1
|
Yonis N, Mousa A, Yousef MH, Ghouneimy AM, Dabbish AM, Abdelzaher H, Hussein MA, Ezzeldin S, Adel AA, Mahmoud YH, El-Khazragy N, Abdelnaser A. Cracking the code: lncRNA-miRNA-mRNA integrated network analysis unveiling lncRNAs as promising non-invasive NAFLD biomarkers toward precision diagnosis. Comput Biol Chem 2025; 115:108325. [PMID: 39832417 DOI: 10.1016/j.compbiolchem.2024.108325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) involves abnormal fat accumulation in the liver, mainly as triglycerides. It ranges from steatosis to non-alcoholic steatohepatitis (NASH), which can lead to inflammation, cellular damage, liver fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are crucial for regulating gene expression across various conditions. LncRNAs are emerging as potential putative diagnostic markers for NAFLD-associated HCC. METHODS We used two human and two mouse datasets from the Gene Expression Omnibus to analyze the expression profiles of mRNAs and lncRNAs. We created a network linking lncRNAs, miRNAs, and mRNAs to investigate the relationships among these RNA types. Additionally, we identified NAFLD-related lncRNAs from existing literature. We then quantified the expression levels of four specific lncRNAs, including PVT1, DUBR, SNHG17, and SNHG14, in the serum of 92 Egyptian participants using qPCR. Finally, we performed a Receiver Operating Characteristic analysis to evaluate the diagnostic potential of the candidate lncRNAs. RESULTS Our data suggests that maternally expressed gene 3 (MEG3), H19, and DPPA2 Upstream Binding RNA (DUBR) were significantly upregulated, and plasmacytoma variant translocation 1 (PVT1) was markedly downregulated. PVT1 showed the highest diagnostic accuracy for both NAFLD and NASH. The combined panels of PVT1 +H19 for NAFLD and PVT1 +H19 +DUBR for NASH demonstrated high diagnostic potential. Uniquely, PVT1 can distinguish between NAFLD and NASH. PVT1 exhibited strong diagnostic potential for NAFLD and NASH, individually and in combination with other lncRNAs. CONCLUSION Our study identifies four lncRNAs as putative biomarkers with high specificity and accuracy, individually or combined, for differentiating between NAFLD and NASH. Healthy volunteers with PVT1 possess the highest diagnostic accuracy and significantly discriminate between NAFLD and NASH.
Collapse
Affiliation(s)
- Nouran Yonis
- Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Mousa
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed H Yousef
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed M Ghouneimy
- Department of Biology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Areeg M Dabbish
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Hana Abdelzaher
- Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shahd Ezzeldin
- Basic Research Department, Proteomics and Metabolomics Research Program, Children's Cancer Hospital 57357 (CCHE-57357), Cairo, Egypt
| | - Abdelmoneim A Adel
- Hematology and Gastroenterology Department, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Egypt
| | - Yosra H Mahmoud
- Hematology and Gastroenterology Department, National Hepatology and Tropical Medicine Research Institute (NHTMRI), Egypt
| | - Nashwa El-Khazragy
- Clinical Pathology and Hematology Department, Faculty of Medicine, Ain Shams University Biomedical Research Department, Cairo 11381, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology (IGHHE), School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
2
|
Liang S, Ren M, Chen Y, Song Z, Yang Y, Zhang H. Noninvasive Detection of Macrophages in Atherosclerotic Lesions Using a Visipaque-Based Nanoparticle Contrast Agent for Computed Tomography. ACS OMEGA 2025; 10:10979-10986. [PMID: 40160795 PMCID: PMC11948145 DOI: 10.1021/acsomega.4c09170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
This study aimed to evaluate iodinated nanoparticles based on Visipaque for the detection of macrophages in atherosclerotic plaques using computed tomography (CT). The nanoparticles were developed using Visipaque and hydrophobic groups to enhance the macrophages in atherosclerotic lesions. The nanoparticles were measured using NanoSight, and their cellular toxicity was evaluated using the cell counting kit-8 assay. RAW264.7 macrophages were used to detect the cellular uptake of the nanoparticles. Aortic atherosclerotic plaques were induced in New Zealand rabbits (n = 6) by combining a high-cholesterol diet and aortic injury. The noninjured rabbits (n = 4) were fed a normal chow diet and used as controls. CT scans before and 2 h after Visipaque injection, followed by nanoparticle imaging 1 h later. Macrophages were counted using immunohistology with an anti-CD68 monoclonal antibody. The diameter of the nanoparticle agent was approximately 150 mM, and 90% varied broadly between 69 and 248 nm. In vitro experiments demonstrated that the nanoparticles had low cellular toxicity and were effectively endocytosed by macrophages in a time- and dose-dependent manner. In vivo, CT imaging demonstrated that the nanoparticle density was higher in the aortic wall plaques in atherosclerotic rabbits than in control rabbits. The histologic staining confirmed successful atherosclerosis modeling in rabbits and abundant macrophage infiltration in the aortic wall, preferentially taking up the nanoparticles. In conclusion, this study suggests that the novel nanoparticles could be a promising, effective contrast agent for the detection of macrophages in atherosclerotic plaques using CT.
Collapse
Affiliation(s)
- Shuo Liang
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300022, China
| | - Min Ren
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300022, China
| | - Yanhong Chen
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300022, China
| | - Zhenchun Song
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300022, China
| | - Yapeng Yang
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300022, China
| | - Hong Zhang
- Department of Radiology, Tianjin Chest Hospital, Tianjin 300022, China
| |
Collapse
|
3
|
Chen X, Ding W, Liu Y, Liu H, Zhang C, Huang L. Innovative approaches in atherosclerosis treatment: Harnessing traditional Chinese medicine to target long non-coding RNAs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156488. [PMID: 39938175 DOI: 10.1016/j.phymed.2025.156488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Atherosclerosis (AS) is a major contributor to cardiovascular diseases, characterized by high morbidity and mortality rates. Long non-coding RNAs (LncRNAs), as members of non-protein coding RNAs, play a crucial role in various biological processes that maintain homeostasis and influence disease progression. Research indicates that lncRNAs are involved in the pathogenesis of AS. PURPOSE In this study, we aim to explore the role of lncRNAs in the pathogenesis of AS and the latest progress in the prevention and treatment of AS by targeted regulation of lncRNAs by traditional Chinese medicine (TCM), in order to provide more new beneficial targets for the treatment of AS and expand the application of TCM in the treatment of cardiovascular diseases. METHOD The literature was retrieved, analyzed, and collected using PubMed, Web of Science, Sci-Hub, CNKI, Elsevier, ScienceDirect, SpringerLink, and Google Scholar. Search terms include "atherosclerosis", "traditional Chinese medicine", "natural products", "active ingredient", "lncRNAs", "herbal medicine", "cardiovascular diseases", "pharmacology", "toxicology", "clinical trials", etc., and several combinations of these keywords. RESULTS This study examines the primary mechanisms through which lncRNAs induce AS, such as dysfunction in endothelial cells, abnormal proliferation of vascular smooth muscle cells, cholesterol buildup in macrophages, formation of foam cells, inflammatory responses, and imbalances in lipid metabolism. Additionally, it summarizes 16 herbal monomers and 6 Chinese herbal compounds, along with an analysis of the toxicological aspects of TCM. CONCLUSION The study explores the existing approaches for modulating lncRNAs and emphasizes the significance and potential of herbal monomers, extracts, and formulations in this context.
Collapse
Affiliation(s)
- Xiaofang Chen
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Wenyan Ding
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yifan Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Hao Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
4
|
Ye Y, Wang Z. Effects of LncRNA MYOSLID and MiR-29c-3p on the Proliferation and Migration of Angiotensin II-induced Vascular Smooth Muscle Cells. Int Heart J 2025; 66:164-174. [PMID: 39828340 DOI: 10.1536/ihj.24-150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Atherosclerosis (ATH) represents a major cause of cardiovascular disease. Long noncoding RNA (LncRNA) myocardin-induced smooth muscle lncRNA, inducer of differentiation (MYOSLID) and microRNA (miR) -29c-3p show substantial roles in ATH. We investigated their regulatory mechanisms on vascular smooth muscle cell (VSMC) proliferation and migration.Angiotensin (Ang) II-induced VSMCs were used for in vitro research. The MYOSLID and miR-29c-3p expression patterns in VSMCs were assessed by reverse transcription-quantitative polymerase chain reaction. MYOSLID was overexpressed, or miR-29c-3p was silenced in VSMCs by cell transfection, followed by proliferation, migration, and apoptosis evaluation. The colocalization of MYOSLID and miR-29c-3p was observed by RNA in situ hybridization. The targeted binding relationship of miR-29c-3p and MYOSLID was verified by dual-luciferase and RNA immunoprecipitation assays. Joint experiments were performed with the overexpressed MYOSLID and miR-29c-3p via cotransfection. An ATH mouse model was established and injected with LV-MYOSLID, with the aortic root atherosclerotic lesion observed by HE staining and the α-SMA expression determined by immunohistochemistry.The MYOSLID expression was decreased, while the miR-29c-3p expression was increased in the Ang II-induced VSMCs, along with the promoted VSMC proliferation, apoptosis, and migration. Meanwhile, the MYOSLID overexpression or miR-29c-3p silencing repressed the Ang II-induced VSMC behaviors. The miR-29c-3p mimics reduced the luciferase activity of the MYOSLID 3'UTR-WT-transfected cells, but had no obvious influence on the MYOSLID 3'UTR-MUT-transfected cells. Overexpressed miR-29c-3p partially nullified the highly expressed MYOSLID-repressed Ang II-induced VSMC apoptosis, proliferation, and migration. The MYOSLID overexpression repressed the miR-29c-3p expression and reduced the atherosclerotic lesion area and the number of α-SMA-positive VSMCs in ATH mice.The MYOSLID overexpression restrained the Ang II-induced VSMC proliferation, migration, and apoptosis by repressing the miR-29c-3p expression, thus retarding the atherosclerotic plaque formation.
Collapse
MESH Headings
- MicroRNAs/metabolism
- MicroRNAs/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Angiotensin II/pharmacology
- Cell Proliferation
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice
- Cell Movement
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Apoptosis
- Disease Models, Animal
- Cells, Cultured
- Myocytes, Smooth Muscle/metabolism
- Male
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Yumin Ye
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University
| | - Zhenhua Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University
| |
Collapse
|
5
|
Dill-McFarland KA, Simmons JD, Peterson GJ, Nguyen FK, Campo M, Benchek P, Stein CM, Vaisar T, Mayanja-Kizza H, Boom WH, Hawn TR. Epigenetic programming of host lipid metabolism associated with resistance to TST/IGRA conversion after exposure to Mycobacterium tuberculosis. mSystems 2024; 9:e0062824. [PMID: 39162406 PMCID: PMC11406990 DOI: 10.1128/msystems.00628-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 08/21/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) exposure leads to a range of outcomes including clearance, latent TB infection (LTBI), and pulmonary tuberculosis (TB). Some heavily exposed individuals resist tuberculin skin test (TST) and interferon-gamma (IFNγ) release assay (IGRA) conversion (RSTR), which suggests that they employ IFNγ-independent mechanisms of Mtb control. Here, we compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household contact cohort. Chromatin accessibility did not differ between uninfected RSTR and LTBI monocytes. By contrast, methylation significantly differed at 174 CpG sites and across 63 genomic regions. Consistent with previous transcriptional findings in this cohort, differential methylation was enriched in lipid- and cholesterol-associated pathways including the genes APOC3, KCNQ1, and PLA2G3. In addition, methylation was enriched in Hippo signaling, which is associated with cholesterol homeostasis and includes CIT and SHANK2. Lipid export and Hippo signaling pathways were also associated with gene expression in response to Mtb in RSTR as well as IFN stimulation in monocyte-derived macrophages (MDMs) from an independent healthy donor cohort. Moreover, serum-derived high-density lipoprotein from RSTR had elevated ABCA1-mediated cholesterol efflux capacity (CEC) compared to LTBI. Our findings suggest that resistance to TST/IGRA conversion is linked to regulation of lipid accumulation in monocytes, which could facilitate early Mtb clearance among RSTR subjects through IFNγ-independent mechanisms.IMPORTANCETuberculosis (TB) remains an enduring global health challenge with millions of deaths and new cases each year. Despite recent advances in TB treatment, we lack an effective vaccine or a durable cure. While heavy exposure to Mycobacterium tuberculosis often results in latent TB latent infection (LTBI), subpopulations exist that are either resistant to infection or contain Mtb with interferon-gamma (IFNγ)-independent mechanisms not indicative of LTBI. These resisters provide an opportunity to investigate the mechanisms of TB disease and discover novel therapeutic targets. Here, we compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household contact cohort. We identify methylation signatures in host lipid and cholesterol pathways with potential relevance to early TB clearance before the sustained IFN responses indicative of LTBI. This adds to a growing body of literature linking TB disease outcomes to host lipids.
Collapse
Affiliation(s)
| | - Jason D. Simmons
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Glenna J. Peterson
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Felicia K. Nguyen
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Monica Campo
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Penelope Benchek
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Catherine M. Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - W. Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Zong Y, Wang X, Zhang Y, Tan N, Zhang Y, Li L, Liu L. Sitagliptin Ameliorates Creb5/lncRNA ENSMUST00000213271-Mediated Vascular Endothelial Dysfunction in Obese Mice. Cardiovasc Drugs Ther 2024; 38:679-691. [PMID: 36738369 DOI: 10.1007/s10557-023-07436-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE Obesity is mediated by the changes in dyslipidemia, oxidative stress, and inflammation, leading to vascular endothelial dysfunction. Glucagon-like peptide-1 (GLP-1) analogues and dipeptidyl peptidase-4 inhibitors prevent the development of endothelial dysfunction. However, the underlying mechanism still remains largely unclear. Long non-coding RNAs (lncRNAs), one class of non-coding small RNAs, have been shown to exert a regulatory impact on the endothelial function in obesity. This study aimed to investigate whether the elevation of GLP-1 by a DPP-4 inhibitor sitagliptin improved vascular endothelial function by modulating lncRNAs in obese mice and to clarify the underlying molecular mechanism. METHODS Male C57BL/6J mice were fed a high-fat diet for 4 months to induce obesity and some obese mice were treated with sitagliptin for the last 1 month. Levels of total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and glucagon-like peptide-1 (GLP-1) in plasma were detected by ELISA. LncRNA expression profile was analyzed via microarray. Aortic relaxations were examined by myograph. Protein expressions and phosphorylations were determined using western blot. The differentially expressed lncRNAs were validated using qRT-PCR. RESULTS Obese mice exhibited increased levels of TC and LDL, decreased concentrations of HDL and GLP-1 in plasma, and impaired aortic endothelium-dependent relaxations; such effects could be reversed by sitagliptin. Moreover, the altered expression profile of lncRNAs in the obese mouse aortae could be modulated by sitagliptin. Consistent with microarray analysis, qRT-PCR also revealed that lncRNA ENSMUST00000213271 was up-regulated in obese mouse aortae and aortic endothelial cells (ECs), which could be down-regulated by sitagliptin. Creb5 silencing reduced lncRNA ENSMUST00000213271 in obese mouse ECs. Knockdown of either Creb5 or lncRNA ENSMUST00000213271 restored the activation of AMPK/eNOS in obese mouse ECs. Furthermore, sitagliptin also suppressed Creb5 and lncRNA ENSMUST00000213271 and increased the phosphorylations of AMPK and eNOS in obese mice. CONCLUSION Creb5/lncRNA ENSMUST00000213271 mediated vascular endothelial dysfunction through inhibiting AMPK/eNOS cascade in obesity. Elevation of GLP-1 by sitagliptin possibly improved endothelial function by suppressing Creb5/lncRNA ENSMUST00000213271 and subsequently restoring AMPK/eNOS activation in obese mice. This study will provide new evidence for the benefits of GLP-1 against vasculopathy in obesity.
Collapse
MESH Headings
- Animals
- Sitagliptin Phosphate/pharmacology
- Male
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Long Noncoding/drug effects
- Mice, Inbred C57BL
- Obesity/drug therapy
- Obesity/metabolism
- Dipeptidyl-Peptidase IV Inhibitors/pharmacology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Glucagon-Like Peptide 1/metabolism
- Diet, High-Fat
- Cyclic AMP Response Element-Binding Protein/metabolism
- Disease Models, Animal
- Vasodilation/drug effects
- Mice
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Mice, Obese
- Signal Transduction/drug effects
- Phosphorylation
Collapse
Affiliation(s)
- Yi Zong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xiaorui Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Na Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Limei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China.
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| |
Collapse
|
7
|
Xu C, Meng J, Yu XH, Wang RJ, Li ML, Yin SH, Wang G. TNFAIP1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the LEENE/FoxO1/ABCA1 pathway. J Physiol Biochem 2024; 80:523-539. [PMID: 38878215 DOI: 10.1007/s13105-024-01018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/12/2024] [Indexed: 10/25/2024]
Abstract
Macrophage lipid accumulation is a critical contributor to foam cell formation and atherosclerosis. Tumor necrosis factor-α-induced protein 1 (TNFAIP1) is closely associated with cardiovascular disease. However, its role and molecular mechanisms in atherogenesis remain unclear. TNFAIP1 was knocked down in THP-1 macrophage-derived foam cells and apolipoprotein-deficient (apoE-/-) mice using lentiviral vector. The expression of lncRNA enhancing endothelial nitric oxide synthase expression (LEENE), Forkhead box O1 (FoxO1) and ATP binding cassette transporter A1 (ABCA1) was evaluated by qRT-PCR and/or western blot. Lipid accumulation in macrophage was assessed by high-performance liquid chromatography and Oil red O staining. RNA immunoprecipitation and RNA pull-down assay were performed to verify the interaction between LEENE and FoxO1 protein. Atherosclerotic lesions were analyzed using HE, Oil red O and Masson staining. Our results showed that TNFAIP1 was significantly increased in THP-1 macrophages loaded with oxidized low-density lipoprotein. Knockdown of TNFAIP1 enhanced LEENE expression, promoted the direct interaction of LEENE with FoxO1 protein, stimulated FoxO1 protein degradation through the proteasome pathway, induced ABCA1 transcription, and finally suppressed lipid accumulation in THP-1 macrophage-derived foam cells. TNFAIP1 knockdown also up-regulated ABCA1 expression, improved plasma lipid profiles, enhanced the efficiency of reverse cholesterol transport and attenuated lesion area in apoE-/- mice. Taken together, these results provide the first direct evidence that TNFAIP1 aggravates atherosclerosis by promoting macrophage lipid accumulation via the LEENE/FoxO1/ABCA1 signaling pathway. TNFAIP1 may represent a promising therapeutic target for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Can Xu
- Department of Cardiology, Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jun Meng
- Department of Function, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, Hainan, People's Republic of China
| | - Ru-Jing Wang
- Department of Cardiology, Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mei-Ling Li
- Department of Cardiology, Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Shan-Hui Yin
- Department of Neonatology, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| | - Gang Wang
- Department of Cardiology, Institute of Cardiovascular Disease, Hengyang Medical School, The First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Tapia A, Liu X, Malhi NK, Yuan D, Chen M, Southerland KW, Luo Y, Chen ZB. Role of long noncoding RNAs in diabetes-associated peripheral arterial disease. Cardiovasc Diabetol 2024; 23:274. [PMID: 39049097 PMCID: PMC11271017 DOI: 10.1186/s12933-024-02327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that heightens the risks of many vascular complications, including peripheral arterial disease (PAD). Various types of cells, including but not limited to endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and macrophages (MΦs), play crucial roles in the pathogenesis of DM-PAD. Long non-coding RNAs (lncRNAs) are epigenetic regulators that play important roles in cellular function, and their dysregulation in DM can contribute to PAD. This review focuses on the developing field of lncRNAs and their emerging roles in linking DM and PAD. We review the studies investigating the role of lncRNAs in crucial cellular processes contributing to DM-PAD, including those in ECs, VSMCs, and MΦ. By examining the intricate molecular landscape governed by lncRNAs in these relevant cell types, we hope to shed light on the roles of lncRNAs in EC dysfunction, inflammatory responses, and vascular remodeling contributing to DM-PAD. Additionally, we provide an overview of the research approach and methodologies, from identifying disease-relevant lncRNAs to characterizing their molecular and cellular functions in the context of DM-PAD. We also discuss the potential of leveraging lncRNAs in the diagnosis and therapeutics for DM-PAD. Collectively, this review provides a summary of lncRNA-regulated cell functions contributing to DM-PAD and highlights the translational potential of leveraging lncRNA biology to tackle this increasingly prevalent and complex disease.
Collapse
Affiliation(s)
- Alonso Tapia
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Xuejing Liu
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Naseeb Kaur Malhi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Dongqiang Yuan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Muxi Chen
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Kevin W Southerland
- Division of Vascular and Endovascular Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yingjun Luo
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Zhen Bouman Chen
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, 91010, USA.
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
9
|
Zhou L, Zhou L, Chen Q, Chen C, Qian Y, Lou D, Ma H, Wang S. Identification and preliminary validation of differently expressed genes as candidate biomarkers associated with atherosclerosis. Gene 2024; 915:148410. [PMID: 38527674 DOI: 10.1016/j.gene.2024.148410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
OBJECTIVE Atherosclerosis (AS) is the primary cause of deadly cardio-cerebro vascular diseases globally. This study aims to explore the key differentially expressed genes (DEGs), potentially serving as predictive biomarkers for AS. METHODS Microarray datasets were retrieved from the GEO database for DEGs and DE-miRNAs identification. Then biological function of DEGs were elucidated based on gene ontology (GO) and KEGG pathway enrichment analysis. The protein-protein interaction (PPI) network and DEGs-DE-miRNAs network were constructed, with emphasis on hub DEGs selection and their interconnections. Additionally, receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic precision of hub DEGs for AS. More importantly, an AS Syrian Golden hamster model was established to validate the expression levels of hub DEGs in AS. RESULTS A total of 203 DEGs and 10 DE-miRNAs were screened, with six genes were chosen as hub DEGs. These DEGs were significantly enriched in AS-related biological processes and pathways, such as immune and inflammatory response, cellular response to IL-1 and TNF, positive regulation of angiogenesis, Type I diabetes mellitus, Cytokine-cytokine receptor interaction, TLR signaling pathway. Also, these DEGs and DE-miRNAs formed a closely-interacted DE-miRNAs - DEGs - KEGG pathway network. Besides, hub DEGs presented promising diagnostic potential for AS (AUC: 0.781 ∼ 0.887). In addition, the protein expression levels of TNF-α, CXCL8, CCL4, IL-1β, CCL3 and CCR8 were significantly increased in AS group Syrian Golden hamsters. CONCLUSION The identified candidate genes TNF, CXCL8, CCL4, IL1B, CCL3 and CCR8 may have the potential to serve as prognostic biomarker in diagnosing AS.
Collapse
Affiliation(s)
- Liqin Zhou
- Department of Pharmacy, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, Zhejiang, China
| | - Liping Zhou
- Department of Pharmacy, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, Zhejiang, China
| | - Qiliang Chen
- Department of Pharmacy, Zhuji Renze Rehabilitation Hospital, Zhuji 311899, Zhejiang, China
| | - Congying Chen
- Department of Pharmacy, Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou 310018, Zhejiang, China
| | - Yuanyuan Qian
- Department of Pharmacy, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, Zhejiang, China
| | - Dayong Lou
- Department of Pharmacy, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, Zhejiang, China
| | - Huanjie Ma
- Department of Pharmacy, Zhuji People's Hospital of Zhejiang Province, Zhuji 311800, Zhejiang, China
| | - Suying Wang
- Department of Pharmacy, Shengzhou Chinese Medicine Hospital, Shengzhou 312400, Zhejiang, China.
| |
Collapse
|
10
|
Li Y, Yu C, Jiang X, Fu J, Sun N, Zhang D. The mechanistic view of non-coding RNAs as a regulator of inflammatory pathogenesis of Parkinson's disease. Pathol Res Pract 2024; 258:155349. [PMID: 38772115 DOI: 10.1016/j.prp.2024.155349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and non-motor symptoms. Emerging evidence suggests that inflammation plays a crucial role in the pathogenesis of PD, with the NLRP3 inflammasome implicated as a key mediator. Nfon-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have recently garnered attention for their regulatory roles in various biological processes, including inflammation. This review aims to provide a mechanistic insight into how ncRNAs function as regulators of inflammatory pathways in PD, with a specific focus on the NLRP3 inflammasome. We discuss the dysregulation of miRNAs and lncRNAs in PD pathogenesis and their impact on neuroinflammation through modulation of NLRP3 activation, cytokine production, and microglial activation. Additionally, we explore the crosstalk between ncRNAs, alpha-synuclein pathology, and mitochondrial dysfunction, further elucidating the intricate network underlying PD-associated inflammation. Understanding the mechanistic roles of ncRNAs in regulating inflammatory pathways may offer novel therapeutic targets for the treatment of PD and provide insights into the broader implications of ncRNA-mediated regulation in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yu'an Li
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Chunlei Yu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jia Fu
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Ning Sun
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Daquan Zhang
- Department of Neurosurgery, Jilin Province FAW General Hospital, Changchun 130000, China.
| |
Collapse
|
11
|
Dill-McFarland KA, Simmons JD, Peterson GJ, Nguyen FK, Campo M, Benchek P, Stein CM, Vaisar T, Mayanja-Kizza H, Boom WH, Hawn TR. Epigenetic programming of host lipid metabolism associates with resistance to TST/IGRA conversion after exposure to Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582348. [PMID: 38464296 PMCID: PMC10925331 DOI: 10.1101/2024.02.27.582348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Mycobacterium tuberculosis (Mtb) exposure leads to a range of outcomes including clearance, latent TB infection (LTBI), and pulmonary tuberculosis (TB). Some heavily exposed individuals resist tuberculin skin test (TST) and interferon gamma release assay (IGRA) conversion (RSTR), which suggests that they employ IFNγ-independent mechanisms of Mtb control. Here, we compare monocyte epigenetic profiles of RSTR and LTBI from a Ugandan household contact cohort. Chromatin accessibility did not differ between uninfected RSTR and LTBI monocytes. In contrast, methylation significantly differed at 174 CpG sites and across 63 genomic regions. Consistent with previous transcriptional findings in this cohort, differential methylation was enriched in lipid and cholesterol associated pathways including in the genes APOC3, KCNQ1, and PLA2G3. In addition, methylation was enriched in Hippo signaling, which is associated with cholesterol homeostasis and includes CIT and SHANK2. Lipid export and Hippo signaling pathways were also associated with gene expression in response to Mtb in RSTR as well as IFN stimulation in monocyte-derived macrophages (MDMs) from an independent healthy donor cohort. Moreover, serum-derived HDL from RSTR had elevated ABCA1-mediated cholesterol efflux capacity (CEC) compared to LTBI. Our findings suggest that resistance to TST/IGRA conversion is linked to regulation of lipid accumulation in monocytes, which could facilitate early Mtb clearance among RSTR subjects through IFNγ-independent mechanisms.
Collapse
Affiliation(s)
| | - Jason D Simmons
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Felicia K Nguyen
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Monica Campo
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Penelope Benchek
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - W Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Thomas R Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
12
|
Taheri M, Shirvani-Farsani Z, Harsij A, Fathi M, Khalilian S, Ghafouri-Fard S, Baniahmad A. A review on the role of KCNQ1OT1 lncRNA in human disorders. Pathol Res Pract 2024; 255:155188. [PMID: 38330620 DOI: 10.1016/j.prp.2024.155188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
KCNQ1OT1 is an lncRNA located within KCNQ1 gene on chromosome 11p15.5. This lncRNAs participates in the pathogenesis of a diversity of cancers as well as non-cancerous conditions. In most types of cancers, KCNQ1OT1 is regarded as an oncogene. In a wide array of cancers, high level of KCNQ1OT1 is associated with lower overall survival time. This lncRNA has been found to adsorb a variety of miRNAs, namely miR-15a, miR-211-5p, hsa-miR-107, miR-145, miR-34a, miR-204-5p, miR-129-5p, miR-372-3p, miR-491-5p, miR-153, miR-185-5p, miR-124-3p, miR-211-5p, miR-149, miR-148a-3p, miR-140-5p, miR-125b-5p, miR-9, miR-329-3p, miR-760, miR-296-5p, miR-3666 and miR-129-5p, thus regulating the downstream targets of these miRNAs. In this manuscript, our attention is on this lncRNA and its biomolecular roles in human cancers and other disorders. KCNQ1OT1 plays significant roles in the tumorigenesis and may function as a prospective target for cancer therapy.
Collapse
Affiliation(s)
- Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Atefeh Harsij
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sheyda Khalilian
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| |
Collapse
|
13
|
Meng J, Song X, Xing X, Chen J, Lou D. Coptisine prevents angiotensin II‑induced endothelial cell injury and senescence via the lncRNA SNHG12/miR‑603/NAMPT pathway. Exp Ther Med 2024; 27:68. [PMID: 38234617 PMCID: PMC10792411 DOI: 10.3892/etm.2023.12356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Atherosclerosis (AS) is a major health problem and targeting the associated molecular pathways is critical for developing therapies. The present study investigated the effect of coptisine on human umbilical vein endothelial cells (HUVECs) in response to angiotensin II (Ang II) induction by focusing on cellular senescence, apoptosis and inflammation. HUVECs were treated with different Ang II concentrations and long non-coding RNA small nucleolar RNA host gene 12 (SNHG12), microRNA (miRNA/miR)-603 and nicotinamide phosphoribosyltransferase (NAMPT) expressions were assessed. Cell viability, nicotinamide adenine dinucleotide (NAD+) levels, senescence, apoptosis and inflammation were assessed. The interactions among SNHG12, miR-603 and NAMPT were investigated using dual-luciferase reporter gene assays and RNA pull-down experiments. Coptisine treatment increased SNHG12 expression and attenuated Ang II-induced adverse effects in HUVECs. SNHG12 silencing abrogated coptisine's protective effects, indicating that SNHG12 is a key mediator. SNHG12 targets miR-603, which then directly targets NAMPT, an age-related gene involved in NAD(+) regulation. Coptisine modulated the SNHG12/miR-603/NAMPT pathway and miR-603 inhibition enhanced the protective effects of coptisine. NAMPT overexpression reversed the negative effects of miR-603 and enhanced the protective effect of the miR-603 inhibitor. Finally, the protective mechanism of coptisine is linked to the regulation of NAD(+), sirtuin 3 (SIRT3) and p53. Coptisine treatment counteracted the AngII-induced increase in SIRT3 and p53 protein levels, whereas the miR-603 inhibitor potentiated the effect of coptisine. SNHG12 knockdown partially abolished these effects, which were reversed by NAMPT overexpression. In conclusion, the present study revealed a novel protective mechanism involving the SNHG12/miR-603/NAMPT pathway in HUVECs exposed to Ang II, highlighting the potential therapeutic application of coptisine in treating atherosclerosis. These results suggested that coptisine exerts its protective effects by modulating the SNHG12/miR-603/NAMPT axis, which ultimately affects the regulation of NAD(+), SIRT3 and p53. Future studies should explore the potential of the SNHG12/miR-603/NAMPT pathway as a target for developing novel AS therapies.
Collapse
Affiliation(s)
- Jing Meng
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Xiaoying Song
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Xinyue Xing
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Jingyi Chen
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Danfei Lou
- Emergency Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
14
|
Deng WY, Zhou CL, Zeng MY. Gypenoside XVII inhibits ox-LDL-induced macrophage inflammatory responses and promotes cholesterol efflux through activating the miR-182-5p/HDAC9 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117070. [PMID: 37625608 DOI: 10.1016/j.jep.2023.117070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The deposition of lipids in macrophages and the subsequent formation of foam cells significantly increase the risk of developing atherosclerosis (As). Targeting ATP-binding cassette transporter A1/G1 (ABCA1/ABCG1)-mediated reverse cholesterol transport is crucial for regulating foam cell formation. Therefore, the search for natural chemical components with the ability to regulate ABCA1/G1 is a potential drug target to combat the development of atherosclerosis. Gypenoside XVII (GP-17), a gypenoside monomer extracted from gynostemma pentaphyllum, presents an efficient anti-atherosclerosis function. However, the suppressed formation mechanism of foam cells by GP-17 remains elusive. AIM OF STUDY To explore the protective activities of GP-17 in ox-LDL-induced THP-1 macrophage-derived foam cells through modulating the promotion of cholesterol efflux and alleviation of inflammation. MATERIALS AND METHODS MTT was used to detect cell viability. Bodipy493/503 and oil red O staining were performed to measure cell lipid deposition. Enzymatic assay was used to measure intracellular cholesterol measurement. Cholesterol efflux/uptake were determined by cholesterol efflux assay and Dil-ox-LDL uptake assay. Inflammatory cytokines were measured by ELISA. Bioinformatics prediction and dual luciferase reporter assay were performed to validate miR-182-5p targeting HDAC9. Relative protein levels were evaluated by immunoblotting and relative gene levels were determined by quantitative real-time PCR. RESULTS Our results showed that GP-17 upregulated the expression of ABCA1, ABCG1 and miR-182-5p, but reduced HDAC9 expression levels in lipid-loaded macrophages, which promoted cholesterol efflux and inhibited lipid deposition. Additionally, GP-17 promoted the M2 phenotype of the macrophage and suppressed the inflammatory response in THP-1 macrophage-derived foam cells. Overexpression of HDAC9 or suppression of miR-182-5p eliminated the effects of ABCA1/G1 expression, lipid deposition and pro-inflammatory response. CONCLUSION These findings suggest that GP-17 exerts a beneficial effect on macrophage lipid deposition and inflammation responses through activating the miR-182-5p/HDAC9 signaling pathway.
Collapse
Affiliation(s)
- Wen-Yi Deng
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Cheng-Long Zhou
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, Guangdong, PR China
| | - Meng-Ya Zeng
- Cardiovascular Disease Clinical Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China.
| |
Collapse
|
15
|
Tan T, Tu L, Yu Y, He M, Zhou X, Yang L. Mechanisms by which silencing long-stranded noncoding RNA KCNQ1OT1 alleviates myocardial ischemia/reperfusion injury (MI/RI)-induced cardiac injury via miR-377-3p/HMOX1. BMC Cardiovasc Disord 2024; 24:19. [PMID: 38172743 PMCID: PMC10765944 DOI: 10.1186/s12872-023-03693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The key complication of myocardial infarction therapy is myocardial ischemia/reperfusion injury (MI/RI), and there is no effective treatment. The present study elucidates the mechanism of action of lncRNA KCNQ1OT1 in alleviating MI/RI and provides new perspectives and therapeutic targets for cardiac injury-related diseases. METHODS An ischemia/reperfusion (I/R) injury model of human adult cardiac myocytes (HACMs) was constructed, and the expression of KCNQ1OT1 and miR-377-3p was determined by RT‒qPCR. The levels of related proteins were detected by western blot analysis. Cell proliferation was detected by a CCK-8 assay, and cell apoptosis and ROS content were determined by flow cytometry. SOD and MDA expression as well as Fe2+ changes were detected by related analysis kits. The target binding relationships between lncRNA KCNQ1OT1 and miR-377-3p as well as between miR-377-3p and heme oxygenase 1 (HMOX1) were verified by a dual-luciferase reporter gene assay. RESULTS Myocardial ischemia‒reperfusion caused oxidative stress in HACMs, resulting in elevated ROS levels, increased Fe2+ levels, decreased cell viability, and increased LDH release (a marker of myocardial injury), and apoptosis. KCNQ1OT1 and HMOX1 were upregulated in I/R-induced myocardial injury, but the level of miR-377-3p was decreased. A dual-luciferase reporter gene assay indicated that lncRNA KCNQ1OT1 targets miR-377-3p and that miR-377-3p targets HMOX1. Inhibition of HMOX1 alleviated miR-377-3p downregulation-induced myocardial injury. Furthermore, lncRNA KCNQ1OT1 promoted the level of HMOX1 by binding to miR-377-3p and aggravated myocardial injury. CONCLUSION LncRNA KCNQ1OT1 aggravates ischemia‒reperfusion-induced cardiac injury via miR-377-3P/HMOX1.
Collapse
Affiliation(s)
- Tongcai Tan
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Liang Tu
- Medical Experimental Center, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College (The 6th People Hospital of Chongqing), Chongqing, 400060, China
| | - Yanmei Yu
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - MinJie He
- Geriatric Department, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, China
| | - Xingchao Zhou
- Department of Medical Equipment, The First Affiliated Hospital of Dali University, Dali, Yunnan, 671000, China
| | - Lei Yang
- Department of Rehabilitation Medicine, The Second People's Hospital of Kunming, Kunming, Yunnan, 650506, China.
| |
Collapse
|
16
|
Luo H, Zhao L, Dong B, Liu Y. MiR-375 Inhibitor Alleviates Inflammation and Oxidative Stress by Upregulating the GPR39 Expression in Atherosclerosis. Int Heart J 2024; 65:135-145. [PMID: 38296567 DOI: 10.1536/ihj.23-155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Atherosclerosis may be caused or developed by an immune response and antioxidation imbalance. MicroRNA-375 (miR-375) or G-protein-coupled receptor 39 (GPR39) is involved in vascular endothelial cell injury, but their role in atherosclerosis is unknown. This experiment aimed to determine the action of the miR-375/GPR39 axis in atherosclerosis.Human aortic endothelial cells (HAECs) were treated with 10 ng/mL of oxidised low-density lipoprotein (ox-LDL) for 24 hours to induce HAEC injury, which was treated by the miR-375 inhibitor, GPR39 inhibitor, or agonist. High-fat diet (HFD) -induced ApoE-/- mice were made as an atherosclerosis model for miR-375 inhibitor treatment. Cell Counting Kit-8 was applied to detect HAEC viability. HAEC apoptosis and ROS levels were measured using flow cytometry. Vascular histopathology and the GPR39 expression were detected using hematoxylin-eosin and immunohistochemistry. The expressions of interleukin (IL) -6, IL-1β, and tumour necrosis factor-α (TNF-α) were assessed using an enzyme-linked immunosorbent assay. The miR-375, GPR39, NOX-4, and p-IκBα/IκBα levels were measured using quantitative reverse transcription polymerase chain reaction or western blot.MiR-375 and GPR39 levels increased and decreased in ox-LDL-treated HAECs, respectively. The miR-375 inhibitor or GPR39 agonist promoted cell viability and inhibited apoptosis in ox-LDL-induced HAEC injury. The miR-375 inhibitor also significantly downregulated the IL-6, IL-1β, TNF-α, p-IκBα/IκBα, ROS, and NOX-4 expressions to alleviate oxidative stress and inflammation, which were reversed by the GPR39 inhibitor. An in vivo experiment proved that the miR-375 inhibitor upregulated the GPR39 expression and improved inflammation, oxidative stress, and endothelial cell damage associated with atherosclerosis.The miR-375 inhibitor improved inflammation, oxidative stress, and cell damage in ox-LDL-induced HAECs and HFD-induced ApoE-/- mice by promoting the GPR39 expression, which provided a new theoretical basis for the clinical treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hui Luo
- Department of Cardiology, The First Hospital of Changsha
| | - Lin Zhao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University
| | - Bo Dong
- Department of Cardiology, The First Hospital of Changsha
| | - Yanghong Liu
- Center for Reproductive Medicine, The Third Xiangya Hospital, Central South University
| |
Collapse
|
17
|
Lin H, Nie L, Lu G, Wu H, Xu T. Long non-coding RNA KCNQ10T1/miR-19a-3p/SMAD5 axis promotes osteogenic differentiation of mouse bone mesenchymal stem cells. J Orthop Surg Res 2023; 18:929. [PMID: 38057885 PMCID: PMC10698940 DOI: 10.1186/s13018-023-04425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Bone fracture is a common orthopedic disease that needs over 3 months to recover. Promoting the osteogenic differentiation of bone mesenchymal stem cells (BMSCs) is beneficial for fracture healing. Therefore, this research aimed to study the roles of long non-coding RNA (lncRNA) KCNQ10T1 in osteogenic differentiation of BMSCs. METHODS BMSCs were treated with osteogenic medium and assessed by CCK-8 and flow cytometry assays. Alkaline phosphatase (ALP) staining, alizarin red staining (ARS), as well as concentration of osteoblast markers were measured to evaluate osteogenic differentiation of BMSCs. Western blot was employed to detect proteins; while, qRT-PCR was for mRNA levels. Additionally, targeted relationships between KCNQ10T1 and miR-19a-3p, as well as miR-19a-3p and SMAD5 were verified by dual luciferase reporter gene assay along with RNA pull-down method. RESULTS Upregulation of KCNQ10T1 promoted the ALP staining and ARS intensity, increased the cell viability and decreased the apoptosis rate of BMSCs. Besides, KCNQ10T1 overexpression increased the ALP, OPG, OCN and OPN protein levels. KCNQ10T1 sponges miR-19a-3p, which targets Smad5. Upregulated miR-19a-3p reversed the overexpressed KCNQ10T1-induced effects, and depletion of SMAD5 reversed the miR-19a-3p inhibitor-induced effects on osteogenic medium-treated BMSCs. CONCLUSIONS Upregulation of KCNQ10T1 promoted osteogenic differentiation of BMSCs through miR-19a-3p/SMAD5 axis in bone fracture.
Collapse
Affiliation(s)
- He Lin
- Department of Plastic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, No.71, Hexi Street, Jianye District, Nanjing, 210019, Jiangsu Province, China.
| | - Lanjun Nie
- Department of Plastic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, No.71, Hexi Street, Jianye District, Nanjing, 210019, Jiangsu Province, China
| | - Guiqing Lu
- Dermatological Department, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Haixia Wu
- Department of Plastic Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, No.71, Hexi Street, Jianye District, Nanjing, 210019, Jiangsu Province, China
| | - Tao Xu
- Department of Neurosurgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
18
|
Yang N, Song Y, Li Y, Dong B, Yang J, Guo Z. Characterization of lncRNA-associated ceRNA network to uncover novel potential biomarkers in coronary artery disease. Medicine (Baltimore) 2023; 102:e35913. [PMID: 38013355 PMCID: PMC10681391 DOI: 10.1097/md.0000000000035913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
The purpose of this study was to construct a competitive endogenous RNA (ceRNA) network related to long non-coding RNA (lncRNAs) via the bioinformatics analysis, reveal the pathogenesis of coronary heart disease (CAD) and develop new biomarkers for CAD. The gene expression datasets of peripheral blood of CAD were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed mRNAs, miRNAs and lncRNAs (DEmRNAs, DEmiRNAs and DElncRNAs) were identified. Subsequently, a ceRNA network involving lncRNAs, miRNAs, and mRNAs was built. Moreover, DElncRNAs in the cytoplasm were screened and a DElncRNA-associated ceRNA network was established. In total, 1860 DEmRNAs, 393 DElncRNAs and 20 DEmiRNAs were filtrated in patients with CAD compared with normal controls. Functional analysis suggested that DEmRNAs significantly enriched in CAD-related pathways, such as PI3K-Akt signaling pathways and MAPK signaling pathway. The ceRNA network contained 12 DEmiRNAs, 30 DElncRNAs and 537 DEmRNAs. Afterwards, the cytoplasm ceRNA network was consisted of 537 DEmRNAs, 12 DEmiRNAs and 12 DElncRNAs. Such as, up-regulated LncRNA-HOX transcript antisense RNA (HOTAIR) was interacted with down-regulated has-miR-326 and has-miR-1. The successful construction of lncRNA-associated ceRNA network is helpful to better clarify the pathogenesis of CAD and provide potential peripheral blood biomarkers for CAD.
Collapse
Affiliation(s)
- Ning Yang
- Department of Cardiovasular Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Yanqiu Song
- Institute of Cardiology Research, Tianjin Chest Hospital, Tianjin, China
| | - Yang Li
- Department of Cardiovasular Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Bo Dong
- Department of Cardiovasular Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Jingyu Yang
- Department of Cardiovasular Medicine, Tianjin Chest Hospital, Tianjin, China
| | - Zhigang Guo
- Department of Cardiovasular Surgery, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
19
|
Wu Z, Yin H, Guo Y, Yin H, Li Y. Detection of cell-type-enriched long noncoding RNAs in atherosclerosis using single-cell techniques: A brief review. Life Sci 2023; 333:122138. [PMID: 37805167 DOI: 10.1016/j.lfs.2023.122138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/20/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
Cardiovascular diseases are the leading causes of mortality and morbidity worldwide. Atherosclerotic plaque underlies the predominant factors and is composed of various cell types, including structure cells, such as endothelial and smooth muscle cells, and immune cells, such as macrophages and T cells. Single-cell RNA sequencing (scRNA-seq) has been extensively applied to decipher these cellular heterogeneities to expand our understanding on the mechanisms of atherosclerosis (AS) and to facilitate identifying cell-type-specific long noncoding RNAs (LncRNAs). LncRNAs have been demonstrated to deeply regulate biological activities at the transcriptional and post-transcriptional levels. A group of well-documented functional lncRNAs in AS have been studied. In our review, we selectively described several lncRNAs involved in the critical process of AS. We highlighted four novel lncRNAs (lncRNA CARMN, LINC00607, PCAT19, LINC01235) detected in scRNA-seq datasets and their functions in AS. We also reviewed open web source and bioinformatic tools, as well as the latest methods to perform an in-depth study of lncRNAs. It is fundamental to annotate functional lncRNAs in the various biological activities of AS, as lncRNAs may represent promising targets in the future for treatment and diagnosis in clinical practice.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, PR China
| | - Huarun Yin
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100730 Beijing, PR China
| | - Yongsheng Guo
- Peking University Health Science Center, 100191 Beijing, PR China
| | - Hongchao Yin
- Department of Pathology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, 100730 Beijing, PR China
| | - Yongjun Li
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100730 Beijing, PR China; Peking University Health Science Center, 100191 Beijing, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 100730 Beijing, PR China
| |
Collapse
|
20
|
Liu G, Tan L, Zhao X, Wang M, Zhang Z, Zhang J, Gao H, Liu M, Qin W. Anti-atherosclerosis mechanisms associated with regulation of non-coding RNAs by active monomers of traditional Chinese medicine. Front Pharmacol 2023; 14:1283494. [PMID: 38026969 PMCID: PMC10657887 DOI: 10.3389/fphar.2023.1283494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the leading cause of numerous cardiovascular diseases with a high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not encode proteins in human genome transcripts, are known to play crucial roles in various physiological and pathological processes. Recently, researches on the regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional Chinese medicine has been proved to be effective in treating cardiovascular diseases in China for a long time, and its active monomers have been found to target a variety of atherosclerosis-related ncRNAs. These active monomers of traditional Chinese medicine hold great potential as drugs for the treatment of atherosclerosis. Here, we summarized current advancement of the molecular pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the mechanisms of traditional Chinese medicine monomers in regulating atherosclerosis through targeting ncRNAs.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Meifang Liu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
21
|
Hanxiao Y, Boyun Y, Minyue J, Xiaoxiao S. Identification of a novel competing endogenous RNA network and candidate drugs associated with ferroptosis in aldosterone-producing adenomas. Aging (Albany NY) 2023; 15:9193-9216. [PMID: 37709486 PMCID: PMC10522391 DOI: 10.18632/aging.205028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Aldosterone-producing adenoma (APA), characterized by unilaterally excessive aldosterone production, is a common cause of primary aldosteronism. Ferroptosis, a recently raised iron-dependent mode of programmed cell death, has been involved in the development and therapy of various diseases. This study obtained datasets of the mRNA and lncRNA expression profiles for APA and adjacent adrenal gland (AAG) from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and lncRNAs (DE lncRNAs) associated with ferroptosis were identified. Enrichment analyses indicated 89 ferroptosis-related DEGs were primarily enriched in ROS related processes and ferroptosis. Two physical cores, and one combined core were identified in the protein-protein interaction (PPI). DEGs and clinical traits were used in conjunction to screen eight hub genes from two hub modules and 89 DEGs. A competitive endogenous RNA (ceRNA) network was constructed via co-express analysis. Thereafter, molecular docking was used to identify potential targets. Two active compounds, QL-X-138 and MK-1775, bound to AURKA and DUOX1, respectively, with the lowest binding energies. Molecular dynamics simulation verified the stability of the two complexes. In summary, our studies identified eight hub genes and a novel ceRNA regulatory network associated with ferroptosis, wherein QL-X-138 and MK-1775 were considered to be potential drugs for treating APA.
Collapse
Affiliation(s)
- Yu Hanxiao
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Boyun
- Department of Allergy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Minyue
- Department of Ultrasound, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Xiaoxiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
22
|
Deng W, Lu Y, Hu P, Zhang Q, Li S, Yang D, Zhao N, Qian K, Liu F. Integrated Analysis of Non-Coding RNA and mRNA Expression Profiles in Exosomes from Lung Tissue with Sepsis-Induced Acute Lung Injury. J Inflamm Res 2023; 16:3879-3895. [PMID: 37674532 PMCID: PMC10478974 DOI: 10.2147/jir.s419491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023] Open
Abstract
Background Acute lung injury (ALI) is associated with a high mortality rate; however, the underlying molecular mechanisms are poorly understood. The purpose of this study was to investigate the expression profile and related networks of long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in lung tissue exosomes obtained from sepsis-induced ALI. Methods A mouse model of sepsis was established using the cecal ligation and puncture method. RNA sequencing was performed using lung tissue exosomes obtained from mice in the sham and CLP groups. Hematoxylin-eosin staining, Western blotting, immunofluorescence, quantitative real-time polymerase chain reaction, and nanoparticle tracking analysis were performed to identify relevant phenotypes, and bioinformatic algorithms were used to evaluate competitive endogenous RNA (ceRNA) networks. Results Thirty lncRNA-miRNA-mRNA interactions were identified, including two upregulated lncRNAs, 30 upregulated miRNAs, and two downregulated miRNAs. Based on the expression levels of differentially expressed mRNAs(DEmRNAs), differentially expressed LncRNAs(DELncRNAs), and differentially expressed miRNAs(DEmiRNAs), 30 ceRNA networks were constructed. Conclusion Our study revealed, for the first time, the expression profiles of lncRNA, miRNA, and mRNA in exosomes isolated from the lungs of mice with sepsis-induced ALI, and the exosome co-expression network and ceRNA network related to ALI in sepsis.
Collapse
Affiliation(s)
- Wei Deng
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Yanhua Lu
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ping Hu
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Qingqing Zhang
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Shuangyan Li
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Dong Yang
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Ning Zhao
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Kejian Qian
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Fen Liu
- Department of Critical Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Medical Innovation Center, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
23
|
Paluvai H, Shanmukha KD, Tyedmers J, Backs J. Insights into the function of HDAC3 and NCoR1/NCoR2 co-repressor complex in metabolic diseases. Front Mol Biosci 2023; 10:1190094. [PMID: 37674539 PMCID: PMC10477789 DOI: 10.3389/fmolb.2023.1190094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023] Open
Abstract
Histone deacetylase 3 (HDAC3) and nuclear receptor co-repressor (NCoR1/2) are epigenetic regulators that play a key role in gene expression and metabolism. HDAC3 is a class I histone deacetylase that functions as a transcriptional co-repressor, modulating gene expression by removing acetyl groups from histones and non-histone proteins. NCoR1, on the other hand, is a transcriptional co-repressor that interacts with nuclear hormone receptors, including peroxisome proliferator-activated receptor gamma (PPARγ) and liver X receptor (LXR), to regulate metabolic gene expression. Recent research has revealed a functional link between HDAC3 and NCoR1 in the regulation of metabolic gene expression. Genetic deletion of HDAC3 in mouse models has been shown to improve glucose intolerance and insulin sensitivity in the liver, skeletal muscle, and adipose tissue. Similarly, genetic deletion of NCoR1 has improved insulin resistance and reduced adiposity in mouse models. Dysregulation of this interaction has been associated with the development of cardio-metabolic diseases such as cardiovascular diseases, obesity and type 2 diabetes, suggesting that targeting this pathway may hold promise for the development of novel therapeutic interventions. In this review, we summarize the current understanding of individual functions of HDAC3 and NCoR1/2 and the co-repressor complex formation (HDAC3/NCoR1/2) in different metabolic tissues. Further studies are needed to thoroughly understand the mechanisms through which HDAC3, and NCoR1/2 govern metabolic processes and the implications for treating metabolic diseases.
Collapse
Affiliation(s)
- Harikrishnareddy Paluvai
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Kumar D. Shanmukha
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Jens Tyedmers
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
24
|
Zhang R, Bu F, Wang Y, Huang M, Lin X, Wu C, Chen J, Huang Y, Wang H, Ye S, Hu X, Wang Q, Zheng L. LncRNA RP4-639F20.1 interacts with THRAP3 to attenuate atherosclerosis by regulating c-FOS in vascular smooth muscle cells proliferation and migration. Atherosclerosis 2023; 379:117183. [PMID: 37549548 DOI: 10.1016/j.atherosclerosis.2023.06.974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND AND AIMS The aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) play an essential role in the pathogenesis of atherosclerosis (AS). Long noncoding RNAs (lncRNAs) have been reported as important regulators in a number of diseases. However, very little is known regarding the functional role of lncRNAs in governing proliferation and migration of VSMCs and AS development. METHODS Both in vitro and in vivo assays were performed to investigate the role of lncRNA in the pathophysiology of AS. Our previous lncRNA arrays revealed that lncRNA RP4-639F20.1 was significantly decreased in atherosclerotic plaques. Lentivirus overexpressing RP4-639F20.1 and lncRNA RP4-639F20.1 silencing vectors (Si-lnc-RP4-639F20.1) were constructed and transfected in VSMCs. The in vitro functions of lncRNA were analyzed by CCK-8 assays, EdU assays, scratch wound assays, transwell assays, qRT-PCR and Western blot analyses. RNA fluorescence in situ hybridization, immunoprecipitation and mRNA microarrays were used to explore the underlying mechanism. Adeno-associated-virus-9 (AAV9) overexpressing RP4-639F20.1 was constructed and injected intravenously into ApoE-/- mice to explore the role of lncRNA in vivo. RESULTS In vitro experiments showed that lncRNA RP4-639F20.1 interacted with THRAP3 and downregulated c-FOS expression. Both increase of lncRNA RP4-639F20.1 expression and knockdown of c-FOS inhibited the expression of MMP10 and VEGF-α in VSMCs and suppressed VSMCs proliferation and migration. In vivo experiments using ApoE-/- mice fed a high-fat diet demonstrated that lncRNA RP4-639F20.1 overexpression deterred atherosclerosis and decreased lipid levels in atherosclerotic lesions. Patients with coronary artery disease were found to have higher c-FOS levels than healthy individuals and c-FOS expression was positively correlated with the SYNTAX score of patients. CONCLUSIONS Overall, these data indicated that lncRNA RP4-639F20.1/THRAP3/c-FOS pathway protects against the development of atherosclerosis by suppressing VSMCs proliferation and migration. LncRNA RP4-639F20.1 and c-FOS could represent potential therapeutic targets to ameliorate atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Ruyi Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Fan Bu
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, People's Republic of China
| | - Yubing Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, People's Republic of China
| | - Mei Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, People's Republic of China
| | - Xiaomin Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Changmeng Wu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Juanjiang Chen
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, People's Republic of China
| | - Yiyi Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Haifang Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shu Ye
- Cardiovascular Disease Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; Shantou University Medical College, Shantou, 515041, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Qian Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, People's Republic of China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
25
|
Petkovic A, Erceg S, Munjas J, Ninic A, Vladimirov S, Davidovic A, Vukmirovic L, Milanov M, Cvijanovic D, Mitic T, Sopic M. LncRNAs as Regulators of Atherosclerotic Plaque Stability. Cells 2023; 12:1832. [PMID: 37508497 PMCID: PMC10378138 DOI: 10.3390/cells12141832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Current clinical data show that, despite constant efforts to develop novel therapies and clinical approaches, atherosclerotic cardiovascular diseases (ASCVD) are still one of the leading causes of death worldwide. Advanced and unstable atherosclerotic plaques most often trigger acute coronary events that can lead to fatal outcomes. However, despite the fact that different plaque phenotypes may require different treatments, current approaches to prognosis, diagnosis, and classification of acute coronary syndrome do not consider the diversity of plaque phenotypes. Long non-coding RNAs (lncRNAs) represent an important class of molecules that are implicated in epigenetic control of numerous cellular processes. Here we review the latest knowledge about lncRNAs' influence on plaque development and stability through regulation of immune response, lipid metabolism, extracellular matrix remodelling, endothelial cell function, and vascular smooth muscle function, with special emphasis on pro-atherogenic and anti-atherogenic lncRNA functions. In addition, we present current challenges in the research of lncRNAs' role in atherosclerosis and translation of the findings from animal models to humans. Finally, we present the directions for future lncRNA-oriented research, which may ultimately result in patient-oriented therapeutic strategies for ASCVD.
Collapse
Affiliation(s)
- Aleksa Petkovic
- Clinical-Hospital Centre "Dr Dragiša Mišović-Dedinje", 11000 Belgrade, Serbia
| | - Sanja Erceg
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Ana Ninic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Sandra Vladimirov
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandar Davidovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
- Department for Internal Medicine, Faculty of Dentistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Luka Vukmirovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Marko Milanov
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Dane Cvijanovic
- Intern Clinic, Clinical Ward for Cardiovascular Diseases, Clinical-Hospital Centre Zvezdara, 11000 Belgrade, Serbia
| | - Tijana Mitic
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
26
|
Shin HS, Shin JJ, Park J, Arab I, Suk K, Lee WH. Role of Macrophage lncRNAs in Mediating Inflammatory Processes in Atherosclerosis and Sepsis. Biomedicines 2023; 11:1905. [PMID: 37509544 PMCID: PMC10377468 DOI: 10.3390/biomedicines11071905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are molecules >200 bases in length without protein-coding functions implicated in signal transduction and gene expression regulation via interaction with proteins or RNAs, exhibiting various functions. The expression of lncRNAs has been detected in many cell types, including macrophages, a type of immune cell involved in acute and chronic inflammation, removal of dead or damaged cells, and tissue repair. Increasing evidence indicates that lncRNAs play essential roles in macrophage functions and disease development. Additionally, many animal studies have reported that blockage or modulation of lncRNA functions alleviates disease severity or morbidity rate. The present review summarizes the current knowledge regarding lncRNAs expressed in macrophages, focusing on their molecular targets and the biological processes regulated by them during the development of inflammatory diseases such as atherosclerosis and sepsis. Possible application of this information to lncRNA-targeting therapy is also discussed. The studies regarding macrophage lncRNAs described in this review can help provide valuable information for developing treatments for various pathological conditions involving macrophages.
Collapse
Affiliation(s)
- Hyeung-Seob Shin
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Joon Shin
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeongkwang Park
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Imene Arab
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Won-Ha Lee
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
27
|
Li P, Hong J, Liang C, Li Y, Gao L, Wu L, Yao R, Zhang Y. Endothelial cell-released extracellular vesicles trigger pyroptosis and vascular inflammation to induce atherosclerosis through the delivery of HIF1A-AS2. FASEB J 2023; 37:e22942. [PMID: 37178006 DOI: 10.1096/fj.202201399rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Extracellular vesicles (EVs) possess great potential in the modulation of cardiovascular diseases. Our current work intended to assay the clinical significance of endothelial cell (EC)-derived EVs in atherosclerosis (AS). Expression of HIF1A-AS2, miR-455-5p, and ESRRG in plasma from AS patients and mice and EVs from ox-LDL-treated ECs was measured. Interactions among HIF1A-AS2, miR-455-5p, ESRRG, and NLRP3 were analyzed. Next, EVs were co-cultured with ECs, and ectopic expression and depletion experimentations of HIF1A-AS2, miR-455-5p, ESRRG, and/or NLRP3 were carried out to assay their roles in pyroptosis and inflammation of ECs in AS. At last, the effects of HIF1A-AS2 shuttled by EC-derived EVs on EC pyroptosis and vascular inflammation in AS were verified in vivo. HIF1A-AS2 and ESRRG were highly expressed, while miR-455-5p was poorly expressed in AS. HIF1A-AS2 could sponge miR-455-5p to elevate the expression of ESRRG and NLRP3. Both in vitro and in vivo experiments revealed that ECs-derived EVs carrying HIF1A-AS2 induced the pyroptosis and vascular inflammation of ECs to promote the progression of AS by sponging miR-455-5p via ESRRG/NLRP3. HIF1A-AS2 shuttled by ECs-derived EVs can accelerate the progression of AS by downregulating miR-455-5p and upregulating ESRRG and NLRP3.
Collapse
Affiliation(s)
- Pengcheng Li
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Jin Hong
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Cui Liang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Yapeng Li
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Lu Gao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Leiming Wu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Rui Yao
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Yanzhou Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
28
|
Zhang M, Yu Z, Zhao L, Luo H. Long non-coding RNA PVT1 regulates atherosclerosis progression via the microRNA-106b-5p/ACSL4 axis. Biochem Biophys Res Commun 2023; 667:170-179. [PMID: 37236049 DOI: 10.1016/j.bbrc.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been associated with atherosclerosis (AS), but the role of lncRNA PVT1 in this disease is still unknown. However, lncRNA PVT1 was found to be significantly upregulated in the serum of AS patients. In vitro experiments using human vascular endothelial cells (HUVECs) showed that oxidized low-density lipoprotein (ox-LDL) treatment enhanced PVT1 expression and impeded HUVEC proliferation, which could be reversed by PVT1 knockdown or miR-106b-5p mimics. Additionally, knockdown of PVT1 and overexpression of miR-106b-5p inhibited the increase of iron content, MDA level, lipid ROS, ACSL4, and PTGS2 in ox-LDL-induced HUVECs, as well as the decrease of GSH and GPX4. We also found that PVT1 knockdown reduced lipid deposition, atherosclerotic plaque number, and size in ApoE-/- mice. These results suggest that PVT1 plays a crucial role in AS progression by regulating the miR-106b-5p/ACSL4 axis in HUVECs, and may therefore be a potential therapeutic target for AS.
Collapse
Affiliation(s)
- Min Zhang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Lin Zhao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Hui Luo
- Department of Cardiology, The First Hospital of Changsha, Changsha, 410008, China.
| |
Collapse
|
29
|
Zhu X, Xu H, Chen B. Inhibition of ox-LDL-induced endothelial cell injury by LINC02381 knockdown through the microRNA-491-5p/transcription factor 7 axis. Immun Inflamm Dis 2023; 11:e785. [PMID: 36988257 PMCID: PMC10013137 DOI: 10.1002/iid3.785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/26/2022] [Accepted: 01/31/2023] [Indexed: 03/17/2023] Open
Abstract
Atherosclerosis (AS) is a complex multifactorial and chronic inflammatory vascular disease that contributes to the development of cardiovascular diseases. Abnormal cellular proliferation in human umbilical vein endothelial cells (HUVECs) is a crucial element in AS development. In this study, we investigated the potential role of the long noncoding RNA LINC02381/microRNA (miR)-491-5p/transcription factor 7 (TCF7) axis in regulating HUVEC injury in 30 participants suffering from AS and 30 healthy control participants. We established an in vitro model of AS in HUVECs using oxidized low-density lipoprotein (ox-LDL), and measured cellular mRNA and protein levels of LINC02381, miR-491-5p, and TCF7 in serum samples using reverse transcription-quantitative polymerase chain reaction and Western blotting assays. We evaluated cell viability, apoptosis, and inflammation using Cell Counting Kit-8, flow cytometry, and enzyme-linked immunosorbent assays, respectively. Moreover, we analyzed apoptosis-related protein expression using western blotting analysis and determined the association between miR-491-5p and LINC02381 or TCF7 using dual-luciferase reporter assay, RNA pull-down, and rescue experiments. We observed that LINC02381 was elevated, while miR-491-5p was downregulated in serum samples from participants with AS and in ox-LDL-treated HUVECs. LINC02381 knockdown was protective against HUVEC injury via miR-491-5p inhibition, which is its downstream target. Rescue experiments further demonstrated that miR-491-5p alleviated HUVEC injury by modulating TCF7. Thus, LINC02381 knockdown ameliorated HUVEC injury by regulating the miR-491-5p/TCF7 axis, which provides new insights into AS treatment strategies.
Collapse
Affiliation(s)
- Xizheng Zhu
- Department of Interventional RadiologyWuhan Asia General HospitalWuhanChina
| | - Hui Xu
- Department of Interventional RadiologyWuhan Asia General HospitalWuhanChina
| | - Beijia Chen
- Department of CardiologyFifth Hospital in WuhanWuhanChina
| |
Collapse
|
30
|
Yang M, Zhang M, Li Z, Liu J, Li Y, Yang Z, Wang X, Huang X, Yu B, Hou J, Liu Q. A landscape of Long non-coding RNAs reveals the leading transcriptome alterations in murine aorta during aging. Genomics 2023; 115:110573. [PMID: 36746218 DOI: 10.1016/j.ygeno.2023.110573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/23/2022] [Accepted: 02/02/2023] [Indexed: 02/06/2023]
Abstract
Considerable studies have given convincing evidence of a forefront position for vascular aging in preventing cardiovascular disease. Various functions of Long non-coding RNAs (lncRNAs) are becoming increasingly distinct in aging-related diseases. This study aims at a better insight into the expression profile and mechanisms of lncRNAs in vascular senescence. High-throughput sequencing was used to detect the differential expression (DE) of lncRNAs and mRNAs in the aorta of 96 W and 8 W-old mice, while 1423 lncRNAs and 80 mRNAs were differentially expressed. By performing GO and KEGG enrichment analysis, we found that DE lncRNAs were mainly involved in purine metabolism and cGMP-PKG signaling pathways. In addition, a co-expression functional network of DE lncRNAs and DE mRNAs was constructed, and ENSMUST00000218874 could interact with 41 DE mRNAs, suggesting that it may play an essential role in vascular senescence. This study reveals DE lncRNAs in naturally aging vascular, which may provide new ideas and targets for aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Mengyue Yang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Meng Zhang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhaoying Li
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jingbao Liu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Yanchao Li
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Ziyu Yang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xuedong Wang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xingtao Huang
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jingbo Hou
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Qi Liu
- The Key Laboratory of Myocardial Ischemia Organization, Chinese Ministry of Education, Harbin, Heilongjiang 150086, China; Department of Cardiology Organization, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
31
|
KCNQ1OT1 mediates keratinocyte migration to promote skin wound healing through the miR-200b-3p/SERP1 axis. Burns 2023; 49:415-424. [PMID: 35523657 DOI: 10.1016/j.burns.2022.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND The basic functions of keratinocyte are crucial steps during skin wound healing. KCNQ1OT1 long noncoding RNA was found to accelerate the migration and proliferation of keratinocyte in psoriasis. Here, we elucidated the action and mechanism of KCNQ1OT1 in skin wound healing. METHODS Expression levels of genes and proteins were evaluated by quantitative real-time PCR (qRT-PCR) and western blotting. Cell migration was assessed by using scratch and transwell assays. The interaction between miR-200b-3p and KCNQ1OT1 or SERP1 (Stress Associated Endoplasmic Reticulum Protein 1) was confirmed by bioinformatics analysis, dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and pull-down assay. RESULTS KCNQ1OT1 had increased significantly in wound edge 1 day and 7 day after injury. Functionally, overexpression of KCNQ1OT1 promoted keratinocyte migration. Mechanistically, KCNQ1OT1/miR-200b-3p/SERP1 constituted a competing endogenous RNA (ceRNA) network in keratinocytes. A series of rescue experiments showed that miR-200b-3p up-regulation in keratinocytes attenuated the pro-migration action of KCNQ1OT1 in cells. Moreover, knockdown of miR-200b-3p could promote keratinocyte migration, which was abolished by SERP1 silencing. KCNQ1OT1 competitively sponged for miR-200b-3p to elevate the expression of its target SERP1. CONCLUSION KCNQ1OT1 could promote keratinocyte migration by miR-200b-3p/SERP1 axis, suggesting that KCNQ1OT1 might play a crucial role in skin wound healing.
Collapse
|
32
|
Zhou H, Song WH. LncRNA HCG11 Accelerates Atherosclerosis via Regulating the miR-224-3p/JAK1 Axis. Biochem Genet 2023; 61:372-389. [PMID: 35931919 DOI: 10.1007/s10528-022-10261-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/03/2022] [Indexed: 01/24/2023]
Abstract
Atherosclerosis (AS) is the typical cardiovascular disease, which is the main underlying inducement of cardiovascular diseases. Aberrant expression of long noncoding RNA HLA complex group 11 (HCG11) was engaged with atherosclerosis. The objective of the present research was to explore the role and the potential mechanism of HCG11 in AS. Human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce the AS model in vitro. The cell viability was detected by MTT assay. Flow cytometry was performed to determine cell pyroptosis. Gene and protein levels were detected by qPCR or Western blot assay. The interaction between HCG11, miR-224-3p, and Janus kinase 1 (JAK1) was validated by dual-luciferase reporter assays. Ox-LDL treatment aggravated cell pyroptosis and inflammation in HUVECs. And the levels of HCG11 and JAK1 was enhanced in ox-LDL-induced HUVECs, while miR-224-3p expression was reduced. Additionally, knockdown of HCG11 or miR-224-3p overexpression reversed the ox-LDL-induced cell viability decline and the increase of cell pyroptosis and inflammation-related proteins, including gasdermin D N-terminal (GSDMD-N), Caspase-1, NOD-like receptor family pyrin domain-containing 3 (NLRP3), interleukin 18 (IL-18), and interleukin 1beta (IL-1β). Moreover, HCG11 could modulate the JAK1 expression via targeting miR-224-3p. The inhibitory effect of HCG11 silencing on cell pyroptosis and inflammation was reversed by miR-224-3p knockdown. Furthermore, overexpression of miR-224-3p could repress the ox-LDL-induced cell pyroptosis and inflammation via regulating JAK1 expression. Knockdown of HCG11 alleviated cell pyroptosis and inflammation induced by ox-LDL via targeting the miR-224-3p/JAK1 axis, indicating that HCG11 could be the latent target of diagnosis or treatment for AS.
Collapse
Affiliation(s)
- Hua Zhou
- The Second Department of Endocrinology, Chenzhou No.1 People's Hospital, No.102 Luojiajing, Beihu District, Chenzhou, 423000, Hunan, China
| | - Wei-Hong Song
- The Second Department of Endocrinology, Chenzhou No.1 People's Hospital, No.102 Luojiajing, Beihu District, Chenzhou, 423000, Hunan, China.
| |
Collapse
|
33
|
Liu H, Huang Y, Lu S, Yuan D, Liu J. Global Trends of Lipid Metabolism Research in Epigenetics Field: A Bibliometric Analysis from 2012-2021. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032382. [PMID: 36767748 PMCID: PMC9915870 DOI: 10.3390/ijerph20032382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 05/13/2023]
Abstract
Most common diseases are characterized by metabolic changes, among which lipid metabolism is a hotspot. Numerous studies have demonstrated a strong correlation between epigenetics and lipid metabolism. This study of publications on the epigenetics of lipid metabolism searched in the Web of Science Core Collection from 2012 to 2022, and a total of 3685 publications were retrieved. Much of our work focused on collecting the data of annual outputs, high-yielding countries and authors, vital journals, keywords and citations for qualitative and quantitative analysis. In the past decade, the overall number of publications has shown an upward trend. China (1382, 26.69%), the United States (1049, 20.26%) and Italy (206, 3.98%) were the main contributors of outputs. The Chinese Academy of Sciences and Yale University were significant potential cooperation institutions. Articles were mainly published in the "International Journal of Molecular Sciences". In addition to typical liver-related diseases, "ferroptosis", "diabetes" and "atherosclerosis" were identified as potential research topics. "NF-κB" and "oxidative stress" were referred to frequently in publications. METTL3 and ALKBH5 were the most discussed m6A-related enzymes in 2022. Our study revealed research hotspots and new trends in the epigenetics of lipid metabolism, hoping to provide significant information and inspiration for researchers to further explore new directions.
Collapse
|
34
|
Yang Y, Lu M, Qian J, Xu Y, Li B, Le G, Xie Y. Dietary Methionine Restriction Promotes Fat Browning and Attenuates Hepatic Lipid Accumulation in High-Choline-Fed Mice Associated with the Improvement of Thyroid Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1447-1463. [PMID: 36632677 DOI: 10.1021/acs.jafc.2c05535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study aims to explore the influences of a methionine-restricted diet (MRD) on fat browning and hepatic lipid accumulation in mice fed with a high-choline diet (HCD) and their possible mechanisms. ICR mice were randomly divided into three groups and fed with a normal diet (0.86% methionine + 0.20% choline, ND), HCD (0.86% methionine + 1.20% choline), or MRD (0.17% methionine + 1.20% choline) for 90 consecutive days. We found that MRD reduced body weight and fat mass; increased heat production and ambulatory locomotor activity; reduced hepatic and plasma lipid levels, hepatic fatty infiltration area, and adipocyte volume in white and brown adipose tissue; promoted fat browning, especially upregulated gene and protein expression levels of uncoupling protein 1 (UCP1); and promoted fat catabolism and inhibited fat anabolism in the liver and adipose tissue. Moreover, MRD increased antioxidant defenses and reduced inflammatory cytokine levels in the thyroid, blood, and liver. Furthermore, MRD improved thyroid morphological structure, promoted the synthesis and secretion of thyroid hormones, and enhanced the actions of thyroid hormones on its receptor organs (liver and adipose tissue). These findings suggested that MRD promoted fat browning and attenuated hepatic lipid accumulation in HCD mice associated with the improvement of thyroid function.
Collapse
Affiliation(s)
- Yuhui Yang
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Manman Lu
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jing Qian
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yuncong Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Guowei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yanli Xie
- National Engineering Laboratory/Key Laboratory of Henan Province, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
35
|
Ilieva M, Uchida S. Potential Involvement of LncRNAs in Cardiometabolic Diseases. Genes (Basel) 2023; 14:213. [PMID: 36672953 PMCID: PMC9858747 DOI: 10.3390/genes14010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Characterized by cardiovascular disease and diabetes, cardiometabolic diseases are a major cause of mortality around the world. As such, there is an urgent need to understand the pathogenesis of cardiometabolic diseases. Increasing evidence suggests that most of the mammalian genome are transcribed as RNA, but only a few percent of them encode for proteins. All of the RNAs that do not encode for proteins are collectively called non-protein-coding RNAs (ncRNAs). Among these ncRNAs, long ncRNAs (lncRNAs) are considered as missing keys to understand the pathogeneses of various diseases, including cardiometabolic diseases. Given the increased interest in lncRNAs, in this study, we will summarize the latest trend in the lncRNA research from the perspective of cardiometabolism and disease by focusing on the major risk factors of cardiometabolic diseases: obesity, cholesterol, diabetes, and hypertension. Because genetic inheritance is unavoidable in cardiometabolic diseases, we paid special attention to the genetic factors of lncRNAs that may influence cardiometabolic diseases.
Collapse
Affiliation(s)
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen SV, Denmark or
| |
Collapse
|
36
|
Growth hormone receptor (GHR) in AgRP neurons regulates thermogenesis in a sex-specific manner. GeroScience 2023:10.1007/s11357-023-00726-4. [PMID: 36633824 PMCID: PMC10400518 DOI: 10.1007/s11357-023-00726-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Evidence for hypothalamic regulation of energy homeostasis and thermoregulation in brown adipose tissue (BAT) during aging has been well recognized, yet the central molecular mediators involved in this process are poorly understood. The arcuate hypothalamus, orexigenic agouti-related peptide (AgRP) neurons control nutrient intake, energy homeostasis, and BAT thermogenesis. To determine the roles of growth hormone receptor (GHR) signaling in the AgRP neurons, we used mice with the AgRP-specific GHR deletion (AgRPΔGHR). We found that female AgRPΔGHR mice were resistant to temperature adaptation, and their body core temperature remained significantly lower when held at 10 °C, 22 °C, or 30 °C, compared to control mice. Low body core temperature in female AgRPΔGHR mice has been associated with significant reductions in Ucp1 and Pgc1α expression in the BAT. Further, neuronal activity in AgRP in response to cold exposure was blunted in AgRPΔGHR female mice, while the number of Fos+ AgRP neurons was increased in female controls exposed to cold. Global transcriptome from BAT identified increased the expression of genes related to immune responses and chemokine activity and decreased the expression of genes involved in triglyceride synthesis and metabolic pathways in AgRPΔGHR female mice. Importantly, these were the same genes that are downregulated by thermoneutrality in control mice but not in the AgRPΔGHR animals. Collectively, these data demonstrate a novel sex-specific role for GHR signaling in AgRP neurons in thermal regulation, which might be particularly relevant during aging.
Collapse
|
37
|
Li G, Chen Q. lncRNA PCA3 Suppressed Carotid Artery Stenosis and Vascular Smooth Muscle Cell Function via Negatively Modulating the miR-124-3p/ITGB1 Axis. Clin Appl Thromb Hemost 2023; 29:10760296231190383. [PMID: 37583257 PMCID: PMC10467385 DOI: 10.1177/10760296231190383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/14/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND & OBJECTIVES Due to the hidden pathogen, carotid artery stenosis (CAS) always occurred at an advanced stage leading to serious sequelae and even deaths. The significance of long noncoding RNA (lncRNA) prostate cancer antigen 3 (PCA3) in CAS incidence and progression were evaluated aiming to explore a potential target for its therapy. MATERIALS AND METHODS Serum samples were collected from 83 asymptomatic CAS patients and 52 healthy individuals and PCA3 was compared using polymerase chain reaction (PCR). The PCA3 levels were compared between stable and unstable plaque in CAS patients. The effect of PCA3 on vascular smooth muscle cells (VSMCs) proliferation and motility was assessed by CCK8 and transwell assay. RESULTS PCA3 was downregulated in CAS patients and their unstable plaque tissues compared with healthy individuals and stable plaque, respectively. Reduced PCA3 could discriminate CAS patients with relatively high sensitivity and specificity and were associated with higher total cholesterol level and stenosis degree, unstable plaque, and complications. PCA3 downregulation predicted the adverse outcomes of CAS patients. In VSMCs, overexpressing PCA3 significantly suppressed cell proliferation, migration, and invasion, which was alleviated by miR-124-3p/ITGB1 axis. CONCLUSION PCA3 served as a biomarker of CAS and regulates the function of VSMCs through sponging miR-124-3p/ITGB1 and indirectly influence the stability of plaque.
Collapse
Affiliation(s)
- Guosheng Li
- The Affiliated Taizhou Second People's Hospital of Yangzhou University, Taizhou, China
| | - Qiang Chen
- Department of Neurology, Huai'an Hospital Affiliated to Xuzhou Medical University, Huai'an, China
| |
Collapse
|
38
|
He J, Lin H, Ding Y, Liu X, Xu K, Chen X, Shen W, Zhou S, Wang M, Xia J, He N. Genome-wide associated variants of subclinical atherosclerosis among young people with HIV and gene-environment interactions. J Transl Med 2022; 20:609. [PMID: 36539828 PMCID: PMC9764595 DOI: 10.1186/s12967-022-03817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified some variants associated with subclinical atherosclerosis (SCA) in general population but lacking sufficient validation. Besides traditional risk factors, whether and how would genetic variants associate with SCA among people with HIV (PWH) remains to be elucidated. METHOD A large original GWAS and gene-environment interaction analysis of SCA were conducted among Chinese PWH (n = 2850) and age/sex-matched HIV-negative controls (n = 5410). Subgroup analyses by age and functional annotations of variants were also performed. RESULTS Different from HIV-negative counterparts, host genome had a greater impact on young PWH rather than the elders: one genome-wide significant variant (rs77741796, P = 2.20 × 10-9) and eight suggestively significant variants (P < 1 × 10-6) were identified to be specifically associated with SCA among PWH younger than 45 years. Seven genomic loci and 15 genes were mapped to play a potential role on SCA among young PWH, which were enriched in the biological processes of atrial cardiac muscle cell membrane repolarization and molecular function of protein kinase A subunit binding. Furthermore, genome-wide interaction analyses revealed significant HIV-gene interactions overall as well as gene-environment interactions with alcohol consumption, tobacco use and obesity among PWH. The identified gene-environment interaction on SCA among PWH might be useful for discovering high-risk individuals for the prevention of SCA, particularly among those with tobacco use and alcohol consumption. CONCLUSION The present study provides new clues for the genetic contribution of SCA among young PWH and is the starting point of precision intervention targeting HIV-related atherosclerosis.
Collapse
Affiliation(s)
- Jiayu He
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Haijiang Lin
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,Taizhou City Center for Disease Control and Prevention, Taizhou, Zhejiang China
| | - Yingying Ding
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China
| | - Xing Liu
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China
| | - Kelin Xu
- grid.8547.e0000 0001 0125 2443Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Xiaoxiao Chen
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,Taizhou City Center for Disease Control and Prevention, Taizhou, Zhejiang China
| | - Weiwei Shen
- Taizhou City Center for Disease Control and Prevention, Taizhou, Zhejiang China
| | - Sujuan Zhou
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Miaochen Wang
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China
| | - Jingjing Xia
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China
| | - Na He
- grid.8547.e0000 0001 0125 2443Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Yi-Wu Research Institute, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
39
|
He SL, Chen YL, Chen QH, Tian Q, Yi SJ. LncRNA KCNQ1OT1 promotes the metastasis of ovarian cancer by increasing the methylation of EIF2B5 promoter. Mol Med 2022; 28:112. [PMID: 36100884 PMCID: PMC9469603 DOI: 10.1186/s10020-022-00521-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have emerged as regulators of human malignancies, including ovarian cancer (OC). LncRNA KCNQ1OT1 could promote OC progression, and EIF2B5 was associated with development of several tumors. This project was aimed to explore the role of lncRNA KCNQ1OT1 in OC development, as well as the involving action mechanism. Methods Reverse transcription quantitative polymerase chain reaction (RT-qPCR) or Western blotting was employed to determine the expression levels of KCNQ1OT1 and EIF2B5. OC cell proliferation was evaluated by MTT and colony formation assays, and wound healing and Transwell assays were implemented to monitor cell migration and invasion, respectively. The methylation status of EIF2B5 promoter was examined by MS-PCR, to clarify whether the expression of EIF2B5 was decreased. The binding activity of KCNQ1OT1 to methyltransferases DNMT1, DNMT3A and DNMT3B was determined by dual luciferase reporter assay or RIP assay, to explore the potential of KCNQ1OT1 alters the expression of its downstream gene. ChIP assay was carried out to verify the combination between EIF2B5 promoter and above three methyltransferases. Results Expression of lncRNA KCNQ1OT1 was increased in OC tissues and cells. EIF2B5 expression was downregulated in OC, which was inversely correlated with KCNQ1OT1. Knockdown of KCNQ1OT1 inhibited OC cell proliferation and metastasis. KCNQ1OT1 could downregulate EIF2B5 expression by recruiting DNA methyltransferases into EIF2B5 promoter. Furthermore, interference of EIF2B5 expression rescued KCNQ1OT1 depletion-induced inhibitory impact on OC cell proliferation and metastasis. Conclusion Our findings evidenced that lncRNA KCNQ1OT1 aggravated ovarian cancer metastasis by decreasing EIF2B5 expression level, and provided a novel therapeutic strategy for OC. LncRNA KCNQ1OT1 is upregulated, while EIF2B5 is downregulated in OC tissues and cells. Knockdown of KCNQ1OT1 represses OC cell proliferation and metastasis. KCNQ1OT1 decreases EIF2B5 expression by recruiting DNA methyltransferases into EIF2B5 promoter, thereby promoting OC progression.
Collapse
|
40
|
Zhu L, Feng Q, Fan J, Huang J, Zhu Y, Wu Y, Hou A, Huo Y. Clinical value of long non-coding RNA KCNQ1OT1 in estimating the stenosis, lipid level, inflammation status, and prognostication in coronary heart disease patients. J Clin Lab Anal 2022; 37:e24775. [PMID: 36458365 PMCID: PMC9833965 DOI: 10.1002/jcla.24775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVE Long non-coding RNA KQT-like subfamily, member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) could regulate lipid metabolism, vascular smooth muscle cell function, inflammation, and atherosclerosis. This study aimed to evaluate whether lncRNA KCNQ1OT1 could serve as a biomarker for reflecting coronary heart disease (CHD) patients' disease situation and prognosis. METHODS LncRNA KCNQ1OT1 expression was determined in peripheral blood mononuclear cells from 267 CHD patients, 50 disease controls (DCs) (unexplained chest pain), and 50 healthy controls (HCs) by the RT-qPCR method. TNF-α, IL-17A, VCAM-1, and ICAM-1 were determined by the ELISA procedure in serum from CHD patients only. The mean (95% confidential interval) follow-up duration was 16.0 (15.3-16.8) months. RESULTS LncRNA KCNQ1OT1 was highest in CHD patients, followed by DCs, and lowest in HCs (p < 0.001). LncRNA KCNQ1OT1 could distinguish the CHD patients from DCs (area under the curve [AUC]: 0.757) and from the HCs (AUC: 0.880). LncRNA KCNQ1OT1 was positively associated with triglyceride (p = 0.026), low-density lipoprotein cholesterol (p = 0.023), cardiac troponin I (p = 0.023), and C-reactive protein (p = 0.001). Besides, lncRNA KCNQ1OT1 was also positively linked with the Gensini score (p = 0.008). Furthermore, lncRNA KCNQ1OT1 was positively related to the TNF-α (p < 0.001), IL-17A (p = 0.008), and VCAM-1 (p = 0.003). LncRNA KCNQ1OT1 was elevated in CHD patients with MACE compared to those without MACE (p = 0.006); moreover, lncRNA KCNQ1OT1 high was associated with shorter MACE-free survival (p = 0.018). CONCLUSION Circulating lncRNA KCNQ1OT1 expression not only reflects the stenosis degree, blood lipid level, and inflammation status but also predicts the MACE risk, while a large-scale study is needed for verification.
Collapse
Affiliation(s)
- Lin Zhu
- Department of CardiologyHanDan Central HospitalHandanChina
| | - Qiang Feng
- Department of CardiologyHanDan Central HospitalHandanChina
| | - Jie Fan
- Department of CardiologyHanDan Central HospitalHandanChina
| | - Jing Huang
- Geriatrics DepartmentHanDan Central HospitalHandanChina
| | - Yanling Zhu
- Department of CardiologyHanDan Central HospitalHandanChina
| | - Yanqiang Wu
- Department of CardiologyHanDan Central HospitalHandanChina
| | - Aijun Hou
- Department of CardiologyHanDan Central HospitalHandanChina
| | - Yanfei Huo
- Physical Examination CenterHanDan Central HospitalHandanChina
| |
Collapse
|
41
|
Xia F, Wang Y, Xue M, Zhu L, Jia D, Shi Y, Gao Y, Li L, Li Y, Chen S, Xu G, Yuan D, Yuan C. LncRNA KCNQ1OT1: Molecular mechanisms and pathogenic roles in human diseases. Genes Dis 2022; 9:1556-1565. [PMID: 36157505 PMCID: PMC9485204 DOI: 10.1016/j.gendis.2021.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/13/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) exhibit a length more than 200 nucleotides and they are characterized by non-coding RNAs (ncRNA) not encoded into proteins. Over the past few years, the role and development of lncRNAs have aroused the rising attention of researchers. To be specific, KCNQ1OT1, the KCNQ1 opposite strand/antisense transcript 1, is clearly classified as a regulatory ncRNA. KCNQ1OT1 is capable of interacting with miRNAs, RNAs and proteins, thereby affecting gene expression and various cell functions (e.g., cell proliferation, migration, epithelial-mesenchymal transition (EMT), apoptosis, viability, autophagy and inflammation). KCNQ1OT1 is dysregulated in a wide range of human diseases (e.g., cardiovascular disease, cancer, diabetes, osteoarthritis, osteoporosis and cataract), and it is speculated to act as a therapeutic target for treating various human diseases. On the whole, this review aims to explore the biological functions, underlying mechanisms and pathogenic roles of KCNQ1OT1 in human diseases.
Collapse
Affiliation(s)
- Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Silong Chen
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Guangfu Xu
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Ding Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, Hubei 443002, PR China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, Hubei 443002, PR China.,Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, PR China
| |
Collapse
|
42
|
Zhu H, Tan J, Wang Z, Wu Z, Zhou W, Zhang Z, Li M, Zhao Y. Bioinformatics analysis constructs potential ferroptosis-related ceRNA network involved in the formation of intracranial aneurysm. Front Cell Neurosci 2022; 16:1016682. [PMCID: PMC9612944 DOI: 10.3389/fncel.2022.1016682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIntracranial aneurysm (IA) causes more than 80% of nontraumatic subarachnoid hemorrhages (SAHs). The mechanism of ferroptosis involved in IA formation remains unclear. The roles played by competitive endogenous RNA (ceRNA) regulation networks in many diseases are becoming clearer. The goal of this study was to understand more fully the ferroptosis-related ceRNA regulation network in IA.Materials and methodsTo identify differentially expressed genes (DEGs), differentially expressed miRNAs (DEMs), and differentially expressed lncRNAs (DELs) across IA and control samples, the GEO datasets GSE122897 and GSE66239 were downloaded and analyzed with the aid of R. Ferroptosis DEGs were discovered by exploring the DEGs of ferroptosis-related genes of the ferroptosis database. Potentially interacting miRNAs and lncRNAs were predicted using miRWalk and StarBase. Enrichment analysis was also performed. We utilized the STRING database and Cytoscape software to identify protein-protein interactions and networks. DAB-enhanced Prussian blue staining was used to detect iron in IA tissues.ResultsIron deposition was evident in IA tissue. In all, 30 ferroptosis DEGs, 5 key DEMs, and 17 key DELs were screened out for constructing a triple regulatory network. According to expression regulation of DELs, DEMs, and DEGs, a hub triple regulatory network was built. As the functions of lncRNAs are determined by their cellular location, PVT1-hsa-miR-4644-SLC39A14 ceRNA and DUXAP8-hsa-miR-378e/378f-SLC2A3 ceRNA networks were constructed.ConclusionCeRNA (PVT1-hsa-miR-4644-SLC39A14 and DUXAP8-hsa-miR-378e/378f-SLC2A3) overexpression networks associated with ferroptosis in IA were established.
Collapse
|
43
|
Yu S, An J, Sun R, Feng J, Yu M. LncRNA KCNQ1OT1 predicts further cerebral events in patients with transient ischemic attack. Front Pharmacol 2022; 13:961190. [PMID: 36278219 PMCID: PMC9585189 DOI: 10.3389/fphar.2022.961190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
Transient ischemic attack (TIA) poses a great threat of cerebrovascular diseases to a large number of patients, despite its reversible neurological dysfunction. Long non-coding RNAs (lncRNAs) have been proven to play critical roles in the pathophysiological development of cerebrovascular events. Exploring the function of lncRNAs in modulating TIA prognosis would help to develop individualized therapeutics. A total of 231 participants with the first onset of TIA were recruited in the study, including 65 subsequent stroke patients. The expression of lncRNA potassium voltage-gated channel subfamily Q member 1 opposite strand 1 (KCNQ1OT1) was upregulated in patients with recurrent ischemic events after TIA. Additionally, KCNQ1OT1 could be regarded as an independent predictor for subsequent ischemic stroke. The optimal diagnostic value was determined at 1.29 with a sensitivity of 63% and a specificity of 72%. Fewer patients would survive from further ischemic stroke with their KCNQ1OT1 level over 1.29. Furthermore, the expression of KCNQ1OT1 was elevated with a growing serum high-sensitivity C-reactive protein (hs-CRP) level. KCNQ1OT1 might be involved in the regulation of early inflammatory response during recurrence of TIA.
Collapse
Affiliation(s)
- Shijia Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing An
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ran Sun
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingjun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingjun Yu,
| |
Collapse
|
44
|
Lu J, Huang X, Deng A, Yao H, Wu G, Wang N, Gui H, Ren M, Guo S. miR-452-3p Targets HDAC3 to Inhibit p65 Deacetylation and Activate the NF-κB Signaling Pathway in Early Brain Injury after Subarachnoid Hemorrhage. Neurocrit Care 2022; 37:558-571. [PMID: 35641805 DOI: 10.1007/s12028-022-01509-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Subarachnoid hemorrhage (SAH) is a subtype of stroke, and early brain injury (EBI) is a contributor to its unfavorable outcome. microRNA (miRNA) is abundantly expressed in the brain and participates in brain injury. This study investigated the effect of miR-452-3p on EBI after SAH. METHODS The murine model of SAH was established. miR-452-3p expression was detected 48 h after the model establishment. Neurobehavioral function, blood-brain barrier permeability, brain water content, neuronal apoptosis, and inflammatory factors were evaluated. The cell model of SAH was induced by oxygen hemoglobin. Apoptosis rate, lactate dehydrogenase, and reactive oxygen species were detected. The targeting relationship between miR-452-3p and histone deacetylase 3 (HDAC3) was verified. The acetylation of p65 and the binding of HDAC3 to p65 were detected. The inhibitory protein of the nuclear factor κB pathway (IκBα) was detected. Suberoylanilide hydroxamic acid was injected into the SAH mice treated with miR-452-3p inhibitor. RESULTS SAH mice showed upregulated miR-452-3p expression; reduced the neurological score; increased blood-brain barrier permeability, brain water content, and neuronal apoptosis; elevated pro-inflammatory factors; and reduced anti-inflammatory factors. SAH increased the apoptosis rate, lactate dehydrogenase release, and reactive oxygen species levels in oxygen-hemoglobin-treated neuron cells. Inhibition of miR-452-3p reversed the above trends. miR-452-3p targeted HDAC3. SAH upregulated p65 acetylation. miR-452-3p inhibitor promoted the binding of HDAC3 to p65, decreased p65 acetylation, and upregulated IκBα. Suberoylanilide hydroxamic acid reversed the protective effect of miR-452-3p inhibitor on SAH mice and aggravated brain injury. CONCLUSIONS miR-452-3p targeted HDAC3 to inhibit the deacetylation of p65 and activate the nuclear factor κB pathway, thus aggravating EBI after SAH.
Collapse
Affiliation(s)
- Junti Lu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Xiaodong Huang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Aiping Deng
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Hong Yao
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Gao Wu
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Na Wang
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Hui Gui
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Mojie Ren
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, 32 People's South Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Shiwen Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
45
|
Expression Profiles and Functional Analysis of Plasma Exosomal Circular RNAs in Acute Myocardial Infarction. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3458227. [PMID: 36221294 PMCID: PMC9547997 DOI: 10.1155/2022/3458227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
Acute myocardial infarction (AMI) is a common cardiovascular disease with high rates of morbidity and mortality globally. The dysregulation of circular RNAs (circRNAs) has been shown to be closely related to various pathological aspects of AMI. However, the function of exosomal circRNAs in AMI has yet to be investigated. The purpose of this study was to investigate the expression profiles of plasma exosomal circRNAs in AMI and explore their potential functionality. The expression profiles of plasma exosomal circRNAs in patients with AMI, stable coronary heart atherosclerotic disease (CAD), and healthy controls were obtained from a GEO expression dataset (GSE159657). We also analyzed bioinformatics functionality, potential pathways, and interaction networks related to the microRNAs associated with the differentially expressed circRNAs. A total of 253 exosomal circRNAs (184 up- and 69 down-regulated) and 182 exosomal circRNAs (94 up- and 88 down-regulated) were identified as being differentially expressed between the control group and the AMI and CAD patients, respectively. Compared with the CAD group, 231 different exosomal circRNAs (177 up- and 54 down-regulated) were identified in the AMI group. Functional analysis suggested that the parental genes of exosomal has_circ_0061776 were significantly enriched in the biological process of lysine degradation. Pathway interaction network analysis further indicated that exosomal has_circ_0061776 was associated with has-miR-133a, has-miR-214, has-miR-423, and has-miR-217 and may play a role in the pathogenesis of AMI through the MAPK signaling pathway. This study identified the differential expression and functionality of exosomal circRNAs in AMI and provided further understanding of the potential pathogenesis of an exosomal circRNA-related competing endogenous RNA (ceRNA) network in AMI.
Collapse
|
46
|
Yuan L, Wang D, Zhou Z. LINC00452 overexpression reverses oxLDL-induced injury of human umbilical vein endothelial cells (HUVECs) via regulating miR-194-5p/IGF1R axis. Front Cardiovasc Med 2022; 9:975640. [PMID: 36158838 PMCID: PMC9500390 DOI: 10.3389/fcvm.2022.975640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
It has been reported that atherosclerosis (AS) is the basis of the development of coronary artery disease (CAD). In addition, a previous study demonstrated that long non-coding RNA LINC00452 was notably downregulated in the whole blood of patients with CAD. However, the role of LINC00452 in the progression of AS remains unclear. Therefore, to mimic AS in vitro, HUVECs were treated with 100 μg/ml oxLDL for 24 h. Reverse transcription-quantitative PCR was performed to detect the expression levels of LINC00452 and IGF1R in HUVECs. Additionally, the cell angiogenetic ability was assessed by tube formation assay, while dual-luciferase reporter assay was carried out to explore the association among LINC00452, miR-194-5p, and IGF1R. The results showed that LINC00452 was downregulated in oxLDL-treated HUVECs. In addition, HUVEC treatment with oxLDL significantly inhibited cell viability, proliferation, and angiogenesis. However, the above effects were all reversed by LINC00452 overexpression. Furthermore, LINC00452 overexpression in HUVECs remarkably inhibited oxLDL-induced cell apoptosis and endothelial to mesenchymal transition. In addition, LINC00452 overexpression could markedly reverse oxLDL-induced inhibition of angiogenesis in HUVEC. The results of dual-luciferase reporter assay indicated that LINC00452 could bind with miR-194-5p. In addition, IGF1R was identified as a downstream target of miR-194-5p. And LINC00452 was able to regulate the miR-194-5p/IGF1R axis in HUVECs. Moreover, LINC00452 overexpression obviously reversed oxLDL-mediated growth inhibition of HUVEC via regulating the miR-194-5p/IGF1R axis. Overall, the current study demonstrated that LINC00452 overexpression reversed oxLDL-induced growth inhibition of HUVECs via regulating the miR-194-5p/IGF1R axis, thus providing a potential beneficial targets for AS.
Collapse
Affiliation(s)
- Liang Yuan
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dajie Wang
- Department of Cardiology, Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), Yancheng, China
- *Correspondence: Dajie Wang
| | - Zhaofeng Zhou
- Department of Cardiology, Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), Yancheng, China
- Zhaofeng Zhou
| |
Collapse
|
47
|
Zou J, Xu C, Zhao ZW, Yin SH, Wang G. Asprosin inhibits macrophage lipid accumulation and reduces atherosclerotic burden by up-regulating ABCA1 and ABCG1 expression via the p38/Elk-1 pathway. Lab Invest 2022; 20:337. [PMID: 35902881 PMCID: PMC9331044 DOI: 10.1186/s12967-022-03542-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/17/2022] [Indexed: 12/27/2022]
Abstract
Background Asprosin, a newly discovered adipokine, is a C-terminal cleavage product of profibrillin. Asprosin has been reported to participate in lipid metabolism and cardiovascular disease, but its role in atherogenesis remains elusive. Methods Asprosin was overexpressed in THP-1 macrophage-derived foam cells and apoE−/− mice using the lentiviral vector. The expression of relevant molecules was determined by qRT-PCR and/or western blot. The intracellular lipid accumulation was evaluated by high-performance liquid chromatography and Oil red O staining. HE and Oil red O staining was employed to assess plaque burden in vivo. Reverse cholesterol transport (RCT) efficiency was measured using [3H]-labeled cholesterol. Results Exposure of THP-1 macrophages to oxidized low-density lipoprotein down-regulated asprosin expression. Lentivirus-mediated overexpression of asprosin promoted cholesterol efflux and inhibited lipid accumulation in THP-1 macrophage-derived foam cells. Mechanistic analysis revealed that asprosin overexpression activated p38 and stimulated the phosphorylation of ETS-like transcription factor (Elk-1) at Ser383, leading to Elk-1 nuclear translocation and the transcriptional activation of ATP binding cassette transporters A1 (ABCA1) and ABCG1. Injection of lentiviral vector expressing asprosin diminished atherosclerotic lesion area, increased plaque stability, improved plasma lipid profiles and facilitated RCT in apoE−/− mice. Asprosin overexpression also increased the phosphorylation of p38 and Elk-1 as well as up-regulated the expression of ABCA1 and ABCG1 in the aortas. Conclusion Asprosin inhibits lipid accumulation in macrophages and decreases atherosclerotic burden in apoE−/− mice by up-regulating ABCA1 and ABCG1 expression via activation of the p38/Elk-1 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03542-0.
Collapse
Affiliation(s)
- Jin Zou
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Can Xu
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Shan-Hui Yin
- The First Affiliated Hospital, Department of Neonatology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Gang Wang
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
48
|
Chen L, Wei K, Li J, Li Y, Cao H, Zheng Z. Integrated Analysis of LncRNA-Mediated ceRNA Network in Calcific Aortic Valve Disease. Cells 2022; 11:2204. [PMID: 35883646 PMCID: PMC9315639 DOI: 10.3390/cells11142204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The high morbidity and mortality of calcific aortic valve disease (CAVD) represents an unmet clinical need to investigate the molecular mechanisms involved. Evidence suggests that long non-coding RNAs (lncRNAs) can act as competitive endogenous RNAs (ceRNAs) by binding to microRNAs and regulating target genes in cardiovascular diseases. Nevertheless, the role of lncRNAs related ceRNA regulation in CAVD remains unclear. METHODS RNAseq data of human diseased aortic valves were downloaded from GEO data sets (GSE153555, GSE199718), and differentially expressed lncRNAs (DElncRNAs), mRNAs (DEmRNAs) between CAVD and non-calcific aortic valve tissues with limma R package. Gene Ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Set Enrichment analysis (GSEA) were performed with clusterProfiler and gesaplot2 R package. The pivotal microRNAs were predicted by three databases intersection including TargetScan, MiRwalk, miRDB according to the genes related to the crucial pathways. ENCORI was used to predict targeted lncRNAs of hub microRNAs. We constructed lncRNA-miRNA-mRNA ceRNA network with Cytoscape software. The lncRNAs in ceRNA network were verified by RT-qPCR in human 30 calcific and 20 noncalcified aortic valve tissues. RESULTS In total, 1739 DEmRNAs and 266 DElncRNAs were identified in CAVD. GO, KEGG pathway, GSEA annotations suggested that most of these genes are enriched in extracellular matrix (ECM)-reporter interaction pathways. The ceRNA networks associated with ECM-reporter interaction are constructed and related lncRNAs including H19, SNHG3 and ZNF436-AS1 were significant upregulated in human calcific aortic valve tissues, which might be potential therapeutic targets for CAVD. CONCLUSIONS In this study, we proposed a novel lncRNA-miRNA-mRNA ceRNA network related to ECM-reporter interaction pathways, which potentially regulates CAVD progression.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, China & Department of Cardiovascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; (L.C.); (K.W.); (J.L.); (Y.L.)
| | - Ke Wei
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, China & Department of Cardiovascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; (L.C.); (K.W.); (J.L.); (Y.L.)
| | - Jun Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, China & Department of Cardiovascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; (L.C.); (K.W.); (J.L.); (Y.L.)
| | - Yue Li
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, China & Department of Cardiovascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; (L.C.); (K.W.); (J.L.); (Y.L.)
| | - Huiqing Cao
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100084, China
| | - Zhe Zheng
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, China & Department of Cardiovascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100006, China; (L.C.); (K.W.); (J.L.); (Y.L.)
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central-China Branch of National Center for Cardiovascular Diseases, Fuwai Central-China Hospital, Beijing 100037, China
| |
Collapse
|
49
|
Zhang P, Wu S, He Y, Li X, Zhu Y, Lin X, Chen L, Zhao Y, Niu L, Zhang S, Li X, Zhu L, Shen L. LncRNA-Mediated Adipogenesis in Different Adipocytes. Int J Mol Sci 2022; 23:ijms23137488. [PMID: 35806493 PMCID: PMC9267348 DOI: 10.3390/ijms23137488] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Long-chain noncoding RNAs (lncRNAs) are RNAs that do not code for proteins, widely present in eukaryotes. They regulate gene expression at multiple levels through different mechanisms at epigenetic, transcription, translation, and the maturation of mRNA transcripts or regulation of the chromatin structure, and compete with microRNAs for binding to endogenous RNA. Adipose tissue is a large and endocrine-rich functional tissue in mammals. Excessive accumulation of white adipose tissue in mammals can cause metabolic diseases. However, unlike white fat, brown and beige fats release energy as heat. In recent years, many lncRNAs associated with adipogenesis have been reported. The molecular mechanisms of how lncRNAs regulate adipogenesis are continually investigated. In this review, we discuss the classification of lncRNAs according to their transcriptional location. lncRNAs that participate in the adipogenesis of white or brown fats are also discussed. The function of lncRNAs as decoy molecules and RNA double-stranded complexes, among other functions, is also discussed.
Collapse
Affiliation(s)
- Peiwen Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Wu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxu He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinrong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhu
- College of Life Science, China West Normal University, Nanchong 637009, China;
| | - Xutao Lin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.Z.); (L.S.); Tel.: +86-28-8629-1133 (L.Z. & L.S.)
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (P.Z.); (S.W.); (Y.H.); (X.L.); (X.L.); (L.C.); (Y.Z.); (L.N.); (S.Z.); (X.L.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (L.Z.); (L.S.); Tel.: +86-28-8629-1133 (L.Z. & L.S.)
| |
Collapse
|
50
|
Stevens TW, Khalaf FK, Soehnlen S, Hegde P, Storm K, Meenakshisundaram C, Dworkin LD, Malhotra D, Haller ST, Kennedy DJ, Dube P. Dirty Jobs: Macrophages at the Heart of Cardiovascular Disease. Biomedicines 2022; 10:1579. [PMID: 35884884 PMCID: PMC9312498 DOI: 10.3390/biomedicines10071579] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the greatest public health concerns and is the leading cause of morbidity and mortality in the United States and worldwide. CVD is a broad yet complex term referring to numerous heart and vascular conditions, all with varying pathologies. Macrophages are one of the key factors in the development of these conditions. Macrophages play diverse roles in the maintenance of cardiovascular homeostasis, and an imbalance of these mechanisms contributes to the development of CVD. In the current review, we provide an in-depth analysis of the diversity of macrophages, their roles in maintaining tissue homeostasis within the heart and vasculature, and the mechanisms through which imbalances in homeostasis may lead to CVD. Through this review, we aim to highlight the potential importance of macrophages in the identification of preventative, diagnostic, and therapeutic strategies for patients with CVD.
Collapse
Affiliation(s)
- Travis W. Stevens
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Fatimah K. Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
- Department of Clinical Pharmacy, University of Alkafeel, Najaf 54001, Iraq
| | - Sophia Soehnlen
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Prajwal Hegde
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Kyle Storm
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Chandramohan Meenakshisundaram
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Lance D. Dworkin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Steven T. Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - David J. Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| | - Prabhatchandra Dube
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43606, USA; (T.W.S.); (F.K.K.); (S.S.); (P.H.); (K.S.); (C.M.); (L.D.D.); (D.M.); (S.T.H.)
| |
Collapse
|