-7166. [PMID: 38526961 DOI: 10.1021/acs.jafc.3c08701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Glutamine (Gln) is a critical nutrient required by neonatal mammals for intestinal growth, especially for newborn piglets. However, the mechanisms underlying the role of Gln in porcine intestinal epithelium development are not fully understood. The objective of the current study was to explore the possible signaling pathway involved in the promotion of porcine intestinal epithelial cell (IPEC-J2) proliferation by Gln. The results showed that 1 mM Gln promoted IPEC-J2 cell proliferation, and tandem mass tag proteomics revealed 973 differentially expressed proteins in Gln-treated IPEC-J2 cells, 824 of which were upregulated and 149 of which were downregulated. Moreover, gene set enrichment analysis indicated that the Wnt signaling pathway is activated by Gln treatment. Western blotting analysis further confirmed that Gln activated the Wnt/β-catenin signaling pathway. In addition, Gln increased not only cytosolic β-catenin but also nuclear β-catenin protein expression. LF3 (a β-catenin/TCF4 interaction inhibitor) assay and β-catenin knockdown demonstrated that Gln-mediated promotion of Wnt/β-catenin signaling and cell proliferation were blocked. Furthermore, the inhibition of TCF4 expression suppressed Gln-induced cell proliferation. These findings further confirmed that Wnt/β-catenin signaling is involved in the promotion of IPEC-J2 cell proliferation by Gln. Collectively, these findings demonstrated that Gln positively regulated IPEC-J2 cell proliferation through the Wnt/β-catenin pathway. These data greatly enhance the current understanding of the mechanism by which Gln regulates intestinal development.
Collapse
Affiliation(s)
- Yong-Xia Fang
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - En-Qing Lu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Yu-Jie Cheng
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - E Xu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Min Zhu
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
- Institute of Animal Nutrition and Feed Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
16
|
Zhan Y, Wen Y, Zheng F, Du LJ, Chen TY, Shen XL, Wu R, Tang XG. MiR-26b-3p Promotes Intestinal Motility Disorder by Targeting FZD10 to Inhibit GSK3β/β-Catenin Signaling and Induce Enteric Glial Cell Apoptosis. Mol Neurobiol 2024; 61:1543-1561. [PMID: 37728849 DOI: 10.1007/s12035-023-03600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/20/2023] [Indexed: 09/21/2023]
Abstract
Enteric glial cells (EGCs) are the major component of the enteric nervous system and affect the pathophysiological process of intestinal motility dysfunction. MicroRNAs (miRNAs) play an important role in regulating gastrointestinal homeostasis. However, the mechanism of miRNA-mediated regulation of EGCs in intestinal dysmotility remains unclear. In this study, we investigated the effect of EGC apoptosis on intestinal dysmotility, and the effect of miR-26b-3p on EGC proliferation and apoptosis in vivo and in vitro. A loperamide hydrochloride (Lop)-induced constipated mouse model and an in vitro culture system of rat EGCs were established. The transcriptome was used to predict the differentially expressed gene miR-26b-3p and the target gene Frizzled 10 (FZD10), and their targeting binding relationship was verified by luciferase. EGCs were transfected with miR-26b-3p mimic or antagomir, and the FZD10 expression was down-regulated by siRNA. Immunofluorescence and flow cytometry were used to detect EGC apoptosis. MiR-26b-3p and FZD10 expressions were examined using quantitative real-time PCR (qRT-PCR). The CCK-8 assay was used to detect EGC proliferation. The protein levels were detected by Western blotting and enzyme-linked immunosorbent assay (ELISA). The results showed that miR-26b-3p was up-regulated in the Lop group, whereas FZD10 was down-regulated, and EGC apoptosis was increased in the colon of intestinal dysmotility mice. FZD10 down-regulation and miR-26b-3p mimic significantly increased glycogen synthase kinase-3β phosphorylation (p-GSK3β) levels, decreased β-catenin expression, and promoted EGC apoptosis. MiR-26b-3p antagomir alleviated intestinal dysmotility, promoted EGC increased activity of EGCs, and reduced EGC apoptosis in vivo. In conclusion, this study indicated that miR-26b-3p promotes intestinal motility disorders by targeting FZD10 to block GSK3β/β-catenin signaling and induces apoptosis in EGCs. Our results provide a new research target for the treatment and intervention of intestinal dysmotility.
Collapse
Affiliation(s)
- Yu Zhan
- Hospital of Chengdu University of TCM, Chengdu, China
- Anorectal Department, Affiliated Hospital of Integrative Chinese Medicine and Western Medicine of Chengdu University of TCM, Chengdu, China
- Chengdu First People's Hospital, Chengdu, China
| | - Yong Wen
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fan Zheng
- Anorectal Department, People's Hospital of Deyang City, Deyang, China
- Universiti Sains Malaysia, George Town, Pulau Pinang, Malaysia
| | - Li-Juan Du
- The Third People's Hospital of Chengdu, Chengdu, China
- Southwest Jiaotong University College of Medicine, Chengdu, China
| | - Tai-Yu Chen
- Department of Integrated Traditional and Western Medicine Anorectal, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xu-Long Shen
- Anorectal Department, Luzhou People's Hospital, Luzhou, China
| | - Rong Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue-Gui Tang
- Department of Integrated Traditional and Western Medicine Anorectal, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
17
|
Wang X, Li L, Liu T, Shi Y. More than nutrition: Therapeutic potential and mechanism of human milk oligosaccharides against necrotizing enterocolitis. Life Sci 2024; 339:122420. [PMID: 38218534 DOI: 10.1016/j.lfs.2024.122420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Human milk is the most valuable source of nutrition for infants. The structure and function of human milk oligosaccharides (HMOs), which are key components of human milk, have long been attracting particular research interest. Several recent studies have found HMOs to be efficacious in the prevention and treatment of necrotizing enterocolitis (NEC). Additionally, they could be developed in the future as non-invasive predictive markers for NEC. Based on previous findings and the well-defined functions of HMOs, we summarize potential protective mechanisms of HMOs against neonatal NEC, which include: modulating signal receptor function, promoting intestinal epithelial cell proliferation, reducing apoptosis, restoring intestinal blood perfusion, regulating microbial prosperity, and alleviating intestinal inflammation. HMOs supplementation has been demonstrated to be protective against NEC in both animal studies and clinical observations. This calls for mass production and use of HMOs in infant formula, necessitating more research into the safety of industrially produced HMOs and the appropriate dosage in infant formula.
Collapse
Affiliation(s)
- Xinru Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Ling Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China
| | - Tianjing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, San Hao Street, Heping District, Shenyang, Liaoning 110004, China.
| |
Collapse
|
18
|
Chen Z, Chen H, Huang W, Guo X, Yu L, Shan J, Deng X, Liu J, Li W, Shen W, Fan H. Bacteroides fragilis alleviates necrotizing enterocolitis through restoring bile acid metabolism balance using bile salt hydrolase and inhibiting FXR-NLRP3 signaling pathway. Gut Microbes 2024; 16:2379566. [PMID: 39013030 PMCID: PMC11253882 DOI: 10.1080/19490976.2024.2379566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Necrotizing enterocolitis (NEC) is a leading cause of morbidity and mortality in premature infants with no specific treatments available. We aimed to identify the molecular mechanisms underlying NEC and investigate the therapeutic effects of Bacteroides fragilis on NEC. Clinical samples of infant feces, bile acid-targeted metabolomics, pathological staining, bioinformatics analysis, NEC rat model, and co-immunoprecipitation were used to explore the pathogenesis of NEC. Taxonomic characterization of the bile salt hydrolase (bsh) gene, enzyme activity assays, 16S rRNA sequencing, and organoids were used to explore the therapeutic effects of B. fragilis on NEC-related intestinal damage. Clinical samples, NEC rat models, and in vitro experiments revealed that total bile acid increased in the blood but decreased in feces. Moreover, the levels of FXR and other bile acid metabolism-related genes were abnormal, resulting in disordered bile acid metabolism in NEC. Taurochenodeoxycholic acid accelerated NEC pathogenesis and taurodeoxycholate alleviated NEC. B. fragilis displayed bsh genes and enzyme activity and alleviated intestinal damage by restoring gut microbiota dysbiosis and bile acid metabolism abnormalities by inhibiting the FXR-NLRP3 signaling pathway. Our results provide valuable insights into the therapeutic role of B. fragilis in NEC. Administering B. fragilis may substantially alleviate intestinal damage in NEC.
Collapse
MESH Headings
- Enterocolitis, Necrotizing/metabolism
- Enterocolitis, Necrotizing/microbiology
- Enterocolitis, Necrotizing/drug therapy
- Animals
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- Bacteroides fragilis/metabolism
- Bacteroides fragilis/genetics
- Signal Transduction/drug effects
- Bile Acids and Salts/metabolism
- Rats
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Gastrointestinal Microbiome/drug effects
- Amidohydrolases/metabolism
- Amidohydrolases/genetics
- Humans
- Rats, Sprague-Dawley
- Infant, Newborn
- Disease Models, Animal
- Male
- Female
- Probiotics/administration & dosage
- Probiotics/pharmacology
- Infant, Premature
- Dysbiosis/microbiology
Collapse
Affiliation(s)
- Zhenhui Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Huijuan Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wanwen Huang
- Experimental Teaching Center of Preventive Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaotong Guo
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lu Yu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiamin Shan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoshi Deng
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiaxin Liu
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wendan Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Shen
- Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongying Fan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Markovich Z, Abreu A, Sheng Y, Han SM, Xiao R. Deciphering internal and external factors influencing intestinal junctional complexes. Gut Microbes 2024; 16:2389320. [PMID: 39150987 PMCID: PMC11332634 DOI: 10.1080/19490976.2024.2389320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/18/2024] Open
Abstract
The intestinal barrier, an indispensable guardian of gastrointestinal health, mediates the intricate exchange between internal and external environments. Anchored by evolutionarily conserved junctional complexes, this barrier meticulously regulates paracellular permeability in essentially all living organisms. Disruptions in intestinal junctional complexes, prevalent in inflammatory bowel diseases and irritable bowel syndrome, compromise barrier integrity and often lead to the notorious "leaky gut" syndrome. Critical to the maintenance of the intestinal barrier is a finely orchestrated network of intrinsic and extrinsic factors that modulate the expression, composition, and functionality of junctional complexes. This review navigates through the composition of key junctional complex components and the common methods used to assess intestinal permeability. It also explores the critical intracellular signaling pathways that modulate these junctional components. Lastly, we delve into the complex dynamics between the junctional complexes, microbial communities, and environmental chemicals in shaping the intestinal barrier function. Comprehending this intricate interplay holds paramount importance in unraveling the pathophysiology of gastrointestinal disorders. Furthermore, it lays the foundation for the development of precise therapeutic interventions targeting barrier dysfunction.
Collapse
Affiliation(s)
- Zachary Markovich
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Adriana Abreu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yi Sheng
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Rui Xiao
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Institute on Aging, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| |
Collapse
|
20
|
Sun Y, Jiang H, Pan L, Han Y, Chen Y, Jiang Y, Wang Y. LncRNA OIP5-AS1/miR-410-3p/Wnt7b axis promotes the proliferation of rheumatoid arthritis fibroblast-like synoviocytes via regulating the Wnt/β-catenin pathway. Autoimmunity 2023; 56:2189136. [PMID: 36942896 DOI: 10.1080/08916934.2023.2189136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
LncRNA OIP5-AS1 has a common gene imbalance in various cancers and tumours, which plays an important role in regulating its biological function. However, there are few studies on lncRNA OIP5-AS1 in rheumatoid arthritis (RA). The purpose of the present study was to investigate the role of lncRNA OIP5-AS1 in the pathogenesis of RA. In the present study, we established an adjuvant arthritis (AA) rat model to obtain primary fibroblast-like synoviocytes (FLSs);The subcellular localisation of lncRNA OIP5-AS1 was detected by fluorescence in situ hybridisation (FISH) assay; Cell proliferation of FLSs was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay;IL-1β, IL-6 and TNF-α concentrations were measured by enzyme-linked immunosorbent assay (ELISA);Quantitative real-time PCR (qRT-PCR), Western blots(WB) and immunofluorescence were used to detect the expression of lncRNA OIP5-AS1/miR-410-3p/wnt7b signal axis and Wnt/β-catenin signal pathway related indicators in FLSs. FISH assay confirmed the presence of lncRNA OIP5-AS1 in the cytoplasm, suggesting that it acts as a competing endogenous RNA (ceRNA). qRT-PCR showed that the expression of lncRNA OIP5-AS1 was upregulated in FLSs, while the expression of miR-410-3p was downregulated in FLSs. We also found that lncRNA OIP5-AS1 knockdown inhibited the proliferation and inflammation of FLSs. Moreover, the expression of Wnt7b, the downstream target gene of miR-410-3p, and the activation of the Wnt/β-catenin signalling pathway were also inhibited by lncRNA OIP5-AS1 knockdown. These results suggested that lncRNA OIP5-AS1 promotes the activation of the Wnt/β-catenin signalling pathway by regulating the miR-410-3p/Wnt7b signalling axis, thereby participating in the occurrence and development of RA.
Collapse
Affiliation(s)
- Yuan Sun
- Pharmacy Department, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
- Pharmacy Department, ShangHai East Hospital, Shanghai, P.R. China
| | - Hui Jiang
- Pharmacy Department, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
| | - LingYu Pan
- Pharmacy Department, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
| | - YanQuan Han
- Pharmacy Department, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
| | - Yan Chen
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
| | - Yeke Jiang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
| | - Yongzhong Wang
- Pharmacy Department, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, P.R. China
| |
Collapse
|
21
|
Chen J, Zhao BC, Dai XY, Xu YR, Kang JX, Li JL. Drinking alkaline mineral water confers diarrhea resistance in maternally separated piglets by maintaining intestinal epithelial regeneration via the brain-microbe-gut axis. J Adv Res 2023; 52:29-43. [PMID: 36539076 PMCID: PMC10555785 DOI: 10.1016/j.jare.2022.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Diarrhea has the fourth-highest mortality rate of all diseases and causes a large number of infant deaths each year. The maternally separated (MS) piglet (newly weaned piglet) is an excellent model to investigate the treatment of diarrhea in infants. Drinking alkaline mineral water has the potential to be therapeutic in gastrointestinal disorders, particularly diarrhea, but the supporting evidence from system studies and the mechanisms involved have yet to be reported. OBJECTIVES This study aims to determine whether drinking alkaline mineral water confers diarrhea resistance in MS piglets under weaning stress and what the fundamental mechanisms involved are. METHODS MS piglets were used to create a stress-induced intestinal disorder-diarrhea susceptibility model. A total of 240 MS piglets were randomly divided into two groups (6 pens/group and 20 piglets/pen). IPEC-J2 cell line was used for in vitro evaluation. An alkaline mineral complex (AMC) water was employed, and its effect on the hypothalamus-pituitary-adrenocortical (HPA) axis, gut microbes, gut morphology, and intestinal epithelial cell (IEC) proliferation and differentiation were investigated using a variety of experimental methodology. RESULTS AMC water reduced diarrhea rate in MS piglets by inhibiting the HPA axis, ameliorating gut microbiota structure, and stimulating IEC proliferation and differentiation. Apparently, the brain-microbe-gut axis is linked with AMC water conferring diarrhea resistance in piglets. Mechanistically, AMC water decreased stress hormones (COR and Hpt) secretion by suppressing HPA axis, which then increased the abundance of beneficial gut microbes; accordingly, maintained the proliferation of IEC and promoted the differentiation of intestinal stem cells (ISC) into goblet cell and Paneth cell by activating the Wnt/β-catenin signaling pathway. In the absence of gut microbiota (in vitro), AMC activated the LPS-induced Wnt/β-catenin signaling inhibition in IPEC-J2 cells and significantly increased the number of Lgr5 + cells, whereas had no effect on IPEC-J2 differentiation. CONCLUSION Drinking alkaline mineral water confers diarrhea resistance in MS piglets by maintaining intestinal epithelial regeneration via the brain-microbe-gut axis; thus, this study provides a potential prevention strategy for young mammals at risk of diarrhea.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Bi-Chen Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jian-Xun Kang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
22
|
Wei J, Meng Z, Li Z, Dang D, Wu H. New insights into intestinal macrophages in necrotizing enterocolitis: the multi-functional role and promising therapeutic application. Front Immunol 2023; 14:1261010. [PMID: 37841247 PMCID: PMC10568316 DOI: 10.3389/fimmu.2023.1261010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is an inflammatory intestinal disease that profoundly affects preterm infants. Currently, the pathogenesis of NEC remains controversial, resulting in limited treatment strategies. The preterm infants are thought to be susceptible to gut inflammatory disorders because of their immature immune system. In early life, intestinal macrophages (IMφs), crucial components of innate immunity, demonstrate functional plasticity and diversity in intestinal development, resistance to pathogens, maintenance of the intestinal barrier, and regulation of gut microbiota. When the stimulations of environmental, dietary, and bacterial factors interrupt the homeostatic processes of IMφs, they will lead to intestinal disease, such as NEC. This review focuses on the IMφs related pathogenesis in NEC, discusses the multi-functional roles and relevant molecular mechanisms of IMφs in preterm infants, and explores promising therapeutic application for NEC.
Collapse
Affiliation(s)
- Jiaqi Wei
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital of Jilin University, Changchun, China
| | - Zhenyu Li
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| | - Dan Dang
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| | - Hui Wu
- Department of Neonatology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Zhang YR, Li FY, Lu ZJ, Wang XF, Yan HC, Wang XQ, Gao CQ. l-Malic Acid Facilitates Stem Cell-Driven Intestinal Epithelial Renewal through the Amplification of β-Catenin Signaling by Targeting Frizzled7 in Chicks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13079-13091. [PMID: 37632443 DOI: 10.1021/acs.jafc.3c01332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
l-Malic acid (l-MA) contributes to energy metabolism and nutrient digestion, which is an alternative to antibiotics for livestock; however, it is not clear whether l-MA can replace antibiotics to promote intestinal development in chicks. To investigate the effects of l-MA on intestinal stem cells (ISCs) driving epithelial renewal, we employed in vivo chick feeding experiments, chick intestinal organoid (IO) models, and in vitro chick intestinal epithelial cell models. The results showed that the feed conversion rate and diarrhea scores were decreased with improved jejunal morphology and barrier function in the 0.5% l-MA group. l-MA promoted the proliferation and differentiation of ISCs, inhibited the cell apoptosis, increased the IO formation efficiency, surface area, budding efficiency, and number of buds, suggesting that l-MA promoted the expansion of ISCs. Furthermore, l-MA treatment dramatically upregulated the Wnt/β-catenin signaling pathway in the jejunum. Importantly, Wnt transmembrane receptor Frizzled7 (FZD7) mRNA abundance was increased in response to dietary 0.5% l-MA. In addition, molecular docking analysis using Autodock software and isothermal titration calorimetry revealed that l-MA binds to Lys91 of FZD7 with high affinity, indicating a spontaneous interaction. The chick intestinal epithelial cells treated with 10 μM l-MA significantly increased cell viability, and the Wnt/β-catenin signaling pathway was activated, but l-MA failed to upregulate the Wnt/β-catenin signaling when treated with the FZD7-specific inhibitor Fz7-21 in chick intestinal epithelial cells, indicating that FZD7 is indispensable for l-MA activation of the Wnt/β-catenin signaling. Collectively, l-MA stimulated β-catenin signaling by targeting transmembrane receptor FZD7, which promoted ISC expansion and inhibited cell apoptosis to accelerate intestinal epithelial renewal in chicks.
Collapse
Affiliation(s)
- Ya-Ru Zhang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Fu-Yong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhu-Jin Lu
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Fan Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Chao Yan
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Chun-Qi Gao
- College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control/Guangdong Laboratory for Lingnan Modern Agriculture/State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
Ganji N, Li B, Lee C, Pierro A. Necrotizing enterocolitis: recent advances in treatment with translational potential. Pediatr Surg Int 2023; 39:205. [PMID: 37247104 DOI: 10.1007/s00383-023-05476-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 05/30/2023]
Abstract
Necrotizing enterocolitis (NEC) is one of the most prevalent and devastating gastrointestinal disorders in neonates. Despite advances in neonatal care, the incidence and mortality due to NEC remain high, highlighting the need to devise novel treatments for this disease. There have been a number of recent advancements in therapeutic approaches for the treatment of NEC; these involve remote ischemic conditioning (RIC), stem cell therapy, breast milk components (human milk oligosaccharides, exosomes, lactoferrin), fecal microbiota transplantation, and immunotherapy. This review summarizes the most recent advances in NEC treatment currently underway as well as their applicability and associated challenges and limitations, with the aim to provide new insight into the paradigm of care for NEC worldwide.
Collapse
Affiliation(s)
- Niloofar Ganji
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Bo Li
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Carol Lee
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada
| | - Agostino Pierro
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
- Translational Medicine, Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON, Canada.
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
25
|
Yang J, Shi Y. Paneth cell development in the neonatal gut: pathway regulation, development, and relevance to necrotizing enterocolitis. Front Cell Dev Biol 2023; 11:1184159. [PMID: 37266449 PMCID: PMC10231676 DOI: 10.3389/fcell.2023.1184159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Paneth cells (PCs) are intestinal epithelial cells (IECs) that contain eosinophilic granules, which are located in Lieberkühn crypts. An increasing number of animal and human experiments have indicated that PCs are involved in the progression of a variety of intestinal as well as systemic inflammatory responses including necrotizing enterocolitis (NEC). NEC is an enteric acquired disease with high mortality that usually occurs in premature infants and neonates, however the underlying mechanisms remain unclear. In this review, we summarize the features of PCs, including their immune function, association with gut microbiota and intestinal stem cells, and their mechanism of regulating IEC death to explore the possible mechanisms by which PCs affect NEC.
Collapse
|
26
|
Zheng L, Duan SL. Molecular regulation mechanism of intestinal stem cells in mucosal injury and repair in ulcerative colitis. World J Gastroenterol 2023; 29:2380-2396. [PMID: 37179583 PMCID: PMC10167905 DOI: 10.3748/wjg.v29.i16.2380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with complex causes. The main pathological changes were intestinal mucosal injury. Leucine-rich repeat-containing G protein coupled receptor 5 (LGR5)-labeled small intestine stem cells (ISCs) were located at the bottom of the small intestine recess and inlaid among Paneth cells. LGR5+ small ISCs are active proliferative adult stem cells, and their self-renewal, proliferation and differentiation disorders are closely related to the occurrence of intestinal inflammatory diseases. The Notch signaling pathway and Wnt/β-catenin signaling pathway are important regulators of LGR5-positive ISCs and together maintain the function of LGR5-positive ISCs. More importantly, the surviving stem cells after intestinal mucosal injury accelerate division, restore the number of stem cells, multiply and differentiate into mature intestinal epithelial cells, and repair the damaged intestinal mucosa. Therefore, in-depth study of multiple pathways and transplantation of LGR5-positive ISCs may become a new target for the treatment of UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| |
Collapse
|
27
|
Lanik WE, Luke CJ, Nolan LS, Gong Q, Frazer LC, Rimer JM, Gale SE, Luc R, Bidani SS, Sibbald CA, Lewis AN, Mihi B, Agrawal P, Goree M, Maestas M, Hu E, Peters DG, Good M. Microfluidic device facilitates in vitro modeling of human neonatal necrotizing enterocolitis-on-a-chip. JCI Insight 2023; 8:e146496. [PMID: 36881475 PMCID: PMC10243823 DOI: 10.1172/jci.insight.146496] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a deadly gastrointestinal disease of premature infants that is associated with an exaggerated inflammatory response, dysbiosis of the gut microbiome, decreased epithelial cell proliferation, and gut barrier disruption. We describe an in vitro model of the human neonatal small intestinal epithelium (Neonatal-Intestine-on-a-Chip) that mimics key features of intestinal physiology. This model utilizes intestinal enteroids grown from surgically harvested intestinal tissue from premature infants and cocultured with human intestinal microvascular endothelial cells within a microfluidic device. We used our Neonatal-Intestine-on-a-Chip to recapitulate NEC pathophysiology by adding infant-derived microbiota. This model, named NEC-on-a-Chip, simulates the predominant features of NEC, including significant upregulation of proinflammatory cytokines, decreased intestinal epithelial cell markers, reduced epithelial proliferation, and disrupted epithelial barrier integrity. NEC-on-a-Chip provides an improved preclinical model of NEC that facilitates comprehensive analysis of the pathophysiology of NEC using precious clinical samples. This model is an advance toward a personalized medicine approach to test new therapeutics for this devastating disease.
Collapse
Affiliation(s)
- Wyatt E. Lanik
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Cliff J. Luke
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lila S. Nolan
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qingqing Gong
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lauren C. Frazer
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jamie M. Rimer
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah E. Gale
- Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Shay S. Bidani
- Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Angela N. Lewis
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Belgacem Mihi
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pranjal Agrawal
- Washington University in St. Louis, St. Louis, Missouri, USA
| | - Martin Goree
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marlie Maestas
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elise Hu
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - David G. Peters
- University of Pittsburgh and Magee-Womens Research Institute, Pittsburgh, Pennsylvania, USA
| | - Misty Good
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
28
|
Jones J, Shi Q, Nath RR, Brito IL. Keystone pathobionts associated with colorectal cancer promote oncogenic reprograming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535410. [PMID: 37066368 PMCID: PMC10103987 DOI: 10.1101/2023.04.03.535410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Fusobacterium nucleatum (Fn) and enterotoxigenic Bacteroides fragilis (ETBF) are two pathobionts consistently enriched in the gut microbiomes of patients with colorectal cancer (CRC) compared to healthy counterparts and frequently observed for their direct association within tumors. Although several molecular mechanisms have been identified that directly link these organisms to features of CRC in specific cell types, their specific effects on the epithelium and local immune compartment are not well-understood. To fill this gap, we leveraged single-cell RNA sequencing (scRNA-seq) on wildtype mice and mouse model of CRC. We find that Fn and ETBF exacerbate cancer-like transcriptional phenotypes in transit-amplifying and mature enterocytes in a mouse model of CRC. We also observed increased T cells in the pathobiont-exposed mice, but these pathobiont-specific differences observed in wildtype mice were abrogated in the mouse model of CRC. Although there are similarities in the responses provoked by each organism, we find pathobiont-specific effects in Myc-signaling and fatty acid metabolism. These findings support a role for Fn and ETBF in potentiating tumorigenesis via the induction of a cancer stem cell-like transit-amplifying and enterocyte population and the disruption of CTL cytotoxic function.
Collapse
Affiliation(s)
- Josh Jones
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| | - Qiaojuan Shi
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| | - Rahul R. Nath
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| | - Ilana L. Brito
- Meinig School for Biomedical Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
29
|
An L, Li J, Liu B, Hui J, Zhang Q, Zhang X, Wang Q. Amniotic fluid stem cell attenuated necrotizing enterocolitis progression by promoting Rspo3/AMPKα axis. Immunobiology 2023:152336. [PMID: 37173190 DOI: 10.1016/j.imbio.2023.152336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023]
Abstract
R-spondin 3 (Rspo3) is involved in various cellular processes. The alteration of Rspo3 participates in the differentiation of intestinal epithelial cells which are the crucial effector cells during necrotizing enterocolitis (NEC) development. Amniotic fluid stem cells (AFSCs) were recently indicated as a potential approach for NEC therapy. This study aimed to illustrate the regulatory role and mechanism of Rspo3 in the pathogenesis of NEC and whether AFSCs therapy would impact NEC by mediating Rspo3. First, the alteration of Rspo3 was investigated in the serum and tissues of NEC patients, and an in vitro cell model induced by LPS. A gain-of-function assay was conducted to explore the function of Rspo3 in NEC. Through the analysis of adenosine 5'-monophosphate-activated protein kinase α (AMPKα) activation, the mechanism of Rspo3-mediated NEC progression was demonstrated. Finally, AFSCs were used to coculture human intestinal epithelial cells (HIECs) and the impacts on NEC development were also explored. The results found that Rspo3 was dramatically depressed during NEC progression and reversing Rspo3 expression ameliorated LPS-induced injury, inflammation, oxidative stress and tight junction dysregulation in HIECs. Besides, Rspo3 overexpression reversed AMPKα inactivation induced by NEC and an AMPKα inhibitor, Compound C, blocked the effect of Rspo3 overexpression on NEC. AFSCs treatment was beneficial for NEC therapy by restoring Rspo3 expression which was counteracted by exosome inhibitor. Generally, AFSCs attenuated NEC progression by promoting the Rspo3/AMPKα axis which might exert via the secretion of exosomes. Our conclusions might be valuable for NEC diagnosis and therapy.
Collapse
|
30
|
Hosfield BD, Shelley WC, Mesfin FM, Brokaw JP, Manohar K, Liu J, Li H, Pecoraro AR, Singh K, Markel TA. Age disparities in intestinal stem cell quantities: a possible explanation for preterm infant susceptibility to necrotizing enterocolitis. Pediatr Surg Int 2022; 38:1971-1979. [PMID: 36208323 DOI: 10.1007/s00383-022-05257-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Preterm infants are more susceptible to necrotizing enterocolitis (NEC) than term Queryinfants. This may be due to a relative paucity of Lgr5+ or Bmi1+-expressing intestinal stem cells (ISCs) which are responsible for promoting intestinal recovery after injury. We hypothesized that the cellular markers of Lgr5+ and Bmi1+, which represent the two distinct ISC populations, would be lower in younger mice compared to older mice. In addition, we hypothesized that experimental NEC would result in a greater loss of Lgr5+ expression compared to Bmi1+ expression. METHODS Transgenic mice with EGFP-labeled Lgr5 underwent euthanasia at 10 different time points from E15 to P56 (n = 8-11/group). Lgr5+-expressing ISCs were quantified by GFP ELISA and Bmi1+ was assessed by qPCR. In addition, Lgr5EGFP mice underwent experimental NEC via formula feeding and hypoxic and hypothermic stress. Additional portions of the intestine underwent immunostaining with anti-GFP or anti-Bmi1+ antibodies to confirm ELISA and PCR results. For statistical analysis, p < 0.05 was significant. RESULTS Lgr5+ and Bmi1+expression was lowest in embryonal and early postnatal mice and increased with age in all segments of the intestine. Experimental NEC was associated with loss of Lgr5+-expressing ISCs but no significant change in Bmi1+ expression. CONCLUSION Lgr5+ and Bmi1+ expression increase with age. Lgr5+-expressing ISCs are lower following experimental necrotizing enterocolitis while Bmi1+ expression remains relatively unchanged. Developing a targeted medical therapy to protect the low population of ISCs in preterm infants may promote tissue recovery and regeneration after injury from NEC.
Collapse
Affiliation(s)
- Brian D Hosfield
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - W Christopher Shelley
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fikir M Mesfin
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John P Brokaw
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Krishna Manohar
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianyun Liu
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hongge Li
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anthony R Pecoraro
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kanhaiya Singh
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Troy A Markel
- Department of Surgery, Section of Pediatric Surgery, Indiana University School of Medicine, Indianapolis, IN, USA. .,Riley Hospital for Children at Indiana University Health, 705 Riley Hospital Dr., RI 2500, Indianapolis, IN, USA.
| |
Collapse
|
31
|
Zheng L, Duan SL, Wen XL, Dai YC. Molecular regulation after mucosal injury and regeneration in ulcerative colitis. Front Mol Biosci 2022; 9:996057. [PMID: 36310594 PMCID: PMC9606627 DOI: 10.3389/fmolb.2022.996057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with a complex etiology. Intestinal mucosal injury is an important pathological change in individuals with UC. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5+) intestinal stem cells (ISCs) exhibit self-renewal and high differentiation potential and play important roles in the repair of intestinal mucosal injury. Moreover, LGR5+ ISCs are intricately regulated by both the Wnt/β-catenin and Notch signaling pathways, which jointly maintain the function of LGR5+ ISCs. Combination therapy targeting multiple signaling pathways and transplantation of LGR5+ ISCs may lead to the development of new clinical therapies for UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
32
|
Li Y, Chen J, Sun D, Liu J, Wang Z, Li A. Lactobacillus GG regulates the Wnt/β-catenin pathway to reinforce intestinal barrier function and alleviate necrotizing enterocolitis. J Funct Foods 2022; 97:105243. [DOI: 10.1016/j.jff.2022.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Di SJ, Wu SY, Liu TJ, Shi YY. Stem cell therapy as a promising strategy in necrotizing enterocolitis. Mol Med 2022; 28:107. [PMID: 36068527 PMCID: PMC9450300 DOI: 10.1186/s10020-022-00536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease that affects newborns, particularly preterm infants, and is associated with high morbidity and mortality. No effective therapeutic strategies to decrease the incidence and severity of NEC have been developed to date. Stem cell therapy has been explored and even applied in various diseases, including gastrointestinal disorders. Animal studies on stem cell therapy have made great progress, and the anti-inflammatory, anti-apoptotic, and intestinal barrier enhancing effects of stem cells may be protective against NEC clinically. In this review, we discuss the therapeutic mechanisms through which stem cells may function in the treatment of NEC.
Collapse
Affiliation(s)
- Si-Jia Di
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Si-Yuan Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Tian-Jing Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yong-Yan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
34
|
Caspi A, Entezari AA, Crutcher M, Snook AE, Waldman SA. Guanylyl cyclase C as a diagnostic and therapeutic target in colorectal cancer. Per Med 2022; 19:457-472. [PMID: 35920071 PMCID: PMC12076115 DOI: 10.2217/pme-2022-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
Colorectal cancer remains a major cause of mortality in the USA, despite advances in prevention and screening. Existing therapies focus primarily on generic treatment such as surgical intervention and chemotherapy, depending on disease severity. As personalized medicine and targeted molecular oncology continue to develop as promising treatment avenues, there has emerged a need for effective targets and biomarkers of colorectal cancer. The transmembrane receptor guanylyl cyclase C (GUCY2C) regulates intestinal homeostasis and has emerged as a tumor suppressor. Further, it is universally expressed in advanced metastatic colorectal tumors, as well as other cancer types that arise through intestinal metaplasia. In this context, GUCY2C satisfies many characteristics of a compelling target and biomarker for gastrointestinal malignancies.
Collapse
Affiliation(s)
- Adi Caspi
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ariana A Entezari
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Madison Crutcher
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Adam E Snook
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott A Waldman
- Department of Pharmacology, Physiology, & Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
35
|
Zhou JY, Zan GX, Zhu QJ, Gao CQ, Yan HC, Wang XQ. Recombinant Porcine R-Spondin 1 Facilitates Intestinal Stem Cell Expansion along the Crypt-Villus Axis through Potentiating Wnt/β-Catenin Signaling in Homeostasis and Deoxynivalenol Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10644-10653. [PMID: 35997221 DOI: 10.1021/acs.jafc.2c02013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
R-spondin 1 (RSPO1) is a ligand for the intestinal stem cell (ISC) marker Lgr5 in the crypt, which functions to amplify canonical Wnt signaling to stimulate the division of ISCs. Despite the crucial role of recombinant human RSPO1 (rhRSPO1) in homeostasis and regeneration, little is known about RSPO1 among different species. Here, we cloned the porcine RSPO1 (pRSPO1) gene and obtained rpRSPO1 protein through the expression system of the recombinant Escherichia coli Rosetta (DE3) chemical competent cells. Using the in vitro IPEC-J2 model that combines cell proliferation evaluation approaches, we identified the rpRSPO1 activity in stimulating jejunal epithelial cells. And upon deoxynivalenol challenge in mice, we found that rpRSPO1 ameliorated their growth retardation and jejunal epithelial integrity. Importantly, the ISCs in the jejunum had greater proliferation and differentiation potential that was accompanied by Wnt/β-catenin pathway activation after rpRSPO1 modulation. Subsequently, the jejunal organoids expanded from these ISCs ex vivo presented robust growth advantages. And the rpRSPO1 was able to guide Wnt/β-catenin activity to increase ISC activity. Our work systematically demonstrates that rpRSPO1 facilitates ISC expansion by potentiating Wnt/β-catenin signaling during homeostasis and responding to deoxynivalenol perturbations.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- HenryFok School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Geng-Xiu Zan
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qiu-Jie Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chun-Qi Gao
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hui-Chao Yan
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiu-Qi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
36
|
Zhang Y, Yin L, Zeng X, Li J, Yin Y, Wang Q, Li J, Yang H. Dietary High Dose of Iron Aggravates the Intestinal Injury but Promotes Intestinal Regeneration by Regulating Intestinal Stem Cells Activity in Adult Mice With Dextran Sodium Sulfate-Induced Colitis. Front Vet Sci 2022; 9:870303. [PMID: 35782573 PMCID: PMC9240710 DOI: 10.3389/fvets.2022.870303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/02/2022] [Indexed: 11/18/2022] Open
Abstract
The effects of excessive dietary iron intake on the body have been an important topic. The purpose of this study was to investigate the effects of high-dose iron on intestinal damage and regeneration in dextran sodium sulfate (DSS)-induced colitis model mice. A total of 72 8-week-old adult C57BL/6 mice were randomly divided into two dietary treatment groups: the basal diet supplemented with 45 (control) and 450 mg/kg iron (high-iron) from ferrous sulfate. The mice were fed different diets for 2 weeks, and then 2.5% DSS was orally administered to all mice for 7 days. Samples of different tissues were collected on days 0, 3, and 7 post administration (DPA). High-iron treatment significantly decreased the relative weight of the large intestine at 7 DPA but not at 0 DPA or 3 DPA. High dietary iron increased the jejunal villus width at 0 DPA, decreased the villus width and the crypt depth of the jejunum at 3 DPA, and decreased the number of colonic crypts at 7 DPA. Meanwhile, high dietary iron decreased the number of goblet cells in the jejunal villi and the Paneth cells in the jejunal crypts at 0 DPA, increased the number of goblet cells per crypt of the colon at 3 DPA, and the number of Paneth cells in the jejunal crypts, the goblet cells in the colon, the Ki67-positive proliferating cells in the colon, and the Sex-determining region Y-box transcription factor 9+ (SOX9) cells in the jejunum crypts and colon at 7 DPA. The organoid formation rate was increased by high-iron treatments at 3 DPA and 7 DPA. High dietary iron treatment decreased the mRNA level of jejunal jagged canonical Notch ligand 2 (Jag-2) at 0 DPA and bone morphogenetic protein 4 (Bmp4) and neural precursor cell-expressed developmentally downregulated 8 (Nedd8) in the jejunum and colon at 7 DPA, whereas it increased the mRNA expression of the serum/glucocorticoid-regulated kinase 1 (Sgk1) in the colon at 3 DPA. The results suggested that a high dose of iron aggravated intestinal injury but promoted intestinal repair by regulating intestinal epithelial cell renewal and intestinal stem cell activity in adult mice with colitis.
Collapse
Affiliation(s)
- Yitong Zhang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanmei Yin
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Lanmei Yin
| | - Xianglin Zeng
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jun Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, China
| | - Yuebang Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Qiye Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Jianzhong Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huansheng Yang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- State Key Laboratory of Food Safety Technology for Meat Products, Yinxiang Group, Fujian Aonong BiologicaI Science and Technology Group Co., Ltd., Key Laboratory of Swine Nutrition and Feed Science of Fujian Province, Aonong Group, Zhangzhou, China
- Huansheng Yang
| |
Collapse
|
37
|
Xu Y, Yang J, Chen X, Deng J, Gong H, Li F, Ouyang M. MicroRNA-182-5p aggravates ulcerative colitis by inactivating the Wnt/β-catenin signaling pathway through DNMT3A-mediated SMARCA5 methylation. Genomics 2022; 114:110360. [PMID: 35378241 DOI: 10.1016/j.ygeno.2022.110360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 03/16/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023]
Abstract
This research focused on novel molecular mechanisms underlying microRNA (miR)-182-5p in ulcerative colitis (UC). Colon tissues were obtained from UC patients, and dextrose sodium sulfate (DSS)-induced mouse and interleukin-1β (IL-1β)-induced Caco-2 cell models were generated. Then, miR-182-5p, SMARCA5, and the Wnt/β-catenin signaling pathway were altered in IL-1β-stimulated Caco-2 cells and DSS-treated mice to assess their function. MiR-182-5p and SMARCA5 were upregulated and DNMT3A, β-catenin, and Cyclin D1 were downregulated in UC patients, IL-1β-stimulated Caco-2 cells, and DSS-treated mice. Mechanistically, miR-182-5p targeted DNMT3A to upregulate SMARCA5, thus blocking the Wnt/β-catenin signaling pathway. Moreover, SMARCA5 silencing or Wnt/β-catenin signaling pathway activation repressed apoptosis and augmented proliferation and epithelial barrier function of IL-1β-stimulated Caco-2 cells. SMARCA5 silencing annulled the impacts of miR-182-5p overexpression on IL-1β-stimulated Caco-2 cells. SMARCA5 silencing or miR-182-5p inhibition ameliorated intestinal barrier dysfunction in DSS-treated mice. Collectively, miR-182-5p aggravates UC by inactivating the Wnt/β-catenin signaling pathway through DNMT3A-mediated SMARCA5 methylation.
Collapse
Affiliation(s)
- Yan Xu
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Junwen Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xiaoli Chen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Jiawen Deng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Hui Gong
- Department of Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Fujun Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| | - Miao Ouyang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.
| |
Collapse
|
38
|
Feng Z, Jia C, Lin X, Hao H, Li S, Li F, Cui Q, Chen Y, Wu F, Xiao X. The inhibition of enterocyte proliferation by lithocholic acid exacerbates necrotizing enterocolitis through downregulating the Wnt/β-catenin signalling pathway. Cell Prolif 2022; 55:e13228. [PMID: 35441471 PMCID: PMC9136529 DOI: 10.1111/cpr.13228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Objectives Necrotizing enterocolitis (NEC) is a catastrophic gastrointestinal emergency in preterm infants, whose exact aetiology remains unknown. The role of lithocholic acid (LCA), a key component of secondary bile acids (BAs), in NEC is unclear. Methods Clinical data were collected to analyse the changes of BAs in NEC patients. In vitro studies, the cell proliferation and cell death were assessed. In vivo experiments, the newborn rats were administered with low or high dose of LCA and further induced NEC. Results Clinically, compared with control group, total BAs in the NEC patients were significantly higher when NEC occurred. In vitro, LCA treatment significantly inhibited the cell proliferation through arresting cell cycle at G1/S phase without inducing apoptosis or necroptosis. Mechanistically, the Wnt/β‐catenin pathway was involved. In vivo, LCA inhibited intestinal cell proliferation leading to disruption of intestinal barrier, and thereby increased the severity of NEC. Specifically, LCA supplementation caused higher levels of FITC‐labelled dextran in serum, reduced PCNA expression and inhibited the activity of Wnt/β‐catenin pathway in enterocytes. The LC–MS/MS test found that LCA was significantly higher in intestinal tissue of NEC group, and more obviously in the NEC‐L and NEC‐H group compared with the DM group. Conclusion LCA exacerbates NEC by inhibiting intestinal cell proliferation through downregulating the Wnt/β‐catenin pathway.
Collapse
Affiliation(s)
- Zhoushan Feng
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China.,Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Xiaojun Lin
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hu Hao
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China
| | - Fei Li
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China
| | - Qiliang Cui
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yaoyong Chen
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Xin Xiao
- Department of Pediatrics, Sun Yat-sen University Sixth Affiliated Hospital, Guangzhou, China
| |
Collapse
|
39
|
Zhong C, Tong DQ, Zhang YR, Wang XQ, Yan HC, Tan HZ, Gao CQ. DL-methionine and DL-methionyl- DL-methionine increase intestinal development and activate Wnt/β-catenin signaling activity in domestic pigeons (Columba livia). Poult Sci 2022; 101:101644. [PMID: 34986451 PMCID: PMC8743218 DOI: 10.1016/j.psj.2021.101644] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/25/2022] Open
Abstract
This experiment was undertaken to investigate the effects of parental dietary DL-methionine (DL-Met) and DL-methionyl-DL-methionine (DL-Met-Met) supplementation on the intestinal development of young squabs. A total of 108 pairs of breeding pigeons and 432 one-day-old squabs were randomly divided into 3 groups: the control group (CON) was fed a basal diet (CP = 15%) and the experimental groups were fed a basal diet supplemented with 0.3% DL-Met or DL-Met-Met. Each pair of breeding pigeons nourished 4 young squabs, and 8 squabs from each treatment were randomly sampled at the end of the experiment. The results indicated that DL-Met and DL-Met-Met supplementation improved the intestinal morphology and structure in the squabs, as reflected by the increased relative intestinal weight of each small intestinal segment, villus height, and villus to crypt ratio. In addition, DL-Met and DL-Met-Met supplementation significantly increased the protein expression of cell proliferation markers (Ki67 and PCNA) and tight junction proteins (ZO-1 and Claudin-1) in the jejunum and strengthened the fluorescence signal intensity of Ki67, PCNA and Villin. Moreover, the expression of Wnt/β-catenin signaling pathway-related proteins (Frizzled 7 [FZD7], p-GSK-3β, Active β-catenin, β-catenin, TCF4, c-Myc, and Cyclin D1), and intestinal peptide transporter 1 (PepT1) in the jejunum was considerably higher in the treatment group than in the CON group (P < 0.05), with the DL-Met-Met group having the highest expression. Consistently, the molecular docking results predicted the possibility that DL-Met or DL-Met-Met binds to the membrane receptor FZD7, which mediates Wnt/β-catenin signaling. Collectively, the improvement of the intestinal development in squabs after parental dietary 0.3% DL-Met and DL-Met-Met supplementation could be through activation of Wnt/β-catenin signaling pathway, and DL-Met-Met is superior to DL-Met. Our findings may provide basic data for further optimizing the feeding formula of breeding pigeons and improving the growth and development of squabs.
Collapse
Affiliation(s)
- Chen Zhong
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Di-Qing Tong
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Ya-Ru Zhang
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China
| | - Hui-Ze Tan
- Wen's Foodstuffs Group Co., Ltd., Yunfu, Guangdong, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
40
|
Costa A, Quarto R, Bollini S. Small Extracellular Vesicles from Human Amniotic Fluid Samples as Promising Theranostics. Int J Mol Sci 2022; 23:ijms23020590. [PMID: 35054775 PMCID: PMC8775841 DOI: 10.3390/ijms23020590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Since the first evidence that stem cells can provide pro-resolving effects via paracrine secretion of soluble factors, growing interest has been addressed to define the most ideal cell source for clinical translation. Leftover or clinical waste samples of human amniotic fluid obtained following prenatal screening, clinical intervention, or during scheduled caesarean section (C-section) delivery at term have been recently considered an appealing source of mesenchymal progenitors with peculiar regenerative capacity. Human amniotic fluid stem cells (hAFSC) have been demonstrated to support tissue recovery in several preclinical models of disease by exerting paracrine proliferative, anti-inflammatory and regenerative influence. Small extracellular vesicles (EVs) concentrated from the hAFSC secretome (the total soluble trophic factors secreted in the cell-conditioned medium, hAFSC-CM) recapitulate most of the beneficial cell effects. Independent studies in preclinical models of either adult disorders or severe diseases in newborns have suggested a regenerative role of hAFSC-EVs. EVs can be eventually concentrated from amniotic fluid (hAF) to offer useful prenatal information, as recently suggested. In this review, we focus on the most significant aspects of EVs obtained from either hAFSC and hAF and consider the current challenges for their clinical translation, including isolation, characterization and quantification methods.
Collapse
Affiliation(s)
- Ambra Costa
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
| | - Rodolfo Quarto
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Cellular Oncology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Sveva Bollini
- Experimental Biology Unit, Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy; (A.C.); (R.Q.)
- Correspondence: ; Tel.: +39-010-555-8394
| |
Collapse
|
41
|
Amniotic fluid stem cell administration can prevent epithelial injury from necrotizing enterocolitis. Pediatr Res 2022; 91:101-106. [PMID: 34561550 DOI: 10.1038/s41390-021-01657-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/11/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Stem cell therapy has been proven to rescue intestinal injury and stimulate intestinal regeneration in necrotizing enterocolitis (NEC). Specifically, stem cells derived from amniotic fluid (AFSCs) and mesenchymal stem cells (MSCs) derived from bone marrow have shown promising results in the treatment of experimental NEC. This study aims to examine the effects of AFSCs and MSCs on the prevention of intestinal injury during experimental NEC. METHODS Supernatants from AFSC and MSC cultures were collected to perform proteomic analysis. Prior to NEC induction, mice received intraperitoneal injections of phosphate-buffered saline (PBS), 2 × 106 AFSCs, or 2 × 106 MSCs. RESULTS We found that AFSCs grew faster than MSCs. Proteomic analysis indicated that AFSCs are primarily involved in cell development and growth, while MSCs are involved in immune regulation. Administering AFSCs before NEC induction decreased NEC severity and mucosal inflammation. Intestinal proliferation and endogenous stem cell activation were increased after AFSC administration. However, administering MSCs before NEC induction had no beneficial effects. CONCLUSIONS This study demonstrated that AFSCs and MSCs have different protein release profiles. AFSCs can potentially be used as a preventative strategy for neonates at risk of NEC, while MSCs cannot be used. IMPACT AFSCs and MSCs have distinct protein secretory profiles, and AFSCs are primarily involved in cell development and growth, while MSCs are involved in immune regulation. AFSCs are unique in transiently enhancing healthy intestinal epithelial cell growth, which offers protection against the development of experimental NEC. The prevention of NEC via the administration of AFSCs should be evaluated in infants at great risk of developing NEC or in infants with early signs of NEC.
Collapse
|
42
|
Tian Y, Mao M, Cao X, Zhu H, Shen C. Identification and Validation of Autophagy-Related Genes in Necrotizing Enterocolitis. Front Pediatr 2022; 10:839110. [PMID: 35573972 PMCID: PMC9096030 DOI: 10.3389/fped.2022.839110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Autophagy plays an essential role in the occurrence and progression of necrotizing enterocolitis (NEC). We intend to carry out the identification and validation of the probable autophagy-related genes of NEC via bioinformatics methods and experiment trials. METHODS The autophagy-related differentially expressed genes (arDEGs) of NEC were identified by analyzing the RNA sequencing data of the experiment neonatal mouse model and dataset GSE46619. Protein-protein interactions (PPIs), Gene Ontology (GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used for the arDEGs. Then, co-expressed autophagy-related genes in two datasets were identified by Venn analysis and verified by qRT-PCR in experimental NEC. RESULTS Autophagy increased in experimental NEC and 47 arDEGs were identified in experimental NEC by RNA-sequencing. The PPI results proclaimed those genes interplayed with each other. The GO and KEGG enrichment results of arDEGs reported certain enriched pathways related to autophagy and macroautophagy. Furthermore, 22 arDEGs were identified in human NEC from dataset GSE46619. The GO and KEGG enrichment analysis of these genes showed similar enriched terms with the results of experimental NEC. Finally, HIF-1a, VEGFA, ITGA3, ITGA6, ITGB4, and NAMPT were identified as co-expressed autophagy-related genes by Venn analysis in human NEC from dataset GSE46619 and experimental NEC. The result of quantified real-time PCR (qRT-PCR) revealed that the expression levels of HIF-1a and ITGA3 were upregulated, while VEGFA and ITGB4 were downregulated in experimental NEC. CONCLUSION We identified 47 arDEGs in experimental NEC and 22 arDEGs in human NEC via bioinformatics analysis. HIF-1a, ITGA3, VEGFA, and ITGB4 may have effects on the progression of NEC through modulating autophagy.
Collapse
Affiliation(s)
- Yuxin Tian
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Mengjia Mao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xuqing Cao
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Haitao Zhu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chun Shen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
43
|
Matsumoto Y, Koga H, Takahashi M, Suda K, Ochi T, Seo S, Miyano G, Miyake Y, Nakajima H, Yoshida S, Mikami T, Okazaki T, Hattori N, Yamataka A, Nakamura T. Defined serum-free culture of human infant small intestinal organoids with predetermined doses of Wnt3a and R-spondin1 from surgical specimens. Pediatr Surg Int 2021; 37:1543-1554. [PMID: 34216241 DOI: 10.1007/s00383-021-04957-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE Refinement of organoid technology is important for studying physiology and disease of the intestine. We aimed to optimize defined serum-free conditions for human infant small intestinal (SI) organoid culture with predetermined doses of Wnt3a and Rspo1 from surgical specimens. We further assessed whether intestinal specimens could be stored before use as a source of organoids. METHODS Different doses of Wnt3a and Rspo1 in a serum-free medium were tested to establish a condition in which surgically resected SI cells grew as organoids over multiple passages. The expression of marker genes for stem and differentiated cells was assessed by quantitative polymerase chain reaction. We also investigated the organoid-forming efficiency of cells in degenerating intestines stored at 4 °C for various intervals post-resection. RESULTS We determined the doses of Wnt3a and Rspo1 required for the continuous growth of infant SI organoids with multi-differentiation potential. We revealed that, despite the time-dependent loss of stem cells, tissues stored for up to 2 days preserved cells capable of generating amplifiable organoids. CONCLUSION SI cells can be grown as organoids under defined conditions. This could provide a reproducible and customizable method of using surgical specimens for the study of intestinal maturation and their relevance to pediatric diseases.
Collapse
Affiliation(s)
- Yuka Matsumoto
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroyuki Koga
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Mirei Takahashi
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kazuto Suda
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takanori Ochi
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shogo Seo
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Go Miyano
- Department of Pediatric Surgery, Juntendo Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi, Chiba, 279-0021, Japan
| | - Yuichiro Miyake
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hideaki Nakajima
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shiho Yoshida
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takafumi Mikami
- Department of Pediatric Surgery, Juntendo Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi, Chiba, 279-0021, Japan
| | - Tadaharu Okazaki
- Department of Pediatric Surgery, Juntendo Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi, Chiba, 279-0021, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Atsuyuki Yamataka
- Department of Pediatric General and Urogenital Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tetsuya Nakamura
- Department of Research and Development for Organoids, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
44
|
Lau E, Lee C, Li B, Pierro A. Endoplasmic reticulum stress in the acute intestinal epithelial injury of necrotizing enterocolitis. Pediatr Surg Int 2021; 37:1151-1160. [PMID: 34117913 DOI: 10.1007/s00383-021-04929-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 03/07/2023]
Abstract
Endoplasmic reticulum (ER) is a dynamic organelle that has many functions including protein synthesis, lipid synthesis, and calcium metabolism. Any perturbation in the ER such as accumulation of unfolded or misfolded proteins in the ER lumen causes ER stress. ER stress has been implicated in many intestinal inflammatory diseases. However, the role of ER stress in acute intestinal epithelial injuries such as necrotizing enterocolitis in preterm neonates, remains incompletely understood. In this review, we introduce ER structure, functions and summarize the intracellular signaling pathways involved in unfolded protein response (UPR), a survival mechanism in which cells exert an adaptive function to restore homeostasis in the ER. However, intense and prolonged ER stress induces apoptotic response which results in apoptotic cell death. We also discuss and highlight recent advances that have improved our understanding of the molecular mechanisms that regulate the ER stress in acute intestinal epithelial injuries such as necrotizing enterocolitis (NEC). We focus on the role of ER stress in influencing gut homeostasis in the neonatal period and on the potential therapeutic interventions to alleviate ER stress-induced cell death in NEC.
Collapse
Affiliation(s)
- Ethan Lau
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Carol Lee
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Bo Li
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Agostino Pierro
- Division of General and Thoracic Surgery, The Hospital for Sick Children, University of Toronto, 1526-555 University Ave, Toronto, ON, M5G 1X8, Canada.
| |
Collapse
|
45
|
de Jong JCW, Ijssennagger N, van Mil SWC. Breast milk nutrients driving intestinal epithelial layer maturation via Wnt and Notch signaling: Implications for necrotizing enterocolitis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166229. [PMID: 34329708 DOI: 10.1016/j.bbadis.2021.166229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/15/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022]
Abstract
Necrotizing enterocolitis (NEC) is an often lethal, inflammatory disease of the preterm intestine. The underdeveloped immune system plays an important role; however, the initial trigger for NEC development is likely a damaged intestinal epithelial layer. We hypothesize that due to incomplete maturation of different epithelial cell lineages, nutrients and bacteria are able to damage the epithelial cells and cause the (immature) inflammatory response, food intolerance and malabsorption seen in NEC. Intestinal organoid research has shown that maturation of intestinal epithelial cell lineages is orchestrated by two key signaling pathways: Wnt and Notch. In NEC, these pathways are dysregulated by hyperactivation of Toll-like-receptor-4. Breastfeeding decreases the risk of developing NEC compared to formula milk. Here, we review the intricate link between breast milk components, Wnt and Notch signaling and intestinal epithelial maturation. We argue that (nutritional) interventions regulating these pathways may decrease the risk of NEC development in preterm infants.
Collapse
Affiliation(s)
- Judith C W de Jong
- Center for Molecular Medicine, UMC Utrecht, 3508 AB, Utrecht, the Netherlands
| | | | - Saskia W C van Mil
- Center for Molecular Medicine, UMC Utrecht, 3508 AB, Utrecht, the Netherlands.
| |
Collapse
|
46
|
Farder-Gomes CF, Fernandes KM, Bernardes RC, Bastos DSS, Martins GF, Serrão JE. Acute exposure to fipronil induces oxidative stress, apoptosis and impairs epithelial homeostasis in the midgut of the stingless bee Partamona helleri Friese (Hymenoptera: Apidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145679. [PMID: 33611004 DOI: 10.1016/j.scitotenv.2021.145679] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Partamona helleri is an important pollinator in natural and agricultural ecosystems in the neotropics. However, the foraging activity of this bee increases its risk of exposure to pesticides, which may affect both the individuals and the colony. Thus, this study aims to evaluate the side effects of LC50 of fipronil (0.28 ng a.i. μL-1) on the midgut morphology, antioxidant activity and some pathways of cell death, proliferation and differentiation in workers of P. helleri, after 24 h of oral exposure. Fipronil caused morphological alterations in the midgut of the bees. The activities of the detoxification enzymes superoxide dismutase, catalase and glutathione S-transferase increased after exposure, which suggests the occurrence of a detoxification mechanism. Furthermore, exposure to fipronil changed the number of positive cells for signaling-pathway proteins in the midgut of bees, which indicates the induction of cell death by the apoptotic pathway and impairment of the midgut epithelial regeneration. These results demonstrate that fipronil may negatively affect the morphology and physiology of the midgut of the stingless bee P. helleri and impose a threat to the survival of non-target organisms.
Collapse
Affiliation(s)
| | - Kenner Morais Fernandes
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Daniel Silva Sena Bastos
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Gustavo Ferreira Martins
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| |
Collapse
|
47
|
miR-802 regulates Paneth cell function and enterocyte differentiation in the mouse small intestine. Nat Commun 2021; 12:3339. [PMID: 34099655 PMCID: PMC8184787 DOI: 10.1038/s41467-021-23298-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/20/2021] [Indexed: 02/05/2023] Open
Abstract
The intestinal epithelium is a complex structure that integrates digestive, immunological, neuroendocrine, and regenerative functions. Epithelial homeostasis is maintained by a coordinated cross-talk of different epithelial cell types. Loss of integrity of the intestinal epithelium plays a key role in inflammatory diseases and gastrointestinal infection. Here we show that the intestine-enriched miR-802 is a central regulator of intestinal epithelial cell proliferation, Paneth cell function, and enterocyte differentiation. Genetic ablation of mir-802 in the small intestine of mice leads to decreased glucose uptake, impaired enterocyte differentiation, increased Paneth cell function and intestinal epithelial proliferation. These effects are mediated in part through derepression of the miR-802 target Tmed9, a modulator of Wnt and lysozyme/defensin secretion in Paneth cells, and the downstream Wnt signaling components Fzd5 and Tcf4. Mutant Tmed9 mice harboring mutations in miR-802 binding sites partially recapitulate the augmented Paneth cell function of mice lacking miR-802. Our study demonstrates a broad miR-802 network that is important for the integration of signaling pathways of different cell types controlling epithelial homeostasis in the small intestine.
Collapse
|
48
|
Zeng R, Wang J, Zhuo Z, Luo Y, Sha W, Chen H. Stem cells and exosomes: promising candidates for necrotizing enterocolitis therapy. Stem Cell Res Ther 2021; 12:323. [PMID: 34090496 PMCID: PMC8180168 DOI: 10.1186/s13287-021-02389-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease predominately affecting neonates. Despite therapeutic advances, NEC remains the leading cause of mortality due to gastrointestinal conditions in neonates. Stem cells have been exploited in various diseases, and the application of different types of stem cells in the NEC therapy is explored in the past decade. However, stem cell transplantation possesses several deficiencies, and exosomes are considered potent alternatives. Exosomes, especially those derived from stem cells and breast milk, demonstrate beneficial effects for NEC both in vivo and in vitro and emerge as promising options for clinical practice. In this review, the function and therapeutic effects of stem cells and exosomes for NEC are investigated and summarized, which provide insights for the development and application of novel therapeutic strategies in pediatric diseases. Further elucidation of mechanisms, improvement in preparation, bioengineering, and administration, as well as rigorous clinical trials are warranted.
Collapse
Affiliation(s)
- Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Shantou University Medical College, Shantou, 515041, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
49
|
Good M, Chu T, Shaw P, Nolan LS, McClain L, Chamberlain A, Castro C, Gong Q, Cooksey K, Linneman L, DeWitt ON, Finegold DN, Peters DG. Neonatal necrotizing enterocolitis-associated DNA methylation signatures in the colon are evident in stool samples of affected individuals. Epigenomics 2021; 13:829-844. [PMID: 33905263 PMCID: PMC8293031 DOI: 10.2217/epi-2021-0078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 01/16/2023] Open
Abstract
Aim: Neonatal necrotizing enterocolitis (NEC) is a deadly and unpredictable gastrointestinal disease, for which no biomarker exists. We aimed to describe the methylation patterns in stool and colon from infants with NEC. Methods: We performed a high-resolution genome-wide epigenomic analysis using solution-phase hybridization and next-generation sequencing of bisulfite-converted DNA. Results: Our data reveal significant genomic hypermethylation in NEC tissues compared with non-NEC controls. These changes were more pronounced in regions outside CpG islands and gene regulatory elements, suggesting that NEC-specific hypermethylation is not a nonspecific global phenomenon. Conclusions: This study provides evidence of a methylomic signature associated with NEC that is detectable noninvasively and provides a new opportunity for the development of a novel diagnostic method for NEC.
Collapse
Affiliation(s)
- Misty Good
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tianjiao Chu
- Departments of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patricia Shaw
- Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lila S Nolan
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lora McClain
- Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Austin Chamberlain
- Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Carlos Castro
- Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Qingqing Gong
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Krista Cooksey
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Linneman
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olivia N DeWitt
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David N Finegold
- Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David G Peters
- Departments of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
50
|
Nolan LS, Mihi B, Agrawal P, Gong Q, Rimer JM, Bidani SS, Gale SE, Goree M, Hu E, Lanik WE, Huang E, Bando JK, Liu V, Lewis AN, Bustos A, Hodzic Z, Laury ML, Good M. Indole-3-Carbinol-Dependent Aryl Hydrocarbon Receptor Signaling Attenuates the Inflammatory Response in Experimental Necrotizing Enterocolitis. Immunohorizons 2021; 5:193-209. [PMID: 33906960 PMCID: PMC8173979 DOI: 10.4049/immunohorizons.2100018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/01/2021] [Indexed: 01/10/2023] Open
Abstract
Necrotizing enterocolitis (NEC) causes significant morbidity and mortality in premature infants; therefore, the identification of therapeutic and preventative strategies against NEC remains a high priority. The ligand-dependent transcription factor aryl hydrocarbon receptor (AhR) is well known to contribute to the regulation of intestinal microbial communities and amelioration of intestinal inflammation. However, the role of AhR signaling in NEC is unclear. Experimental NEC was induced in 4-d-old wild-type mice or mice lacking AhR expression in the intestinal epithelial cells or AhR expression in CD11c+ cells (AhRΔCD11c) by subjecting animals to twice daily hypoxic stress and gavage feeding with formula supplemented with LPS and enteric bacteria. During NEC, compared with wild-type mice treated with vehicle, littermates treated with an AhR proligand, indole-3-carbinol, had reduced expression of Il1b and Marco, a scavenger receptor that mediates dendritic cell activation and the recognition and clearance of bacterial pathogens by macrophages. Furthermore, indole-3-carbinol treatment led to the downregulation of genes involved in cytokine and chemokine, as revealed by pathway enrichment analysis. AhR expression in the intestinal epithelial cells and their cre-negative mouse littermates were similarly susceptible to experimental NEC, whereas AhRΔCD11c mice with NEC exhibited heightened inflammatory responses compared with their cre-negative mouse littermates. In seeking to determine the mechanisms involved in this increased inflammatory response, we identified the Tim-4- monocyte-dependent subset of macrophages as increased in AhRΔCD11c mice compared with their cre-negative littermates. Taken together, these findings demonstrate the potential for AhR ligands as a novel immunotherapeutic approach to the management of this devastating disease.
Collapse
Affiliation(s)
- Lila S Nolan
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Belgacem Mihi
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Qingqing Gong
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jamie M Rimer
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Shay S Bidani
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Sarah E Gale
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Martin Goree
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Elise Hu
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Wyatt E Lanik
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Elizabeth Huang
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jennifer K Bando
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Victoria Liu
- Washington University in St. Louis, St. Louis, MO
| | - Angela N Lewis
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO
| | - Aiza Bustos
- Washington University in St. Louis, St. Louis, MO
| | - Zerina Hodzic
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA; and
| | - Marie L Laury
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Misty Good
- Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO;
| |
Collapse
|